

DEPARTMENT OF CITY PLANNING

RECOMMENDATION REPORT

City Planning Commission

Time: Place:	June 13, 2 After 8:30 Los Angele Council Ch 200 N. Spr Los Angele	A.M.* es City Hall ambers	Case No.: CEQA No.: Incidental Cases: Related Cases: Council No.: Plan Area:	CPC-2018-3430-DB-SPR ENV-2018-3431-CE N/A N/A 11 - Bonin Palms - Mar Vista - Del Rey
Public He Appeal St	•	May 13, 2019 Density Bonus off-menu incentives are not appealable. Site Plan Review is appealable to City Council.	Specific Plan: Certified NC: GPLU: Zone:	West Los Angeles Transportation Improvement and Mitigation Mar Vista Neighborhood Commercial C2-1VL
Expiratior Multiple A		June 13, 2019 Yes	Applicant: Representative:	Bob Halavi, Camdaily, LLC Daniel Ahadian, nur Development Consulting

Aaron Green, President of Afriat Consulting Group Inc.

PROJECT
LOCATION:11701-11719 West Gateway Boulevard; 2511 South Barrington AvenuePROPOSED
PROJECT:The proposed project includes the demolition of commercial uses and the construction, use and
maintenance of a five-story (with two (2) subterranean parking levels), 73-unit, mixed-used

PROJECT: maintenance of a five-story (with two (2) subterranean parking levels), 73-unit, mixed-used development with 5,899 square feet of ground floor commercial space. The project has a maximum building height of 56 feet, however is limited to 45 feet within 50 feet the surrounding R1-zoned properties. The project requires approximately 14,311 cubic yards of grading.

REQUESTED 1) Pursuant to CEQA Guidelines, Section 15332 (Class 32), an Exemption from CEQA, and that there is no substantial evidence demonstrating that an exception to a categorical exemption pursuant to CEQA Guidelines, Section 15300.2 applies;

- 2) Pursuant to Los Angeles Municipal Code (LAMC) Section 12.22-A,25, a 35% Density Bonus for a Housing Development with a total of 73 units [with six (6) units - 11% of the base density set aside for Very Low Income Households], utilizing Parking Option 1, and pursuant to LAMC Section 12.22-A,25(g)(3), two (2) Off-Menu Incentives:
 - a. Pursuant to LAMC Section 12.22-A,25(g)(3), an Off-Menu Incentive to permit a maximum FAR of 3.25:1 in lieu of 1.5:1 in the C2-1VL Zone; and
 - b. Pursuant to LAMC Section 12.22-A,25(g)(3), an Off-Menu Incentive to permit a height increase to 56 feet in lieu of the otherwise required 25 feet and 36 feet otherwise required by Transitional Height, and 45 feet otherwise required by the C2-1VL Zone, and to allow five (5) stories in lieu of three (3) stories; and
- 3) Pursuant to LAMC Section 16.05, a Site Plan Review for a development which creates, or results in an increase of 50 or more dwelling units.

RECOMMENDED ACTIONS:

- 1) **Determine**, based on the whole of the record, the project is exempt from CEQA, pursuant to CEQA Guidelines, Section 15332 (Class 32), and that there is no substantial evidence demonstrating that an exception to a categorical exemption pursuant to CEQA Guidelines, Section 15300.2 applies;
- 2) Approve a 35% Density Bonus for a Housing Development with a total of 73 units [with six (6) units 11% of the base density set aside for Very Low Income Households], utilizing Parking Option 1, and pursuant to LAMC Section 12.22-A,25(g)(3), two (2) Off-Menu Incentives:
 - a. Pursuant to LAMC Section 12.22-A,25(g)(3), an Off-Menu Incentive to permit a maximum FAR of 3.25:1 in lieu of 1.5:1 in the C2-1VL Zone; and
 - b. Pursuant to LAMC Section 12.22-A,25(g)(3), an Off-Menu Incentive to permit a height increase to 56 feet in lieu of the otherwise required 25 feet and 36 feet otherwise required by Transitional Height, and 45 feet otherwise required by the C2-1VL Zone, and to allow five (5) stories in lieu of three (3) stories; and
- 3) **Approve** the **Site Plan Review** for a development which creates, or results in an increase of 50 or more dwelling units.
- 4) Adopt the attached Conditions of Approval; and
- 5) Adopt the attached Findings.

VINCENT P. BERTONI, AICP Director of Planning

Nicholas Hendricks Senior City Planner

Oliver Netburn City Planner

ADVICE TO PUBLIC: *The exact time this report will be considered during the meeting is uncertain since there may be several other items on the agenda. Written communications may be mailed to the *Commission Secretariat, Room 272, City Hall, 200 North Spring Street, Los Angeles, CA 90012* (Phone No. 213-978-1300). While all written communications are given to the Commission for consideration, the initial packets are sent to the week prior to the Commission's meeting date. If you challenge these agenda items in court, you may be limited to raising only those issues you or someone else raised at the public hearing agendized herein, or in written correspondence on these matters delivered to this agency at or prior to the public hearing. As a covered entity under Title II of the Americans with Disabilities Act, the City of Los Angeles does not discriminate on the basis of disability, and upon request, will provide reasonable accommodation to ensure equal access to these programs, services and activities. Sign language interpreters, assistive listening devices, or other auxiliary aids and/or other services may be provided upon request. To ensure availability of services, please make your request not later than three working days (72 hours) prior to the meeting by calling the Commission Secretariat at (213) 978-1300.

TABLE OF CONTENTS

Project Analysis	A-1
Project Summary	
Background Public Hearing	
Issues Conclusion	
Conditions of Approval	
Findings	F-1

Maps:

Map 1 - Vicinity Map Map 2 - Radius Map Map 3 - Zoning Map

Exhibits:

Exhibit A - Site Plan, Floor Plans, Elevations and Landscape Plan

Exhibit B - Categorical Exemption No. ENV-2018-3431-CE and Appendices

Exhibit C - Public Communication

PROJECT ANALYSIS

Project Summary

The proposed project includes the demolition of a 10,050 square-foot two-story shopping center and a surface parking lot, and the construction, use and maintenance of a five-story (with two (2) subterranean parking levels), 73-unit, mixed-used development with 5,899 square feet of ground floor commercial space. The project has a maximum building height of 56 feet, however is limited to 45 feet within 50 feet the surrounding R1-zoned properties.

The project includes 29 studios, 38 one-bedroom units, and six (6) two-bedroom units. Pursuant to LAMC Section 12.21-G, 7,450 square feet of open space is required. The project provides approximately 7,477 square feet of open space. Common open space throughout the project includes a patio and two (2) courtyards on the 2nd floor, a recreation room on the 5th floor, and three (3) patios on the roof level. Private open space throughout the project includes 2,100 square feet of balconies. Included within the open space provided will be 1,130 square feet of landscaping.

The project will provide a total of 90 parking space within two (2) subterranean and one (1) atgrade level of parking. The project will also provide 69 bicycle parking spaces, including 60 longterm and nine (9) short-term spaces. Access to the subterranean and at-grade parking levels is via a public alley abutting the property to the north.

Project Summary	Total	
Residential Units		
Base Density	54 units (rounded up from 53.62)	
35% Density Bonus	73 units (rounded up from 72.9)	
11% Very Low Income Household	6 units (rounded up from 5.94)	
Proposed Units		
Studio	29 units	
1-Bedroom	38 units	
2-Bedroom	6 units	
Total Units	73 units	
Open Space		
2 nd Floor Patio	575 sf	
2 nd Floor Courtyards	982 sf	
5 th Floor Recreation Room	924 sf	
Rooftop Patios	2,896 sf	
Private Open Space (balconies)	2,100 sf	
Required Open Space	7,450 sf	
Total Open Space Provided	7,477 sf	
Parking		
Parking Option 1 Automobile Parking		
Studio	29 spaces	
1-Bedroom	38 spaces	
2-Bedroom	12 spaces	
Total Required Automobile Parking - Parking Option 1	79 spaces	
Required Automobile Parking - Commercial		
General Commercial (2,953 sf)	6 spaces	

The project consists of the following:

Project Summary	Total
Restaurant (1,946 sf)	8 spaces
Small Restaurant (1,000 sf)	5 spaces
Total Required Commercial Automobile Parking	19 spaces
Total Required Automobile Parking	98 spaces
Total Required Automobile Parking (minus Bicycle Replacement - 10 spaces)	88 spaces
Total Provided Automobile Parking	90 spaces
Bicycle Parking	
Long Term - Residential	57 spaces
Short Term - Residential	6 spaces
Long Term - Commercial	3 spaces
Short Term - Residential	3 spaces
Total Required Bicycle Parking	69 spaces
Total Provided Bicycle Parking	69 spaces

The applicant has requested a 35% Density Bonus for a Housing Development with a total of 73 units [with six (6) units - 11% of the base density set aside for Very Low Income Households] with 5,899 square feet of commercial uses and utilizing Parking Option 1; and pursuant to LAMC Section 12.22-A,25(g)(3), two (2) Off-Menu Incentives:

- 1. Pursuant to LAMC Section 12.22-A,25(g)(3), an Off-Menu Incentive to permit a maximum FAR of 3.25:1 in lieu of 1.5:1 in the C2-1VL Zone; and
- Pursuant to LAMC Section 12.22-A,25(g)(3), an Off-Menu Incentive to permit a height increase to 56 feet in lieu of the otherwise required 25 feet and 36 feet otherwise required by Transitional Height, and 45 feet otherwise required by the C2-1VL Zone, and to allow five (5) stories in lieu of three (3) stories.

The applicant has also requested a Site Plan Review for a development which creates, or results in an increase of 50 or more dwelling units.

Background

The subject property is a flat, irregular-shaped parcel of land comprised of seven (7) contiguous lots consisting of 21,448 square feet of lot area (including $\frac{1}{2}$ the public alley) with a frontage of 142 feet along the north side of Barrington Avenue, 125 feet along the north side Gateway Boulevard, and 217 feet along the south side of a public alley. The subject property is currently developed with a 10,050 square-foot two-story shopping center and a surface parking lot. The existing building will be demolished, in conjunction with the construction of the proposed development.

The property is located within a Transit Priority Area and the West Los Angeles Transportation Improvement and Mitigation Specific Plan. The site is 2.04 kilometers from the Santa Monica Fault.

General Land Use Designation

The Palms - Mar Vista - Del Rey Community Plan designates the subject property for Neighborhood Commercial land use, corresponding to the C1, C1(PV), C1.5, C2, C4, RAS3, and RAS4 Zones. The subject property is zoned C2-1VL.

Surrounding Properties:

Surrounding properties are generally developed with single- and multi-family dwellings and commercial uses. The property to the north, across Barrington Avenue, is zoned R3, and is developed with a one-story commercial building. The property to the east, across the intersection of Barrington Avenue and Gateway Boulevard, is zoned C2, and is developed with a one-story commercial center and associated surface parking lot. The properties to the south, across Gateway Boulevard, are zoned C2, and are developed with one- and two-story commercial buildings. The properties to the southwest are zoned C2, and are developed with one- and two-story commercial buildings. Properties to the west and northwest are zoned R1V2 and R3, and are improved with one-story, single-family dwellings and one- and two-story, multi-family dwellings.

Streets and Circulation:

<u>Gateway Boulevard</u>, abutting the property to the south, is designated a Boulevard II, dedicated to a width of 120 feet and improved with roadway, curb, gutter, sidewalks, and a landscaped center-median.

<u>Barrington Avenue</u>, abutting the property to the east, is designated an Avenue I, dedicated to a width of 100 feet and improved with roadway, curb, gutter, and sidewalks.

A <u>public alley</u>, abutting the property to the north, is dedicated to a width of 20 feet and improved with roadway, and gutter.

Relevant Cases:

Subject Property:

There are relevant cases on the subject property.

Surrounding Properties:

<u>Case No. DIR-2019-2171-TOC</u> – On April 11, 2019, an application for a Transit Oriented Communities project was file for the construction of a new 86-foot, 38-unit development with 30% reduction in the northerly/southerly side yard, a 30% reduction in the rear yard requirement, and a 25% reduction in the required open space, located at 2415 South Barrington Avenue.

Density Bonus/Affordable Housing Incentives Program

In accordance with California Government Code Section 65915 and LAMC Section 12.22-A,25, in exchange for setting aside a minimum percentage of the project's units for affordable housing, the project is eligible for a density bonus, reduction in parking, and incentives allowing for relief from development standards. The applicant has requested to utilize the provisions of City and State Density Bonus laws as follows:

<u>Density</u>

By setting aside 11% of its base density units for very-low income households, LAMC Section 12.22-A.25 allows a 35% density bonus in proposed residential units. The subject property is zoned C2-1VL and limited to a maximum density of one (1) dwelling unit per 400 square feet of lot area. With a lot area totaling 21,448 square feet (including ½ the public alley), the project is

permitted to construct up to 54 dwelling units by-right ($21,448 \div 400 = 53.62$ rounded up to 54). By setting aside 11% of the base density (or six [6] units), the project is entitled to a 35% density bonus, or an increase of 19 units, for a total of 73 residential units, as is proposed.

Automobile Parking

LAMC Section 12.22-A,25(d) allows for the reduction of required parking for a project with affordable units. The applicant is requesting the use of Parking Option 1. Based on the unit mix within the development, the project would be required to provide 79 residential automobile parking spaces. The project will provide a total 90 automobile parking spaces, which accounts for the required commercial automobile parking spaces as well as the permitted bicycle parking replacement spaces.

Incentives

As previously stated, the project will set aside six (6) units or 11% for Very-Low Income Households and therefore, under both Government Code Section 65915 and the LAMC, is entitled to two (2) incentives, in addition to other waivers or modifications of development standards that physically preclude the density bonus and incentives. The applicant has requested two (2) off-menu incentives, described as follows:

- a. Off-Menu Floor Area Ratio (FAR) Incentive. The request includes an increase in FAR to allow for an FAR of 3.25:1 across the entire site. The subject site is zoned C2-1VL and therefore subject to a maximum FAR of 1.5:1. Through the requested off-menu incentive, with a floor area ratio of 3.25:1, the project is able to construct the proposed mixed-use development with a total of 73 units (including six [6] units set aside for Very Low Income Households) in the C2-1VL Zone.
- b. Off-Menu Height Incentive. The request includes an increase height to 56 feet in lieu of the otherwise permitted 45-foot height limit and that permitted pursuant to LAMC Section 12.21.1-A,10 (Transitional Height). In addition, the request includes to allow for a maximum of five (5) stories in lieu of the otherwise permitted three (3) stories. The additional height is necessary to achieve the proposed FAR.

Density Bonus Legislation Background

Pursuant to Government Code Section 65915(c)(3) and Assembly Bills 2222 and 2556, applicants of Density Bonus projects filed as of January 1, 2015 must demonstrate compliance with the housing replacement provisions which require replacement of rental dwelling units that either exist at the time of application of a Density Bonus project, or have been vacated or demolished in the five-year period preceding the application of the project. This applies to all pre-existing units that have been subject to a recorded covenant, ordinance, or law that restricts rents to levels affordable to persons and families of lower or very low income; subject to any other form of rent or price control; or occupied by Low or Very Low Income households.

Pursuant to the Determination made by the Los Angeles Housing and Community Investment Department (HCIDLA) dated April 16, 2018 and attached to the subject case file, HCIDLA has determined that the subject property is improved with an office building and surface parking lot. AB 2556 does not apply to parking lots, or commercial properties, so no AB 2556 replacement affordable units are required.

Public Hearing and Communications

A public hearing was held by the Hearing Officer at the West Los Angeles Municipal Building on Monday, May 13, 2019 for Case No. CPC-2018-3430-DB-SPR.

The public hearing was attended by the applicant, the applicant's representatives, project architect, members of the public, and a representative for Council District 11 (Mike Bonin).

The applicant presented the project and indicated that based on discussions with the Mar Vista Neighborhood Council the project would set aside two (2) additional units for Moderate Income Households as well as to provide MERV 13 air filtration for all of the units due to the site's proximity to the freeway.

Testimony from the public was generally supportive given the need for housing. Concerns raised by some members of the public was relating to the increased traffic, the loss of street parking due to the project providing inadequate parking on-site, construction-related impacts, as well as the availability of the affordable units to members of the immediate community.

The Council Office spoke in support of the project and reiterated the outreach that the applicant completed, commending the completed changes, in addition to the volunteered conditions to provide additional affordable units and air filtration.

At the close of the public hearing, the Hearing Office announced the proposed City Planning Commission meeting date of June 13, 2019 and encouraged all interested parties to sign in to receive future notification and determinations on the proposed project.

Staff received 38 emails and letters in support of the proposed project. No emails or letters were submitted in opposition.

<u>lssues</u>

Professional Volunteer's Program (PVP)

The proposed project was reviewed by the Urban Design's Professional Volunteer's Program (PVP) on September 18, 2018. The following includes a list of comments provided by PVP, following by the applicant's response:

• Provide enhancements to the paseo and northern ground-level patio.

The applicant has provided additional transparency within the paseo corridor to make the space more visible. The applicant has provided additional seating for the northerly patio area.

Conclusion

Staff recommends that the City Planning Commission find, based on its independent judgment, after consideration of the entire administrative record, that the project is categorically exempt from CEQA and approve the requested Density Bonus, off-menu requests and Site Plan Review.

CONDITIONS OF APPROVAL

Pursuant to Sections 12.22-A.25, and 16.05 of the Los Angeles Municipal Code, the following conditions are hereby imposed upon the use of the subject property:

A. <u>Development Conditions</u>:

- 1. Except as modified herein, the project shall be in substantial conformance with the plans and materials submitted by the applicant, stamped "Exhibit A," and attached to the subject case file. Minor deviations may be allowed in order to comply with the provisions of the LAMC or the project conditions. Changes beyond minor deviations required by other City Departments or the LAMC may not be made without prior review by the Department of City Planning, Expedited Processing Section, and written approval by the Director of City Planning. Each change shall be identified and justified in writing.
- 2. **Residential Density**. The project shall be limited to a maximum density of 73 dwelling units including Density Bonus Units.

3. Affordable Units.

- A minimum of 11% of a base density of 54 units shall be reserved as affordable units for Very Low Income Households, as defined by Government Code Section 65915(c)(2).
- b. **Changes in Restricted Units.** Deviations that increase the number of restricted affordable units or that change the composition of units or change parking numbers shall be consistent with LAMC Section 12.22-A,25.
- 4. **Housing Requirements.** Prior to issuance of a building permit, the owner shall execute a covenant to the satisfaction of the Los Angeles Housing and Community Investment Department (HCIDLA) to make 11% of the site's base density units available to Very Low Income Households, for sale or rental as determined to be affordable to such households by HCIDLA for a period of 55 years. Enforcement of the terms of said covenant shall be the responsibility of HCIDLA. The applicant will present a copy of the recorded covenant to the Department of City Planning for inclusion in this file. The project shall comply with the Guidelines for the Affordable Housing Incentives Program adopted by the City Planning Commission and with any monitoring requirements established by the HCIDLA. Refer to the Density Bonus Legislation Background section of this determination.

5. Parking.

- a. **Automobile Parking.** Residential automobile parking shall be provided consistent with Parking Option 1.
- b. **Unbundling.** Required parking may be sold or rented separately from the units, with the exception of all Restricted Affordable units which shall include any required parking in the base rent or sales price, as verified by HCIDLA.
- c. **Adjustment of Parking.** In the event that the composition of residential changes (i.e. the number of bedrooms), or the applicant selects another Parking Option (including Bicycle Parking Ordinance) and no other Condition of Approval or incentive is affected, then no modification of this determination shall be necessary, and the number of

parking spaces shall be re-calculated by the Department of Building and Safety based upon the ratios set forth pursuant to LAMC Section 12.22-A,25.

d. **Bicycle Parking.** Bicycle parking shall be provided in compliance with LAMC Section 12.21-A,16 and to the satisfaction of the Department of Building and Safety.

6. Incentives.

- a. A maximum FAR of 3.25:1 shall be permitted.
- b. A maximum height of 56 feet and five (5) stories shall be permitted.

B. Site Plan Review Conditions

- 7. **Moderate Income Affordable Units**. The project shall set aside two (2) units for Moderate Income Households. The provisions for setting aside the two (2) units shall follow Conditions Nos. 4 and 5.
- 8. **Paseo**. Submit a revised First Floor Plan Details sheet showing the windows within the paseo area extending to the floor for a minimum of 50% of the length of the wall space.

9. Landscaping.

- a. Submit a revised Landscape Plan showing:
 - i. A minimum 48-inch deep planter for any trees planted on any rooftop or podium.
 - ii. A minimum 36-inch deep planter for the vines to be used for the green screen abutting the alley along the northern façade.
- b. All open areas not used for buildings, driveways, parking areas, or recreational facilities or walks shall be attractively landscaped and maintained in accordance with a landscape development plan and an automatic irrigation plan, prepared by a licensed Landscape Architect and to the satisfaction of the decision maker.
- 10. **Air Filtration**. An air filtration system shall be installed and maintained with filters meeting or exceeding the ASHRAE Standard 52.2 Minimum Efficiency Reporting Value (MERV) of 13, to the satisfaction of the Department of Building and Safety.
- 11. **Solar Panels.** Solar panels shall be installed on the project's rooftop space to be connected to the building's electrical system. A minimum 2,234 square feet of the roof area shall be reserved for the installation of a solar photovoltaic system, to be installed prior to the issuance of a certificate of occupancy, in substantial conformance with the plans stamped "Exhibit A".
- 12. **Electric Vehicle Parking.** The project shall include at least twenty percent (20%) of the total parking spaces provided for all types of parking facilities, but in no case less than one location, shall be capable of supporting future electric vehicle supply equipment (EVSE). Plans shall indicate the proposed type and location(s) of EVSE and also include raceway method(s), wiring schematics and electrical calculations to verify that the electrical system has sufficient capacity to simultaneously charge all electric vehicles at all designated EV charging locations at their full rated amperage. Plan design shall be based upon Level 2 or greater EVSE at its maximum operating capacity. Of the 20% EV Ready, five (5) percent of the total parking spaces shall be further provided with EV chargers to immediately

accommodate electric vehicles within the parking areas. When the application of either the 20% or 5% results in a fractional space, round up to the next whole number. A label stating "EVCAPABLE" shall be posted in a conspicuous place at the service panel or subpanel and next to the raceway termination point.

- 13. **Lighting.** Outdoor lighting shall be designed and installed with shielding, such that the light source cannot be seen from adjacent residential properties, the public right-of-way, nor from the above.
- 14. **Graffiti.** All graffiti on the site shall be removed or painted over to match the color of the surface to which it is applied within 24 hours of its occurrence.
- 15. **Roof Structures.** Any structures on the roof, such as air conditioning units and other mechanical equipment, shall be fully screened (with such screening material incorporated in the design of the project) from public right of way and adjoining properties. The building parapet may be used to screen mechanical equipment as long as it fully obstructs the view of the mechanical equipment from abutting properties.

C. Administrative Conditions

- 16. **Approvals, Verification and Submittals**. Copies of any approvals, guarantees or verification of consultations, reviews or approval, plans, etc, as may be required by the subject conditions, shall be provided to the Department of City Planning for placement in the subject file.
- 17. **Code Compliance.** All area, height and use regulations of the zone classification of the subject property shall be complied with, except wherein these conditions explicitly allow otherwise.
- 18. **Covenant.** Prior to the issuance of any permits relative to this matter, an agreement concerning all the information contained in these conditions shall be recorded in the County Recorder's Office. The agreement shall run with the land and shall be binding on any subsequent property owners, heirs or assign. The agreement must be submitted to the Department of City Planning for approval before being recorded. After recordation, a copy bearing the Recorder's number and date shall be provided to the Department of City Planning for approval before being recorded.
- 19. **Definition.** Any agencies, public officials or legislation referenced in these conditions shall mean those agencies, public offices, legislation or their successors, designees or amendment to any legislation.
- 20. **Enforcement.** Compliance with these conditions and the intent of these conditions shall be to the satisfaction of the Department of City Planning and any designated agency, or the agency's successor and in accordance with any stated laws or regulations, or any amendments thereto.
- 21. **Building Plans.** A copy of the first page of this grant and all Conditions and/or any subsequent appeal of this grant and its resultant Conditions and/or letters of clarification shall be printed on the building plans submitted to the Development Services Center and the Department of Building and Safety for purposes of having a building permit issued.
- 22. **Corrective Conditions.** The authorized use shall be conducted at all times with due regard for the character of the surrounding district, and the right is reserved to the City Planning Commission, or the Director pursuant to Section 12.27.1 of the Municipal Code,

to impose additional corrective conditions, if, in the Commission's or Director's opinion, such conditions are proven necessary for the protection of persons in the neighborhood or occupants of adjacent property.

23. **Expedited Processing Section.** Prior to the clearance of any conditions, the applicant shall show proof that all fees have been paid to the Department of City Planning, Expedited Processing Section.

24. Indemnification and Reimbursement of Litigation Costs.

Applicant shall do all of the following:

- a. Defend, indemnify and hold harmless the City from any and all actions against the City relating to or arising out of, in whole or in part, the City's processing and approval of this entitlement, including <u>but not limited to</u>, an action to attack, challenge, set aside, void, or otherwise modify or annul the approval of the entitlement, the environmental review of the entitlement, or the approval of subsequent permit decisions, or to claim personal property damage, including from inverse condemnation or any other constitutional claim.
- b. Reimburse the City for any and all costs incurred in defense of an action related to or arising out of, in whole or in part, the City's processing and approval of the entitlement, including but not limited to payment of all court costs and attorney's fees, costs of any judgments or awards against the City (including an award of attorney's fees), damages, and/or settlement costs.
- c. Submit an initial deposit for the City's litigation costs to the City within 10 days' notice of the City tendering defense to the Applicant and requesting a deposit. The initial deposit shall be in an amount set by the City Attorney's Office, in its sole discretion, based on the nature and scope of action, but in no event shall the initial deposit be less than \$50,000. The City's failure to notice or collect the deposit does not relieve the Applicant from responsibility to reimburse the City pursuant to the requirement in paragraph (b).
- d. Submit supplemental deposits upon notice by the City. Supplemental deposits may be required in an increased amount from the initial deposit if found necessary by the City to protect the City's interests. The City's failure to notice or collect the deposit does not relieve the Applicant from responsibility to reimburse the City pursuant to the requirement in paragraph (b).
- e. If the City determines it necessary to protect the City's interest, execute an indemnity and reimbursement agreement with the City under terms consistent with the requirements of this condition.

The City shall notify the applicant within a reasonable period of time of its receipt of any action and the City shall cooperate in the defense. If the City fails to notify the applicant of any claim, action, or proceeding in a reasonable time, or if the City fails to reasonably cooperate in the defense, the applicant shall not thereafter be responsible to defend, indemnify or hold harmless the City.

The City shall have the sole right to choose its counsel, including the City Attorney's office or outside counsel. At its sole discretion, the City may participate at its own expense in the defense of any action, but such participation shall not relieve the applicant of any obligation imposed by this condition. In the event the Applicant fails to comply with this condition, in whole or in part, the City may withdraw its defense of the action, void its approval of the entitlement, or take any other action. The City retains the right to make all decisions with respect to its representations in any legal proceeding, including its inherent right to abandon or settle litigation.

For purposes of this condition, the following definitions apply:

"City" shall be defined to include the City, its agents, officers, boards, commissions, committees, employees, and volunteers.

"Action" shall be defined to include suits, proceedings (including those held under alternative dispute resolution procedures), claims, or lawsuits. Actions include actions, as defined herein, alleging failure to comply with <u>any</u> federal, state or local law.

Nothing in the definitions included in this paragraph are intended to limit the rights of the City or the obligations of the Applicant otherwise created by this condition.

FINDINGS

Density Bonus/Affordable Housing Incentives Compliance Findings

- 1. Pursuant to Section 12.22-A,25 of the LAMC and Government Code 65915, the Director shall approve a density bonus and requested incentive(s) unless the director finds that:
 - a. The incentives <u>do not</u> result in identifiable and actual cost reductions to provide for affordable housing costs as defined in California Health and Safety Code Section 50052.5 or Section 50053 for rents for the affordable units.

The record does not contain substantial evidence that would allow the City Planning Commission to make a finding that the requested incentives do not result in identifiable and actual cost reduction to provide for affordable housing costs per State Law. The California Health & Safety Code Sections 50052.5 and 50053 define formulas for calculating affordable housing costs for very low, low, and moderate income households. Section 50052.5 addresses owner-occupied housing and Section 50053 addresses rental households. Affordable housing costs are a calculation of residential rent or ownership pricing not to exceed 25 percent gross income based on area median income thresholds dependent on affordability levels.

The project provides 11% very-low income units to qualify for two (2) incentives. The list of on-menu incentives in LAMC Section 12.22-A,25 was pre-evaluated at the time the Density Bonus Ordinance was adopted to include types of relief that minimize restrictions on the size of the project. As such, the Department of City Planning will always arrive at the conclusion that the density bonus on-menu incentives are required to provide for affordable housing costs because the incentives, by their nature, increase the size of the project. The project does not include any request for on-menu incentives.

The off-menu incentive requests for an increase FAR to a maximum of 3.25:1 in lieu of 1.5:1, and for an increase in height to a maximum of 56 feet and five (5) stories in lieu of the otherwise permitted 45-foot height limit and that permitted pursuant to LAMC Section 12.21.1-A,10 (Transitional Height), are is not expressed in the Menu of Incentives per LAMC Section 12.22-A,25(f) and, as such, is subject to LAMC Section 12.22-A,25(g)(3). Both the requested FAR and height increases will result in a building design that provides cost reductions for affordable housing. The requested incentives allow the developer to expand the building envelope so the additional and affordable units can be constructed and the overall space dedicated to residential uses is increased. These incentives support the applicant's decision to set aside six (6) dwelling units for Very Low Income Households for 55 years.

b. The incentives <u>will have</u> a specific adverse impact upon public health and safety or the physical environment, or on any real property that is listed in the California Register of Historical Resources and for which there are no feasible method to satisfactorily mitigate or avoid the Specific Adverse Impact without rendering the development unaffordable to Very Low, Low and Moderate Income households. Inconsistency with the zoning ordinance or the general plan land use designation shall not constitute a specific, adverse impact upon the public health or safety.

There is no substantial evidence in the record that the proposed incentives will have a specific adverse impact. A "specific adverse impact" is defined as, "a significant, quantifiable, direct and unavoidable impact based on objective, identified written public

health or safety standards, policies, or conditions as they existed on the date the application was deemed complete" (LAMC Section 12.22-A,25(b)). As required by Section 12.22-A,25(e)(2), the project meets the eligibility criterion that is required for density bonus projects. The project also does not involve a contributing structure in a designated Historic Preservation Overlay Zone or on the City of Los Angeles list of Historical-Cultural Monuments. Therefore, there is no substantial evidence that the proposed incentive(s)/waiver(s) will have a specific adverse impact on public health and safety.

c. The incentives <u>are contrary</u> to state or federal law.

There is no substantial evidence in the record that the proposed incentives are contrary to state or federal law.

Site Plan Review Findings

In order for the site plan review to be granted, all three of the legally mandated findings delineated in Section 16.05-F of the Los Angeles Municipal Code must be made in the affirmative.

2. The project is in substantial conformance with the purposes, intent and provisions of the General Plan, applicable community plan, and any applicable specific plan.

The Los Angeles General Plan sets forth goals, objectives, and policies that guide both Citywide and community specific land use policies. The General Plan is comprised of a range of State-mandated elements, including, but not limited to, Land Use, Housing, Transportation/Mobility, Noise, and Safety. Each of these Elements establishes policies that provide for the regulatory environment in managing the City and for addressing environmental concerns and problems. The majority of the policies derived from these Elements are in the form of Code Requirements of the Los Angeles Municipal Code. The City's Land Use Element is divided into 35 community plans that establish parameters for land use decisions within those sub-areas of the City. While the General Plan sets out a long-range vision and guide to future development, the 35 Community Plans provide the specific, neighborhood-level detail, relevant policies, and implementation strategies necessary to achieve the General Plan objectives.

Palms-Mar Vista-Del Rey Community Plan

The subject property is located within the Palms-Mar Vista-Del Rey Community Plan which was updated by the City Council on September 16, 1997. The Palms-Mar Vista-Del Rey Community Plan designates the subject property for Neighborhood Commercial land use, corresponding to the C1, C1(PV), C1.5, C2, C4, RAS3, and RAS4 Zones. The subject property is zoned C2-1VL. The proposed project advances the following goals, objectives and policies of the Community Plan:

- Goal 1: A safe, secure and high quality residential environment for all community residents.
 - Objective 1-1: To provide for the preservation of existing housing and for the development of new housing to meet the diverse economic and physical needs of the existing residents and projected population of the Plan area to the year 2010.
 - Policy 1-1.1: Provide for adequate multi-family residential development.

- Policy 1-1.2: Protect the quality of residential environment and the appearance of communities with attention to site and building design.
- Objective 1-2: To reduce vehicular trips and congestion by developing new housing in proximity to services and facilities.
 - Policy 1-1.1: Locate higher residential densities near commercial centers and major bus routes where public service facilities and infrastructure will support this development.
- Objective 1-3: To preserve and enhance the varied and distinct residential character and integrity of existing residential neighborhoods.
 - Policy 1-3.1: Require architectural compatibility and landscaping for new infill development to protect the character and scale of existing residential neighborhoods.
- Objective 1-4: To promote the adequacy and affordability of multiple-family housing and increase its accessibility to more segments of the population.
 - Policy 1-4.1: Promote greater individual choice in type, quality, price and location of housing.
 - Policy 1-4.2: Ensure that new housing opportunities minimize displacement of residents.

The proposed project will result in the construction of a total of 73 dwelling units, including six (6) units set aside for Very Low Income Households. The project site is located approximately ½ mile of a Big Blue Bud R7 bus stop at the intersection of Bundy Drive and Pico Boulevard and ¾ of a mile of the Expo/Bundy Line Station thereby reducing vehicular trips to and from the project site and congestion around the site. The project has been conditioned to provide additional landscaping along the northern façade ensure greater compatibility with the existing residential neighborhoods to the north. In addition to setting aside 15 dwelling units for Very Low Income Households, the project includes a variety of unit types, including 29 studios, 38 one-bedroom units, and six (6) two-bedroom units.

At the initial public hearing, the applicant agreed to set aside two (2) units for Moderate Income Households. The provision to set aside two (2) additional units for Moderate Income Households further ensures the construction and adequate supply of a range of different rental housing in order to meet current and projected needs for the city. In addition, at the initial public hearing, the applicant agreed to provide MERV 13 air filtration for the proposed project.

- Goal 2: A strong and competitive commercial sector which promotes economic vitality, serves the needs of the community through well designed, safe and accessible areas while preserving the historic, commercial and cultural character of the community.
 - Objective 2-1: To conserve and strengthen viable commercial development in the community and to provide additional opportunities for new

commercial development and services within existing commercial areas.

- Policy 2-1.2: Protect commercially planned/zoned areas from encroachment by residential only development.
- Policy 2-1.4: Require that commercial projects be designed and developed to achieve a high level of quality, distinctive character and compatibility with surrounding uses and development.
- Objective 2-2: To promote distinctive commercial districts and pedestrianoriented areas.
 - Policy 2-2.1: Encourage Pedestrian-oriented design in designated areas and in new development.
 - Policy 2-2.2: Require that mixed-use projects and development in pedestrian-oriented areas are developed according to specific design guidelines to achieve a distinctive character and compatibility with surrounding uses.
 - Policy 2-2.4: Promote mixed use projects along designated transit corridors and in appropriate commercial centers.
- Objective 2-3: To enhance the appearance of commercial districts.
 - Policy 2-3.1: Require that the design of new development be compatible with adjacent development, community character and scale.

The proposed project is a mixed-use building with 73 new residential units and 5,899 square feet of restaurant and retail uses. The project will not only provide opportunities for new commercial uses, it will also strengthen the existing commercial development in the community by adding to the consumer base through the introduction of new residents.

The proposed project is well-designed with commercial uses oriented to the street and the upper levels articulated such that the massing of the building is reduced. In addition, the project is located approximately $\frac{1}{2}$ mile of a Big Blue Bud R7 bus stop at the intersection of Bundy Drive and Pico Boulevard and $\frac{3}{4}$ of a mile of the Expo/Bundy Line Station.

Lastly, the project has been designed and conditioned with a center paseo to create a unique experience for those who patron the site.

The **Framework Element** for the General Plan (Framework Element) was adopted by the City of Los Angeles in December 1996 and re-adopted in August 2001. The Framework Element provides guidance regarding policy issues for the entire City of Los Angeles, including the project site. The Framework Element also sets forth a Citywide comprehensive long-range growth strategy and defines Citywide polices regarding such issues as land use, housing, urban form, neighborhood design, open space, economic development, transportation, infrastructure, and public services. The Framework Element includes the following goals, objectives and policies relevant to the instant request:

- Goal 3A: A physically balanced distribution of land uses that contributes towards and facilitates the City's long-term fiscal and economic viability, revitalization of economically depressed areas, conservation of existing residential neighborhoods, equitable distribution of public resources, conservation of natural resources, provision of adequate infrastructure and public services, reduction of traffic congestion and improvement of air quality, enhancement of recreation and open space opportunities, assurance of environmental justice and a healthful living environment, and achievement of the vision for a more liveable city.
 - Objective 3.1: Accommodate a diversity of uses that support the needs of the City's existing and future residents, businesses, and visitors.
 - Policy 3.1.4: Accommodate new development in accordance with land use and density provisions of the General Plan Framework Long-Range Land Use Diagram.
 - Objective 3.2: Provide for the spatial distribution of development that promotes an improved quality of life by facilitating a reduction of vehicular trips, vehicle miles traveled, and air pollution.
 - Policy 3.2.1: Provide a pattern of development consisting of distinct districts, centers, boulevards, and neighborhoods that are differentiated by their functional role, scale, and character. This shall be accomplished by considering factors such as the existing concentrations of use, community-oriented activity centers that currently or potentially service adjacent neighborhoods, and existing or potential public transit corridors and stations.
 - Policy 3.2.2: Establish, through the Framework Long-Range Land Use Diagram, community plans, and other implementing tools, patterns and types of development that improve the integration of housing with commercial uses and the integration of public services and various densities of residential development within neighborhoods at appropriate locations.
 - Objective 3.4: Encourage new multi-family residential, retail commercial, and office development in the City's neighborhood districts, community, regional, and downtown centers as well as along primary transit corridors/boulevards, while at the same time conserving existing neighborhoods and related districts.
 - Policy 3.4.1: Conserve existing stable residential neighborhoods and lowerintensity commercial districts and encourage the majority of new commercial and mixed-use (integrated commercial and residential) development to be located (a) in a network of neighborhood districts, community, regional, and downtown centers, (b) in proximity to rail and bus transit stations and corridors, and (c) along the City's major boulevards, referred to as districts, centers, and mixed-use boulevards, in accordance with the Framework Long-Range Land Use Diagram.

The proposed project will contribute toward and facilitate the City's long-term fiscal and economic viability by redeveloping an underutilized site with new mixed-use

development including 73 dwelling units (six (6) units that are set aside for Very-Low Income Households) and 5,899 square feet of restaurant and retail uses. The project's proximity to the Metro Expo Line and the Big Blue Bus R7 route and other transit connections will reduce vehicular trips to and from the project, vehicle miles traveled, and reduce air pollution. Its location within an existing, under-utilized commercial district and at the intersection of a Boulevard II and Avenue I, I will enable the city to conserve nearby existing stable residential neighborhoods and lower-intensity commercial districts.

- Goal 3D: Pedestrian-oriented districts that provide local identity, commercial activity, and support Los Angeles' neighborhoods.
 - Objective 3.8: Reinforce existing and establish new neighborhood districts which accommodate a broad range of uses that serve the needs of adjacent residents, promote neighborhood activity, are compatible with adjacent neighborhoods, and are developed as desirable places to work and visit.
 - Policy 3.8.1: Accommodate the development of neighborhood-serving uses in areas designated as "Neighborhood District" in accordance with Tables 3-1 and 3-4. The range and densities/intensities of uses permitted in any area shall be identified in the community plans.
 - Policy 3.8.4: Enhance pedestrian activity by the design and siting of structures in accordance Chapter 5 Urban Form and Neighborhood Design policies of this Element and Pedestrian-Oriented District Policies 3.16.1 through 3.16.3.
 - Policy 3.8.6 Encourage out door areas within neighborhood districts to be lighted for night use, safety and comfort commensurate with their intended nighttime use

The proposed project will reinforce existing commercial development along Gateway Boulevard with 5,899 square feet of new, ground floor, community-serving commercial uses and adding 73 new dwelling units (six (6) units which are set aside for Very Low Income Households) to further promote daytime and nighttime neighborhood activity.

The proposed project is limited to 45 feet in height within 50 feet of the adjacent to the R1 zoned properties to the northwest and the building's the northern façade is covered in a green screen. As such, as viewed from the single-family neighborhood to the northwest, the building's mass and scale is diminished, providing an appropriate transition from the proposed higher density development.

- Goal 5A: A liveable City for existing and future residents and one that is attractive to future investment. A City of interconnected, diverse neighborhoods that builds on the strengths of those neighborhoods and functions at both the neighborhood and citywide scales.
 - Objective 5.2: Encourage future development in centers and in nodes along corridors that are served by transit and are already functioning as centers for the surrounding neighborhoods, the community or the region.

Policy 5.2.2: Encourage the development of centers, districts, and selected corridor/boulevard nodes such that the land uses, scale, and built form allowed and/or encouraged within these areas allow them to function as centers and support transit use, both in daytime and nighttime. Additionally, develop these areas so that they are compatible with surrounding neighborhoods.

The proposed project is located proximate to numerous transit services, including a Big Blue Bus Route 8 bus stop located immediately in front of the site, and a Big Blue Bus Route R7 bus stop located approximately ½ mile of the site at the intersection of Bundy Drive and Pico Boulevard and the Expo/Bundy Line Station within ¾ of a mile of the site. Given the existing transit infrastructure in the area, it is appropriate to locate the proposed density at the subject property.

Therefore, the proposed 73-unit development is consistent with the goals, objectives and policies of the General Plan Framework Element.

The **Housing Element** is the City's blueprint for meeting housing and growth challenges. It identifies the City's housing conditions and needs, reiterates goals, objectives, and policies that are the foundation of the City's housing and growth strategy, and provides the array of programs the City has committed to implement to create sustainable, mixed-income neighborhoods across the City. The Housing Element includes the following objectives and policies relevant to the instant request:

Goal 1: Housing Production and Preservation.

- Objective 1.1: Produce an adequate supply of rental and ownership housing in order to meet current and projected needs.
 - Policy 1.1.3: Facilitate new construction and preservation of a range of different housing types that address the particular needs of the city's households.
 - Policy 1.1.4: Expand opportunities for residential development, particularly in designated Centers, Transit Oriented Districts and along Mixed-Use Boulevards.
- Objective 1.4: Reduce regulatory and procedural barriers to the production and preservation of housing at all income levels and needs.
 - Policy 1.4.1: Streamline the land use entitlement, environmental review, and building permit processes, while maintaining incentives to create and preserve affordable housing.

The proposed project implements the Housing Element by increasing the housing supply consistent with the Neighborhood Commercial land use designations. Existing development on the site contains no residential units while the zoned capacity of the site would allow the construction of 53 residential units. Approval of the requested project would permit 73 units through a 35% Density Bonus with six (6) units set aside for Very Low Income Households. The project would achieve the production of new housing opportunities, meeting the needs of the city, while ensuring a range of different housing types (studio, one- and two-bedroom rental units) that address the particular needs of the city's households.

At the initial public hearing, the applicant agreed to set aside two (2) units for Moderate Income Households. The provision to set aside two (2) additional units for Moderate Income Households further ensures the construction and adequate supply of a range of different rental housing in order to meet current and projected needs for the city.

Therefore, the project is consistent with the Housing Element goals, objectives and policies of the General Plan.

The **Mobility Element** of the General Plan (Mobility Plan 2035) is not likely to be affected by the recommended action herein. Gateway Boulevard, abutting the property to the south, is designated a Boulevard II, dedicated to a width of 120 feet and improved with roadway, curb, gutter, sidewalks, and a landscaped center-median. Barrington Avenue, abutting the property to the east, is designated an Avenue I, dedicated to a width of 100 feet and improved with roadway, curb, gutter, and sidewalks. The project as designed will support the development of these Networks and meets the following goals and objectives of Mobility Plan 2035:

Policy 2.3: Recognize walking as a component of every trip, and ensure high-quality pedestrian access in all site planning and public right-of-way modifications to provide a safe and comfortable walking environment.

All automobile access to the building is from public alley at the rear of the property.

- Policy 3.1: Recognize all modes of travel, including pedestrian, bicycle, transit, and vehicular modes including goods movement as integral components of the City's transportation system.
- Policy 3.3: Promote equitable land use decisions that result in fewer vehicle trips by providing greater proximity and access to jobs, destinations, and other neighborhood services.
- Policy 3.4: Provide all residents, workers and visitors with affordable, efficient, convenient, and attractive transit services.
- Policy 3.5: Support "first-mile, last-mile solutions" such as multi-modal transportation services, organizations, and activities in the areas around transit stations and major bus stops (transit stops) to maximize multi-modal connectivity and access for transit riders.
- Policy 3.7: Improve transit access and service to major regional destinations, job centers, and inter-modal facilities.
- Policy 3.8: Provide bicyclists with convenient, secure and well-maintained bicycle parking facilities.

The project's proximity to existing regional transit services (within $\frac{3}{4}$ of a mile of the Big Blue Bus R7 and the Metro Expo Line) will reduce vehicular trips to and from the project, vehicle miles traveled, and will contribute to the improvement of air quality. The adjacency of the regional transit services along with the creation of 73 dwelling units, ties the proposed project into a regional network of transit and housing.

In addition, the project will provide a total of 69 bicycle parking spaces (60 long term spaces and nine (9) short term spaces). One (1) bicycle room is located at the ground level.

Policy 5.4: Continue to encourage the adoption of low and zero emission fuel sources, new mobility technologies, and supporting infrastructure.

As conditioned, a minimum of 20% of the total parking spaces shall be capable of supporting future electric vehicle supply equipment (EVSE) and of those 20% EV Ready parking spaces, 5% of the total parking spaces shall be further provided with EV chargers to immediately accommodate electric vehicles within the parking areas.

Therefore, the project is consistent with Mobility Plan 2035 goals, objectives and policies of the General Plan.

The **Air Quality Element** of the General Plan will be implemented by the recommended action herein. The Air Quality Element sets forth the goals, objectives and policies which will guide the City in the implementation of its air quality improvement programs and strategies. The Air Quality Element recognizes that air quality strategies must be integrated into land use decisions and represent the City's effort to achieve consistency with regional Air Quality, Growth Management, Mobility and Congestion Management Plans. The Air Quality Element includes the following Goal and Objective relevant to the instant request:

- Goal 5: Energy efficiency through land use and transportation planning, the use of renewable resources and less polluting fuels, and the implementation of conservation measures including passive methods such as site orientation and tree planting.
 - Objective 5.1: It is the objective of the City of Los Angeles to increase energy efficiency of City facilities and private developments.

As conditioned herein, the project would be required to provide parking spaces which would be equipped for the immediate installation and use of EV Charging Stations, as well as for future use. Additionally, a minimum of 2,234 square feet of the project roof area shall be reserved for the installation of a solar photovoltaic system. The installation and operation of the solar panels would help to reduce the site's dependence on fossil fuels and carbon generating public utility electrical power. The conditions would provide for the public welfare and necessity by reducing the level of pollution or greenhouse gas emissions to the benefit of the neighborhood and the City. The project is consistent with the aforementioned policies, as well as ensure that future developments are compatible with alternative fuel vehicles and shift to non-polluting sources of energy. The solar and EV conditions also provides a convenient service amenity to the occupants or visitors who use electric vehicles and utilize electricity on site for other functions. As such, the project provides service amenities to improve habitability for future residents of the project site and to minimize impacts on neighboring properties and is therefore in conformance with the goals and policies of the Air Quality Element.

3. The project consists of an arrangement of buildings and structures (including height, bulk and setbacks), off-street parking facilities, loading areas, lighting, landscaping, trash collection, and other such pertinent improvements, that is or will be compatible with existing and future development on adjacent properties and neighboring properties.

The subject property is a flat, irregular-shaped parcel of land comprised of seven (7) contiguous lots consisting of 21,448 square feet of lot area (including ½ the public alley)

with a frontage of 142 feet along the north side of Barrington Avenue, 125 feet along the north side Gateway Boulevard, and 217 feet along the south side of a public alley. The subject property is currently developed with a 10,050 square-foot two-story shopping center and a surface parking lot. The existing building will be demolished, in conjunction with the construction of the proposed development.

Surrounding properties are generally developed with single- and multi-family dwellings and commercial uses. The property to the north, across Barrington Avenue, is zoned R3, and is developed with a one-story commercial building. The property to the east, across the intersection of Barrington Avenue and Gateway Boulevard, is zoned C2, and is developed with a one-story commercial center and associated surface parking lot. The properties to the south, across Gateway Boulevard, are zoned C2, and are developed with one- and two-story commercial buildings. The properties to the southwest are zoned C2, and are developed with one- and two-story commercial buildings. Properties to the west and northwest are zoned R1V2 and R3, and are improved with one-story, single-family dwellings and one- and two-story, multi-family dwellings.

The proposed project includes the demolition of a 10,050 square-foot two-story shopping center and a surface parking lot, and the construction, use and maintenance of a five-story (with two (2) subterranean parking levels), 73-unit, mixed-used development with 5,899 square feet of ground floor commercial space. The project has a maximum building height of 56 feet, however is limited to 45 feet within 50 feet the surrounding R1-zoned properties.

The project includes 29 studios, 38 one-bedroom units, and six (6) two-bedroom units. Pursuant to LAMC Section 12.21-G, 7,450 square feet of open space is required. The project provides approximately 7,477 square feet of open space. Common open space throughout the project includes a patio and two (2) courtyards on the 2nd floor, a recreation room on the 5th floor, and three (3) patios on the roof level. Private open space throughout the project includes 2,100 square feet of balconies. Included within the open space provided will be 1,130 square feet of landscaping.

The project will provide a total of 90 parking space within two (2) subterranean and one (1) at-grade level of parking. The project will also provide 69 bicycle parking spaces, including 60 long-term and nine (9) short-term spaces. Access to the subterranean and at-grade parking levels is via a public alley abutting the property to the north.

Height, Bulk, and Setbacks

The project site is zoned C2-1VL with a 45-foot height limit, but is further limited to the provisions of Transitional Height. The 56-foot height limit has been granted in conjunction with the Density Bonus request with the provision of setting aside 11% of its base density units for Very Low Income Households. The project has also been condition to a 45-foot height limit within 50 of the abutting R1 zoned properties.

The project has a maximum FAR of 3.25:1. The C2 has a maximum permitted FAR of 1.5:1. The FAR of 3.25:1 has been granted in conjunction with the Density Bonus request with the provision of setting aside 11% of its base density units for Very Low Income Households.

The proposed development conforms to the setback requirements of the C2-1VL Zone. The project is not required any setback along Gateway Boulevard, Barrington Avenue of the public alley, and an 8-foot side along it southwest property line at the 2nd floor and above. The proposed project will provide an articulated rear yard setback and a 14-foot side yard setback along its southwestern property line.

The height, bulk, and setbacks of the subject project are consistent with the existing development in the immediate surrounding area and with the underlying C2-1VL Zone. Therefore, the project will be compatible with the existing and future developments in the neighborhood.

Parking

The project will provide a total of 90 parking space within two (2) subterranean and one (1) at-grade level of parking. The project will also provide 69 bicycle parking spaces, including 60 long-term and nine (9) short-term spaces. Access to the subterranean and at-grade parking levels is via a public alley abutting the property to the north.

The proposed parking is located within the building and therefore will not be visible from the public right-of-way. Pedestrian access will be from the sidewalk along Gateway Boulevard and Barrington Avenue. Therefore, the parking facilities will be compatible with the existing and future developments in the neighborhoods.

<u>Lighting</u>

Lighting is required to be provided per LAMC requirements. The project proposes security lighting will be provided to illuminate building, entrances, walkways and parking areas. The project is required to provide outdoor lighting with shielding, so that the light source cannot be seen from adjacent residential properties. There, the lighting will be compatible with the existing and future developments in the neighborhood.

On-Site Landscaping

The project will provide a minimum of 7,477 square feet of open space, consisting of individual balconies, courtyards, a patio, a recreation room, and rooftop decks. The project has been conditioned so that all open areas not used for buildings, driveways, parking areas, recreational facilities or walks will be attractively landscaped and maintained in accordance with a landscape plan, including an automatic irrigation plan, prepared by a licensed landscape architect. The planting of any required trees and street trees will be selected and installed per the Bureau of Street Services, Urban Forestry Divisions' requirements. Therefore, the on-site landscaping will be compatible with the existing and future developments in the neighborhood.

Loading/Trash Area

The proposed project provides a loading area with the at-grade parking level, which is only accessible from the public alley at the back of the property.

The project will include on-site trash collection for both refuse and recyclable materials, in conformance with the LAMC. Compliance with these regulations will allow the project to be compatible with existing and future development. The service area for trash and recycling collection will be conditioned to be located at grade level and accessible from the parking area. Additionally, service area for trash collection is to be located on all upper floors. Therefore, as proposed and conditioned, the project is compatible with existing and future development on neighboring properties.

As proposed and conditioned, the project consists will be compatible with existing and future development in the surrounding area.

4. Any residential project provides recreational and service amenities to improve habitability for its residents and minimize impacts on neighboring properties.

The project proposes provide a variety of unit types which include: 29 studios, 38 onebedroom units, and six (6) two-bedroom units. Pursuant to LAMC Section 12.21-G, the project would is required to provide 7,450 square feet of open space, but is proposing approximately 7,477 square feet of open space.

As part of the 7,477 square feet of open space, the project includes a 575 square-foot patio and 982 square feet of courtyard space on the 2nd floor, a 924 square-foot recreation room on the 5th floor, and 2,896 square feet of outdoor space within three (3) patios on the roof level. Private open space throughout the project includes 2,100 square feet of balconies. The project includes 1,130 square feet of landscaped area dispersed throughout the project and is required to provide a minimum of 18 trees on-site. Additionally the ground floor commercial space will serve the residents. As proposed, the project would provide recreational and service amenities which would improve habitability for its residents and minimize impacts on neighboring properties.

5. Environmental Finding.

Pursuant to Section 21084 of the Public Resources Code, the Secretary for the Natural Resources Agency found certain classes of projects not to have a significant effect on the environment and declared them to be categorically exempt from the requirement for the preparation of environmental documents.

The project meets the conditions for a Class 32 Exemption found in CEQA Guidelines, Section 15332 (In-Fill Development Projects), and none of the exceptions to a categorical exemption pursuant to CEQA Guidelines, Section 15300.2 apply.

Conditions for a Class 32 Exemption

Class 32 consists of projects characterized as in-fill development meeting the conditions described below:

- 1) The project is consistent with the applicable general plan designation and all applicable general plan policies as well as with the applicable zoning designation and regulations;
- 2) The proposed developed occurs within city limits on a project site of no more than five acres substantially surrounded by urban uses;
- 3) The project site has no value as habitat for endangered, rare or threatened species;
- 4) Approval of the project would not result in any significant effects relating to traffic, noise, air quality, or water quality; and
- 5) The site can be adequately served by all required utilities and public services.

The project is the demolition of a 10,050 square-foot two-story shopping center and a surface parking lot, and the construction, use and maintenance of a five-story (with two (2) subterranean parking levels), 73-unit, mixed-used development with 5,899 square feet of ground floor commercial space. The project has a maximum building height of 56 feet, however is limited to 45 feet within 50 feet the surrounding R1-zoned properties. The project requires approximately 14,311 cubic yards of grading. The proposed project is

characterized as in-fill development, and therefore qualifies for the Class 32 Categorical Exemption.

The project is located within the Palms - Mar Vista - Del Rey Community Plan which designates the subject property for Neighborhood Commercial land uses with a corresponding zones of C1, C1(PV), C1.5, C2, C4, RAS3, and RAS4. The subject property is zoned C2-1VL. The proposed mixed-use development with 11% of the base density set aside for Very Low Income Households is consistent with the applicable general plan land use designation and all applicable general plan policies as well as with the applicable zoning designation and regulations.

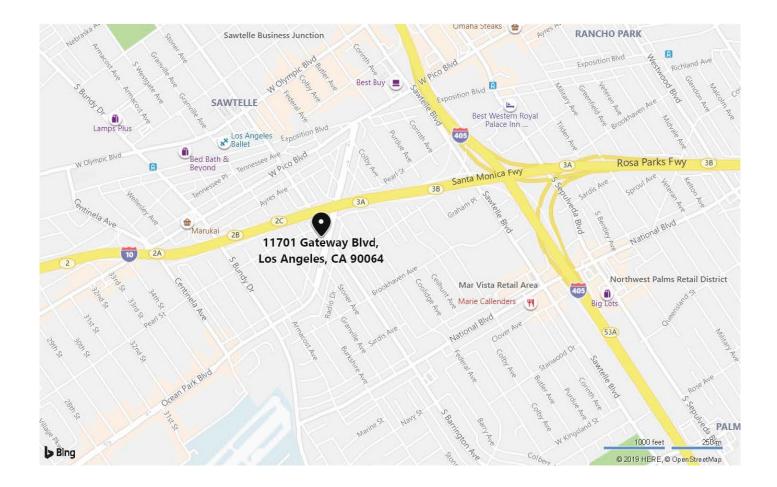
The subject site is wholly within the City of Los Angeles and approximately 0.44 acres total in size. Lots adjacent to the subject property are developed with single- and multi-family dwellings and commercial uses. The site is currently developed and surrounded by development and therefore has no value as a habitat for endangered, rare or threatened species. There are no protected trees on-site as determined by McKinley & Associates in a letter dated May 12, 2018.

The project would not result in any significant effects related to traffic, noise, air quality, or water quality.

- A Traffic Study, prepared by Gibson Transportation Consulting, Inc. and dated April 2019, indicated that the traffic from the proposed project would not result in any significant impacts to the surrounding traffic and circulation. This conclusion was affirmed by the Department of Transportation in a letter dated April 30, 2019.
- An Air Quality Technical Report, prepared by DKA Planning and dated April 2019, indicated that the project would not result in any significant air quality impacts.
- A Noise Technical Report, prepared by DKA Planning and dated April 2019, indicated that the project would not result in any significant noise impacts.
- The project will be subject to Regulatory Compliance Measures, which require compliance with the City of Los Angeles Noise Ordinance, pollutant discharge, dewatering, stormwater conditions; and Best Management Practices for stormwater runoff.

The project site is currently and will continue to be adequately served by all public utilities and services. The proposed project is required to adhere to all applicable regulatory compliance measures during construction, operation and maintenance of the proposed buildings.

Exceptions to Categorical Exemptions

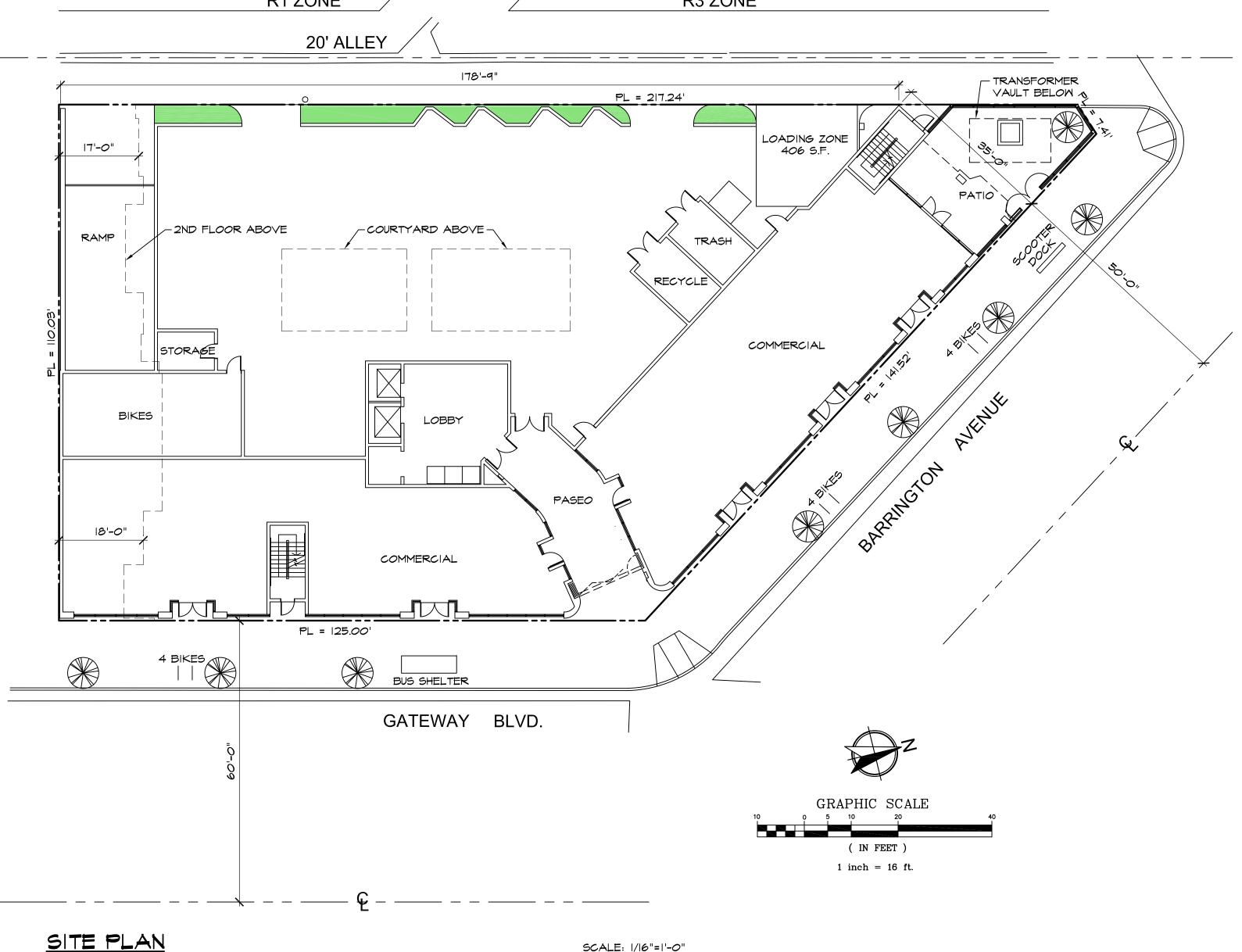

There are six (6) exceptions to categorical exemptions must be considered in order to find a project exempt from CEQA: (a) Location; (b) Cumulative Impacts; (c) Significant Effect; (d) Scenic Highways; (e) Hazardous Waste Sites; and (f) Historical Resources.

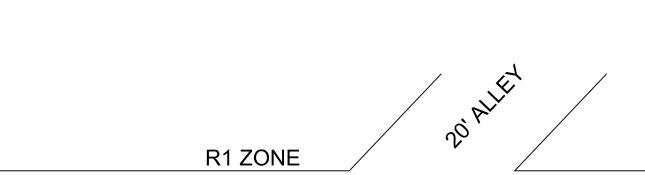
The project is not located on or near any environmental resource of hazardous or critical concern where designated, precisely mapped, and officially adopted pursuant to law by federal, state, or local agencies. There is not a succession of known projects of the same type and in same place as the subject project. The project would not reasonably result in a significant effect on the environment due to unusual circumstances. The project is not

located near a State Scenic Highway. Furthermore, according to Envirostor, the State of California's database of Hazardous Waste Sites, neither the subject site, nor any site in the vicinity is identified as an active hazardous waste site. Nevertheless, as the site recently contained a dry cleaner, Alpha Environmental conducted a Phase I Environmental Site Assessment dated September 1, 2016 and subsequently conducted an Environmental Site Assessment for Soil/Soil Vapor operations documented on a Phase II ESA Report dated November 16, 2016 to evaluate any potential environmental contamination. In addition, ambient air sampling of the dry cleaner was conducted at the time the dry cleaner was in operation. Environmental Solutions, in a letter dated May 9, 2017, indicated that volatile organic compounds (VOC) and other searched constituents were detected at either below the analytical sensitivity, non-detected or below the regional screening levels or at very low concentration levels (see attached report) that do not pose a significant human health risk to the occupants. Lastly, the project site has not been identified as a historic resource by local or state agencies, and the project site has not been determined to be eligible for listing in the National Register or Historic Places. California Register of Historical Resources, the Los Angles Historic-Cultural Monuments Register, and/or any local register, and was not found to be a potential historic resource based on the City's HistoricPlacesLA website or SurveyLA, the citywide survey of Los Angeles.

Maps

Vicinity Map


Radius Map



Zoning Map

Exhibit A Site Plan, Floor Plans, Elevations and Landscape Plan

VICINITY MAP

SCALE: NONE

BARRINGWAY PLACE

MIXED USE WITH 73 APARTMENTS **INCLUDING 6 VERY LOW INCOME UNITS**

11701 Gateway Blvd. Los Angeles, CA 90064

APARTMENT UNIT SCHEDULE					
FLOOR	STUDIO	I-BEDR'M	2-BEDR'M	TOTAL	
2	7			<u> </u> 9	
n	8			20	
4	8			20	
IJ	6	5	З	14	
TOTAL	29	38	6	73	

R3 ZONE

PROJE

<u>SITE INFOR</u> APN: 42 ZONING: LEGAL D TRAC LOTS: LOT SIZE LOT ARE

BUILDING INFORMATION OCCUPANCY: R-2, M & S2 CONSTRUCTION TYPE: I-A & III-B STORIES: 5 + 2 BASEMENTS PODIUM TYPE I-A 4 STORIES TYPE III-B BUILDING HEIGHT: 55' - 0" FIRE SPRINKLERED THROUGHOUT (NFPA-13) ALLOWS INCREASE FROM 4 TO 5 STORIES OF TYPE III-B CONSTRUCTION (LABC 504.2)

<u>DENSITY BONUS</u> ALLOWABLE UNITS: SITE AREA = 19,335.98 1/2 ALLEY = 2,112.4 TOTAL = 21,448.38 / 400 = 53.62 = 54DENSITY BONUS: $54 \times 35\% = 18.9 = 19$ TOTAL UNITS = 54 + 19 = 73INCLUDED VERY LOW INCOME UNITS $54 \times 11\% = 5.94 = 6$

PROPOSED FAR = 3.22:1

<u>APARTMEN</u> STUDIO UI I-BEDRO 2-BEDRO TOTAL U

<u>BICYCLE P</u> RESIDENT (25/1) RESIDEN (25/10

COMMER 5899 COMMER 5899 TOTAL R

BIKES RE FINAL BIC

<u>OPEN SPA</u> REQUIRE STUDI I-BED

COMMON COMMON SECC COUR RECR

> TOTA 25% C

RMATION 257 006 033
237 000 033 C2-IVL
DESCRIPTION:
T: 54598
: 83, 84, 85, 86, FR 87, FR 88, FR 89
E: IRREGULAR
EA: 19,335.98 SQ. FT.

OFF-MENU INCENTIVES I. FLOOR AREA RATIO (FAR) INCREASE TO 3.25:1 2. HEIGHT INCREASE 45' / 4-STORIES WITHIN 50' OF RI ZONE 56' / 5-STORIES WITHIN 50' OF RI ZONE

 $\frac{\text{BUILDING FLOOR AREA}}{\text{ALLOWABLE ZONING FLOOR AREA}}$ FAR = 3.25:I = $3.25 \times 19,335.98 = 62,841.94$ SQ. FT.

RESIDENTIAL FLOOR AREA PROPOSED ZONING FLOOR AREA = 56,357 SQ. FT. COMMERCIAL FLOOR AREA

PROPOSED ZONING FLOOR AREA = 5,899 SQ. FT. TOTAL RESIDENTIAL AND COMMERCIAL FLOOR AREA ZONING AREA = 62,256 SQ. FT.

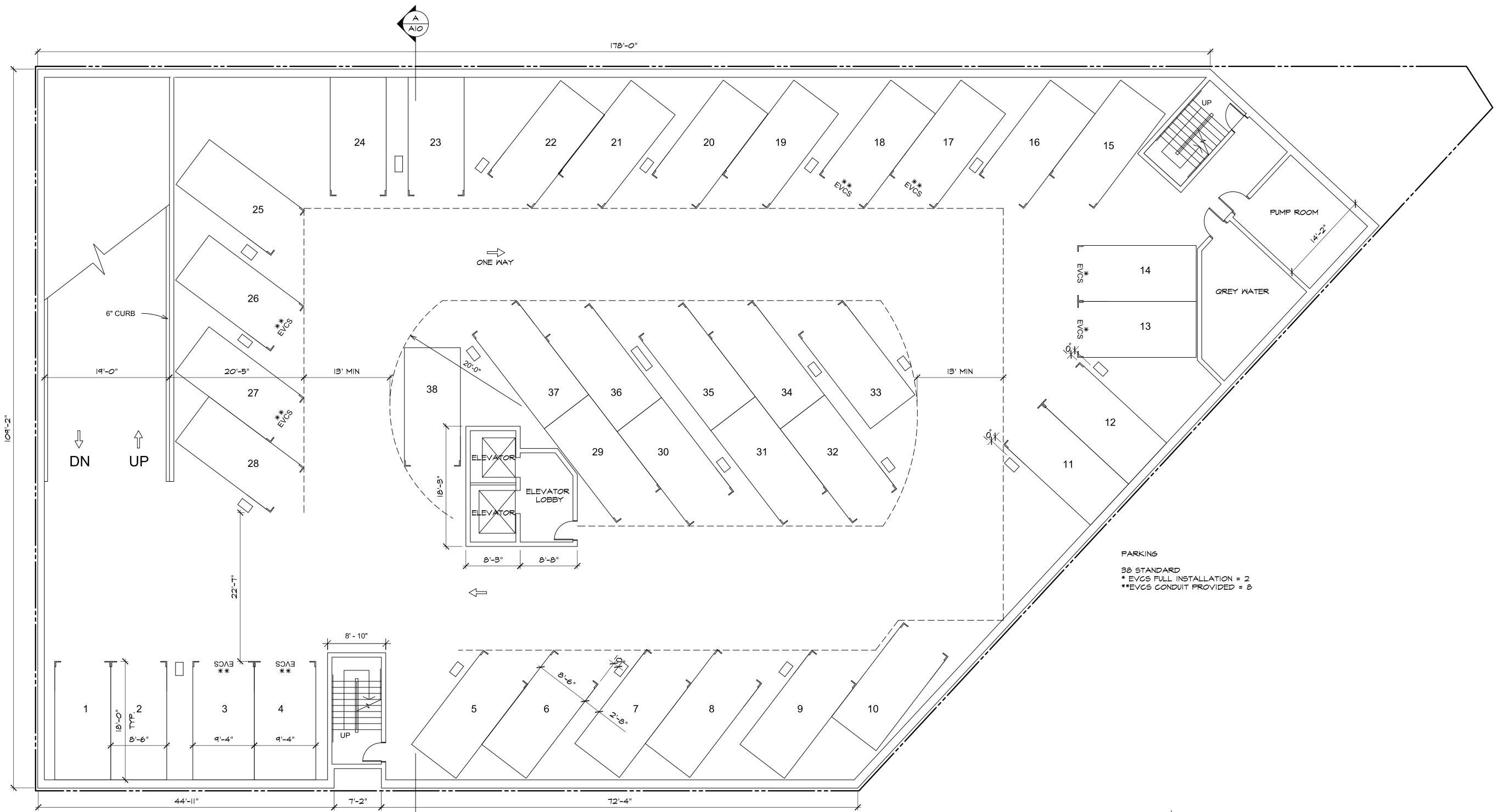
<u>NT UN</u> JNITS		_
		29 38
00M	-	6
INITS		73

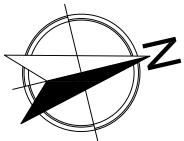
AUTOMOBILE PARKING RESIDENTIAL REQUIRED SPACES PER OPTION I STUDIO (29 x I) I-BR (38 X I) 2-BR (6 X 2) SUBTOTAL REQUIRED IO% BIKE SWAP REDUCTION (79x.I = 7.9) RESIDENTIAL REQUIRED	29 38 12 79 (7) 72
COMMERCIAL REQUIRED SPACES 2,953 / 500 (OFFICE/SALON/SERVICE) = 5.9 1,946 / 250 (RETAIL) = 7.8 1,000 / 200 (SMALL RESTAURANT) = 5 SUBTOTAL 20% BIKE SWAP REDUCTION (19x20% = 3.8) COMMERCIAL REQUIRED	6 8 5 <u>9</u> (3) 6
TOTAL SPACES REQUIRED	88
RESIDENTIAL PROVIDED COMMERCIAL PROVIDED TOTAL SPACES PROVIDED STANDARD VEHICLE COMPACT CAR DISABLED ACCESS TOTAL EVCS INCLUDED: FULL INSTALLATION (6%) = 5 CONDUIT PROVIDED (20%) = 17	72 8 8 6 <u>3</u> 90
BICYCLE PARKING RESIDENTIAL LONG TERM REQUIRED (25/I) + (48/I.5) RESIDENTIAL SHORT TERM REQUIRED	57

0) + (48/15) = 5.7	6
RCIAL LONG TERM REQUIRED / 2000 = 2.9 RCIAL SHORT TERM REQUIRED	З
/ 2000 = 2.9	3
REQUIRED	69
REQUIRED PER BIKE SWAP = 10×4	40 < 69
CYCLE REQUIREMENT	69
<u>ACE</u> ED: DIO: 29 x 100 = 2,900 SQ. FT. DR'M: 38 x 100 = 3,800 SQ. FT.	

2-BEDR'M: 6 x 125 = 750 SQ. FT. TOTAL REQUIRED = 7,450 SQ. FT. PRIVATE OPEN SPACE PROVIDED: 42 PRIVATE BALCONIES × 50 SQ. FT. = 2100 SQ. FT.

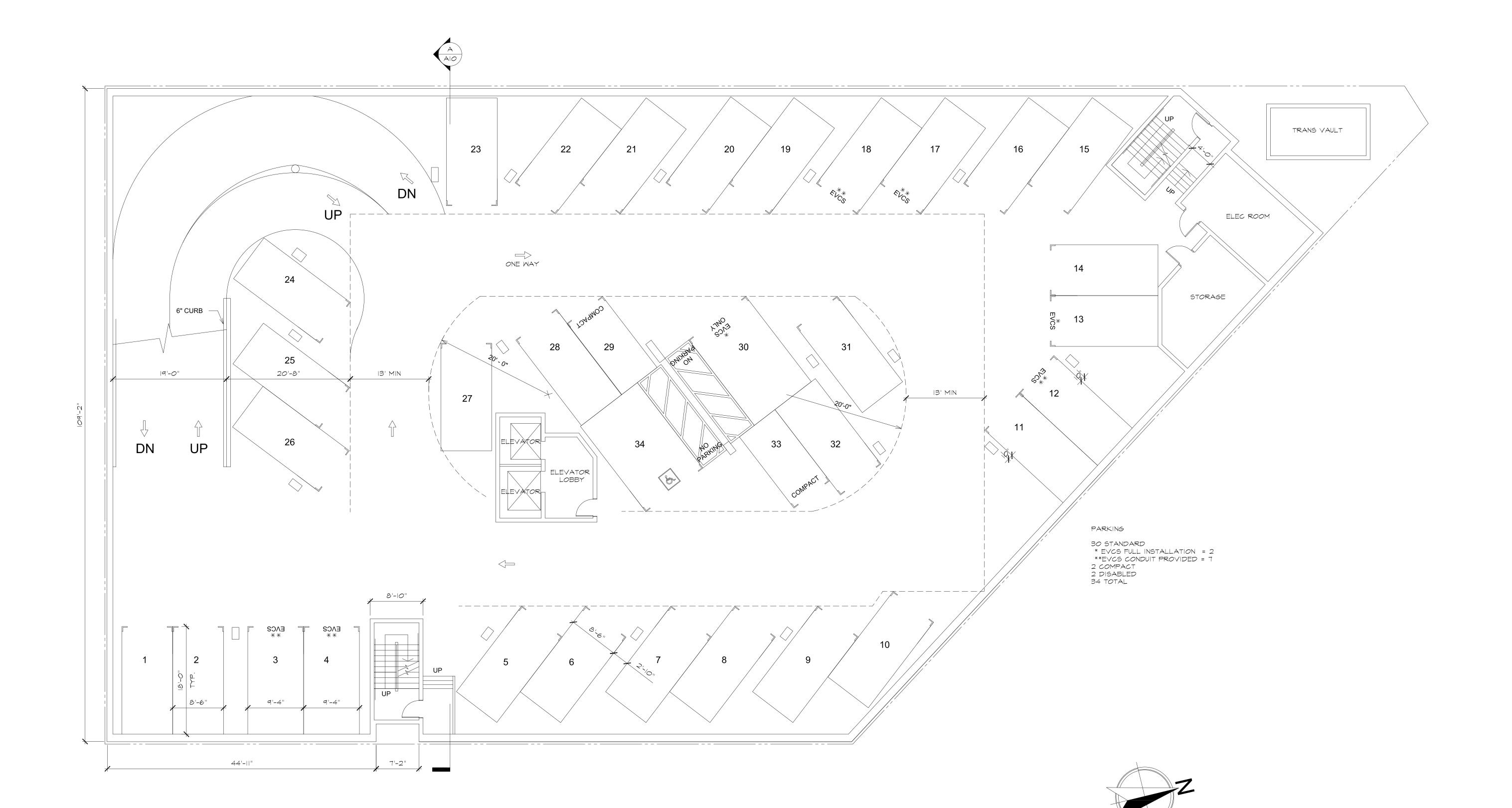
42 I KIVATE DA		50	50.11 21	00 00.11.	
OMMON OPEN SPAC	CE REQ'D :	= 7,4	50 - 2,100	= 5,350 SQ. F	=⊤.
OMMON OPEN SPAC	CE PROVID	ED			
SECOND FLOOR	PATIO	=	575 SQ. F	T.	
COURTYARD		=	982 SQ. F	T.	
RECREATION RO	OM	=	924 SQ. F	T.	
ROOF PATIOS	2 x 980	=	1,960 SQ. F	T.	

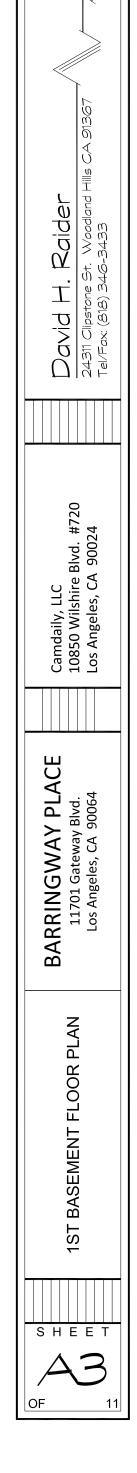

	2 × 100	-	1,100 00.111.
	I x 936	=	<u>936 SQ. FT.</u>
al provide	Ð	=	5,377 SQ. FT.
OF EACH CO	OMMON OPE	IN S	PACE AREA
PT RECREA	TION ROOM		BE LANDSCAPE


EXCEPT RECREATION ROOM TO BE LANDSCAPED LANDSCAPE AREA REQUIRED = 25% (5,377-924) = 1,113 SQ. FT. LANDSCAPE AREA PROVIDED = 1,130 SQ. FT.

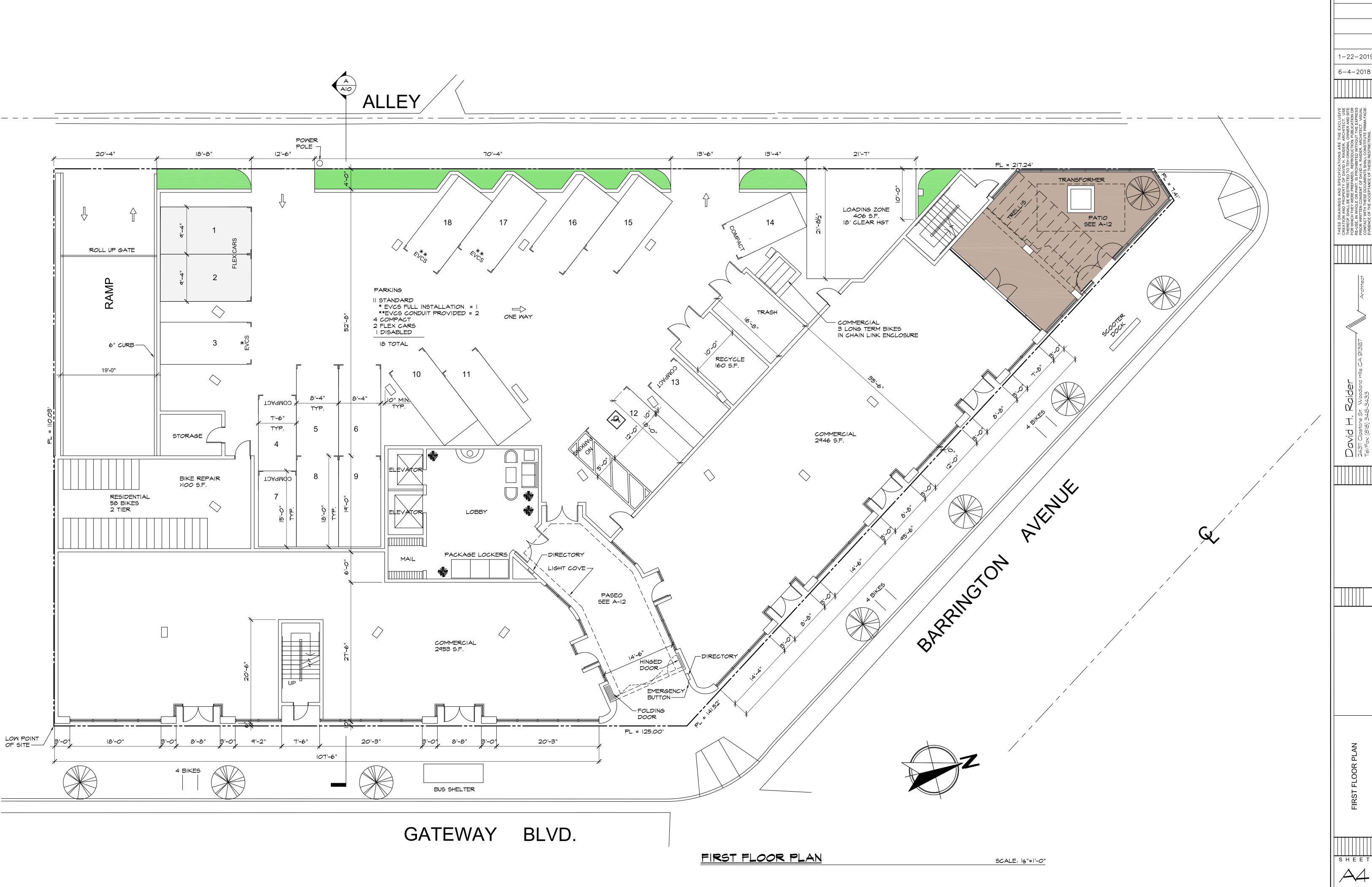
REQUIRED NUMBER OF 24" BOX TREES = 73 DU/4 = 18.25 = 18 PROVIDED NUMBER OF 24" BOX TREES = 24

	SHEET SCHEDULE
SHEET	DESCRIPTION
AI	SITE PLAN & PROJECT DATA
A2	2ND BASEMENT FLOOR PLAN
A3	IST BASEMENT FLOOR PLAN
A4	FIRST FLOOR PLAN
A5	SECOND FLOOR PLAN
A6	THIRD & FOURTH FLOOR PLAN
A7	FIFTH FLOOR PLAN
Að	ROOF PLAN
Aq	EXTERIOR ELEVATIONS
AIO	EXTERIOR ELEVATIONS
All	SECTION
AI2	FIRST FLOOR PLAN DETAILS
ଚଚା	SITE SURVEY


JSIVE USE USE SITE DN OR RESS FACIE	
VS ARE THE EXCLU ANDER, ARCHITECT RIGINAL OWNER ANI DUCTION PUBLICATION D WITHOUT THE EXE TIDER, ARCHITECT V CIDER, ARCHITECT V CONSTITUTE PRIMA ESTRICTIONS.	
AWINGS AND SPECIFICATIONS ARE THE EXCLUSIVE AND PROPERTY OF DAYID H. RAIDER, ARCHITECT. USE SHALL BE RESTRICTED TO TEH ORIGINAL OWNER AND SITE THEY WERE PREPARED. REPRODUCTION, PUBLICATION OR WHOLE OR PART, IS PROHIBITED WITHOUT THE EXPRESS TTEN CONSENT OF DAVID H. RAIDER, ARCHITECT. VISUAL VITH THESE DOCUMENTS SHALL CONSTITUTE PRIMA FACE DF THE ACCEPTANCE OF THESE RESTRICTIONS.	
THESE DRAWINGS AND SPECIFICATIONS ARE THE EXCLUSIVE CREATION AND PROPERTY OF DAVID H. RAIDER, ARCHITECT. USE THEREOF SHALL BE RESTRICTED TO TEH ORIGINAL OWNER AND SITE FOR WHICH THEY WERE PREPARED. REPRODUCTION. PUBLICATION OR RE-USE, IN WHOLE OR PART, IS PROHIBITED WITHOUT THE EXPRESS PRIOR WRITTEN CONSENT OF DAVID H. RAIDER, ARCHITECT. VISUAL CONTACT WRITTEN CONSENT OF DAVID H. RAIDER, ARCHITECT. VISUAL	
Architect	
r br MilH br ©D⊘ 201	
David H. Raider 24311 Clipstone St. Woodland Hills CA 91367 Tel/Fax: (818) 346-3433	
David H 24311 Clipstor Tel/Fax: (818)	
: Blvd. #720 A 90024	
Camdaily, LLC 10850 Wilshire Blvd. #720 Los Angeles, CA 90024	
Y PLACE y Blvd. 90064	
BARRINGWAY PLACE 11701 Gateway Blvd. Los Angeles, CA 90064	
BAR	
AND	
SITE PLAN / PROJECT D	
SHEET	
OF 12	

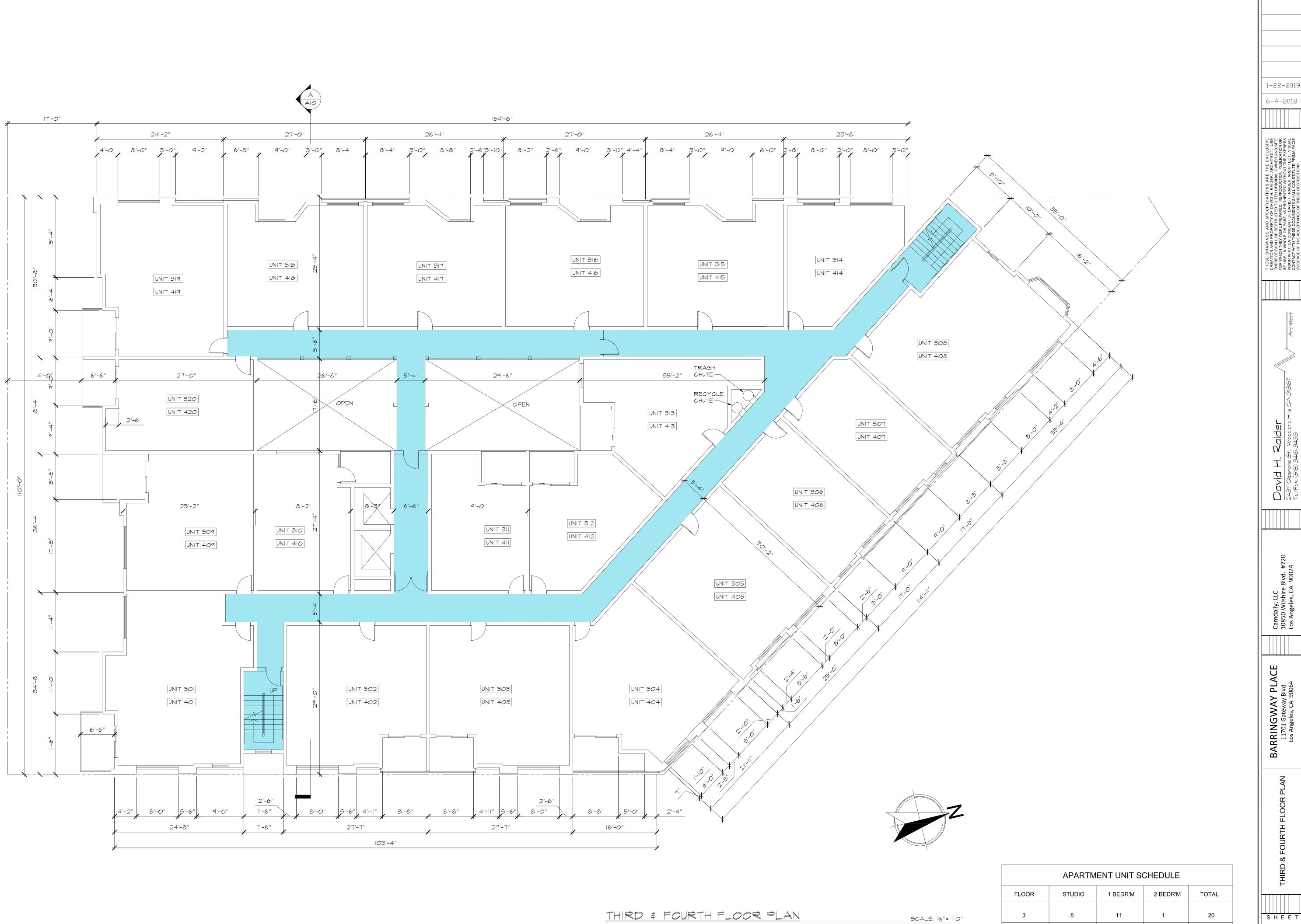


SCALE: 1/8"=1'-0"

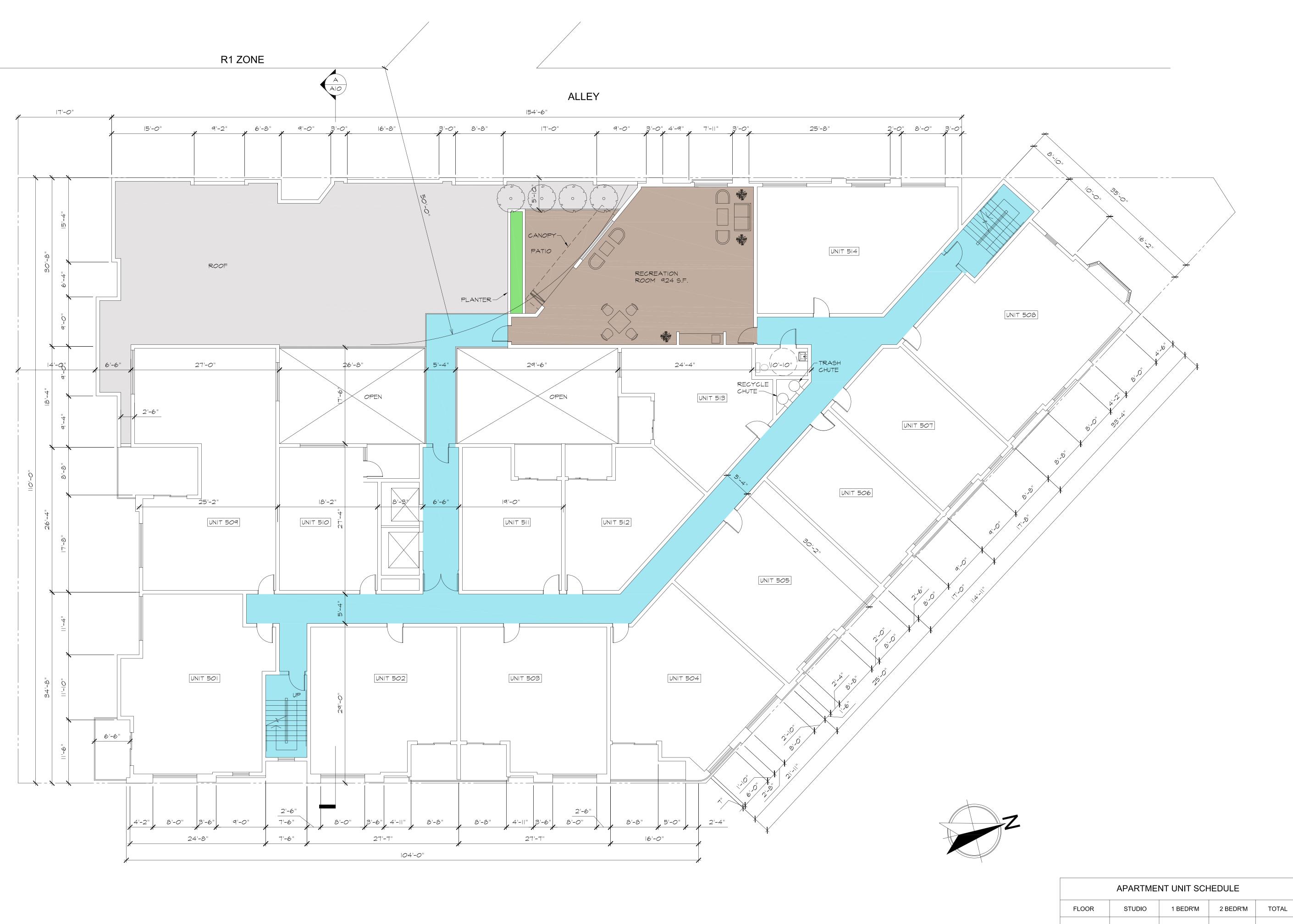


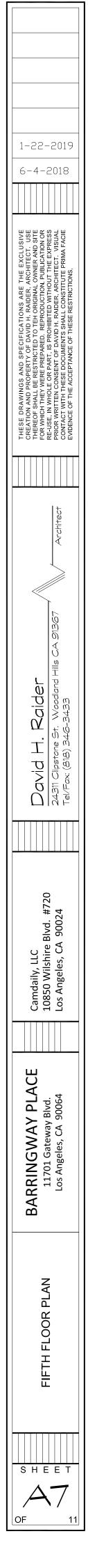
1-22-2019

6-4-2018

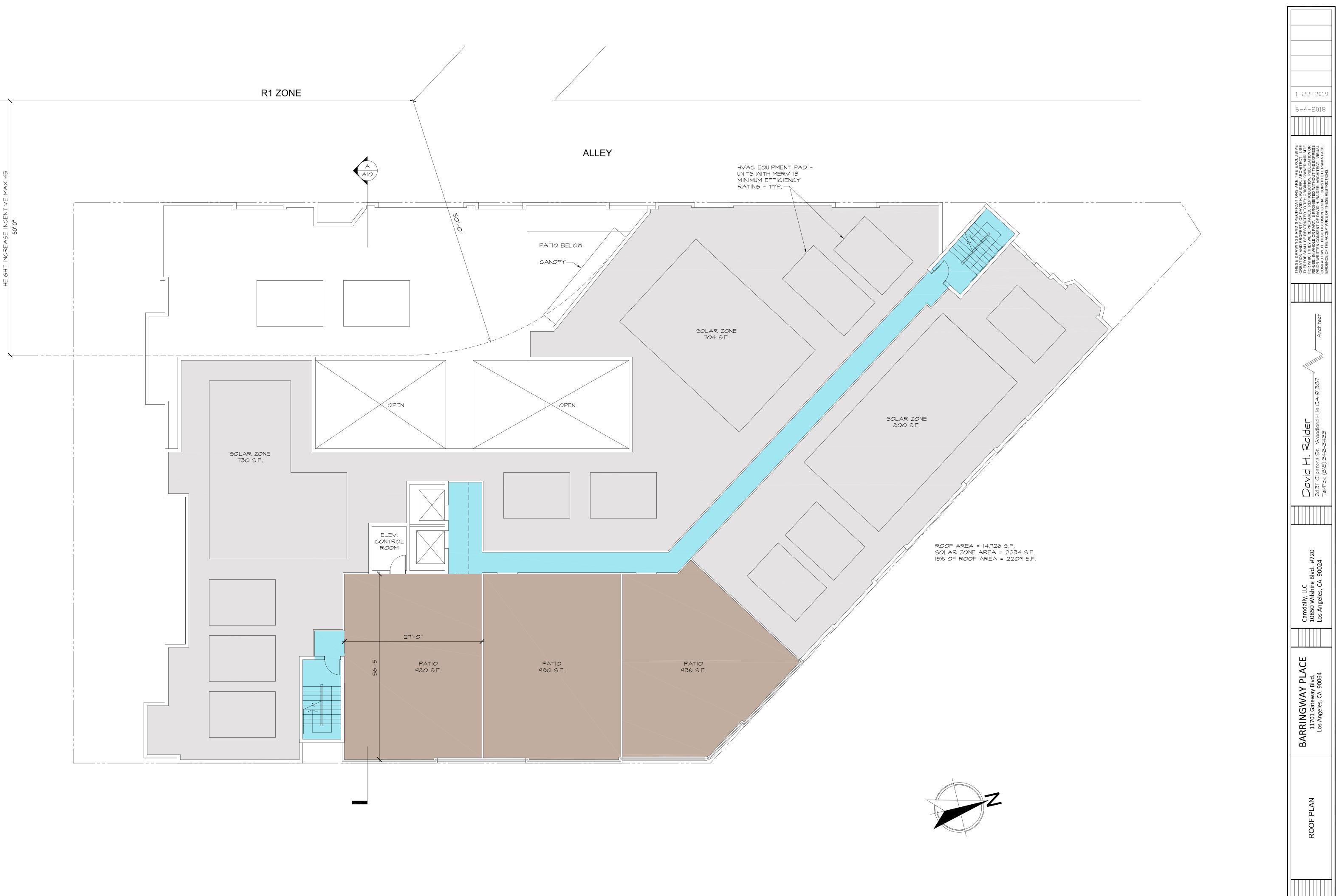

THESE DRAWINGS AND SPECIFICATIONS ARE THE EXCLUSIVE CREATION AND PROPERTY OF DAVID H. RAIDER, ARCHITECT. USE THEREOF SHALL BE RESTRICTED TO TEH ORIGINAL OWNER AND SITE FOR WHICH THEY WERE PREPARED. REPRODUCTION. PUBLICATION OR RE-USE, IN WHOLE OR PART, IS PROHIBITED WITHOUT THE EXPRESS PRIOR WRITTEN CONSENT OF DAVID H. RAIDER, ARCHITECT. VISUAL CONTRY WRITTEN CONSENT OF DAVID H. RAIDER, ARCHITECT. VISUAL CONTOCT WITH THESE DOCUMENTS SHALL CONSTITUTE PRIMA FACIE EVIDENCE OF THE ACCEPTANCE OF THESE RESTRICTIONS.

SCALE: 1/8"=1'-0"


OF


FLOOR	STUDIO	1 BEDR'M	2 BEDR'M	TOTAL
3	8	11	1	20
4	8	11	1	20

A6


OF

FIFTH FLOOR PLAN

SCALE: 1/8"=1'-0"

SCALE: 1/8"=1'-0"

SHEET

l |OF

A8

CLEAR GLASS STORE FRONT W/ BRONZE ALUM. FRAME —

WEST ELEVATION

-

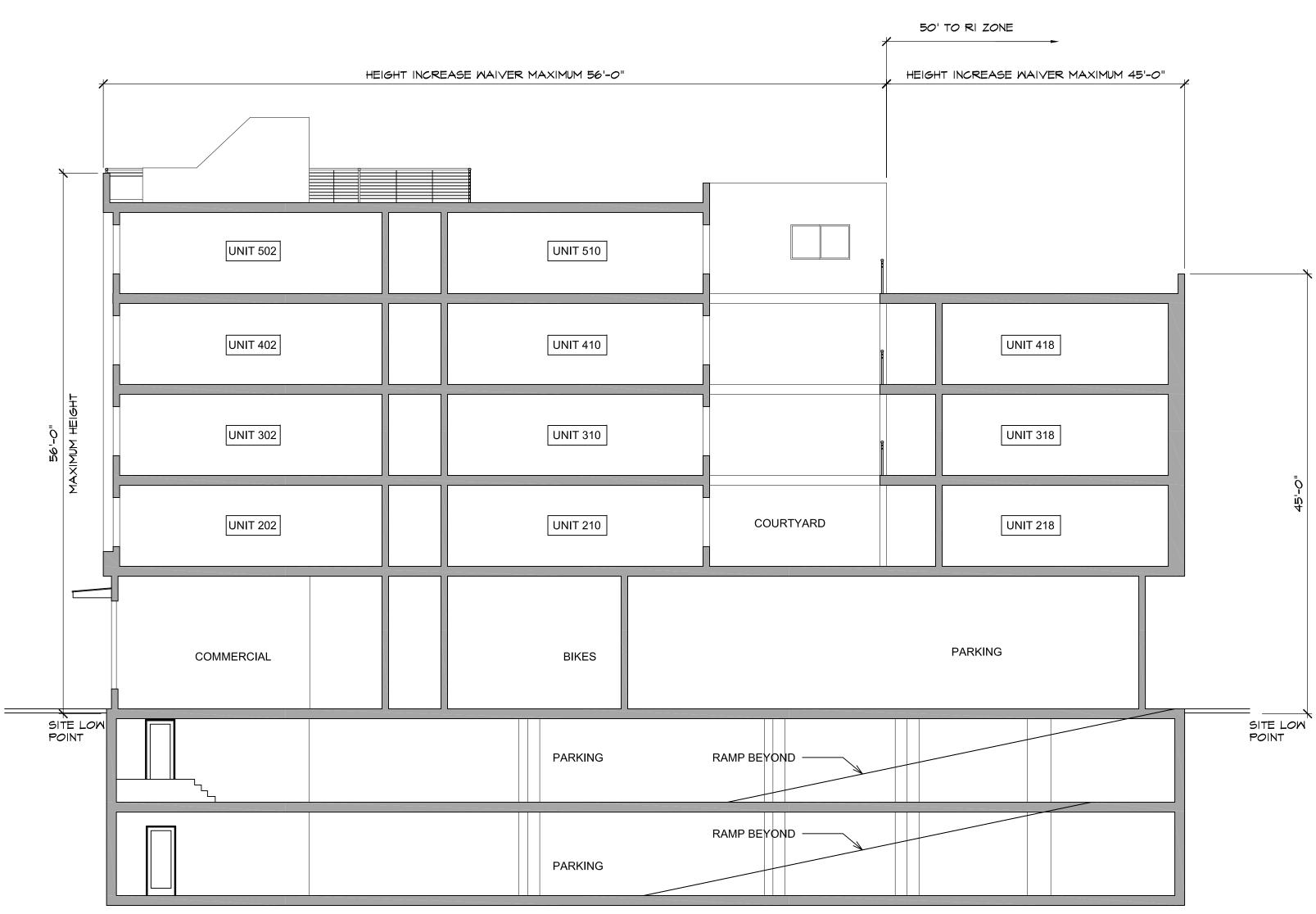
SCALE: 1/8"=1'-0"

CLEAR GLASS STORE FRONT W/ BRONZE ALUM. FRAME imes

SCALE: 1/8"=1'-0"

1-22-2019 6-4-2018
THESE DRAWINGS AND SPECIFICATIONS ARE THE EXCLUSIVE CREATION AND PROPERTY OF DAVID H. RAIDER, ARCHITECT. USE THEREOF SHALL BE RESTRICTED TO TEH NIGINAL OWNER AND SITE FOR WHICH THEY WERE PREPARED. REPRODUCTION. PUBLICATION OR RE-USE, IN WHOLE OR PART. IS PROHIBITED WITHOUT THE EXPRESS PRIOR WRITTEN CONSENT OF DAVID H. RAIDER, ARCHITECT. VISUAL CONTECT WITH THESE DOCUMENTS SHALL CONSTITUTE PRIMA FACIE EVIDENCE OF THE ACCEPTANCE OF THESE RESTRICTIONS.
Architect
David H. Raider 24311 Clipstone St. Woodland Hills CA 91367 Tel/Fax: (818) 346-3433
Camdaily, LLC 10850 Wilshire Blvd. #720 Los Angeles, CA 90024
BARRINGWAY PLACE 11701 Gateway Blvd. Los Angeles, CA 90064
EXTERIOR ELEVATION
S H E E T AO OF 11

SOUTH ELEVATION

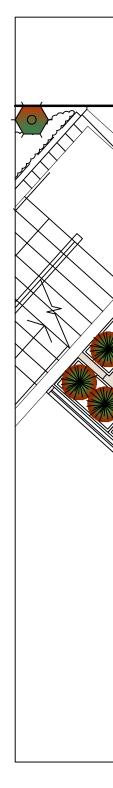

MEST ELEVATION

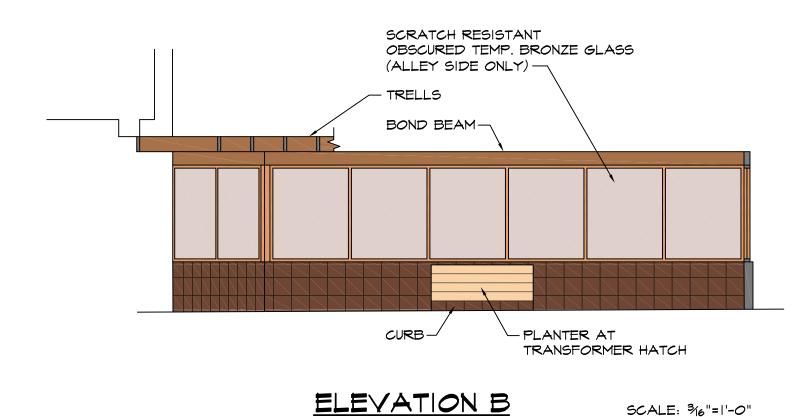
SCALE: 1/8"=1'-0"

A10

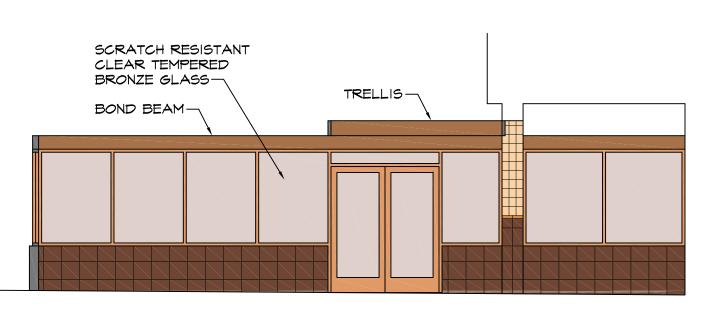
<u>SECTION A</u>

SCALE: 1/8"=1'-0"

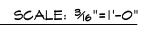

FOLDING DOOR - EXAMPLE

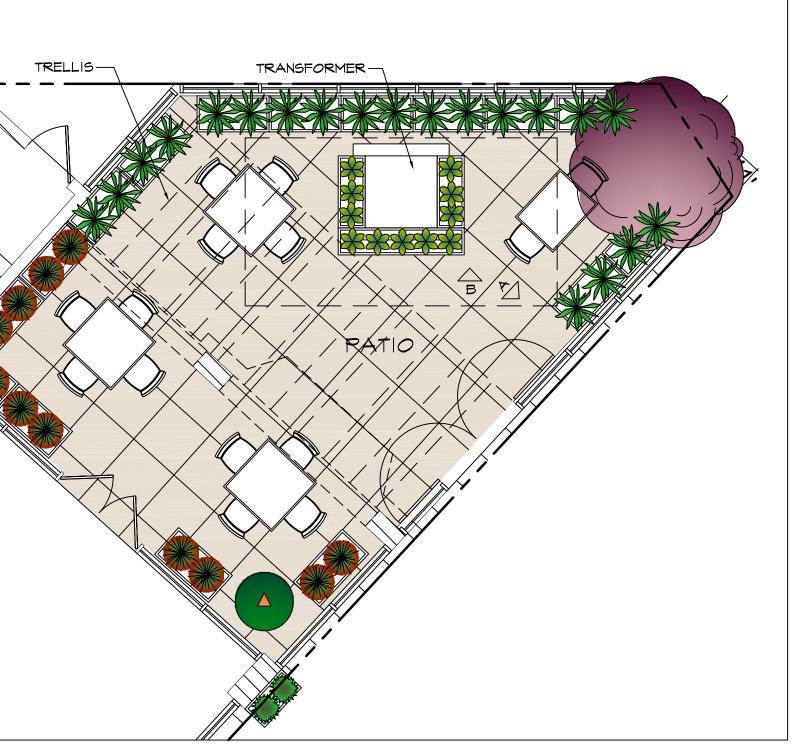


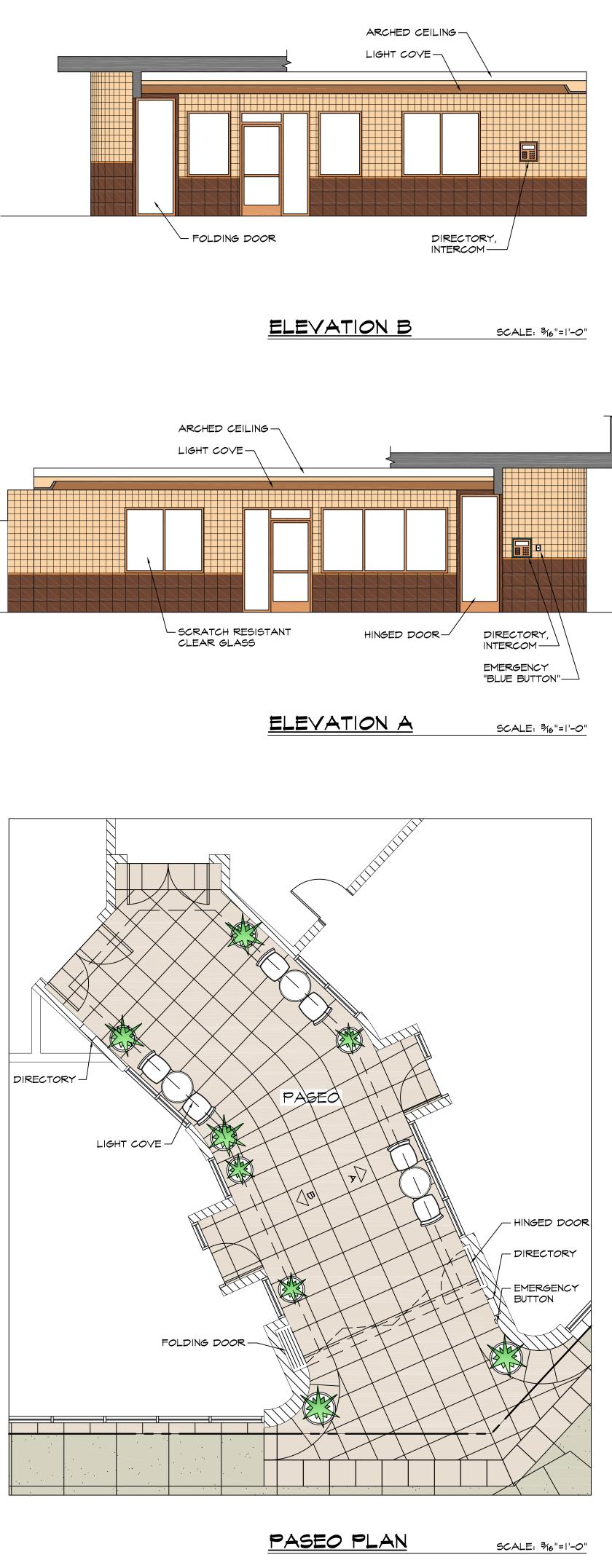
<u>LIGHT COVE - EXAMPLE</u>



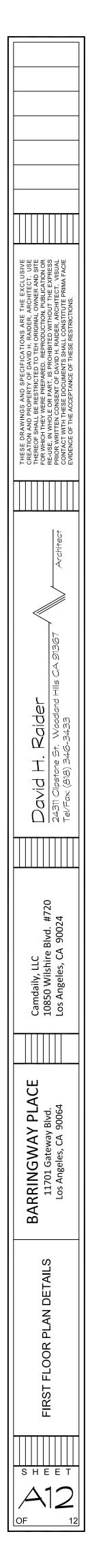
ARCHED CEILING - EXAMPLE

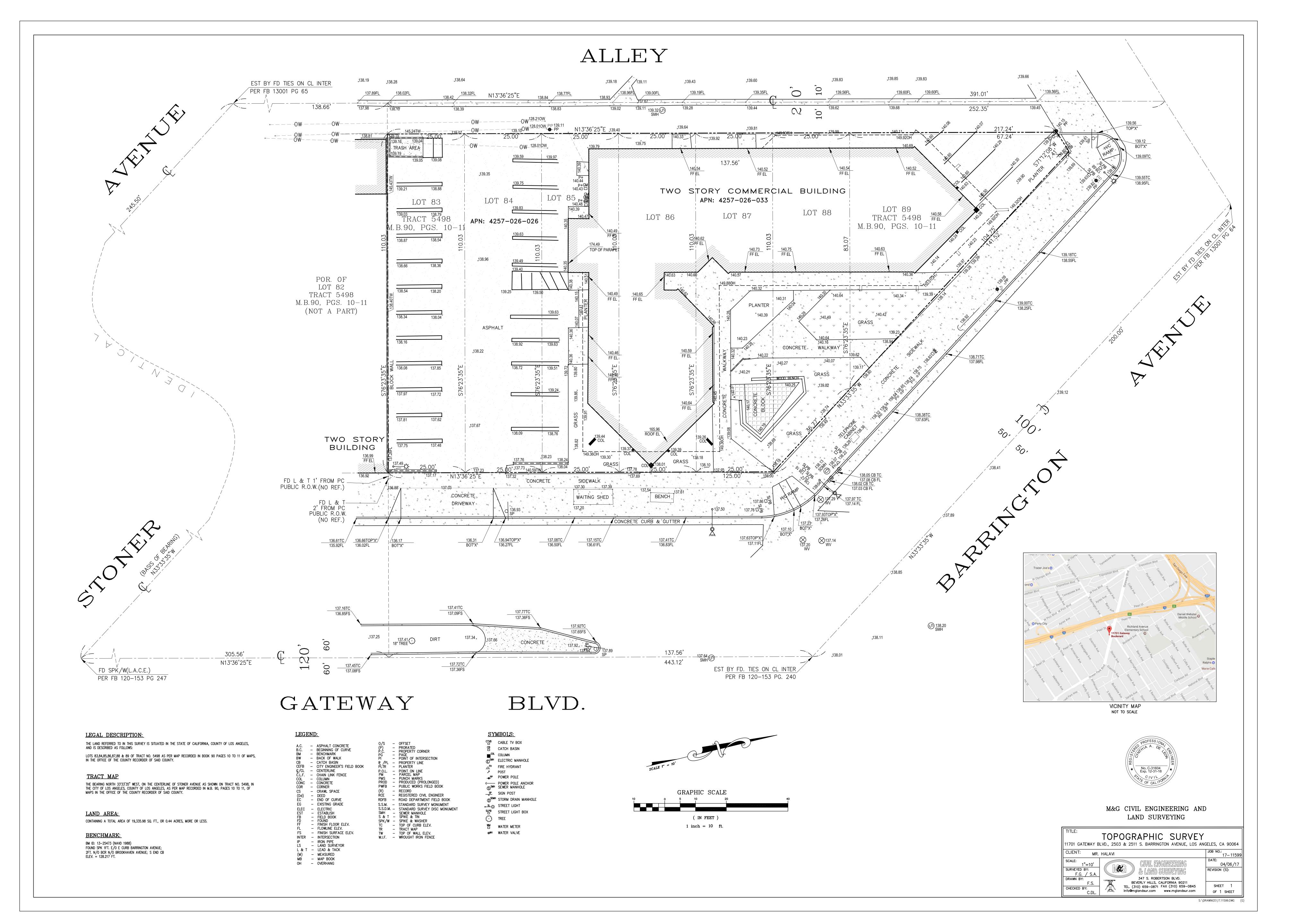






SCALE: 3/6"=1'-0"





			_
		 •	
	· · ·	 	

PATIO PLAN

SCALE: 3/6"=1'-0"

UM 'GOLDEN RAY'	NEW ZEALAND FLAX	12' X 8'	PERENNIAL
ACARIA AFRA VARIEGATA	ELEPHANT'S FOOD	2' X 3'	SUCCULENT
IA EQUISETIFORMIS	CORAL FOUNTAIN	3' X 3'	PERENNIAL
GREGGII 'RADIO RED'	AUTUMN SAGE	3' X 3'	SHRUB
IERIA 'MOONSHINE'	MOTHER-IN-LAW'S TONGUE	3' X 3'	PERENNIAL

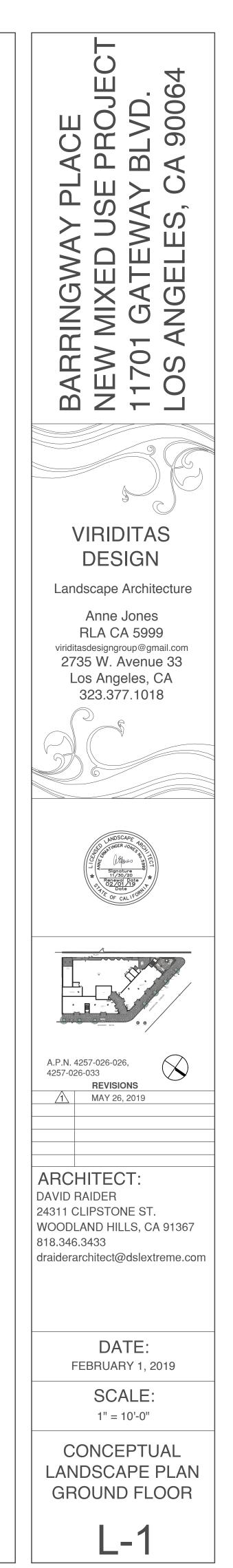
KEY NOTES

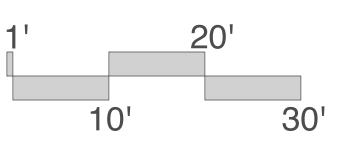
1. NEW STREET TREE

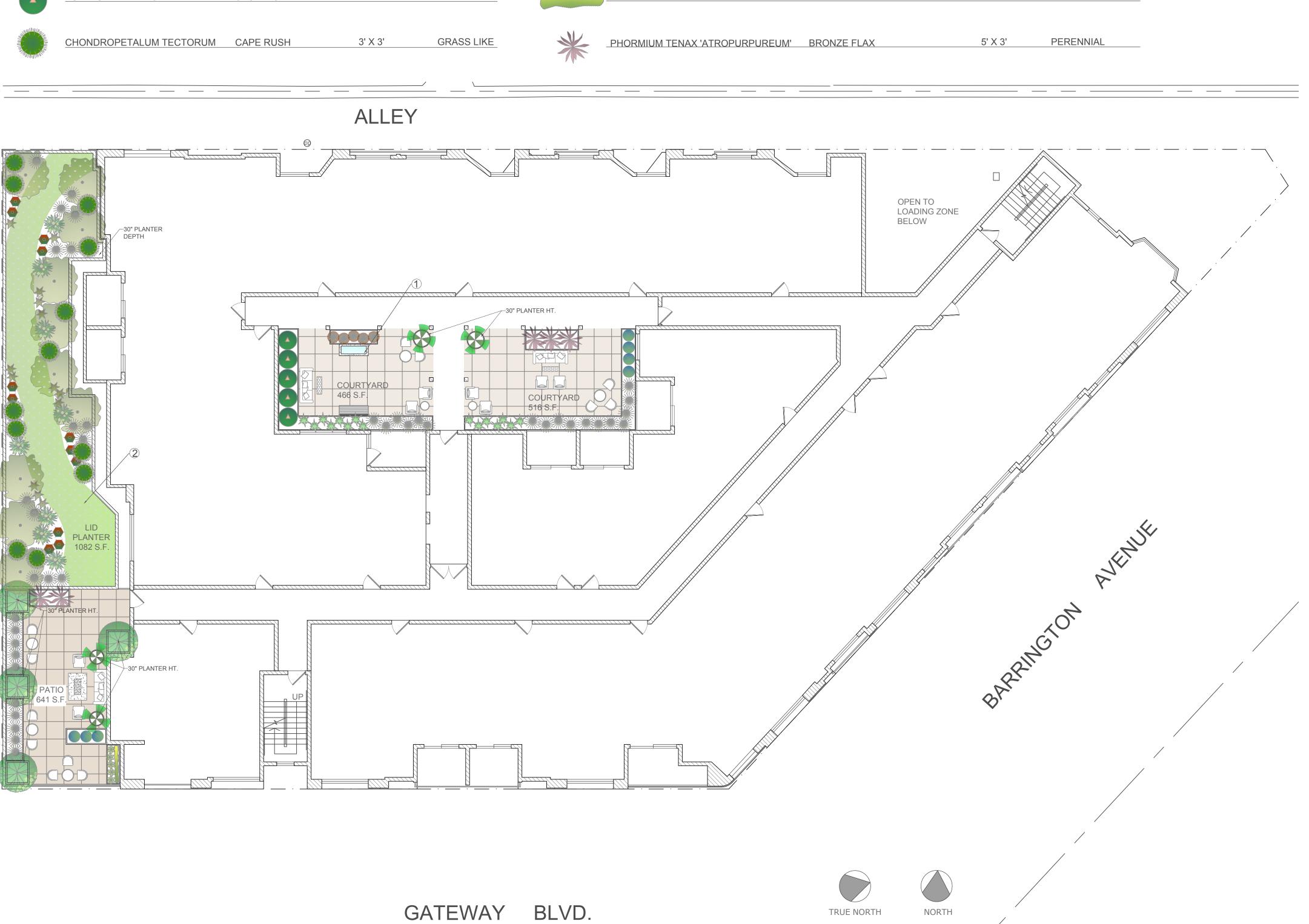
3. GFR PLANTER 4. DECOMPOSED GRANITE

5. GFR PLANTER

6. BIKE RACK


7. GREEN SCREEN

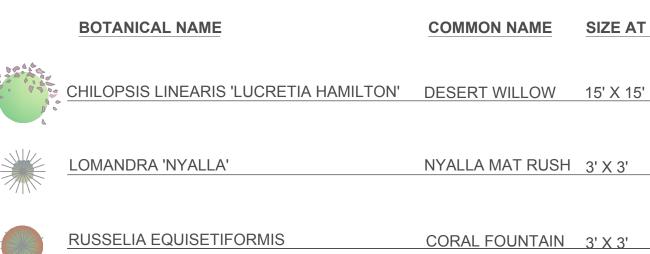

8. WOOD PLANTERS

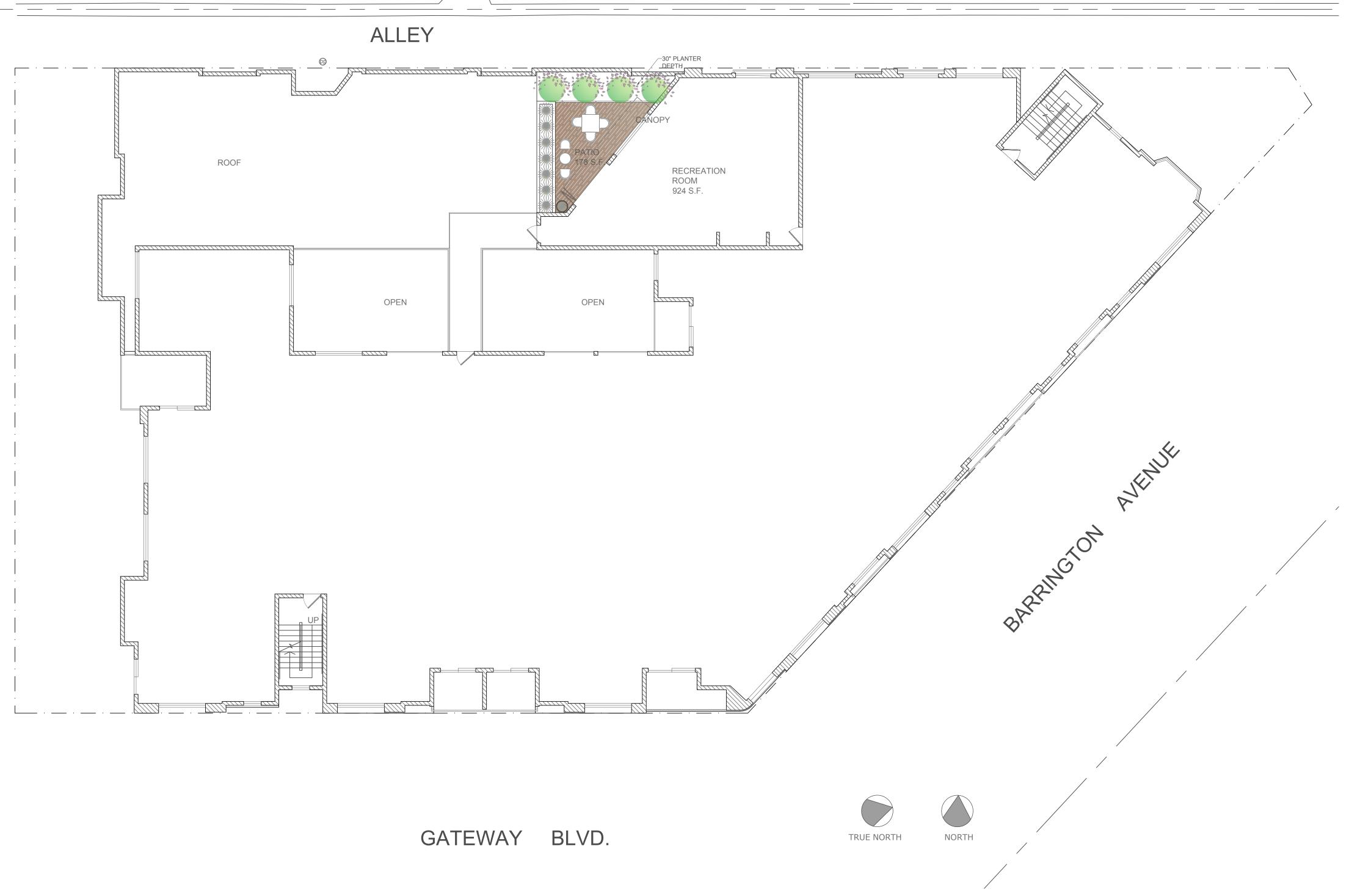


9. 3' X 3' CONCRETE PAVERS

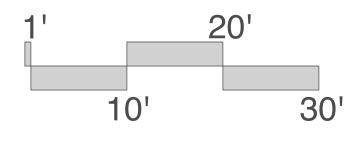
	BOTANICAL NAME	COMMON NAME	SIZE AT 5 YRS.	PLANT TYPE									
	ACCA SELLOWANIA	PINEAPPLE GUAVA	15' X 10'	TREE		CORDYLINE AUSTRALIS	NEW ZEALAND CABBAGE TREE	15' X 8'	TREE	RUSSELIA EQUISETIFORMIS	CORAL FOUNTAIN	3' X 3'	PERENNIAL
	GEIJERA PARVIFLORA	AUSTRALIAN WILLOW	20' X 15'	TREE		DIETES GRANDIFLORA	FORTNIGHT LILY	3' X 3'	PERENNIAL	SALVIA GREGGII 'RADIO RED'	AUTUMN SAGE	3' X 3'	SHRUB
₩	ACHILLEA MILLEFOLIUM	YARROW	1' X 2'	PERENNIAL		PHYLA NODIFLORA 'KURAPIA'	KURAPIA	2" X 3'	GROUND COVER	SANSEVIERIA 'MOONSHINE'	MOTHER-IN-LAW'S TONGUE	3' X 3'	PERENNIAL
	ALOE STRIATA	CORAL ALOE	2' X 3'	SUCCULENT		LOMANDRA 'NYALLA'	NYALLA MAT RUSH	3' X 3'	GRASS LIKE	WESTRINGIA 'BLUE GEM'	COAST ROSEMARY	6' X 4'	SHRUB
	ASPIDISTRA ELATIOR	CAST IRON PLANT	3' X 2'	PERENNIAL		MASCAGNIA MACROPTERA	YELLOW BUTTERFLY VINE	15' X 5'	VINE				
	CHONDROPETALUM TECTORUM	CAPE RUSH	3' X 3'	GRASS LIKE	*	PHORMIUM TENAX 'ATROPURPUREUM'	BRONZE FLAX	5' X 3'	PERENNIAL				


KEY NOTES

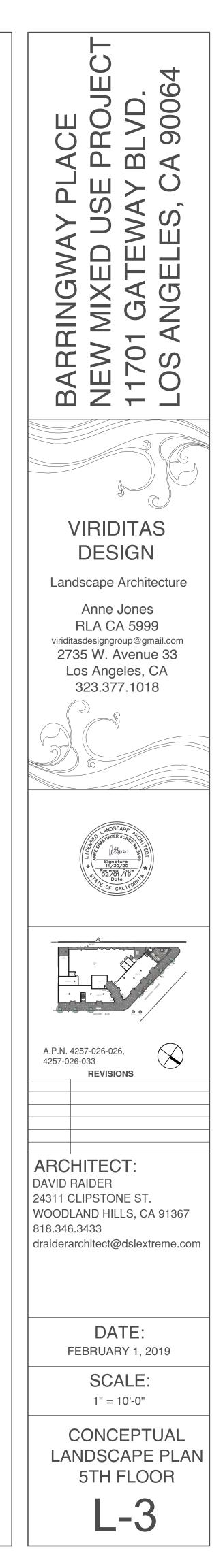

1. FOUNTAIN

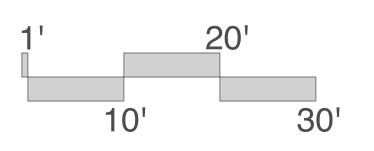


2. LID PLANTER



PLANT LEGEND




CONCEPTUAL LANDSCAPE PLAN SCALE: 1" = 10'-0"

SIZE AT 5 YEARS	TYPE
5' X 15'	TREE
' X 3'	GRASS LIKE
' X 3'	PERENNIAL

CONCEPTUAL LANDSCAPE PLAN SCALE: 1" = 10'-0"

*

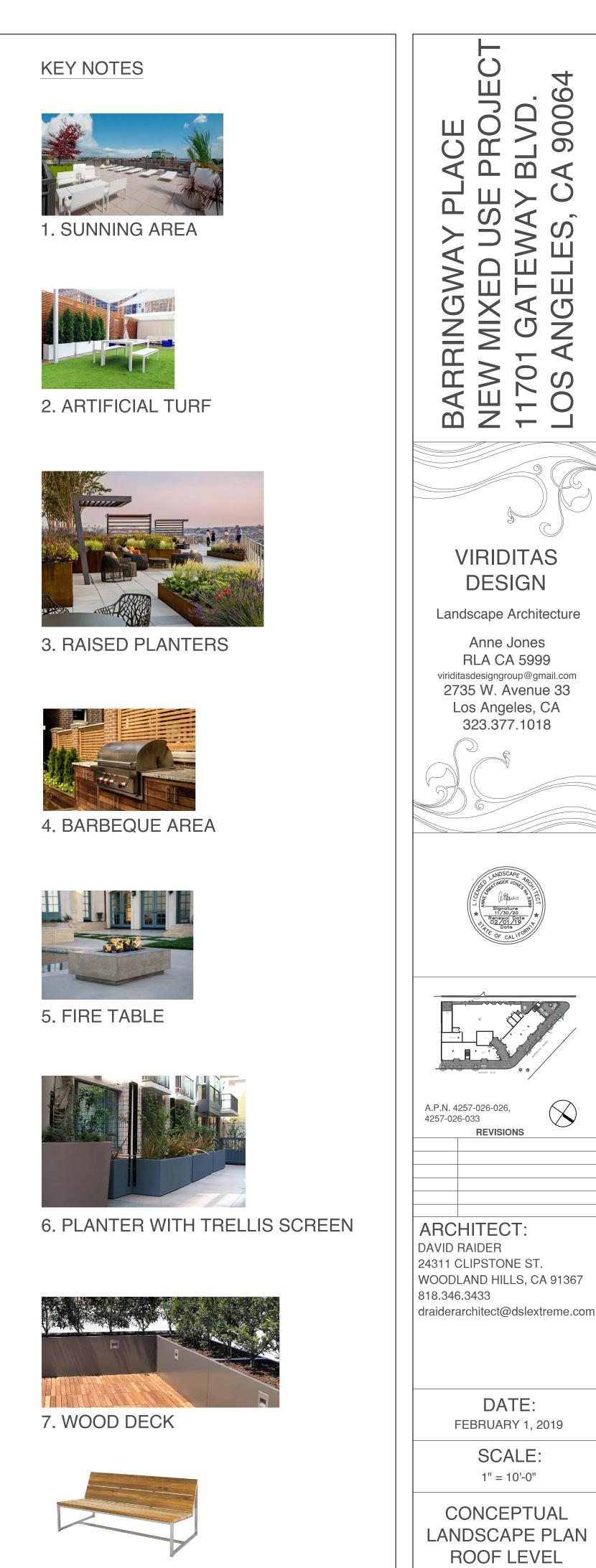
MASCAGNIA MACROPTERA	YELLOW BUTTERFLY VINE	15 X 5'

VINE

BOTANICAL NAME	COMMON NAME	SIZE AT 5 YRS.	PLANT TYPE
ACCA SELLOWANIA	PINEAPPLE GUAVA	15' X 10'	TREE
ALOE STRIATA	CORAL ALOE	2' X 3'	SUCCULENT
CORDYLINE AUSTRALIS	NEW ZEALAND CABBAGE TREE	15' X 8'	TREE
LOMANDRA 'NYALLA'	NYALLA MAT RUSH	3' X 3'	SUCCULENT

PLANT LEGEND

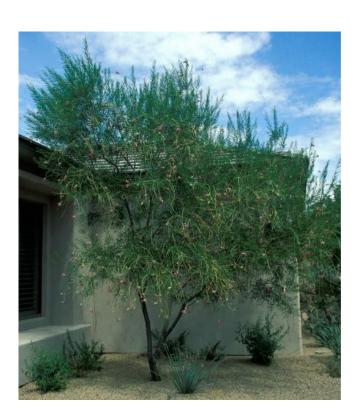
PHORMIUM TENAX 'ATROPURPUREUM'	BRONZE FLAX	5' X 3'	PERENNIAL
RUSSELIA EQUISETIFORMIS	CORAL FOUNTAIN	3' X 3'	PERENNIAL
SALVIA GREGGI 'DEEP PURPLE'	AUTUMN SAGE	2' X 3'	SHRUB
WESTRINGIA 'BLUE GEM'	COAST ROSEMARY	6' X 4'	SHRUB



8. WOOD BENCH

L-4

ACCA SELLOWANIA



ACHILLEA MILLEFOLIUM

CARISSA MACROCARPA 'TUTTLE'

CHILOPSIS 'LUCRETIA HAMILTON'

PHYLA NODIFLORA 'KURAPIA'

LOMANDA 'NYALLA'

PORTULACARIA AFRA VARIEGATA

CONCEPTUAL PLANT PALETTE SCALE: N.T.S.

RUSELLIA EQUISETIFORMIS

ALOE STRIATA

ASPIDISTRA ELATIOR

CHONDROPETALUM TECTORUM

CORDYLINE AUSTRALIS

DIETES GRANDIFLORA

MAGNOLIA GRANDIFLORA

MASCAGNIA MACROPTERA

PHORMIUM 'GOLDEN RAY'

SALVIA GREGGII 'RADIO RED'

SANSEVIERIA 'MOONLIGHT'

WESTRINGIA 'BLUE GEM'

CALYSTEGIA MACROSTEGIA

GEIJERA PARVIFLORA

PHORMIUM TENAX ATROPURPUREUM

()4 9006 2 Ш M Ш C Z ப Ζ S Ζ m VIRIDITAS DESIGN Landscape Architecture Anne Jones RLA CA 5999 viriditasdesigngroup@gmail.com 2735 W. Avenue 33 Los Angeles, CA 323.377.1018 A.P.N. 4257-026-026, 4257-026-033 **REVISIONS** \bigotimes ARCHITECT: DAVID RAIDER 24311 CLIPSTONE ST. WOODLAND HILLS, CA 91367 818.346.3433 draiderarchitect@dslextreme.com DATE: FEBRUARY 1, 2019 SCALE: N.T.S. CONCEPTUAL PLANT PALETTE L-5

Exhibit B Categorical Exemption No. ENV-2018-3431-CE and Appendices

COUNTY CLERK'S USE		CITY OF LOS	S ANGELES			CITY	CLERK'S US
	200	OFFICE OF TH	E CITY CLERK				
	L	NORTH SPRING OS ANGELES, C/	ALIFORNIA 900)12			
	NOTIO	CE OF I	EXEMI	PTION			
	(Californi	a Environmental (Quality Act Secti	ion 15062)			
Filing of this form is optional. pursuant to Public Resources starts a 35-day statute of limitation results in the statute of limitation LEAD CITY AGENCY	Code Section 2115 ations on court chal	2 (b). Pursuant to lenges to the app	Public Resource	es Code Section :	21167 (d) this notice	, the filing e with the	of this notic
City of Los Angeles Depa	rtment of City Pla	anning					Bonin
PROJECT TITLE CPC-2018-3430-DB-SPR					OG REFE NV-2018-		
PROJECT LOCATION 11701-11719 West Gatewa	y Boulevard; 25	11 South Barri	ngton Avenue	e			
DESCRIPTION OF NATURE,	PURPOSE, AND BE	ENEFICIARIES O	F PROJECT:				
The proposed project incl a five-story (with two (2) s	udes the demoli	tion of commer	cial uses and	the construction	on, use a	and main	ntenance o
of ground floor commerci	al space. The pr	oject has a max	kimum buildii	ng height of 56	feet, how	vever is	limited to
45 feet within 50 feet the s	urrounding R1-z	oned propertie	s. The projec	t requires appro	oximatel	y 14,311	cubic
vards of grading.		IT PROJECT IE	OTHER THAN I		CV:		
Bob Halavi, Camdaily, LL		STTROSECT, IT		LAD CITTAGEN	01.		
CONTACT PERSON			AREA CODE	TELEPHONE N	UMBER]	EXT.
Daniel Ahadian, nur Devel		ing	(310)	339-7344			
EXEMPT STATUS: (Check Or	ne)						
		STATE CEQA	GUIDELINES				
D MINISTERIAL		Sec. 152	268				
D DECLARED EMERG	ENCY	Sec. 152	69				
EMERGENCY PROJ	ECT	Sec. 152	69 (b) & (c)				
CATEGORICAL EXE	MPTION	Sec. 153	00 et seq.				
Section 15	332 Class Class	32 (State	CEQA Guidelin	ies)			
					•	•	
	blic Resources Cod						
JUSTIFICATION FOR PROJE s consistent with the applicable genera proposed development occurs within cit or endangered, rare or threatened spe	I plan designation and al y limits on a project site o	l applicable general pla f no more than five acre	in policies as well as as substantially surro	s with the applicable zo ounded by urban uses. (ning designa	tion and reg	gulations. (b) The
site can be adequately served by all rec IF FILED BY APPLICANT, AT	uired utilities and public s	ervices. OCUMENT ISSU	ED BY THE CI			1713	
	IND THE PROJEC		•				
Olin		TITLE City Planner			DATE Febr	uary 27,	2019
EE: 5,774.00	RECEIPT NO. 0103903243		REC'D. BY Danalynn D	ominguez	DATE June	14, 201	8
DISTRIBUTION: (1) County Cl	erk, (2) City Clerk, (3) Agency Record				R	ev. 12-13-18
F FILED BY THE APPLICANT							
NAME (PRINTED)			SIGNATURE	-			

۱

.

DEPARTMENT OF CITY PLANNING

COMMISSION OFFICE (213) 978-1300

CITY PLANNING COMMISSION

SAMANTHA MILLMAN PRESIDENT

VAHID KHORSAND VICE-PRESIDENT

DAVID H. J. AMBROZ CAROLINE CHOE KAREN MACK MARC MITCHELL VERONICA PADILLA-CAMPOS DANA M. PERLMAN VACANT CITY OF LOS ANGELES

CALIFORNIA

ERIC GARCETTI MAYOR EXECUTIVE OFFICES 200 N. SPRING STREET, ROOM 525 LOS ANGELES, CA 90012-4801 (213) 978-1271

VINCENT P. BERTONI, AICP

KEVIN J. KELLER, AICP EXECUTIVE OFFICER

SHANA M.M. BONSTIN DEPUTY DIRECTOR TRICIA KEANE DEPUTY DIRECTOR ARTHI L. VARMA, AICP DEPUTY DIRECTOR LISA M. WEBBER, AICP DEPUTY DIRECTOR

JUSTIFICATION FOR PROJECT EXEMPTION CASE NO. ENV-2018-3431-CE

On February 27, 2019, the City of Los Angeles determined based on the whole of the administrative record that the project is exempt from California Environmental Quality Act (CEQA) pursuant to CEQA Guidelines, Section 15332, and there is no substantial evidence demonstrating that an exception to a categorical exemption pursuant to CEQA Guidelines, Section 15300.2 applies. The project was found to be exempt based on the following:

Project Description:

The project is located at 11701-11719 West Gateway Boulevard and 2511 South Barrington Avenue in the Palms - Mar Vista - Del Rey Community Plan Area.

The proposed project includes the demolition of a 10,050 square-foot two-story shopping center and a surface parking lot, and the construction, use and maintenance of a five-story (with two (2) subterranean parking levels), 73-unit, mixed-used development with 5,899 square feet of ground floor commercial space. The project has a maximum building height of 56 feet, however is limited to 45 feet within 50 feet the surrounding R1-zoned properties. The project requires approximately 14,311 cubic yards of grading.

The project requires the following:

- Pursuant to Los Angeles Municipal Code (LAMC) Section 12.22-A,25, a 35% Density Bonus for a Housing Development with a total of 73 units [with six (6) units - 11% of the base density set aside for Very Low Income Households] and utilizing Parking Option 1; and pursuant to LAMC Section 12.22-A,25(g)(3), two (2) Off-Menu Incentives:
 - a. Pursuant to LAMC Section 12.22-A,25(g)(3), an Off-Menu Incentive to permit a maximum FAR of 3.25:1 in lieu of 1.5:1 in the C2-1VL Zone; and
 - b. Pursuant to LAMC Section 12.22-A,25(g)(3), an Off-Menu Incentive to permit a height increase to 56 feet in lieu of the otherwise required; and
- 2) Pursuant to LAMC Section 16.05, a Site Plan Review for a development which creates, or results in an increase of 50 or more dwelling units.

Implementation of the California Environmental Quality Act

Pursuant to Section 21084 of the Public Resources Code, the Secretary for the Natural Resources Agency found certain classes of projects not to have a significant effect on the environment and

declared them to be categorically exempt from the requirement for the preparation of environmental documents.

The project meets the conditions for a Class 32 Exemption found in CEQA Guidelines, Section 15332 (In-Fill Development Projects), and none of the exceptions to a categorical exemption pursuant to CEQA Guidelines, Section 15300.2 apply.

Conditions for a Class 32 Exemption

Class 32 consists of projects characterized as in-fill development meeting the conditions described below:

- 1) The project is consistent with the applicable general plan designation and all applicable general plan policies as well as with the applicable zoning designation and regulations;
- 2) The proposed developed occurs within city limits on a project site of no more than five acres substantially surrounded by urban uses;
- 3) The project site has no value as habitat for endangered, rare or threatened species;
- 4) Approval of the project would not result in any significant effects relating to traffic, noise, air quality, or water quality; and
- 5) The site can be adequately served by all required utilities and public services.

The project is the demolition of a 10,050 square-foot two-story shopping center and a surface parking lot, and the construction, use and maintenance of a five-story (with two (2) subterranean parking levels), 73-unit, mixed-used development with 5,899 square feet of ground floor commercial space. The project has a maximum building height of 56 feet, however is limited to 45 feet within 50 feet the surrounding R1-zoned properties. The project requires approximately 14,311 cubic yards of grading. The proposed project is characterized as in-fill development, and therefore qualifies for the Class 32 Categorical Exemption.

The project is located within the Palms - Mar Vista - Del Rey Community Plan which designates the subject property for Neighborhood Commercial land uses with a corresponding zones of C1, C1(PV), C1.5, C2, C4, RAS3, and RAS4. The subject property is zoned C2-1VL. The proposed mixed-use development with 11% of the base density set aside for Very Low Income Households is consistent with the applicable general plan land use designation and all applicable general plan policies as well as with the applicable zoning designation and regulations.

The subject site is wholly within the City of Los Angeles and approximately 0.44 acres total in size. Lots adjacent to the subject property are developed with single- and multi-family dwellings and commercial uses. The site is currently developed and surrounded by development and therefore has no value as a habitat for endangered, rare or threatened species. There are no protected trees on-site as determined by McKinley & Associates in a letter dated May 12, 2018.

The project would not result in any significant effects related to traffic, noise, air quality, or water quality.

- A Traffic Study, prepared by Gibson Transportation Consulting, Inc. and dated April 2019, indicated that the traffic from the proposed project would not result in any significant impacts to the surrounding traffic and circulation. This conclusion was affirmed by the Department of Transportation in a letter dated April 30, 2019.
- An Air Quality Technical Report, prepared by DKA Planning and dated April 2019, indicated that the project would not result in any significant air quality impacts.

- A Noise Technical Report, prepared by DKA Planning and dated April 2019, indicated that the project would not result in any significant noise impacts.
- The project will be subject to Regulatory Compliance Measures, which require compliance with the City of Los Angeles Noise Ordinance, pollutant discharge, dewatering, stormwater conditions; and Best Management Practices for stormwater runoff.

The project site is currently and will continue to be adequately served by all public utilities and services. The proposed project is required to adhere to all applicable regulatory compliance measures during construction, operation and maintenance of the proposed buildings.

Exceptions to Categorical Exemptions

There are six (6) exceptions to categorical exemptions must be considered in order to find a project exempt from CEQA: (a) Location; (b) Cumulative Impacts; (c) Significant Effect; (d) Scenic Highways; (e) Hazardous Waste Sites; and (f) Historical Resources.

The project is not located on or near any environmental resource of hazardous or critical concern where designated, precisely mapped, and officially adopted pursuant to law by federal, state, or local agencies. There is not a succession of known projects of the same type and in same place as the subject project. The project would not reasonably result in a significant effect on the environment due to unusual circumstances. The project is not located near a State Scenic Highway, Furthermore, according to Envirostor, the State of California's database of Hazardous Waste Sites, neither the subject site, nor any site in the vicinity is identified as an active hazardous waste site. Nevertheless, as the site recently contained a dry cleaner, Alpha Environmental conducted a Phase I Environmental Site Assessment dated September 1, 2016 and subsequently conducted an Environmental Site Assessment for Soil/Soil Vapor operations documented on a Phase II ESA Report dated November 16, 2016 to evaluate any potential environmental contamination. In addition, ambient air sampling of the dry cleaner was conducted at the time the dry cleaner was in operation. Environmental Solutions, in a letter dated May 9, 2017, indicated that volatile organic compounds (VOC) and other searched constituents were detected at either below the analytical sensitivity, non-detected or below the regional screening levels or at very low concentration levels (see attached report) that do not pose a significant human health risk to the occupants. Lastly, the project site has not been identified as a historic resource by local or state agencies, and the project site has not been determined to be eligible for listing in the National Register or Historic Places, California Register of Historical Resources, the Los Angles Historic-Cultural Monuments Register, and/or any local register, and was not found to be a potential historic resource based on the City's HistoricPlacesLA website or SurveyLA, the citywide survey of Los Angeles.

11701 GATEWAY BOULEVARD

Air Quality and Noise Technical Report

Prepared by DKA Planning April 2019

1.0 INTRODUCTION

1.1 PURPOSE

This report evaluates the potential for air quality, noise, and health risk impacts from the construction and operation phases of the Proposed Project.

1.2 PROJECT DESCRIPTION

The Proposed Project is a mixed-use residential and retail development in the Palms-Mar Vista-Del Rey Community Plan Area of the City of Los Angeles. The 19,336 square-foot site (0.44 acres) is bounded by Gateway Boulevard to the south, Barrington Avenue to the east, an alley to the north, and a commercial retail and office building to the west. Existing development includes a 10,052 square-foot shopping center with 23 surface parking spaces. All existing development would be demolished.

The Proposed Project would include 73 multi-family residential units, 5,899 square feet of retail space, with 90 parking spaces in two levels of subterranean parking and ground level, for a total of 59,607 square feet of development. Construction would take approximately 24 months.

2.0 AIR QUALITY -- Where available, the significance criteria established by the applicable air quality management or air pollution control district may be relied upon to make the following determinations. Would the Project:

a) Conflict with or obstruct implementation of the applicable air quality plan? *Less Than Significant Impact.*

Pollutants and Effects

Criteria air pollutants are defined as pollutants for which the federal and State governments have established ambient air quality standards for outdoor concentrations. The federal and State standards have been set at levels above which concentrations could be harmful to human health and welfare. These standards are designed to protect the most sensitive persons from illness or discomfort. Pollutants of concern include carbon monoxide (CO), ozone (O₃), nitrogen dioxide (NO₂), sulfur dioxide (SO₂), particulate matter 2.5 microns or less in diameter ($PM_{2.5}$), particulate matter ten microns or less in diameter (PM_{10}), and lead (Pb). These pollutants are discussed below.

- Carbon Monoxide (CO) is a colorless and odorless gas formed by the incomplete • combustion of fossil fuels. It is emitted almost exclusively from motor vehicles, power plants, refineries, industrial boilers, ships, aircraft, and trains. In urban areas, automobile exhaust accounts for the majority of emissions. CO is a non-reactive air pollutant that dissipates relatively quickly, so ambient concentrations generally follow the spatial and temporal distributions of vehicular traffic. Concentrations are influenced by local meteorological conditions, primarily wind speed, topography, and atmospheric stability. CO from motor vehicle exhaust can become locally concentrated when surface-based temperature inversions are combined with calm atmospheric conditions, a typical situation at dusk in urban areas between November and February. Inversions are an atmospheric condition in which a layer of warm air traps cooler air near the surface of the earth, preventing the normal rising of surface air. The highest concentrations occur during the colder months of the year when inversion conditions are more frequent. CO is a health concern because it competes with oxygen, often replacing it in the blood and reducing the blood's ability to transport oxygen to vital organs. Excess CO exposure can lead to dizziness, fatigue, and impair central nervous system functions.
- Ozone (O₃) is a colorless gas that is formed in the atmosphere when volatile organic compounds (VOC) and nitrogen oxides (NO_x) react in the presence of ultraviolet sunlight. O₃ is not a primary pollutant; rather, it is a secondary pollutant formed by complex interactions of these two pollutants directly emitted into the atmosphere. The primary sources of VOC and NO_x, the components of O₃, are automobile exhaust and industrial sources. Meteorology and terrain play major roles in O₃ formation. Ideal conditions occur during summer and early autumn, on days with low wind speeds or stagnant air, warm temperatures, and cloudless skies. The greatest source of smog-producing gases is the automobile. Short-term exposure (lasting for a few hours) to O₃ at levels typically observed in Southern California can result in breathing pattern changes, reduction of breathing capacity, increased susceptibility to infections, inflammation of the lung tissue, and some immunological changes.

11701 Gateway Boulevard Project Air Quality and Noise Technical Reports

- Nitrogen Dioxide (NO₂) like O₃, is not directly emitted into the atmosphere but is formed by an atmospheric chemical reaction between nitric oxide (NO) and atmospheric oxygen. NO and NO₂ are collectively referred to as NO_x and are major contributors to O₃ formation. NO₂ also contributes to the formation of PM₁₀. High concentrations of NO₂ can cause breathing difficulties and result in a brownish-red cast to the atmosphere with reduced visibility. There is some indication of a relationship between NO₂ and chronic pulmonary fibrosis. Some increase of bronchitis in children (2-3 years old) has been observed at concentrations below 0.3 parts per million (ppm).
- Sulfur Dioxide (SO₂) is a colorless, pungent gas formed primarily by the combustion of sulfur-containing fossil fuels. Main sources of SO₂ are coal and oil used in power plants and industries. Generally, the highest levels of SO₂ are found near large industrial complexes. In recent years, SO₂ concentrations have been reduced by the increasingly stringent controls placed on stationary source emissions of SO₂ and limits on the sulfur content of fuels. SO₂ is an irritant gas that attacks the throat and lungs. It can cause acute respiratory symptoms and diminished ventilator function in children. SO₂ can also yellow plant leaves and erode iron and steel.
- Particulate Matter (PM) consists of small liquid and solid particles floating in the air, including smoke, soot, dust, salts, acids, and metals and can form when gases emitted from industries and motor vehicles undergo chemical reactions in the atmosphere. Fine particulate matter, or PM_{2.5}, is roughly 1/28 the diameter of a human hair and results from fuel combustion (e.g. motor vehicles, power generation, industrial facilities), residential fireplaces, and wood stoves. In addition, PM_{2.5} can be formed in the atmosphere from gases such as SO₂, NO_x, and VOC. Inhalable particulate matter, or PM₁₀, is about 1/7 the thickness of a human hair. Major sources of PM₁₀ include crushing or grinding operations; dust stirred up by vehicles traveling on roads; wood burning stoves and fireplaces; dust from construction, landfills, and agriculture; wildfires and brush/waste burning; industrial sources; windblown dust from open lands; and atmospheric chemical and photochemical reactions.

PM_{2.5} and PM₁₀ pose a greater health risk than larger-size particles. When inhaled, they can penetrate the human respiratory system's natural defenses and damage the respiratory tract. PM_{2.5} and PM₁₀ can increase the number and severity of asthma attacks, cause or aggravate bronchitis and other lung diseases, and reduce the body's ability to fight infections. Very small particles of substances, such as lead, sulfates, and nitrates can cause lung damage directly. These substances can be absorbed into the blood stream and cause damage elsewhere in the body. These substances can transport absorbed gases, such as chlorides or ammonium, into the lungs and cause injury. Whereas inhalable PM₁₀ tends to collect in the upper portion of the respiratory system, fine particulates, or PM_{2.5}, are so tiny that they can penetrate deeper into the lungs and damage lung tissues. Suspended particulates also damage and discolor surfaces on which they settle, as well as produce haze and reduce regional visibility.

 Lead (Pb) in the atmosphere occurs as particulate matter. Sources of lead include leaded gasoline; the manufacturers of batteries, paint, ink, ceramics, and ammunition; and secondary lead smelters. Prior to 1978, mobile emissions were the primary source of atmospheric lead. Between 1978 and 1987, the phase-out of leaded gasoline reduced the inventory of airborne lead by nearly 95 percent. With the phase-out of leaded gasoline, secondary lead smelters, battery recycling, and manufacturing facilities have become emission sources of greater concern.

Prolonged exposure to atmospheric lead poses a serious threat to human health. Health effects associated with exposure to lead include gastrointestinal disturbances, anemia, kidney disease, and in severe cases, neuromuscular and neurological dysfunction. Of particular concern are low-level lead exposures during infancy and childhood. Such exposures are associated with decrements in neurobehavioral performance, including intelligence quotient performance, psychomotor performance, reaction time, and growth.

In addition, there are other pollutants for which there are no health-based air quality standards. These include Toxic Air Contaminants (TAC), airborne pollutants that may increase a person's risk of developing cancer or other serious health effects. TACs include over 700 chemical compounds that are identified by State and federal agencies based on a review of available scientific evidence. In California, TACs are identified through a two-step process established in 1983 that includes risk identification and risk management. In 1998, CARB identified diesel particulate matter (diesel PM) as a toxic air contaminant. Diesel PM refers to a complex mixture of particles and gases produced when an engine burns diesel fuel. This is a concern because it increases risk of lung cancer, as many compounds found in diesel exhaust are carcinogenic. Some short-term (acute) effects of diesel exhaust include eye, nose, throat, and lung irritation, and diesel exhaust can cause coughs, headaches, light-headedness, and nausea. Diesel PM poses the greatest health risk among the TACs to sensitive receptors near freeways or other locations where diesel-fueled equipment or vehicles operate.

Regulatory Setting

Federal

United States Environmental Protection Agency (USEPA). The USEPA is responsible for enforcing the Federal Clean Air Act (CAA), the legislation that governs air quality in the United States. USEPA is also responsible for establishing the National Ambient Air Quality Standards (NAAQS). NAAQS are required under the 1977 CAA and subsequent amendments. USEPA regulates emission sources that are under the exclusive authority of the federal government, such as aircraft, ships, and certain types of locomotives. It has jurisdiction over emission sources outside State waters (e.g., beyond the outer continental shelf) and establishes emission standards, including those for vehicles sold in States other than California, where automobiles must meet stricter emission standards set by the State.

As required by the CAA, NAAQS have been established for seven major air pollutants: CO, NO₂, O₃, PM_{2.5}, PM₁₀, SO₂, and Pb. The CAA requires USEPA to designate areas as attainment, nonattainment, or maintenance for each criteria pollutant based on whether the NAAQS have been achieved. The federal standards are summarized in Table 1. The USEPA has classified the Los Angeles County portion of the South Coast Air Basin as nonattainment for O₃, lead, and PM_{2.5} and maintenance for CO. PM₁₀, and NO₂.

State

California Air Resources Board (CARB). In addition to being subject to the requirements of the CAA, air quality in California is also governed by more stringent regulations under the California Clean Air Act (CCAA). CARB, which became part of the California Environmental Protection Agency in 1991, is responsible for administering the CCAA and establishing the California Ambient Air Quality Standards (CAAQS). The CCAA, as amended in 1992, requires all air districts in the State to achieve and maintain the CAAQS, which are generally more stringent than the federal standards and incorporate additional standards for sulfates, hydrogen sulfide, vinyl chloride, and visibility-reducing particles.

CARB has broad authority to regulate mobile air pollution sources, such as motor vehicles. It is responsible for setting emission standards for vehicles sold in California and for other emission sources, such as consumer products and certain off-road equipment. CARB established passenger vehicle fuel specifications, which became effective in March 1996. CARB oversees the functions of local air pollution control districts and air quality management districts, which, in turn, administer air quality activities at the regional and county levels. The State standards are summarized in Table 1.

The CCAA requires CARB to designate areas within California as either attainment or nonattainment for each criteria pollutant based on whether the CAAQS have been achieved. Under the CCAA, areas are designated as nonattainment for a pollutant if air quality data shows that a State standard for the pollutant was violated at least once during the previous three calendar years. Exceedances that are affected by highly irregular or infrequent events are not considered violations of a State standard and are not used as a basis for designating areas as nonattainment.

11701 Gateway Boulevard Project Air Quality and Noise Technical Reports

Dellutent	Averaging	Calif	ornia	Federal		
Pollutant	Period	Standards	Attainment Status	Standards	Attainment Status	
	1-hour	0.09 ppm (180 μg/m³)	Nonattainment			
Ozone (O ₃)	8-hour	0.070 ppm (137 μg/m³)	/a/	0.070 ppm (137 μg/m³)	Nonattainment (Extreme)	
Respirable	24-hour	50 μg/m³	Nonattainment	150 μg/m³	Maintenance (Serious)	
Particulate Matter (PM ₁₀)	Annual Arithmetic Mean	20 μg/m³	Nonattainment			
Fine Deutierdate	24-hour			35 μg/m³	Nonattainment (Moderate)	
Fine Particulate Matter (PM _{2.5})	Annual Arithmetic Mean	12 μg/m³	Nonattainment	12 μg/m³	Nonattainment (Moderate)	
Carbon	8-hour	9.0 ppm (10 mg/m ³)	Attainment	9 ppm (10 mg/m ³)	Maintenance (Serious)	
Monoxide (CO)	1-hour	20 ppm (23 mg/m ³)	Attainment	35 ppm (40 mg/m ³)	Maintenance (Serious)	
Nitrogen	Annual Arithmetic Mean	0.030 ppm (57 μg/m³)	Attainment	53 ppb (100 μg/m³)	Maintenance	
Dioxide (NO ₂)	1-hour	0.18 ppm (338 μg/m³)	Attainment	100 ppb (188 µg/m³)	Maintenance	
Sulfur Dioxide	24-hour	0.04 ppm (105 μg/m³)	Attainment		Attainment	
(SO ₂)	1-hour	0.25 ppm (655 μg/m³)	Attainment	75 ppb (196 μg/m³)	Attainment	
Lood (Db)	30-day average	1.5 μg/m³	Attainment			
Lead (Pb)	Calendar Quarter			0.15 μg/m³	Nonattainment	

/a/ CARB has not determined 8-hour O_3 attainment status.

Maintenance areas are geographic areas with a history of non-attainment that have been redesignated by USEPA to "attainment with a maintenance plan" that will protect the area from slipping back into nonattainment

Source: California Air Resources Board, Ambient Air Quality Standards, and attainment status, accessed December 16, 2016 (www.arb.ca.gov/desig/adm/adm.htm)

Regional and Local

South Coast Air Quality Management District (SCAQMD). The 1977 Lewis Air Quality Management Act merged four air pollution control districts to create the SCAQMD to coordinate air quality planning efforts throughout Southern California. It is responsible for monitoring air quality, as well as planning, implementing, and enforcing programs designed to attain and maintain State and federal ambient air quality standards. Programs include air quality rules and regulations that regulate stationary sources, area sources, point sources, and certain mobile source emissions.

The SCAQMD is also responsible for establishing stationary source permitting requirements and for ensuring that new, modified, or relocated stationary sources do not create net emission increases.

The SCAQMD monitors air quality over its jurisdiction of 10,743 square miles, including the South Coast Air Basin, which covers 6,745 square miles and is bounded by the Pacific Ocean to the west, the San Gabriel, San Bernardino and San Jacinto mountains to the north and east, and San Diego County to the south. The Basin includes all of Orange County and the non-desert portions of Los Angeles, Riverside, and San Bernardino counties. The SCAQMD also regulates the Riverside County portion of the Salton Sea Air Basin and Mojave Desert Air Basin.

All areas designated as nonattainment under the CCAA are required to prepare plans showing how they will meet the air quality standards. The SCAQMD regularly prepares an AQMP to address CAA and CCAA requirements by identifying policies and control measures. On March 3, 2017, the SCAQMD adopted the 2016 AQMP, which includes strategies to meet the NAAQS for the 8-hour ozone standard by 2032, the annual PM_{2.5} standard by 2021-2025, the 1-hour ozone standard by 2023, and the 24-hour PM_{2.5} standard by 2019. In its role as the local air quality regulatory agency, the SCAQMD also provides guidance on how environmental analyses should be prepared. This includes recommended thresholds of significance for evaluating air quality impacts.

The Southern California Association of Governments (SCAG) assists in air quality planning efforts by preparing the transportation portion of the AQMP through the adoption of its Regional Transportation Plan (RTP). This includes the preparation of a Sustainable Communities Strategy (SCS) that responds to planning requirements of SB 375 and demonstrates the region's ability to attain greenhouse gas reduction targets set forth in State law. In April 2016, SCAG adopted its 2016-2040 RTP, a plan to invest \$556.5 billion in transportation systems over a six-county region.

City of Los Angeles. The City's General Plan includes an Air Quality Element that provides a policy framework governing air quality planning within the City of Los Angeles. Adopted on November 24, 1992, the Plan includes six goals:

- Good air quality in an environment of continued population growth and healthy economic structure;
- Less reliance on single-occupant vehicles with fewer commute and non-work trips.
- Efficient management of transportation facilities and system infrastructure using costeffective system management and innovative demand-management techniques;
- Minimal impacts of existing land use patterns and future land use development on air quality by addressing the relationship between land use, transportation and air quality;
- Energy efficiency through land use and transportation planning, the use of renewable resources and less-polluting fuels and the implementation of conservation measures including passive measures such as site orientation and tree planting; and

11701 Gateway Boulevard Project

Air Quality and Noise Technical Reports

• Citizen awareness of the linkages between personal behavior and air pollution and participation in efforts to reduce air pollution.

The Element also includes 15 objectives and 30 policies that help define how the City will achieve its clean air vision.

In 2006, the City released its L.A. CEQA Thresholds Guide that provides guidance in the preparation of environmental documents. This included a chapter focusing on air quality. While it didn't set new thresholds of significance for air quality, it did suggest a process for evaluating projects and attempted to standardize analyses through prescribed protocols.

Because of concerns about the compatibility of land uses near freeway, the City issued advisory guidance under Los Angeles Zoning Information File No. 2427 on November 8, 2012. This called for discretionary projects within 1,000 feet of a freeway to consider installing air filters meeting of exceeding a Minimum Efficiency Reporting Value (MERV) of 11 or higher and possibly consider other design features that reduce exposure to freeway-related air pollution.¹ It also recommends consideration of site-specific Health Risk Assessments (HRA).

Subsequently on April 12, 2018, the City updated its guidance on siting land uses near freeways, resulting in an updated Advisory Notice effective September 17, 2018 requiring all proposed projects within 1,000 feet of a freeway adhere to the Citywide Design Guidelines, including those that address freeway proximity.² It also recommended that projects consider avoiding location of sensitive uses like schools, day care facilities, and senior care centers in such projects, locate open space areas as far from the freeway, locate non-habitable uses (e.g., parking structures) nearest the freeway, and screen project sites with substantial vegetation and/or a wall barrier. Requirements for preparing HRAs were removed.

Air Pollution Climatology

The Project Site is located within the Los Angeles County non-desert portion of the South Coast Air Basin. The Basin is in an area of high air pollution potential due to its climate and topography. The region lies in the semi-permanent high pressure zone of the eastern Pacific, resulting in a mild climate tempered by cool sea breezes with light average wind speeds. The Basin experiences warm summers, mild winters, infrequent rainfalls, light winds, and moderate humidity. This usually mild climatological pattern is interrupted infrequently by periods of extremely hot weather, winter storms, or Santa Ana winds. The Basin is a coastal plain with connecting broad valleys and low hills, bounded by the Pacific Ocean to the west and high mountains around the rest of its perimeter. The mountains and hills within the area contribute to the variation of rainfall, temperature, and winds throughout the region.

¹ As part of the Clean Up Green Up initiative, on April 26, 2016, City Council amended Articles 5 and 9 of Chapter IX of the Los Angeles Municipal Code (LAMC) addressing sources of outside air in buildings and requiring all new mechanically ventilated buildings located within 1,000 feet of the freeway to install air filtration media that provides a Minimum Efficiency Reporting Value (MERV) of 13 (Ordinance 184245).

² Pursuant to the City's Class 32 exemption findings, the Proposed Project complies with Citywide Design Guidelines.

The Basin experiences frequent temperature inversions that help to form smog. While temperature typically decreases with height, it actually increases under inversion conditions as altitude increases, thereby preventing air close to the ground from mixing with the air above. As a result, air pollutants are trapped near the ground. During the summer, air quality problems are created due to the interaction between the ocean surface and the lower layer of the atmosphere. This interaction creates a moist marine layer. An upper layer of warm air mass forms over the cool marine layer, preventing air pollutants from dispersing upward. Additionally, hydrocarbons and NO₂ react under strong sunlight, creating smog. Light daytime winds, predominantly from the west, further aggravate the condition by driving air pollutants inland toward the mountains.

Air quality problems also occur during the fall and winter, when CO and NO₂ emissions tend to be higher. CO concentrations are generally worse in the morning and late evening (around 10:00 p.m.) when temperatures are cooler. High CO levels during the late evenings result from stagnant atmospheric conditions trapping CO. Since CO emissions are produced almost entirely from automobiles; the highest CO concentrations in the Basin are associated with heavy traffic. NO₂ concentrations are also generally higher during fall and winter days.

Air Monitoring Data

The SCAQMD monitors air quality conditions at 38 locations throughout the Basin. The Project Site is located in SCAQMD's Northwest Coastal LA County receptor area. Historical data from the area was used to characterize existing conditions in the vicinity of the Project area. Table 2 shows pollutant levels, State and federal standards, and the number of exceedances recorded in the area from 2014 through 2016. The one-hour State standard for O_3 was exceeded three times during this three-year period while the daily federal standard was exceeded four. CO and NO_2 levels did not exceed the CAAQS from 2014 to 2016.

TABLE 2: 2014-2016 AMBIENT AIR QUALITY DATA IN PROJECT VICINITY								
		Northwest Coastal LA County						
Pollutant	Pollutant Concentration & Standards	2014	2015	2016				
	Maximum 1-hour Concentration (ppm)	0.116	0.102	0.085				
Ozone	Days > 0.09 ppm (State 1-hour standard)	1	2	0				
	Days > 0.075 ppm (Federal 8-hour standard)	4	0	0				
	Maximum 1-hour Concentration (ppm)	2.0	1.6	2.2				
Carbon	Days > 20 ppm (State 1-hour standard)	0	0	0				
Monoxide	Maximum 8-hour Concentration (ppm)	1.3	1.4	1.1				
	Days > 9.0 ppm (State 8-hour standard)	0	0	0				
Nitrogen	Maximum 1-hour Concentration (ppm)	0.0639	0.0676	0.0545				
Dioxide	Days > 0.18 ppm (State 1-hour standard)	0	0	0				
DN 4	Maximum 24-hour Concentration (µg/m ³)	N/A	N/A	N/A				
PM ₁₀	Days > 50 μg/m ³ (State 24-hour standard)	N/A	N/A	N/A				
DN4	Maximum 24-hour Concentration (µg/m ³)	N/A	N/A	N/A				
PM _{2.5}	Days > 35 μg/m ³ (Federal 24-hour standard)	N/A	N/A	N/A				
Cultur Diovida	Maximum 24-hour Concentration (ppm)	N/A	N/A	N/A				
Sulfur Dioxide	Days > 0.04 ppm (State 24-hour standard)	N/A	N/A	N/A				
accessed August 21, 2	Source: SCAQMD annual monitoring data (<u>www.aqmd.gov/home/library/air-quality-data-studies/historical-data-by-year</u>) accessed August 21, 2018. N/A: Not available at this monitoring station.							

Toxic Air Pollution

According to the SCAQMD's Multiple Air Toxics Exposure Study IV (MATES IV), the incidence of cancer over a lifetime in the US population is about 1 in 3, which translates into a risk of about 300,000 in 1 million. One study, the *Harvard Report on Cancer Prevention*, estimated that, of cancers associated with known risk factors, about 30 percent were related to tobacco, 30 percent were related to diet and obesity, and about two percent were associated with environmental pollution related exposures. The potential cancer risk for a given substance is expressed as the incremental number of potential excess cancer cases per million people over a 30-year lifetime exposure at a constant annual average pollutant concentration. The risks are usually presented in chances per million. For example, if the cancer risks were estimated to be 100 per million, this would predict an additional 100 excess cases of cancer in a population of 1 million people over a 30-year lifetime.

As part of the SCAQMD's environmental justice initiatives adopted in late 1997, the SCAQMD adopted the MATES IV study in May 2015, which was a follow-up to the previous MATES I, II, and III air toxics studies conducted in the Basin. The MATES IV study was based on monitored data throughout the Basin and included a monitoring program, an updated emissions inventory of TACs, and a modeling effort to characterize carcinogenic risk across the Basin from exposure to TACs. The study concluded that the average of the modeled air toxics concentrations measured at monitoring stations in the Basin equates to a background cancer risk of approximately 897 in one million primarily due to diesel exhaust particulate matter (DPM). The Project Site itself has an estimated ambient background risk of 1,086 in one million.³

Using the MATES IV methodology, about 94 percent of cancer risk is attributed to emissions associated with mobile sources, about six percent of risk is attributed to toxics emitted from stationary sources, (e.g., industries, dry cleaners and chrome plating operations). The MATES IV study found lower ambient concentrations of most of the measured air toxics, as compared to the levels measured in the previous MATES III study finalized in September 2008.

Thresholds of Significance

For the purposes of this analysis, air quality impacts of the Proposed Project would be considered significant if they would exceed the following standards of significance, which are based on Appendix G of the 2016 State CEQA Guidelines. According to these guidelines, a project would normally have a significant impact on air quality if it would:

- Conflict with or obstruct implementation of the applicable air quality plan.
- Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is nonattainment under an applicable federal or state ambient air quality

³ South Coast Air Quality Management District, MATES IV Carcinogenic Risk Interactive Map, <u>http://www3.aqmd.gov/webappl/OI.Web/OI.aspx?jurisdictionID=AQMD.gov&shareID=73f55d6b-82cc-4c41-b779-</u> <u>4c48c9a8b15b</u> accessed August 22, 2018.

standard (including releasing emissions which exceed quantitative thresholds for ozone precursors);

- Violate any air quality standard or contribute substantially to an existing or projected air quality violation;
- Expose sensitive receptors to substantial pollution concentrations; or
- Create objectionable odors affecting a substantial number of people

The *State CEQA Guidelines* Section 15064.7 provides the significance criteria established by the applicable air quality management district or air pollution control district, when available, may be relied upon to make determinations of significance. The potential air quality impacts of the Proposed Project are, therefore, evaluated according to thresholds developed by the SCAQMD in their *CEQA Air Quality Handbook, Air Quality Analysis Guidance Handbook,* and subsequent guidance.

Pursuant to this guidance, the SCAQMD recommends that a Project may have a significant impact on air quality if:

- Daily regional construction emissions exceed SCAQMD construction emissions thresholds for VOC, NO_x, CO, SO_x, PM_{2.5}, or PM₁₀;
- Daily localized construction emissions exceed SCAQMD construction Localized Significance Thresholds (LSTs) for NO₂, CO, PM₁₀ or PM_{2.5} and result in an exceedance of ambient air quality standards for those polluants;
- Daily regional operations emissions exceed SCAQMD operations emissions thresholds for VOC, NO_x, CO, SO_x, PM_{2.5}, or PM₁₀;
- Daily localized operations emissions exceed SCAQMD operations LSTs for NO₂, CO, PM₁₀ or PM_{2.5};
- The Project is projected to create an odor nuisance pursuant to SCAQMD Rule 402 (Nuisance);
- Project emissions of Toxic Air Contaminants increases maximum incremental cancer risk by 10 or more in a million, results in an 0.5 excess cancer cases in areas with background risk of 1 or more in a million, or increases the chronic and acute hazard index by 1.0 or more.

Existing Emissions

The Project Site includes a 10,052 square-foot retail building with surface parking. As shown in Table 3, the majority of emissions are generated from the 379 daily vehicle trips that access the Project Site.⁴

⁴ City of Los Angeles Department of Transportation Referral Form: Traffic Study Assessment (CPC-2018-3430-DB-SPR), July 2018.

11701 Gateway Boulevard Project Air Quality and Noise Technical Reports

TABLE 3: EXISTING DAILY OPERATIONS EMISSIONS						
Emission Source	Pounds per Day					
	VOC	NO _x	СО	SOx	PM ₁₀	PM _{2.5}
Area Sources	<1	<1	<1	<1	<1	<1
Energy Sources	<1	<1	<1	<1	<1	<1
Mobile Sources	1	3	8	<1	2	<1
Total Operations	1	3	8	<1	2	<1
Source: DKA Planning, 2018 based on Cale	EMod 2016.3.2 model ru	ns for Summer seaso	on. Documentation	in Technical Appen	dix includes unmitig	ated and

mitigated scenario analyses of emissions for the Annual, Summer, and Winter seasons.

Sensitive Receptors

Some land uses are considered more sensitive to changes in air quality than others, depending on the population groups and the activities involved. CARB has identified the following typical groups who are most likely to be affected by air pollution: children under 14; the elderly over 65 years of age; athletes; and people with cardiovascular and chronic respiratory diseases. According to the SCAQMD, sensitive receptors include residences, schools, playgrounds, childcare centers, athletic facilities, long-term health care facilities, rehabilitation centers, convalescent centers, and retirement homes.

There are several existing or reasonably foreseeable sensitive receptors near the Project Site, including but not limited to:

- Single-family residence, 2526 Stoner Avenue; 30 feet west of the Project site.
- Multi-family residences, northwest corner of Stoner Avenue and Gateway Boulevard; 70 feet south of the Project site.
- Multi-family residences, 2499 Barrington Avenue; 90 feet north of the Project site.
- Villa Mirage Senior Care Facility, 2655 Barry Avenue; 870 feet southeast of the Project Site.

Project Consistency with Air Quality Plans

SCAQMD Air Quality Management Plan. The proposed residential and restaurant land uses will neither conflict with the SCAQMD's 2016 Air Quality Management Plan (AQMP) nor jeopardize the region's attainment of air quality standards. The AQMP focuses on achieving clean air standards while accommodating population growth forecasts by the Southern California Association of Governments (SCAG). Specifically, SCAG's growth forecasts from the 2016 Regional Transportation Plan (RTP)/Sustainable Communities Strategy (SCS) are largely built off local growth forecasts from local governments like the City of Los Angeles. The 2016 RTP/SCS accommodates 4,609,400 persons; 1,690,300 households; and 2,169,100 jobs in the City of Los Angeles by 2040.

The Project would demolish a 10,052 square-foot retail building and develop 73 residential units and 5,343 square feet of retail in the City of Los Angeles. The Proposed Project could add 160 residents to the Plan area, based on the City's projected household density in the Community Plan area. This would marginally increase population in the South Coast Air Basin and represent 0.01 percent of the population growth forecast by SCAG in the City between 2017 and 2040. The

Proposed Project would also reduce retail floor area in the area by 4,709 square feet, resulting in a net loss in jobs. The Project Site is classified as "Neighborhood Commercial" in the Community Plan, a classification that allows residential uses and retail uses by right.

As such, the RTP/SCS' assumptions about growth in the City accommodate housing and population growth on this site. As such, the project would not obstruct implementation of the AQMP and its cumulative impacts on regional air quality would be less than significant. As such, the Project does not conflict with the growth assumptions in the regional air plan and this impact is considered **less than significant**.

TABLE 4:	PROJECT CON	ISISTENCY WITH	AIR QUALITY MA	NAGEMENT PLA	N'S GROWTH FOR	RECAST
Forecast Year	Population in City of Los Angeles	Proposed Project	Households in City of Los Angeles	Proposed Project	Employment in City of Los Angeles	Proposed Project
2012	3,845,500		1,325,500		1,696,400	
2020	4,017,000	160	1,441,400	73	1,899,500	0*
2040	4,609,400		1,690,300		2,169,100	
Source: DKA Pla	nning 2017 based on SCA	G 2016 Regional Trans	portation Plan Growth F	orecast. Assumes 2.19	persons per household p	er Community Plan.

Source: DKA Planning 2017 based on SCAG 2016 Regional Transportation Plan Growth Forecast. Assumes 2.19 persons per household per Community Plan. * Project would reduce retail floor area by 4,709 square feet.

City of Los Angeles General Plan Air Quality Element. The City's General Plan Air Quality Element identifies 30 policies with specific strategies for advancing the City's clean air goals. As illustrated in Table 5, the Proposed Project is consistent with the applicable policies in the General Plan. As such, the proposed Project's impact on the City's General Plan would be considered **less than significant**.

Air Quality Plan Mitigation Measure

None required.

Air Quality Plan Impacts After Mitigation

The air quality impacts of residential and retail development on the Project Site are accommodated in the region's emissions inventory for the 2016 RTP/SCS and 2016 AQMP. The project is therefore not expected to conflict with or obstruct implementation of the AQMP, and any impact on the Plan would be considered less than significant. Similarly, the Proposed Project is consistent with the City's General Plan Air Quality Element's policies and would not conflict with its six goals and 15 objectives.

TABLE 5: PROJECT CONSISTENCY WITH CITY OF LOS ANGELES GEN	ERAL PLAN AIR QUALITY ELEMENT
Strategy	Project Consistency
Policy 1.3.1. Minimize particulate emissions from construction sites.	Consistent. The Proposed Project would minimize particulate emissions during construction through best practices required by SCAQMD Rule 403 (Fugitive Dust) and/or mitigation measures.
Policy 1.3.2. Minimize particulate emissions from unpaved roads and parking lots associated with vehicular traffic.	Consistent. The Proposed Project would minimize particulate emissions from unpaved facilities through best practices required by SCAQMD Rule 403 (Fugitive Dust) and/or mitigation measures.
Policy 2.1.1. Utilize compressed work weeks and flextime, telecommuting, carpooling, vanpooling, public transit, and improve walking/bicycling related facilities in order to reduce vehicle trips and/or VMT as an employer and encourage the private sector to do the same to reduce work trips and traffic congestion.	Consistent. The Proposed Project would be located in an urban area with proximity to bus routes operating by the Santa Monica Big Blue Bus Route 8 on Gateway Boulevard and Barrington Avenue.
Policy 2.2.3. Minimize the use of single-occupant vehicles associated with special events or in areas and times of high levels of pedestrian activities.	Not Applicable. The Proposed Project does not include special events that would require traffic management.
Policy 4.1.1. Coordinate with all appropriate regional agencies on the implementation of strategies for the integration of land use, transportation, and air quality policies.	Consistent. The Proposed Project is being entitled through the City of Los Angeles, which coordinates with SCAG, Los Angeles County Metropolitan Transportation Authority, and other regional agencies on the coordination of land use, air quality, and transportation policies.
Policy 4.1.2. Ensure that project level review and approval of land use development remains at the local level.	Consistent. The Proposed Project would be entitled and environmentally cleared at the local level.
Policy 4.2.1. Revise the City's General Plan/Community Plans to achieve a more compact, efficient urban form and to promote more transit- oriented development and mixed-use development.	Not Applicable. This policy calls for City updates to its General Plan.
Policy 4.2.2. Improve accessibility for the City's residents to places of employment, shopping centers and other establishments.	Consistent. The Proposed Project would be infill development that would provide residents with proximate access to jobs, shopping, and other uses.
Policy 4.2.3. Ensure that new development is compatible with pedestrians, bicycles, transit, and alternative fuel vehicles.	Consistent. The Proposed Project would be located in an urban area with proximity to bus routes operating by the Santa Monica Big Blue Bus Route 8 on Gateway Boulevard and Barrington Avenue.
Policy 4.2.4. Require that air quality impacts be a consideration in the review and approval of all discretionary projects.	Consistent. The proposed Project's air quality impacts are being analyzed through the environmental review process.
Policy 4.2.5. Emphasize trip reduction, alternative transit and congestion management measures for discretionary projects.	Consistent. The Proposed Project would be located in an urban area with proximity to bus routes operating by the Santa Monica Big Blue Bus Route 8 on Gateway Boulevard and Barrington Avenue.
Policy 5.3.1. Support the development and use of equipment powered by electricity or low-emitting fuels.	Consistent. The Project would meet applicable requirements of the State's Green Building Standards Code and the City's Green Building Code.
Source: DKA Planning, 2018.	, , ,

b) Violate any air quality standard or contribute substantially to an existing or projected air quality violation? *Less Than Significant Impact.*

Construction Phase Air Quality Impacts on Regional Air Quality

Construction-related emissions were estimated using the South Coast Air Quality Management District's (SCAQMD's) CalEEMod 2016.3.2 model using assumptions from the Project's developer, including the Project's construction schedule of 24 months. Table 6 summarizes the proposed construction schedule that was modeled for air quality impacts.

TABLE 6: PROPOSED CONSTRUCTION SCHEDULE					
Phase	Duration*	Notes			
Demolitien	Month 1	Debris from 10,052 square feet of			
Demolition	Wonth 1	development hauled off-site			
Site Preparation	Month 2				
Grading	Month 3	14,311 cubic yards of soil export			
Building Construction	Months 4-23				
Architectural Coatings	Months 18-24				
Source: DKA Planning, 2018					

As shown in Table 7 the construction of the Proposed Project will produce VOC, NO_x , CO, SO_x , PM_{10} and $PM_{2.5}$ emissions that do not exceed the SCAQMD's regional thresholds. As a result, construction of the Proposed Project would not contribute substantially to an existing violation of air quality standards for regional pollutants (e.g., ozone). This impact is considered **less than significant**.

			Pounds Po	er Day		
Construction Phase Year	voc	NOx	со	SOx	PM10	PM _{2.5}
2019	2	37	14	<1	2	
2020	5	12	13	<1	1	
Maximum Regional Total	5	37	14	<1	2	
Regional Significance Threshold	75	100	550	150	150	5
Exceed Threshold?	No	No	No	No	No	Ν
Maximum Localized Total	4	10	8	<1	1	
Localized Significance Threshold		103	562		4	
Exceed Threshold?	N/A	No	No	N/A	Yes	Y

Source: DKA Planning, 2018 based on CalEEMod 2016.3.2 model runs. LST analyses based on 1-acre site with 25-meter distances to receptors in Northwest Coastal LA County source receptor area. Assumes application of Rule 403 BACMs to control fugitive dust. Because CalEEMod model does only accommodates fugitive dust control as a mitigation measure, the model output expresses Rule 403 control measures in the Mitigated Construction scenarios (see Technical Appendix, Tables 2.0 for a summary of construction emissions)

Construction Phase Air Quality Impacts on Local Air Quality

In terms of local air quality, the Proposed Project would produce emissions that do not exceed the SCAQMD's recommended localized standards of significance for NO_2 and CO during the construction phase. Construction activities would not produce PM_{10} and $PM_{2.5}$ emissions that

exceed localized thresholds recommended by the SCAQMD. As a result, construction impacts on localized air quality are considered **less than significant**.

Regulatory Compliance Measure RCM1 addresses fugitive dust emissions of PM_{10} and $PM_{2.5}$ that are regulated by SCAQMD Rule 403, which calls for Best Available Control Measures (BACM) that include watering portions of the site that are disturbed during grading activities and minimizing tracking of dirt onto local streets. It should be noted that Table 7 assumes the application of BACMs to control fugitive dust.

Construction Phase Air Quality Mitigation Measures

None required.

Construction Phase Air Quality Regulatory Compliance Measures

- RCM1 Construction activities shall comply with SCAQMD Rule 403, including the following measures:
 - Apply water to disturbed areas of the site three times a day
 - Require the use of a gravel apron or other equivalent methods to reduce mud and dirt trackout onto truck exit routes
 - Appoint a construction relations officer to act as a community liaison for on-site construction activity including resolution of issues related to PM generation.
 - Limit soil disturbance to the amounts analyzed in this air quality analysis.
 - All materials transported off-site shall be securely covered.
 - Apply non-toxic soil stabilizers per manufacturers' specifications to all inactive construction areas (previously graded areas inactive for ten days or more).
 - \circ $\;$ Traffic speeds on all unpaved roads to be reduced to 15 mph or less.

Construction Phase Air Quality Impacts After Mitigation

Construction of the Proposed Project is not expected to produce any local violation of air quality standards or contribute substantially to an existing or projected air quality violation.

Operation Phase Air Quality Impacts

The Project will also produce long-term emissions primarily from motor vehicles that access the Project site. The Project could add up to 220 net vehicle trips to and from the Project Site on a peak weekday at the start of operations in 2021.⁵ Operational emissions would not exceed SCAQMD's regional significance thresholds for VOC, NO_x, CO, PM₁₀ and PM_{2.5} emissions (Table 8). As a result, the Project's operational impacts on regional air quality are considered **less than significant**.

With regard to localized air quality impacts, the Proposed Project would emit minimal emissions of NO₂, CO, PM_{10} , and $PM_{2.5}$ from area and energy sources on-site. These localized emissions

⁵ City of Los Angeles Department of Transportation Referral Form: Traffic Study Assessment (CPC-2018-3430-DB-SPR), July 2018.

would not approach the SCAQMD's localized significance thresholds that signal when there could be human health impacts at nearby sensitive receptors during long-term operations (Table 8). The Project's operational impacts on localized air quality are considered less than significant.

It should be noted that because the Proposed Project is located within 1,000 feet of a freeway (Santa Monica Freeway), the City would require the Project install air filters meeting or exceeding a Minimum Efficiency Reporting Value (MERV) of 13 or higher.

Emission Course	Pounds per Day						
Emission Source	VOC	NO _x	СО	SOx	PM ₁₀	PM _{2.5}	
Area Sources	1	<1	6	<1	<1	<	
Energy Sources	<1	<1	<1	<1	<1	<	
Mobile Sources	1	5	14	<1	4		
Total Operations	3	5	20	<1	4		
Existing Operations	-<1	-1	-4	-<1	-1	-<	
Net Regional Total	2	4	16	<1	3		
Regional Significance Threshold	55	55	550	150	150	5	
Exceed Threshold?	No	No	No	No	No	N	
Net Localized Total	1	<1	6	<1	<1	<	
Localized Significance Threshold		103	562		2		
Exceed Threshold?	N/A	No	No	N/A	No	Ν	

Operations Phase Air Quality Mitigation Measures

None required.

Operations Phase Air Quality Regulatory Compliance Measures

RCM2 The Project shall include HVAC system air filters meeting or exceeding a Minimum Efficiency Reporting Value (MERV) of 13 or higher

Operations Phase Air Quality Impacts After Mitigation

The long-term operation of the Proposed Project would not violate any air quality standard or contribute substantially to an existing or projected air quality violation for regional and localized air quality.

c) Result in a cumulatively considerable net increase of any criteria pollutant for which the Project region is non-attainment under an applicable federal or state ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors)? Less Than Significant Impact.

Construction Phase Air Quality Impacts

With respect to the Project's construction-related air quality emissions and cumulative Air Basinwide conditions, the SCAQMD has developed strategies (e.g., SCAQMD Rule 403) to reduce criteria pollutant emissions outlined in the AQMP pursuant to federal CAA mandates. Pursuant to RCM 1, the Project would comply with regulatory requirements, including the SCAQMD Rule 403 requirements listed above. Per SCAQMD rules and mandates as well as the CEQA requirement that significant impacts be mitigated to the extent feasible, all construction projects Air Basin-wide would comply with these same regulatory requirements (e.g., SCAQMD Rule 403 compliance), and would also implement all feasible mitigation measures when significant impacts are identified.

According to the SCAQMD, individual projects that exceed the SCAQMD's recommended daily thresholds for project-specific impacts would cause a cumulatively considerable increase in emissions for those pollutants for which the Air Basin is in non-attainment. As shown Tables 7 and 8, Project construction and operational daily emissions at the Project Site would not exceed any of the SCAQMD's regional thresholds, respectively. Therefore, the Project's contribution to cumulative construction- or operation-related regional emissions would not be cumulatively considerable and therefore would be less than significant. Moreover, construction and operation of the Project also would have a less-than-significant impact with regard to localized emissions. Therefore, the Project's contribution to cumulative air quality impacts due to localized emissions would also not be cumulatively considerable and therefore would be and therefore would be less than significant.

Construction Phase Air Quality Mitigation Measures

Regulatory Compliance Measure RCM1 calls for good housekeeping measures that substantially reduce PM_{10} and $PM_{2.5}$ emissions during on-site construction activities. These would similarly be implemented at other construction sites for any related projects.

Construction Phase Air Quality Impacts After Mitigation

Construction of the Proposed Project would not have any considerable contribution to cumulative impacts on pollutant concentrations at nearby receptors.

Operation Phase Air Quality Impacts

As for cumulative operational impacts, the proposed land use will not produce cumulatively considerable emissions of nonattainment pollutants at the regional or local level. Because the Project's air quality impacts would not exceed the SCAQMD's operational thresholds of significance as noted in Table 8, the Project's impacts on cumulative emissions of non-attainment pollutants is considered **less than significant**. The Project is a residential and retail development that would not include major sources of combustion or fugitive dust. As a result, its localized emissions of PM₁₀ and PM_{2.5} would be minimal. Likewise, existing land uses in the area include land uses that do not produce substantial emissions of localized nonattainment pollutants.

Operation Phase Air Quality Mitigation Measures

None required.

Operation Phase Air Quality Impacts After Mitigation

Long-term operation of the Project would not result in a cumulatively considerable net increase of any non-attainment criteria pollutant.

d) Expose sensitive receptors to substantial pollutant concentrations? Less Than Significant Impact.

Construction Phase Air Quality Impacts on Sensitive Receptors

Construction of the Proposed Project could produce air emissions that impact several existing sensitive receptors near the Project Site, including:

- Single-family residence, 2526 Stoner Avenue; 30 feet west of the Project site.
- Multi-family residences, northwest corner of Stoner Avenue and Gateway Boulevard; 70 feet south of the Project site.
- Multi-family residences, 2499 Barrington Avenue; 90 feet north of the Project site.
- Villa Mirage Senior Care Facility, 2655 Barry Avenue; 870 feet southeast of the Project Site.

As illustrated in Table 7, these nearby receptors would not be exposed to substantial concentrations of localized pollutants PM_{10} and $PM_{2.5}$ from construction of the proposed Project. Specifically, construction activities would not exceed SCAQMD LST thresholds for PM_{10} and $PM_{2.5}$ and represent a **less than significant** impact. LST thresholds represent the maximum emissions from a project that will not cause or contribute to an exceedance of the most stringent applicable ambient air quality standard.

Construction Phase Air Quality Mitigation Measures for Sensitive Receptors

None required.

Construction Phase Air Quality Impacts on Sensitive Receptors After Mitigation

Construction of the Proposed Project would not have any significant impacts on pollutant concentrations at nearby receptors.

Operation Phase Air Quality Impacts on Sensitive Receptors

The Proposed Project would generate long-term emissions on-site from area and energy sources that would generate negligible pollutant concentrations of CO, NO₂, PM_{2.5}, or PM₁₀ at nearby sensitive receptors. While long-term operations of the Project would generate traffic that produces off-site emissions, these would not result in exceedances of CO air quality standards at roadways in the area due to three key factors. First, CO hotspots are extremely rare and only occur in the presence of unusual atmospheric conditions and extremely cold conditions, neither of which applies to this Project area. Second, auto-related emissions of CO continue to decline because of advances in fuel combustion technology in the vehicle fleet. Finally, the Project would generate only 22 net peak hour vehicle trips in the morning and would reduce 12 net peak hour

vehicle trips in the afternoon, levels of traffic impact that would not produce congestion that would produce the amount of emissions needed to trigger a potential CO hotspot.⁶

Finally, the Project would not result in any substantial emissions of TACs during the construction or operations phase. During the construction phase, the primary air quality impacts would be associated with the combustion of diesel fuels, which produce exhaust-related particulate matter that is considered a toxic air contaminant by CARB based on chronic exposure to these emissions.⁷ However, construction activities would not produce chronic, long-term exposure to diesel particulate matter. During long-term project operations, the Project does not include typical sources of acutely and chronically hazardous TACs such as industrial manufacturing processes and automotive repair facilities. As a result, the Project would not create substantial concentrations of TACs. In addition, the SCAQMD recommends that health risk assessments be conducted for substantial sources of diesel particulate emissions (e.g., truck stops and warehouse distribution facilities) and has provided guidance for analyzing mobile source diesel emissions.⁸ The Project would not generate a substantial number of truck trips. Based on the limited activity of TAC sources, the Project would not warrant the need for a health risk assessment associated with on-site activities. Therefore, Project impacts related to TACs would be less than significant.

Operation Phase Air Quality Mitigation Measures for Sensitive Receptors

None required.

Operation Phase Air Quality Impacts on Sensitive Receptors After Mitigation

Long-term operation of the Proposed Project would not have any significant impacts on pollutant concentrations at nearby receptors.

e) Create objectionable odors affecting a substantial number of people? Less Than Significant Impact.

The Proposed Project would introduce residences and reduce the density of commercial land uses to the area but would not result in activities that create objectionable odors. It would not include any land uses typically associated with unpleasant odors and local nuisances (e.g., rendering facilities, dry cleaners). SCAQMD regulations that govern nuisances (i.e., Rule 402, Nuisances) would regulate any occasional odors associated with on-site uses. As a result, any odor impacts from the Project would be considered **less than significant**.

⁶ Caltrans, Transportation Project-Level Carbon Monoxide Protocol, updated October 13, 2010.

⁷ California Office of Environmental Health Hazard Assessment. *Health Effects of Diesel Exhaust.* www. http://oehha.ca.gov/public info/facts/dieselfacts.html

⁸ SCAQMD, Health Risk Assessment Guidance for Analyzing Cancer Risks from Mobile Source Diesel Emissions, December 2002.

3.0. NOISE -- Would the Project result in:

a) Exposure of persons to or generation of noise levels in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies? *Less Than Significant Impact.*

Introduction to Noise

Characteristics of Sound

Sound can be described in terms of its loudness (amplitude) and frequency (pitch). The standard unit of measurement for sound is the decibel, abbreviated dB. Because the human ear is not equally sensitive to sound at all frequencies, the A-weighted scale (dBA) is used to reflect the normal hearing sensitivity range of the human ear. On this scale, the range of human hearing extends from approximately 3 to 140 dBA. Table 9 provides examples of A-weighted noise levels from common sources.

TABLE 9: A-WEIGHTED DECIBEL SCALE	
Typical A-Weighted Sound Levels	Sound Level (dBA, L _{eq})
Near Jet Engine	130
Rock and Roll Band	110
Jet Flyover at 1,000 Feet	100
Power Motor	90
Food Blender	80
Living Room Music	70
Human Voice at 3 Feet	60
Residential Air Conditioner at 50 Feet	50
Bird Calls	40
Quiet Living Room	30
Average Whisper	20
Rustling Leaves	10
Source: Cowan, James P., Handbook of Environmental Acoustics, 1993.	
These noise levels are approximations intended for general reference and i required for detailed noise analysis, but are provided for the reader to gai	

Noise Definitions

This noise analysis discusses sound levels in terms of Equivalent Noise Level (L_{eq}) and Community Noise Equivalent Level (CNEL). "Noise" itself is frequently defined as "unwanted sound."

Equivalent Noise Level

 L_{eq} represents the average noise level on an energy basis for a specific time period. Average noise level is based on the energy content (acoustic energy) of sound. For example, the L_{eq} for one hour is the energy average noise level during that hour. L_{eq} can be thought of as a continuous noise level of a certain period equivalent in energy content to a fluctuating noise level of that same period. L_{eq} is expressed in units of dBA.

Community Noise Equivalent Level

CNEL is an adjusted noise measurement scale of average sound level during a 24-hour period. Due to increased noise sensitivities during evening and night hours, human reaction to sound between 7:00 P.M. and 10:00 P.M. is as if it were actually 5 dBA higher than had it occurred between 7:00 A.M. and 7:00 P.M. From 10:00 P.M. to 7:00 A.M., humans perceive sound as if it were 10 dBA higher. To account for these sensitivities, CNEL figures are obtained by adding an additional 5 dBA to evening noise levels between 7:00 P.M. and 10:00 P.M. and 10:00 P.M. and 7:00 P.M. and 7:00 P.M. and 10:00 P.M. and 10:0

Noise Attenuation

Noise levels decrease as the distance from a noise source to a receiver increases. For each doubling of distance, noise from stationary sources, commonly referred to as "point sources," can decrease by approximately 6 dBA over hard surfaces (e.g., reflective surfaces such as parking lots), even greater over soft surfaces (e.g., absorptive surfaces such as soft dirt and grass). For example, if a point source produces a noise level of 89 dBA at a reference distance of 50 feet and over an asphalt surface, its noise level would be approximately 83 dBA at a distance of 100 feet and 77 dBA at 200 feet. Noises generated by mobile sources decrease by approximately 3 dBA over hard surfaces and 4.5 dBA over soft surfaces for each doubling of distance.

Noise is most audible when traveling by direct line-of-sight, an unobstructed visual path between noise source and receptor. Barriers that break line of sight between sources and receivers, such as walls and buildings, can greatly reduce source noise levels, allowing noise to reach receivers by diffraction only. As a result, sound barriers can reduce source noise levels by up to 20 dBA, though it is infeasible for temporary barriers to reduce noise levels by more than 15 dBA⁹ The effectiveness of barriers can be greatly reduced when they are not high or long enough to completely break line of sight from sources to receivers.

It should be noted that because decibels are logarithmic units they cannot be simply added or subtracted. For example, two cars producing 60 dBA of noise each would not produce a combined 120 dBA.

Effects of Noise

The degree to which noise can impact an environment ranges from levels that interfere with speech and sleep to levels that can cause adverse health effects. Most human response to noise subjective. Factors that influence individual responses include the intensity, frequency, and pattern of noise; the amount of background noise present; and the nature of work or human activity exposed to intruding noise.

According to the National Institute of Health (NIH), extended or repeated exposure to sounds at or above 85 dB can cause hearing loss. Sounds of 75 dBA or less, even after continuous exposure,

⁹ California Department of Transportation, Technical Noise Supplement to the Traffic Noise Analysis Protocol, September 2013.

11701 Gateway Boulevard Project Air Quality and Noise Technical Reports

are unlikely to cause hearing loss.¹⁰ The World Health Organization (WHO) reports that adults should not be exposed to sudden "impulse" noise events of 140 dB or greater. For children, this limit is 120 dB.¹¹

Exposure to elevated nighttime noise levels can disrupt sleep, leading to increased levels of fatigue and decreased work or school performance. For the preservation of healthy sleeping environments, the WHO recommends that continuous interior noise levels not exceed 30 dBA L_{eq} , and that individual noise events of 45 dBA or higher be limited.¹² Assuming a conservative exterior to interior sound reduction of 15 dBA, continuous exterior noise levels should therefore not exceed 45 dBA L_{eq} . Individual exterior events of 60 dBA or higher should also be limited.

Some epidemiological studies have shown a weak association between long-term exposure to noise levels of 65-70 dBA L_{eq} and cardiovascular effects including ischemic heart disease and hypertension. However, at this time, data regarding their relationship is largely inconclusive.

People with normal hearing sensitivity can recognize small perceptible changes in sound levels of approximately 3 dBA. Changes of at least 5 dBA can be readily noticeable and may cause community reactions. Sound level increases of 10 dBA or greater are perceived as a doubling in loudness and can provoke a community response.¹³ However, few people are highly annoyed at noise levels below 55 dBA L_{eq} .¹⁴

Regulatory Framework

Federal

Currently, no federal noise standards regulate environmental noise associated with short-term construction activities or the long-term operations of development projects. As such, temporary and long-term noise impacts produced by the Project would be largely regulated by and evaluated by State and City of Los Angeles standards designed to protect public well-being and health.

State

State of California 2017 General Plan Guidelines

The State's 2017 General Plan Guidelines establish county and city standards for acceptable exterior noise levels based on land use. These standards are incorporated into land use planning processes to prevent or reduce noise and land use incompatibilities. Table 10 illustrates State compatibility considerations between various land uses and exterior noise levels.

¹⁰ National Institute on Deafness and Other Communication, <u>www.nidcd.nih.gov/health/noise-induced-hearing-loss</u>.

¹¹ World Health Organization, Guidelines for Community Noise, 1999.

¹² Ibid.

¹³ Federal Transit Administration, Transit Noise and Vibration Impact Assessment, 2006.

¹⁴ World Health Organization, Guidelines for Community Noise, 1999.

11701 Gateway Boulevard Project Air Quality and Noise Technical Reports

TABLE 10: STATE OF CALIFORNIA NOISE/LAND USE C		ommunity		osure	(dB, L., 0	r CNEL)	
Land Use Category	55	60	65	70	(ab) <u>-</u> an c		30
Residential - Low Density Single-Family, Duplex, Mobile Homes							
Residential - Multi-Family							
Transient Lodging - Motels Hotels							
Schools, Libraries, Churches, Hospitals, Nursing Homes							
Auditoriums, Concert Halls, Amphitheaters							
Sports Arena, Outdoor Spectator Sports							
Playgrounds, Neighborhood Parks							
Golf Courses, Riding Stables, Water Recreation, Cemeteries							
Office Buildings, Business Commercial and Professional							
Industrial, Manufacturing, Utilities, Agriculture							
Normally Acceptable - Specified land use is satisfactory, base construction without any special noise insulation requirements. Conditionally Acceptable - New construction or development sho is made and needed noise insulation features included in the des or air conditioning will normally suffice. Normally Unacceptable - New construction or development sho detailed analysis of the noise reduction requirements must be m Clearly Unacceptable - New construction or development should	ould be undert ign. Conventi ould generally nade and need	aken only aft onal construc be discourag led noise insu	er a detailed tion, but with ed. If new co ilation featur	analysis o h closed v onstructio	of the noise vindows and on or develo	reduction re d fresh air su opment does	quirements pply system

City of Los Angeles

Los Angeles General Plan Noise Element

The City of Los Angeles General Plan includes a Noise Element that contains policies and standards to guide the control of noise to protect residents, workers, and visitors. Its primary goal is to regulate long-term noise impacts that preserve acceptable noise environments for all types of land uses. However, the Noise Element contains no quantitative or other thresholds of significance for evaluating a proposed project's noise impacts. Instead, it adopts the State's guidance on noise and land use compatibility, shown in Table 10 above, "to help guide determination of appropriate land use and mitigation measures vis-à-vis existing or anticipated ambient noise levels."

Los Angeles Municipal Code

The City of Los Angeles Municipal Code (LAMC) contains regulations that would apply to the Project's temporary construction activities and long-term operations. Section 41.40(a) would prohibit Project construction activities between 9:00 P.M. and 7:00 A.M., Monday through Friday. Subdivision (c), below, would further prohibit such activities before 8:00 A.M. or after 6:00 P.M. on any Saturday, or on any Sunday or national holiday.

SEC.41.40. NOISE DUE TO CONSTRUCTION, EXCAVATION WORK—WHEN PROHIBITED.

- (a) No person shall, between the hours of 9:00 P.M. and 7:00 A.M. of the following day, perform any construction or repair work of any kind upon, or any excavating for, any building or structure, where any of the foregoing entails the use of any power drive drill, riveting machine, excavator or any other machine, tool, device or equipment which makes loud noises to the disturbance of persons occupying sleeping quarters in any dwelling hotel or apartment or other place of residence. In addition, the operation, repair or servicing of construction equipment and the job-site delivering of construction materials in such areas shall be prohibited during the hours herein specified. Any person who knowingly and willfully violates the foregoing provision shall be deemed guilty of a misdemeanor punishable as elsewhere provided in this Code.
- (c) No person, other than an individual homeowner engaged in the repair or construction of his single-family dwelling shall perform any construction or repair work of any kind upon, or any earth grading for, any building or structure located on land developed with residential buildings under the provisions of Chapter I of this Code, or perform such work within 500 feet of land so occupied, before 8:00 A.M. or after 6:00 P.M. on any Saturday or national holiday nor at any time on any Sunday. In addition, the operation, repair, or servicing of construction equipment and the job-site delivering of construction materials in such areas shall be prohibited on Saturdays and on Sundays during the hours herein specific...

Section 112.05 of the LAMC establishes noise limits for powered equipment and hand tools operated within 500 feet of residential zones. Of particular importance to the Project would be subdivision (a), which institutes a maximum noise limit of 75 dBA at 50 feet for the types of construction vehicles and equipment that would be likely used for the Project's construction. However, the LAMC notes that these limitations would not necessarily apply if proven that the

Project's compliance would be technically infeasible despite the use of noise-reducing means or methods.

SEC. 112.05. MAXIMUM NOISE LEVEL OF POWERED EQUIPMENT OR POWERED HAND TOOLS

Between the hours of 7:00 A.M. and 10:00 P.M., in any residential zone of the City or within 500 feet thereof, no person shall operate or cause to be operated any powered equipment or powered hand tool that produces a maximum noise level exceeding the following noise limits at a distance of 50 feet therefrom:

- (a) 75 dBA for construction, industrial, and agricultural machinery including crawler-tractors, dozers, rotary drills and augers, loaders, power shovels, cranes, derricks, motor graders, paving machines, off-highway trucks, ditchers, trenchers, compactors, scrapers, wagons, pavement breakers, compressors and pneumatic or other powered equipment;
- (b) 75 dBA for powered equipment of 20 HP or less intended for infrequent use in residential areas, including chain saws, log chippers and powered hand tools;
- (c) 65 dBA for powered equipment intended for repetitive use in residential areas, including lawn mowers, backpack blowers, small lawn and garden tools and riding tractors.

Said noise limitations shall not apply where compliance therewith is technically infeasible. The burden of proving that compliance is technically infeasible shall be upon the person or persons charged with a violation of this section. Technical infeasibility shall mean that said noise limitations cannot be complied with despite the use of mufflers, shields, sound barriers and/or other noise reduction device or techniques during the operation of the equipment.

Section 112.01 of the LAMC would prohibit any amplified noises, especially those from outdoor sources (e.g., outdoor speakers, stereo systems) from exceeding the ambient noise levels of adjacent properties by more than 5 dBA. Any amplified noises would also be prohibited from being audible at any distance greater than 150 feet from the Project's property line as the Project is located within 500 feet of residential zones.

SEC.112.01. RADIOS, TELEVISION SETS, AND SIMILAR DEVICES

- (a) It shall be unlawful for any person within any zone of the City to use or operate any radio, musical instrument, phonograph, television receiver, or other machine or device for the producing, reproducing or amplification of the human voice, music, or any other sound, in such a manner, as to disturb the peace, quiet, and comfort of neighbor occupants or any reasonable person residing or working in the area.
- (b) Any noise level caused by such use or operation which is audible to the human ear at a distance in excess of 150 feet from the property line of the noise source, within any residential zone of the City or within 500 feet thereof, shall be a violation of the provisions of this section.
- (c) Any noise level caused by such use or operation which exceeds the ambient noise level on the premises of any other occupied property, or if a condominium, apartment house, duplex, or attached business, within any adjoining unit, by more than five (5) decibels shall be a violation of the provisions of this section.

Section 112.02(a), below, would prevent Project HVAC systems and other mechanical equipment from elevating ambient noise levels at neighboring residences by more than 5 dBA.

SEC.112.02. AIR CONDITIONING, REFRIGERATION, HEATING, PLUMBING, FILTERING EQUIPMENT

(a) It shall be unlawful for any person, within any zone of the city, to operate any air conditioning, refrigeration or heating equipment for any residence or other structure or to operate any pumping, filtering or heating equipment for any pool or reservoir in such manner as to create any noise which would cause the noise level on the premises of any other occupied property ... to exceed the ambient noise level by more than five decibels.

Construction Noise

Project Overview

The Project proposes to construct a new 5-story mixed-use building consisting of 73 residential dwelling units and 5,899 square feet of commercial space. Parking would be provided by 90 on-site stalls.

Existing Conditions

The Project Site is currently developed with a 2-story commercial shopping center and a surface parking lot. Operational noise sources associated with this existing use are primarily auto-related, for example vehicles entering and exiting the driveway, doors slamming, and engines starting.

The Project is located at the western corner of Gateway Boulevard and Barrington Avenue, a hightraffic intersection approximately 250 feet south of the Santa Monica Freeway. Despite the elevated noise levels of this environment, there are a number of noise-sensitive land uses in the vicinity of the Project Site. Land uses sensitive to noise include residences, transient lodgings, schools, libraries, churches, hospitals, nursing homes, auditoriums, concert halls, amphitheaters, playgrounds, and parks. Local receptors include but are not limited to the following:

- <u>Stoner Avenue Residences</u>: This receptor consists of residential uses located along Stoner Avenue, west of Project Site between Pearl Street and Gateway Boulevard. The individual residence closest to the Project Site is located at 2526 Stoner Avenue, approximately 30 feet west of the Project Site.
- <u>2499 Barrington Avenue Residence</u>: This receptor consists of residential uses located approximately 90 feet north of the Project Site.
- <u>Barrington Avenue Residences</u>: This receptor consists of residential uses located southeast of the Project Site along Barrington Avenue. The individual land use closest to the Project Site is a multi-family apartment building located at 2540 Barrington Avenue, approximately 255 feet southeast of the Project.

Other noise-sensitive receptors are located at a greater distance from the Project and would experience lesser impacts than those listed above.

11701 Gateway Boulevard Project Air Quality and Noise Technical Reports

DKA Planning took short-term noise readings near the Project Site on August 27, 2018 to determine ambient noise conditions in the neighborhood (Table 11).¹⁵ At all noise monitoring locations, ambient noise levels were primarily the result of vehicle traffic along Barrington and Gateway Boulevard.

TABLE 11: EXISTING AMBIENT NOISE LEVELS		
Noise Monitoring Location	Existing Ambient Noise Level (dBA L _{eq})	Applicable Receptor(s)
1. Barrington Ave., southeast of Gateway Blvd.	67.9	Barrington Ave. Residences
2. SW corner of Barrington Ave. and Pearl St.	66.7	2499 Barrington Ave. Residences
3. N corner of Gateway Blvd. and Stoner Ave.	67.4	N/A – informational use only
4. Stoner Ave., near alley W of Project Site	58.7	Stoner Ave. Residences
Source: DKA Planning, 2018		

Regulated Noise Sources – LAMC Section 41.40 and 112.05

Proposed construction would generate noise during the roughly 24 months of demolition, site preparation, excavation/grading, building construction, and application of architectural coatings. During all construction phases, noise-generating activities could occur at the Project site between the hours of 7:00 A.M. and 9:00 P.M. Monday through Friday, in accordance with Section 41.40(a) of the LAMC. On Saturdays, construction would be permitted to occur between 8:00 A.M. and 6:00 P.M. Construction of the Project would require heavy-duty construction vehicles such as excavators and front-end loaders. Smaller equipment such as forklifts, generators, and various powered hand tools would also be utilized. Off-site secondary noises would be generated by sources such as construction worker vehicles, vendor deliveries, and haul trucks.

Regulatory compliance with LAMC Section 112.05 would ultimately limit any noise levels from powered construction equipment to 75 dBA or below, as the Project site is located within 500 feet of residential zones. Standard, industry-wide "best practices" for construction in urban or otherwise noise-sensitive areas would ensure the Project's construction noise stays below the City's 75 dBA threshold of significance. "Best practices" utilized by the Project would include equipping heavy equipment with noise-reducing mufflers and warming-up or staging equipment away from sensitive receptors.

As shown in Table 12, compliance with LAMC Section 112.05 would ensure that the Project's powered equipment noise levels at 50 feet do not exceed the section's maximum 75 dBA limit. In the event more than one piece of equipment were operating along property lines adjacent to sensitive receptor, noise levels would reflect the cumulative impact of both equipment types.

¹⁵ Noise measurements were taken using a Quest Technologies SoundPro DL Sound Level Meter. The SoundPro meter complies with the American National Standards Institute (ANSI) and International Electrotechnical Commission (IEC) for general environmental measurement instrumentation. The meter was equipped with an omni-directional microphone, calibrated before the day's measurements, and set at approximately five feet above the ground.

Because decibels are logarithmic units, these cumulative impacts would not simply be the sum of the individual noise profile of each piece of equipment. For example, a common pairing of an excavator and front-end loader would produce a cumulative noise level of 73.0 dBA L_{eq} (assuming use of standard mufflers installed within the exhaust system of equipment engines).

Noise Source	Noise Level (dBA, 1-hr L _{eq}) ¹	
Noise Source	50 feet	
Backhoe	70.6	
Dozer	74.7	
Excavator	73.7	
Front-End Loader	72.1	
Welder 70.0		

With regard to off-site construction-related noise impacts, Section 112.05 of the LAMC does not regulate noise levels from road legal trucks, such as delivery vehicles, concrete mixing trucks, pumping trucks, and haul trucks. However, the operation of these vehicles would still comply with the construction restrictions set forth by Section 41.40 of the LAMC. Haul trucks in particular would access the regional freeway system immediately via Gateway Boulevard and other major arterials and designated truck routes, eliminating travel on sensitive residential streets.

The Project would require the off-site export of approximately 14,311 cubic yards of soil, as well as debris related to the demolition of the site's existing use. Up to 30 haul trips per day could be required over the duration of the Project's demolition, site preparation, and grading phases to transport this material to a regional landfill. As a general rule, a doubling of roadway traffic would be needed to increase ambient noise levels by 3 dBA CNEL or more. Because the human ear cannot detect noise levels below this threshold, increase in ambient noise levels lower than 3 dBA CNEL would not be audible.

Because Project haul trucks would access the site via Gateway Blvd., a major arterial, and would access the local freeway system via other major roadways, they would not nearly be capable of doubling the traffic volume of any roadway. Any off-site noise increases associated with the Project's haul trucks would therefore be negligible compared to the existing noise levels of nearby roadways.

Mitigation Measures

None required.

Operational Noise

On-Site Noise Sources

During Project operations, the development would produce noise from both on- and off-site sources. The direct on-site sources would include the following:

Mechanical Equipment

Regulatory compliance with LAMC Sec.112.02 would ultimately ensure that noises from sources such as heating, air conditioning, and ventilation systems not increase ambient noise levels at neighboring occupied properties by more than 5 dBA. However, given that the Project is located along a busy roadway with elevated traffic noises, it is unlikely that the Project's HVAC system or other mechanical systems would be capable of substantially altering surrounding noise levels.

Residential Land Uses

Noise from recurrent activities (e.g., conversation, consumer electronics) and nonrecurrent activities (e.g., social gatherings) would largely be contained internally within the project's buildings and elevate ambient noise levels to differing degrees. Normal and reasonable use of the Project's open space areas would not be expected to generate a substantial amount of noise. Noise from speech and conversation generally does not exceed approximately 65 dBA at a reference distance of one meter. These noises attenuate rapidly and would not be capable of elevating surrounding ambient noise levels by more than a nominal degree. The City's noise ordinance would provide a means to address nuisances related to residential noises.

Commercial Land Uses

The Project is located at an intersection fronted by primarily commercial uses and would replace an entirely commercial property with a use containing approximately half the total commercial area. The Project's commercial space would be consistent with its location fronting a busy intersection and would not alter the noise profile of this location. Additionally, the Project contains no outdoor commercial component; on-site commercial-related noises would be internal to the Project itself.

Auto-Related Activities

The Project's 90 parking spaces would be internally located within two subterranean levels and one ground level. As a result, most auto-related noises (e.g. doors slamming, engines starting, etc.) would be contained within the Project's parking garage and the audibility of this noise off-site would be greatly reduced, especially considering that the location's existing ambient noise profile is dominated by traffic and other auto-related noises.

The impact potential of these on-site operational noise sources would be considered **less than significant**.

Off-Site Noise Sources

As a general rule, a 3 dBA increase in roadway noise levels requires an approximate doubling of roadway traffic volume. However, the Project would result in only 220 net new daily vehicle trips

when compared to its existing use.¹⁶ This net generation of vehicle trips would not be capable of doubling the traffic volumes on any nearby roadways that would be utilized to access the Project Site. The Project's location at the intersection of two major roadways, Gateway Boulevard and Barrington Avenue, would distribute trips across multiple roadways that would further reduce traffic volumes on any street near the Project Site, further reducing any audible impacts on noise levels.

Mitigation Measures

None required.

b) A substantial permanent increase in ambient noise levels in the Project vicinity above levels **existing without the Project?** *Less Than Significant Impact.*

The Project's potential to result in a substantial permanent increase in ambient noise levels due to its on- and off-site operational noise sources is discussed in response to checklist question (a). The Project was determined to have a **less than significant** impact in this regard.

c) A substantial temporary or periodic increase in ambient noise levels in the Project vicinity above levels existing without the Project? *Less Than Significant Impact.*

The Project's potential to result in a substantial temporary or periodic increase in ambient noise levels due to its on- and off-site construction noise sources is also discussed in response to checklist question (a). The Project was determined to have a **less than significant** impact in this regard.

d) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the Project expose people residing or working in the Project area to excessive noise levels? *No Impact.*

Though the Project is located approximately 2,500 feet northeast of Santa Monica Municipal Airport, it is not located within the extent of that airport's 65 CNEL influence area and therefore would not expose people residing or working in the Project area to excessive noise levels from aircraft.¹⁷

e) For a project within the vicinity of a private airstrip, would the Project expose people residing or working in the Project area to excessive noise levels? *No Impact.*

The Project site is not located within the vicinity of a private airstrip. As a result, this criterion is not applicable to this Project, which would have **no impact** on people residing or working in the Project area.

¹⁶ Department of Transportation Referral Form: Traffic Study Assessment. DOT Case No. WLAI8-107176.

¹⁷ Planning.lacounty.gov/aluc/airports, Airport Land Use Commission (ALUC) GIS Interactive Map (A-NET), accessed August 8, 2018.

11701 Gateway Boulevard Project Air Quality and Noise Technical Reports

TECHNICAL APPENDICES

CalEEMod Version: CalEEMod.2016.3.2

Page 1 of 1

Date: 8/23/2018 11:59 PM

11701 Gateway Boulevard Existing - Los Angeles-South Coast County, Summer

11701 Gateway Boulevard Existing

Los Angeles-South Coast County, Summer

1.0 Project Characteristics

1.1 Land Usage

0	10,052.00	0.44	1000sqft	10.05	Strip Mall
Population	Floor Surface Area	Lot Acreage	Metric	Size	Land Uses

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	33
Climate Zone	11			Operational Year	2018
Utility Company	Los Angeles Department of Water & Power	Vater & Power			
CO2 Intensity (Ib/MWhr)	1227.89	CH4 Intensity (Ib/MWhr)	0.029	N2O Intensity (Ib/MW hr)	0.006

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - Developer information

Construction Phase -

Vehicle Trips - City of Los Angeles Department of Transportation Referral Form: Traffic Study Assessment (CPC-2018-3430-DB-SPR), July 2018.

tblVehicleTrips WD_TR 44.32	tblVehicleTrips ST_TR 42.04	tblLandUse	Table Name
WD_TR	ST_TR	LotAcreage	Column Name
			Default Value
37.70	37.70	0.44	New Value

Percent Reduction		Total	Mobile	Energy	Area	Category	
0.00	ROG	0.9888	0.7636	94 4	0.2247		ROG
0.00	NOX	3.0330	3.0286		1.0000e- 005		NOX
		8.2534	8.2486	3.7200e- 003	1.0400e- 003		CO
0.00	8	0.0217	0.0217		0.0000		S02
0.00	SO2 F	1.5334	1.5334			_	Fugitive PM10
0.00	Fugitive E PM10	0.0262	0.0258		0.0000	lb/day	PM10
0.00	Exhaust F PM10	1.5596	1.5593		0.0000		t PM10 Total
0.00	PM10 Total				0		-
0.00	Fugitive PM2.5	0.4105 0			0		
0.00	Exhaust PM2.5	0.0246	0.0243		0.0000		Exhaust P PM2.5
0.00	st PM2.5 5 Total	0.4351	0.4348	3.4000e- 004	0.0000		PM2.5 Total
							Bio- CO2
0.00 0	Bio- CO2 NBi	2,205.7892	2,200.4734 2,200.4734	5.3136	2.2000e- 003		NBio- CO2
0.00	NBio-CO2 Total CO2	2,205.7892	2,200.4734 2,200.4734 0.1414	5.3136	2.2000e- 2.2000e- 1.0000e- 003 003 005	a a	Total CO2
0.00		2 0.1416	.4 0.1414		- 1.0000 005	Ib/day	2 CH4
0.00	CH4	6 1.0000e- 004	4		Φ		N20
0.00	N20				2.3 0		
0.00	CO2e	2,209.3569	2,204.0095	5.3451	2.3500e- 003		CO2e

Mitigated Operational

1.0000e- 2,209.3569 004	1.0000e- 004	0.1416	2,205.7892	2,205.7892 2,205.7892 0.1416		0.4351	0.0246	0.4105	1.5596	0.0262	1.5334	0.0217	8.2534	3.0330	0.9888	Total
		0.1414	2,200.4734	2,200.4734 2,200.4734 0.1414		0.4348	0.0243	0.4105		0.0258	1.5334	0.0217	8.2486	3.0286	0.7636	Mobile
	004	004				004	004		004	004		005	003	003		
5.3451	1.0000e-	1.0000e-	5.3136	5.3136		3.4000e-	3.4000e-		3.4000e-	3.4000e-		3.0000e-		4.4300e-	4.9000e-004 4.4300e-	
003		005	003 005	003									003	005		
2.3500e-		1.0000e-	2.2000e-	2.2000e-		0.0000 0.0000	0.0000		0.0000 0.0000	0.0000		0.0000	1.0400e-	1.0000e-	0.2247	Area
		lay	lb/day							lay	Ib/day					Category
CO2e	N20	CH4	Total CO2	NBio- CO2 Total CO2	Bio- CO2	Exhaust PM2.5 Tota PM2.5	Exhaust PM2.5	Fugitive PM2.5	Exhaust PM10 Total PM10	Exhaust PM10	Fugitive PM10	SO2	со	NOX	ROG	

2.0 Emissions Summary

2.2 Overall Operational

Unmitigated Operational

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

Unmitigated	Mitigated	Category	
0.7636	0.7636		ROG
3.0286			NOx
8.2486	8.2486		CO
0.0217	8.2486 0.0217		S02
1.5334 0.0258	1.5334 0.0258	Ib/day	Fugitive PM10
0.0258	0.0258	ay	Exhaust PM10
1.5593	1.5593		Exhaust PM10 Total Fugitive PM10 PM2.5
0.4105			
0.0243	0.0243		Exhaust PM2.5 Total PM2.5
0.4348	0.4348		PM2.5 Total
			Bio-CO2
2,200.4734 2,200.4734 0.1414	2,200.4734 2,200.4734 0.1414		Bio-CO2 NBio-CO2 Total CO2
2,200.4734	2,200.4734	lb/day	Total CO2
0.1414	0.1414	ΎΕ	CH4
N	N		N20
2,204.0095	2,204.0095		CO2e

4.2 Trip Summary Information

	Aver	Average Daily Trip Rate	Unmitigated	Mitigated
Land Use	Weekday	Saturday Sunday	Annual VMT	Annual VMT
Strip Mall	378.96	378.96 205.36	673,824	673,824
Total	378.96	378.96 205.36	673,824	673,824

4.3 Trip Type Information

Strip Mall	Land Use	
16.60	H-W or C-W	
8.40	H-S or C-C	Miles
6.90	H-W or C-W H-S or C-C H-O or C-NW H-W or C-W H-S or C-C H-O or C-N	
16.60	H-W or C-W	
64.40	H-S or C-C	Trip %
19.00	H-O or C-NW	
45	Primary	
40	Diverted	Trip Purpose
15	Pass-by	%

4.4 Fleet Mix	Γ
et Mix	strip Mali
	1
	16.60
	8.4U
	b.90
	16.60
	64.40
	19.00
	45
	40
	5

Land Use	4.4 Fleet Mix
LDA	
LDT1	
LDT2	
MDV	
LHD1	
LHD2	
MHD	
HHD	
OBUS	
UBUS	
MCY	
SBUS	
MH	

Strip Mall 0.547972 0.046127 0.199330 0.125604 0.017697 0.005953 0.018360 0.027618 0.002341 0.002583 0.004804 0.000667

0.000944

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	004	004	0.0100			,	004		004	004		005	003	003	004		
F 3451	5 3136 1 0000- 1 0000-	1 0004	л 24 26	л 2126		3 4000-004	3 40006-		3 40006-	3 40006-	Ī	3 0005	3 72005-	003	004		Total
5.3451	5.3136 1.0000e- 1.0000e-	1.0000e-	5.3136	5.3136		3.4000e-004	3.4000e- 3		ω	3.4000e-		3.0000e-	3.7200e-	4.4300e-	4.9000e-	0.0451652 4.9000e- 4.4300e- 3.7200e-	Strip Mall
		day	lb/day							Ib/day	Ib					kBTU/yr	Land Use
							PM2.5	PM2.5		PM10	PM10					Use	
CO2e	N20	CH4	Total CO2	PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 CH4	Bio- CO2	PM2.5 Total	Exhaust	Fugitive	Exhaust PM10 Total Fugitive	Exhaust	Fugitive	S 02	СО	NOX	ROG	Natural Gas	

Mitigated

Total	Strip Mall	Land Use	
	45.1652	kBTU/yr	NaturalGas Use
4.9000e- 004	4.9000e- 004		ROG
4.4300e- 003	4.4300e- 003		NOX
3.7200e- 003	3.7200e- 003		CO
3.0000e- 005	3.0000e- 005		S O2
		Ib/day	Fugitive PM10
3.4000e- 004	3.4000e- 004	lay	Exhaust PM10
3.4000e- 004	3.4000e- 004		Exhaust PM10 Total PM10
			Fugitive PM2.5
3.4000e- 004	3.4000e- 004		Exhaust PM2.5
3.4000e-004	3.4000e-004		PM2.5 Total Bio- CO2 NBio- CO2 Total CO2
			Bio- CO2
5.3136	5.3136		NBio-CO2
5.3136 1.0000e- 004	5.3136 1.0000e- 004	Ib/day	Total CO2
1.0000e- 004	1.0000e- 004	ау	CH4
1.0000e- 004	1.0000e- 5.3451 004		N2O
5.3451	5.3451		CO2e

NaturalGas Unmitigated		Category	
4.9000e-004 4.4300e- 003	4.9000e-004 4.4300e- 003		ROG
4.4300 e- 003	04 4.4300e- 003		NOX
3.7200e- 003	3.7200e- 003 005		со
3.0000e- 005	3.0000e- 005		SO2
		Ib/day	Fugitive PM10
3.4000e- 004	3.4000e- 004	lay	Exhaust PM10
3.4000e- 004	3.4000e- 004		Exhaust PM10 Total Fugitive PM10 PM2.5
			Fugitive PM2.5
3.4000e- 004	3.4000e- 004		Exhaust PM2.5
3.4000e- 004	3.4000e- 004		Exhaust PM2.5 Total PM2.5
5.3136			Bio- CO2
5.3136	5.3136		Bio-CO2 NBio-CO2 Total CO2 CH4
5.3136	5.3136 1.0000e- 004	lb/day	Total CO2
1.0000e- 004	1.0000e- 004	ау	CH4
1.0000e- 004	1.0000e- 004		N20
5.3451	5.3451		CO2e

5.2 Energy by Land Use - NaturalGas <u>Unmitigated</u>

6.0 Area Detail

6.1 Mitigation Measures Area

Unmitigated	Mitigated	Category	
0.2247	0.2247		ROG
1.0000e- 005	1.0000e- 1.0400e- 005 003		NOX
	1.0400e- 003		СО
0.0000			S02
		lb/day	Fugitive PM10
0.0000	0.0000	ау	Exhaust PM10
0.0000	0.0000		Exhaust PM10 Total Fugitive PM10 PM2.5
			Fugitive PM2.5
0.0000	0.0000 0.0000		Exhaust PM2.5
0.0000	0.0000		PM2.5 Total
			Bio- CO2
	2.2000e- 003		Bio- CO2 NBio- CO2 Total CO2
2.2000e- 003	2.2000 e- 003	Ib/day	Total CO2
1.0000e- 005		ay	CH4
			N20
2.3500e- 003	2.3500e- 003		CO2e

6.2 Area by SubCategory

Unmitigated

	005	003	003									003	005		
0e-	1.0000e-	2.2000e-	2.2000e-		0.0000	0.0000		0.0000	0.0000		0.0000	1.0400e- 0.0000	1.0000e-	0.2247	Total
	005	003	003									003	005		
0e-	1.0000e-	2.2000e-	2.2000e- 2.2000e- 1.0000e- 2.3500e-		0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	1.0400e-	1.0000e-	1.0000e-004	Landscaping 1.0000e-004 1.0000e- 1.0400e- 0.0000
															Products
		0.0000			0.0000	0.0000		0.0000	0.0000					0.1990	Consumer
															Coating
		0.0000			0.0000 0.0000	0.0000		0.0000 0.0000	0.0000					0.0255	Architectural
	lb/day	dI							day	lb/day					SubCategory
						PM2.5	PM2.5		PM10	PM10					
4 N2O	2 CH4	Total CO2	NBio- CO2 Total CO2	Bio- CO2	Exhaust PM2.5 Total	Exhaust	Fugitive	Exhaust PM10 Total Fugitive		Fugitive	SO2	со	NOX	ROG	

Mitigated

ROG

NOX

СО

SO2

Fugitive PM10

Exhaust PM10

PM10 Total

Fugitive PM2.5

Exhaust PM2.5

PM2.5 Total

Bio- CO2

NBio- CO2

Total CO2

CH4

N20

CO2e

SubCategory					Ib/day					Ib/day	lay	
Architectural Coating	0.0255				0.0000	0.0000	0.0000	0.0000		0.0000		0.0000
Consumer Products	0.1990				0.0000	0.0000	0.0000 0.0000 0.0000	0.0000		0.0000		0.0000
ġ	1.0000 e- 004	1.0000e-	1.0400e-	0.0000	0.0000	0.0000	0.0000	0.0000	2.2000e-	2.2000 e- 003	1.0000e-	2.3500e-
Total	0.2247	ę	1.0400e- 003	0.0000	0.0000	0.0000	0.0000	0.0000	2.2000e- 003	N	1.0000e- 005	2.3500e- 003
7.0 Water Detail	etail											
7.1 Mitigation Measures Water	ı Measur	es Wate	7									
8.0 Waste Detail	etail											
8.1 Mitigation Measures Waste	ı Measur	es Wast	Ø									
9.0 Operational Offroad	nal Offr	oad										
Equip	Equipment Type		7	Number	Hours/Day		Days/Year	Horse Power	_	Load Factor	Fuel	Fuel Type
10.0 Stationary Equipment	ary Equ	ipment										
Fire Pumps and Emergency Generators	nd Emerg	lency Ge	nerators	0								
Equi	Equipment Type		_	Number	Hours/Day		Hours/Year	Harse Power		Load Factor	Fuel	Fuel Type
<u>Boilers</u>												
Equi	Equipment Type		_	Number	Heat Input/Day	ay	Heat Input/Year	Boiler Rating		Fuel Type		
User Defined Equipment	Equipme	D I										
Equi	Equipment Type			Number								
11.0 Vegetation	tion											
c												

CalEEMod Version: CalEEMod.2016.3.2

Page 1 of 1

Date: 8/23/2018 11:58 PM

11701 Gateway Boulevard Existing - Los Angeles-South Coast County, Annual

11701 Gateway Boulevard Existing

Los Angeles-South Coast County, Annual

1.0 Project Characteristics

1.1 Land Usage

Strip Mall 10.05 1000sqft 0.44 10,052.00 0	Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
	Strip Mall	10.05	1000sqft	0.44	10,052.00	0

1.2 Other Project Characteristics

1.2 Other Proj		CS			
Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	33
Climate Zone	11			Operational Year	2018
Utility Company	Los Angeles Department of Water & Power	ent of Water & Power			
CO2 Intensity (Ib/MWhr)	1227.89	CH4 Intensity (lb/MWhr)	0.029	N2O Intensity (Ib/MWhr)	0.006

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - Developer information

Construction Phase -

Vehicle Trips - City of Los Angeles Department of Transportation Referral Form: Traffic Study Assessment (CPC-2018-3430-DB-SPR), July 2018.

37.70		WD_TR	tblVehicleTrips WD_TR 44.32
37.70		ST_TR	tblVehicleTrips
0.44			
New Value	Default Value	Column Name	Table Name

	0.1229 0.5358	9.0000e- 005 004	Area 0.0410 0.0000 1.3000e- 004	Category	ROG NOX CO
			0.0000		SO2
				tons/yr	Fugitive PM10
0.0000	4.4100e- 003	6.0000e- 005	0.0000	s/yr	Exhaust PM10
0.0000	0.2602	6.0000e- 005	0.0000		Exhaust PM10 Total Fugitive PM10 PM2.5
	0.0686				Fugitive PM2.5
0.0000	4.1500e- 003	6.0000e- 005	0.0000		Exhaust PM2.5
0.0000	0.0727	6.0000e- 005	0.0000		Exhaust PM2.5 Total PM2.5
2.1416			0.0000		Bio- CO2
0.0000	327.3831	76.4605 76.4605	2.5000e- 004		Bio- CO2 NBio- CO2 Total CO2
0.0000 2.1416 0.1266 0.0000		76.4605	2.5000e- 2.5000e- 0.0000 0.0000 004 004	MT/yr	
0.1266	0.0218	1.8000e- 003	0.0000 0.0000	/yr	CH4
	0.0000	φ	Ŭ		N20
5.3056	327.9281	76.6204	2.7000e- 004		CO2e

Mitigated Operational

Total	Water	Waste	Mobile	Energy	Area	Category	
0.1640			0.1229	9.0000e- 005	0.0410		ROG
0.5366			0.5358	8.1000e- 004	0.0000		NOx
1.3830			1.3822	6.8000e- 004	1.3000e- 004		CO
3.5600e- 003			3.5600e- 003	0.0000	0.0000		SO2
0.2558			0.2558			tons/yr	Fugitive PM10
4.4700e- 003	0.0000	0.0000	4.4100e- 003			s/yr	Exhaust PM10
0.2603	0.0000	0.0000	0.2602	6.0000e- 005	0.0000		PM10 Total
0.0686			0.0686				Fugitive PM2.5
4.2100e- 003	0.0000	0.0000	4.1500e- 003	6.0000e- 005	0.0000		Exhaust PM2.5
0.0728	0.0000	0.0000	0.0727	6.0000e- 005	0.0000		PM2.5 Total
2.3777	0.2362	2.1416					Bio- CO2
412.0659	8.2220	0.0000		76.4605	2.5000e- 004		NBio- CO2
414.4437	0.2362 8.2220 8.4582 0.0245 6.1000e- 004	2.1416			2.5000 e - 004	MT/yr	Total CO2
0.1746	0.0245	0.1266	0.0218			7уг	CH4
1.0000e- 003	6.1000e- 004	0.0000	0.0000		0.0000		N2O
419.1065	9.2521	5.3056	327.9281	76.6204	2.7000e- 004		CO2e

2.0 Emissions Summary

2.2 Overall Operational

Unmitigated Operational

4.4 Fleet Mix	Land Use Strip Mall		4.3 Trip Type Information					Unmitigated 0.1229	Mitigated	Category		4.1 Mitigation Measures Mobile
	all se		Informa	Total	Strip Mall	Land Use		0.1229	0.1229		ROG	Measu
	H-V		tion		_	e		0.5358	0.5358		NOX	res Mob
	H-W or C-W 16.60							1.3822	1.3822		CO	ile
-	H-S or C-C 8.40	Miles				5		3.5600e- 003	3.5600e- 003		SO2	
-		-		378.96	378.96	Weekday	A	0.2558	å	tor	Fugitive PM10	
	H-O or C-NW H			378	371	Satu	Average Daily Trip Rate	4.4100e- 003		tons/yr	Exhaust PM10	
	H-W or C-W 16.60			378.96	378.96	Saturday S	/ Trip Rate	0.2602	1		PM10 Total	
-	H-S ar C-C 64.40			205.36	205.36	Sunday		0.0686	ê na ma n		Fugitive PM2.5	
		-						4.1500e- 003	4.1500e- 003		Exhaust PM2.5	
	H-O or C-NW 19.00			673,	673	Annua	Unmit	0.0727	0.0727		PM2.5 Total	
	Primary 45			,824	673,824	Annual VMT	tigated	0.0000	0.0000		Bio- CO2	
								327.3831	327.3831		NBio- CO2	
	Diverted 40	Trip Purpose %				Þ		327.3831 327.3831 0.0218	327.3831 327.3831	S	Total CO2	
	Pas			673,824	673,824	Annual VMT	Mitigated	0.0218	0.0218	MT/yr	CH4	
	Pass-by 15							0.0000	0.0000		N2O	
			l					327.9281			CO2e	

2.3777 412.0659 414.4437 6 Bio-CO2 NBio-CO2 Total CC 0.00 0.00 0.00	412.0659 414.44 CO2 NBio-CO2 T 00 0.00
1659 414.4437 NBio-CO2 Total CC 0.00 0.00	1746 1.0000 003 CH4 0.00
	1746 1.0000 003 CH4 0.00

<u>Mitigated</u>

	NaturalGas Use	ROG	NOX	8	SO2	Fugitive PM10	Exhaust PM10	Exhaust PM10 Total Fugitive PM10 PM2.5	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total Bio-CO2 NBio-CO2 Total CO2 CH4	Bio-CO2	NBio- CO2	Total CO2	CH4	N20	CO2e
Land Use	kBTU/yr					tons/yr	з/уг							MT/yr	/уг		
Strip Mall	16485.3	16485.3 9.0000e- 005	8.1000e- 004	- 6.8000e- 004	0.0000		6.0000e- 005	6.0000e- 005		6.0000e- 005	6.0000e-005 0.0000 0.8797 0.8797 2.0000e- 2.0000e- 0.8850 005 005	0.0000	0.8797	0.8797	2.0000e- 005	2.0000e- 005	0.8850
Total		9.0000e- 005	8.1000e- 004	6.8000e- 004	0.0000		6.0000e- 005	6.0000e- 005		6.0000e- 005	6.0000e-005 0.0000		0.8797	0.8797	0.8797 2.0000e- 2.0000e- 005 005		0.8850

	ROG	NOx	co	S02	Fugitive PM10	Exhaust PM10	PM10 Total Fugitive PM2.5	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio-CO2	Bio-CO2 NBio-CO2 Total CO2	Total CO2	CH4	N20	CO2e
Category					tons/yr	/yr							MT/yr	yr		
Electricity						0.0000	0.0000		0.0000	0.0000	0.0000	75.5808 75.5808 1.7900e- 3.7000e-	75.5808	1.7900e- 003	3.7000e-	75.7355
Electricity						0.0000	0.0000		0.0000	0.0000	0.0000	75.5808	75.5808	1.7900e-	3.7000e-	75.7355
Unmitigated														003	004	
NaturalGas	9.0000e-	8.1000e-	6.8000e-	0.0000		6.0000e-	6.0000e-		6.0000e-	6.0000e-	0.0000	0.8797 0.8797			2.0000e-	0.8850
Mitigated	005	004	004			005	005		005	005				005 005	005	
NaturalGas	9.0000e-	8.1000e-	6.8000e-	0.0000		6.0000e-	6.0000e-		6.0000e-	6.0000e-	0.0000	0.8797	0.8797	2.0000e- 2.0000e-	2.0000e-	0.8850
Unmitigated	005	004	004			005	005		005	005				005	005	

5.2 Energy by Land Use - NaturalGas

<u>Unmitigated</u>

Strip Mall 0.547972 0.046127 0.199330 0.125604 0.017697 0.005953 0.018360 0.027618 0.002341 0.002583 0.004804 0.000667 0.000944

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

0.8850	2.0000e- 005	0.8797 2.0000e- 005		0.8797	000e-005 0.0000	6.0	6.0000e- 005		6.0000e- 005	6.0000e- 005		0.0000	6.8000e- 004	8.1000e- 004	9.0000e- 005		Total
0.8850	2.0000e- 005	2.0000e- 005	0.8797	0.8797	0.0000	6.0000e- 6.0000e-005 0.0000 0.8797 0.8797 2.0000e- 005 005 0.000	6.0000e- 005		6.0000e- 005	6.0000e- 005		0.0000	6.8000e- 004	8.1000 e - 004	16485.3 9.0000e- 005	16485.3	Strip Mall
		MT/yr	S							tons/yr	tor					kBTU/yr	Land Use
CO2e	N20	CH4	Total CO2	12.5 Total Bio-CO2 NBio-CO2 Total CO2	Bio-CO2	PN	Exhaust PM2.5	Fugitive PM2.5	Exhaust PM10 Total PM10		Fugitive PM10	SO2	со	NOx	ROG	NaturalGas Use	

5.3 Energy by Land Use - Electricity <u>Unmitigated</u>

75.7355	3.7000e- 004	1.7900e- 003	75.5808		Total
	004	003			
75.7355	3.7000e-	1.7900e- 3.7000e-	75.5808	135702	Strip Mall
	MT/yr	LW		kWh/yr	Land Use
				Use	
CO2e	N20	CH4	Total CO2	Electricity	

Mitigated

Strip Mail 135702 75.5808 1.7900e- 3.7000e- 75.7355 003 004 75.7355	Land Use	
135702	kWh/yr	Electricity Use
75.5808		Total CO2
75.5808 1.7900e- 3.7000e- 003 004	M	CH4
3.7000e- 004	MT/yr	N20
75.7355		CO2e

			004	004									004		000	
2.7000e-		0.0000 0.0000	T		0.0000	0.0000	0.0000		0.0000 0.0000	0.0000			0.0000 1.3000e-	0.0000	1.0000e-	Landscaping
																Products
0.0000	0.0000	0.0000	0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000	0.0000	0.0000	0.0000		0.0000				0.0000 0.0000	0.0363	Consumer
																Coating
0.0000	0.0000	0.0000	0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000	0.0000	0.0000		0.0000 0.0000	0.0000					4.6600e-	Architectural
		'Yr	MT/yr							tons/yr	ton					SubCategory
							PM2.5	PM2.5		PM10	PM10					
CO2e	N20	CH4	Total CO2	Bio- CO2 NBio- CO2 Total CO2	Bio- CO2	Exhaust PM2.5 Total	Exhaust		Exhaust PM10 Total Fugitive	Exhaust	Fugitive	SO2	со	NOX	ROG	

6.2 Area by SubCategory <u>Unmitigated</u>

Unmitigated	Mitigated	Category	
0.0410	0.0410 0.0000 1.3000e- 0.0000 004		ROG
0.0410 0.0000 1.3000e- 004	0.0000		NOX
1.3000e- 004	1.3000e- 004		CO
	0.0000		SO2
0.0000 0.0000 0.0000 0.0000		tons/yr	Fugitive PM10
0.0000 0.0000	0.0000 0.0000	/yr	Exhaust PM10
0.0000	0.0000		Exhaust PM10 Total Fugitive PM10 PM2.5
			Fugitive PM2.5
0.0000	0.0000		Exhaust PM2.5
0.0000	0.0000 0.0000		Exhaust PM2.5 Total PM2.5
0.0000	0.0000		Bio- CO2
2.5000e- 004	2.5000e- 004		NBio- CO2
2.5000 e- 004	2.5000 e- 004	MT/yr	Bio- CO2 NBio- CO2 Total CO2
0.0000 2.5000e- 2.5000e- 0.0000 0.0000 2.7000e- 004 004 004 004 004	0.0000	/yr	CH4
0.0000	0.0000		N20
2.7000e- 004	2.7000e- 004		CO2e

6.0 Area Detail

Total

75.5808

1.7900e-003

3.7000e-004

75.7355

6.1 Mitigation Measures Area

Total 0.0410 0.0000 1.3000e-004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2.5000e-004 2.5000e-004 0.0000 0.0000 2.7000e-004

<u>Mitigated</u>

Total	Landscaping	Consumer Products	Architectural Coating	SubCategory	
 0.0410	1.0000e- 005	0.0363	4.6600e- 003		ROG
0.0000	0.0000				NOX
1.3000e- 004	1.3000e- 004				CO
0.0000	0.0000				SO2
				tons/yr	Fugitive PM10
0.0000	0.0000	0.0000	0.0000	s/yr	Exhaust PM10
0.0000	0.0000	0.0000 0.0000	0.0000		Exhaust PM10 Total Fugitive PM10 PM2.5
					Fugitive PM2.5
0.0000	0.0000	0.0000	0.0000		Exhaust PM2.5
0.0000	0.0000	0.0000	0.0000		Exhaust PM2.5 Total PM2.5
0.0000	0.0000	0.0000	0.0000		Bio- CO2
0.0000 2.5000e- 004		0.0000 0.0000 0.0000	0.0000 0.0000		Bio- CO2 NBio- CO2 Total CO2
2.5000e- 004	2.5000 e- 004	0.0000	0.0000	MT/yr	Total CO2
0.0000				/yr	CH4
0.0000	0.0000				N20
2.7000e- 004	2.7000e- 004	0.0000	0.0000		CO2e

7.0 Water Detail

7.1 Mitigation Measures Water

Unmitigated	Mitigated	Category	
8.4582	8.4582		Total CO2
0.0245	0.0245	MT/yr	CH4
6.1000e- 004	6.1000e- 004	'yr	N20
9.2521	9.2521		CO2e

7.2 Water by Land Use

Unmitigated

Total	Strip Mall	Land Use	
	0.744429 / 0.456263	Mgal	Indoor/Outd Total CO2 oor Use
8.4582	8.4582		Total CO2
0.0245	0.0245	M	CH4
6.1000e- 004	6.1000e- 004	MT/yr	N20
9.2521	9.2521		CO2e

Mitigated

Total	Strip Mall	Land Use	
	0.744429 / 0.456263	Mgal	Indoor/Outd Total CO2 oor Use
8.4582	8.4582		Total CO2
0.0245	0.0245	M	CH4
6.1000e- 004	0.0245 6.1000e- 004	MT/yr	N20
9.2521	9.2521		CO2e

8.0 Waste Detail

8.1 Mitigation Measures Waste

Category/Year

Total	Strip Mall	Land Use	
	10.55	tons	Waste Disposed
2.1416	2.1416		Total CO2
0.1266	0.1266	MT/yr	CH4
0.0000	0.0000	7уг	N20
5.3056	5.3056		CO2e

<u>Mitigated</u>

Total	Strip Mall	Land Use	
	10.55	tons	Waste Disposed
2.1416	2.1416		Total CO2
0.1266	0.1266	MT/yr	CH4
0.0000	0.0000	ſ/yr	N20
5.3056	5.3056		CO2e

Total CO2 CH4 N2O CO2e MTyr MTyr 5.3056 0.0000 5.3056 Unmitigated 2.1416 0.1266 0.0000 5.3056

8.2 Waste by Land Use

Unmitigated

9.0 Operational Offroad

Equipment Type	
Number	
Hours/Day	
Days/Year	
Horse Power	
Load Factor	
Fuel Type	

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Boilers	Equipment Type
	Number
	Hours/Day
	Hours/Year
	Horse Power
	Load Factor
	Fuel Type

Equipment Type
Number
Heat Input/Day
Heat Input/Year
Boiler Rating
Fuel Type

<u>User Defined Equipment</u>

Equipment Type Number

11.0 Vegetation

CalEEMod Version: CalEEMod.2016.3.2

Page 1 of 1

Date: 8/24/2018 12:00 AM

11701 Gateway Boulevard Existing - Los Angeles-South Coast County, Winter

11701 Gateway Boulevard Existing

Los Angeles-South Coast County, Winter

1.0 Project Characteristics

1.1 Land Usage

|--|

1.2 Other Proj	1.2 Other Project Characteristics	U.			
Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	33
Climate Zone	11			Operational Year	2018
Utility Company	Los Angeles Department of Water & Power	nt of Water & Power			
CO2 Intensity (Ib/MWhr)	1227.89	CH4 Intensity (Ib/MWhr)	0.029	N2O Intensity (Ib/MWhr)	0.006

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - Developer information

Construction Phase -

Vehicle Trips - City of Los Angeles Department of Transportation Referral Form: Traffic Study Assessment (CPC-2018-3430-DB-SPR), July 2018.

tblVehicleTrips WD_TR 44.32	tblVehicleTrips ST_TR 42.04	tblLandUse	Table Name
WD_TR	ST_TR	LotAcreage	Column Name
			Default Value
37.70	37.70	0.44	New Value

Percent Reduction		Total	Mobile		Enerav		A	Category	
0.00	ROG	0.9719	0.7467		4.9000e-004 4.4300e-	0.2247	0 000		ROG
0.00	NOX	3.0966	3.0922	003	4.4300e-	'			NOX
		8.0725	8.0677	003	3.7200e-	003	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		СО
0.00	ĉ	0.0206	0.0206		3.0000e-				SO2
0.00	SO2 F	1.5334	1.5334						Fugitive PM10
0.00	Fugitive PM10	0.0264	4 0.0261		3.4000e-	0.0000		lb/day	e Exhaust PM10
0.00	Exhaust PM10	4 1.5599	1 1.5595)e- 3.4000e-		••		st PM10 Total
0.00	PM10 Total				0e-	2			
0.00	PM2.5	0.4105	0.4105 (ω				Fugitive E PM2.5 I
0.00	• Exhaust PM2.5	0.0249	0.0246	004	3.4000e-	0.0000			Exhaust F PM2.5
		0.4354	0.4350	004	3.4000e-	0.0000	0 0000		PM2.5 Total
0.00	PM2.5 Bio Total								Bio- CO2
0.00	Bio- CO2 NE	2,094.89	2,089.5755 2,089.5755		5.3136	2.2000			NBio- CO2
0.00	NBio-CO2 Total CO2	2,094.8912 2,094.8912 0.1424	2,089.5755 2,089.5755		5.3136	003 003 005			2 Total CO2
0.00	otal CO2	912 0.1	755 0.1423		6 1.0000e-	00		lb/day	02 CH4
0.00	CH4				_	005			
0.00	N20	1.0000e- 2,0 004			.0000e-				N2O
0.00	CO2e	2,098.4794	2,093.1319		5.3451	2.3300e- 003	0000		CO2e

Mitigated Operational

004															
0.1424		2,094.8912	2,094.8912 2,094.8912 0.1424		0.4354	0.0249	0.4105	1.5599	0.0264	1.5334	0.0206	8.0725	3.0966	0.9719	Total
0.1423	0	2,089.5755 2,089.5755			0.4350	0.0246	0.4105		0.0261	1.5334	0.0206		3.0922	0.7467	Mobile
004					004	004		004	004		005	003	003		
1.0000e-		5.3136			3.4000e-	3.4000e-		3.4000e-	3.4000e-		3.0000e-		4.4300e-	4.9000e-004 4.4300e-	
05	005	003	003									003	005		
000e	1.0000e-	2.2000e-	2.2000e-		0.0000 0.0000	0.0000		0.0000 0.0000	0.0000		0.0000	1.0400e-	1.0000e-	0.2247	Area
	Ib/day	Ib/							łay	lb/day					Category
						PM2.5	PM2.5		PM10	PM10					
4	CH4	Total CO2	NBio- CO2 Total CO2	Bio- CO2	Exhaust PM2.5 Total	Exhaust	Fugitive	Exhaust PM10 Total	Exhaust	Fugitive	SO2	00	NOX	ROG	

2.0 Emissions Summary

2.2 Overall Operational

Unmitigated Operational

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

	ROG	NOX	СО	SO2	Fugitive PM10	Exhaust PM10	Exhaust PM10 Total Fugitive PM10 PM2.5	Fugitive PM2.5	Exhaust PM2.5 Total PM2.5	PM2.5 Total	Bio- CO2	Bio- CO2 NBio- CO2 Total CO2 CH4	Total CO2	CH4	N2O	CO2e
Category					Ib/day	ay							lb/day	у		
Mitigated	0.7467	0.7467 3.0922 8.0677 0.0206 1.5334 0.0261 1.5595 0.4105 0.0246 0.4350	8.0677	0.0206	1.5334	0.0261	1.5595	0.4105	0.0246	0.4350		2,089.5755 2,089.5755 0.1423	2,089.5755	0.1423		2,093.1319
Unmitigated	0.7467	0.7467 3.0922 8.0677 0.0206 1.5334 0.0261 1.5595 0.4105 0.0246 0.4350	8.0677	0.0206	1.5334	0.0261	1.5595	0.4105	0.0246	0.4350		2,089.5755 2,089.5755 0.1423	2,089.5755	0.1423		2,093.1319

4.2 Trip Summary Information

_					
		Aver	Average Daily Trip Rate	Unmitigated	Mitigated
	Land Use	Weekday	Saturday Sunday	Annual VMT	Annual VMT
	Strip Mall	378.96	378.96 205.36	673,824	673,824
	Total	378.96	378.96 205.36	673,824	673,824

4.3 Trip Type Information

-	4.4 Fleet Mix
,	
,	
ĺ	

4.4 Fleet Mix													
 Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
 Strip Mall	0.547972	0.046127	0.199330	0.125604	0.017697	0.005953	0.018360	0.027618	0.002341	0.002583	0.004804	0.000667	0.000944

5.0 Energy Detail

riistorical Eriely oset in	Historical Energy Lleo: N		

5.1 Mitigation Measures Energy

	004	004					004		004	004		005	003	003	004		
	1.0000e-	5.3136 1.0000e- 1.0000e-	5.3136	5.3136		3.4000e-004	3.4000e-		3.4000e-	3.4000e-		3.0000e-	3.7200e-	4.4300e-	4.9000e-		Total
I	004	004					004		004	004		005	003	003	004		
5.3451	1.0000e-	5.3136 1.0000e- 1.0000e-	5.3136	5.3136		3.4000e-004	3.4000e-		60	3.4000e-			- 3.7200e-	4.4300e	4.9000e-	0.0451652 4.9000e-	Strip Mall
		Ib/day	Ib/							Ib/day	/dI					kBTU/yr	Land Use
							PM2.5	PM2.5		PM10	PM10					Use	
	N20	CH4	Total CO2	NBio-CO2	Bio- CO2	PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 CH4	Exhaust	Fugitive	Exhaust PM10 Total Fugitive	Exhaust	Fugitive	S 02	co	NOX	ROG	Natural Gas	

Mitigated

Total	Strip Mall	Land Use	
	45.1652	kBTU/yr	NaturalGas Use
4.9000e- 004	4.9000e- 004		ROG
4.4300e- 003	4.4300e- 003		NOx
3.7200e- 003	3.7200e- 003		co
3.0000e- 005	3.0000e- 005		S 02
		Ib/day	Fugitive PM10
3.4000e- 004	3.4000e- 004	ау	Exhaust PM10
3.4000e- 004	3.4000e- 004		Exhaust PM10 Total PM10
			Fugitive PM2.5
3.4000e- 004	3.4000e- 004		Exhaust PM2.5
3.4000e-004	3.4000e-004		PM2.5 Total Bio- CO2 NBio- CO2 Total CO2
			Bio- CO2
5.3136	5.3136		NBio- CO2
5.3136 1.0000e- 1.0000e- 004 004	5.3136	lb/day	Total CO2
1.0000e- 004	1.0000e- 004	lay	CH4
	5.3136 1.0000e- 1.0000e- 004 004		N20
5.3451	5.3451		CO2e

NaturalGas Unmitigated	NaturalGas Mitigated	Category	
<u>и</u>			ROG
4.9000e-004 4.4300e- 003	4.9000e-004 4.4300e- 003		NOX
3.7200e- 003	3.7200e- 003		CO
3.7200e- 003 005	3.7200e- 003 005		SO2
		/dI	Fugitive PM10
3.4000e- 004	3.4000e- 004	Ib/day	Exhaust PM10
3.4000e- 004 3.4000e- 004	3.4000e- 004		Exhaust PM10 Total Fugitive PM10 PM2.5
			Fugitive PM2.5
3.4000e- 004	3.4000e- 004		Exhaust PM2.5
3.4000e- 004			Exhaust PM2.5 Total PM2.5
			Bio-CO2
5.3136	5.3136		NBio- CO2
		lb/day	Bio- CO2 NBio- CO2 Total CO2
1.0000e- 004	1.0000e- 004	Зау	CH4
1.0000e- 004	1.0000e- 004		N20
5.3451	5.3451		CO2e

5.2 Energy by Land Use - NaturalGas <u>Unmitigated</u>

6.0 Area Detail

6.1 Mitigation Measures Area

003		005	003	003							•••••		003	005		
2.3500e-		1.0000e-	2.2000e-	2.2000e- 2.2000e- 1.0000e- 2.3500e-			0.0000 0.0000		1.0000e- 1.0400e- 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000		0.0000	1.0400e-	0.2247 1.0000e-	0.2247	Unmitigated
003		005	003	003									003	005		
2.3500e-		1.0000e-	2.2000e-	2.2000e-		0.0000 0.0000	0.0000		0.0000 0.0000	0.0000		0.0000	1.0400e-	0.2247 1.0000e- 1.0400e- 0.0000	0.2247	Mitigated
		łay	Ib/day							day	Ib/day					Category
							PM2.5	PM2.5 PM2.5		PM10	PM10					
CO2e	N20	CH4	Total CO2	NBio- CO2 Total CO2	Bio- CO2	Exhaust PM2.5 Total	Exhaust	Fugitive	Fugitive Exhaust PM10 Total Fugitive	Exhaust	Fugitive	SO2	СО	NOX	ROG	

6.2 Area by SubCategory

<u>Unmitigated</u>

Coating Consumer Products Landscaping

0.1990 1.0000e-004

Total

0.2247

1.0000e-005 **1.0000e-**

1.0400e-003

0.0000

0.0000

0.0000

0.0000

0.0000

2.2000e-003

1.0400e-003

0.0000

0.0000

0.0000

0.0000

0.0000

2.2000e-003

2.2000c-003 **2.2000e-**003

1.0000e-005 **1.0000e-**005

2.3500e-003 2.3500e-003

SubCategory

ROG

NOx

СО

SO2

Fugitive PM10

Exhaust PM10

PM10 Total

Fugitive PM2.5

Exhaust PM2.5

PM2.5 Total Bio- CO2 NBio- CO2 Total CO2

CH4

N20

CO2e

lb/day

lb/day

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

....

0.0000

0.0000 0.0000

0.0000

0.0000

Architectural

.....

0.0255

	ROG	NOX	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Il Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	I Bio- CO2	NBio- CO2	2 Total CO2	D2 CH4	4 N2O		CO2e
SubCategory			·		Ib/	lb/day	ľ							lb/day	·		
*						-	-		-								>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
Coating	0.0400					0.0000	0.0000		0.0000	•••••			0.0000				0.0000
Consumer	0.1990					0.0000	0.0000		0.0000	0.0000			0.0000		0		0.0000
Products																	
Landscaping	1.0000e-004		1.0400e-	0.0000		0.0000	0.0000		0.0000	0.0000		2.2000e-	N	_	0e-	2	2.3500e-
		005	003									003	003	005			003
Total	0.2247	1.0000e-	1.0400e-	0.0000		0.0000	0.0000		0.0000	0.0000		2.2000e-	2	.1	0e-	2	2.3500e-
		005	003									003	003	005	0.		003
7.0 Water Detail	J otail																
7.1 Mitigation Measures Water	Jeran																
8.0 Waste Detail	on Measu	res Wat	er														
	on Measu Detail	res Wat	er														
ס.ו ואוונוטַמנונ	7.1 Mitigation Measures Water 8.0 Waste Detail 8.1 Mitigation Measures Waste	res Wat	te er														
9.0 Operational Offroad	on Measu Detail on Measu	res Wat	te er														
9.0 Operat	tion Measu e Detail tion Measu ational Off	res Wat	er e	Number		Hours/Day	Y	Days	Days/Year	E	Horse Power		Load Factor		Fuel Type	e	
9.0 Operational Offroad Equipment Type	on Measu Detail on Measu ional Offi	res Wat	t er	Number		Hours/Da	Y	Day	s/Year	Ŧ	orse Power		Load Facto		Fuel Typ	ĕ	
9.0 Operational Offroad Equipment Type N Equipment Type N Fire Pumps and Emergency Generators	on Measu Detail ional Offi ional Offi	res Wat	enerato	rs Number		Hours/Da		Days	s/Year		orse Power		Load Facto		Fuel Typ	ŏ	
.0 Operat 0.0 Statio ire Pumps	Equipment Type	res Wat	enerato	Number		Hours/Day	· · · · · · · · · · · · · · · · · · ·	Hour ays	DaysYrear		Horse Power		Load Factor		Fuel Type		
9.0 Operat	on Measu Detail ional Offi nary Equ and Emer	res Wat	enerato	Number		Hours/Da	₹	Hour Days	s/Year		orse Power		Load Facto		Fuel Typ		

<u>Mitigated</u>

<u>User Defined Equipment</u>

Equipment Type	
Number	

11.0 Vegetation

CalEEMod Version: CalEEMod.2016.3.2

Page 1 of 1

11701 Gateway Boulevard Future - Los Angeles-South Coast County, Summer

11701 Gateway Boulevard Future

Los Angeles-South Coast County, Summer

1.0 Project Characteristics

1.1 Land Usage

Enclosed Parking with Elevator 80.00 Space	Apartments Mid Rise 73.00 Dwelling Unit	Strip Mall	Land Uses
80.00	73.00	5.34	Size
Space	Dwelling Unit	1000sqft	Metric
0.10	0.30	0.04	Lot Acreage
32,000.00 0	54,264.00 209		Floor Surface Area
0	209	0	Population

1.2 Other Project Characteristics

CO2 Intensity (Ib/MWhr)	Utility Company	Climate Zone	Urbanization
1227.89	Los Angeles Department of Water & Power	11	Urban
CH4 Intensity (Ib/MW hr)	nt of Water & Power		Wind Speed (m/s)
0.029			2.2
N2O Intensity (lb/MWhr)		Operational Year	Precipitation Freq (Days)
0.006		2021	33

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - Developer information

Construction Phase - Consultant assumptions

Vehicle Trips - City of Los Angeles Department of Transportation Referral Form: Traffic Study Assessment (CPC-2018-3430-DB-SPR), July 2018.

Grading - Developer information. Assumes 24 feet of excavation for entire site.

Demolition - Developer information

Trips and VMT - Assumes 10 CY capacity per haul truck.

Construction Off-road Equipment N	Construction Off-road Equipment Mitigation - Assumes SCAQMD Rule 403 control efficiencies	403 control efficiencies	
Table Name	Column Name	Default Value	New Value
tblConstDustMitigation	CleanPavedRoadPercentReduction	0	46
tblConstructionPhase	NumDays	10.00	22.00
tblConstructionPhase	NumDays	1.00	20.00
tblConstructionPhase	NumDays	2.00	21.00
tblConstructionPhase	NumDays	100.00	436.00
tblConstructionPhase	NumDays	5.00	132.00
tblFireplaces	NumberGas	62.05	0.00
tblFireplaces	NumberNoFireplace	7.30	73.00
tblFireplaces	NumberWood	3.65	0.00
tblGrading	AcresOfGrading	0.00	0,44
tblGrading	AcresOfGrading	10.00	0.50
tblGrading	MaterialExported	0.00	14,311.00
tblLandUse	LandU seSquareFeet	73,000.00	54,264.00
tblLandUse	LotAcreage	0.12	0.04
tblLandUse	LotAcreage	1.92	0.30
tblLandUse	LotAcreage	0.72	0.10
tblTripsAndVMT	HaulingTripLength	20.00	30.00
tblTripsAndVMT	HaulingTripLength	20.00	30.00
tblTripsAndVMT	HaulingTripNumber	1,789.00	1,431.00
tbiVehicleTrips	НО_ТТР	40.60	41.00
tblVehicleTrips	HS_TTP	19.20	19.00
tblVehicleTrips	HW_TTP	40.20	40.00
tblVehicleTrips	ST_TR	42.04	37.75
tblVehicleTrips	ST_TR	6.39	5.44
tblVehicleTrips	SU_TR	5.86	5.44
tblVehicleTrips	WD_TR	44.32	37.75
tblVehicleTrips	WD_TR	6.65	5.44

Woodstoves - Developer information

	Maximum	2020	2019	Year	
ROG	4.5460	4.5460	1.8991		ROG
NOX	36.5537	12.2938			NOX
СО	14.4109	13.1994	14.4109		CO
S02	0.0912	0.0277			S02
Fugitive PM10	1.5475	0.6103	1.5475	Ib/day	Fugitive PM10
Exhaust PM10	0.6508	0.6480		ау	Exhaust PM10
Exhaust PM10 Total Fugitive PM10 PM2.5	2.1983	1.2583	2.1983		Exhaust PM10 Total PM10
Fugitive PM2.5	0.5142	0.1717	0.5142		Fugitive PM2.5
Exhaust PM2.5	0.6212	0.6053	0.6212		Exhaust PM2.5
PM2.5 Total	1.1354	0.7770	1.1354		PM2.5 Total
Bio- CO2	0.0000	0.0000	0.0000		Bio- CO2
NBio-CO2 Total CO2	9,725.2626	2,736.6733 2,736.6733	9,725.2626		NBio- CO2 Total CO2
Total CO2	9,725.2626 9,725.2626 0.7732	0.0000 2,736.6733 2,736.6733 0.4326	0.0000 9,725.2626 9,725.2626 0.7732	Ib/day	Total CO2
CH4	0.7732	0.4326	0.7732	lay	CH4
N20	0.0000	0.0000			N20
CO2e	9,744.5923	2,747.4880	9,744.5923		CO2e

Mitigated Construction

Maximum	2020	2019	Year	
4.5460	4.5460	1.8991		ROG
36.5537	12.2938 13.1994 0.0277	36.5537 14.4109 0.0912 2.7502 0.6508 3.4010		NOX
36.5537 14.4109 0.0912	13.1994	14.4109		S
0.0912	0.0277	0.0912		SO2
2.7502	1.0062	2.7502	Ib/day	Fugitive PM10
0.6508	0.6480 1.6542	0.6508	ау	Exhaust PM10 Total PM10
3.4010	1.6542	3.4010		
0.9471	0.2689	0.9471 0.6212		Fugitive PM2.5
0.6212	0.6053	0.6212		Exhaust PM2.5
1.5683	0.8742	1.5683		Exhaust PM2.5 Total PM2.5
0.0000	0.0000	0.0000		Bio- CO2
9,725.2626	2,736.6733	9,725.2626		NBio- CO2 Total CO2
0.0000 9,725.2626 9,725.2626 0.7732	0.0000 2,736.6733 2,736.6733 0.4326 0.0000	0.0000 9,725.2626 9,725.2626 0.7732 0.0000 9,744.5923	Ib/day	Total CO2
0.7732	0.4326	0.7732	lay	CH4
0.0000 9,744.5923	0.0000 2,747.4880	0.0000		N20
9,744.5923	2,747.4880	9,744.5923		CO2e

tblW oodstoves tblW oodstoves NumberCatalytic NumberNoncatalytic 3.65 3.65 0.00 0.00

2.0 Emissions Summary

and the second se

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

0 CO2e	14 N20	CO2 CH4	NBio-CO2 Total CO2	02 NBio-(5 Bio- CO2	ist PM2.5 5 Total	PM2.5	tal Fugitive PM2.5	Exhaust PM10 Total Fugitive PM10 PM2.5		Fugitive PM10	S 02	CO	NOX	ROG	
3,037.7040	4.0300e- 3,037.7040 003	0.2070	0,029.0094	3,023.0034 3,023.0034		1.0739	0.0007	0.9902	3.700	0.0003 	0.0999	0.0400	20.0141	3.4	2.3000	IOIAI
4,805.6588		0.2530		1,799.3329	×		-						· · · · ·			Mobile
220.9991	1	4.2100e- 003	219.6935 4.2100e- 003	219.6935			ļ		ļ	ļ			~	Į		Energy
11.1270	0.0000	0.0106	10.8630	10.8630	0.0000	0.0333	0.0333	0	0.0333	0.0333 0.	0	3.2000 e - 004	6.0444 3	0.0698	1.4843	Area
		ĄĘ	Ib/day								Ib/day					Category
CO2e	N20	CH4	Total CO2	NBio- CO2 Total CO2	Bio- CO2	PM2.5 Total	Exhaust PM2.5	Fugitive E PM2.5 F		Exhaust PM10 Total PM10	Fugitive E PM10 I	SO2 F	CO	NOX	ROG	

Mitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	Exhaust PM10 Total Fugitive PM10 PM2.5	Fugitive PM2.5	Exhaust PM2.5	Exhaust PM2.5 Total PM2.5	Bio- CO2	Bio- CO2 NBio- CO2 Total CO2	Total CO2	CH4	N20	CO2e
Category					Ib/day	ay							Ib/day	ay		
Area	1.4843	0.0698	6.0444	3.2000e- 004			0.0333		0.0333 0.0333	0.0333	0.0000	10.8630	10.8630	10.8630 10.8630 0.0106 0.0000 11.1270	0.0000	11.1270
Energy	0.0201	0.0201 0.1722 0.0743	0.0743	1.1000e- 003	1.1000e- 003	0.0139	0.0139 0.0139 0.0139		0.0139	0.0139		219.6935	219.6935	219.6935 219.6935 4.2100e- 4.0300e- 220.9991 003 003	4.0300e- 003	220.9991
Mobile	1.0824	4.9751	4.9751 13.8954 0.0472	0.0472	3.6999	0.0391	3.7389	0.9902	0.0365			4,799.3329	4,799.3329 4,799.3329 0.2530	0.2530		4,805.6588
Total	2.5868	5.2171	20.0141	0.0486	3.6999	0.0863	3.7861	0.9902	0.0837	1.0739	0.0000	5,029.8894	5,029.8894	5,029.8894 5,029.8894 0.2678 4.0300e- 5,037.7848 003	4.0300e- 003	5,037.7848

Percent Reduction 0.00 0.00 0.00 0.00 42.56 0.00 31.62 43.59 0.00 21.70 0.00 0.00 0.00 0.00 0.00 0.00

2.2 Overall Operational

Unmitigated Operational

	Percent Reduction	
	0.00	
	0.00	
	0.00	
	0.00	
	0.00	
	0.00	
	0.00	
	0.00	
	0.00	
	0.00	
	0.00	
	0.00	
	0.00	
	0.00	
	0.00	
	0.00	

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days
-	Demolition	Demolition	1/2/2019	1/15/2019	ហ	22
2	2 Site Preparation Site Preparation 2/1/2019 2/28/2019 5	Site Preparation	2/1/2019	2/28/2019		20
ω	Grading		3/1/2019 3/29/2019	3/29/2019	თ	21
4	Building Construction Building Construction	- 1	4/1/2019 11/30/2020	11/30/2020	ப	436
5	5 Architectural Coating Architectural Coating		7/1/2020 12/31/2020		5	132

Acres of Grading (Site Preparation Phase): 0.5

Acres of Grading (Grading Phase): 0.44

Acres of Paving: 0.1

Residential Indoor: 109,885; Residential Outdoor: 36,628; Non-Residential Indoor: 8,015; Non-Residential Outdoor: 2,672; Striped Parking Area:

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Architectural Coating	Air Compressors	1	6.00	78	0.48
Demolition	Concrete/Industrial Saws 1 8.00	Т	8.00	81	81 0.73
	Concrete/Industrial Saws 1 8.00	1	8.00	81	81 0.73
	Cranes 1 4.00	-	4.00	231	231 0.29
Building Construction	Forklifts 2	2	6.00	68	89 0.20
Site Preparation	Graders 1 8.00	-	8.00		0.41
	Rubber Tired Dozers 1 1.00	1	1.00		0.40
	Rubber Tired Dozers 1 1.00	1	1.00	247	0.40
	Tractors/Loaders/Backhoes 2 8.00	2	8.00	97	97 0.37
	Tractors/Loaders/Backhoes 2 6.00	2	6.00	97	97 0.37
Grading Tractors/Loaders/Backhoes 2 6.00	Tractors/Loaders/Backhoes 2 6.00	2	6.00		97 0.37

Site Preparation Tractors/Loaders/Backhoes 1 8.00 97 0.37	Tra	ctors/Loaders/Back	choes		→	8.00		97	0.37	
Trips and VMT										
Phase Name	Offroad Equipment	Worker Trip	Vendor Trip	Hauling Trip Worker Trip	Worker Trip	Vendor Trip	Hauling Trip	Worker Vehicle	Vendor Vehicle Hauling Vehicle	Hauling Vehicle
	Count	Number	Number	Number	Length	Length	Length	Class	Class	Class
Architectural Coating	1	14.00	0.00	0.00	14.70	6.90		20.00 LD_Mix	HDT_Mix	HHDT
Building Construction	5 68.00	68.00	14.00	0.00	14.70	6.90		20.00 LD_Mix	HDT_Mix	ннот
Demolition	4	10.00	0.00	46.00	14.70	6.90		30.00 LD_Mix	HDT_Mix	HHDT
Grading	4	10.00	0.00	1,431.00	14.70	6.90	30.00	30.00 LD_Mix	HDT_Mix	HHDT
Site Preparation	2	5.00	0.00	0.00	14.70	6.90	20.00 LD_Mix	_D_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Replace Ground Cover

Water Exposed Area

Clean Paved Roads

3.2 Demolition - 2019

Unmitigated Construction On-Site

1,165.1847		0.2211	1,159.6570 1,159.6570 0.2211	1,159.6570		0.5806	0.5125	0.0681	0.9868	0.5371	0.4498	7.6917 0.0120	7.6917	8.6039	0.9530	Total
1,165.1847		0.2211	1,159.6570 1,159.6570 0.2211	1,159.6570 1,159.6570 0.2211		0.5125	0.5125		0.5371	0.5371		0.0120	7.6917	8.6039	0.9530	Off-Road
0.0000			0.0000			0.0681	0.0000	0.0681 0.0000		0.0000	0.4498					Fugitive Dust
		ay	lb/day							ay	Ib/day					Category
CO2e	N20	CH4	Total CO2	Bio- CO2 NBio- CO2 Total CO2	Bio- CO2	Exhaust PM2.5 Total PM2.5	Exhaust PM2.5		Exhaust PM10 Total Fugitive PM10 PM2.5	Exhaust PM10	Fugitive PM10	SO2	СО	NOX	ROG	

Unmitigated Construction Off-Site

Category	
	ROG
	NOX
	CO
	SO2
Ib/da	Fugitive PM10
łay	Exhaust PM10
	Exhaust PM10 Total Fugitive Exhaust PM2.5 T PM10 PM2.5 PM2.5
	Fugitive PM2.5
	Exhaust PM2.5
	otal
	Bio- CO2
	Bio-CO2 NBio-CO2 Total CO2
lb/day	Total CO2
ay	CH4
	N20
	CO2e

Mitigated Construction Off-Site

Total	Off-Road	Fugitive Dust	Category	
0.9530	0.9530			ROG
8.6039	8.6039			NOX
7.6917	7.6917			CO
0.0120	0.0120			SO2
0.1666 0.5371 0.7037		0.1666	Ib/day	Fugitive PM10
0.5371	0.5371	0.0000	day	
0.7037	0.5371	0.1666 0.0000 0.1666 0.0252		Exhaust PM10 Total Fugitive PM10 PM2.5
0.0252		0.0252		Fugitive PM2.5
0.5125	0.5125	,		Exhaust PM2.5
0.5377	0.5125	0.0252		PM2.5 Total
0.0000	0.0000			Bio- CO2
1,159.6570	1,159.6570			Bio-CO2 NBio-CO2 Total CO2
1,159.6570 1,159.6570 0.2211	0.0000 1,159.6570 1,159.6570 0.2211	0.0000	lb/day	Total CO2
0.2211	0.2211		lay	CH4
				N20
1,165.1847	1,165.1847	0.0000		CO2e

Mitigated Construction On-Site

Total	Worker	Vendor	Hauling	Category	
	ę			лу	
0.0775	0.0500	0.0000	0.0275		ROG
0.8932	0.0367	_			NOx
0.6735	0.4822	Ű			CO
3.6100e- 003	1.2200e- 003	0.0000	2.3900e- 003		SO2
0.2164	0.1118			Ib/day	Fugitive PM10
4.4200e- 003	9.6000e- 004			lay	Exhaust PM10
0.2208	0.1127	0.0000	0.1080		Exhaust PM10 Total Fugitive PM10 PM2.5
0.0569	0.0296	0.0000	0.0272		Fugitive PM2.5
4.2000e- 003	8.9000e- 004	0.0000	3.3100e- 003		Exhaust PM2.5
0.0611	0.0305	0.0000	0.0306		PM2.5 Total
					Bio- CO2
380.4022	121.2953	0.0000 0.0000 0.0000	259.1069		NBio- CO2 Total CO2
380.4022	121.2953 4.1700e- 003	0.0000	259.1069 0.0168	lb/day	Total CO2
0.0210	4.1700e- 003			ау	CH4
					N20
380.9267	121.3995	0.0000	259.5272		CO2e

Total	Worker	Vendor	Hauling	Category	
0.0250	0.0250				ROG
0.0184	0.0184	0.0000			NOX
0.2411	0.2411	0.0000	0.0000		ĉ
6.1000e- 004	0.2411 6.1000e- 004				S02
0.0559	0.0559		0.0000 0.0000	Ib/day	Fugitive PM10
4.8000e- 004	4.8000e- 004	0.0000	0.0000	у	Exhaust PM10
0.0564	0.0564	0.0000	0.0000 0.0000 0.0000		Exhaust PM10 Total Fugitive PM10 PM2.5
0.0148	0.0148	0.0000	0.0000		
4.4000e- 004	4.4000e- 004	0.0000	0.0000		Exhaust PM2.5 Total PM2.5
0.0153	0.0153	0.0000	0.0000		PM2.5 Total
		0.0000			Bio- CO2
60.6476	60.6476	0.0000	0.0000		Bio- CO2 NBio- CO2 Total CO2
60.6476	60.6476		0.0000	lb/day	Total CO2
2.0800e- 003	2.0800e- 003	0.0000	0.0000	ay	CH4
					N2O
60.6997	60.6997	0.0000	0.0000		CO2e

Unmitigated Construction Off-Site

972.8032		0.3054	965.1690	965.1690		0.3407	0.3378	2.8600e- 003	0.3937 2.8600e- 003	0.3672	0.0265	4.1407 9.7500e- 003	4.1407	8.9170	0.7195	Total
972.8032		0.3054	965.1690 0.3054	965.1690		0.3378	0.3378		0.3672	0.3672		9.7500e- 003	4.1407	8.9170		Off-Road
						003		003								g
0.0000			0.0000			2.8600e-	0.0000 2.8600e-	2.8600e-	0.0265	0.0000	0.0265					Fugitive Dust
		ау	lb/day							lay	Ib/day					Category
CO2e	N2O	CH4	Total CO2	NBio- CO2 Total CO2	Bio- CO2	Exhaust PM2.5 Total PM2.5	Exhaust PM2.5		Exhaust PM10 Total Fugitive PM10 PM2.5	Exhaust PM10	Fugitive PM10	SO2	co	NOX	ROG	

Hauling Worker Vendor Total 0.0775 0.0500 0.0000 0.0275 0.8565 0.8932 0.0367 0.0000 0.1914 2.3900e-0.4822 0.0000 0.6735 3.6100e-003 1.2200e-003 003 0.0000 0.0626 0.0000 0.0671 0.1297 9.6000e-004 3.4600e-4.4200e-003 003 0.0000 ... 0.0680 0.0000 0.0661 0.1341 0.0169 3.3100e-0.0000 0.0187 0.0356 8.9000e-004 4.2000e-003 003 0.0000 0.0196 0.0000 0.0203 0.0398 259.1069 259.1069 0.0168 380.4022 121.2953 121.2953 0.0000 380.4022 0.0000 4.1700e-003 0.0000 0.0210 259.5272 121.3995 380.9267 0.0000

3.3 Site Preparation - 2019

Unmitigated Construction On-Site

3.4 Grading - 2019 Unmitigated Construction On-Site

Total	Worker	Vendor	Hauling
0.0250	0.0250	0.0000	0.0000
0.0184	0.0184	0.0000 0.0000 0.0000	0.0000
0.2411	0.2411	0.0000	0.0000
0.2411 6.1000e- 004	6.1000e- 004	0.0000	0.0000 0.0000
0.0335		0.0000	0.0000
4.8000e- 004	4.8000e- 004	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000
0.0340	0.0340	0.0000	0.0000
9.3400e- 003	9.3400 e- 003	0.0000	0.0000
4.4000e- 004	4.4000e- 004	0.0000	
9.7800e- 003	9.7800e- 003	0.0000	0.0000
60.6476	60.6476	0.0000	0.0000
60.6476 2.0800e- 003	60.6476	0.0000 0.0000 0.0000	0.0000 0.0000
2.0800e- 003			0.0000
		0.0000	
60.6997	60.6997	0.0000	0.0000

Mitigated Construction Off-Site

Category

ROG

NOX

8

SO2

Fugitive PM10

Exhaust PM10 Total PM10

Fugitive PM2.5

Exhaust PM2.5

PM2.5 Total

Bio-CO2 NBio-CO2 Total CO2

CH4

N20

CO2e

lb/day

lb/day

Total	Off-Road	Fugitive Dust	Category	
0.7195	0.7195			ROG
8.9170	8.9170			NOX
4.1407	4.1407			CO
9.7500e- 003	9.7500e- 003			S02
9.8200e- 003		9.8200 e- 003	Ib/day	Fugitive PM10
0.3672		0.0000	łay	Exhaust PM10
0.3770	0.3672	9.8200e- 003		Exhaust PM10 Total Fugitive PM10 PM2.5
1.0600e- 003		1.0600e- 003		Fugitive PM2.5
0.3378	0.3378	0.0000		Exhaust PM2.5
0.3389	0.3378	1.0600e- 003		Exhaust PM2.5 Total PM2.5
0.0000	0.0000			Bio- CO2
965.1690	965.1690			Bio- CO2 NBio- CO2 Total CO2
965.1690	0.0000 965.1690 965.1690 0.3054 972.8032	0.0000	lb/day	Total CO2
0.3054	0.3054		lay	CH4
				N20
972.8032	972.8032	0.0000		CO2e

Mitigated Construction On-Site

Off-Road	Fugiti	Cat	
Off-Road	Fugitive Dust	Category	
Off-Road 0.9530 8.6039 7.6917 0.0120 0.5371 0.5371 0.5125 0.5125			ROG
0.9530 8.6039 7.6917 0.0120			NOX
7.6917			СО
0.0120			SO2
	0.3157	Ib/day	Fugitive PM10
0.5371 0.5371	0.0000	ау	Exhaust PM10
0.5371 0.5371	0.0000 0.3157 0.1585 0.0000		PM10 Total
	0.1585		Fugitive PM2.5
0.5125 0.5125	0.0000		Exhaust PM2.5
0.5125	0.1585		Exhaust PM10 Total Fugitive Exhaust PM2.5 Total PM10 PM2.5 PM2.5 PM2.5
0.0000		lb/day	Bio- CO2
1,159.6570			NBio- CO2
0.0000 1,159.6570 1,159.6570 0.2211 1,165.1847	0.0000		Bio-CO2 NBio-CO2 Total CO2 CH4
0.2211		ау	CH4
			N20
1,165.1847	0.0000		CO2e

Mitigated Construction On-Site

	8,565.6056	8,565.6056 8,565.6056	0.6280	0.1087	0.5192	2.0118	0.1137	1.8982	0.0793	6.7192	27.9498	0.9460	Total
121.2953 121.2953 4.1700e- 003	.2953	121	 0.0305	8.9000e- 004	0.0296	0.1127	9.6000e- 004	0.1118	1.2200e- 003	0.4822	0.0367	0.0500	Worker
0.0000 0.0000 0.0000	0000			0.0000	0.0000	0.0000	0.0000	0.0000 0.0000		0.0000	0.0000 0.0000	0.0000	Vendor
8,444.3103 8,444.3103 0.5479	44.3103			0.1078	0.4896	1.8991	1.7864 0.1127	1.7864		6.2370	0.8961 27.9131	0.8961	Hauling
lb/day							Ib/day	/dI					Category
Bio- CO2 NBio- CO2 Total CO2	3io- CO2	Z	 Exhaust PM2.5 Total PM2.5		Fugitive PM2.5	Exhaust PM10 Total Fugitive PM10 PM2.5	Exhaust PM10	Fugitive PM10	S02	co	NOx	ROG	

Unmitigated Construction Off-Site

1,165.1847		0.2211	1,159.6570 1,159.6570 0.2211	1,159.6570	0.9403	0.5125	0.4279	1.3891	0.5371	0.8521	7.6917 0.0120	7.6917	8.6039	0.9530	Total
1,165.1847		0.2211	1,159.6570 1,159.6570 0.2211		0.5125	0.5125		0.5371	0.5371		0.0120	7.6917	8.6039	0.9530	Off-Road
0.0000			0.0000		0.4279	0.0000	0.4279	0.8521 0.0000 0.8521 0.4279 0.0000 0.4279	0.0000	0.8521					Fugitive Dust
		day	lb/day						Ib/day	Ib/					Category
) CO2e	N20	CH4	Total CO2	Bio- CO2 NBio- CO2 Total CO2	Exhaust PM2.5 Total PM2.5	Exhaust PM2.5	Fugitive PM2.5	Exhaust PM10 Total Fugitive PM10 PM2.5		Fugitive PM10	SO2	со	NOX	ROG	

Unmitigated Construction Off-Site

1,136.5892 1,136.5892		ау 0.3568 0.3568	1,127.6696	1,127.6696 1,127.6696 0.3568		0.5569 0.5569	0.5569 0.5569	0.6054	0.6054 0.6054		0.0114 0.0114	9.8207 7.5432 0.0114 9.8207 7.5432 0.0114	9.8207 9.8207	0.9576 0.9576	Off-Road Total
CO2e	N20	CH4	Total CO2	Bio-CO2 NBio-CO2 Total CO2	Bio-CO2	Exhaust PM2.5 Total PM2.5	Exhaust PM2.5	Exhaust PM10 Total Fugitive PM10 PM2.5		Fugitive PM10	SO2	co	NOX	ROG	Cabaan

3.5 Building Construction - 2019 Unmitigated Construction On-Site

8,579.4076		0.5521	8,565.6056 8,565.6056 0.5521	8,565.6056		0.4644	0.1087	0.3557	1.3455	1.2318 0.1137	1.2318	0.0793	6.7192	27.9498	0.9460	Total
121.3995		4.1700e- 003	121.2953 121.2953	121.2953 121.2953 4.1700e 003		0.0196	8.9000e- 004	0.0187	0.0680	9.6000e- 004	0.0671	1.2200e- 003	0.4822	0.0367	0.0500	Worker
0.0000		0.0000	0.0000	0.0000 0.0000 0.0000		0.0000	0.0000	0.0000	0.0000 0.0000 0.0000 0.0000	0.0000	0.0000 0.0000	0.0000	0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000	Vendor
		0.5479	8,444.3103	8,444.3103 8,444.3103 0.5479		0.4449	0.1078	0.3370	1.2775	0.1127	1.1647	0.0780	6.2370		0.8961	Hauling
		lay	lb/day							day	Ib/day					Category
CO2e	N20	CH4	Total CO2	Bio- CO2 NBio- CO2 Total CO2	Bio- CO2	Exhaust PM2.5 Total PM2.5	Exhaust PM2.5	Fugitive PM2.5	Exhaust PM10 Total Fugitive PM10 PM2.5	Exhaust PM10	Fugitive PM10	SO2	со	NOx	ROG	

Total

Mitigated Construction Off-Site

0.9530 8.6039 7.6917 0.0120 0.3157 0.5371 0.8528 0.1585 0.5125 0.6710 0.0000 1,159.6570 1,159.6570 0.2211 1,165.1847

Category	
	ROG
	NOX
	CO
	SO2
lb/day	Fugitive PM10
lay	Exhaust PM10
	Exhaust PM10 Total Fugitive Exhaust PM2.5 T PM10 PM2.5 PM2.5 PM2.5
	Fugitive PM2.5
	Exhaust PM2.5
	PM2.5 Total
	Bio- CO2
	Bio-CO2 NBio-CO2 Total CO2
lb/day	Total CO2
lay	CH4
	N2O
	CO2e

Mitigated Construction Off-Site

Total	Off-Road	Category						
0.9576	0.9576		ROG					
9.8207	9.8207		NOx					
7.5432	7.5432 0.0114		CO					
0.0114	0.0114		S02					
		Ib/day	Fugitive PM10					
0.6054	0.6054 0.6054	ау	Exhaust PM10					
0.6054	0.6054		Exhaust PM10 Total Fugitive PM10 PM2.5					
0.5569	0.5569		Exhaust PM2.5					
0.5569	0.5569	0.5569						
0.0000	0.0000	yqı	tal Bio-CO2 NBio-CO2 Total CO2 CH4					
1,127.6696	1,127.6696		NBio- CO2					
1,127.6696 1,127.6696 0.3568	1,127.6696		0)	Total CO2				
0.3568	0.3568	ау	CH4					
			N20					
1,136.5892	1,136.5892		CO2e					

Mitigated Construction On-Site

Vendor Category Worker Hauling Total 0.3979 0.3397 0.0582 0.0000 0.2497 1.6202 0.0000 1.8699 3.2787 0.4299 3.7086 0.0000 3.6600e-003 8.2900e-003 0.0120 0.0000 0.0896 0.7601 0.8497 0.0000 lb/day 6.5500e-003 0.0103 0.0000 0.0169 0.8666 0.7666 0.1000 0.0000 0.2016 0.0258 0.2274 0.0000 6.0400e-003 9.8800e-003 0.0000 0.0159 0.2076 0.0357 0.0000 0.2433 1,215.1484 1,215.1484 390.3405 390.3405 824.8080 824.8080 0.0000 0.0000 lb/day 0.0250 0.0533 0.0283 0.0000 825.5162 390.9658 1,216.4821 0.0000

ROG

NOX

8

SO2

Fugitive PM10

Exhaust PM10

PM10 Total

Fugitive PM2.5

Exhaust PM2.5

PM2.5 Total

Bio-CO2 NBio-CO2 Total CO2

CH4

N20

CO2e

1,188.8134		0.0489	1,187.5913 1,187.5913 0.0489	1,187.5913		0.2399	0.0126	0.2274	0.8631	0.0134	0.8497	0.0117	3.3675	1.7118	0.3627	Total
800.3871		0.0252				0.2074	5.8500e- 003	0.2016		6.3500e- 003		8.0300e- 003		0.2226		Worker
388.4263		0.0237	387.8346	387.8346		0.0325	6.7000e- 003	0.0258	0.0966	7.0100e- 003	0.0896	3.6300e- 003		1.4892		Vendor
0.0000		0.0000	0.0000 0.0000 0.0000	0.0000		0.0000	0.0000	0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	Hauling
		ay	lb/day							lay	Ib/day					Category
CO2e	N20	CH4	Total CO2	NBio- CO2 Total CO2	Bio- CO2	Exhaust PM2.5 Total PM2.5	Exhaust PM2.5	Fugitive PM2.5	Exhaust PM10 Total Fugitive PM10 PM2.5	Exhaust PM10	Fugitive PM10	SO2	со	NOX	ROG	

Unmitigated Construction Off-Site

Total	Off-Road	Category					
0.8617	0.8617		ROG				
8.8523	8.8523 7.3875 0.0114		NOX				
7.3875	7.3875		CO				
0.0114	0.0114		SO2				
		Ib/day	Fugitive PM10				
0.5224	0.5224	ау	Exhaust PM10				
0.5224	0.5224		Exhaust PM10 Total Fugitive PM10 PM2.5				
			Fugitive PM2.5				
0.4806	0.4806	Exhaust PM2.5					
0.4806	0.4806		PM2.5 Total				
		lb/d:	Bio- CO2				
1,102.9781	1,102.9781		Bio- CO2 NBio- CO2 Total CO2				
1,102.9781 1,102.9781 0.3567	1,102.9781 1,102.9781 0.3567		Ib/day	Total CO2			
0.3567	0.3567	ау	CH4				
			N2O				
1,111.8962	1,111.8962		CO2e				

_	-		
Total	Worker	Vendor	
0.3979		0.0582	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1.8699		1.6202 0.4299 3.6600e- 003	0.0000
3.7086	3.2787	0.4299	0.0000
0.0120	8.2900e- 003		0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.5164	0.4561	0.0603	0.0000
0.0169	6.5500e- 003	0.0103	0.0000
0.0169 0.5333	0.4561 6.5500e- 0.4627 0.1270 003		0.0000
0.1456	0.1270	0.0186	0.0000
0.0159	6.0400e- 003	9.8800e- 003	0.0000
0.1615	0.1330	0.0285	0.0000
1,215.1484	824.8080 824.8080 0.0283	390.3405	0.0000 0.0000 0.0000 0.0000
1,215.1484 1,215.1484 0.0533	824.8080 824.8080 0.0283	390.3405 390.3405 0.0250	0.0000 0.0000
0.0533	0.0283	0.0250	0.0000
1,216.4821	825.5162	390.9658	0.0000 0.0000 0.0000 0.0000

3.5 Building Construction - 2020 Unmitigated Construction On-Site 3.6 Architectural Coating - 2020 <u>Unmitigated Construction On-Site</u>

1,188.8134		0.0489	1,187.5913 1,187.5913 0.0489	1,187.5913		0.1581	0.0126	0.1456	0.5297	0.0134	0.5164	0.0117	3.3675	1.7118	0.3627	Total
800.3871		0.0252	799.7568	799.7568 799.7568		0.1328	5.8500e- 003	0.1270	0.4625	6.3500e- 003	0.4561	8.0300e- 003	2.9773	0.2226	0.3129	Worker
		0.0237	387.8346	387.8346 387.8346 0.0237		0.0253	6.7000e- 003			7.0100e- 003		3.6300e- 003	0.3902	1.4892	0.0498	Vendor
0.0000		0.0000	0.0000	0.0000		0.0000	0.0000	0.0000 0.0000	0.0000	0.0000		0.0000	0.0000	0.0000 0.0000 0.0000		Hauling
		ау	lb/day							day	Ib/day					Category
CO2e	N20	CH4	Total CO2	NBio- CO2 Total CO2	Bio- CO2	Exhaust PM2.5 Total PM2.5	Exhaust PM2.5	Fugitive PM2.5	Exhaust PM10 Total Fugitive PM10 PM2.5	Exhaust PM10	Fugitive PM10	SO2	co	NOX	ROG	

Mitigated Construction Off-Site

-			
Total	Off-Road	Category	
0.8617	0.8617		ROG
8.8523	8.8523 7.3875 0.0114		NOX
7.3875 0.0114	7.3875		CO
0.0114	0.0114		S02
		Ib/day	Fugitive PM10
0.5224	0.5224	lay	Exhaust PM10
0.5224	0.5224		PM10 Total
			Exhaust PM10 Total Fugitive PM10 PM2.5
0.4806	0.4806		Exhaust PM2.5
0.4806	0.4806 0.4806		Exhaust PM2.5 Total PM2.5
0.0000	0.0000		Bio- CO2
1,102.9781 1,102.9781 0.3567	0.0000 1,102.9781 1,102.9781 0.3567	l lb/day	Bio-CO2 NBio-CO2 Total CO2 CH4
1,102.9781	1,102.9781		Total CO2
0.3567	0.3567	ау	CH4
			N20
1,111.8962	1,111.8962		CO2e

Mitigated Construction On-Site

Off-Road 0.2422 1.6838 1.8314 2.9700e- 0.1109 0.1109 0.1109 0.1109 0.1109 0.1109	Archit. Coating	Category	
0.2422	3.0150		ROG
0.2422 1.6838 1.8314 2.9700e- 0.1109 0.1109 0.1109 0.1109 0.1109			NOX
1.8314			CO
2.9700e- 003			SO2
		Ib/day	Fugitive Exhaus PM10 PM10
0.1109	0.0000 0.0000	łay	Exhaust PM10
0.1109 0.1109	0.0000		Exhaust PM10 Total Fugitive PM10 PM2.5
			Fugitive PM2.5
0.1109	0.0000		Fugitive Exhaust PM2.5 PM2.5
0.1109	0.0000		Exhaust PM2.5 Total PM2.5
0.0000			Bio- CO2
281.4481			NBio- CO2
0.0000 281.4481 281.4481 0.0218 281.9928	0.0000	lb/day	Bio- CO2 NBio- CO2 Total CO2 CH4
0.0218		lay	CH4
281.9928			N2O
281.9928	0.0000		CO2e

Mitigated Construction On-Site

Total	Worker	Vendor	Hauling	Category	
0.0644	0.0644	0.0000	0.0000		ROG
0.0458	0.0458				NOx
0.6130	0.6130	an an an an an a' A	0.0000		co
1.6500e- 003	1.6500e- 003				SO2
0.1565	0.1565	:	0.0000 0.0000 0.0000 0.0000	Ib/day	Fugitive PM10
1.3100e- 003	1.3100e- 003		0.0000	day	Exhaust PM10
0.1578	0.1578	0.0000 0.0000	0.0000		Exhaust PM10 Total Fugitive PM10 PM2.5
0.0415	0.0415	0.0000	0.0000		Fugitive PM2.5
1.2100e- 003	1.2100e- 003	0.0000			Exhaust PM2.5
0.0427	0.0427	0.0000	0.0000		Exhaust PM2.5 Total PM2.5
					Bio- CO2
164.6558	164.6558	0.0000	0.0000		Bio- CO2 NBio- CO2 Total CO2
164.6558	164.6558 164.6558 5.1900e- 003	0.0000 0.0000 0.0000	0.0000	lb/day	Total CO2
5.1900e- 003	5.1900e- 003	0.0000	0.0000	ay	CH4
					N2O
164.7856	164.7856	0.0000	0.0000		CO2e

Unmitigated Construction Off-Site

Total	Off-Road	Archit. Coating	Category	
		<u>و</u>		
3.2572	0.2422			
1.6838	1.6838 1.8314 2.9700e- 003			
1.8314 2.9700e- 003	1.8314			
2.9700e- 003	1.8314 2.9700e- 003			
			Ib/day	PM10
0.1109	0.1109	0.0000	day	PM10
0.1109	0.1109 0.1109	0.0000 0.0000		
				PM2.5
0.1109	0.1109	0.0000		PM2.5
0.1109	0.1109	0.0000 0.0000		
281.4481	281.4481 281.4481 0.0218			
281.4481 0.0218	281.4481 0.0218	0.0000	lb/day	
0.0218	0.0218		łay	
281.9928	281.9928	0.0000		

	Total	
	3.2572	
	1.6838	
	1.8314	
003	2.9700e-	
	0.1109	
	0.1109	
	0.1109	
	0.1109	
	0.0000	
	281.4481	
	281.4481	
	0.0218	
	281.9928	

Mitigated Construction Off-Site

Total 0.0644	Worker 0.0644			Category	
0.0458	0.0458	0.0000	0.0000		
0.6130	0.6130	0.0000	0.0000		
1.6500e- 003	1.6500e- 003	0.0000			
0.0939	0.0458 0.6130 1.6500e- 0.0939 1.3100e- 0.0952 003 003	0.0000		Ib/day	PM10
1.3100e- 003	1.3100e- 003	0.0000	0.0000	day	PM10
0.0952	0.0952	0.0000			
0.0261	0.0261	0.0000	0.0000 0.0000		PM2.5
1.2100e- 003	1.2100e- 003	0.0000			PM2.5
0.0274	0.0274	0.0000	0.0000		
		0.0000			
164.6558	164.6558	0.0000	0.0000		
164.6558	164.6558 164.6558 5.1900e- 003	0.0000	0.0000	lb/day	
5.1900e- 003			0	łay	-
	164.7856				
164.7856	164.7856	0.0000	0.0000		0010

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

4,805.6588		0.2530	799.3329 4,799.3329 0.2530	4,799.3329 4,799.3329 0.2530		1.0267	0.0365	0.9902	4.9751 13.8854 0.0472 3.6899 0.0391 3.7389 0.9902 0.0365 1.0267	0.0391	3.6999	0.0472	13.8954	4.9751	1.0824	Unmitigated
4,805.6588		0.2530	4,799.3329	4,799.3329 4,799.3329 0.2530		1.0267	0.0365	0.9902 0.0365 1.0267	3.6999 0.0391 3.7389	0.0391	3.6999	4.9751 13.8954 0.0472	13.8954	4.9751	1.0824	Mitigated
		у	lb/day							Зау	Ib/day					Category
CO2e	N20	CH4	Total CO2	Bio- CO2 NBio- CO2 Total CO2	Bio-CO2	Exhaust PM2.5 Total PM2.5	Exhaust PM2.5	Fugitive PM2.5	Fugitive Exhaust PM10 Total Fugitive PM10 PM10 PM2.5	Exhaust PM10		SO2	СО	NOX	ROG	

4.2 Trip Summary Information

1,714,796	1,714,796	.82 506.28	598.82 598.82	Total
	0.00		0.00 0.00	Enclosed Parking with Elevator
1,356,198				
358,598	358,598		0	
Annual VMT	Annual VMT	Saturday Sunday	Weekday Satu	Land Use V
Mitigated	Unmitigated	[,] Trip Rate	Average Daily Trip Rate	

4.3 Trip Type Information

		Miles			Trip %			Trip Purpose %	°%
Land Use	H-W or C-W	H-S or C-C	H-W or C-W H-S or C-C H-O or C-NW H-W or C-W H-S or C-C H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Strip Mall	16.60	8.40	6.90	16.60	64.40	19.00	45	40	15
Apartments Mid Rise 14.70 5.90	14.70	5.90	8.70	40.00	19.00	40.00 19.00 41.00	86	11	86 11 3
Enclosed Parking with Elevator	16.60	8.40	6.90	0.00	0.00	0.00	0	0	0 0 0

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LDA LDT1 LDT2 MDV LHD1 LHD2 MHD HHD	MHD	HHD	OBUS	OBUS UBUS MCY	MCY	SBUS	MH
Strip Mall	0.547192	0.045177	0.202743	0.121510	0.016147	0.547192; 0.045177; 0.202743; 0.121510; 0.016147; 0.006143 0.019743; 0.029945; 0.002479; 0.002270; 0.005078; 0.000682; 0.00089	0.019743	0.029945	0.002479	0.002270	0.005078	0.000682	0.000891
Apartments Mid Rise 0.547192 0.045177 0.202743 0.121510 0.016147 0.006143 0.019743 0.02	0.547192	0.045177	0.202743	0.121510	0.016147	0.547192 0.045177 0.202743 0.121510 0.016147 0.006143 0.019743 0.029945 0.002479 0.002270 0.005078 0.000682 0.00089	0.019743	18:	0.002479	945 0.002479 0.002270 0.005078 0.000682 0.00089	0.005078	0.000682	0.000891
Enclosed Parking with Elevator 0.547192	0.547192	0.045177	0.202743	0.121510	0.016147	0.547192 0.045177 0.202743 0.121510 0.016147 0.006143 0.019743 0.029945 0.002479 0.002270 0.005078 0.000682 0.00089	0.019743	0.029945	0.002479	0.002270	0.005078	0.000682	0.000891

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG
	NOX
	со
	SO2
PM10	Fugitive
PM10	Exhaust
	PM10 Total
PM2.5	Fugitive
PM2.5	Exhaust
	PM2.5 Total
	Bio-CO2
	NBio- CO2
	Total CO2
	CH4
	N20
	CO2e

5.2 Energy by Land Use - NaturalGas <u>Unmitigated</u>

Total	Strip Mall	Enclosed Parking with Elevator	Apartments Mid Rise	Land Use	
					Za
	24.0069	ο	1843.39	kBTU/yr	NaturalGas Use
0.0201	2.6000e- 004	0.0000	0.0199		ROG
0.1722	2.3500e- 003	0.0000	0.1699		NOX
0.0743	1.9800e- 003	0.0000	0.1699 0.0723		СО
1.0900e- 003	1.0000e- 005	0.0000	1.0800e- 003		S 02
				Ib/c	Fugitive PM10
0.0139	1.8000e- 004	0.0000		b/day	Š
0.0139	1.8000e- 004	0.0000	0.0137		Exhaust PM10 Total Fugitive PM10 PM2.5
					Fugitive PM2.5
0.0139	1.8000e- 004	0.0000	0.0137		Exhaust PM2.5
0.0139	1.8000e-004	0.0000	0.0137		PM2.5 Total Bio-CO2 NBio-CO2 Total CO2
		0.0000 0.0000 0.0000			Bio- CO2
219.6935	2.8243	0.0000	216.8692		NBio-CO2
219.6935 219.6935 4.2100e- 003		0.0000	216.8692 216.8692 4.1600e- 3.9800e- 218.1579 003 003	Ib/c	Total CO2
	5.0000e- 005	0.0000 0.0000 0.0000	4.1600e- 003	Ib/day	CH4
4.0300e- 003	5.0000e- 005	0.0000	3.9800e- 003		N20
220.9991		0.0000	218.1579		CO2e

Strip Mail 0.0240069 2.6000e- 1.3800e- 1.0000e- 1.8000e- 1.8000e- 1.8000e- 1.8000e- 1.8000e- 0.0240069 0.0240069 0.0240069 0.0240069 0.0240069 0.0240069 0.0240069 0.0240069 0.024000e- 1.8000e- 1.8000e- 1.8000e- 1.8000e- 0.0240069 0.024006	Enclos with t	Apartn F	Lar	
Strip Mall	Enclosed Parking 0 with Elevator	Apartments Mid Rise	Land Use	
0.0240069		1.84339	kBTU/yr	NaturalGas Use
0.0240069 2.6000e- 2.3500e- 1.9800e- 004 003 003	0.0000 0.0000 0.0000	1.84339 0.0199 0.1699 0.0723 1.0800e- 003		ROG
2.3500e- 003	0.0000 0.0000 0.0000	0.1699		NOX
	0.0000	0.0723 1.0800e- 003		CO
1.0000e- 005	0.0000	1.0800e- 003		S 02
			Ib/day	Fugitive PM10
1.8000e- 004	0.0000 0.0000	0.0137 0.0137	lay	Exhaust PM10
1.8000e- 004 004	0.0000	0.0137		Exhaust PM10 Total Fugitive PM10 PM2.5
		0.0137		Fugitive PM2.5
1.8000e- 004		0.0137		Exhaust PM2.5
1.8000e-004	0.0000	0.0137		PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 CH4
	0.0000	216.8692		Bio- CO2
2.8243	0.0000	216.8692		NBio-CO2
2.8243 2.8243 5.0000e- 5.0000e- 2.8411 005 005	0.0000 0.0000	216.8692 216.8692 4.1600e- 3.9800e- 218.1579 003 003	Ib/day	Total CO2
5.0000e- 005	0.0000 0.0000 0.0000	4.1600e- 3.9800e- 003 003	łay	CH4
1.8000e-004 2.8243 2.8243 5.0000e- 5.0000e- 2.8411 005 005	0.0000	3.9800e- 003		N20
2.8411	0.0000	218.1579		CO2e

Mitigated

	Total	
	0.0201	
	0.1722	
	0.0743	
003	1.0900e-	
	0.0139	
	0.0139	
	0.0139	
	0.0139	
	219.6935	
	219.6935	
003	219.6935 4.2100e-	
003	4.0300e-	
	220.9991	

6.0 Area Detail

6.1 Mitigation Measures Area

	ROG	NOX	CO	SO2	Fugitive PM10	Exhaust PM10	Exhaust PM10 Total PM10	Fugitive PM2.5	Exhaust PM2.5	Exhaust PM2.5 Total PM2.5	Bio- CO2	Bio- CO2 NBio- CO2 Total CO2	Total CO2	CH4	N20	CO2e
Category					Ib/day	ау							Ib/day	ау		
Mitigated		0.0698	6.0444 3.2000 e - 004	3.2000e- 004		0.0333 0.0333	0.0333		0.0333	0.0333 0.0333	0.0000	0.0000 10.8630 10.8630 0.0106 0.0000 11.1270	10.8630	0.0106	0.0000	11.1270
Unmitigated	1.4843	0.0698	6.0444	ω		0.0333	0.0333 0.0333 0.0333		0.0333	0.0333	0.0000	0.0000 10.8630 10.8630 0.0106 0.0000 11.1270	10.8630	0.0106	0.0000	11.1270
				004												

6.2 Area by SubCategory

.

<u>Unmitigated</u>

Landscaping 0.1637 0.0698 6.0444 3.2000e- 0.0333 0.0333 0.0333 10.8630 10.8630 0.0106 11.1270	Hearth	Consumer Products	Architectural Coating	SubCategory	
g 0.1837			-	`	ROG
7 0.0698					NOX
98 6.0444					co
6.0444 3.2000e- 004					SO2
7	0.0000	0.0000		=	Fugitive PM10
0.0333		0.0000	0.0000	lb/day	Exhaust PM10
0.0333					Exhaust PM10 Total Fugitive PM10 PM2.5
	0.0000				Fugitive PM2.5
0.0333	0.0000	0.0000	0.0000		Exhaust PM2.5
0.0333	0.0000	0.0000	0.0000 0.0000		Exhaust PM2.5 Total PM2.5
10.8630	0.0000				Bio- CO2
10.8630	0.0000				Bio- CO2 NBio- CO2 Total CO2
10.8630 10.8630 0.0106	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000	0.0000	Ib/day	Total CO2
0.0106	0.0000			ау	CH4
					N20
11.1270	0.0000	0.0000	0.0000		CO2e

1	Equipment Type
	Number
	Hours/Day
	Hours/Year
	Horse Power
	Load Factor
	Fuel Type

Boilers

Equipment Type
Number
Heat Input/Day
Heat Input/Year
Boiler Rating
Fuel Type

User Defined Equipment

Equipment Type Number

11.0 Vegetation

CalEEMod Version: CalEEMod.2016.3.2

Page 1 of 1

11701 Gateway Boulevard Future - Los Angeles-South Coast County, Annual

11701 Gateway Boulevard Future

Los Angeles-South Coast County, Annual

1.0 Project Characteristics

1.1 Land Usage

Enclosed Parking with Elevator 80.00 Space Space	Apartments Mid Rise 73.00 Dwelling Unit	Strip Mall	Land Uses
80.00	73.00	5.34	Size
			Metric
0.10	0.30	0.04	Lot Acreage
0.10 32,000.00 0	0.30 54,264.00	5,343.00	Floor Surface Area
0	209	0	Population

1.2 Other Project Characteristics

CO2 Intensity (Ib/MWhr)	Utility Company	Climate Zone	Urbanization
1227.89	Los Angeles Department of Water & Power	11	Urban
CH4 Intensity (Ib/MWhr)	nt of Water & Power		Wind Speed (m/s)
0.029			2.2
N2O Intensity (Ib/MWhr)		Operational Year	Precipitation Freq (Days)
0.006		2021	33

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - Developer information

Construction Phase - Consultant assumptions

Vehicle Trips - City of Los Angeles Department of Transportation Referral Form: Traffic Study Assessment (CPC-2018-3430-DB-SPR), July 2018.

Grading - Developer information. Assumes 24 feet of excavation for entire site.

Demolition - Developer information

Trips and VMT - Assumes 10 CY capacity per haul truck.

Construction Off-road Equipment V	Construction Off-road Equipment Mitigation - Assumes SCAQMD Rule 403 control efficiencies	403 control efficiencies	New Value
tblConstDustMitigation	CleanPavedRoadPercentReduction	0	46
tblConstructionPhase	NumDays	10.00	22.00
tblConstructionPhase	NumDays	1.00	20.00
tblConstructionPhase	NumDays	2.00	21.00
tblConstructionPhase	NumDays	100.00	436.00
tblConstructionPhase	NumDays	5.00	132.00
tblFireplaces	NumberGas	62.05	0.00
tblFireplaces	NumberNoFireplace	7.30	73.00
tblFireplaces	NumberWood	3.65	0.00
tblGrading	AcresOfGrading	0.00	0.44
tblGrading	AcresOfGrading	10.00	0.50
tblGrading	MaterialExported	0.00	14,311.00
tbLandUse	LandU seSquareF eet	73,000.00	54,264.00
tblLandUse	LotAcreage	0.12	0.04
tblLandUse	LotAcr eage	1.92	0.30
tblLandUse	LotAcr eage	0.72	0.10
tbiTripsAndVMT	HaulingTripLength	20.00	30.00
tbiTripsAndVMT	HaulingTripLength	20.00	30.00
tbiTripsAndVMT	HaulingTripNumber	1,789.00	1,431.00
tblVehicleTrips	HO_TTP	40.60	41.00
tblVehicleTrips	HS_TTP	19.20	19.00
tblVehicleTrips	HW_TTTP	40.20	40.00
tblVehicleTrips	ST_TR	42.04	37.75
tblVehicleTrips	ST_TR	6.39	5.44
tblVehicleTrips	SU_TR	5.86	5.44
tblVehicleTrips	WD_TR	44.32	37.75
tbl/VehicleTrips	WD_TR	6.65	5.44

Woodstoves - Developer information

	Maximum	2020	2019	Year	
ROG	0.3658	0.3658	0.1663		ROG
NOx	1.6906	1.3840	1.6906		NOX
CO	1.4253	1.4253	1.3293		СО
SO2	3.3900e- 003	3.0100e- 003	1.3293 3.3900e- 003		SO2
Fugitive PM10	0.0680	0.0667	0.0680	tons/yr	Fugitive PM10
Exhaust PM10	0.0745	0.0714	0.0680 0.0745	з/уг	Exhaust PM10
Exhaust PM10 Total Fugitive PM10 PM2.5	0.1425	0.1382			Exhaust PM10 Total Fugitive PM10 PM2.5
Fugitive PM2.5	0.0199	0.0188	0.0199		Fugitive PM2.5
Exhaust PM2.5	0.0689	0.0663	0.0689 0.0888		Exhaust PM2.5
PM2.5 Total	0.0888	0.0852	0.0888		PM2.5 Total
Bio- CO2	0.0000	0.0000			Bio- CO2
Bio- CO2 NBio-CO2 Total CO2	314.2307	270.4175 270.4175	314.2307		Bio- CO2 NBio- CO2 Total CO2
Total CO2	314.2307	270.4175 270.4175	314.2307 314.2307 0.0479	MT/yr	Total CO2
CH4	0.0479	0.0455	0.0479	/уг	CH4
N20	0.0000	0.0000	0.0000		N20
CO2e	315.4288	271.5558			CO2e

Mitigated Construction

Maximum	2020	2019	Year	
0.3658	0.3658	0.1663		ROG
1.6906	1.3840 1.4253	0.1663 1.6906 1.3293 3.3900e- 0.1147 0.0745 0.1893 0.0327 0.0689 0.1016 003 003		NOx
1.4253	1.4253	1.3293		СО
1.4253 3.3900e- 003	1.4253 3.0100e- 003	3.3900e- 003		SO2
0.1147	0.1097	0.1147	tons/yr	Fugitive PM10
0.0745	0.0714	0.0745	/уг	Exhaust PM10
0.1147 0.0745 0.1893	0.1097 0.0714 0.1811 0.0294	0.1893		Exhaust PM10 Total Fugitive PM10 PM2.5
0.0327	0.0294	0.0327		Fugitive PM2.5
0.0689	0.0663	0.0689		Exhaust PM2.5
0.1016	0.0957	0.1016		Exhaust PM2.5 Total PM2.5
0.0000	0.0000	0.0000		Bio- CO2
314.2308	270.4177	314.2308		NBio- CO2 Total CO2
314.2308 314.2308 0.0479	0.0000 270.4177 270.4177 0.0455 0.0000 271.5560	0.0000 314.2308 314.2308 0.0479 0.0000 315.4289	MT/yr	Total CO2
	0.0455	0.0479	/yr	CH4
0.0000	0.0000	0.0000		N20
315.4289	271.5560	315.4289		CO2e

tblWoodstoves Number	tblWoodstoves NumberCatalytic 3.65
NumberNoncatalytic	NumberCatalytic
3.65	
0.00	0.00

2.0 Emissions Summary

2.1 Overall Construction Unmitigated Construction

Mitigated Operational

Total	Water	Waste	Mobile	Energy	Area	Category	
0.4471			0.1831	3.6800e- 003	0.2603		ROG
0.9672			0.9271	0.0314	8.7200 e- 003		NOX
3.1765			2.4074	0.0136	0.7556		CO
8.4000e- 003			8.1600e- 003		4.0000e- 005		SO2
0.6508			0.6508			tons/yr	Fugitive PM10
0.0137	0.0000	0.0000	7.0100e- 003	2.5400e- 003	4.1600e- 003	;/yr	Exhaust PM10
0.6645	0.0000			2.5400e- 003	4.1600e- 003		PM10 Total Fugitive PM2.5
0.1745			0.1745				Fugitive PM2.5
0.0133	0.0000	0.0000	6.5500e- 003	2.5400e- 003	4.1600e- 003		Exhaust PM2.5
0.1877	0.0000	0.0000	0.1810	2.5400e- 003	4.1600e- 003		PM2.5 Total
9.5897	1.6344	7.9552	0.0000	0.0000	0.0000		Bio- CO2
1,153.8278	57.4162	0.0000	753.1820 753.1820	341.9978	1.2318		NBio- CO2 Total CO2
1,153.8278 1,163.4174 0.6894	59.0506	7.9552	753.1820	341.9978 341.9978	1.2318	MT/yr	Total CO2
	0.1692	0.4701	0.0409	7.9200e- 003	1.2000e- 003	/yr	CH4
6.4000e- 003	4.2400e- 003	0.0000	0.0000	2.1600e- 003	1.2000e- 0.0000 1.2618 003		N20
1,182.5599	64.5461	19.7087	754.2039	342.8394	1.2618		CO2e

2.2 Overall Operational Unmitigated Operational

2	0		1												╹
Quarter	Start Date	Date	End	End Date	Maxin	num Unmitig	ated ROG +	Maximum Unmitigated ROG + NOX (tons/quarter)	uarter)	Max	Maximum Mitigated ROG + NOX (tons/quarter)	ted ROG + N	IOX (tons/qu	arter)	
1	1-2-2019	2019	4-1-	4-1-2019			0.5585					0.5585			
2	4-2-2019	2019	7-1-	7-1-2019			0.4240					0.4240			1
з	7-2-2019	2019	10-1	10-1-2019			0.4287					0.4287			
4	10-2-2019	2019	1-1-	1-1-2020			0.4304					0.4304			
5	1-2-2020	2020	4-1-	4-1-2020			0.3851					0.3851			
6	4-2-2020	2020	7-1-	7-1-2020			0.3849					0.3849			
7	7-2-2020	2020	9-30	9-30-2020			0.5473					0.5473			
			Hig	Highest			0.5585					0.5585			

0.00

	ROG	NOx	8	SO2	Fugitive PM10	PM10	st PM10 Total	tal Fugitive PM2.5	re Exhaust 5 PM2.5		PM2.5 Total B	Bio- CO2	NBio- CO2	Total CO2	CH4	N20	CO2e
Category					đ	tons/yr								M	MT/yr		
Area		8.7200e- 003	0.7556	4.0000e- 005		4.1600e- 003		Ϋ	4.1600e- 003	•••••		0.0000	1.2318	1.2318			
Energy	3.6800e-	0.0314	0.0136	2.0000e-		2.5400e-	N	Ţ	2.5400e-		φ	0.0000	341.9978	341.9978 341.9978	7.9200e-	- 2.1600e-	342.8394
		0 0 0 7 1	0 4074	0 10000		7 0 1 0 0	-+-						763 1000	762 1020		Î	
Mobile	0.1831	0.9271	2.4074	8.1600e- 003	0.6508	7.0100e- 003		0.1745			0.1810		753.1820	753.1820 753.1820			
Waste						0.0000	0.0000		0.0000		0.0000	7.9552	0.0000	7.9552	0.4701	0.0000	19.7087
Water						0.0000	0.0000		0.0000	······	0.0000	1.6344	57.4162	57.4162 59.0506 0.1692	0.1692	4.2400e-	64.5461
1					•	-	-	-	-	-	•						_
Total	0.4471	0.9672	3.1765	8.4000e- 003	0.6508	0.0137	0.6645	0.1745	5 0.0133		0.1877	9.5897 1	,153.8278	1,153.8278 1,163.4174	1 0.6894	6.4000e- 003	1,182.5599
	ROG	NOX		CO	SO2 F	Fugitive E PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	02 NBio-CO2		Total CO2	CH4 N	N20 CO2e
Percent Reduction	n 0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00 0	0.00 0.00
3.0 Construction Detail	uction Def	laii															
Phase Number	Phase Name	ame		Р	Phase Type		Start Date	ate	End Date		Num Days Week	Num Days	S	Phase [Phase Description	_	
1 Dem	Demolition		De	Demolition			1/2/2019	1/1:	1/15/2019		ഗ		22				
2 Site	Site Preparation		Sit	Site Preparation	on		2/1/2019	2/2	2/28/2019		5		20	20			
3 Grac	Grading		Ģ	Grading			3/1/2019	3/2	3/29/2019		ъ		21				
4 Build	Building Construction		Bu	Building Construction	truction		4/1/2019	11/	11/30/2020		5	4	36				
5 Arch	Architectural Coating		An	Architectural Coating	Coating		7/1/2020	12/	12/31/2020		Б	1	132				
Acres of Grading (Site Preparation Phase): 0.5	ading (Site F	reparat	tion Ph	ase): 0.(01												
Acres of Grading (Grading Phase): 0.44	ading (Gradi	ng Phas	se): 0.4	4													
Acres of Paving: 0.1	ving: 0.1																

Residential Indoor: 109,885; Residential Outdoor: 36,628; Non-Residential Indoor: 8,015; Non-Residential Outdoor: 2,672; Striped Parking Area:

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Architectural Coating	Air Compressors	1	6.00	78	0.48
Demolition	Concrete/Industrial Saws 1 8.00	1	8.00	81	0.73
	Concrete/Industrial Saws	1	8.00	81	0.73
Building Construction	Cranes 1 4.00	-	4.00	231	0.29
	Forklifts 2 6.00	2	6.00	68	0.20
Site Preparation	Graders 1 800	1	8.00	187	187 0.41
		1	1.00		0.40
	Rubber Tired Dozers	1	1.00		0.40
	Tractors/Loaders/Backhoes 2 8.00	2	8.00		0.37
	Tractors/Loaders/Backhoes 2 6.00	2	6.00		0.37
Grading	Tractors/Loaders/Backhoes 2 600	2	6.00	97	0.37
Site Preparation Tractors/Loaders/Backhoes 1 8.00	Tractors/Loaders/Backhoes	1	8.00	97 0.3	0.37

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Hauling Trip Worker Vehicle Vendor Vehicle Hauling Vehicle Length Class Class Class	Vendor Vehicle I Class	Hauling Vehicle Class
Architectural Coating		14.00	0.00	0.00	14.70	6.90	20.00 LD_Mix		HDT_Mix HHDT	HHDT
Building Construction	თ	68.00	14.00	0.00	14.70	6.90			HDT_Mix	ННОТ
Demolition	4	10.00	0.00	46.00	14.70	6.90		30.00 LD_Mix HDT_Mix HHDT	HDT_Mix	HHDT
Grading	4	10.00	0.00	1,431.00	14.70	6.90			HDT_Mix HHDT	HHDT
Site Preparation	2	5.00	0.00	0.00	14.70	6.90		20.00 LD_MIX HDT_MIX HHDT	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Replace Ground Cover

Water Exposed Area

Clean Paved Roads

Mitigated Construction On-Site

			-	0	
Total	Worker	Vendor	Hauling	Category	
3.9000e- 004	2.5000e- 004		1.4000e- 004		ROG
4.6600e- 003	2.1000e- 004	0.0000	4.4500e- 003		NOX
3.2500e- 003	2.2700e- 003		9.8000e- 004		CO
2.0000e- 005	1.0000e- 005		1.0000e- 005		SO2
1.0600e- 003	5.5000e- 004		5.1000e- 004	tons/yr	Fugitive PM10
2.0000e- 005	0.0000	0.0000	2.0000e- 005	s/уг	Exhaust PM10
1.0800e- 003	5.5000e- 004		5.3000e- 004		Exhaust PM10 Total Fugitive PM10 PM2.5
2.8000e- 004	1.5000e- 004	0.0000	1.3000e- 004		Fugitive PM2.5
2.0000e- 005	0.0000	0.0000	2.0000e- 005		Exhaust PM2.5
3.0000e- 004	0.0000 1.5000e- 004	0.0000	1.5000e- 004		Exhaust PM2.5 Total PM2.5
0.0000	0.0000	0.0000	0.0000		Bio- CO2
1.6961	0.5267		1.1695		NBio- CO2 Total CO2 CH4
1.6961	0.5267		1.1695	MT/yr	Total CO2
1.0000e- 004	2.0000e- 0.0000 005		8.0000e- 0.0000 1.1714 005	'уг	CH4
0.0000		0.0000	8.0000e- 0.0000 005		N20
1.6985	0.5271		1.1714		CO2e

Unmitigated Construction Off-Site

Total	Off-Road	Fugitive Dust	Category	
4.7700e- 003		st		ROG
0.0430				s NOX
30 0.0385				× co
6.0000e- 005	6.0000e- 005			SO2
2.2500e- 003		2.2500e- 0.0000 003	tons/yr	Fugitive PM10
2.6900e- 003	2.6900e- 003		'yr	Exhaust PM10
4.9400e- 003	2.6900e- 003	2.2500e- 003		Exhaust PM10 Total Fugitive PM10 PM2.5
3.4000e- 004		3.4000 e- 004		Fugitive PM2.5
2.5600e- 003	2.5600e- 003	0.0000		Exhaust PM2.5
2.9000e- 003	2.5600e- 003	3.4000e- 004		Exhaust PM2.5 Total PM2.5
0.0000		0.0000		Bio- CO2
5.2601	5.2601	0.0000		NBio- CO2 Total CO2
5.2601	5.2601	0.0000	MT/yr	Total CO2
1.0000e- 003	1.0000e- 003	0.0000 0.0000 0.0000	/yr	CH4
0.0000	0.0000	0.0000		N20
5.2852	5.2852	0.0000		CO2e

3.2 Demolition - 2019 <u>Unmitigated Construction On-Site</u>

Off-Road	Fugitive Dust	Category	
			ROG
7.2000e- 0.0892 0.0414 1.0000e- 3.6700e- 3.6700e- 003 004 003 003 003			NOX
0.0892 0.0414 1.0000e- 004			CO
1.0000e- 004			SO2
	2.7000e- 004	tons/yr	Fugitive PM10
3.6700e- 003 003	0.0000	s/yr	Exhaust PM10
6700e- 003 003	0.0000 2.7000e- 004		Exhaust PM10 Total Fugitive PM10 PM2.5
			Fugitive PM2.5
3.3800e- 003	0.0000		⁻ ugitive Exhaust PM2.5 PM2.5
3.3800e- 3.3800e- 003 003	3.0000e- 005		Exhaust PM2.5 Total PM2.5
			Bio- CO2
8.7559	0.0000		Bio-CO2 NBio-CO2 Total CO2
8.7559	0.0000	MT/yr	Total CO2
0.0000 8.7559 8.7559 2.7700e- 0.0000 8.8251	0.0000 0.0000 0.0000 0.0000	југ	CH4
0.0000	0.0000		N20
8.8251	0.0000		CO2e

Unmitigated Construction On-Site

3.3 Site Preparation - 2019

		004				004	005	004	004	005	004	005	003	003	004	
1.6985	0.0000	1.0000e-	1.6961	1.6961	0.0000	2.0000e-	2.0000e-	1.7000e-	6.5000e-	2.0000e-	6.4000e-	2.0000e-	3.2500e-	4.6600e-	3.9000e-	Total
		005				004		005	004		004	005	003	004	004	
0.5271	0.0000 0.5271	0.5267 2.0000e- 0.0000	0.5267	0.5267	0.0000	1.0000e-	0.0000	9.0000 e-	3.3000e-	0.0000	3.3000e-	1.0000e-	2.2700e-	2.1000e-	2.5000e-	Worker
0.0000	0.0000 0.0000 0.0000	0.0000 0.0000	0.0000		0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	Vendor
		005				004	005	005	004	005	004	005	004	003	004	
1.1714	0.0000	8.0000e- 0.0000 1.1714	1.1695	1.1695	0.0000	1.0000e-	2.0000e-	8.0000e-	3.2000e-	2.0000e-	3.1000e-	1.0000e-	9.8000e-	4.4500e-	1.4000e-	Hauling
		/yr	MT/yr							s/yr	tons/yr					Category
							PM2.5	PM2.5		PM10	PM10					
CO2e	N20	CH4	Total CO2	NBio- CO2	Bio-CO2	PM2.5 Total	Exhaust	Fugitive	Exhaust PM10 Total	Exhaust	Fugitive	SO2	0	NOx	ROG	

Fugitive Dust Off-Road Total 4.7700e-003 4.7700e-003 0.0430 0.0430 0.0385 0.0385 6.0000e-005 6.0000e-005 8.3000e-004 8.3000e-004 2.6900e-003 2.6900e-003 8.3000e-004 - 2.6900e-003 3.5200e-003 1.3000e-004 1.3000e- 004 2.5600e-003 2.5600e-003 2.6900e-003 1.3000e-004 2.5600e-003 0.0000 0.0000

Category

ROG

NOX

8

SO2

Fugitive PM10

Exhaust PM10

PM10 Total

Fugitive PM2.5

Exhaust PM2.5

PM2.5 Total

Bio-CO2 NBio-CO2 Total CO2

CH4

N20

CO2e

tons/yr

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

MT/yr

5.2601

5.2601

1.0000e-003

0.0000

5.2852

5.2601

5.2601

1.0000e-003

0.0000

5.2852

Mitigated Construction Off-Site

Mitigated Construction Off-Site

						003	003	005	003	003	004				003	
8.8251	0.0000	2.7700e-	8.7559	8.7559	0.0000	3.3900e-	3.3800e-	1.0000e-	3.6700e- 3.7700e- 1.0000e-	3.6700e-	1.0000e-	1.0000e-	0.0414	0.0892	7.2000e-	Total
		003				003	003		003	003		004			003	
8.8251	0.0000		8.7559 2.7700e-	0.0000 8.7559 8.7559 2.7700e-	0.0000	3.3800e-	3.3800e-		3.6700e-		0.0414 1.0000e- 3.6700e-	1.0000e-		0.0892	7.2000e-	Off-Road
									004		004					
0.0000	0.0000	0.0000	0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000	1.0000e-	0.0000 1.0000e-	1.0000e-	0.0000 1.0000e- 1.0000e-	0.0000	1.0000e-					Fugitive Dust
		/yr	MT/yr							ş/yr	tons/yr					Category
							PM2.5	PM2.5		PM10	PM10					
CO2e	N20	CH4	Total CO2	Bio-CO2 NBio-CO2 Total CO2	Bio-CO2	Exhaust PM2.5 Total	Exhaust		Exhaust PM10 Total Fugitive	Exhaust	Fugitive	SO2	СО	XON	ROG	

Mitigated Construction On-Site

			:	1	PM10	PM10	PM10 PM2.5	PM2.5	PM2.5	PM2.5					i	
Category					tons/yr	/yr							MT/yr	'yr		
Hauling	0.0000	0.0000	0.0000 0.0000	0.0000	0.0000	0.0000	0.0000 0.0000 0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 0.0000 0.0000 0.0000	0.0000			
			0.0000	0.0000	0.0000	0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.0000	0.0000	0.0000
Worker	2.5000e- 004	2.1000e- 2.2700e- 1.0000e- 5.5000e- 0.0000 5.5000e- 1.5000e- 0.0000 1.5000e- 004 003 005 004 004 004 004 004 004	2.2700e- 003	1.0000e- 005	5.5000e- 004	0.0000	5.5000e- 004	1.5000 e- 004	0.0000	1.5000e- 004	0.0000	0.5267	0.5267 2.0000e- 005	2.0000e- 005	0.0000	0.5271
Total	2.5000e- 004	2.1000e- 004	2.2700e- 003 005	1.0000e- 005	5.5000e- 004	0.0000	5.5000e- 004	1.5000e- 004	0.0000	1.5000e- 004	0.0000	0.5267	0.5267	2.0000e- 005	0.0000	0.5271

Total 7.2000e-003 0.0892 0.0414 1.0000e-004 2.7000e-004 3.6700e-003 3.9400e-003 3.0000e-005 3.3800e-003 3.4100e-003 0.0000 8.7559 8.7559 2.7700e-003 0000.0 8.8251

Unmitigated Construction Off-Site

Category	
	ROG
	NOX
	CO
	SO2
tons/yr	Fugitive PM10
íуr	Exhaust PM10
	PM10 Total Fugitive PM2.5
	Fugitive PM2.5
	Exhaust PM2.5 T PM2.5
	PM2.5 Total
	Bio- CO2
	NBio- CO2
MT	Bio- CO2 NBio- CO2 Total CO2 CH4
'lyr	CH4
	N20
	CO2e

Unmitigated Construction Off-Site

Total	Off-Road	Fugitive Dust	Category	
0.0100	0.0100			ROG
0.0903	0.0903			NOX
0.0808	0.0808			CO
1.3000e- 004	1.3000e- 004			SO2
8.9500e- 003		8.9500e- 003	tons/yr	Fugitive PM10
5.6400e- 003	5.6400e- 003	0.0000	/yr	Exhaust PM10
0.0146	5.6400e- 003	8.9500e- 003		Exhaust PM10 Total Fugitive PM10 PM2.5
4.4900e- 003		4.4900e- 003		Fugitive PM2.5
5.3800e- 003	5.3800e- 003	0.0000		Exhaust PM2.5
9.8700e- 003	5.3800e- 003	4.4900e- 003		Exhaust PM2.5 Total PM2.5
0.0000	0.0000			Bio- CO2
11.0462	11.0462	0.0000		NBio- CO2
11.0462 11.0462 2.1100e- 0.0000 11.0989 003	11.0462 2.1100e- 003		MT/yr	Bio-CO2 NBio-CO2 Total CO2 CH4
2.1100e- 003	2.1100e- 003	0.0000 0.0000	југ	CH4
0.0000				N20
11.0989	11.0989	0.0000		CO2e

	Total	Worker	Vendor	Hauling	Category	
2222	2.5000e- 004		0.0000	0.0000		ROG
	2.1000e- 004	2.1000e- 004	0.0000 0.0000 0.0000	0.0000 0.0000		NOx
	2.2700e- 003	2.2700e- 003	0.0000	0.0000		CO
	1.0000e- 005	1.0000e- 005				SO2
	3.3000e- 004	3.3000e- 004		0.0000 0.0000 0.0000 0.0000	tons/yr	Fugitive PM10
	0.0000	0.0000		0.0000	s/уг	Exhaust PM10
	3.3000e- 004 005		0.0000	0.0000		Exhaust PM10 Total Fugitive PM10 PM2.5
	9.0000e- 005	9.0000e- 005	0.0000	0.0000		Fugitive PM2.5
	0.0000	0.0000	0.0000	0.0000		Exhaust PM2.5
	1.0000e- 004	1.0000e- 004	0.0000	0.0000		PM2.5 Total
	0.0000		0.0000	0.0000		Bio- CO2
	0.5267	0.5267	0.0000	0.0000		NBio- CO2
	0.5267	0.5267	0.0000	0.0000	MT/yr	Total CO2
	2.0000e- 005	0.5267 0.5267 2.0000e 0.0000 0.5271 005	0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000	'yr	CH4
	0.0000	0.0000	0.0000	0.0000		N20
	0.5271	0.5271	0.0000	0.0000		CO2e

3.4 Grading - 2019

Unmitigated Construction On-Site

		003				003	003	003		003		004				
81.3	0.0000 81.2751	5.3200e-	81.1421	81.1421 81.1421	0.0000	4.8300e-	1.1500e-	3.6900e-	0.0140	1.2000e-	0.0128	8.3000e-	0.0715	0.3051	0.0100	Total
		005				004	005	004	004	005	004	005	003	004	004	
1.1070		4.0000e-	1.1060 1.1060 4.0000e- 0.0000	1.1060	0.0000	2.0000e-	1.0000e-	1.9000e-	7.0000e-	1.0000e-	6.9000e-	1.0000e-	4.7700e-	4.4000e-	5.3000e-	Worker
0.0000	0.0000	0.0000	0.0000 0.0000	0.0000			0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	Vendor
		003	003			003	003	003		003		004			003	
80.1	0.0000	5.2800e-	0.0000 80.0361 80.0361 5.2800e- 0.0000 80.1681	80.0361	0.0000	4.6300e-	1.1400e-	3.5000e-	0.0133	1.1900e-	0.0121	8.2000e-	0.3046 0.0668	0.3046	9.4800e-	Hauling
		∕∕yr	MT/yr							s/yr	tons/yr					Category
							PM2.5	PM2.5		PM10						
CO2e	N20	CH4	Total CO2	Bio- CO2 NBio- CO2 Total CO2	Bio-CO2	PM2.5 Total	Exhaust	Fugitive	PM10 Total Fugitive	Exhaust	Fugitive	SO2	co	NOX	ROG	

Mitigated Construction Off-Site

Total	Off-Road	Fugitive Dust	Category					
0.0100	0.0100			ROG				
0.0903	0.0903			NOX				
0.0808	0.0808			CO				
1.3000e- 004	1.3000e- 004			S02				
3.3100e- 003		3.3100e- 003	tons/yr	Fugitive PM10				
5.6400e- 003	5.6400e- 003	0.0000	;/yr	Exhaust PM10				
8.9500e- 003	5.6400e- 003	3.3100e- 003		Exhaust PM10 Total Fugitive PM10 PM2.5				
1.6600e- 003		1.6600 e- 003		Fugitive PM2.5				
5.3800e- 003	Ť	0.0000		Exhaust PM2.5				
7.0400e- 003	5.3800e- 003	1.6600e- 003		Exhaust PM2.5 Total PM2.5				
0.0000		0.0000	Bio-CO2 NBio-CO2 Total CO2					
11.0462	11.0462							
11.0462 2.1100e- 0.0000 003		0.0000 0.0000 0.0000	MT/yr	Total CO2				
2.1100e- 003	2.1100e- 003	0.0000	у́уг	CH4				
0.0000		0.0000		N2O				
11.0989	11.0989	0.0000		CO2e				

Mitigated Construction On-Site

	Total		Worker	Vendor		Hauling 9.4800e- 0.3046 0.0668 8.2000e- 0.0184 1.1900e- 0.0196 5.0600e- 1.1400e- 6.2000e- 0.0000 80.0361 80.0361 5.2800e- 0.0000 80.1681
				 		9
	0.0100		5.3000e-	0.0000		9.4800e-
	0.3051	004	4.4000e-	0.0000		0.3046
	0.0715	003	4.7700e-	0.0000		0.0668
004	8.3000e-	005	1.0000e-	0.0000	004	8.2000e-
	0.0196	003	4.7700e- 1.0000e- 1.1500e- 1.0000e- 1.1600e- 3.1000e- 1.0000e-	0.0000 0.0000 0.0000 0.0000 0.0000		0.0184
003	1.2000e-	005	1.0000e-	0.0000	003	1.1900e-
	0.0208	003	1.1600e-	0.0000		0.0196
003	5.3700e-	004	3.1000e-		003	5.0600e-
003	1.1500e-	005	1.0000e-	0.0000	003	1.1400e-
003	6.5100e-	004	3.1000e-	0.0000	003	6.2000e-
	0.0000		0			0.0000
	81.1421		0.0000 1.1060 1.1060 4.0000e-	0.0000 0.0000 0.0000 0.0000		0.0000 80.0361 80.0361 5.2800e-
	81.1421 5.3200e-		1.1060	0.0000		80.0361
003	5.3200e-	005	4.0000e-	0.0000	003	5.2800e-
	0.0000 81.2751		0.0000 1.1060 1.1060 4.0000e- 0.0000 1.1070	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		0.0000 80.1681
	81.2751		1.1070	0.0000		80.1681

Mitigated Construction On-Site

Total 0.0394			Hauling 0.0000	Category	
0.1909	0.0280	0.1629	0.0000		NUN
0.3486	0.3041	0.0446	0.0000		00
1.1400e- 003	7.8000e- 004	3.6000e- 004	0.0000 0.0000		OUE
0.0821			0.0000	tons/yr	PM10
1.6700e- 003	6.5000e- 004		0.0000	з/уг	PM10
0.0838	0.0740	9.7100e- 003	0.0000		PM10 PM2.5
0.0220	0.0195	2.5100 e- 003	0.0000		PM2.5
1.5700e- 003	5.9000e- 004	9.8000e- 004	0.0000		PM2.5
0.0236	0.0201	3.4900e- 003	0.0000		PM2.5
0.0000	0.0000		0.0000		
105.0378		34.4839	0.0000 0.0000 0.0000		
105.0378 105.0378 4.7300e- 0.0000 003	-	34.4839 2.3000e- 003	0.0000 0.0000 0.0000	MT/yr	
4.7300e- 003		2.3000e- 003	0.0000	'уг	<u>-</u>
0.0000		0.0000	0.0000		NE O
105.1560	70.6145	34.5414	0.0000		0020

Unmitigated Construction Off-Site

Total	Off-Road	Category	
0.0943	0.0943		ROG
0.9673	0.9673		NOX
0.7430 1.1200e- 003	0.9673 0.7430 1.1200e- 003		0
1.1200e- 003	1.1200e- 003		S02
		tons/yr	Fugitive PM10
0.0596	0.0596	;/уг	Exhaust PM10
0.0596	0.0596		Exhaust PM10 Total Fugitive PM10 PM2.5
0.0549	0.0549		Exhaust PM2.5
0.0549	0.0549 0.0549		Exhaust PM2.5 Total PM2.5
0.0000	0.0000		Bio- CO2
100.7660	100.7660		NBio- CO2
100.7660 100.7660 0.0319 0.0000 101.5630	0.0000 100.7660 100.7660 0.0319 0.0000 101.5630	MT/yr	Bio-CO2 NBio-CO2 Total CO2 CH4
0.0319	0.0319	/yr	CH4
0.0000	0.0000		N20
101.5630	101.5630		CO2e

3.5 Building Construction - 2019 <u>Unmitigated Construction On-Site</u>

Off-Road 0.1030 1.0579 0.8828 1.3600e- 0.0624 0.0624 0.0574 0.0574 0.0574	Category	
0.1030		ROG
1.0579		NOX
1.0579 0.8828 1.3600e- 003		СО
1.3600e- 003		SO2
	tons/yr	Fugitive PM10
0.0624 0.0624	s/yr	Exhaust PM10
0.0624		PM10 Total
		Fugitive PM2.5
0.0574		Exhaust PM2.5
0.0574 0.0574		Fugitive Exhaust PM10 Total Fugitive Exhaust PM2.5 Total PM10 PM10 PM2.5 PM2.5 PM2.5
		Bio- CO2
119.5723		NBio- CO2
0.0000 119.5723 119.5723 0.0387 0.0000 120.5391	MT/yr	Bio-CO2 NBio-CO2 Total CO2
0.0387	ýr	CH4
0.0000		N2O
120.5391		CO2e

3.5 Building Construction - 2020 Unmitigated Construction On-Site

Category Worker Vendor Hauling Total 5.8400e-003 0.0336 0.0394 0.0000 ROG 0.1629 0.1909 0.0280 0.0000 NOX 0.3041 0.0446 0.3486 0.0000 8 3.6000e-004 7.8000e-004 1.1400e-003 0.0000 SO2 5.8600e-003 0.0441 Fugitive PM10 0.0000 0.0500 tons/yr 1.6700e-003 1.0200e-003 6.5000e-004 Exhaust PM10 0.0000 6.8800e-003 0.0448 PM10 Total 0.0000 0.0517 Fugitive PM2.5 1.8100e-003 0.0123 0.0141 0.0000 9.8000e-004 5.9000e-004 1.5700e-003 Exhaust PM2.5 0.0000 PM2.5 Total 2.7900e-003 0.0129 0.0000 0.0157 Bio- CO2 NBio- CO2 0.0000 0.0000 0.0000 0.0000 105.0378 34.4839 70.5539 0.0000 34.4839 Total CO2 105.0378 70.5539 0.0000 MT/yr 2.3000e-003 2.4300e-0.0000 4.7300e-003 003 CH4 0.0000 0.0000 0.0000 0.0000 N20 70.6145 34.5414 105.1560 0.0000 CO2e

Mitigated Construction Off-Site

Total	Off-Road	Category	
0.0943	0.0943		ROG
0.9673	0.9673		NOX
0.7430	0.7430 1.1200e-		co
1.1200e- 003	1.1200e- 003		SO2
		tons/yr	Fugitive PM10
0.0596	0.0596 0.0596	s/yr	Exhaust PM10
0.0596	0.0596		Exhaust PM10 Total Fugitive PM10 PM2.5
0.0549	0.0549		Exhaust PM2.5 Total PM2.5
0.0549	0.0549		PM2.5 Total
0.0000	0.0000		Bio- CO2
100.7658	100.7658		NBio- CO2
100.7658 100.7658 0.0319	100.7658 100.7658 0.0319	MT/yr	Bio-CO2 NBio-CO2 Total CO2
	0.0319	íy r	CH4
0.0000	0.0000		N20
101.5629	101.5629		CO2e

Total	Off-Road	Category	
0.1030	0.1030		ROG
1.0579	1.0579 0.8828		NOx
0.8828			СО
1.3600e- 003	1.3600e- 003		SO2
		tons/yr	Fugitive PM10
0.0624	0.0624	/yr	Exhaust PM10
0.0624	0.0624		Exhaust PM10 Total Fugitive PM10 PM2.5
			Fugitive PM2.5
0.0574	0.0574		Exhaust PM2.5
0.0574	0.0574		PM2.5 Total
0.0000	0.0000		Bio- CO2
119.5721 119.5721	119.5721		Bio- CO2 NBio- CO2 Total CO2
119.5721	0.0000 119.5721 119.5721 0.0387 0.0000 120.5389	MT/yr	
0.0387	0.0387	ýr	CH4
0.0000	0.0000		N20
120.5389	120.5389		CO2e

Mitigated Construction On-Site

Total	Worker	Vendor	Hauling	Category	
0.0436	0.0375	6.0700e- 003	0.0000		ROG
0.2115	0.0303	0.1813	0.0000		NOx
0.3836	0.3345	0.0491	0.0000		СО
1.3500e- 003	9.2000e- 004	4.3000e- 004	0.0000		S02
0.0996	0.0890	0.0105		tons/yr	Fugitive PM10
1.6000e- 003	7.6000e- 004	8.4000e- 004	0.0000 0.0000	s/yr	Exhaust PM10
0.1012	0.0898	0.0114			PM10 Total Fugitive PM2.5
0.0267	0.0237	3.0400e- 003	0.0000		Fugitive PM2.5
1.5100e- 003	7.0000e- 004	8.1000e- 004	0.0000 0.0000		Exhaust PM2.5
0.0282	0.0244	3.8500e- 003	0.0000		PM2.5 Total
0.0000		0.0000	0.0000 0.0000		Bio-CO2
124.5567					NBio- CO2 Total CO2
124.5567	-	41.5617	0.0000 0.0000 0.0000 0.0000 0.0000	MT/yr	Total CO2
5.2600e- 003	2.6200e- 003	2.6400e- 0.0000 003	0.0000	Уr	CH4
0.0000	0.0000	0.0000	0.0000		N20
124.6881	83.0603	41.6277	0.0000		CO2e

_
Total
0.1030
1.0579
0.8828
1.3600e-
0.0624
0.0624
0.0574
0.0574
0.0000
119.5723
119.5723
0.0387
0.0000
120.5391

Unmitigated Construction Off-Site

Category	
	ROG
	NOX
	CO
	SO2
tons/y	Fugitive PM10
s/yr	Exhaust PM10
	PM10 Total Fugitive PM2.5
	Fugitive PM2.5
	Exhaust PM2.5 T PM2.5
	PM2.5 Total
	Bio- CO2
	Bio-CO2 NBio-CO2 Total CO2 CH4
MT	Total CO2
'lyr	CH4
	N20
	CO2e

Unmitigated Construction Off-Site

Total	Off-Road	Archit. Coating	Category	
0.2150	0.0160			ROG
0.1111	0.1111			NOx
0.1209	0.1209			CO
2.0000e- 004	2.0000e- 004			SO2
			tons/yr	Fugitive PM10
7.3200e- 003	7.3200e- 003	0.0000 0.0000	'yr	Exhaust PM10
7.3200e- 003	7.3200e- 003	0.0000		Exhaust PM10 Total Fugitive PM10 PM2.5
				Fugitive PM2.5
7.3200e- 003	7.3200e- 003	0.0000		Exhaust PM2.5
7.3200e- 003	7.3200e- 003	0.0000		PM2.5 Total
0.0000	0.0000			Bio-CO2
16.8515	16.8515			Bio-CO2 NBio-CO2 Total CO2
16.8515	16.8515		MT/yr	Total CO2
1.3000e- 003	1.3000e- 0.0000 003	0.0000 0.0000	'yr	CH4
0.0000		0.0000		N20
16.8841	16.8841	0.0000		CO2e

	Total	Worke	Vendor	Hauling	Category	
	a	Ŕ	dor	ing	Jory	
	0.0436	0.0375	6.0700e- 003	0.0000		ROG
	0.2115	0.0303	0.1813	0.0000		NOX
222	0.3836	0.3345	0.0491	0.0000		co
	1.3500e- 003	9.2000e- 004		0.0000		S02
	0.0607	0.0535			tons/yr	Fugitive PM10
	1.6000e- 003	7.6000e- 004	8.4000e- 004	0.0000	/yr	Exhaust PM10
	0.0623	0.0543	7.9500e- 003	0.0000		Exhaust PM10 Total Fugitive PM10 PM2.5
	0.0171	0.0149	2.2000e- 003	0.0000		Fugitive PM2.5
	1.5100e- 003	7.0000e- 004	8.1000e- 004	0.0000		Exhaust PM2.5
	0.0187	0.0156	3.0100e- 003	0.0000		PM2.5 Total
	0.0000	0.0000	0.0000	0.0000		Bio- CO2
	124.5567	82.9950	0.0000 41.5617 41.5617 2.6400e- 003	0.0000		Bio- CO2 NBio- CO2 Total CO2
	124.5567		41.5617	0.0000	MT/yr	Total CO2
	5.2600e- 003		2.6400e- 003	0.0000 0.0000 0.0000 0.0000	/yr	CH4
	0.0000	0.0000		0.0000		N20
	124.6881	83.0603	41.6277	0.0000		CO2e

3.6 Architectural Coating - 2020 Unmitigated Construction On-Site

0.11	0.0000	004	0.1010	0.1010	0.0000		005	003	003	005		004		003	003	Total
9 4447	0 0000	3 0004	9 4373	9 4373	0 0000	1 7800e-			6 1700e-		6 N9NNe-	1 0004	0 0380	3 4400-		Total
9.4447	0.0000	3.0000e-			0.0000	•••••	8.0000e-	1.7000e-	6.1700e-	ę	'	1.0000e-	0.0380	3.4400e-	4.2700e-	Worker
0.0000	-	0.0000	0.0000	0.0000	0.0000		0.0000		0.0000	0.0000	0.0000			0.0000		Vendor
0.0000	-		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 0.0000 0.0000	0.0000	0.0000	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.0000	0.0000	0.0000	Hauling
		⁻/yr	MT/yr							s/yr	tons/yr					Category
CO2e	N20	CH4	Total CO2	Bio- CO2 NBio- CO2 Total CO2	Bio- CO2	PM2.5 Total	Exhaust PM2.5	Fugitive PM2.5	PM10 Total Fugitive PM2.5	Exhaust PM10	Fugitive PM10	SO2	со	NOx	ROG	

Mitigated Construction Off-Site

Total	Off-Road	Archit. Coating	Category	
0.2150	0.0160	9 IIIIII		ROG
0 0.1111	0 0.1111			3 NOX
0.1209	0.1209			СО
2.0000e- 004	2.0000e- 004			SO2
			tons/yr	Fugitive PM10
7.3200e- 003	7.3200e- 003		/yr	Exhaust PM10
7.3200e- 003	7.3200e- 003	0.0000		Exhaust PM10 Total Fugitive PM10 PM2.5
				Fugitive PM2.5
7.3200e- 003	7.3200e- 003	0.0000		Exhaust PM2.5
7.3200e- 003	7.3200e- 003	0.0000 0.0000		Exhaust PM2.5 Total PM2.5
0.0000	0.0000	0.0000		Bio- CO2
16.8515	16.8515			Bio- CO2 NBio- CO2 Total CO2
16.8515 1.3000e- 0.0000 003	16.8515 1.3000e- 0.0000 003	0.0000 0.0000 0.0000 0.0000	MT/yr	Total CO2
1.3000e- 003	1.3000e- 003	0.0000	ýr	CH4
0.0000		0.0000		N20
16.8841	16.8841	0.0000		CO2e

Mitigated Construction On-Site

Total	Worker	Vendor	Hauling 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4.2700e- 003	4.2700e- 003		0.0000
3.4400e- 003	4.2700e- 3.4400e- 0.0380 1.0000e- 0.0101 9.0000e- 0.0102 2.6900e- 8.0000e- 2.7700e- 003 003 004 005 003 003 005 005 003 005 003 005 003 005 005 005 005 005 005 005 005 005 <th>0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000</th> <th>0.0000</th>	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000
0.0380	0.0380	0.0000	0.0000
1.0000e- 004	0.0380 1.0000e- 004	0.0000 0.0000 0.0000	0.0000
0.0101	0.0101 9.0000e- 0.0102 005	0.0000	0.0000
9.0000e- 005	9.0000e- 005	0.0000 0.0000	0.0000 0.0000 0.0000
0.0102	0.0102	0.0000	0.0000
2.6900e- 003	2.6900e- 003	0.0000	0.0000
8.0000e- 005	8.0000e- 005	0.0000	0.0000
2.7700e- 003	2.7700e- 003	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000
9.4373	9.4373	0.0000 0.0000	0.0000
9.4373	9.4373	0.0000	0.0000
9.4373 3.0000e- 0.0000 9.4447 004 0.0000	.0000 9.4373 9.4373 3.0000e- 0.0000 9.4447 004 004	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000
0.0000	0.0000	0.0000	0.0000
9.4447	9.4447	0.0000	0.0000

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

	ROG	NOx	co	S02	Fugitive PM10	Exhaust PM10	Fugitive Exhaust PM10 Total Fugitive Exhaust PM2.5 Total PM10 PM10 PM2.5 PM2.5 PM2.5	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	Bio- CO2 NBio- CO2 Total CO2	Total CO2	CH4	N20	CO2e
Category					tons/yr	;/yr							MT/yr	Уr		
Mitigated	0.1831	0.9271	2.4074	0.1831 0.9271 2.4074 8.1600e- 0.6508 7.0100e- 0.6578 0.1745 6.5500e- 0.1810 003 003 003	0.6508	7.0100e- 003	0.6578	0.1745	6.5500e- 003	0.1810	0.0000	753.1820	0.0000 753.1820 753.1820 0.0409 0.0000 754.2039	0.0409	0.0000	754.2039
Unmitigated 0.1831 0.9271 2.4074 8.1600e- 0.6508 7.0100e- 0.6578 0.1745 6.5500e- 0.1810 0.0000 753.1820 753.1820 0.0409 0.0000 754.2039	0.1831 0.9271 2.4074 8.1600e- 0.6508 7.0100e- 0.6578 0.1745 6.5500e- 0.1810	0.9271	2.4074	8.1600e-	0.6508	7.0100e-	0.6578	0.1745	6.5500e-	0.1810	0.0000	753.1820	0.0000 753.1820 753.1820 0.0409 0.0000 754.2039	0.0409	0.0000	754.2039
				003		003			003							

4.2 Trip Summary Information

	Aver	Average Daily Trip Rate		Unmitigated	Mitigated
Land Use	Weekday	Saturday Sunday	Sunday	Annual VMT	Annual VMT
	201.70	201.70	109.16		358,598
	397.12	397.12			,198 1,356,198
Enclosed Parking with Elevator	0.00	0.00	0.00 0.00		
Total	598.82	598.82	506.28	1,714,796	1,714,796

4.3 Trip Type Information

		Miles			Trip %			Trip Purpose %	%
Land Use	H-W or C-W	H-S or C-C	H-W or C-W H-S or C-C H-O or C-NW H-W or C-W H-S or C-C H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Strip Mall	16.60	8.40	6.90	16.60	64.40	19.00	45	40	15
Apartments Mid Rise 14.70	14.70	5.90	8.70	40.00	19.00	41.00	86	1	86 11 3
Enclosed Parking with Elevator	16.60	8.40	6.90	0.00	0.00	0.00	0	0	0 0

4.4 Fleet Mix

0.00089	345 0.002479 0.002270 0.005078 0.000682 0.00089	0.005078	0.002270	0.002479		0.019743	0.547192 0.045177 0.202743 0.121510 0.016147 0.006143 0.019743 0.0299	0.016147	0.121510	0.202743	0.045177	0.547192	Enclosed Parking with Elevator 0.547192 0.045177 0.202743 0.121510 0.016147 0.006143 0.019743 0.0296
0.000891	345 0.002479 0.002270 0.005078 0.000682 0.00089	0.005078	0.002270	0.002479	0.029945	0.019743	0.547192 0.045177 0.202743 0.121510 0.016147 0.006143 0.019743 0.0299	0.016147	0.121510	0.202743	0.045177	0.547192	Apartments Mid Rise
0.000891	245 0.002479 0.002270 0.005078 0.000682 0.00089	0.005078	0.002270	0.002479	0.029945	0.019743	0.547192 0.045177 0.202743 0.121510 0.016147 0.006143 0.019743 0.0299	0.016147	0.121510	0.202743	0.045177	0.547192	Strip Mall
MH	SBUS	MCY	OBUS UBUS	OBUS	HHD		LDA LDT1 LDT2 MDV LHD1 LHD2 MHD	LHD1	MDV	LDT2	LDT1	LDA	Land Use

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOX	со	SO2	Fugitive PM10	Exhaust PM10	Exhaust PM10 Total Fugitive PM10 PM2.5	Fugitive PM2.5	Exhaust PM2.5	Exhaust PM2.5 Total PM2.5	Bio- CO2	NBio- CO2 Total CO2	Total CO2	CH4	N20	CO2e
Category					tons/yr	/yr							MT/yr	УГ		
Electricity						0.0000	0.0000		0.0000	0.0000	0.0000	305.6250	305.6250 7.2200e-	7.2200e-	1.4900e-	306.2505
Mitigated													003 003	003	003	
Electricity					0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	305.6250	305.6250 7.2200e-	7.2200e-	1.4900e-	306.2505
Unmitigated															003	
NaturalGas	3.6800e-	0.0314	0.0136	2.0000e-		2.5400e-	2.5400e-		2.5400e-	2.5400e-	0.0000	36.3727		7.0000e-	6.7000e-	36.5889
Mitigated	003			004		003	003		003	003			004 004	004	004	
NaturalGas	3.6800e-	0.0314	0.0136	2.0000e-		2.5400e-	2.5400e-		2.5400e-	2.5400e-	0.0000	36.3727	36.3727	7.0000e-	6.7000e-	36.5889
Unmitigated	003			004		003	003		003	003				004	004	

<u>Unmitigated</u>

-	
5.2 Energy b	Chiningated
y Land L	000
2 Energy by Land Use - NaturalGas	
S	-00

NaturalGas kBTU/yr Use ROG NOX СО SO2 Fugitive PM10 tons/yr Exhaust PM10 PM10 Total Fugitive PM2.5 Exhaust PM2.5 PM2.5 Total Bio-CO2 NBio-CO2 Total CO2 MT/yr CH4 N20

Apartments Mid 672837 3.6300e- 0.0310 0.0132 Rise 003

2.0000e- 004

2.5100e-003

- 2.5100e-003

2.5100e- 2.5100e-003 0.0000 35.9051 35.9051 6.9000e-003 004

6.6000e- 36.1185 004

CO2e

Land Use

Enclosed Parking	0	0.0000	0.0000 0.0000	0.0000	0.0000	 0.0000	0.0000	 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000	0.0000
with Elevator															
Strip Mall 8762.5	8762.52	8762.52 5.0000e- 4.3000e- 3.6000e-	4.3000e-		0.0000 3.0000e-		3.0000e-	3.0000e- 3.		0.0000	0.4676	0.4676	0000e-005 0.0000 0.4676 0.4676 1.0000e- 1.0000e- 0.4704	1.0000e-	0.4704
		005	004	004		005	005	005					005	005	
Total		3.6800e-	0.0314 0.0136		2.0000e-	2.5400e-	2.5400e-	2.5400e-	2.5400e-003	0.0000	36.3727	36.3727	.5400e-003 0.0000 36.3727 36.3727 7.0000e- 6.7000e- 36.5889	6.7000e-	36.5889
		003			004	003	003	003					004	004	

Mitigated

36.5889	6.7000e- 004		36.3727	36.3727 36.3727 7.0000e- 004	5400e-003 0.0000	2.	2.5400e- 003		2.5400e- 003	2.5400e- 003		2.0000e- 004	0.0136	0.0314	3.6800e- 003		Total
0.4704	1.0000e- 005		0.4676		0.0000	ω	3.0000e- 005		3.0000e- 005	3.0000e- 005		0.0000	3.6000e- 004	4.3000 e- 004	5.0000e- 005	8762.52	Strip Mall
0.0000	0.0000		0.0000	0.0000	0.0000		0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0	Enclosed Parking with Elevator
36.1185	6.6000e- 004	6.9000e- 004	35.9051	35.9051	5100e-003 0.0000	N	2.5100e- 003		2.5100e- 003	2.5100e- 003		2.0000e- 004		0.0310	3.6300e- 003	672837	Apartments Mid Rise
		MT/yr	Z							tons/yr	. tor						Land Use
CO2e	N20	CH4	Total CO2	M2.5 Total Bio-CO2 NBio-CO2 Total CO2 CH4	Bio- CO2	P	Exhaust PM2.5	Fugitive PM2.5	Exhaust PM10 Total Fugitive PM10 PM2.5		Fugitive PM10	SO2	со	NOx	ROG	NaturalGas Use	

5.3 Energy by Land Use - Electricity <u>Unmitigated</u>

306.2505	1.5000e- 003	7.2200e- 003	305.6250 7.2200e- 003		i otal
40.2561	2.0000e- 004	9.5000e- 004	40.1739	72130.5	Strip Mall
104.6552	5.1000e- 004	2.4700 e- 003		187520	Enclosed Parking with Elevator
161.3392	7.9000e- 004		161.0097 3.8000e- 003	289086	Apartments Mid Rise
	MT/yr	М		kWh/yr	Land Use
CO2e	N2O	CH4	Total CO2	Electricity Use	

Mitigated

				etail	6.0 Area Detail
306.2505	1.5000e- 003	7.2200e- 003	305.6250		Total
40.2561	2.0000e- 004	9.5000 e- 004	40.1739	72130.5	Strip Mall
104.6552	5.1000e- 004	2.4700e- 003	104.4414	187520	Enclosed Parking with Elevator
161.3392		3.8000e- 003	161.0097 3.8000e- 003		Apartments Mid Rise
	MT/yr	М		kWh/yr	Land Use
CO2e	N20	CH4	Total CO2	Electricity Use	

6.1 Mitigation Measures Area

Category					tons/yr	/yr	
Mitigated	0.2603	8.7200e- 0.7556 4.0000e-	0.7556	4.0000e-		4.1600e- 4.1600e-	4.1600e-
		003		005		003	003
Unmitigated		8.7200e- 0.7556 4.0000e-	0.7556	0.2603 8.7200e- 0.7556 4.0000e- 4.1600e- 4.1600e-		4.1600e- 4.1600e-	4.1600e-
		003		005		003	003

ROG

NOX

8

SO2

Fugitive PM10

Exhaust PM10

PM10 Total

Fugitive PM2.5

Exhaust PM2.5

PM2.5 Total Bio- CO2 NBio- CO2 Total CO2

CH4

N20

CO2e

4.1600e-003 4.1600e-003

4.1600e-003 4.1600e-003

0.0000

1.2318

1.2318

1.2000e-003 1.2000e-0.0000 003

1.2618

1.2618

0.0000

1.2318

1.2318

MT/yr

6.2 Area by SubCategory Unmitigated

7.1 Mitigation Measures Water

7.0 Water Detail

	RUG	NUX	ω	SUZ	PM10	PM10	PM10 PM10 Iotal Fugitive PM10 PM2.5	PM2.5	Exnaust PM2.5	PMZ.5 Total	ыо- СО2		Total CU2	CH4	NZO	CUZe
SubCategory					tons/yr	/yr							MT/yr	уг		
Architectural Coating							0.0000		0.0000	0.0000	0.0000	0.0000	0.0000 0.0000 0.0000	0.0000		0.0000
Consumer Products	0,			0.0000			0.0000			0.0000	0.0000	0.0000	0.0000 0.0000 0.0000 0.0000	0.0000		0.0000
Hearth	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	0.0230	8.7200e- 003	0.7556	4.0000e- 005		4.1600e- 003	4.1600e- 003		4.1600e- 003	4.1600e- 003	0.0000	1.2318	1.2318	1.2000e- 003	0.0000	1.2618
Total	0.2603	8.7200e- 003	0.7556	4.0000e- 005		4.1600e- 003	4.1600e- 003		4.1600e- 003	4.1600e- 003	0.0000	1.2318	1.2318	1.2000e- 003	0.0000	1.2618
	•															

Mitigated

	Total	Landscaping	Hearth	Consumer Products	Architectural Coating	SubCategory	
ľ	0.2603	0.0230	0.0000	0.2175			ROG
	8.7200e- 003	8.7200e- 003	0.0000				NOx
	0.7556	0.7556	0.0000				co
	4.0000e- 005	4.0000e- 005	0.0000				SO2
						tons/yr	Fugitive PM10
	4.1600e- 003	4.1600e- 003	0.0000	0.0000	0.0000	s/yr	Exhaust PM10
	4.1600e- 003	4.1600e- 003	0.0000		0.0000		Exhaust PM10 Total Fugitive PM10 PM2.5
				0.0000			Fugitive PM2.5
	4.1600e- 003	4.1600e- 003	0.0000	0.0000	0.0000		Exhaust PM2.5
	4.1600e- 003	4.1600e- 003	0.0000	0.0000	0.0000		PM2.5 Total
	0.0000	0.0000		0.0000	0.0000		Bio- CO2
	1.2318	1.2318			0.0000 0.0000		NBio- CO2 Total CO2
	1.2318	1.2318 1.2000 e 003	0.0000		0.0000	MT/yr	Total CO2
	1.2000e- 003					'yr	CH4
	0.0000	0.0000			0.0000		N20
	1.2618	1.2618	0.0000	0.0000	0.0000		CO2e

oor Use	Indoor/Outd
	Total CO2
	CH4
	N20
	CO2e

Mitigated

	003				
64.5461	4.2500e-	0.1692	59.0506		Total
	004			0.242432	
4.9161	3.3000e-	0.0130		0.395547 /	Strip Mall
					with Elevator
0.0000	0.0000	0.0000	0.0000 0.0000	0/0	Enclosed Parking
	003			2.9985	Rise
59.6301	3.9200e-	0.1562	54.5564	4.75624 /	Apartments Mid
	MT/yr	M		Mgal	Land Use
CO2e	N20	CH4	Total CO2	Indoor/Outd oor Use	

7.2 Water by Land Use <u>Unmitigated</u>

	003			
64.5461	4.2400e-	0.1692	59.0506	Unmitigated
	003			
64.5461	4.2400e-	0.1692	59.0506	Mitigated
	/yr	MT/yr		Category
CO2e	N20	CH4	Total CO2	

Total	Strip Mall 0.395547 / 0.242432	with Elevator	Enclosed Parking	Rise	Apartments Mid	Land Use
	0.395547 / 0.242432		0/0	2.9985	4.75624 / 54.5564	Mgal
59.0506	4.4942		0.0000 0.0000		54.5564	
0.1692	4.4942 0.0130		0.0000		0.1562	M
4.2500e- 003	3.3000e- 4.9161 004		0.0000	003	3.9200e-	MT/yr
64.5461	4.9161		0.0000		59.6301	

8.0 Waste Detail

8.1 Mitigation Measures Waste

<u>Category/Year</u>

19.7087	0.0000	0.4701 0.0000	7.9552	Unmitigated
19.7087	0.0000	0.4701	7.9552	Mitigated
	'yr	MT/yr		
CO2e	N20	CH4	Total CO2	

8.2 Waste by Land Use <u>Unmitigated</u>

Land Use	
tons	Waste Disposed
	Total CO2
M	CH4
MT/yr	N2O
	CO2e

Mitigated					
	Waste Disposed	Total CO2	CH4	N20	CO2e
Land Use	tons		LM	MT/yr	
Apartments Mid Rise	33.58	6.8164		0.0000	16.8874
Enclosed Parking with Elevator		0.0000	0.000	0.0000	0.0000
Strip Mall	5.61	1.1388 0.0673	0.0673	3 0.0000	2.8213
Total		7.9552	0.4701	0.0000	19.7087
9.0 Operational Offroad	onal Off	froad			
Equ	Equipment Type	U		Number	
	1				
10.0 stationary Equipment	nary Eq	uipment			
Fire Pumps and Emergency Generators	and Eme	rgency Ge	enerator	S	
Eq	Equipment Type	e		Number	
<u>Boilers</u>					
Eq	Equipment Type	Ū		Number	Heat Input/Day
User Defined Equipment	l Equipm	<u>ent</u>			1

Rise Enclosed Parking

0

0.0000

0.0000

.....

0.0000

....

0.0000

Apartments Mid 33.58 6.8164

ł

0.4028 0.0000 16.8874

with Elevator Strip Mall

5.61

.....

1.1388

0.0673

0.0000

2.8213

Total

7.9552

0.4701

0000.0

19.7087

Equipment Type Number

11.0 Vegetation

CalEEMod Version: CalEEMod.2016.3.2

Page 1 of 1

11701 Gateway Boulevard Future - Los Angeles-South Coast County, Winter

11701 Gateway Boulevard Future

Los Angeles-South Coast County, Winter

1.0 Project Characteristics

1.1 Land Usage

Enclosed Parking with Elevator 80.00 Space	Apartments Mid Rise 73.00 Dwelling Unit	Strip Mall	Land Uses
80.00	73.00	5.34	Size
Space	Dwelling Unit	1000sqft	Metric
0.10	0.30	0.04	Lot Acreage
32,000.00 0	54,264.00 209		Floor Surface Area
0	209	0	Population

1.2 Other Project Characteristics

CO2 Intensity (Ib/MWhr)	Utility Company	Climate Zone	Urbanization
1227.89	Los Angeles Department of Water & Power	11	Urban
CH4 Intensity (Ib/MWhr)	nt of Water & Power		Wind Speed (m/s)
0.029			2.2
N2O Intensity (lb/MWhr)		Operational Year	Precipitation Freq (Days)
0.006		2021	33

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - Developer information

Construction Phase - Consultant assumptions

Vehicle Trips - City of Los Angeles Department of Transportation Referral Form: Traffic Study Assessment (CPC-2018-3430-DB-SPR), July 2018.

Grading - Developer information. Assumes 24 feet of excavation for entire site.

Demolition - Developer information

Trips and VMT - Assumes 10 CY capacity per haul truck.

Construction Off-road Equipment N	Construction Off-road Equipment Mitigation - Assumes SCAQMD Rule 403 control efficiencies	403 control efficiencies	
Table Name	Column Name	Default Value	New Value
tblConstDustMitigation	CleanPavedRoadPercentReduction	0	46
tblConstructionPhase	NumDays	10.00	22.00
tblConstructionPhase	NumDays	1.00	20.00
tblConstructionPhase	NumDays	2.00	21.00
tblConstructionPhase	NumDays	100.00	436.00
tblConstructionPhase	NumDays	5.00	132.00
tblFireplaces	NumberGas	62.05	0.00
tblFireplaces	NumberNoFireplace	7.30	73.00
tblFireplaces	NumberWood	3.65	0.00
tblGrading	AcresOfGrading	0.00	0,44
tblGrading	AcresOfGrading	10.00	0.50
tblGrading	MaterialExported	0.00	14,311.00
tblLandUse	LandU seSquareFeet	73,000.00	54,264.00
tblLandUse	LotAcreage	0.12	0.04
tblLandUse	LotAcreage	1.92	0.30
tblLandUse	LotAcreage	0.72	0.10
tblTripsAndVMT	HaulingTripLength	20.00	30.00
tblTripsAndVMT	HaulingTripLength	20.00	30.00
tblTripsAndVMT	HaulingTripNumber	1,789.00	1,431.00
tbiVehicleTrips	НО_ТТР	40.60	41.00
tblVehicleTrips	HS_TTP	19.20	19.00
tblVehicleTrips	HW_TTP	40.20	40.00
tblVehicleTrips	ST_TR	42.04	37.75
tblVehicleTrips	ST_TR	6.39	5.44
tblVehicleTrips	SU_TR	5.86	5.44
tblVehicleTrips	WD_TR	44.32	37.75
tblVehicleTrips	WD_TR	6.65	5.44

Woodstoves - Developer information

	Maximum	2020	2019	Year	
ROG	4.5900	4.5900	1.9204		ROG
NOX	37.1111	12.3223	37.1111		NOX
CO	14.6593	12.9375 0.0270	14.6593		CO
SO2	0.0902	0.0270	37.1111 14.6593 0.0902		S02
Fugitive PM10	1.5475	0.6103	1.5475	lb/day	Fugitive PM10
Exhaust PM10	0.6522	0.6481		ay	Exhaust PM10
Exhaust PM10 Total Fugitive PM10 PM2.5	2.1997	1.2584	2.1997 0.5142		Exhaust PM10 Total PM10
Fugitive PM2.5	0.5142	0.1717	0.5142		Fugitive PM2.5
Exhaust PM2.5	0.6226	0.6054	0.6226		Exhaust PM2.5
PM2.5 Total	1.1368	0.7771	1.1368		Exhaust PM2.5 Total PM2.5
Bio- CO2	0.0000	0.0000	0.0000		Bio- CO2
NBio-CO2 Total CO2	9,618.2688	2,669.7395	9,618.2688		NBio- CO2 Total CO2
Total CO2	9,618.2688 9,618.2688 0.7883	0.0000 2,669.7395 2,669.7395 0.4324	0.0000 9,618.2688 9,618.2688 0.7883	lb/day	Total CO2
CH4	0.7883	0.4324	0.7883	lay	CH4
N20	0.0000	0.0000			N20
CO2e	9,637.9770	2,680.5486	9,637.9770		CO2e

Mitigated Construction

Maximum	2020		Year	
4.5900	4.5900			ROG
37.1111	12.3223	37.1111		NOX
14.6593 0.0902	12.9375	14.6593		CO
	0.0270	0.0902		SUZ
2.7502	12.3223 12.9375 0.0270 1.0062	2.7502	Ib/day	PM10
0.6522	0.6481	0.6522	lay	
3.4024	0.6481 1.6543			PM10
0.9471	0.2689			PM2.5
0.6226	0.6054	0.6226		PM2.5
1.5697	0.8743	1.5697		PM2.5
0.0000	0.0000	0.0000		
9,618.2688	2,669.7395	9,618.2688		NDIU- CUZ
9,618.2688 9,618.2688 0.7883 0.0000 9,637.9770	0.0000 2,669.7395 2,669.7395 0.4324	0.0000 9,618.2688 9,618.2688 0.7883 0.0000 9,637.9770	Ib/day	
0.7883		0.7883	łay	
0.0000	0.0000	0.0000		NZO
9,637.9770	0.0000 2,680.5486	9,637.9770		CUZe

tbIW codstoves	
Number Noncatalytic	NumberCatalytic
3.65	3.65
0.00	0.00

2.0 Emissions Summary

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

0 CO2e	4 N20	CH4	NBio-CO2 Total CO2	OZ NBio-(5 Bio- CO2	.5 PM2.5	e Exhaust 5 PM2.5	otal Fugitive PM2.5	Exhaust PM10 Total Fugitive PM10 PM2.5		OZ Fugitive PM10	SO2	x co	NOX	ROG	
							1				-					
4,803.6165	4.0300e- 003		4,795.7287 4,795.7287 0.2675	1,795.7287	0.0000	1.0741	0.0839	0.9902	3.7864	0.0865	3.6999	0.0463	19.3898	5.3323	2.5559	Total
4,571.4905		0.2527	4,565.1722 4,565.1722 0.2527	1,565.1722	~			0.9902			3.6999	0.0449	13.2711	5.0903	1.0514	Mobile
220.9991		4.2100e- 003	219.6935 4.2100e- 003	219.6935		-						1.1000e- 003	0.0743		0.0201	Energy
11.1270	0.0000	0.0106	10.8630	10.8630	0.0000	0.0333	0.0333		0.0333	0.0333		3.2000e- 004	6.0444	0.0698	1.4843	Area
		ĄĘ	Ib/day							Ŷ	lb/day					Category
CO2e	N20	CH4	Total CO2	NBio- CO2 Total CO2	Bio- CO2	PM2.5 Total	Exhaust PM2.5	Fugitive E PM2.5		Exhaust PM10 Total PM10	Fugitive PM10	SO2	со	NOX	ROG	

Mitigated Operational

4,571.4905		0.2527	4,565.1722 4,565.1722 0.2527	4,565.1722	•••	1.0269	0.0367	0.9902	3.7392	0.0393	3.6999	0.0449	5.0903 13.2711 0.0449	5.0903	1.0514	Mobile
1 571 1005		0 0507	1 666 1700	1 EGE 1700 1 EGE 1700			7 2 C U U	0000		0000	3 2000	00440	40 0744	п 0003	1 0 1 1	Mobilo
	003	003										003				
220.9991	4.0300e-	4.2100e-	219.6935 219.6935 4.2100e- 4.0300e-	219.6935		0.0139	0.0139		0.0139	0.0139			0.1722 0.0743	0.1722		Energy
									004							
11.1270	0.0000	0.0106	0.0000 10.8630 10.8630 0.0106 0.0000 11.1270	10.8630	0.0000	0.0333 0.0333	0.0333		0.0333	0.0333		3.2000e-	6.0444	0.0698 6.0444 3.2000e-	1.4843	Area
		ау	Ib/day							day	Ib/day					Category
CO2e	N20	CH4	Bio- CO2 NBio- CO2 Total CO2 CH4	NBio- CO2		Exhaust PM2.5 Total PM2.5	Exhaust PM2.5	Fugitive PM2.5	Exhaust PM10 Total Fugitive PM10 PM2.5	Exhaust PM10	Fugitive PM10	SO2	co	NOX	ROG	

Percent Reduction 0.00 0.00 0.00 0.00 42.56 0.00 31.61 43.59 0.00 21.69 0.00 0.00 0.00 0.00 0.00 0.00

2.2 Overall Operational

Unmitigated Operational

	Percent Reduction	
	0.00	
	0.00	
	0.00	
	0.00	
	0.00	
	0.00	
	0.00	
	0.00	
	0.00	
	0.00	
	0.00	
	0.00	
	0.00	
	0.00	
	0.00	
	0.00	

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days
-	Demolition	Demolition	1/2/2019	1/15/2019	ហ	22
2	2 Site Preparation Site Preparation 2/1/2019 2/28/2019 5	Site Preparation	2/1/2019	2/28/2019		20
ω	Grading		3/1/2019 3/29/2019	3/29/2019	თ	21
4	Building Construction Building Construction	- 1	4/1/2019 11/30/2020	11/30/2020	ப	436
5	5 Architectural Coating Architectural Coating		7/1/2020 12/31/2020		5	132

Acres of Grading (Site Preparation Phase): 0.5

Acres of Grading (Grading Phase): 0.44

Acres of Paving: 0.1

Residential Indoor: 109,885; Residential Outdoor: 36,628; Non-Residential Indoor: 8,015; Non-Residential Outdoor: 2,672; Striped Parking Area:

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Architectural Coating	Air Compressors	1	6.00	78	0.48
Demolition	Concrete/Industrial Saws 1 8.00	Т	8.00	81	81 0.73
	Concrete/Industrial Saws 1 8.00	1	8.00	81	81 0.73
	Cranes 1 4.00	-	4.00	231	231 0.29
Building Construction	Forklifts 2	2	6.00	68	89 0.20
Site Preparation	Graders 1 8.00	-	8.00		0.41
	Rubber Tired Dozers 1 1.00	1	1.00		0.40
	Rubber Tired Dozers 1 1.00	1	1.00	247	0.40
	Tractors/Loaders/Backhoes 2 8.00	2	8.00	97	97 0.37
	Tractors/Loaders/Backhoes 2 6.00	2	6.00	97	97 0.37
Grading Tractors/Loaders/Backhoes 2 6.00	Tractors/Loaders/Backhoes 2 6.00	2	6.00		97 0.37

Site Preparation Tractors/Loaders/Backhoes 1 8.00 97 0.37	Tra	ctors/Loaders/Back	choes		→	8.00		97	0.37	
Trips and VMT										
Phase Name	Offroad Equipment	Worker Trip	Vendor Trip	Hauling Trip Worker Trip	Worker Trip	Vendor Trip	Hauling Trip	Worker Vehicle	Vendor Vehicle Hauling Vehicle	Hauling Vehicle
	Count	Number	Number	Number	Length	Length	Length	Class	Class	Class
Architectural Coating	1	14.00	0.00	0.00	14.70	6.90		20.00 LD_Mix	HDT_Mix	HHDT
Building Construction	5 68.00	68.00	14.00	0.00	14.70	6.90		20.00 LD_Mix	HDT_Mix	ннот
Demolition	4	10.00	0.00	46.00	14.70	6.90		30.00 LD_Mix	HDT_Mix	HHDT
Grading	4	10.00	0.00	1,431.00	14.70	6.90	30.00	30.00 LD_Mix	HDT_Mix	HHDT
Site Preparation	2	5.00	0.00	0.00	14.70	6.90	20.00 LD_Mix	_D_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Replace Ground Cover

Water Exposed Area

Clean Paved Roads

3.2 Demolition - 2019

Unmitigated Construction On-Site

1,165.1847		0.2211	1,159.6570 1,159.6570 0.2211	1,159.6570		0.5806	0.5125	0.0681	0.9868	0.5371	0.4498	7.6917 0.0120	7.6917	8.6039	0.9530	Total
1,165.1847		0.2211	1,159.6570 1,159.6570 0.2211	1,159.6570 1,159.6570 0.2211		0.5125	0.5125		0.5371	0.5371		0.0120	7.6917	8.6039	0.9530	Off-Road
0.0000			0.0000			0.0681	0.0000	0.0681 0.0000		0.0000	0.4498					Fugitive Dust
		ay	lb/day							ay	Ib/day					Category
CO2e	N20	CH4	Total CO2	Bio- CO2 NBio- CO2 Total CO2	Bio- CO2	Exhaust PM2.5 Total PM2.5	Exhaust PM2.5		Exhaust PM10 Total Fugitive PM10 PM2.5	Exhaust PM10	Fugitive PM10	SO2	co	NOX	ROG	

Unmitigated Construction Off-Site

Category	
	ROG
	NOX
	CO
	SO2
Ib/da	Fugitive PM10
lay	Exhaust PM10
	Exhaust PM10 Total Fugitive Exhaust PM2.5 T PM10 PM2.5 PM2.5
	Fugitive PM2.5
	Exhaust PM2.5
	PM2.5 Total
	Bio- CO2
	NBio- CO2
lb/day	Bio-CO2 NBio-CO2 Total CO2
ay	CH4
	N20
	CO2e

Mitigated Construction Off-Site

Total	Off-Road	Fugitive Dust	Category	
0.9530	0.9530			ROG
8.6039	8.6039			NOx
7.6917	7.6917 0.0120			8
7.6917 0.0120	0.0120			S02
0.1666 0.5371		0.1666	Ib/day	Fugitive PM10
0.5371	0.5371	0.0000	ay	Exhaust PM10
0.7037	0.5371 0.5371	0.1666 0.0000 0.1666 0.0252 0.0000		Exhaust PM10 Total Fugitive PM10 PM2.5
0.0252		0.0252		Fugitive PM2.5
0.5125	0.5125	0.0000		Exhaust PM2.5
0.5377	0.5125	0.0252		Exhaust PM2.5 Total PM2.5
0.0000	0.0000			Bio- CO2
0.0000 1,159.6570 1,159.6570 0.2211	0.0000 1,159.6570 1,159.6570 0.2211			Bio-CO2 NBio-CO2 Total CO2
1,159.6570	1,159.6570	0.0000	lb/day	Total CO2
0.2211	0.2211		ay	CH4
				N20
1,165.1847	1,165.1847	0.0000		CO2e

Mitigated Construction On-Site

	╞	I												
3 370.2543	5	370.2543		0.0611	4.2400e- 003	0.0569	0.2208	4.4600e- 003	0.2164	3.5200e- 003	0.6427	0.9141	0.0834	Total
					004					003				
114.2131 114.2131 3.9300e-	131	114.2	• • • • ÷	0.0305	8.9000e-	0.0296	0.1127	9.6000e-	0.1118	1.1500e-	0.4425	0.0407	0.0554	Worker
0.0000	00	0.0000		•••••	0.0000		0.0000			0.0000	0.0000	0.0000		Vendor
					003					003				
256.0412 256.0412 0.0173	0412	256.		0.0306	3.3500e-	0.0272	0.1081	3.5000e-	0.1046	2.3700e-	0.2002	0.8735	0.0280	Hauling
lb/day								day	Ib/day					Category
					PM2.5	PM2.5		PM10	PM10					
NBio- CO2 Total CO2	- CO2		Bio-CO2	PM2.5 Total	Exhaust	Fugitive	Exhaust PM10 Total Fugitive	Exhaust	Fugitive	20S	СО	XON	ROG	

		003				004			004		004				
57.1557		1.9600e-	57.1065	57.1065	0.0153	4.4000e-	0.0148	0.0564	4.8000e-	0.0559	0.2212 5.7000e-		0.0203	0.0277	Total
07.1007		003	07.1000	97.1000	0.0100	4.4000e- 004	0.0140	0.0004	4.8000e- 004	0.0339	004	0.2212	0.0203	0.0277	WOIKE
				1007					2000						
0.0000		0.0000	0.0000 0.0000 0.0000 0.0000	0.0000	 0.0000 0.0000	0.0000	0.0000		0.0000	0.0000	0.0000 0.0000		0.0000	0.0000	Vendor
0.0000		0.0000	0.0000	0.0000	 0.0000	0.0000	0.0000	0.0000 0.0000	0.0000	0.0000	0.0000 0.0000	0.0000	0.0000	0.0000	Hauling
		łay	lb/day						day	Ib/day					Category
0020	THE (PM2.5		PM10		0.04	0	THUN		
€CO3	UCN	CH4	Total CO2	Rin-CO2 NRin-CO2 Total CO2	Exhaust PM2 5 Total		Funitive	Exhallst PM10 Total Funitive	Exhalist	Funitive	SOS	0.0	× ON	ROG	

Unmitigated Construction Off-Site

972.8032		0.3054	965.1690 0.3054	965.1690		0.3407	0.3378	2.8600e- 003	0.3937	0.3672	0.0265	4.1407 9.7500e- 003	4.1407	8.9170	0.7195	Total
972.8032		0.3054	965.1690 0.3054	965.1690		0.3378	0.3378		0.3672			9.7500e- 003		8.9170	0.7195	Off-Road
0.0000			0.0000	0.0000			0.0000 2.8600e- 003	2.8600 e- 003	0.0265		0.0265 0.0000					Fugitive Dust
		ау	lb/day							lay	Ib/day					Category
CO2e	N20	CH4	Total CO2	NBio- CO2 Total CO2	Bio- CO2	Exhaust PM2.5 Total PM2.5	Exhaust PM2.5		Exhaust PM10 Total Fugitive PM10 PM2.5	Exhaust PM10	Fugitive PM10	SO2	co	NOX	ROG	

			_
Total	Worker	Vendor	Hauling 0.0280 0.8735 0.2002 2.3700e- 0.0626 3.5000e- 0.0661 0.0169 3.3500e- 0.0203
0.0834	0.0554		0.0280
0.9141	0.0407		0.8735
0.6427	0.4425	0.0000	0.2002
3.5200e- 003	0.4425 1.1500e- 003	0.0000	2.3700e- 003
0.1297	0.0671	0.0000	0.0626 3.5000e- 003
4.4600e- 003	0.0671 9.6000e- 004	0.0000 0.0000 0.0000	3.5000e- 003
0.1342	0.0680	0.0000	0.0661
0.0356	0.0187		0.0169
4.2400e- 003	8.9000e- 004	0.0000	3.3500e- 003
0.0399	0.0196	0.0000	0.0203
370.2543	114.2131	0.0000	256.0412
370.2543 370.2543 0.0212	114.2131 114.2131 3.9300e- 003 114.3113	0.0000 0.0000 0.0000 0.0000	256.0412 256.0412 0.0173 256.4733
0.0212	3.9300e- 003	0.0000	0.0173
370.7846	114.3113	0.0000	256.4733

3.3 Site Preparation - 2019 Unmitigated Construction On-Site

Unmitigated Construction On-Site

3.4 Grading -
20
2019

57.1557		1.9600e- 003	57.1065	57.1065		9.7800e- 003	4.4000e- 004	9.3400e- 003	0.0340	4.8000e- 004	0.0335	5.7000e- 004	0.2212	0.0203	0.0277	Total
57.1557		1.9600e- 003	57.1065			9.7800e- 003	4.4000e- 004		0.0340	4.8000e- 004	0.0335		0.2212			Worker
0.0000	0.0000		0.0000	0.0000	0.0000		0.0000		år en ser en ser en sk	0.0000			0.0000	0.0000	0.0000	Vendor
0.0000	0.0000		0.0000	0.0000 0.0000 0.0000		0.0000	0.0000 0.0000	0.0000	0.0000	0.0000	0.0000 0.0000 0.0000 0.0000	0.0000	0.0000	0.0000 0.0000	0.0000	Hauling
		lay	lb/day							day	Ib/day					Category
CO2e	N20	CH4	Total CO2	NBio- CO2 Total CO2	Bio- CO2	Exhaust PM2.5 Total PM2.5	Exhaust PM2.5	Fugitive PM2.5	Exhaust PM10 Total Fugitive PM10 PM2.5	Exhaust PM10	Fugitive PM10	SO2	со	NOX	ROG	

Mitigated Construction Off-Site

Total	Off-Road	Fugitive Dust	Category	
0.7195	0.7195			ROG
8.9170	8.9170			NOX
4.1407	4.1407			ĉ
9.7500e- 003				SO2
9.8200e- 003		9.8200e- 003	Ib/day	Fugitive PM10
0.3672	0.3672	0.0000	ay	Exhaust PM10
0.3770	0.3672	9.8200e- 003		Exhaust PM10 Total Fugitive PM10 PM2.5
1.0600e- 003				Fugitive PM2.5
0.3378	0.3378	0.0000		Exhaust PM2.5
0.3389	0.3378	1.0600e- 003		PM2.5 Total
0.0000	0.0000			Bio- CO2
965.1690	965.1690 965.1690			Bio- CO2 NBio- CO2 Total CO2
965.1690	0.0000 965.1690 965.1690 0.3054 972.8032	0.0000	lb/day	Total CO2
0.3054	0.3054			CH4
				N20
972.8032	972.8032	0.0000		CO2e

Mitigated Construction On-Site

Off-Road	Fugiti	Cat	
Off-Road	Fugitive Dust	Category	
Off-Road 0.9530 8.6039 7.6917 0.0120 0.5371 0.5371 0.5125 0.5125			ROG
0.9530 8.6039 7.6917 0.0120			NOX
7.6917			СО
0.0120			SO2
	0.3157	Ib/day	Fugitive PM10
0.5371 0.5371	0.0000	ау	Exhaust PM10
0.5371 0.5371	0.0000 0.3157 0.1585 0.0000		PM10 Total
	0.1585		Fugitive PM2.5
0.5125 0.5125	0.0000		Exhaust PM2.5
0.5125	0.1585		Exhaust PM10 Total Fugitive Exhaust PM2.5 Total PM10 PM2.5 PM2.5 PM2.5
0.0000			Bio- CO2
1,159.6570		lb/day	NBio- CO2
0.0000 1,159.6570 1,159.6570 0.2211 1,165.1847	0.0000		Bio-CO2 NBio-CO2 Total CO2 CH4
0.2211			CH4
			N20
1,165.1847	0.0000		CO2e

Mitigated Construction On-Site

Total 0.9674 28.5072 6.9676 0.0783 1.8982 0.1151 2.0133 0.5192 0.1101	Worker 0.0554 0.0407 0.4425 1.1500e- 0.1118 9.6000e- 0.1127 0.0296 8.9000e- 003 004	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.9120 28.4665 6.5251 0.0771 1.7864 0.1142 1.9005 0.4896	
2.0133	0.1127	0.0000	1.9005	
0.5192		0.0000	0.4896	
0.1101	8.9000e- 004			
0.6293	0.0305	0.0000	0.5988	
	114.2131			
8,458.6118	114.2131	0.0000	8,344.3987	
8,458.6118 8,458.6118 0.5672	114.2131 114.2131 3.9300e- 003	0.0000 0.0000 0.0000	8,344.3987 8,344.3987 0.5633	
0.5672	3.9300e- 003		0.5633	
8,472.7924	114.3113	0.0000	8,358.4811	

Unmitigated Construction Off-Site

	0.2211	1,159.6570 1,159.6570 0.2211	1,159.6570	\square	0.9403	0.5125	0.4279	1.3891	0.5371	0.8521	7.6917 0.0120	7.6917	8.6039	0.9530	Total
1	0.2211	1,159.6570 1,159.6570 0.2211			0.5125	0.5125		0.5371	0.5371		0.0120	8.6039 7.6917	8.6039	0.9530	Off-Road
		0.0000			0.4279	0.0000	0.4279	0.8521 0.0000 0.8521 0.4279 0.0000 0.4279	0.0000	0.8521					Fugitive Dust
	ау	lb/day							Ib/day	Ip/					Category
N20	CH4	Total CO2	Bio- CO2 NBio- CO2 Total CO2	Bio- CO2	Exhaust PM2.5 Total PM2.5	Exhaust PM2.5	Fugitive PM2.5	Exhaust PM10 Total Fugitive PM10 PM2.5		Fugitive PM10	SO2	co	NOX	ROG	

Unmitigated Construction Off-Site

1,136.5892		0.3568	1,127.6696 1,127.6696 0.3568	1,127.6696		0.5569	0.5569	0.6054	0.6054		0.0114	7.5432	9.8207	0.9576	Total
1,136.5892		0.3568	1,127.6696	1,127.6696 1,127.6696 0.3568		0.5569	0.5569	0.6054	0.6054		0.0114	9.8207 7.5432 0.0114	9.8207	0.9576	Off-Road
		ay	lb/day						day	Ib/day					Category
CO2e	N20	CH4	Total CO2	Bio- CO2 NBio- CO2 Total CO2	Bio- CO2	Exhaust PM2.5 Total PM2.5	Exhaust PM2.5	Exhaust PM10 Total Fugitive PM10 PM2.5		Fugitive PM10	SO2	CO	NOX	ROG	

3.5 Building Construction - 2019 <u>Unmitigated Construction On-Site</u>

8,472.7924		0.5672	8,458.6118	8,458.6118 8,458.6118 0.5672		0.4658	0.1101	0.3557	1.3469	0.1151	1.2318	0.0783	6.9676	28.5072	0.9674	Total
114.3113		3.9300e- 003	114.2131 114.2131 3.9300e 003	114.2131		0.0196	8.9000e- 004	0.0187	1.1500e- 0.0671 9.6000e- 0.0680 0.0187 8.9000e- 003 004 <td>9.6000e- 004</td> <td>0.0671</td> <td>1.1500e- 003</td> <td>0.4425</td> <td>0.0407</td> <td>0.0554</td> <td>Worker</td>	9.6000e- 004	0.0671	1.1500e- 003	0.4425	0.0407	0.0554	Worker
0.0000		0.0000	0.0000	0.0000		0.0000	0.0000	0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000	0.0000	0.0000 0.0000		0.0000			Vendor
8,358.4811		0.5633	8,344.3987			0.4462	0.1092	0.3370	1.2789	0.1142	1.1647	0.0771	6.5251	28.4665 6.5251 0.0771 1.1647 0.1142 1.2789 0.3370 0.1092 0.4462		Hauling
		lay	lb/day							day	Ib/day					Category
CO2e	N20	CH4	Total CO2	Bio- CO2 NBio- CO2 Total CO2	Bio- CO2	Exhaust PM2.5 Total PM2.5	Exhaust PM2.5	Fugitive PM2.5	Exhaust PM10 Total Fugitive PM10 PM2.5	Exhaust PM10	Fugitive PM10	SO2	со	NOx	ROG	

Total	
0.9530	
8.6039	
7.6917	
0.0120	
0.3157	
0.5371	
0.8528	
0.1585	
0.5125	
0.6710	
0.0000	
1,159.6570	
 1,159.6570	
 0.2211	
1,165.1847	

Mitigated Construction Off-Site

Category	
	ROG
	NOX
	CO
	SO2
Ib/day	Fugitive PM10
lay	Exhaust PM10
	Exhaust PM10 Total PM10
	Fugitive PM2.5
	Exhaust PM2.5
	PM2.5 Total
	Bio- CO2
	Bio- CO2 NBio- CO2 Total CO2
lb/day	Total CO2
lay	CH4
	N20
	CO2e

Mitigated Construction Off-Site

Total	Off-Road	Category	
0.9576	0.9576		ROG
9.8207			NOx
7.5432	9.8207 7.5432 0.0114		CO
0.0114	0.0114		SO2
		Ib/day	Fugitive PM10
0.6054	0.6054	day	
0.6054	0.6054 0.6054		PM10 Total
			Exhaust PM10 Total Fugitive PM10 PM2.5
0.5569	0.5569		
0.5569	0.5569		Exhaust PM2.5 Total PM2.5
0.0000	0.0000		Bio- CO2
1,127.6696	1,127.6696		NBio- CO2
1,127.6696 1,127.6696 0.3568	0.0000 1,127.6696 1,127.6696 0.3568	lb/day	Bio- CO2 NBio- CO2 Total CO2
0.3568	0.3568		CH4
			N20
1,136.5892	1,136.5892		CO2e

Mitigated Construction On-Site

Vendor Category Worker Hauling Total 0.4372 0.3766 0.0607 0.0000 ROG 0.2765 1.6224 0.0000 1.8989 NOX 3.0088 0.4739 3.4827 0.0000 8 3.5600e-003 7.8000e-003 0.0114 0.0000 SO2 0.0896 Fugitive PM10 0.7601 0.8497 0.0000 lb/day Exhaust PM10 6.5500e-003 0.0105 0.0171 0.0000 PM10 Total 0.8668 0.7666 0.1001 0.0000 Fugitive PM2.5 0.0258 0.2274 0.2016 0.0000 6.0400e-003 Exhaust PM2.5 0.0100 0.0161 0.0000 PM2.5 Total 0.2076 0.0359 0.0000 0.2435 Bio-CO2 NBio-CO2 Total CO2 1,156.4369 1,156.4369 379.7880 379.7880 776.6490 776.6490 0.0000 0.0000 lb/day 0.0267 0.0534 0.0267 0.0000 CH4 N20 380.4550 1,157.7718 777.3169 0.0000 CO2e

1,131.4986		0.0490	1,130.2746 1,130.2746 0.0490	1,130.2746		0.2401	0.0127	0.2274	0.8632	0.0135	0.8497	0.0111	3.1572 0.0111	1.7354	0.3996	Total
753.6393		0.0237	753.0459			0.2074	5.8500e- 003	0.2016		6.3500e- 003	0.7601	7.5600e- 003		0.2465	0.3475	Worker
377.8593		0.0252	377.2287 0.0252	377.2287			6.8100e- 003	0.0258	0.0968					1.4889		Vendor
0.0000		0.0000	0.0000 0.0000 0.0000 0.0000	0.0000		0.0000	0.0000	0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	Hauling
		ay	lb/day							łay	Ib/day					Category
CO2e	N20	CH4	Total CO2	NBio- CO2 Total CO2	Bio- CO2	Exhaust PM2.5 Total PM2.5	Exhaust PM2.5	Fugitive PM2.5	Exhaust PM10 Total PM10	Exhaust PM10	Fugitive PM10	SO2	со	NOX	ROG	

Unmitigated Construction Off-Site

Total	Off-Road	Category	
0.8617	0.8617		ROG
8.8523	0.8617 8.8523 7.3875 0.0114		NOX
7.3875	7.3875		CO
0.0114	0.0114		SO2
		Ib/day	Fugitive PM10
0.5224	0.5224	ау	Exhaust PM10
0.5224	0.5224		Exhaust PM10 Total Fugitive PM10 PM2.5
			Fugitive PM2.5
0.4806	0.4806		
0.4806	0.4806		Exhaust PM2.5 Total PM2.5
			Bio- CO2
1,102.9781	1,102.9781		Bio-CO2 NBio-CO2 Total CO2
1,102.9781 1,102.9781 0.3567	1,102.9781 1,102.9781 0.3567	lb/day	Total CO2
0.3567	0.3567	ау	CH4
			N20
1,111.8962	1,111.8962		CO2e

Total	Worker	Vendor	Hauling
0.4372			0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1.8989	0.2765	1.6224 0.4739	0.0000 0.0000
3.4827 0.0114	3.0088	0.4739	0.0000
0.0114	7.8000e- 003	0.4739 3.5600e- 003	0.0000 0.0000 0.0000 0.0000
0.5164	0.4561	3.5600e- 003 0.0603 0.0105 0.0708	0.0000
0.0171	6.5500e- 003	0.0105 0.0708	0.0000
0.5334	0.4561 6.5500e- 0.4627 003		0.0000
0.1456	0.1270	0.0186	0.0000
0.0161	6.0400e- 003	0.0100	0.0000
0.1617	0.1330	0.0286	0.0000
1,156.4369	776.6490	379.7880	0.0000
1,156.4369 1,156.4369 0.0534	776.6490 776.6490 0.0267	379.7880 379.7880 0.0267	0.0000 0.0000 0.0000
0.0534	776.6490 776.6490 0.0267 777.3169	379.7880 379.7880 0.0267 380.4550	0.0000 0.0000 0.0000 0.0000
1,157.7718	777.3169	380.4550	0.0000

3.5 Building Construction - 2020 Unmitigated Construction On-Site 3.6 Architectural Coating - 2020 <u>Unmitigated Construction On-Site</u>

1,131.4986		0.0490	1,130.2746 1,130.2746 0.0490	1,130.2746		0.1582	0.0127	0.1456	0.5298	0.0135	0.5164	3.1572 0.0111		1.7354	0.3996	Total
753.6393		0.0237	753.0459	-	753.0459	0.1328	5.8500e- 003	0.1270	0.4625	6.3500e- 003	0.4561		2.7269	0.2465	0.3475	Worker
377.8593		0.0252		377.2287			6.8100e- 003		0.0674	7.1200e- 003	0.0603	3.5300e- 003	1.4889 0.4303	1.4889	0.0521	Vendor
0.0000		0.0000	0.0000 0.0000	0.0000			0.0000	0.0000 0.0000	0.0000	0.0000		0.0000	0.0000	0.0000 0.0000 0.0000		Hauling
		ay	lb/day							day	lb/day					Category
CO2e	N20	CH4	Total CO2	NBio- CO2 Total CO2	Bio- CO2	Exhaust PM2.5 Total PM2.5	Exhaust PM2.5	Fugitive PM2.5	Exhaust PM10 Total Fugitive PM10 PM2.5	Exhaust PM10	Fugitive PM10	SO2	со	NOX	ROG	

Mitigated Construction Off-Site

Total	Off-Road	Category	
0.8617	0.8617		ROG
8.8523	8.8523 7.3875 0.0114		NOx
7.3875 0.0114	7.3875		8
0.0114	0.0114		S02
		Ib/day	Fugitive PM10
0.5224	0.5224	łay	Exhaust PM10
0.5224	0.5224		PM10 Total
			Exhaust PM10 Total Fugitive Exhaust PM2.5 Total PM10 PM2.5 PM2.5 PM2.5
0.4806	0.4806		Exhaust PM2.5
0.4806	0.4806 0.4806		PM2.5 Total
0.0000	0.0000		Bio- CO2
1,102.9781	1,102.9781		NBio- CO2
0.0000 1,102.9781 1,102.9781 0.3567	0.0000 1,102.9781 1,102.9781 0.3567	lb/day	Bio-CO2 NBio-CO2 Total CO2 CH4
0.3567	0.3567	ау	CH4
			N20
1,111.8962	1,111.8962		CO2e

Mitigated Construction On-Site

Off-Road 0.2422 1.6838 1.8314 2.9700e- 0.1109 0.1109 0.1109 0.1109 0.1109 0.1109	Archit. Coating	Category	
0.2422	3.0150		ROG
0.2422 1.6838 1.8314 2.9700e- 0.1109 0.1109 0.1109 0.1109 0.1109			NOX
1.8314			CO
2.9700e- 003			SO2
		Ib/day	Fugitive Exhaus PM10 PM10
0.1109	0.0000 0.0000	łay	Exhaust PM10
0.1109 0.1109	0.0000		Exhaust PM10 Total Fugitive PM10 PM2.5
			Fugitive PM2.5
0.1109	0.0000		Fugitive Exhaust PM2.5 PM2.5
0.1109	0.0000		Exhaust PM2.5 Total PM2.5
0.0000			Bio- CO2
281.4481			NBio- CO2
0.0000 281.4481 281.4481 0.0218 281.9928	0.0000	lb/day	Bio- CO2 NBio- CO2 Total CO2 CH4
0.0218		lay	CH4
281.9928			N2O
281.9928	0.0000		CO2e

Mitigated Construction On-Site

	Worker	Vendor	т	C.	
Total	Worker	Vendor	Hauling	Category	
0.0715	0.0715	0.0000			ROG
0.0508	0.0508				NOX
0.5614	0.5614	0.0000	0.0000		CO
1.5600e- 003	1.5600e- 003				SO2
0.1565	0.1565	0.0000 0.0000	0.0000	Ib/day	Fugitive PM10
1.3100e- 003	1.3100e- 003		0.0000	ау	Exhaust PM10
0.1578	0.1578	0.0000 0.0000	0.0000 0.0000 0.0000 0.0000		Exhaust PM10 Total Fugitive PM10 PM2.5
0.0415	0.0415				
1.2100e- 003	1.2100e- 003	0.0000			Exhaust PM2.5
0.0427	0.0427	0.0000	0.0000		Exhaust PM2.5 Total PM2.5
					Bio- CO2
155.0389	155.0389 155.0389	0.0000	0.0000		Bio-CO2 NBio-CO2 Total CO2
155.0389	155.0389 4.8900e- 003	0.0000 0.0000 0.0000	0.0000	lb/day	Total CO2
4.8900e- 003	4.8900e- 003	0.0000	0.0000	ау	CH4
					N20
155.1610	155.1610	0.0000	0.0000		CO2e

Unmitigated Construction Off-Site

		~		
Total	Off-Road	Archit. Coating	Category	
3.2572	0.2422	3.0150		ROG
1.6838	1.6838 1.8314 2.9700e- 003			NOX
1.8314 2.9700e- 003	1.8314			CO
2.9700e- 003	2.9700e- 003			SO2
			Ib/day	Fugitive PM10
0.1109	0.1109		ау	Exhaust PM10
0.1109	0.1109	0.0000		Exhaust PM10 Total Fugitive PM10 PM2.5
0.1109	0.1109 0.1109	0.0000 0.0000		Exhaust PM2.5 Total PM2.5
0.1109	0.1109	0.0000		PM2.5 Total
	281.4481			Bio- CO2
281.4481	281.4481			Bio- CO2 NBio- CO2 Total CO2
281.4481 0.0218	281.4481 281.4481 0.0218	0.0000	lb/day	Total CO2
0.0218	0.0218		ау	CH4
				N20
281.9928	281.9928	0.0000		CO2e

	Total	
	3.2572	
	1.6838	
	1.8314	
003	2.9700e-	
	0.1109	
	0.1109	
	0.1109	
	0.1109	
	0.0000	
	281.4481	
	281.4481	
	0.0218	
	281.9928	

Mitigated Construction Off-Site

Total 0.0715	Worker 0.0715	Vendor 0.0000		Category	
15 0.0508			Ŭ		
		000 0	Ŭ		
0.5614			.0000		
1.5600e- 003	1.5600e- 003	0.0000			
0.0939	0.0939	0.0000		Ib/day	PM10
1.3100e- 003	1.3100e- 003	0.0000 0.0000 0.0000 0.0000	0.0000	ay	PM10
0.0952	0.0952	0.0000			
0.0261	0.0261	0.0000	0.0000 0.0000		PM2.5
1.2100e- 003	1.2100e- 003	0.0000	0.0000		PM2.5
0.0274	0.0274	0.0000	0.0000		
		0.0000			
155.0389	155.0389	U	0.0000		
155.0389	155.0389 4.8900e- 003	0.0000	0.0000	lb/day	
4.8900e- 003			0	łay	
155.1610	155.1610	0.0000	0.0000		

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

4,571.4905		0.2527	565.1722 4,565.1722 0.2527	4,565.1722 4,565.1722 0.2527		1.0269	0.0367	0.9902	5.0903 13.2711 0.0449 3.6999 0.0393 3.7392 0.9902 0.0367 1.0269	0.0393	3.6999	0.0449	13.2711	5.0903	1.0514	Unmitigated
4,571.4905		0.2527	4,565.1722	4,565.1722 4,565.1722 0.2527		1.0269	0.0367	0.9902 0.0367 1.0269	3.6999 0.0393 3.7392	0.0393	3.6999	5.0903 13.2711 0.0449	13.2711	5.0903	1.0514	Mitigated
		ay	lb/day							łay	Ib/day					Category
CO2e	N20	CH4	Total CO2	Bio- CO2 NBio- CO2 Total CO2	Bio- CO2	Exhaust PM2.5 Total PM2.5	Exhaust PM2.5	Fugitive PM2.5	Fugitive Exhaust PM10 Total Fugitive PM10 PM10 PM2.5	Exhaust PM10		S02	СО	NOX	ROG	

4.2 Trip Summary Information

1,714,796	1,714,796	.82 506.28	598.82 598.82	Total
	0.00		0.00 0.00	Enclosed Parking with Elevator
1,356,198				
358,598	358,598		0	
Annual VMT	Annual VMT	Saturday Sunday	Weekday Satu	Land Use V
Mitigated	Unmitigated	[,] Trip Rate	Average Daily Trip Rate	

4.3 Trip Type Information

		Miles			Trip %			Trip Purpose %	°%
Land Use	H-W or C-W	H-S or C-C	H-W or C-W H-S or C-C H-O or C-NW H-W or C-W H-S or C-C H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Strip Mall	16.60	8.40	6.90	16.60	64.40	19.00	45	40	15
Apartments Mid Rise 14.70 5.90	14.70	5.90	8.70	40.00	19.00	40.00 19.00 41.00	86	11	86 11 3
Enclosed Parking with Elevator	16.60	8.40	6.90	0.00	0.00	0.00	0	0	0 0 0

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LDA LDT1 LDT2 MDV LHD1 LHD2 MHD HHD	MHD	HHD	OBUS	OBUS UBUS MCY	MCY	SBUS	MH
Strip Mall	0.547192	0.045177	0.202743	0.121510	0.016147	0.547192; 0.045177; 0.202743; 0.121510; 0.016147; 0.006143 0.019743; 0.029945; 0.002479; 0.002270; 0.005078; 0.000682; 0.00089	0.019743	0.029945	0.002479	0.002270	0.005078	0.000682	0.000891
Apartments Mid Rise 0.547192 0.045177 0.202743 0.121510 0.016147 0.006143 0.019743 0.02	0.547192	0.045177	0.202743	0.121510	0.016147	0.547192 0.045177 0.202743 0.121510 0.016147 0.006143 0.019743 0.029945 0.002479 0.002270 0.005078 0.000682 0.00089	0.019743	18:	0.002479	945 0.002479 0.002270 0.005078 0.000682 0.00089	0.005078	0.000682	0.000891
Enclosed Parking with Elevator 0.547192	0.547192	0.045177	0.202743	0.121510	0.016147	0.547192 0.045177 0.202743 0.121510 0.016147 0.006143 0.019743 0.029945 0.002479 0.002270 0.005078 0.000682 0.00089	0.019743	0.029945	0.002479	0.002270	0.005078	0.000682	0.000891

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG
	NOX
	со
	SO2
PM10	Fugitive
PM10	Exhaust
	PM10 Total
PM2.5	Fugitive
PM2.5	Exhaust
	PM2.5 Total
	Bio-CO2
	NBio- CO2
	Total CO2
	CH4
	N20
	CO2e

s 0.0201 0.1722 0.0743 1.1000e- 0.0139 0.0139 0.0139 0.0139 0.0139	Mitigated 003 003 003	NaturalGas 📱 0.0201 🗍 0.1722 🗍 0.0743 🗍 1.1000e- 📔 📄 0.0139 🤤 0.0139 🗍 0.0139 🧯 0.0139 🧯 219.6935 🛛 219.6935 😄 4.:	Category Ib/day Ib/day
219.6935 219.6935		219.6935 219.6935	lb/d:
219.6935 219.6935 4.2100e- 4.0300e- 220.999	003 003	219.6935 219.6935 4.2100e- 4.0300e- 220.999	o/day

5.2 Energy by Land Use - NaturalGas <u>Unmitigated</u>

Total	Strip Mall	Enclosed Parking with Elevator	Apartments Mid Rise	Land Use	
					Na
	24.0069	ο	1843.39	kBTU/yr	NaturalGas Use
0.0201	2.6000e- 004	0.0000	0.0199		ROG
0.1722	2.3500e- 003	0.0000	0.1699		NOX
0.0743	1.9800e- 003	0.0000	0.1699 0.0723		CO
1.0900e- 003	1.0000e- 005	0.0000	1.0800e- 003		S O2
				Ib/d	Fugitive PM10
0.0139	1.8000e- 004	0.0000		Ib/day	Exhaust PM10
0.0139	1.8000e- 004	0.0000	0.0137		Exhaust PM10 Total Fugitive PM10 PM2.5
					Fugitive PM2.5
0.0139	1.8000e- 004	0.0000	0.0137		Exhaust PM2.5
0.0139	1.8000e-004	0.0000	0.0137		PM2.5 Total Bio-CO2 NBio-CO2 Total CO2
		0.0000 0.0000 0.0000			Bio- CO2
219.6935	2.8243	0.0000	216.8692		NBio- CO2
219.6935 219.6935 4.2100e- 003		0.0000	216.8692 216.8692 4.1600e- 3.9800e- 218.1579 003 003	lb/day	Total CO2
	5.0000e- 005	0.0000 0.0000 0.0000	4.1600e- 003	day	CH4
4.0300e- 003	5.0000e- 005	0.0000	3.9800e- 003		N20
220.9991	2.8411	0.0000	218.1579		CO2e

Strip Mail 0.0240069 2.3500e- 1.3800e- 1.0000e- 1.8000e- 1.8000e- 1.8000e- 1.8000e- 1.8000e- 0.0240069 0.024	Enclos with I	Apartn F	Lar	
Strip Mall	Enclosed Parking 0 with Elevator	Apartments Mid Rise	Land Use	
0.0240069		1.84339	kBTU/yr	NaturalGas Use
0.0240069 2.6000e- 2.3500e- 1.9800e- 004 003 003	0.0000 0.0000 0.0000 0.0000	1.84339 0.0199 0.1699 0.0723 1.0800e- 003		ROG
2.3500e- 003	0.0000 0.0000 0.0000	0.1699		NOX
	0.0000	0.0723 1.0800e- 003		CO
1.0000e- 005	0.0000	1.0800e- 003		S 02
			Ib/day	Fugitive PM10
1.8000e- 004	0.0000 0.0000	0.0137 0.0137	łay	Exhaust PM10
1.8000e- 004 004	0.0000	0.0137		Exhaust PM10 Total Fugitive PM10 PM2.5
		0.0137		Fugitive PM2.5
1.8000e- 004	1	0.0137		Exhaust PM2.5
1.8000e-004	0.0000	0.0137		PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 CH4
	0.0000	216.8692		Bio- CO2
2.8243	0.0000	216.8692		NBio-CO2
2.8243 2.8243 5.0000e- 5.0000e- 2.8411 005 005	0.0000 0.0000	216.8692 216.8692 4.1600e- 3.9800e- 218.1579 003 003	Ib/day	Total CO2
1.8000e-004 2.8243 2.8243 5.0000e- 5.0000e- 2.8411 005 005	0.0000 0.0000 0.0000	4.1600e- 3.9800e- 003 003	lay	CH4
5.0000e- 005	0.0000	3.9800e- 003		N20
2.8411	0.0000	218.1579		CO2e

Mitigated

	Total	
	0.0201	
	0.1722	
	0.0743	
003	1.0900e-	
	0.0139	
	0.0139	
	0.0139	
	0.0139	
	219.6935	
	219.6935	
003	219.6935 4.2100e-	
003	4.0300e-	
	220.9991	

6.0 Area Detail

6.1 Mitigation Measures Area

	ROG	NOX	CO	SO2	Fugitive PM10	Exhaust PM10	Exhaust PM10 Total PM10	Fugitive PM2.5	Exhaust PM2.5	Exhaust PM2.5 Total PM2.5	Bio- CO2	Bio- CO2 NBio- CO2 Total CO2	Total CO2	CH4	N20	CO2e
Category					Ib/day	ау							Ib/day	ау		
Mitigated		0.0698	6.0444 3.2000 e - 004	3.2000e- 004		0.0333 0.0333	0.0333		0.0333	0.0333 0.0333	0.0000	0.0000 10.8630 10.8630 0.0106 0.0000 11.1270	10.8630	0.0106	0.0000	11.1270
Unmitigated	1.4843	0.0698	6.0444	ω		0.0333	0.0333 0.0333 0.0333		0.0333	0.0333	0.0000	0.0000 10.8630 10.8630 0.0106 0.0000 11.1270	10.8630	0.0106	0.0000	11.1270
				004												

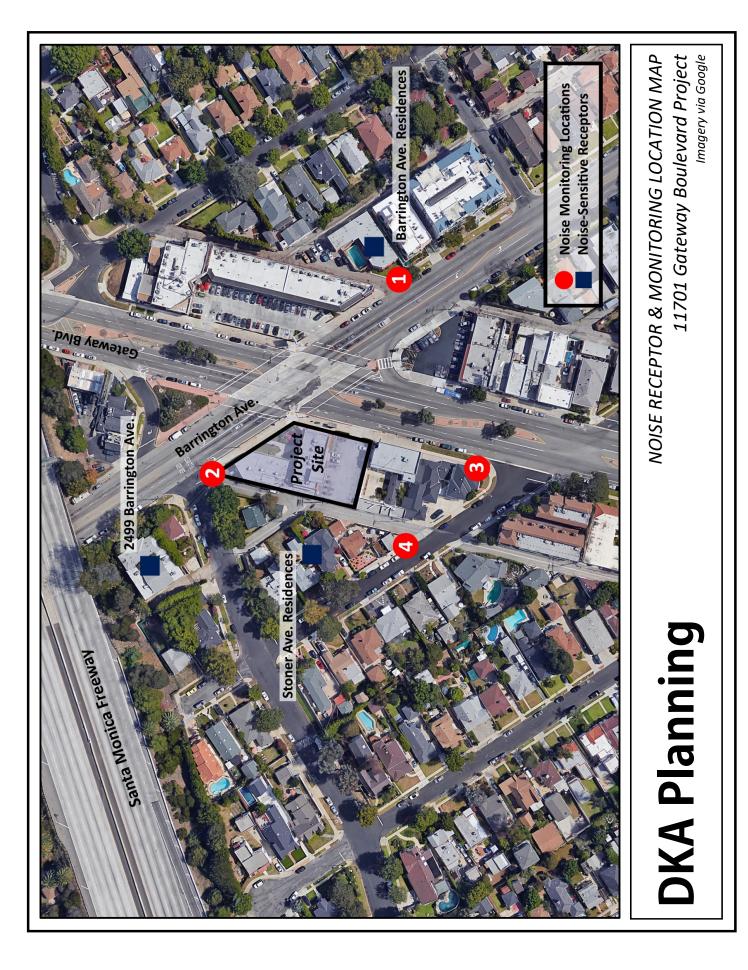
6.2 Area by SubCategory

.

<u>Unmitigated</u>

Landscaping 0.1637 0.0698 6.0444 3.2000e- 0.0333 0.0333 0.0333 10.8630 10.8630 0.0106 11.1270	Hearth	Consumer Products	Architectural Coating	SubCategory	
g 0.1837			-	`	ROG
0.0698					NOX
98 6.0444					¢ co
6.0444 3.2000e- 004					SO2
φ	0.0000				Fugitive PM10
0.0333		0.0000	0.0000	Ib/day	e Exhaust PM10
0.0333					Exhaust PM10 Total Fugitive PM10 PM2.5
	0.0000				Fugitive PM2.5
0.0333	0.0000	0.0000	0.0000		Exhaust PM2.5
0.0333	0.0000	0.0000	0.0000 0.0000		Exhaust PM2.5 Total PM2.5
	0.0000				Bio- CO2
10.8630	0.0000				Bio- CO2 NBio- CO2 Total CO2
10.8630 10.8630 0.0106	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000	0.0000	Ib/day	Total CO2
0.0106	0.0000			ау	CH4
					N2O
11.1270	0.0000	0.0000	0.0000		CO2e

1	Equipment Type
	Number
	Hours/Day
	Hours/Year
	Horse Power
	Load Factor
	Fuel Type


Boilers

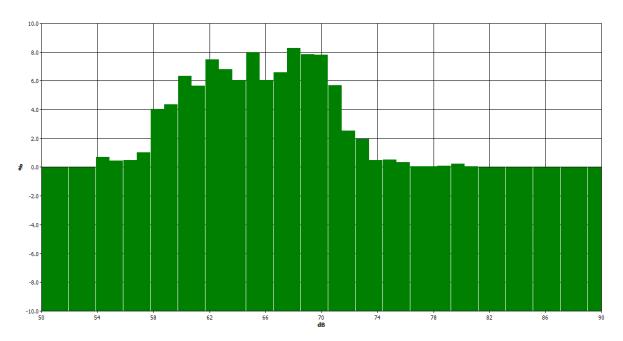
Equipment Type
Number
Heat Input/Day
Heat Input/Year
Boiler Rating
Fuel Type

User Defined Equipment

Equipment Type Number

11.0 Vegetation

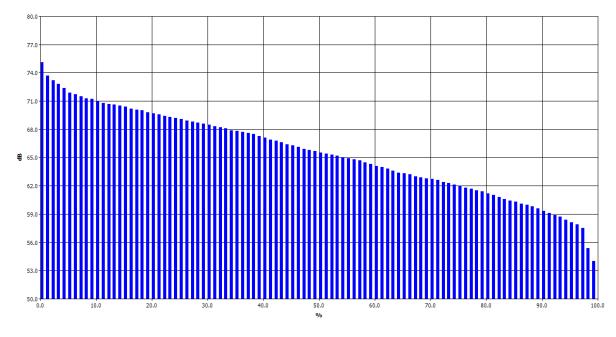
1. Barrington Ave., S/E of Gateway Blvd. 8/27/2018


Information Panel

Name	S616_BIJ050019_28082018_105926
Start Time	Monday, August 27, 2018, 2:04pm
Stop Time	Monday, August 27, 2018, 2:19pm
Device Model Type	SoundPro DL

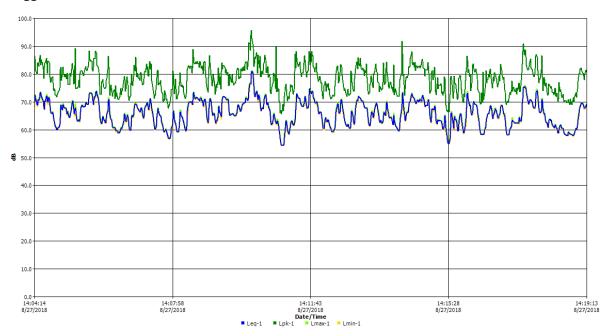
General Data Panel

Description	<u>Meter</u>	Value	Description	Meter	Value
Leq	1	67.9dB	Exchange Rate	1	3dB
Weighting	1	А	Response	1	SLOW
Bandwidth	1	OFF	Exchange Rate	2	3dB
Weighting	2	С	Response	2	SLOW


Statistics Chart

Statistics Table

dB	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	%
50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
51	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
52	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
53	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
54	0.00	0.01	0.19	0.12	0.10	0.07	0.02	0.02	0.11	0.06	0.68
55	0.09	0.07	0.04	0.05	0.04	0.03	0.03	0.03	0.03	0.03	0.45
56	0.03	0.03	0.01	0.03	0.02	0.07	0.16	0.07	0.04	0.04	0.49
57	0.05	0.04	0.05	0.04	0.05	0.06	0.15	0.24	0.15	0.20	1.04
58	0.43	0.69	0.38	0.44	0.36	0.22	0.32	0.41	0.35	0.41	4.02
59	0.49	0.50	0.45	0.45	0.47	0.37	0.45	0.40	0.35	0.44	4.37
60	0.66	0.66	0.71	0.60	0.75	0.70	0.55	0.52	0.61	0.56	6.33
61	0.53	0.60	0.44	0.47	0.48	0.61	0.64	0.64	0.66	0.58	5.65
62	0.65	0.73	0.80	0.51	0.82	0.72	0.66	0.81	0.93	0.86	7.49
63	0.78	0.76	0.82	0.82	0.72	0.66	0.59	0.56	0.59	0.53	6.81
64	0.51	0.60	0.69	0.61	0.58	0.55	0.58	0.52	0.63	0.77	6.06
65	0.89	0.76	0.75	0.59	0.81	0.95	0.89	0.88	0.70	0.77	7.99
66	0.67	0.73	0.60	0.57	0.61	0.50	0.51	0.69	0.63	0.55	6.07
67	0.64	0.51	0.46	0.49	0.68	0.65	0.84	0.73	0.73	0.88	6.60
68	0.99	0.94	0.84	0.51	0.78	0.74	0.80	0.79	0.82	1.05	8.27
69	0.90	0.75	0.78	0.85	0.73	0.79	0.86	0.88	0.73	0.58	7.86
70	0.65	0.76	0.86	0.64	0.83	0.87	0.87	0.89	0.72	0.75	7.82
71	0.55	0.58	0.67	0.47	0.74	0.63	0.73	0.57	0.38	0.37	5.68
72	0.31	0.25	0.20	0.23	0.20	0.25	0.23	0.33	0.25	0.26	2.53
73	0.26	0.25	0.25	0.19	0.23	0.21	0.15	0.13	0.11	0.19	1.97
74	0.11	0.03	0.05	0.03	0.06	0.04	0.03	0.05	0.03	0.05	0.49
75	0.16	0.11	0.06	0.04	0.04	0.04	0.03	0.02	0.02	0.02	0.53
76	0.01	0.01	0.04	0.04	0.03	0.07	0.10	0.04	0.01	0.01	0.35
77	0.01	0.00	0.01	0.00	0.00	0.01	0.01	0.00	0.01	0.00	0.05
78	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.01	0.01	0.01	0.06
79	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.07
80	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.02	0.06	0.05	0.22
81	0.03	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04
82	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
83	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
84	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
85	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
86	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
87	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
88	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
89	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00


Exceedance Chart

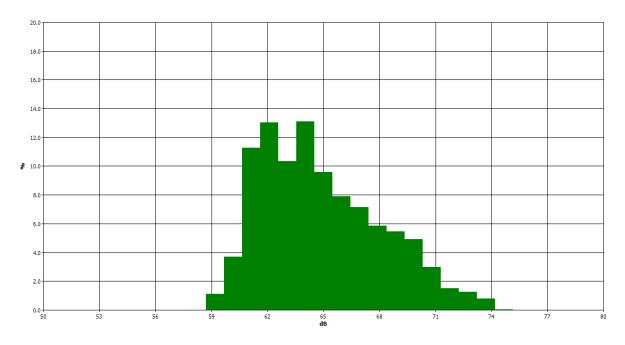
Exceedance Table

	0%	1%	2%	3%	4%	5%	6%	7%	8%	9%
0%		75.1	73.7	73.2	72.8	72.4	71.9	71.7	71.5	71.3
10%	71.2	71	70.8	70.7	70.6	70.5	70.4	70.2	70.1	70
20%	69.8	69.7	69.6	69.4	69.3	69.2	69.1	68.9	68.8	68.7
30%	68.6	68.5	68.3	68.2	68.1	67.9	67.8	67.7	67.6	67.5
40%	67.3	67.1	66.9	66.8	66.6	66.4	66.3	66.1	65.9	65.8
50%	65.7	65.5	65.4	65.3	65.2	65	64.9	64.8	64.7	64.5
60%	64.3	64.1	64	63.8	63.6	63.4	63.3	63.2	63	62.9
70%	62.8	62.7	62.6	62.4	62.3	62.1	62	61.8	61.7	61.5
80%	61.4	61.2	61	60.8	60.6	60.4	60.3	60.1	60	59.8
90%	59.6	59.3	59.1	58.9	58.7	58.4	58.1	57.9	57.5	55.4
100%	54									

Logged Data Chart

2. SW corner of Barrington Ave. and Pearl St.

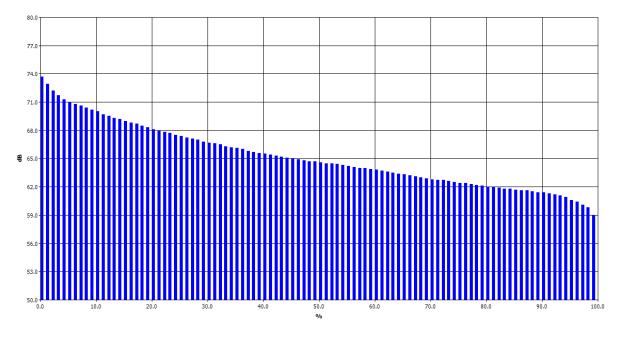
8/27/2018


Information Panel

Name	S617_BIJ050019_28082018_105926
Start Time	Monday, August 27, 2018, 2:22pm
Stop Time	Monday, August 27, 2018, 2:34pm
Device Model Type	SoundPro DL

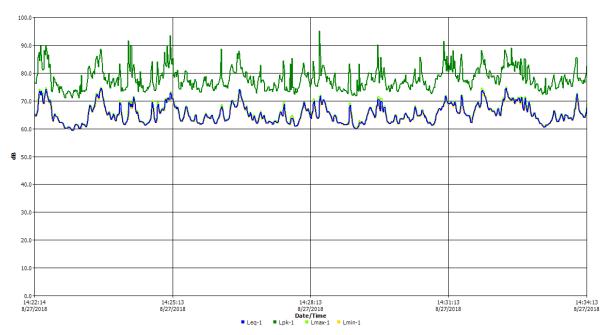
General Data Panel

Description	Meter	Value	Description	Meter	Value
Leq	1	66.7dB	Exchange Rate	1	3dB
Weighting	1	А	Response	1	SLOW
Bandwidth	1	OFF	Exchange Rate	2	3dB
Weighting	2	С	Response	2	SLOW


Statistics Chart

Statistics Table

dB	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	%
50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
51	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
52	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
53	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
54	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
56	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
57	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
59	0.00	0.02	0.08	0.14	0.07	0.07	0.04	0.12	0.28	0.29	1.12
60	0.30	0.32	0.41	0.29	0.46	0.51	0.27	0.38	0.33	0.41	3.70
61	0.37	0.50	0.69	1.17	1.10	1.41	1.36	1.64	1.56	1.48	11.28
62	1.70	1.48	1.37	0.59	1.36	1.40	1.45	1.46	1.12	1.11	13.04
63	0.98	0.99	1.07	1.02	0.91	1.07	1.24	1.16	0.95	0.95	10.33
64	1.27	1.28	1.13	1.06	1.17	1.52	1.50	1.41	1.37	1.40	13.10
65	1.22	1.10	1.07	0.75	1.09	1.08	0.86	0.96	0.73	0.70	9.58
66	0.79	0.81	0.85	0.75	0.72	0.85	0.79	0.73	0.73	0.87	7.89
67	0.90	0.99	0.60	0.56	0.66	0.58	0.76	0.73	0.69	0.68	7.14
68	0.71	0.71	0.65	0.43	0.52	0.60	0.52	0.49	0.57	0.63	5.85
69	0.61	0.62	0.66	0.60	0.65	0.48	0.43	0.51	0.43	0.49	5.47
70	0.47	0.51	0.42	0.41	0.63	0.41	0.54	0.54	0.51	0.49	4.92
71	0.50	0.51	0.26	0.17	0.21	0.23	0.31	0.27	0.27	0.26	2.98
72	0.21	0.16	0.16	0.13	0.12	0.14	0.12	0.15	0.16	0.18	1.52
73	0.16	0.25	0.11	0.11	0.08	0.08	0.10	0.12	0.12	0.11	1.25
74	0.11	0.11	0.20	0.04	0.12	0.05	0.07	0.07	0.03	0.01	0.81
75	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02
76	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
77	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
78	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
79	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00


Exceedance Chart

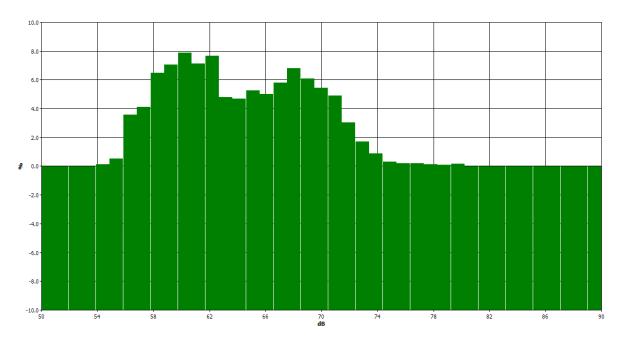
Exceedance Table

	0%	1%	2%	3%	4%	5%	6%	7%	8%	9%
0%	-	73.7	72.9	72.2	71.7	71.3	71	70.8	70.6	70.4
10%	70.2	70	69.7	69.5	69.3	69.2	69	68.8	68.7	68.5
20%	68.3	68.1	68	67.8	67.7	67.5	67.4	67.2	67.1	67
30%	66.8	66.7	66.6	66.5	66.3	66.2	66.1	66	65.8	65.7
40%	65.6	65.5	65.4	65.3	65.2	65.1	65	64.9	64.8	64.7
50%	64.7	64.6	64.5	64.5	64.4	64.3	64.2	64.1	64	64
60%	63.9	63.8	63.7	63.6	63.5	63.4	63.3	63.2	63.1	63
70%	62.9	62.8	62.7	62.7	62.6	62.5	62.4	62.4	62.3	62.2
80%	62.1	62	62	61.9	61.8	61.8	61.7	61.6	61.6	61.5
90%	61.4	61.4	61.3	61.2	61.1	60.9	60.6	60.4	60.1	59.8
100%	59									

Logged Data Chart

3. N corner of Gateway Blvd. and Stoner Ave.

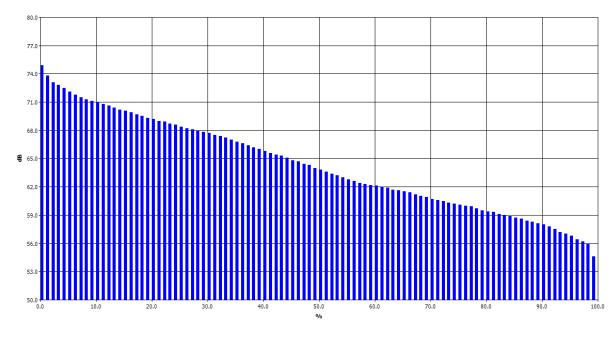
8/27/2018


Information Panel

S619_BIJ050019_28082018_105927
Monday, August 27, 2018, 2:41pm
Monday, August 27, 2018, 2:56pm
SoundPro DL

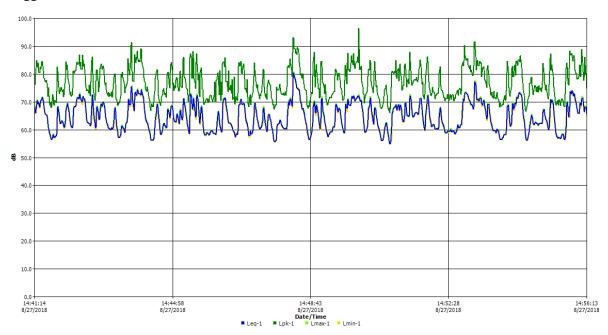
General Data Panel

Description	Meter	<u>Value</u>	Description	Meter	Value
Leq	1	67.4dB	Exchange Rate	1	3dB
Weighting	1	А	Response	1	SLOW
Bandwidth	1	OFF	Exchange Rate	2	3dB
Weighting	2	С	Response	2	SLOW


Statistics Chart

Statistics Table

dB	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	%
50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
51	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
52	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
53	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
54	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.05	0.04	0.12
55	0.11	0.02	0.02	0.02	0.03	0.10	0.06	0.06	0.05	0.05	0.52
56	0.30	0.35	0.33	0.51	0.43	0.48	0.28	0.28	0.26	0.35	3.57
57	0.58	0.47	0.41	0.53	0.34	0.36	0.28	0.33	0.43	0.40	4.13
58	0.47	0.84	0.63	0.57	0.65	0.61	0.52	0.86	0.64	0.66	6.47
59	0.81	0.94	0.60	0.65	0.78	0.81	0.72	0.59	0.56	0.58	7.04
60	0.67	0.78	1.03	0.83	1.01	0.72	0.66	0.83	0.78	0.56	7.88
61	0.73	0.59	0.68	0.58	0.63	0.63	0.82	0.85	0.84	0.78	7.13
62	0.92	1.10	0.96	0.62	0.99	0.68	0.69	0.60	0.50	0.60	7.68
63	0.44	0.45	0.57	0.46	0.49	0.54	0.46	0.50	0.46	0.41	4.79
64	0.42	0.37	0.44	0.45	0.47	0.55	0.45	0.53	0.50	0.52	4.69
65	0.49	0.50	0.55	0.44	0.60	0.64	0.55	0.54	0.44	0.50	5.26
66	0.64	0.47	0.51	0.56	0.45	0.46	0.49	0.47	0.44	0.52	5.02
67	0.51	0.51	0.57	0.56	0.55	0.55	0.65	0.62	0.64	0.63	5.78
68	0.73	0.80	0.93	0.52	0.68	0.60	0.60	0.60	0.69	0.64	6.79
69	0.66	0.81	0.67	0.82	0.51	0.61	0.53	0.51	0.48	0.51	6.10
70	0.51	0.47	0.53	0.54	0.51	0.68	0.60	0.54	0.49	0.55	5.43
71	0.56	0.67	0.69	0.39	0.62	0.51	0.35	0.40	0.31	0.43	4.92
72	0.34	0.28	0.24	0.21	0.20	0.24	0.26	0.35	0.53	0.39	3.05
73	0.27	0.27	0.33	0.21	0.13	0.11	0.08	0.08	0.10	0.11	1.70
74	0.11	0.13	0.08	0.05	0.13	0.15	0.09	0.04	0.04	0.05	0.88
75	0.07	0.03	0.03	0.02	0.03	0.03	0.05	0.02	0.01	0.01	0.30
76	0.01	0.02	0.02	0.03	0.02	0.03	0.01	0.02	0.02	0.02	0.19
77	0.02	0.02	0.02	0.02	0.02	0.03	0.03	0.01	0.02	0.02	0.21
78	0.01	0.02	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.12
79	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.11
80	0.02	0.01	0.01	0.01	0.01	0.03	0.02	0.02	0.02	0.00	0.14
81	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
82	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
83	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
84	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
85	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
86	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
87	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
88	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
89	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00


Exceedance Chart

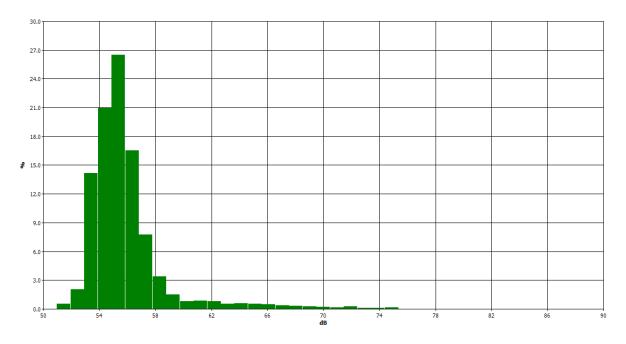
Exceedance Table

	0%	1%	2%	3%	4%	5%	6%	7%	8%	9%
0%		74.9	73.8	73.1	72.8	72.5	72.1	71.8	71.5	71.3
10%	71.1	71	70.8	70.6	70.4	70.2	70.1	69.9	69.7	69.5
20%	69.3	69.2	69	68.9	68.7	68.6	68.4	68.2	68.1	68
30%	67.8	67.7	67.5	67.4	67.2	67	66.8	66.6	66.4	66.2
40%	66	65.8	65.6	65.4	65.3	65.1	64.8	64.7	64.4	64.3
50%	64	63.8	63.6	63.4	63.2	63	62.8	62.6	62.4	62.3
60%	62.2	62.1	62	61.9	61.7	61.6	61.5	61.4	61.2	61
70%	60.9	60.7	60.6	60.5	60.3	60.2	60.1	60	59.9	59.7
80%	59.5	59.4	59.3	59.1	59	58.9	58.7	58.6	58.4	58.3
90%	58.1	58	57.8	57.5	57.2	57	56.8	56.4	56.2	56
100%	54.6									

Logged Data Chart

4. Stoner Ave. near alley W of Project Site

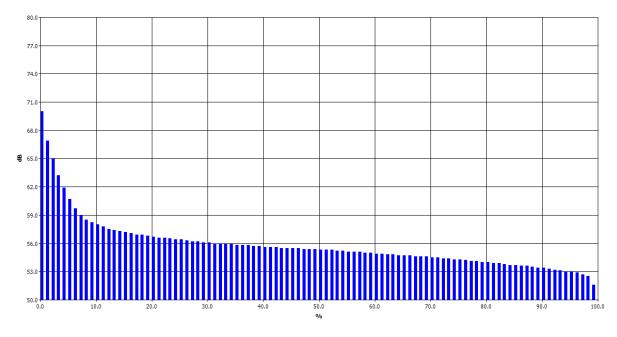
8/27/2018


Information Panel

Name	S620_BIJ050019_28082018_105927
Start Time	Monday, August 27, 2018, 2:57
Stop Time	Monday, August 27, 2018, 3:07pm
Device Model Type	SoundPro DL

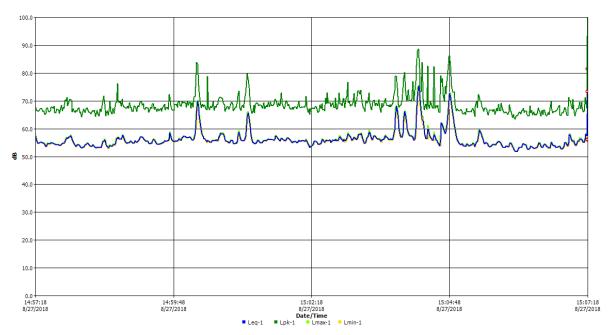
General Data Panel

Description	Meter	Value	Description	Meter	Value
Leq	1	58.7dB	Exchange Rate	1	3dB
Weighting	1	А	Response	1	SLOW
Bandwidth	1	OFF	Exchange Rate	2	3dB
Weighting	2	С	Response	2	SLOW


Statistics Chart

Statistics Table

dB	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	%
50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
51	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.24	0.14	0.14	0.52
52	0.04	0.05	0.04	0.05	0.09	0.16	0.47	0.33	0.38	0.43	2.04
53	0.90	1.88	1.01	1.49	1.00	1.34	1.82	1.25	1.91	1.57	14.15
54	1.62	2.02	1.88	1.61	1.73	2.06	2.36	2.80	2.40	2.45	20.94
55	2.32	1.99	2.19	2.81	2.74	3.20	3.22	2.99	2.60	2.45	26.50
56	2.42	2.31	1.62	1.71	1.71	1.55	1.29	1.35	1.25	1.30	16.51
57	1.38	0.95	0.85	0.97	0.96	0.67	0.57	0.52	0.39	0.48	7.74
58	0.48	0.46	0.38	0.33	0.40	0.40	0.27	0.25	0.21	0.20	3.37
59	0.21	0.22	0.14	0.13	0.14	0.13	0.13	0.11	0.13	0.16	1.50
60	0.09	0.08	0.09	0.08	0.09	0.07	0.08	0.09	0.09	0.08	0.83
61	0.09	0.10	0.08	0.09	0.08	0.08	0.08	0.07	0.13	0.09	0.88
62	0.17	0.16	0.09	0.05	0.06	0.06	0.06	0.05	0.06	0.05	0.81
63	0.06	0.06	0.06	0.04	0.05	0.05	0.06	0.05	0.05	0.06	0.55
64	0.05	0.06	0.06	0.06	0.07	0.06	0.05	0.06	0.05	0.05	0.58
65	0.05	0.06	0.06	0.04	0.05	0.05	0.05	0.05	0.06	0.08	0.56
66	0.08	0.09	0.05	0.05	0.07	0.04	0.03	0.03	0.03	0.04	0.51
67	0.03	0.04	0.03	0.03	0.04	0.04	0.04	0.07	0.04	0.04	0.39
68	0.03	0.04	0.06	0.04	0.03	0.03	0.02	0.03	0.02	0.02	0.32
69	0.03	0.02	0.02	0.02	0.02	0.03	0.02	0.03	0.03	0.02	0.25
70	0.03	0.06	0.03	0.02	0.02	0.01	0.02	0.02	0.01	0.01	0.22
71	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.01	0.02	0.02	0.17
72	0.02	0.02	0.02	0.03	0.02	0.04	0.02	0.02	0.02	0.03	0.26
73	0.05	0.01	0.01	0.01	0.01	0.01	0.00	0.01	0.01	0.01	0.12
74	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.09
75	0.01	0.01	0.01	0.01	0.02	0.04	0.04	0.00	0.00	0.00	0.15
76	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
77	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
78	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
79	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
81	0.01	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.02
82	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
83	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
84	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
85	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
86	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
87	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
88	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
89	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00


Exceedance Chart

Exceedance Table

	0%	1%	2%	3%	4%	5%	6%	7%	8%	9%
0%		70	66.9	65	63.2	61.9	60.7	59.7	59	58.5
10%	58.2	58	57.8	57.5	57.4	57.3	57.2	57.1	56.9	56.9
20%	56.8	56.7	56.6	56.6	56.5	56.4	56.4	56.3	56.2	56.2
30%	56.1	56.1	56	56	55.9	55.9	55.8	55.8	55.8	55.7
40%	55.7	55.6	55.6	55.6	55.5	55.5	55.5	55.5	55.4	55.4
50%	55.4	55.3	55.3	55.3	55.2	55.2	55.1	55.1	55.1	55
60%	55	54.9	54.9	54.8	54.8	54.7	54.7	54.7	54.6	54.6
70%	54.6	54.5	54.5	54.4	54.4	54.3	54.3	54.2	54.1	54.1
80%	54	54	53.9	53.9	53.8	53.7	53.7	53.6	53.6	53.5
90%	53.4	53.4	53.3	53.2	53.1	53	53	52.9	52.7	52.5
100%	51.6									

Logged Data Chart

11701 Gateway Boulevard

Construction Vibration - PPV

Receptor:11727 Gateway Boulevard - Commercial BuildingEquipment:Small Dozer

Source PPV (in/sec)	0.003
Reference Distance (ft)	25
Ground Factor (N)	1.5
Distance (ft)	2
Unmitigated Vibration Level (in/sec)	0.133

Receptor:	Stoner Avenue Residences
Equipment:	Small Dozer

Source PPV (in/sec)	0.003
Reference Distance (ft)	25
Ground Factor (N)	1.5
Distance (ft)	20
Unmitigated Vibration Level (in/sec)	0.004

Receptor:	2499 Barrington Avenue - Residential
Equipment:	Small Dozer

Source PPV (in/sec)	0.089
Reference Distance (ft)	25
Ground Factor (N)	1.5
Distance (ft)	90
Unmitigated Vibration Level (in/sec)	0.013

Sources

California Department of Transportation (Caltrans), *Transportation and Construction Vibration Guidance Manual*, September 2013. Federal Transit Administration (FTA), *Transit Noise and Vibration Impact Assessment*, May 2006.

CITY OF LOS ANGELES

INTER-DEPARTMENTAL CORRESPONDENCE

11701 Gateway Blvd. DOT Case No. WLA18-107176

Date: April 30, 2019

To: Luciralia Ibarra, Senior City Planner Attention: Heather Bleemers Department of City Planning

From: Hamed Sandoghdar, Transportation Engineer Department of Transportation

Subject: TRAFFIC ASSESSMENT FOR THE PROPOSED MIXED-USE PROJECT TO BE LOCATED AT 11701 GATEWAY BOULEVARD

Pursuant to the West Los Angeles Transportation Improvement and Mitigation Specific Plan Ordinance No. 171,492 (WLA TIMP), the Department of Transportation (DOT) has completed its review of the Traffic Study prepared by Gibson Transportation Consulting, dated April 2019 for the proposed mixed-use project to be located at 11701 Gateway Boulevard. After a review of the pertinent data, DOT has determined that the analysis conducted adequately describes the project-related impact of the proposed development.

PROJECT DESCRIPTION

The project is proposing to demolish The Gateway (Medical/Dental offices and Retail 10,052 sf), and construct a new five-story mixed-use building. The Project includes a total of 73 residential apartment units and approximately 4,899 square feet of ground floor retail and 1,000 square feet of restaurant space over two levels of subterranean parking. Access to the subterranean parking garage and ground floor parking will be provided via two full access alleys along the west edge of the project site. The project is expected to be completed by 2022.

DISCUSSION AND FINDINGS

Trip Generation

The project is estimated to generate a net increase of 537 daily trips, a net increase of 27 a.m. peak hour trips and, a net increase of 51 p.m. peak hour trips. The trip generation estimates are based on the trip rate requirements of the WLA TIMP, Appendix "A" and formulas published by the Institute of Transportation Engineers (ITE) <u>Trip Generation</u>, 10th Edition, 2017. A copy of the report trip generation table (Table 7) can be found in **Attachment "A"**.

Traffic Impact

Traffic impact analysis was conducted at six (6) intersections surrounding the proposed project site. Based on DOT's traffic impact criteria¹, the proposed development would <u>not</u> create a significant impact at any of the study locations. A copy of the existing impact analysis summary table (Table 8) and future impact analysis (Table 9) can be found in **Attachments "B"** and **"C"**.

¹ Per the DOT Traffic Study Policies and Procedures, a significant impact is identified as an increase in the Critical Movement Analysis (CMA) value, due to project related traffic, of 0.01 or more when the final ("with project") Level of Service (LOS) is LOS E or F; an increase of 0.020 or more when the final LOS is LOS D; or an increase of 0.040 or more when the final LOS is LOS C.

Congestion Management Program (CMP)

In accordance with the state-mandated Congestion Management Program (CMP), an increase in the freeway volume by 150 vehicles per hour during the a.m. or p.m. peak hours in any direction requires further analysis. A substantial change in freeway segments is defined as an increase or decrease of 2% in the demand capacity ratio when at LOS F. For purposes of CMP intersections, an increase of 50 vehicles or more during the a.m. or p.m. peak hour requires further analysis. Since the project generates less than 52 trips during a.m. or p.m. peak hours, no further analysis is needed.

PROJECT REQUIREMENTS

A. Covenant and Agreement

Pursuant to Section 4.B of the WLA TIMP, the owner(s) of the property must sign and record a Covenant and Agreement prior to issuance of any building permit, acknowledging the contents and limitations of the Specific Plan is a form designed to run with the land.

B. Highway Dedication And Street Widening Requirements

The applicant shall consult the Bureau of Engineering (BOE) for any highway dedication or street widening requirements. These requirements must be guaranteed before the issuance of any building permit through the B-permit process of the BOE. They must be constructed and completed prior to the issuance of any certificate of occupancy to the satisfaction of DOT and BOE.

C. Pedestrian Connectivity

The applicant shall consult with the City's Planning Department for any additional requirements pertaining to pedestrian walkability and connectivity, as described in the Walkability Checklist.

D. Construction Impacts

DOT recommends that a construction work site traffic control plan be submitted to DOT for review and approval prior to the start of any construction work. The plan should show the location of any roadway or sidewalk closures, traffic detours, haul routes, hours of operation, protective devices, warning signs and access to abutting properties. DOT also recommends that all construction related traffic be restricted to off-peak hours.

E. Site Access and Internal Circulation

The proposed site plan is acceptable to DOT; however, review of the study does not constitute approval of the driveway dimensions and internal circulation schemes. Those require separate review and approval and should be coordinated with DOT's West LA/Coastal Development Review Section (7166 W Manchester Ave, @ 213-485-1062). In order to minimize potential building design changes, the applicant should contact DOT for driveway width and internal circulation requirements so that such traffic flow considerations are designed and incorporated early into the building and parking layout plans. All new driveways should be Case 2 driveways and any security gates should be a minimum 20 feet from the property line. All truck loading and unloading should take place on site with no vehicles backing into the project via any of the project driveways.

F. Development Review Fees

An ordinance adding Section 19.15 to the Los Angeles Municipal Code relative to application fees paid to DOT for permit issuance activities was adopted by the Los Angeles City Council in 2009 and updated in 2014. This ordinance identifies specific fees for traffic study review,

condition clearance, and permit issuance. The applicant shall comply with any applicable fees per this ordinance.

DOT ASSESSMENT APPEAL PROCESS

Pursuant to Section 8.A of the WLAT TIMP, an applicant or any other interested person adversely affected by the proposed project who disputes any determination made by DOT pursuant to this Ordinance may appeal to the General Manager of DOT. This appeal must be filed within a 15 day period following the applicant's receipt date of this letter of determination. The appeal shall set forth specifically the basis of the appeal and the reasons why the determination should be reversed or modified.

If you have any questions, please contact me or Clive Grawe, at (213) 485-1062.

HS:cg

Attachments

c: Krista Kline, Council District No. 11
 Sean Haeri, Mo Blorfroshan, Rudy Guevara, DOT
 Kevin Azarmahan, BOE
 Jonathan Chambers, Gibson Transportation Consulting, Inc.

ATTACHMENT A

TABLE 7 PROJECT TRIP GENERATION ESTIMATES

Land Use	ITE Land	Rate or Size Daily	Doiltr	Mor	ning Peak	Hour	Afternoon Peak Hour		
	Use	Rate of Size	Daity	In	Out	Total	In	Out	Total
Trip Generation Rates [a]	č.			_					
Multi-Family Housing (Low-Rise)	220	per du	7.32	23%	77%	0.46	63%	37%	0.49
Shopping Center	820	per 1,000 sf	37.75	62%	38%	0.94	48%	52%	9.60
High-Turnover (Sit-Down) Restaurant	932	per 1,000 sf	112.18	55%	45%	9.94	62%	38%	12.92
Trip Generation Estimates	1	· · · · · · · · · · · · · · · · · · ·				L		(
Proposed Project									
Residential Units [b]	221	73 du	534	8	26	34	23	13	36
Transit/Walk-In Adjustment - 10% [c]			(53)	(1)	(2)	(3)	(2)	(2)	(4)
Retail	820	4,899 sf	185	3	2	5	23	24	47
Transit/Walk-In Adjustment - 10% [c]			(19)	0	(1)	(1)	(2)	(3)	(5)
Internal Capture Adjustment - 5% [d]			(8)	0	0	0	(1)	(1)	(2)
Pass-By Adjustment - 50% [e]			(79)	(2)	0	(2)	(10)	(10)	(20)
Restaurant	932	1,000 sf	112	6	4	10	8	5	13
Transit/Walk-In Adjustment - 10% [c]			(11)	(1)	0	(1)	(1)	0	(1)
Internal Capture Adjustment - 5% [d]			(5)	0	0	0	0	(1)	(1)
Pass-By Adjustment - 20% [e]			(19)	(1)	(1)	(2)	(1)	(1)	(2)
	Total Pro	posed Project Trips	637	12	28	40	37	24	61
Existing Uses to be Removed									
Commercial Mixed-Use Building [f]	n/a	10,052 sf	200	11	15	26	13	8	21
Pass-By Adjustment - 50%			(100)	(6)	(7)	(13)	(7)	(4)	(11)
	Total	L Existing Uses Trips	100	5	8	13	6	4	10
тот	TOTAL NET NEW PROJECT TRIPS					27	31	20	51

Notes:

sf = square feet; du = dwelling units;

[a] Daily and morning peak hour trip generation rates are from *Trip Generation, 10th Edition* (Institute of Transportation Engineers, 2017). Afternoon peak hour trip generation rates are from *West Los Angeles Transportation Improvement and Mitigation Specific Plan*, City of Los Angeles, 1997.

[b] Includes six affordable housing units.

[c] Per LADOT's Transportation Impact Study Guidelines (LADOT, December 2016), the Project is eligible for a 10% transit adjustment bnecause it is located in an area with various transit options.

[d] Internal capture adjustments account for person trips made between distinct land uses within a mixed-use development without using an off-site road system.

[e] Per LADOT's Transportation Impact Study Guidelines , pass-by adjustment of 50% is allowed for shopping center and 20% is allowed for restaurant space.

[f] Existing uses trip generation based on peak period vehicle counts at the existing use driveways on December 12, 2018. Daily trips are assumed to be double the total volume counted during the morning and afternoon peak periods (7:00 to 10:00 AM and 3:00 to 6:00 PM) as shown in Appendix C. Existing use driveway counts were reduced by 50% to account for the likelihood that many of the trips were pass-by trips.

ATTACHMENT B

TABLE 8EXISTING WITH PROJECT CONDITIONS (YEAR 2019)INTERSECTION LEVELS OF SERVICE AND SIGNIFICANT IMPACTS

No.	Intersection	Peak Hour	Existing C	onditions	ions Existing v		with Project Conditions		
		Hour	V/C	LOS	V/C	LOS	∆ V/C	Impact	
1.	Bundy Drive &	A.M.	0.607	B	0.607	B	0.000	NO	
	Pearl street	P.M.	0.692	B	0.692	B	0.000	NO	
2.	Bundy Drive & Ocean Park Boulevard	A.M. P.M.	1.047 1.007	F	1.048 1.008	F	0.001 0.001	NO NO	
3.	Barrington Avenue &	A.M.	0.663	B	0.665	B	0.002	NO	
	Pico Boulevard	P.M.	0.775	C	0.778	C	0.003	NO	
4.	Barrington Avenue &	A.M.	0.766	C	0.767	C	0.001	NO	
	Gateway Boulevard	P.M.	0.908	E	0.911	E	0.003	NO	
5.	Barrington Avenue &	A.M.	0.824	D	0.827	D	0.003	NO	
	National Boulevard	P.M.	0.785	C	0.787	C	0.002	NO	
6.	Exposition Park / Gateway Boulevard &	A.M.	0.776	C	0.778	C	0.002	NO	
	Pico Boulevard	P.M.	0.569	A	0.572	A	0.003	NO	

ATTACHMENT C

TABLE 9FUTURE WITH PROJECT CONDITIONS (YEAR 2022)INTERSECTION LEVELS OF SERVICE AND SIGNIFICANT IMPACTS

No.	Intersection	Peak Hour	Conditions		re with Project Conditions			
			V/C	LOS	V/C	LOS	∆ V/C	Impact
1.	Bundy Drive &	A.M.	0.633	B	0.633	B	0.000	NO
	Pearl street	P.M.	0.723	C	0.723	C	0.000	NO
2.	Bundy Drive &	A.M.	1.096	F	1.097	F	0.001	NO
	Ocean Park Boulevard	P.M.	1.066	F	1.067	F	0.001	NO
3.	Barrington Avenue &	A.M.	0.704	C	0.706	C	0.002	NO
	Pico Boulevard	P.M.	0.851	D	0.855	D	0.004	NO
4.	Barrington Avenue &	A.M.	0.801	D	0.801	D	0.000	NO
	Gateway Boulevard	P.M.	0.960	E	0.964	E	0.004	NO
5.	Barrington Avenue &	A.M.	0.857	D	0.859	D	0.002	NO
	National Boulevard	P.M.	0.817	D	0.820	D	0.003	NO
6.	Exposition Park / Gateway Boulevard &	А.М.	0.823	D	0.824	D	0.001	NO
	Pico Boulevard	Р.М.	0.673	B	0.675	B	0.002	NO

TRANSPORTATION IMPACT STUDY FOR THE 11701 GATEWAY BOULEVARD MIXED-USE PROJECT

LOS ANGELES, CALIFORNIA

APRIL 2019

PREPARED FOR

CAMDAILY LLC

TRANSPORTATION IMPACT STUDY FOR THE 11701 GATEWAY BOULEVARD MIXED-USE PROJECT

LOS ANGELES, CALIFORNIA

April 2019

Prepared for:

CAMDAILY LLC

Prepared by:

GIBSON TRANSPORTATION CONSULTING, INC. 555 W. 5th Street, Suite 3375 Los Angeles, California 90013 (213) 683-0088

Ref: J1687

Table of Contents

Executive Summary

1.	Introduction	1
	Project Description	1
	Project Location and Study Area	1
	Intersection Analysis Methodology	
	Additional Traffic Analyses	
	Organization of Report	
		Ŭ
2.	Existing Conditions	10
	Study Area	
	Existing Street System	10
	Existing Transit System	13
	Bicycle and Pedestrian Network	
	Vision Zero	
	Existing Traffic Volumes and Levels of Service	
0		~~~
3.	Future without Project Conditions	
	Ambient Traffic Growth	
	Related Projects	
	Future Infrastructure Improvements	
	Future without Project Intersection Levels of Service	24
4.	Project Traffic	30
	Project Description	
	Project Trip Generation	
	Project Trip Distribution	
	Project Trip Assignment	32
5.	Existing and Future with Project Conditions	36
	Existing with Project Conditions	36
	Future with Project Conditions	
6.	Desidential Street Segment Analysis	10
0.	Residential Street Segment Analysis	
	Residential Street Segment Impact Criteria	
	Existing Street Segment Traffic Volumes	
	Project Traffic on Pearl Street	43
7.	Congestion Management Program Analysis	45
	Traffic Impact Analysis Guidelines	
	Arterial Intersection Analysis	
	Mainline Freeway Segment Analysis	
	Public Transit System Analysis	
0	Site Assess and Circulation	40
8.	Site Access and Circulation	
	Vehicular Access and Circulation	
	Pedestrian Access and Circulation	48

Table of Contents, cont.

	Bicycle Access and Circulation	49
9.	Parking Parking Supply Vehicular Parking Code Requirements Bicycle Parking Code Requirements	50 50
10.	Construction Impact Analysis Types of Construction Impacts Proposed Construction Schedule Excavation and Grading Phase Building Construction Phase Potential Impacts on Access, Transit, and Parking Construction Management Plan	54 55 55 56 56

References

- Appendix A:Intersection Lane ConfigurationsAppendix B:Traffic CountsAppendix C:Level of Service Worksheets

List of Figures

<u>NO.</u>

1	Project Site Plan	6
2	Study Area	
3	Existing Transit Service	16
4	Existing Conditions (Year 2019) Peak Hour Traffic Volumes	17
5	Locations of Related Projects	25
6	Related Project-Only Peak Hour Traffic Volumes	26
7	Future without Project Conditions (Year 2022) Peak Hour Traffic Volumes	27
8	Project Trip Distribution	
9	Project-Only Peak Hour Traffic Volumes	34
10	Existing with Project Conditions (Year 2019)	
	Peak Hour Traffic Volumes	38
11	Future with Project Conditions (Year 2022)	
	Peak Hour Traffic Volumes	39

List of Tables

<u>NO.</u>

1	List of Analyzed Intersections	8
2	Level of Service Definitions for Signalized Intersections	9
3	Existing Transit Service in Study Area	18
4	Existing Conditions (Year 2019) Intersection Levels of Service	19
5	Related Project Trip Generation Estimates	28
6	Future without Project Conditions (Year 2022)	
7	Project Trip Generation Estimates	35
8	Existing with Project Conditions (Year 2019)	
	Intersection Levels of Service and Significant Impacts	40
9	Future with Project Conditions (Year 2022)	
	Intersection Levels of Service and Significant Impacts	41
10	Daily Traffic Volumes and Significant Impact Thresholds on	
	Residential Street Segments	44
11	Code Vehicle Parking Requirement	52
12	Code Bicycle Parking Requirement	53

Executive Summary

This study presents the transportation impact analysis for the proposed mixed-use project (Project) at 11701 Gateway Boulevard (Project Site) in the Mar Vista neighborhood of Los Angeles, California (City).

PROJECT DESCRIPTION

Camdaily LLC (Applicant) proposes to construct a five-level mixed-use development consisting of four levels of residential apartments and one level of ground-floor commercial uses and parking over two subterranean levels of residential parking. The Project would include 73 apartment units, 5,899 square feet (sf) of commercial uses (assumed to be 4,899 sf of retail or service space and 1,000 sf of restaurant), 90 automobile parking spaces, and 69 bicycle parking spaces. Vehicular access to the Project Site would be provided via two full-access driveways on the alley along the west edge of the Project Site, one to the ground level parking and one to the subterranean parking. The Project would replace approximately 10,052 sf of commercial uses existing on the Project Site.

STUDY SCOPE

The study included the evaluation of the potential for impacts caused by the Project on the street system surrounding the Project Site. A total of six signalized intersections in the vicinity of the Project Site were selected for detailed traffic analysis for Existing Year 2019 and Future Year 2022 Conditions, without and with Project traffic, during the morning and afternoon peak hours. Existing traffic volumes were collected in December 2018 and future traffic conditions were developed by adding traffic from proposed developments in the vicinity and applying a growth factor.

ANALYSIS METHODOLOGY

Signalized intersection capacity was analyzed using the Critical Movement Analysis methodology in accordance with City traffic study guidelines and the *West Los Angeles Transportation Improvement and Mitigation Specific Plan* (City of Los Angeles, 1997) (WLATIMP). Significant impacts were identified based on the City's sliding scale criteria in which the allowable increase in intersection volume-to-capacity ratio due to Project traffic decreases as the intersection operating condition (level of service) worsens.

PROJECT TRAFFIC

Peak hour Project trip generation was estimated using rates published in *Trip Generation*, *10th Edition* (Institute of Transportation Engineers, 2017) and rates from the WLATIMP. Trip credits were applied, as allowed by the City, for transit usage and pass-by trips. Additionally, trips from the existing commercial uses on the Project Site were deducted based on counts conducted at the driveways. The Project trip generation estimates are summarized in the table below.

Tring	Deily	Morn	ing Peak	Hour	Afternoon Peak Hour		
Trips	Daily	In	Out	Total	In	Out	Total
Project Trips	537	7	20	27	31	20	51

Net Project Trip Generation Estimates

Project trips were distributed through the Study Area, a geographic area bounded by Pico Boulevard to the north, Sawtelle Boulevard to the east, National Boulevard to the south, and Bundy Drive to the west, based on the location of employment and residential centers to/from which residents and visitors of the Project would be drawn, the characteristics of the street system serving the Project Site, the location of the Project Site driveways, and existing traffic conditions. In general, traffic was distributed to/from the north (15%), the east (55%), the south (15%), and the west (15%). In this manner, Project trips were distributed to the study intersections for the analysis.

ANALYSIS RESULTS

Based on the analysis conducted in this study, none of the study intersections would be significantly impacted by Project traffic during the morning or afternoon peak hours under either Existing with Project Conditions or Future with Project Conditions. Therefore, no mitigation is required.

Chapter 1 Introduction

This study presents the transportation impact analysis for the proposed mixed-use project (Project) at 11701 Gateway Boulevard (Project Site) in the Mar Vista neighborhood of Los Angeles, California (City). The methodology and base assumptions used in the analysis were established in consultation with the Los Angeles Department of Transportation (LADOT) through a Memorandum of Understanding (MOU).

PROJECT DESCRIPTION

Camdaily LLC (Applicant) proposes to construct a five-level mixed-use development consisting of four levels of residential apartments and one level of ground-floor commercial uses and parking over two subterranean levels of residential parking. The Project would include 73 apartment units, 5,899 square feet (sf) of commercial uses (assumed to be 4,899 sf of retail or service space and 1,000 sf of restaurant), 90 automobile parking spaces, and 69 bicycle parking spaces. Vehicular access to the Project Site would be provided via two full-access driveways on the alley along the west edge of the Project Site, one to the ground level parking and one to the subterranean parking. The Project would replace a 10,052-sf commercial building on the Project Site. The Project Site plan is shown in Figure 1.

PROJECT LOCATION AND STUDY AREA

The Project Site is located on the west corner of the skewed intersection of Barrington Avenue & Gateway Boulevard, approximately 300 feet south of the Santa Monica Freeway (I-10), which provides regional transportation between downtown Los Angeles (approximately 11.0 miles east) and Santa Monica (approximately 3.0 miles west). The Project Site and surrounding community is served by major streets such as Pico Boulevard, Ocean Park Boulevard, Gateway Boulevard, National Boulevard, Bundy Drive, and Barrington Avenue, as well as by I-10.

The Project Site is located within the *West Los Angeles Transportation Improvement and Mitigation Specific Plan* (City of Los Angeles, 1997) (WLATIMP) area. As shown in Figure 2, the Study Area includes a geographic area bounded by Pico Boulevard to the north, Sawtelle Boulevard to the east, National Boulevard to the south, and Bundy Drive to the west. Detailed traffic analyses were conducted at key intersections within the Study Area.

Transit bus service is provided throughout the Study Area, including along each of the major streets listed above. In addition to local bus lines, Santa Monica Big Blue Bus (BBB) operates a rapid (limited stop) bus on Pico Boulevard approximately 0.25 miles north of the Project Site and the Los Angeles County Metropolitan Transportation Authority (Metro) operates the Expo Line light rail system with a station at Bundy Drive & Exposition Boulevard, approximately 0.7 miles northwest of the Project Site.

INTERSECTION ANALYSIS METHODOLOGY

The scope of analysis for this study was developed using standard LADOT methods and practices. The base assumptions and technical methodologies (i.e., trip generation, study locations, analysis methodology, etc.) follow *Transportation Impact Study Guidelines* (LADOT, December 2016) and were agreed to by LADOT through an MOU signed February 6, 2019.

This study analyzed the potential Project-generated traffic impacts on the street system in the vicinity of the Project Site as compared to existing conditions and projected future conditions at the time the Project is expected to be completed (Year 2022). Potential intersection impacts were evaluated for typical weekday morning (7:00 AM to 10:00 AM) and afternoon (3:00 PM to 6:00 PM) peak periods. A total of six signalized intersections in the vicinity of the Project Site were selected for detailed traffic analysis. They are listed in Table 1 and shown in Figure 2. The following traffic conditions were developed and analyzed as part of this study:

 <u>Existing Conditions (Year 2019)</u> – The analysis of existing traffic conditions provides a basis for the assessment of future traffic conditions. The Existing Conditions analysis includes a description of key area streets and highways, traffic volumes and current operating conditions, and transit service in the Study Area. Intersection turning movement counts were collected in December 2018. Lane configurations and signal phasing data for the analyzed intersections were collected in January 2019. Intersection lane configurations are provided in Appendix A, traffic count worksheets in Appendix B, and level of service (LOS) worksheets in Appendix C.

- <u>Existing with Project Conditions (Year 2019)</u> This analysis condition projects the
 potential intersection operating conditions that could be expected if the Project were built
 under Existing Conditions. This analysis evaluates the potential Project-related traffic
 impacts as compared to Existing Conditions.
- <u>Future without Project Conditions (Year 2022)</u> This analysis projects the future traffic growth and intersection operating conditions that could be expected as a result of regional growth and related project traffic in the Study Area by Year 2022. The Future without Project Conditions are projected by adding ambient traffic growth and traffic from related projects to Existing Conditions. This analysis provides the conditions by which the Project impacts are evaluated in the future at full buildout.
- <u>Future with Project Conditions (Year 2022)</u> This analysis projects the potential intersection operating conditions that could be expected if the Project were built in the projected buildout year. This analysis identifies the potential incremental impacts of the Project at full buildout, prior to mitigation, on projected future traffic operating conditions by adding the Project-generated traffic to the Future without Project traffic forecasts.

Signalized Intersection Analysis Methodology

Intersection capacity has been analyzed using the "Critical Movement Analysis (CMA) – Planning" (*Transportation Research Circular No. 212, Interim Materials on Highway Capacity*, Transportation Research Board, 1980) methodology in accordance with *Transportation Impact Study Guidelines*. The CMA methodology was implemented using LADOT's CalcaDB Lite spreadsheet application to analyze intersection operating conditions. The methodology calculates the volume-to-capacity (V/C) ratio, which is used to determine the intersection LOS according to the LOS definitions provided in Table 2. LOS worksheets for each scenario are provided in Appendix C.

The significance of the potential impacts of Project generated traffic at the signalized study intersections was determined using criteria identified in *Transportation Impact Study Guidelines* that indicate that a project is considered to have a significant traffic impact on a signalized intersection if the increase in the V/C ratio attributable to the project exceeds a specific threshold depending on the final intersection LOS. LADOT has developed a sliding scale methodology in which the minimum allowable increase in the V/C ratio attributable to a project decreases as the V/C ratio of the intersection increases:

Intersection Conditions with Project Traffic		Significant Impact Threshold for Project-related Increase
LOS	V/C	in V/C Ratio
С	0.701 – 0.800	Equal to or greater than 0.04
D	0.801 – 0.900	Equal to or greater than 0.02
E, F	> 0.900	Equal to or greater than 0.01

Source: City of Los Angeles.

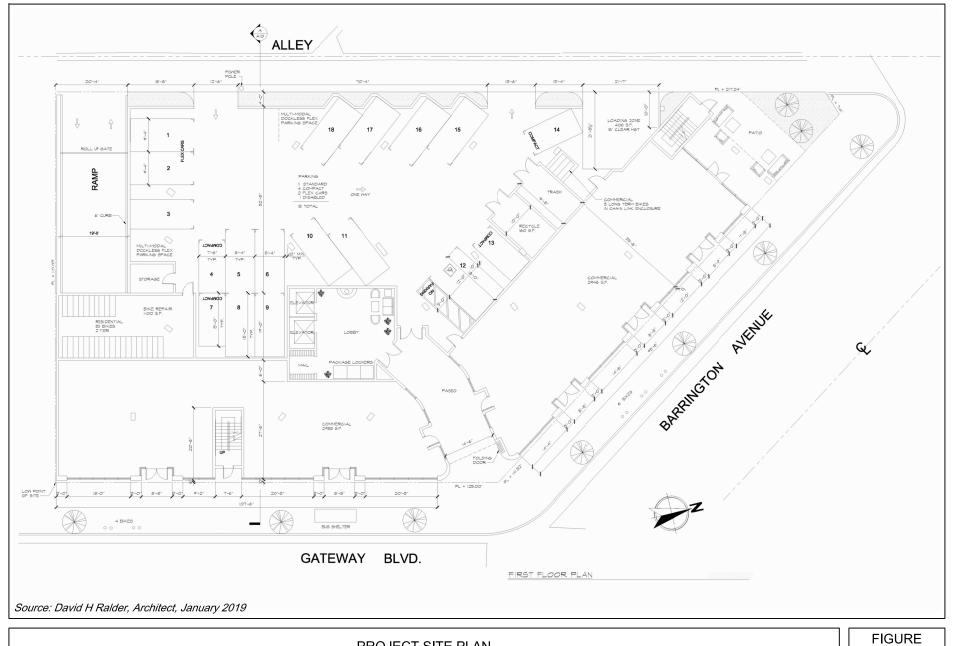
The relative impact of the added traffic volumes to be generated by the Project was evaluated based on analysis of existing and future operating conditions at the study intersections, with and without the Project.

Traffic Signal Automation

The CMA analysis for signalized study intersections accounts for the use of advanced automation in the traffic signal controllers. Each signalized intersection in the City is equipped with the Automated Traffic Surveillance and Control (ATSAC) system and the Adaptive Traffic Control System (ATCS), which together provide a computer-based traffic signal control program that automatically and continually adjusts and optimizes traffic signal timing based on real-time traffic conditions. The automation system seeks to minimize the amount of delay and the number of vehicle stops throughout the transportation network. It also provides real-time video monitoring capabilities to LADOT engineers. LADOT estimates that this system improves intersection capacity by 10% over a traffic signal without the ATSAC and ATCS system. This capacity increase is applied to each intersection within the CalcaDB Lite software and, therefore, is inherent in the analysis results.

ADDITIONAL TRAFFIC ANALYSES

Pearl Street, a residential street, was analyzed, as detailed in Chapter 6, to determine whether Project traffic could result in a significant neighborhood traffic impact based on the City's criteria.


An analysis also was conducted according to 2010 Los Angeles County Congestion Management Program (Metro, 2010) (CMP) guidelines. The CMP is a State-mandated program that serves as the monitoring and analytical basis for transportation funding decisions in the County made through the Regional Transportation Improvement Program and State Transportation Improvement Program processes. The CMP requires that a traffic impact analysis be performed (1) for all CMP arterial monitoring intersections where a project would add 50 or more trips during either the morning or afternoon weekday peak hours and (2) all mainline freeway monitoring locations where a project would add 150 or more trips (in either direction) during the morning or afternoon weekday peak hours. In addition, it requires a review of potential impacts to the regional transit system. The required CMP analyses were performed, as detailed in Chapter 6, in accordance with the guidelines in the CMP.

In addition to the analyses introduced above, this study includes a review of various other features and conditions related to the Project. These include a review of Project access and circulation, parking requirements and proposed supply, and a construction impact analysis.

ORGANIZATION OF REPORT

This report is divided into 10 chapters, including this introduction. Chapter 2 describes the existing circulation system, traffic volumes, and traffic conditions in the Study Area. Chapter 3 forecasts the Future without Project Conditions. Chapter 4 describes the procedure used to forecast Project traffic volumes and distribution throughout the Study Area. Chapter 5 presents the intersection operating conditions and potential traffic impacts associated with construction of the Project. Chapter 6 presents the residential street segment impact analysis. Chapter 7 presents the regional CMP analysis. Chapter 8 describes site access and internal circulation. Chapter 9 reviews the proposed parking and the City's parking requirement for the Project. The Appendices contain supporting documentation and additional details of the technical analyses.

PROJECT SITE PLAN

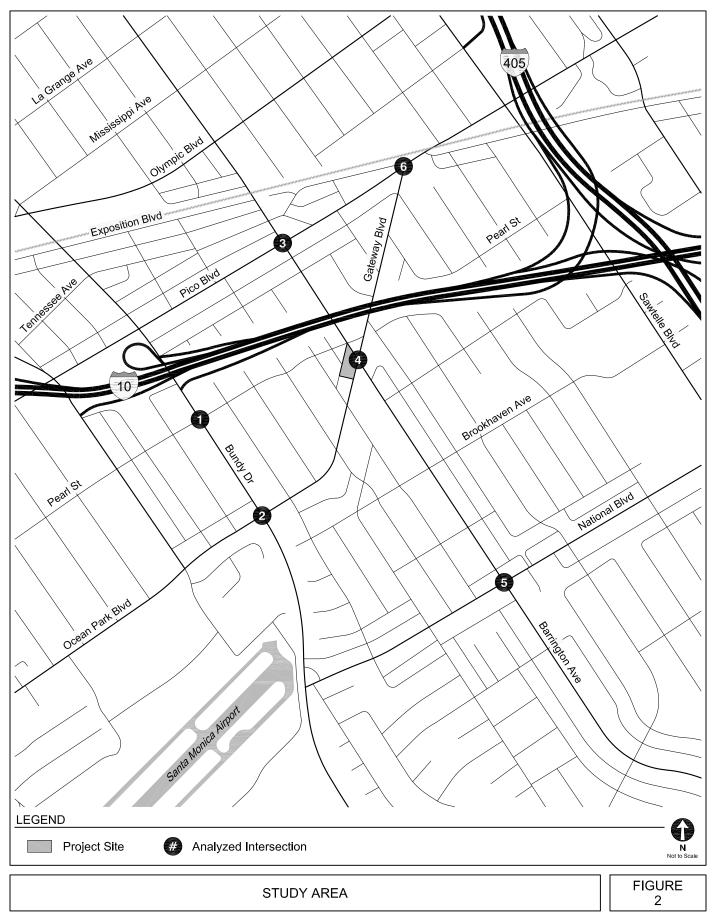


TABLE 1 LIST OF ANALYZED INTERSECTIONS

No.	North/South Street	East/West Street
1.	Bundy Drive	Pearl Street
2.	Bundy Drive	Ocean Park Boulevard
3.	Barrington Avenue	Pico Boulevard
4.	Barrington Avenue	Gateway Boulevard
5.	Barrington Avenue	National Boulevard
6.	Exposition Boulevard/Gateway Boulevard	Pico Boulevard

 TABLE 2

 LEVEL OF SERVICE DEFINITIONS FOR SIGNALIZED INTERSECTIONS

Level of Service	Signalized V/C Ratio [a]	Definition
A	0.000 - 0.600	EXCELLENT. No vehicle waits longer than one red light and no approach phase is fully used.
В	0.601 - 0.700	VERY GOOD. An occasional approach phase is fully utilized; many drivers begin to feel somewhat restricted within groups of vehicles.
с	0.701 - 0.800	GOOD. Occasionally drivers may have to wait through more than one red light; backups may develop behind turning vehicles.
D	0.801 - 0.900	FAIR. Delays may be substantial during portions of the rush hours, but enough lower volume periods occur to permit clearing of developing lines, preventing excessive backups.
E	0.901 - 1.000	POOR. Represents the most vehicles intersection approaches can accommodate; may be long lines of waiting vehicles through several signal cycles.
F	> 1.000	FAILURE. Backups from nearby locations or on cross streets may restrict or prevent movement of vehicles out of the intersection approaches. Tremendous delays with continuously increasing queue lengths.

<u>Notes</u>

[a] Transportation Research Circular No. 212, Interim Materials on Highway Capacity,

Transportation Research Board, 1980.

Chapter 2 Existing Conditions

A comprehensive data collection effort was undertaken to develop a detailed description of existing conditions in the Study Area. The Existing Conditions analysis includes an assessment of the existing freeway and street systems, an analysis of traffic volumes and current operating conditions, and an assessment of the existing public transit service, as well as pedestrian and bicycle circulation.

STUDY AREA

The Study Area, shown in Figure 2, includes a geographic area approximately 0.8 miles (northsouth) by 0.8 miles (east-west) that is generally bounded by Pico Boulevard to the north, Sawtelle Boulevard to the east, National Boulevard to the south, and Bundy Drive to the west. The Study Area is primarily within the Mar Vista neighborhood of the City.

A traffic analysis study area generally comprises all intersections that have potential to experience significant traffic impacts from project traffic as defined by the City's impact criteria. The Study Area was established taking into consideration the Project's peak hour trip generation estimates, the anticipated distribution of Project traffic, and the existing operation of nearby intersections and corridors. A total of six signalized intersections were identified for detailed analysis. Figure 2 illustrates the location of the Project Site in relation to the surrounding street system and the six study intersections.

EXISTING STREET SYSTEM

The existing street system in the Study Area consists of a regional roadway system including Freeways, Boulevards, Avenues, Collectors and Local Streets that provide regional, sub-

regional, or local access and circulation. Street classifications are designated in the *Mobility Plan 2035: An Element of the General Plan* (Los Angeles Department of City Planning, May 2015) (Mobility Plan 2035). The available facilities in the Study Area are defined by the following:

- <u>Boulevards</u> are arterial streets that provide primary through traffic routes with limited access to adjacent properties. Boulevards are divided into two categories:
 - <u>Boulevard I</u> typically provides 100 feet of paved width within 136 feet of right-ofway.
 - <u>Boulevard II</u> typically provides 80 feet of paved width within 110 feet of right-ofway.
- <u>Avenues</u> are arterial streets that serve through traffic, as well as provide access to major commercial activity centers. Avenues are divided into three categories:
 - <u>Avenue I</u> typically provides 70 feet of paved width within 100 feet of right-of-way.
 - <u>Avenue II</u> typically provides 56 feet of paved width within 86 feet of right-of-way.
 - <u>Avenue III</u> typically provides 46 feet of paved width within 72 feet of right-of-way.
- <u>Collector Streets</u> are intended to assist local traffic flow to Avenues and are typically located at quarter-mile intervals in a grid system.
- <u>Local Streets</u> provide circulation for local adjacent neighborhoods and do not typically serve commercial uses. Local streets provide connections to collector streets, which in turn, connect to the arterial street network.

The following is a brief description of the major roadways in the Study Area, including their classifications under Mobility Plan 2035:

<u>Roadways</u>

- <u>Exposition Boulevard</u> Exposition Boulevard is a designated Local Street running eastwest approximately 0.4 miles north of the Project Site. It provides one lane in each direction along with unmetered on-street parking (including perpendicular parking along the north side of the street serving the Expo/Bundy Station of the Expo Line) and an offstreet paved bicycle path along the north side of the street. The total paved width of the street is typically 36 feet.
- <u>Pico Boulevard</u> Pico Boulevard is a designated Avenue I running east-west approximately 0.25 miles north of the Project Site. It provides two lanes in each direction,

on-street unmetered parking on both sides of the street east of Granville Avenue, and onstreet metered parking on both sides of the street west of Granville Avenue. There is generally no center left-turn lane, but there are left-turn pockets at most intersections. Inside lanes are generally 10 feet wide and the total paved width is 70 feet.

- <u>Pearl Street</u> Pearl Street is a designated Local Street running east-west along the northern-most edge of the Project Site. It provides one lane in each direction and on-street unmetered parking on both sides of the street. Inside lanes are generally 10 feet wide and the total paved width is 40 feet.
- <u>Ocean Park Boulevard</u> Ocean Park Boulevard is a designated Boulevard II running eastwest approximately 0.1 miles south of the Project Site. It connects with and becomes Gateway Boulevard east of Granville Avenue. It provides two lanes in each direction and on-street unmetered parking on the north side of the street west of Armacost Avenue. Onstreet unmetered parking is provided on both sides of the street east of Armacost Avenue. There is generally a center left-turn lane and there are left-turn pockets at some intersections. Inside lanes are generally 10 feet wide and the total paved width is 70 feet.
- <u>National Boulevard</u> National Boulevard is a designated Avenue I running east-west approximately 0.5 miles south of the Project Site. It provides two lanes in each direction and on-street unmetered parking on both sides of the street. There is generally no center left-turn lane, but there are left-turn pockets at some intersections. Inside lanes are generally 10-11 feet wide and the total paved width is 56 feet.
- <u>Gateway Boulevard</u> Gateway Boulevard is a designated Boulevard II running northeastsouthwest along the southeastern boundary of the Project Site. It connects with and becomes Ocean Park Boulevard west of Granville Avenue. It provides two travel lanes in each direction and on-street unmetered parking on both sides. There is a center median, left-turn pockets at most intersections, and a striped bicycle lane on the north side of the street. Inside lanes are generally 10 feet wide and the total paved width is 88 feet.
- <u>Bundy Drive</u> Bundy Drive is a designated Avenue I running north-south approximately 0.3 miles west of the Project Site. It provides two travel lanes in each direction, with left-turn lanes at intersections. On-street unmetered parking is generally available on both sides of the street between Exposition Boulevard and Ocean Park Boulevard and on the east side of the street south of Ocean Park Boulevard. On-street parking is not available on either side of the street south of National Boulevard. There is generally no center left-turn lane, but there are left-turn pockets at most intersections. Inside lanes are generally 10 feet wide and the total paved width is 68 feet.
- <u>Barrington Avenue</u> Barrington Avenue is a designated Avenue I south of Pico Boulevard and a designated Avenue II north of Pico Boulevard running north-south along the western boundary of the Project Site. It provides two lanes in each direction and on-street unmetered parking is generally available on both sides of the street. There is generally a center left-turn lane and there are left-turn pockets at some intersections. Inside lanes are generally 10 feet wide and the total paved width is 70 feet.

EXISTING TRANSIT SYSTEM

The Project area is served by bus and rail lines operated by Metro and BBB. Figure 3 illustrates the existing transit service in the Study Area. Table 3 summarizes the transit lines operating in the Study Area for each of the service providers in the region, the type of service (peak vs. off-peak, express vs. local), and frequency of service, as described above. The average frequency of transit service during the peak hour was derived from the number of peak period stops made at the stop nearest the Project Site. The average headways during the peak hour were estimated using detailed trip and ridership data from April 2017 provided by Metro and route and schedule information from September 2018 provided by BBB.

In addition to the bus lines that provide service within the Project Site vicinity, the Metro Expo Line's Expo/Bundy Station is approximately 0.7 miles northwest of the Project Site. The Expo Line runs every 12 minutes to downtown Los Angeles, connecting with the Blue Line, Red Line and Purple Line in downtown Los Angeles and the Gold Line at Union Station.

BICYCLE AND PEDESTRIAN NETWORK

Based on 2010 Bicycle Plan, A Component of the City of Los Angeles Transportation Element (Los Angeles Department of City Planning, adopted March 1, 2011) (2010 Bicycle Plan), the City's bicycle system consists of a limited coverage of bicycle lanes (Class II) and bicycle routes (Class III). Bicycle lanes are a component of street design with dedicated striping, separating vehicular traffic from bicycle traffic. These facilities offer a safer environment for both cyclists and motorists. Bicycle routes are identified as bicycle-friendly streets where motorists and cyclists share the roadway and there is no dedicated striping of a bicycle lane. Bicycle routes are preferably located on collector and lower volume arterial streets.

Within the Study Area, Gateway Boulevard, Pearl Street, Barrington Avenue south of National Boulevard, Burkshire Avenue, and Inglewood Boulevard are identified for bicycle-friendly street treatments. Barrington Avenue north of National Boulevard is identified for a bicycle route and Bundy Drive and National Boulevard east of Inglewood Boulevard are identified for bicycle lanes. Currently, Gateway Boulevard is striped with bicycle lanes throughout the Study Area.

The walkability of existing facilities for pedestrians is based on the availability of pedestrian routes necessary to accomplish daily tasks without the use of an automobile. These attributes are quantified by WalkScore and assigned a score out of 100 points. With the various commercial businesses and cultural facilities adjacent to residential neighborhoods of the Mar Vista community, the walkability of the Study Area is approximately 78 points¹; this compares to the citywide score of 70 points, indicating that the Study Area is slightly more walkable than average within the City.

The sidewalks that serve as routes to the Project Site provide proper connectivity and adequate widths for a comfortable and safe pedestrian environment. The sidewalks provide connectivity to pedestrian crossings at intersections within the Study Area. Striped crosswalks are provided at all legs of the signalized study intersections, though most do not have the current standard "continental" (ladder-style) striping treatment.

VISION ZERO

As described in *Vision Zero: Eliminating Traffic Deaths in Los Angeles by 2025* (City of Los Angeles, August 2015), Vision Zero is a traffic safety policy that promotes strategies to eliminate collisions that result in severe injury or death. Vision Zero has identified the High Injury Network, a network of streets based on the collision data from the last five years, where strategic investments will have the biggest impact in reducing death and severe injury. Within the Study Area, the following streets have been identified in the High Injury Network:

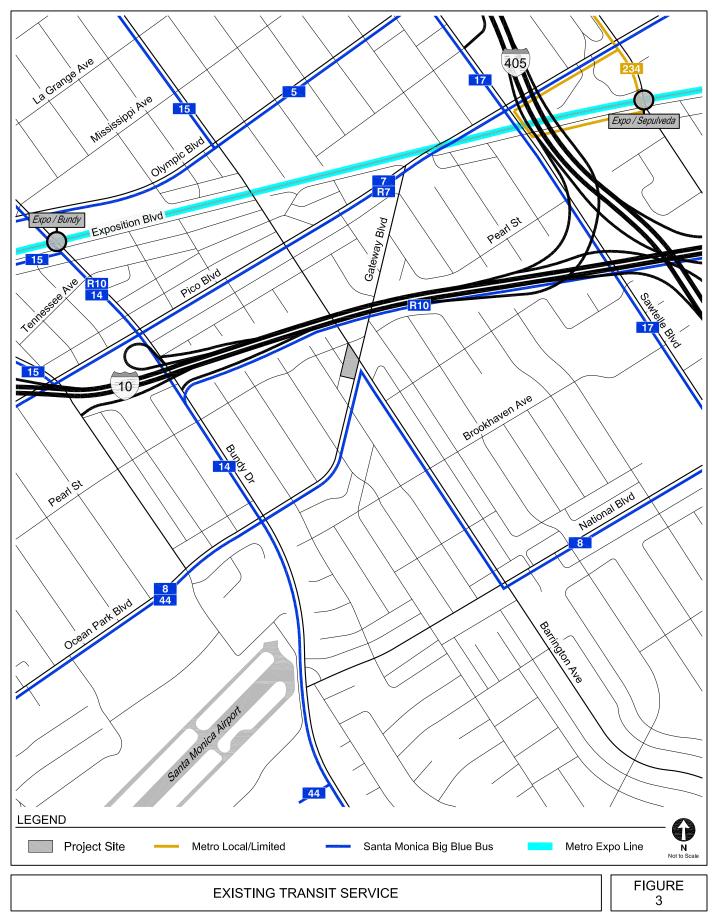
- Bundy Drive
- Pico Boulevard
- National Boulevard east of Butler Avenue

¹ WalkScore (www.walkscore.com) rates the Project Site with a score of 78 of 100 possible points (scores accessed in January 2019 for the Mar Vista community). WalkScore calculates the walkability of specific addresses by taking into account the ease of living in the neighborhood with a reduced reliance on automobile travel.

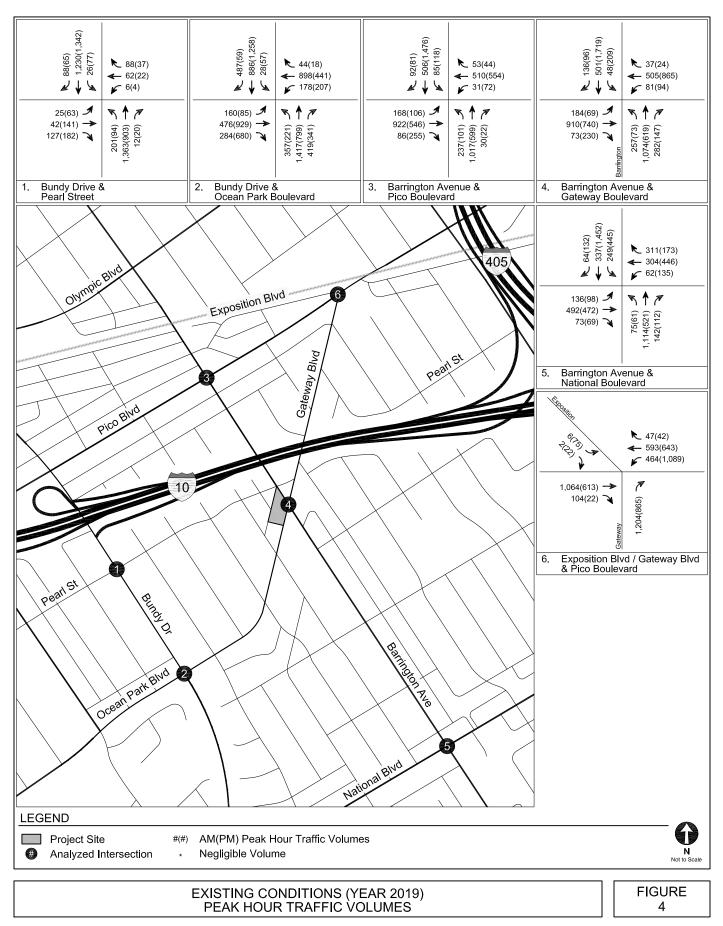
EXISTING TRAFFIC VOLUMES AND LEVELS OF SERVICE

This section presents the existing peak hour turning movement traffic volumes for the intersections analyzed in the study, describes the methodology used to assess the traffic conditions at each intersection, and analyzes the resulting operating conditions at each intersection indicating V/C ratios or delay and LOS.

Existing Traffic Volumes


Intersection turning movement counts were conducted at the six study intersections during the weekday morning (7:00 AM to 10:00 AM) and afternoon (3:00 PM to 6:00 PM) peak periods in December 2018. The existing intersection peak hour traffic volumes are illustrated in Figure 4. Traffic count worksheets are provided in Appendix B.

Existing Intersection Levels of Service


Table 4 summarizes the weekday morning and afternoon peak hour LOS results for each of the study intersections under Existing Conditions. As shown, four of the six study intersections currently operate at LOS D or better during both the morning and afternoon peak hours. The following two intersections currently operate at LOS E or F during one or both peak hours:

- 2. Bundy Drive & Ocean Park Boulevard (LOS F during both peak hours)
- 4. Barrington Avenue & Gateway Boulevard (LOS E during the afternoon peak hour)

TABLE 3
EXISTING TRANSIT SERVICE IN STUDY AREA

Provider, Route, and Service Area			Hours of Operation	Average Headway (minutes) [a]					
Provider, R	oute, and Service Area	Туре	Hours of Operation	Morning P	eak Period	Afternoon Peak Period			
Metro Bus Service				NB/EB	SB/WB	NB/EB	SB/WB		
234	Sylmar - Westwood via Sepulveda Boulevard	Local	5:45 A.M 8:00 P.M.	N/A	N/A	N/A	N/A		
LADOT Cor	nmuter Express Bus Service			NB/EB	SB/WB	NB/EB	SB/WB		
574	Sylmar - Encino - LAX - El Segundo	Express	5:00 AM - 7:30 PM	N/A	60	60	N/A		
Santa Monica Big Blue Bus Service (BBB)				NB/EB	SB/WB	NB/EB	SB/WB		
5	Downtown Santa Monica - Palms	Local	6:30 A.M 8:30 P.M.	20	20	20	20		
7	Downtown Santa Monica - Beverlywood	Local	5:00 A.M 12:30 A.M.	15	15	15	15		
8	Downtown Santa Monica - Westwood	Local	6:00 A.M 11:00 P.M.	14	14	15	15		
14	Playa Vista - Brentwood	Local	5:30 A.M 9:30 P.M.	14	14	14	14		
15	West Los Angeles - Brentwood	Local	6:00 A.M 8:00 P.M.	30	30	30	30		
17	Culvery City - Westwood	Local	7:00 A.M 9:00 P.M.	20	20	20	20		
44	17th Street / Santa Monica College Station - Santa Monica College Bundy Campus	Local	7:00 A.M 6:00 P.M.	14	14	14	14		
R7 Downtown Santa Monica - Wilshire/Western Purple Line Station		Rapid	5:30 A.M 11:30 P.M.	14	14	14	14		
Metro Rail	Metro Rail Service			NB/EB	SB/WB	NB/EB	SB/WB		
Expo Downtown Los Angeles - Downtown Santa Monica		Subway	4:00 A.M 2:00 A.M.	6	6	6	6		

Notes

Metro: Los Angeles County Metropolitan Transportation Authority
 Morning Peak Period from 6:00 AM to 10:00 AM; Afternoon Peak Period from 3:00 PM to 7:00 PM.
 [a] Average headways are based on the total number of trips during the peak period as indicated in Metro ridership data from April, 2017 and the Santa Monica BBB Routes and Schedules from September, 2018.

TABLE 4EXISTING CONDITIONS (YEAR 2019)INTERSECTION LEVELS OF SERVICE

No.	Intersection	Peak Hour	Existing Conditions				
			V/C	LOS			
1.	Bundy Drive &	A.M.	0.607	B			
	Pearl street	P.M.	0.692	B			
2.	Bundy Drive &	A.M.	1.047	F			
	Ocean Park Boulevard	P.M.	1.007	F			
3.	Barrington Avenue &	A.M.	0.663	B			
	Pico Boulevard	P.M.	0.775	C			
4.	Barrington Avenue &	A.M.	0.766	C			
	Gateway Boulevard	P.M.	0.908	E			
5.	Barrington Avenue &	A.M.	0.824	D			
	National Boulevard	P.M.	0.785	C			
6.	Exposition Park / Gateway Boulevard & Pico Boulevard	A.M. P.M.	0.776 0.569	C A			

Chapter 3 Future without Project Conditions

Estimates of future traffic conditions both with and without the Project, representing cumulative conditions, were developed to evaluate the potential impacts of the Project on the local street system. This discussion details the assumptions used to develop the Future without Project Conditions in Year 2022, which corresponds to the anticipated Project buildout year.

The existing traffic volumes were factored by an annual ambient growth rate to approximate regional growth and development. In addition to the ambient growth, for purposes of providing a conservative analysis of potential cumulative traffic impacts, the traffic generated by proposed, approved, and under construction projects in and around the Study Area was also added to estimate the Future without Project Conditions.

AMBIENT TRAFFIC GROWTH

Traffic levels are expected to increase over time as a result of regional growth and development in and around the Study Area. The CMP provides general growth factors based on regional modeling. As shown in Exhibit D-1 of the CMP, the Santa Monica area is estimated to experience a total regional growth in traffic of 2.37% between the years of 2015 and 2025, which equates to an ambient growth factor of approximately 0.23% per year. However, LADOT policy specifies the use of a conservative ambient growth factor of 1% per year, compounded annually, to adjust the existing traffic volumes to reflect the effects of the regional growth and development by Year 2022. The total adjustment applied over the three-year period was 3.03%. This growth factor accounts for increases in traffic due to potential projects not yet proposed or projects outside the Study Area.

RELATED PROJECTS

This study also considers growth in traffic due to other projects proposed, approved, or under construction in and around the Study Area, known as the Related Projects. The list of Related Projects is based on information provided by the Department of City Planning and LADOT, as well as recent studies of projects in the area. The nine Related Projects are detailed in Table 5 and shown in Figure 5 and include all projects within a 0.75 mile radius of the Project Site, consistent with LADOT policy, which encompasses the entire Study Area.

The development of estimated traffic volumes added to the Study Area as a result of Related Projects involves the use of a three-step process: trip generation, trip distribution, and trip assignment.

Trip Generation

Trip generation estimates for the Related Projects were provided by LADOT or found in previous study findings. Table 5 summarizes the Related Project trip generation for typical weekdays, including daily trips, morning peak hour trips, and afternoon peak hour trips. These projections are very conservative in that they do not in every case account for either the trips generated by the existing uses to be removed or the likely use of other travel modes (transit, bicycle, walk, etc.) Further, they do not fully account for the internal capture trips within a multi-use development, nor the interaction of trips between multiple Related Projects within the Study Area, in which one Related Project serves as the origin for a trip destined for another Related Project.

Trip Distribution

The geographic distribution of the traffic generated by the Related Projects is dependent on several factors. These include the type and density of the proposed land uses, the geographic distribution of the population from which the employees/residents and potential patrons of the proposed developments are drawn, and the location of these projects in relation to the

surrounding street system. These factors are considered along with logical travel routes through the street system to develop a reasonable pattern of trip distribution.

The trip generation estimates for the Related Projects were assigned to the local street system using the trip distribution patterns developed above. Figure 6 shows the peak hour traffic volumes associated with these Related Projects at the study intersections. These volumes were then added to the existing traffic volumes after adjustment for ambient growth through the projected buildout year of 2022. As discussed above, this is a conservative approach as many of the Related Projects may be reflected in the ambient growth rate. These volumes represent the Future without Project Conditions (i.e., existing traffic volumes added to ambient traffic growth and Related Project traffic growth) and are shown in Figure 7 for the six study intersections.

FUTURE INFRASTRUCTURE IMPROVEMENTS

The roadway network for the Future without Project Conditions within the Study Area could also be affected by regional improvement plans, local specific plans, and programmed improvements (i.e., mitigations for Related Projects). However, consistent with standard practice, it was determined that the analysis should conservatively exclude potential improvements within the Study Area because of uncertainty as to the likelihood and timing of their implementation. Therefore, the lane configurations and signal phasing at the study intersections was assumed to remain unchanged between Existing and Future Conditions. However, the potential improvements that were identified are discussed below.

City Bicycle Plan

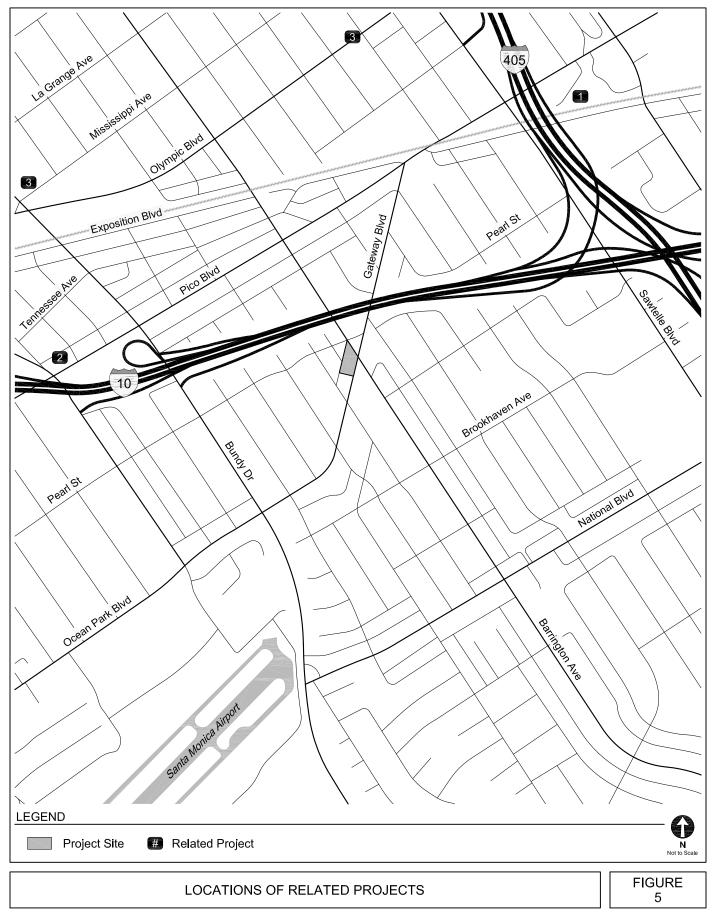
The 2010 Bicycle Plan identifies the City's vision for a more integrated bicycle network throughout the City, including within the Study Area. It proposes new bicycle lanes on Bundy Drive and Pico Boulevard east of Gateway Boulevard within the Study Area. It also proposes bicycle friendly streets on Gateway Boulevard, Pearl Street, Barrington Avenue south of National Boulevard, and Burkshire Avenue and Inglewood Boulevard within or adjacent to the Study Area. Upon consultation with LADOT's bicycle section, no changes to vehicular lane

configurations as a result of potential new bicycle lanes were assumed in this analysis. Further, the bicycle lanes already installed on Gateway Boulevard preclude the future installation of bicycle friendly street features, as bicycle lanes are a more robust type of bicycle infrastructure.

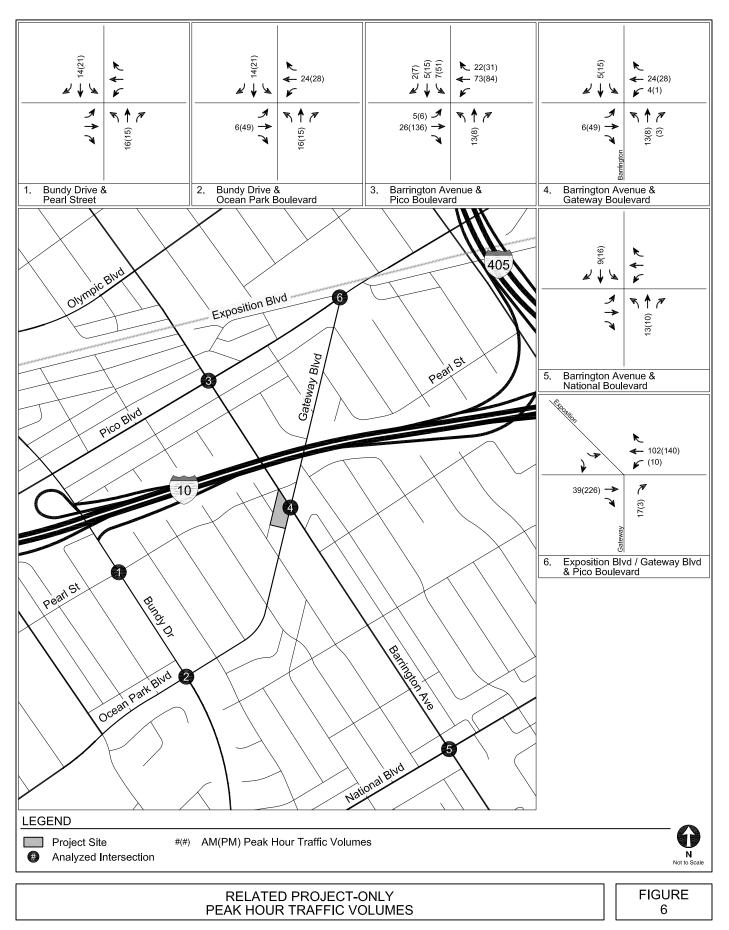
Mobility Plan 2035

In Mobility Plan 2035, the City identifies key corridors as components of various "mobilityenhanced networks." Each network is intended to focus on improving a particular aspect of urban mobility, including transit, neighborhood connectivity, bicycles, pedestrians, and vehicles. The specific improvements that may be implemented in those networks have not yet been identified and there is no schedule for implementation; therefore, no changes to vehicular lane configurations were made as a result of Mobility Plan 2035. However, the following mobilityenhanced networks included corridors within the Study Area:

- <u>Transit Enhanced Network (TEN)</u>: The following corridors were identified as part of the TEN:
 - Bundy Drive (Moderate Transit Enhanced)
 - Pico Boulevard (Moderate Plus Transit Enhanced)
- <u>Neighborhood Enhanced Network (NEN)</u>: The following corridors were identified as part of the NEN:
 - o Gateway Boulevard
 - Barrington Avenue
 - Granville Avenue between Gateway Boulevard and Radio Drive
 - Radio Drive between Granville Avenue and Brookhaven Avenue
 - Burkshire Avenue south of Brookhaven Avenue
 - Inglewood Boulevard
 - National Boulevard east of Burkshire Avenue
 - Pearl Street
- <u>Bicycle Enhanced Network (BEN) / Bicycle Lane Network (BLN)</u>: No streets in the Study Area were identified as part of the BEN. Pico Boulevard east of Gateway Boulevard and Bundy Drive were identified as part of the BLN.
- <u>Pedestrian Segment Analysis</u>: The following corridors were identified as part of the Pedestrian Segment Analysis:
 - Barrington Avenue between Brookhaven Avenue and Navy Street
 - o National Boulevard between Armacost Avenue and Federal Avenue


- Bundy Drive north of Pearl Street
- Pico Boulevard west of Barrington Avenue
- Pico Boulevard east of Gateway Boulevard
- Gateway Boulevard between Colby Avenue and Pico Boulevard
- Sawtelle Boulevard north of Pearl Street

FUTURE WITHOUT PROJECT INTERSECTION LEVELS OF SERVICE


Table 6 summarizes the weekday morning and afternoon peak hour LOS results for each of the study intersections under Future without Project Conditions. Table 6 indicates that four of the six study intersections are projected to operate at LOS D or better during both the weekday morning and afternoon peak hours. The remaining two intersections are projected to operate at LOS E or F during at least one of the analyzed peak hours:

- 2. Bundy Drive & Ocean Park Boulevard (LOS F during both peak hours)
- 4. Barrington Avenue & Gateway Boulevard (LOS E during the afternoon peak hour)

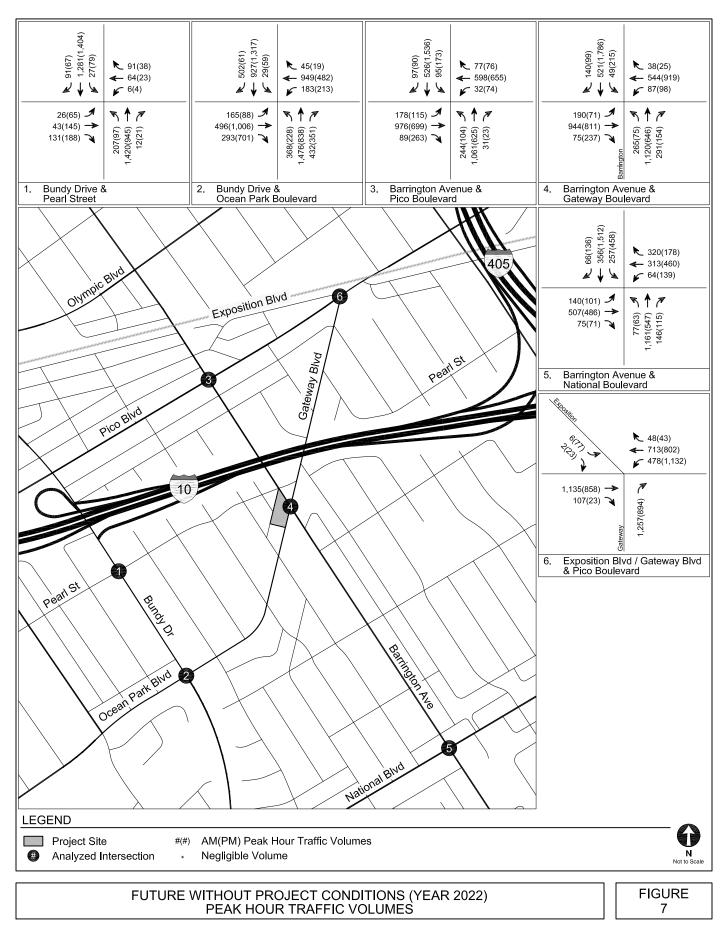


 TABLE 5

 RELATED PROJECT TRIP GENERATION ESTIMATES

				Trip Generation Estimates						
No.	Project	Address	Description	Daily	Morning Peak Hour			Afternoon Peak Hour		
				Dally	In	Out	Total	In	Out	Total
1.	Pico-Sepulveda Mixed-Use	11122 W Pico Bl	538 apartment units, 212,000 sf Target and 54,000 sf supermarket		145	487	632	1,167	686	1,853
2.	Hyde Park Condominiums	12301 W Pico Bl	95 condominium units		6	22	28	18	11	29
3.	Mxed-Use	11421 W Olympic Bl	89 apartment units and 6,030 sf retail	682	10	36	46	34	21	55
4.	Martin Expo Town Center Mixed-Use	12101 W Olympic Bl	516 residential units, 67,000 sf retail, and 200,000 sf creative office		227	212	439	241	225	466
5.	Mixed-Use	11460 W Gateway Bl	Change of use from commercial center to 128 apartment units and 5,153 sf retail	1,107	-1	84	83	51	17	68
6.	Trident Center	11355 W Olympic Bl	446,500 sf office expansion and 8,820 sf restaurant	1,246	133	33	166	49	122	171
7. [a]	Office Building	12414 Exposition Bl	Replace 37,713 sf self-storage facility with 70,893 sf building consisting of 38,856 sf office, 25,760 sf research and development, and 6,227 sf medical office	703	49	9	58	18	98	116
8.	Commercial Office & Restaurant	2231 S Barrington Ave	9,731 sf office, 6,904 sf restaurant, and 2,750 sf catering space	610	24	11	35	34	39	73
9.	Office Building	2222 Corinth Ave	135,000 sf office building	804	83	13	96	19	100	119

Notes:

Source: LADOT, December 2018.

[a] Trip generation estimates from Transportation Impact Study for the Ellison Institute of Transformative Medicine at 12414 Exposition Boulevard (Gibson Transportation Consulting, July 2018)

TABLE 6FUTURE WITHOUT PROJECT CONDITIONS (YEAR 2022)INTERSECTION LEVELS OF SERVICE

No.	Intersection	Peak Hour	Future without Project Conditions			
			V/C	LOS		
1.	Bundy Drive &	A.M.	0.633	B		
	Pearl street	P.M.	0.723	C		
2.	Bundy Drive & Ocean Park Boulevard	A.M. P.M.	1.096 1.066	F		
3.	Barrington Avenue &	A.M.	0.704	C		
	Pico Boulevard	P.M.	0.851	D		
4.	Barrington Avenue &	A.M.	0.801	D		
	Gateway Boulevard	P.M.	0.960	E		
5.	Barrington Avenue &	A.M.	0.857	D		
	National Boulevard	P.M.	0.817	D		
6.	Exposition Park / Gateway Boulevard & Pico Boulevard	A.M. P.M.	0.823 0.673	D B		

Chapter 4 Project Traffic

This chapter describes the assumptions and methodology used in developing the traffic volumes associated with the Project within the Study Area.

PROJECT DESCRIPTION

As described in Chapter 1, the Applicant proposes to construct a five-level mixed-use development consisting of four levels of residential apartments and one level of ground-floor commercial uses and parking over two subterranean levels of residential parking. The Project would include 73 apartment units, 5,899 sf of commercial uses (assumed to be 4,899 sf of retail or service space and 1,000 sf of restaurant), 83 automobile parking spaces, and 69 bicycle parking spaces. Vehicular access to the Project Site would be provided via two full-access driveways on the alley along the west edge of the Project Site, one to the ground level parking and one to the subterranean parking. The Project would replace a 10,052 sf commercial building on the Project Site.

PROJECT TRIP GENERATION

Trip Generation Rates

The number of trips expected to be generated by the Project was estimated using rates published in *Trip Generation, 10th Edition* and the WLATIMP. *Trip Generation, 10th Edition* rates are based on surveys of similar land uses at sites around the country and are provided as both daily rates and morning and afternoon peak hour rates. WLATIMP rates were developed by the City and are provided for the afternoon peak hour only. Both sets of rates relate the number of vehicle trips traveling to and from the Project Site to the size of development of each land use.

Development projects are required to use WLATIMP rates for afternoon peak hour trip generation estimates.

The Project includes development of up to 4,899 sf of retail or service space. Potential service uses include a small office space, a nail or beauty salon, or a dry cleaner. These potential uses either do not have relevant rates available in *Trip Generation*, *10th Edition* or the WLATIMP or the rates are lower than retail rates. Therefore, for the purposes of estimating Project trips, all of this space was assumed to be retail space.

Trip Generation Credits

Appropriate trip generation reductions to account for public transit usage, internal capture, and pass-by trips were made based on LADOT guidelines. These include a 10% adjustment for a development in an area with multiple high-quality transit options, a 5% adjustment on the retail and restaurant uses to account for internal trips by Project residents, and pass-by adjustments of 50% for retail space and 20% for restaurant space.

Additionally, the trips currently generated by the 10,052 sf commercial building on the Project Site would be eliminated with the Project. In order to most accurately and conservatively estimate the number of trips generated by the existing building, peak period trip counts were collected at the three current access points (including the parking spaces on the north corner of the Project Site and the two driveways to the pass-through parking lot on Gateway Boulevard; pass-through trips were not counted in the trip generation totals). Because the existing building comprises retail and service uses, and in accordance with LADOT pass-by trip guidelines, the trip counts were reduced by 50% to account for the likelihood that many of the trips were pass-by trips. The existing use trip generation is shown in Table 7 and the driveway trip counts are provided in Appendix B.

Trip Generation Estimates

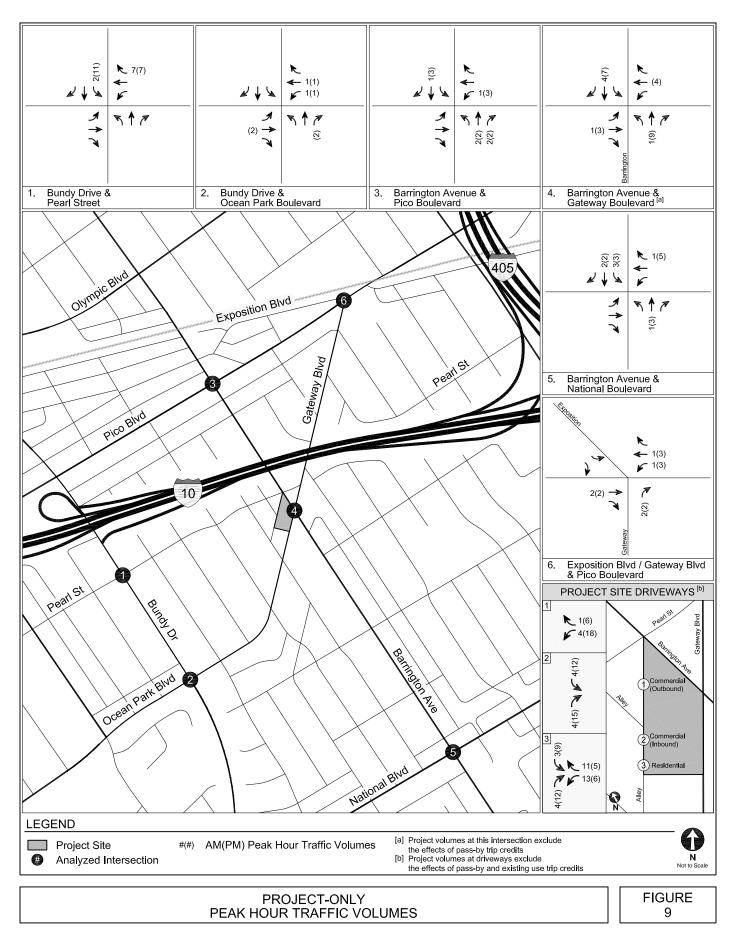
As shown in Table 7, after accounting for the adjustments above, the Project is expected to generate 537 net new trips on a typical weekday, including 27 morning peak hour trips (seven inbound trips, 20 outbound trips) and 51 afternoon peak hour trips (31 inbound trips, 20 outbound trips).

PROJECT TRIP DISTRIBUTION

Similar to the trip distribution of traffic for the Related Projects described in Chapter 3, the geographic distribution of trips generated by the Project is dependent on the location of employment and commercial centers to which residents of the Project would be drawn, characteristics of the street system serving the Project Site, the location of the proposed driveways, and existing traffic conditions.

Based on these considerations, traffic entering and exiting the Project was assigned to the surrounding street system. The intersection-level trip distribution pattern for Project traffic at the study intersections is shown in Figure 8. Generally, the pattern is as follows:

- 15% to/from the north
- 15% to/from the south
- 55% to/from the east
- 15% to/from the west


PROJECT TRIP ASSIGNMENT

The Project trip generation estimates summarized in Table 7 and the trip distribution pattern shown in Figure 8 were used to assign the Project-generated traffic through the study intersections. Figure 9 illustrates the net Project-only traffic volumes at the study intersections and the Project driveways during typical weekday morning and afternoon peak hours.

TABLE 7 PROJECT TRIP GENERATION ESTIMATES

Land Use	ITE	ITE Land Rate or Size	Daily	Morning Peak Hour			Afternoon Peak Hour		
Land Use	Use			In	Out	Total	In	Out	Total
Trip Generation Rates [a]									
Multi-Family Housing (Low-Rise)	220	per du	7.32	23%	77%	0.46	63%	37%	0.49
Shopping Center	820	per 1,000 sf	37.75	62%	38%	0.94	48%	52%	9.60
High-Turnover (Sit-Down) Restaurant	932	per 1,000 sf	112.18	55%	45%	9.94	62%	38%	12.92
Trip Generation Estimates	Į	Ļ	<u> </u>		<u>.</u>	4	<u>I</u>	4	Į
Proposed Project									
Residential Units [b]	221	73 du	534	8	26	34	23	13	36
Transit/Walk-In Adjustment - 10% [c]			(53)	(1)	(2)	(3)	(2)	(2)	(4)
Retail	820	4,899 sf	185	3	2	5	23	24	47
Transit/Walk-In Adjustment - 10% [c]			(19)	0	(1)	(1)	(2)	(3)	(5)
Internal Capture Adjustment - 5% [d]			(8)	0	0	0	(1)	(1)	(2)
Pass-By Adjustment - 50% [e]			(79)	(2)	0	(2)	(10)	(10)	(20)
Restaurant	932	1,000 sf	112	6	4	10	8	5	13
Transit/Walk-In Adjustment - 10% [c]			(11)	(1)	0	(1)	(1)	0	(1)
Internal Capture Adjustment - 5% [d]			(5)	0	0	0	0	(1)	(1)
Pass-By Adjustment - 20% [e]			(19)	(1)	(1)	(2)	(1)	(1)	(2)
	Total Pro	oosed Project Trips	637	12	28	40	37	24	61
Existing Uses to be Removed									
Commercial Mixed-Use Building [f]	n/a	10,052 sf	200	11	15	26	13	8	21
Pass-By Adjustment - 50%			(100)	(6)	(7)	(13)	(7)	(4)	(11)
	Total	Existing Uses Trips	100	5	8	13	6	4	10
Т	OTAL NET NE	W PROJECT TRIPS	537	7	20	27	31	20	51

Notes:

sf = square feet; du = dwelling units;

[e] Per LADOT's Transportation Impact Study Guidelines, pass-by adjustment of 50% is allowed for shopping center and 20% is allowed for restaurant space.

[f] Existing uses trip generation based on peak period vehicle counts at the existing use driveways on December 12, 2018. Daily trips are assumed to be double the total volume counted during the morning and afternoon peak periods (7:00 to 10:00 AM and 3:00 to 6:00 PM) as shown in Appendix C. Existing use driveway counts were reduced by 50% to account for the likelihood that many of the trips were pass-by trips.

[[]a] Daily and morning peak hour trip generation rates are from Trip Generation, 10th Edition (Institute of Transportation Engineers, 2017). Afternoon peak hour trip generation rates are from West Los Angeles Transportation Improvement and Mitigation Specific Plan, City of Los Angeles, 1997.

[[]b] Includes six affordable housing units.

[[]c] Per LADOT's *Transportation Impact Study Guidelines* (LADOT, December 2016), the Project is eligible for a 10% transit adjustment bnecause it is located in an area with various transit options.

[[]d] Internal capture adjustments account for person trips made between distinct land uses within a mixed-use development without using an off-site road system.

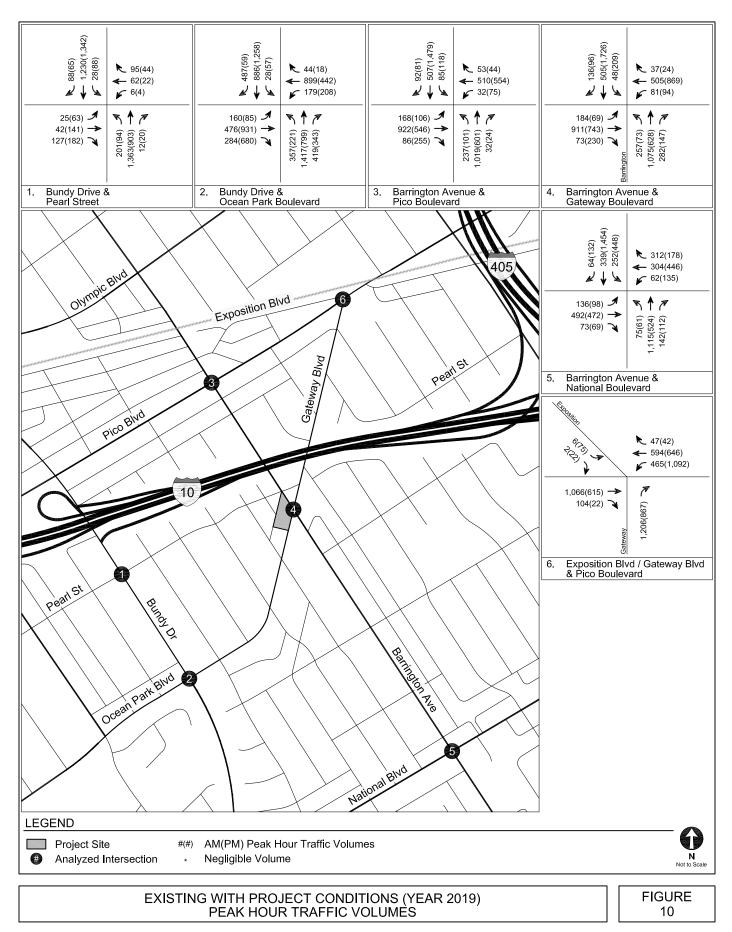
Chapter 5 Existing and Future with Project Conditions

This chapter describes the operating conditions at signalized intersections after addition of Project traffic. The effects of Project traffic were measured based on both Existing Conditions and Future without Project Conditions. The significant impact thresholds described in Chapter 1 were applied to each signalized intersection.

EXISTING WITH PROJECT CONDITIONS

The Project-only morning and afternoon peak hour traffic volumes described in Chapter 4 and shown in Figure 9 were added to the existing morning and afternoon peak hour traffic volumes shown in Figure 4. The resulting volumes are illustrated in Figure 10 and represent Existing with Project Conditions (Year 2019) after development of the Project under Existing Conditions.

Table 8 summarizes the Existing with Project Conditions during the weekday morning and afternoon peak hours for the six signalized study intersections. As shown, the Project would not worsen the LOS at any intersections from Existing Conditions. As in Existing Conditions, four of the six signalized intersections would continue to operate at LOS D or better during both the weekday morning and afternoon peak hours. The Project would not result in significant impacts at any of the six intersections. Therefore, no mitigation is required based on Existing with Project Conditions.


FUTURE WITH PROJECT CONDITIONS

The Project-only morning and afternoon peak hour traffic volumes described in Chapter 4 and shown in Figure 9 were added to the Future without Project morning and afternoon peak hour traffic volumes shown in Figure 7. The resulting volumes are illustrated in Figure 11 and

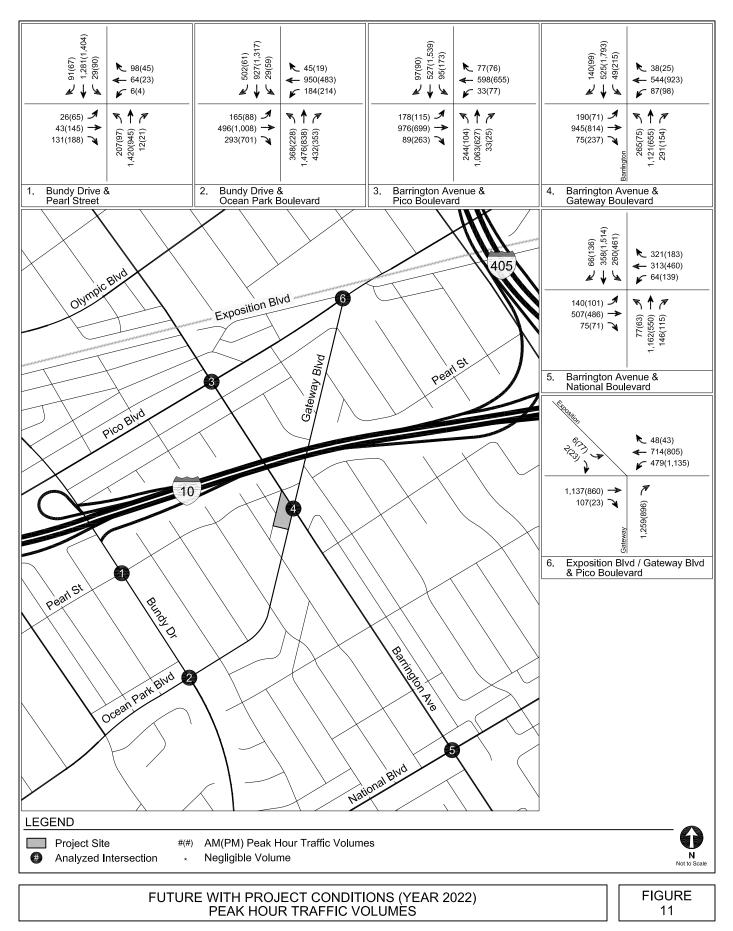

represent Future with Project Conditions (Year 2022) after development of the Project under Future without Project Conditions.

Table 9 summarizes the Future with Project Conditions during the weekday morning and afternoon peak hours for the six signalized study intersections. As shown, the Project would not worsen the LOS at any intersections from Future without Project Conditions. As in Future without Project Conditions, four of the six signalized intersections would operate at LOS D or better during both the weekday morning and afternoon peak hours while the remaining two would operate at LOS E or F during one or both peak hours. The Project would not result in significant impacts at any of the six intersections. Therefore, no mitigation is required based on Future with Project Conditions.

TABLE 8 EXISTING WITH PROJECT CONDITIONS (YEAR 2019) INTERSECTION LEVELS OF SERVICE AND SIGNIFICANT IMPACTS

No.	Intersection	Peak	Existing C	conditions	Existing with Project Conditions						
		Hour	V/C	LOS	V/C	LOS	Δ V/C	Impact			
1.	Bundy Drive &	A.M.	0.607	B	0.607	B	0.000	NO			
	Pearl street	P.M.	0.692	B	0.692	B	0.000	NO			
2.	Bundy Drive &	A.M.	1.047	F	1.048	F	0.001	NO			
	Ocean Park Boulevard	P.M.	1.007	F	1.008	F	0.001	NO			
3.	Barrington Avenue &	A.M.	0.663	B	0.665	B	0.002	NO			
	Pico Boulevard	P.M.	0.775	C	0.778	C	0.003	NO			
4.	Barrington Avenue &	A.M.	0.766	C	0.767	C	0.001	NO			
	Gateway Boulevard	P.M.	0.908	E	0.911	E	0.003	NO			
5.	Barrington Avenue &	A.M.	0.824	D	0.827	D	0.003	NO			
	National Boulevard	P.M.	0.785	C	0.787	C	0.002	NO			
6.	Exposition Park / Gateway Boulevard & Pico Boulevard	A.M. P.M.	0.776 0.569	C A	0.778 0.572	C A	0.002 0.003	NO NO			

TABLE 9FUTURE WITH PROJECT CONDITIONS (YEAR 2022)INTERSECTION LEVELS OF SERVICE AND SIGNIFICANT IMPACTS

No.	Intersection	Peak Hour		out Project itions	Future with Project Conditions						
		пош	V/C	LOS	V/C	LOS	Δ V/C	Impact			
1.	Bundy Drive & Pearl street	A.M. P.M.	0.633 0.723	B C	0.633 0.723	B C	0.000 0.000	NO NO			
2.	Bundy Drive & Ocean Park Boulevard	A.M. P.M.	1.096 1.066	F F	1.097 1.067	F F	0.001 0.001	NO NO			
3.	Barrington Avenue & Pico Boulevard	А.М. Р.М.	0.704 0.851	C D	0.706 0.855	C D	0.002 0.004	NO NO			
4.	Barrington Avenue & Gateway Boulevard	А.М. Р.М.	0.801 0.960	D E	0.801 0.964	DE	0.000 0.004	NO NO			
5.	Barrington Avenue & National Boulevard	А.М. Р.М.	0.857 0.817	D D	0.859 0.820	D D	0.002 0.003	NO NO			
6.	Exposition Park / Gateway Boulevard & Pico Boulevard	A.M. P.M.	0.823 0.673	D B	0.824 0.675	D B	0.001 0.002	NO NO			

Chapter 6 Residential Street Segment Analysis

This chapter presents an analysis of the Project's potential residential street segment impacts in the vicinity of the Project, in accordance with the methodology identified in *Transportation Impact Study Guidelines*. Specifically, this chapter analyzes the potential traffic impact resulting from Project traffic traveling on Pearl Street west of the Project Site.

RESIDENTIAL STREET SEGMENT IMPACT CRITERIA

As described in *Transportation Impact Study Guidelines*, a local residential street can be potentially impacted by an increase in average daily traffic (ADT) volumes resulting from cutthrough traffic (i.e., vehicles that bypass a congested arterial or intersection and instead opt to travel along a residential street). Per *Transportation Impact Study Guidelines*, a residential street segment would be significantly impacted based on an increase in the projected ADT volumes as follows:

Projected ADT with Project (Final ADT)	Project-Related Increase in ADT
0 to 999	120 trips or more
1,000 to 1,999	12% or more of Final ADT
2,000 to 2,999	10% or more of Final ADT
3,000 or more	8% or more of Final ADT

Source: City of Los Angeles.

Only non-residential Project traffic is intended to be considered in the analysis of residential street segments, as residential Project traffic within the Project's neighborhood is not considered

to be cut-through traffic. As can be calculated from Table 7, the Project generates a net total of approximately 56 daily non-residential trips².

EXISTING STREET SEGMENT TRAFFIC VOLUMES

Traffic counts, provided in Appendix B, were collected for a 24-hour period on two sections of Pearl Street in December 2018 – immediately west of Stoner Avenue (Segment #1) and immediately east of Bundy Drive (Segment #2). The results are shown in Table 10. As shown, the traffic volume is 2,330 vehicles at Segment #1 and 3,309 vehicles at Segment #2.

Based on the impact thresholds identified in *Transportation Impact Study Guidelines*, a significant impact would occur at Segment #1 if the Project added 259 or more trips (10% of the total daily volume including Project traffic) or at Segment #2 if the Project added 288 or more trips (8% of the total daily volume including Project traffic).

PROJECT TRAFFIC ON PEARL STREET

As shown in Figure 8, a total of approximately 35% of Project traffic was assumed to travel on Pearl Street between Bundy Drive and Stoner Avenue, thereby passing through Segments #1 and #2. Because the Project generates 56 non-residential trips, a total of approximately 20 daily trips are expected to travel on Pearl Street, fewer than the significant impact threshold for either Segments #1 or #2. Even if the Project's residential trips were considered cut-through traffic on Pearl Street, only approximately 188 of the Project's 537 total daily trips would travel on Pearl Street, also too few to result in a significant impact according to the City's criteria. Therefore, no mitigation is required.

² The sum of new retail (79) and restaurant (77) trips, after credits, minus the existing commercial trips to be removed (100).

TABLE 10 DAILY TRAFFIC VOLUMES AND SIGNIFICANT IMPACT THRESHOLDS ON RESIDENTIAL STREET SEGMENTS

No.	Residential Street Segment	24-Hour Traffic Volume	Impact Threshold (trips)
1.	Pearl Street west of Stoner Avenue	2,330	259
2.	Pearl Street east of Bundy Drive	3,309	288

Chapter 7 Congestion Management Program Analysis

This chapter presents an analysis of the regional transportation facilities in the vicinity of the Project Site, in accordance with the procedures outlined in the CMP.

TRAFFIC IMPACT ANALYSIS GUIDELINES

The CMP requires that traffic impact analyses be performed on three types of facilities:

- Arterial Intersections
- Mainline Freeway Segments
- The Public Transit System

The CMP identifies specific arterial and freeway mainline locations for analysis.

Arterial Intersections

The CMP requires that a traffic impact analysis be performed for all CMP arterial monitoring intersections where a project would add 50 or more trips during either the weekday morning or afternoon peak hours. A detailed analysis is not required if the project adds fewer than 50 trips to an arterial monitoring intersection. The CMP analysis uses the same CMA methodology as used in earlier chapters for City intersections to determine intersection V/C ratio and LOS. A significant impact requiring mitigation occurs if project traffic causes an incremental increase in intersection V/C ratio of 0.02 or greater to a facility projected to operate at LOS F (V/C > 1.00) after the addition of project traffic.

Mainline Freeway Segments

The CMP requires that a traffic impact analysis be performed for all CMP mainline freeway monitoring locations where a project would add 150 or more trips (in either direction) during the weekday morning or afternoon peak hours. A detailed analysis is not required if the project adds fewer than 150 trips to a mainline freeway monitoring location (in either direction) during either the weekday morning or afternoon peak hour. The CMP analysis uses a demand-to-capacity (D/C) ratio to determine facility LOS based on capacity identified in Appendix A of the CMP. Similar to arterial monitoring intersections, a significant impact requiring mitigation occurs if project traffic causes an incremental increase in freeway segment D/C ratio of 0.02 or greater to a facility projected to operate at LOS F (D/C > 1.00) after the addition of project traffic.

Public Transit System

The CMP requires that a transit system analysis be performed to determine whether a project would increase transit ridership beyond the current capacity of the transit system.

ARTERIAL INTERSECTION ANALYSIS

The CMP identifies the following three arterial monitoring intersections within 2.0 miles of the Project Site:

- Bundy Drive & Santa Monica Boulevard (1.4 miles northwest of the Project Site)
- Centinela Avenue & Venice Boulevard (1.7 miles south of the Project Site)
- Cloverfield Boulevard & Santa Monica Boulevard (1.9 miles west of the Project Site)

Each of these arterial monitoring intersections are well beyond the boundaries of the Study Area. Further, the Project is only estimated to generate a maximum of 51 peak hour trips as shown in Table 7, distributed in various directions as shown in Figure 8. Therefore, the Project would not add 50 peak hour trips to any of the three arterial monitoring intersections within the Study Area and no further analysis is required.

MAINLINE FREEWAY SEGMENT ANALYSIS

The CMP identifies two freeway mainline monitoring locations within 2.0 miles of the Project Site, including I-10 at Overland Avenue (approximately 1.5 miles east of the Project Site) and I-405 north of Venice Boulevard (approximately 1.6 miles southeast of the Project Site). However, as shown in Table 7, the Project generates substantially fewer than 150 peak hour trips and, therefore, the Project would not add 150 peak hour trips in either direction to any CMP mainline freeway monitoring location. Further CMP freeway segment analysis is not required.

PUBLIC TRANSIT SYSTEM ANALYSIS

Based on the trip generation estimates from Table 7, transit usage by Project residents or visitors is expected to reduce trip generation by approximately five morning peak hour trips and 10 afternoon peak hour trips. Section B.8.4 of the CMP suggests an average vehicle occupancy factor of 1.4 in order to estimate the number of person trips to and from the Project. Therefore, the Project would result in an estimated increase of seven person trips during the morning peak hour and 14 person trips during the afternoon peak hour. As detailed in Chapter 2, the Study Area is served by several established bus transit routes, including both local and rapid service. These routes can accommodate the small additional demand associated with Project residents and patrons and, therefore, the Project is not anticipated to result in regional transit impacts.

Chapter 8 Site Access and Circulation

This chapter presents a summary of how vehicles, pedestrians, and bicycles would access and circulate the Project Site.

VEHICULAR ACCESS AND CIRCULATION

Access to the Project Site parking garage would be provided via two full-access driveways on the alley along the west edge of the Project Site. One driveway would provide access to the surface parking lot serving the commercial uses and the other would serve the subterranean parking for residents. The driveways would be designed to LADOT standards under the review of City staff. Projected arriving traffic volumes are low enough that entering vehicles would not queue onto the public street, even if parking garage access is controlled for security.

PEDESTRIAN ACCESS AND CIRCULATION

Pedestrian access for both residential and commercial uses would be provided on Barrington Avenue and on Gateway Boulevard from the public sidewalk. It would be completely separated from any vehicular access point and, therefore, no pedestrian impacts would occur. While pedestrians would not be physically restricted from walking in the alley where vehicular access is provided, there is no external pedestrian access from that side of the property other than through the surface parking garage.

BICYCLE ACCESS AND CIRCULATION

There are three ways to get to the ground-level bicycle storage and repair room. One is through the residential lobby accessed from the corner of Barrington Avenue & Gateway Boulevard; one is through an access corridor leading to the south corner of the Project Site on Gateway Boulevard; and the third is through the surface parking garage. There are existing bicycle lanes on Gateway Boulevard, which the Project would not disrupt.

Chapter 9 Parking

This chapter provides an analysis of the vehicular and bicycle parking requirements for the Project set forth in the *Los Angeles Municipal Code* (LAMC) in relation to the Project's proposed parking supply.

PARKING SUPPLY

The Project proposes a total of 90 vehicular parking spaces, including 18 spaces at the surface level for commercial uses and 72 for residents in the subterranean parking structure. Additionally, the Project would provide 69 bicycle parking spaces, including 60 long-term and nine short-term spaces.

VEHICULAR PARKING CODE REQUIREMENTS

The LAMC details City parking requirements for new developments (LAMC Section 12.21.a.4). The Project is eligible for a reduced residential parking requirement for the provision of very-lowincome housing units under the City's Density Bonus Ordinance (LAMC Section 12.22.a.1.25). The required parking for residential units is one space per studio or one-bedroom unit and two spaces per two-bedroom unit. The required parking for retail space is one space per 250 sf, for service space is one space per 500 sf, and for restaurant space is one space per 200 sf. Additionally, vehicular parking can be replaced with bicycle parking (four bicycle spaces replacing one vehicular space) for up to 10% of required residential parking and 20% of required commercial parking. For the purposes of estimating Project parking requirements, a portion of the proposed retail or service space was assumed to be service space. Table 11 summarizes the Project's residential and commercial parking requirements after after application of these rates and credits. As shown, the residential use requires a total of 72 parking spaces and the commercial use requires a total of 16 parking spaces. The total Project vehicular parking requirement with reductions is, therefore, 88 spaces, which is satisfied by the 90 spaces proposed to be provided by the Project.

BICYCLE PARKING REQUIREMENTS

Table 12 summarizes the bicycle parking requirements for the Project based on LAMC Section 12.21.a.16. There are distinct requirements for the number of long-term spaces and short-term spaces. Long-term spaces are for bicycle storage overnight or longer, while short-term spaces are more easily accessible as they are typically used for hours or less at a time. As shown in Table 12, the residential use requirement varies with the number of units provided and the retail and restaurant uses require one long-term and one short-term bicycle parking space per 2,000 sf with a minimum of two spaces for each type. These ratios were applied to the Project analyzed in this traffic study. As detailed in Table 12, the Project is required to provide a total of 69 bicycle parking spaces, including 60 long-term and nine short-term spaces. The Project would meet this requirement.

TABLE 11 CODE VEHICLE PARKING REQUIREMENT

Type of Room or Land Use	Units or Size	Parking Spaces								
Los Angeles Municipal Code Requirement [a]										
Residential - Studio and One-Bedroom Units	1 spac	es per unit [b]								
Residential - Two-Bedroom Units	2 spac	es per unit [b]								
Retail	1 space per	250 square feet (sf)								
Service	1 spa	ce per 500 sf								
Restaurant	1 spa	ce per 200 sf								
Project Parking Requirement										
Residential - Studio and One-Bedroom Units	67 units	67								
Residential - Two-Bedroom Units	6 units	12								
[a] 10% reduction for provision of k	bicycle parking	(7)								
Retail	1,946 sf	8								
Service	2,953 sf	6								
Restaurant	1,000 sf	5								
[a] 20% reduction for provision of bicycle parking (3)										
TOTAL CODE REQUIREMENT 88										

Notes:

sf = square feet

[a] Pursuant to LAMC Section 12.21.A.4.

[b] Pursuant to LAMC Section 12.22.a.1.25, residential uses are subject to a reduced parking requirement as a density bonus for providing affordable housing units.

TABLE 12CODE BICYCLE PARKING REQUIREMENT

Type of Room or Land Use	Units or Size	Long-Term Spaces	Short-Term Spaces							
Los Angeles Municipal Code Requirement [a]										
Residential (Units 1-25)		1 space per unit	1 space per 10 units							
Residential (Units 26-100)		1 space per 1.5 units	1 space per 15 units							
Retail, Service, and Restaurant		1 space per 2,000 sf	1 spaces per 2,000 sf							
Project Parking Requirement										
Residential	73 units	57	6							
Retail, Service, and Restaurant	5,899 sf	3	3							
TOTAL CODE RI	TOTAL CODE REQUIREMENT609									

Notes:

sf = square feet

[a] Bicycle parking requirements per LAMC Section 12.21.A.16.

Chapter 10 Construction Impact Analysis

This chapter summarizes the construction schedule and construction impact analysis for the Project. The construction impact analysis relates to the temporary impacts that may result from the construction activities of the Project, which may include safety, operational, or capacity impacts, and was performed in accordance with *L.A. CEQA Thresholds Guide: Your Resource for Preparing CEQA Analyses in Los Angeles* (City of Los Angeles, 2006).

TYPES OF CONSTRUCTION IMPACTS

L.A. CEQA Thresholds Guide identifies four types of in-street construction impacts. Each of the four types of impacts refers to a particular population that could be inconvenienced by construction activities. The four types of impacts and related populations are:

- 1. Temporary traffic impacts potential impacts on vehicular travelers on roadways
- 2. Temporary loss of access potential impacts on visitors entering and leaving sites
- 3. Temporary loss of bus stops or rerouting of bus lines potential impacts on bus travelers
- 4. Temporary loss of on-street parking potential impacts on parkers

The factors used to determine the significance of a project's impacts involve the likelihood and extent to which an impact might occur, the potential inconvenience caused to a population, and consideration for public safety. Traffic impacts from construction activities could occur as a result of the following types of activities:

- Increases in truck traffic associated with export or import of fill materials and delivery of construction materials
- Increases in automobile traffic associated with construction workers traveling to and from the Project Site

- Reductions in existing street capacity or on-street parking from temporary lane closures necessary for the construction of roadway improvements, utility relocation, and drainage facilities
- Blocking existing vehicle or pedestrian access to other parcels fronting streets

The impact of construction traffic (including haul trucks) would be a lessening of the capacities of access streets and haul routes due to slower movements and larger turning radii of trucks.

PROPOSED CONSTRUCTION SCHEDULE

The Project is anticipated to be constructed over a period of approximately 18 months, with completion anticipated in Year 2022. Construction would typically occur between 8:00 AM and 4:00 PM on weekdays. Peak haul truck activity occurs during excavation and grading, and peak worker activity occurs during building construction. These two phases of construction were studied in greater detail.

EXCAVATION AND GRADING PHASE

The peak period of truck activity during construction would occur during excavation and grading of the Project Site. Based on projections compiled for the Project, this period would last approximately 90 days and would result in up to 15 daily haul or concrete truck trips to (and from) the Project Site and approximately 10 on-site workers. Assuming uniform arrival and departure of trucks throughout the typical eight-hour workday, there could be up to two truck arrivals and two truck departures per hour, including during both the morning and afternoon peak hours. Additionally, the 10 workers could arrive during the morning peak hour and depart during the afternoon peak hour.

Transportation Research Circular No. 212 defines passenger car equivalency (PCE) for a vehicle as the number of through moving passenger cars to which it is equivalent based on the vehicle's headway and delay-creating effects. Table 8 of *Transportation Research Circular No. 212* and Exhibit 16.7 of *2010 Highway Capacity Manual* (Transportation Research Board, 2010)

suggest a PCE of 2.0 for trucks. Conservatively assuming a PCE factor of 2.5, the four peak hour truck trips would be equivalent to 10 peak hour PCE trips (five inbound, five outbound).

By adding the 10 peak hour PCE truck trips to the 10 peak hour worker trips, the excavation and grading phase of construction could result in up to 20 peak hour PCE trips. This is substantially fewer than the morning and afternoon peak hour trips the Project is estimated to generate during operation, as shown in Table 7. Therefore, because Project operation would not result in significant traffic impacts, as shown in Tables 8 and 9, neither would the excavation and grading phase of Project construction.

BUILDING CONSTRUCTION PHASE

The peak period of worker activity during construction would occur during building construction. Based on projections compiled for the Project, this period would last approximately 120 days and would result in up to 35 on-site workers along with two daily delivery trucks. If all of the workers were to drive themselves to and from the Project Site, this could result in 35 worker trips during both the morning and afternoon peak hours. However, even if the two delivery truck visits were to occur during one peak hour or the other, this level of construction traffic remains substantially lower than the morning and afternoon peak hour trips the Project is estimated to generate during operation, as shown in Table 7. Therefore, because Project operation would not result in significant traffic impacts, as shown in Tables 8 and 9, neither would the building construction phase of Project construction.

POTENTIAL IMPACTS ON ACCESS, TRANSIT, AND PARKING

Construction activities are expected to be primarily contained within the Project Site boundaries. However, it is expected that construction activity could encroach onto the sidewalk adjacent to the Project Site for up to 10 days of construction. During this period, the Project construction manager would work with BBB to ensure that BBB Route 8 bus service is accommodated. Construction workers would park at the Project Site and, therefore, would not affect neighborhood or other on-street parking.

CONSTRUCTION MANAGEMENT PLAN

A detailed Construction Management Plan would be prepared and submitted to the City for review and approval. The Construction Management Plan would formalize how construction would be carried out and identify specific actions that would be required to reduce effects on the surrounding community.

The Construction Management Plan shall be based on the nature and timing of the specific construction activities and other projects in the vicinity of the Project Site, and may include, but not be limited to, the following elements, as appropriate:

- Prohibition of construction worker parking on nearby residential streets.
- Temporary traffic control during all construction activities encroaching on public rights-ofway to improve traffic flow and safety on public roadways.
- Safety precautions for pedestrians and bicyclists through such measures as alternate routing and protection barriers as appropriate.
- Communication with BBB when construction activity could affect the use of the BBB Route 8 bus stop on Gateway Boulevard.
- Scheduling of construction-related deliveries so as to occur outside the commuter peak hours to the extent feasible.

References

2010 Bicycle Plan, A Component of the City of Los Angeles Transportation Element, Los Angeles Department of City Planning, adopted March 1, 2011.

2010 Highway Capacity Manual, Transportation Research Board, 2010.

2010 Los Angeles County Congestion Management Program, Los Angeles County Metropolitan Transportation Authority, 2010.

L.A. CEQA Thresholds Guide: Your Resource for Preparing CEQA Analyses in Los Angeles, City of Los Angeles, 2006.

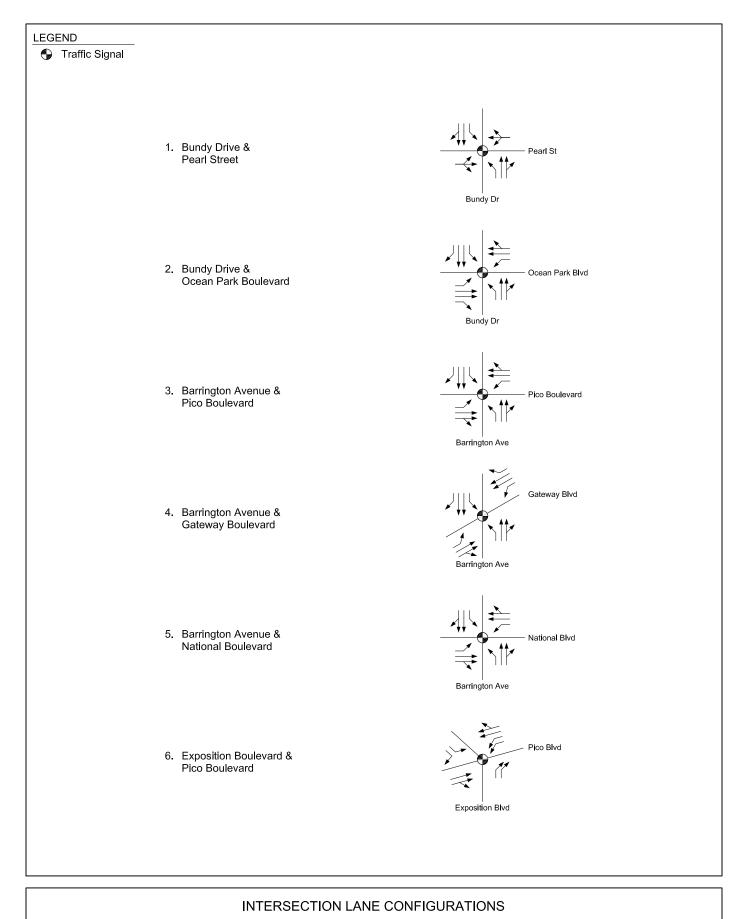
Los Angeles Municipal Code, City of Los Angeles.

Mobility Plan 2035, An Element of the General Plan, Los Angeles Department of City Planning, August 11, 2015.

Transportation Impact Study Guidelines, Los Angeles Department of Transportation, December 2016.

Transportation Research Circular No. 212, Interim Materials on Highway Capacity, Transportation Research Board, 1980.

Trip Generation, 10th Edition, Institute of Transportation Engineers, 2017.


Vision Zero: Eliminating Traffic Deaths in Los Angeles by 2025, City of Los Angeles, August 2015.

West Los Angeles Transportation Improvement and Mitigation Specific Plan, City of Los Angeles, 1997.

Appendix A

Intersection Lane Configurations

Appendix B

Traffic Counts

Intersections

Intersection Turning Movement Count

Location: S Bundy Dr & Pearl St City: Los Angeles Control: Signalized

Project ID: 18-05794-001 Date: 12/12/2018

	Total											,,					
NS/EW Streets:		S Bund	ly Dr			S Bund	ly Dr			Pear	1 St Pearl St						
		NORTH	BOUND			SOUTH	BOUND			EASTE	OUND			WESTE	BOUND		
AM	1	2	0	0	1	2	0	0	0	1	0	0	0	1	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	34	341	2	0	3	183	5	2	3	1	3	0	0	2	10	0	589
7:15 AM	48	345	1	0	12	193	6	0	4	2	7	0	0	6	16	0	640
7:30 AM	50	395	1	0	4	248	13	1	5	3	10	0	0	17	10	0	757
7:45 AM	51	329	1	0	6	271	19	0	11	4	17	0	0	15	19	0	743
8:00 AM	44	339	2	0	7	297	17	0	9	12	33	0	2	14	23	0	799
8:15 AM	52	334	0	1	4	297	15	0	9	11	53	0	1	14	20	0	811
8:30 AM	43	356	4	0	7	343	23	0	3	10	25	0	2	19	29	0	864
8:45 AM	61	334	6	0	7	293	33	1	4	9	16	0	1	15	16	0	796
9:00 AM	46	288	6	0	7	265	46	0	7	10	30	0	0	36	16	0	757
9:15 AM	62	378	3	0	4	292	39	1	4	4	8	0	0	18	11	0	824
9:30 AM	58	320	5	0	8	269	36	0	12	6	5	0	0	14	17	0	750
9:45 AM	48	355	2	0	14	264	34	0	5	7	12	0	1	7	20	0	769
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	597	4114	33	1	83	3215	286	5	76	79	219	0	7	177	207	0	9099
APPROACH %'s :	12.58%	86.70%	0.70%	0.02%	2.31%	89.58%	7.97%	0.14%	20.32%	21.12%	58.56%	0.00%	1.79%	45.27%	52.94%	0.00%	
PEAK HR :		08:00 AM - 09:00 AM															TOTAL
PEAK HR VOL :	200	1363	12	1	25	1230	88	1	25	42	127	0	6	62	88	0	3270
PEAK HR FACTOR :	0.820	0.957	0.500	0.250	0.893	0.897	0.667	0.250	0.694	0.875	0.599	0.000	0.750	0.816	0.759	0.000	0.946
		0.978				0.90)1			0.6	54			0.78	30		0.940

	NORTHBOUND						BOUND		EASTBOUND								
PM	1	2	0	0	1	2	0	0	0	1	0	0	0	1	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
3:00 PM	24	263	5	0	13	341	13	4	9	24	28	0	0	6	10	0	740
3:15 PM	23	203	6	0	11	356	12	1	14	28	50	0	2	5	6	0	717
3:30 PM	22	238	5	0	23	360	22	0	12	29	51	0	2	3	10	0	777
3:45 PM	25	199	4	0	24	285	18	1	28	60	53	0	0	8	11	0	716
4:00 PM	14	224	3	0	33	320	18	0	14	41	40	0	0	4	7	0	718
4:15 PM	20	192	8	0	23	273	7	0	17	51	71	0	1	7	11	0	681
4:30 PM	21	165	5	0	19	275	20	0	19	53	62	0	2	5	14	0	660
4:45 PM	26	188	3	0	27	272	12	0	36	54	58	0	1	4	11	0	692
5:00 PM	26	219	4	0	25	254	16	0	11	48	63	0	0	4	9	0	679
5:15 PM	22	195	8	0	27	274	9	0	17	88	59	0	2	16	4	0	721
5:30 PM	25	170	4	0	34	286	14	0	19	55	50	0	1	9	6	0	673
5:45 PM	19	217	11	0	32	247	12	0	18	91	56	0	0	4	8	0	715
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	267	2473	66	0	291	3543	173	6	214	622	641	0	11	75	107	0	8489
APPROACH %'s :	9.52%	88.13%	2.35%	0.00%	7.25%	88.29%	4.31%	0.15%	14.49%	42.11%	43.40%	0.00%	5.70%	38.86%	55.44%	0.00%	
PEAK HR :		03:00 PM -	04:00 PM														TOTAL
PEAK HR VOL :	94	903	20	0	71	1342	65	6	63	141	182	0	4	22	37	0	2950
PEAK HR FACTOR :	0.940	0.858	0.833	0.000	0.740	0.932	0.739	0.375	0.563	0.588	0.858	0.000	0.500	0.688	0.841	0.000	0.949
	0.871				0.916 0.684 0.829					0.949							

National Data & Surveying Services Intersection Turning Movement Count

Location: S Bundy Dr & Pearl St City: Los Angeles Control: Signalized

Project ID: 18-05794-001 Date: 12/12/2018

	Bikes																
NS/EW Streets:		S Bund	ly Dr			S Bund	ly Dr		Pearl St								
		NORTH	BOUND		SOUTHBOUND			EASTBOUND				WESTBOUND					
AM	1 NL	2 NT	0 NR	0 NU	1 SL	2 ST	0 SR	0 SU	0 EL	1 ET	0 ER	0 EU	0 WL	1 WT	0 WR	0 WU	TOTAL
7:00 AM	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	2
7:15 AM	0	0	0	0	0	1	1	0	0	0	0	0	0	0	1	0	3
7:30 AM	1	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	3
7:45 AM	0	1	0	0	0	1	0	0	0	0	0	0	0	2	1	0	5
8:00 AM	0	1	0	0	0	1	0	0	0	0	0	0	0	1	0	0	3
8:15 AM	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	2
8:30 AM	0	2	0	0	0	0	0	0	0	0	0	0	0	3	0	0	5
8:45 AM	0	1	0	0	0	1	0	0	0	2	0	0	0	2	1	1	8
9:00 AM	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	2
9:15 AM	0	2	0	0	0	0	0	0	0	0	0	0	0	1	0	0	3
9:30 AM	0	1	0	0	0	0	1	0	1	0	0	0	0	1	0	0	4
9:45 AM	0	2	0	0	0	1	0	0	0	1	0	0	0	1	0	0	5
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	1	13	0	0	0	8	2	0	1	3	1	0	0	12	3	1	45
APPROACH %'s :	7.14%	92.86%	0.00%	0.00%	0.00%	80.00%	20.00%	0.00%	20.00%	60.00%	20.00%	0.00%	0.00%	75.00%	18.75%	6.25%	
PEAK HR :		- MA 00:80	09:00 AM														TOTAL
PEAK HR VOL :	0	5	0	0	0	2	0	0	0	2	1	0	0	6	1	1	18
PEAK HR FACTOR :	0.000	0.625	0.000	0.000	0.000	0.500	0.000	0.000	0.000	0.250	0.250	0.000	0.000	0.500	0.250	0.250	0.563
		0.625				0.50	00			0.37	75			0.50	00		0.505

		NORTH	BOUND			SOUTH	BOUND		EASTBOUND								
PM	1	2	0	0	1	2	0	0	0	1	0	0	0	1	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
3:00 PM	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
3:15 PM	0	0	0	0	2	0	0	0	0	1	0	0	0	0	0	0	3
3:30 PM	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	2
3:45 PM	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	2
4:00 PM	0	2	0	0	0	0	0	0	0	0	1	0	0	0	0	0	3
4:15 PM	0	1	0	0	0	3	0	0	1	0	0	0	0	0	0	0	5
4:30 PM	0	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	3
4:45 PM	0	1	0	0	0	1	0	0	0	2	0	0	0	0	0	0	4
5:00 PM	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	2
5:15 PM	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	2
5:30 PM	0	1	0	0	0	3	0	0	0	0	0	0	0	1	0	0	5
5:45 PM	0	0	0	0	1	2	1	0	0	0	0	0	0	2	1	0	7
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	0	9	1	0	3	10	1	0	1	5	1	0	0	7	1	0	39
APPROACH %'s :	0.00%	90.00%	10.00%	0.00%	21.43%	71.43%	7.14%	0.00%	14.29%	71.43%	14.29%	0.00%	0.00%	87.50%	12.50%	0.00%	
PEAK HR :		03:00 PM -	04:00 PM		103:00 PM												TOTAL
PEAK HR VOL :	0	2	0	0	2	0	0	0	0	2	0	0	0	2	0	0	8
PEAK HR FACTOR :	0.00	0.500	0.000	0.000	0.250	0.000	0.000	0.000	0.000	0.500	0.000	0.000	0.000	0.500	0.000	0.000	0.667
		0.50	00		0.250				0.500				0.500				0.00/

Location: Strady Section Turning Movement, Section Turning Novement, Section Date: 12/12/2018

		Pedestrians (Crosswalks)												
NS/EW Streets:	S Bun	dy Dr	S Bun	idy Dr	Реа	rl St	Pear	rl St						
AM	NORT	h leg	SOUT	h leg	EAST	LEG	WEST	r leg						
Alvi	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL					
7:00 AM	0	0	1	0	0	1	0	1	3					
7:15 AM	0	0	0	0	0	0	0	0	0					
7:30 AM	0	1	0	0	0	0	1	0	2					
7:45 AM	0	2	1	0	3	1	2	3	12					
8:00 AM	1	1	0	1	2	1	3	2	11					
8:15 AM	0	0	1	1	1	1	2	0	6					
8:30 AM	0	2	0	0	1	0	3	0	6					
8:45 AM	0	1	0	0	1	3	0	4	9					
9:00 AM	0	1	0	0	2	2	0	1	6					
9:15 AM	0	1	2	0	1	0	0	1	5					
9:30 AM	1	1	1	1	1	1	0	0	6					
9:45 AM	1	0	2	0	1	1	1	0	6					
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL					
TOTAL VOLUMES :	3	10	8	3	13	11	12	12	72					
APPROACH %'s :	23.08%	76.92%	72.73%	27.27%	54.17%	45.83%	50.00%	50.00%						
PEAK HR :	08:00 AM ·	- 09:00 AM							TOTAL					
PEAK HR VOL :	1	4	1	2	5	5	8	6	32					
PEAK HR FACTOR :	0.250	0.500	0.250	0.500	0.625	0.417	0.667	0.375	0 727					
	0.6	525	0.3	375	0.6	525	0.7	0.727						

	NORT		60UT		E 4 6				и
PM	-	'H LEG		h leg	-	r leg	-	t leg	
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
3:00 PM	0	3	1	0	1	0	1	0	6
3:15 PM	0	0	1	1	0	0	2	1	5
3:30 PM	1	1	0	0	0	1	0	2	5
3:45 PM	0	1	2	0	0	2	3	1	9
4:00 PM	2	0	2	0	0	0	2	2	8
4:15 PM	1	0	2	0	0	1	3	0	7
4:30 PM	4	0	1	1	3	0	2	1	12
4:45 PM	0	0	1	0	1	0	0	1	3
5:00 PM	0	2	1	1	2	1	0	3	10
5:15 PM	0	0	0	0	2	0	2	4	8
5:30 PM	0	0	0	0	0	0	1	2	3
5:45 PM	1	3	0	1	2	0	1	1	9
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	9	10	11	4	11	5	17	18	85
APPROACH %'s :	47.37%	52.63%	73.33%	26.67%	68.75%	31.25%	48.57%	51.43%	
PEAK HR :	03:00 PM	- 04:00 PM	03:00 8:4						TOTAL
PEAK HR VOL :	1	5	4	1	1	3	6	4	25
PEAK HR FACTOR :	0.250	0.417	0.500	0.250	0.250	0.375	0.500	0.500	0.004
	0.5	500	0.6	525	0.	500	0.6	525	0.694

Intersection Turning Movement Count

Location: S Bundy Dr & Ocean Park Blvd City: Los Angeles Control: Signalized

Project ID: 18-05794-002 Date: 12/12/2018

	orginalized							Το	tal						,,		
NS/EW Streets:		S Bund	ly Dr			S Bund	ly Dr			Ocean Pa	ark Blvd			Ocean Pa	ark Blvd		
		NORTH	BOUND			SOUTH	BOUND			EASTE	BOUND			WESTE	BOUND		
AM	1	2	0	0	1	2	1	0	1	2	1	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	98	363	43	0	5	125	71	0	23	42	22	0	8	56	17	0	873
7:15 AM	108	373	61	0	6	132	50	0	14	70	27	0	25	119	9	0	994
7:30 AM	96	420	78	0	4	178	91	0	17	95	55	0	31	156	14	0	1235
7:45 AM	99	337	78	0	8	178	85	0	10	106	66	0	58	208	10	0	1243
8:00 AM	90	357	98	0	9	224	118	0	50	112	47	0	54	222	7	0	1388
8:15 AM	92	311	126	0	10	254	100	0	56	123	54	0	49	198	10	0	1383
8:30 AM	94	368	107	0	4	218	134	0	31	123	87	0	40	239	19	0	1464
8:45 AM	81	381	88	0	5	190	135	0	23	118	96	0	35	239	8	0	1399
9:00 AM	103	338	102	0	2	209	84	0	11	103	77	0	29	242	6	0	1306
9:15 AM	111	381	85	0	3	164	140	0	17	107	68	0	48	188	9	0	1321
9:30 AM	133	387	74	0	4	150	125	0	21	85	71	0	44	137	7	0	1238
9:45 AM	114	337	84	0	4	167	109	0	35	98	86	0	45	184	5	0	1268
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	1219	4353	1024	0	64	2189	1242	0	308	1182	756	0	466	2188	121	0	15112
APPROACH %'s :	18.48%	65.99%	15.52%	0.00%	1.83%	62.63%	35.54%	0.00%	13.71%	52.63%	33.66%	0.00%	16.79%	78.85%	4.36%	0.00%	
PEAK HR :		- MA 00:80							08:30.494								TOTAL
PEAK HR VOL :	357	1417	419	0	28	886	487	0	160	476	284	0	178	898	44	0	5634
PEAK HR FACTOR :	0.949	0.930	0.831	0.000	0.700	0.872	0.902	0.000	0.714	0.967	0.740	0.000	0.824	0.939	0.579	0.000	0.962
		0.96	54			0.96	52			0.9	54			0.94	10		0.902

		NORTH	BOUND			SOUTH	BOUND			EASTE	OUND			WESTE	BOUND		
PM	1	2	0	0	1	2	1	0	1	2	1	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
3:00 PM	56	225	67	0	7	319	45	0	53	155	143	0	49	87	2	0	1208
3:15 PM	61	221	92	0	11	362	35	0	28	159	160	0	54	93	6	0	1282
3:30 PM	46	198	82	0	13	341	31	0	25	223	181	0	56	105	5	0	1306
3:45 PM	58	244	79	0	6	355	21	0	21	159	174	0	53	72	6	0	1248
4:00 PM	47	170	57	0	10	322	14	0	22	210	207	0	57	107	5	0	1228
4:15 PM	55	205	74	0	5	350	18	0	20	200	180	0	69	99	6	0	1281
4:30 PM	48	167	80	0	4	309	8	0	20	226	180	0	67	96	7	0	1212
4:45 PM	55	206	78	0	3	348	14	0	28	209	176	0	48	119	4	0	1288
5:00 PM	61	200	67	0	13	296	19	0	23	238	176	0	57	102	2	0	1254
5:15 PM	59	225	92	0	20	336	11	0	14	220	160	0	41	123	6	0	1307
5:30 PM	46	168	104	0	21	278	15	0	20	262	168	0	61	97	6	0	1246
5:45 PM	64	223	60	0	17	320	19	0	25	226	160	0	45	112	7	0	1278
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	656	2452	932	0	130	3936	250	0	299	2487	2065	0	657	1212	62	0	15138
APPROACH %'s :	16.24%	60.69%	23.07%	0.00%	3.01%	91.20%	5.79%	0.00%	6.16%	51.27%	42.57%	0.00%	34.02%	62.77%	3.21%	0.00%	
PEAK HR :	(04:45 PM -	05:45 PM														TOTAL
PEAK HR VOL :	221	799	341	0	57	1258	59	0	85	929	680	0	207	441	18	0	5095
PEAK HR FACTOR :	0.906	0.888	0.820	0.000	0.679	0.904	0.776	0.000	0.759	0.886	0.966	0.000	0.848	0.896	0.750	0.000	0.075
		0.90)5			0.93	36			0.94	41			0.92	74		0.975

Intersection Turning Movement Count

Location: S Bundy Dr & Ocean Park Blvd City: Los Angeles Control: Signalized

Project ID: 18-05794-002 Date: 12/12/2018

	orginalized							Bik									
NS/EW Streets:		S Bund	ly Dr			S Bund	y Dr	Dir		Ocean Pa	rk Blvd			Ocean Pa	rk Blvd		
		NORTH	BOUND			SOUTH	BOUND			EASTB	OUND			WESTB	OUND		
AM	1	2	0	0	1	2	1	0	1	2	1	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	3
7:15 AM	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
7:30 AM	2	1	0	0	0	2	0	0	0	1	0	0	1	4	0	0	11
7:45 AM	1	0	0	0	0	1	0	0	0	1	0	0	0	2	1	0	6
8:00 AM	0	1	0	0	0	1	1	0	0	3	0	0	0	3	0	0	9
8:15 AM	0	2	1	0	0	1	0	0	0	2	0	0	0	1	0	0	7
8:30 AM	1	1	0	0	0	0	0	0	0	3	0	0	0	4	0	1	10
8:45 AM	1	2	0	0	0	1	0	0	0	2	0	0	1	4	0	0	11
9:00 AM	0	1	0	0	0	1	0	0	0	1	0	0	0	5	0	0	8
9:15 AM	1	2	1	0	0	0	0	0	0	3	0	0	0	1	0	0	8
9:30 AM	0	1	0	0	1	0	0	0	0	0	0	0	0	2	0	0	4
9:45 AM	0	1	0	0	0	0	0	0	0	2	0	0	0	1	0	0	4
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	7	12	2	0	1	9	1	0	0	18	1	0	2	27	1	1	82
APPROACH %'s :	, 33.33%	57.14%	9.52%	0.00%	9.09%	9 81.82%	9.09%	0.00%	•	94.74%	5.26%	0.00%	6.45%	87.10%	3.23%	3.23%	
PEAK HR :		08:00 AM -		2.0070	2.0070	22.9270	2.3570	210070	2.0070	2 170	2.2070	210070			2.2070	2.2070	TOTAL
PEAK HR VOL :	2	6	1	0	0	3	1	0	0	10	0	0	1	12	0	1	37
PEAK HR FACTOR :	0.500	0.750	0.250	0.000	0.000	0.750	0.250	0.000	0.000	0.833	0.000	0.000	0.250	0.750	0.000	0.250	0.041
		0.75	50			0.50	00			0.83	33			0.70	00		0.841

		NORTH	BOUND			SOUTH	BOUND			EASTE	OUND			WESTE	BOUND		
PM	1	2	0	0	1	2	1	0	1	2	1	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
3:00 PM	0	0	0	0	0	0	0	0	0	1	3	0	1	0	1	0	6
3:15 PM	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	2
3:30 PM	0	1	0	0	0	1	0	0	0	0	0	0	0	1	0	0	3
3:45 PM	1	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	5
4:00 PM	0	2	0	0	0	1	0	0	0	1	2	0	0	0	0	0	6
4:15 PM	0	1	0	0	0	2	0	0	0	2	1	0	0	0	0	0	6
4:30 PM	1	1	0	0	0	0	0	0	0	5	0	0	0	0	0	0	7
4:45 PM	0	1	2	0	1	0	0	0	0	1	0	0	0	0	0	0	5
5:00 PM	0	0	0	0	0	0	0	0	1	0	1	0	2	1	0	0	5
5:15 PM	1	0	0	0	0	2	0	0	0	3	0	0	0	0	0	0	6
5:30 PM	0	0	0	0	0	3	0	0	0	2	0	0	0	1	0	0	6
5:45 PM	0	0	1	0	0	2	0	0	0	2	0	0	0	2	0	0	7
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	3	6	3	0	1	12	0	0	1	21	8	0	3	5	1	0	64
APPROACH %'s :	25.00%	50.00%	25.00%	0.00%	7.69%	92.31%	0.00%	0.00%	3.33%	70.00%	26.67%	0.00%	33.33%	55.56%	11.11%	0.00%	
PEAK HR :		04:45 PM -	05:45 PM														TOTAL
PEAK HR VOL :	1	1	2	0	1	5	0	0	1	6	1	0	2	2	0	0	22
PEAK HR FACTOR :	0.25	0.250	0.250	0.000	0.250	0.417	0.000	0.000	0.250	0.500	0.250	0.000	0.250	0.500	0.000	0.000	0.017
		0.33	33			0.50	00			0.6	67			0.3	33		0.917

Location: Strady Section Turning Movement of Count City: Los Angeles

_			Pede	strians	(Crossw	alks)			_
NS/EW Streets:	S Bun	ıdy Dr	S Bun	idy Dr	Ocean P	ark Blvd	Ocean P	ark Blvd	
A N /	NORT	H LEG	SOUT	h leg	EAST	LEG	WEST	Г LEG	
AM	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
7:00 AM	1	1	3	2	0	2	0	1	10
7:15 AM	0	1	1	1	1	2	1	0	7
7:30 AM	0	0	0	0	1	1	1	0	3
7:45 AM	0	0	1	1	2	1	0	4	9
8:00 AM	0	3	1	3	5	1	1	1	15
8:15 AM	2	1	0	0	2	3	0	0	8
8:30 AM	0	2	0	2	3	0	0	1	8
8:45 AM		3	2	5	3	4	1	1	21
9:00 AM	0	1	1	4	1	3	0	1	11
9:15 AM	0	2	0	2	2	0	1	3	10
9:30 AM	0	1	0	0	1	2	1	1	6
9:45 AM	0	0	3	5	4	2	0	0	14
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	5	15	12	25	25	21	6	13	122
APPROACH %'s :	25.00%	75.00%	32.43%	67.57%	54.35%	45.65%	31.58%	68.42%	
PEAK HR :	08:00 AM	- 09:00 AM	03:00.45						TOTAL
PEAK HR VOL :	4	9	3	10	13	8	2	3	52
PEAK HR FACTOR :	0.500	0.750	0.375	0.500	0.650	0.500	0.500	0.750	0.619
	0.6	550	0.4	164	0.7	750	0.6	525	0.019

Pedestrians (Crosswalks)

									0
PM	-	'H LEG		h leg	-	r leg	-	t leg	
FIVI	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
3:00 PM	0	0	1	0	0	1	0	1	3
3:15 PM	0	1	1	4	0	0	0	1	7
3:30 PM	1	4	0	1	2	3	0	1	12
3:45 PM	1	0	1	1	0	3	0	0	6
4:00 PM	0	0	2	0	0	5	0	3	10
4:15 PM	1	1	2	0	6	0	1	0	11
4:30 PM	0	0	2	2	2	1	1	1	9
4:45 PM	1	2	1	1	0	3	0	2	10
5:00 PM	2	4	1	4	3	3	0	4	21
5:15 PM	0	2	3	2	0	0	2	4	13
5:30 PM	2	1	3	0	4	0	0	1	11
5:45 PM	1	1	3	0	2	2	0	0	9
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	9	16	20	15	19	21	4	18	122
APPROACH %'s :	36.00%	64.00%	57.14%	42.86%	47.50%	52.50%	18.18%	81.82%	
PEAK HR :	04:45 PM	- 05:45 PM	04:45 84						TOTAL
PEAK HR VOL :	5	9	8	7	7	6	2	11	55
PEAK HR FACTOR :	0.625	0.563	0.667	0.438	0.438	0.500	0.250	0.688	0.655
	0.5	583	0.7	'50	0.	542	0.5	542	0.655

Intersection Turning Movement Count

Location: Barrington Ave & Pico Blvd City: Los Angeles Control: Signalized

Project ID: 18-05794-003 Date: 12/12/2018

	5							То	tal								
NS/EW Streets:		Barringto	on Ave			Barringto	on Ave			Pico E	Blvd			Pico E	Blvd		
		NORTH	BOUND			SOUTH	BOUND			EASTB	OUND			WESTE	OUND		
AM	1	2	0	0	1	2	1	0	1	2	0	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	27	111	5	0	12	36	5	0	24	85	7	0	7	128	10	0	457
7:15 AM	55	185	6	0	7	60	12	0	28	91	16	0	1	137	20	0	618
7:30 AM	46	198	7	0	11	65	23	0	39	148	15	1	3	176	12	0	744
7:45 AM	69	247	10	0	19	129	27	0	49	186	20	0	7	143	13	0	919
8:00 AM	45	195	20	0	21	142	18	0	38	228	23	0	5	143	15	0	893
8:15 AM	61	230	13	0	28	119	16	0	35	235	24	0	8	125	3	0	897
8:30 AM	54	231	4	0	25	139	28	0	44	261	14	1	6	141	13	0	961
8:45 AM	67	312	5	0	13	131	24	0	43	217	14	0	8	128	15	0	977
9:00 AM	55	244	8	0	19	117	24	0	45	209	34	0	9	116	22	0	902
9:15 AM	41	278	5	0	23	127	23	0	27	162	11	0	6	132	12	0	847
9:30 AM	46	261	10	0	14	108	16	0	31	191	22	1	7	140	10	0	857
9:45 AM	51	218	8	0	13	100	21	0	44	160	19	0	5	140	23	0	802
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	617	2710	101	0	205	1273	237	0	447	2173	219	3	72	1649	168	0	9874
APPROACH %'s :	18.00%	79.05%	2.95%	0.00%	11.95%	74.23%	13.82%	0.00%	15.73%	76.46%	7.71%	0.11%	3.81%	87.29%	8.89%	0.00%	
PEAK HR :		08:15 AM -															TOTAL
PEAK HR VOL :	237	1017	30	0	85	506	92	0	167	922	86	1	31	510	53	0	3737
PEAK HR FACTOR :	0.884	0.815	0.577	0.000	0.759	0.910	0.821	0.000	0.928	0.883	0.632	0.250	0.861	0.904	0.602	0.000	0.956
		0.83	36			0.88	39			0.91	19			0.92	28		0.950

		NORTH	BOUND			SOUTH	BOUND			EASTE	OUND			WESTE	BOUND		
PM	1	2	0	0	1	2	1	0	1	2	0	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
3:00 PM	27	149	8	0	31	235	22	0	38	167	41	0	7	122	10	0	857
3:15 PM	31	144	8	0	32	313	18	0	40	210	72	0	14	144	7	0	1033
3:30 PM	28	105	11	0	39	281	12	0	35	209	56	0	13	128	17	0	934
3:45 PM	31	146	6	0	15	335	7	0	30	134	48	0	9	115	7	0	883
4:00 PM	17	114	3	0	20	346	10	0	32	166	55	0	9	136	9	0	917
4:15 PM	23	135	6	0	18	389	8	0	24	151	78	1	12	89	12	0	946
4:30 PM	21	112	5	0	23	356	10	0	27	126	100	1	19	131	6	0	937
4:45 PM	23	142	4	0	27	392	15	0	27	95	52	0	7	107	14	0	905
5:00 PM	18	147	4	0	23	392	20	0	27	130	43	0	11	138	13	0	966
5:15 PM	27	132	4	0	32	399	22	0	32	165	52	0	14	135	9	0	1023
5:30 PM	29	148	4	0	35	366	19	0	24	139	85	0	20	142	9	0	1020
5:45 PM	27	172	10	0	28	319	20	0	22	112	75	1	27	139	13	0	965
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	302	1646	73	0	323	4123	183	0	358	1804	757	3	162	1526	126	0	11386
APPROACH %'s :	14.94%	81.44%	3.61%	0.00%	6.98%	89.07%	3.95%	0.00%	12.25%	61.74%	25.91%	0.10%	8.93%	84.12%	6.95%	0.00%	
PEAK HR :		05:00 PM -	06:00 PM														TOTAL
PEAK HR VOL :	101	599	22	0	118	1476	81	0	105	546	255	1	72	554	44	0	3974
PEAK HR FACTOR :	0.871	0.871	0.550	0.000	0.843	0.925	0.920	0.000	0.820	0.827	0.750	0.250	0.667	0.975	0.846	0.000	0.971
		0.86	54			0.92	24			0.9	11			0.93	36		0.9/1

Intersection Turning Movement Count

Location: Barrington Ave & Pico Blvd City: Los Angeles Control: Signalized

Project ID: 18-05794-003 Date: 12/12/2018

	5							Bik	201					2000	,,		
NS/EW Streets:		Barringto	on Ave			Barringto	on Ave	Bill		Pico E	Blvd			Pico I	Blvd		
		NORTH	BOUND			SOUTHE	BOUND			EASTB	OUND			WESTE	BOUND		
AM	1	2	0	0	1	2	1	0	1	2	0	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	1	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
7:15 AM	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
7:30 AM	0	2	0	0	1	2	0	0	0	0	0	0	1	1	0	0	/
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
8:15 AM	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
8:30 AM	0	2	0	0	0	0	0	0	0	0	0	0	0	1	0	0	3
8:45 AM	0	8	0	0	0	2	0	0	0	1	0	0	0	1	0	0	12
9:00 AM	0	2	0	0	0	1	0	0	0	1	0	0	0	2	0	0	6
9:15 AM	0	2	0	0	1	2	0	0	0	1	0	0	0	1	1	0	8
9:30 AM	1	3	0	0	0	0	1	0	0	0	1	0	0	0	0	0	6
9:45 AM	0	1	0	0	1	2	0	0	0	0	0	0	0	1	0	0	5
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	2	31	0	0	3	9	1	0	0	3	1	0	1	7	1	0	59
APPROACH %'s :	6.06%	93.94%	0.00%	0.00%	23.08%	69.23%	7.69%	0.00%	0.00%	75.00%	25.00%	0.00%	11.11%	77.78%	11.11%	0.00%	
PEAK HR :		08:15 AM -	09:15 AM		03:15 AM												TOTAL
PEAK HR VOL :	0	15	0	0	0	3	0	0	0	2	0	0	0	4	0	0	24
PEAK HR FACTOR :	0.000	0.469	0.000	0.000	0.000	0.375	0.000	0.000	0.000	0.500	0.000	0.000	0.000	0.500	0.000	0.000	0.500
		0.46	59			0.37	'5			0.50	00			0.5	00		0.500

		NORTH	BOUND			SOUTH	BOUND			EASTE	OUND			WESTE	BOUND		
PM	1	2	0	0	1	2	1	0	1	2	0	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
3:00 PM	0	0	0	0	0	2	0	0	0	1	0	0	0	1	0	0	4
3:15 PM	0	2	0	0	0	1	0	0	0	1	0	0	1	0	0	0	5
3:30 PM	0	0	0	0	0	1	0	0	0	0	0	0	0	3	1	1	6
3:45 PM	2	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	6
4:00 PM	0	2	0	0	0	2	0	0	0	0	0	1	0	2	2	0	9
4:15 PM	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0	3
4:30 PM	0	1	0	0	0	0	0	0	0	2	1	0	0	0	0	0	4
4:45 PM	1	0	0	0	0	2	1	0	0	1	0	0	0	0	0	0	5
5:00 PM	0	0	0	0	0	4	1	0	0	1	1	0	1	0	0	0	8
5:15 PM	0	2	0	0	0	3	0	0	0	0	0	0	0	0	0	0	5
5:30 PM	0	0	0	0	0	4	0	0	0	1	0	0	0	2	0	0	7
5:45 PM	0	2	0	0	0	6	0	0	0	0	0	0	0	0	0	0	8
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	3	9	0	0	0	29	2	0	0	7	3	1	3	8	4	1	70
APPROACH %'s :	25.00%	75.00%	0.00%	0.00%	0.00%	93.55%	6.45%	0.00%	0.00%	63.64%	27.27%	9.09%	18.75%	50.00%	25.00%	6.25%	
PEAK HR :		05:00 PM -	06:00 PM														TOTAL
PEAK HR VOL :	0	4	0	0	0	17	1	0	0	2	1	0	1	2	0	0	28
PEAK HR FACTOR :	0.00	0.500	0.000	0.000	0.000	0.708	0.250	0.000	0.000	0.500	0.250	0.000	0.250	0.250	0.000	0.000	0.875
		0.50	00			0.7	50			0.3	75			0.3	75		0.8/5

Location: Earling Content of Cont

-			Pede	strians	(Crossw	alks)			
NS/EW Streets:	Barring	ton Ave	Barring	ton Ave	Pico	Blvd	Pico	Blvd	
AM	NORT EB	H LEG WB	SOUT EB	H LEG WB	EAST NB	LEG SB	WEST NB	r leg Sb	TOTAL
7:00 AM	1	1	0	1	2	1	0	1	7
7:15 AM	0	1	1	2	4	0	2	0	10
7:30 AM	0	1	2	3	4	4	3	2	19
7:45 AM		1	5	0	6	1	4	2	21
8:00 AM		1	1	4	6	3	4	1	22
8:15 AM		2	1	2	7	2	7	3	27
8:30 AM		2	1	1	2	1	2	1	12
8:45 AM		3	1	3	6	1	4	4	24
9:00 AM		5	3	4	2	0	7	2	27
9:15 AM		2	1	1	2	0	3	1	10
9:30 AM		1	4	1	2	3	0	1	15
9:45 AM	2	0	3	2	0	2	2	1	12
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	21	20	23	24	43	18	38	3B 19	206
APPROACH %'s :	51.22%	48.78%	48.94%	51.06%	70.49%	29.51%	66.67%	33.33%	200
PEAK HR :		- 09:15 AM	10.5170	51.0070	70.1570	29.9170	00.07 /0	33.3370	TOTAL
PEAK HR VOL :	11	12	6	10	17	4	20	10	90
PEAK HR FACTOR :	0.688	0.600	0.500	0.625	0.607	0.500	0.714	0.625	
		539	0.500		0.007			750 750	0.833

					=				
PM	-	'H LEG		h leg	-	r leg	-	Г LEG	
FIVI	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
3:00 PM	7	4	6	4	4	5	4	3	37
3:15 PM	4	5	10	2	2	5	3	4	35
3:30 PM	3	7	2	5	5	3	1	4	30
3:45 PM	2	1	6	1	1	6	1	1	19
4:00 PM	2	3	2	3	3	3	6	2	24
4:15 PM	5	4	1	3	4	6	2	6	31
4:30 PM	3	1	5	3	3	6	4	6	31
4:45 PM	6	3	8	3	0	6	4	7	37
5:00 PM	3	5	3	3	1	4	1	2	22
5:15 PM	1	4	4	6	6	6	4	6	37
5:30 PM	3	2	3	2	5	1	4	5	25
5:45 PM	4	2	3	4	6	0	4	5	28
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	43	41	53	39	40	51	38	51	356
APPROACH %'s :	51.19%	48.81%	57.61%	42.39%	43.96%	56.04%	42.70%	57.30%	
PEAK HR :	05:00 PM	- 06:00 PM	05:00 PM						TOTAL
PEAK HR VOL :	11	13	13	15	18	11	13	18	112
PEAK HR FACTOR :	0.688	0.650	0.813	0.625	0.750	0.458	0.813	0.750	0 757
	0.7	750	0.7	700	0.6	504	0.7	75	0.757

Location: Barrington Ave & Gateway Blvd

City: Los Angeles

Control: Signalized

Project ID: 18-05794-004 Date: 12/12/2018

									_								
-								To	tal								
NS/EW Streets:		Barringto	on Ave			Barringto	on Ave			Gatewa	y Blvd			Gatewa	y Blvd		
		NORTH	BOUND			SOUTH	BOUND			EASTB	OUND		WESTBOUND				
AM	1	2	0	0	1	2	1	0	1	2.5	0.5	0	1	3	1	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	28	131	22	0	3	34	8	0	23	72	5	0	10	40	2	0	378
7:15 AM	36	220	39	0	8	63	19	0	34	116	18	0	12	72	3	0	640
7:30 AM	55	239	52	0	8	62	18	0	27	160	16	0	13	95	8	0	753
7:45 AM	61	255	65	0	14	121	31	0	35	188	18	0	23	143	10	0	964
8:00 AM	61	239	73	0	11	141	24	0	37	220	18	1	30	167	16	2	1040
8:15 AM	65	256	70	0	13	134	42	2	52	264	23	1	22	116	10	0	1070
8:30 AM	61	267	62	0	12	122	38	0	44	233	18	1	12	119	10	0	999
8:45 AM	70	312	77	0	10	104	32	0	47	193	14	1	14	103	1	1	979
9:00 AM	70	273	68	0	11	128	41	0	45	187	19	0	10	86	8	0	946
9:15 AM	51	288	77	0	7	93	30	0	30	183	14	0	12	102	10	0	897
9:30 AM	49	282	48	0	9	112	21	0	19	149	10	1	12	81	12	0	805
9:45 AM	50	228	36	0	4	87	33	0	28	167	17	1	13	105	11	0	780
	N.I.	NT	ND	NU I	C	CT.	CD	C1.1					14/1	11/7	14/0	14/11	TOTAL
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	657	2990	689	0	110	1201	337	2	421	2132	190	6	183	1229	101	3	10251
APPROACH %'s :	15.15%	68.96%	15.89%	0.00%	6.67%	72.79%	20.42%	0.12%	15.31%	77.56%	6.91%	0.22%	12.07%	81.07%	6.66%	0.20%	
PEAK HR :		08:00 AM -		0	40	501	120	2	100	010	70	4	70	FOF	27	2	TOTAL
PEAK HR VOL :	257	1074	282	0	46	501	136	2	180	910	73	4	78	505	37	3	4088
PEAK HR FACTOR :	0.918	0.861	0.916	0.000	0.885	0.888	0.810	0.250	0.865	0.862	0.793	1.000	0.650	0.756	0.578	0.375	0.955
		0.87	9			0.89	1/			0.8	00			0.72	24		

	NORTHBOUND						BOUND			EASTE	BOUND			WESTE	BOUND		
PM	1	2	0	0	1	2	1	0	1	2.5	0.5	0	1	3	1	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
3:00 PM	16	131	19	0	12	293	32	0	33	143	47	0	17	102	5	0	850
3:15 PM	29	148	31	0	26	343	38	0	32	159	48	0	20	115	6	2	997
3:30 PM	20	122	43	0	29	365	34	0	17	196	57	0	25	135	9	2	1054
3:45 PM	14	139	42	0	56	386	33	0	25	125	52	0	34	116	9	3	1034
4:00 PM	19	109	27	0	43	408	27	0	18	157	58	1	25	163	10	2	1067
4:15 PM	19	121	37	0	57	417	37	0	21	165	42	0	31	159	10	1	1117
4:30 PM	16	116	32	0	73	421	36	0	18	162	62	1	34	178	8	1	1158
4:45 PM	20	139	23	0	44	440	26	0	29	148	61	0	24	216	9	1	1180
5:00 PM	20	136	21	0	37	444	27	0	25	161	53	0	29	194	6	3	1156
5:15 PM	19	155	38	0	43	448	23	0	18	175	62	1	20	218	5	0	1225
5:30 PM	19	165	43	0	68	418	20	0	14	236	48	0	17	209	7	1	1265
5:45 PM	15	163	45	0	61	409	26	0	11	168	67	0	23	244	6	1	1239
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	226	1644	401	0	549	4792	359	0	261	1995	657	3	299	2049	90	17	13342
APPROACH %'s :	9.95%	72.39%	17.66%	0.00%	9.63%	84.07%	6.30%	0.00%	8.95%	68.42%	22.53%	0.10%	12.18%	83.46%	3.67%	0.69%	
PEAK HR :		05:00 PM -	06:00 PM		0.5300.1214				0.5:30 134								TOTAL
PEAK HR VOL :	73	619	147	0	209	1719	96	0	68	740	230	1	89	865	24	5	4885
PEAK HR FACTOR :	0.913	0.938	0.817	0.000	0.768	0.959	0.889	0.000	0.680	0.784	0.858	0.250	0.767	0.886	0.857	0.417	0.965
		0.92	24			0.98	34			0.8	72		0.897				0.905

Location: Barrington Ave & Gateway Blvd City: Los Angeles Control: Signalized

Control: Signalized

Project ID: 18-05794-004 Date: 12/12/2018

								Bik	kes								
NS/EW Streets:		Barringto	on Ave			Barringto	on Ave			Gatewa	y Blvd			Gatewa	y Blvd		
	NORTHBOUND					SOUTH	BOUND			EASTB	OUND			WESTE	BOUND		
AM	1	2	0	0	1	2	1	0	1	2.5	0.5	0	1	3	1	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
7:15 AM	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
7:30 AM	0	1	0	0	0	3	0	0	0	0	0	0	0	1	0	0	5
7:45 AM	0	2	0	0	0	0	0	0	0	1	0	0	0	0	1	0	4
8:00 AM	0	2	1	0	0	0	0	0	0	3	0	0	0	0	0	0	6
8:15 AM	0	2	1	0	0	0	0	0	0	3	0	0	0	1	0	0	7
8:30 AM	0	1	0	0	0	0	0	0	0	4	0	0	0	3	2	0	10
8:45 AM	0	6	0	0	1	0	0	0	0	2	0	0	0	2	0	0	11
9:00 AM	0	1	0	0	0	1	0	0	1	1	0	0	0	1	0	0	5
9:15 AM	0	2	0	0	0	2	2	0	0	3	1	0	0	1	0	0	11
9:30 AM	0	4	0	0	0	1	0	0	0	1	0	0	0	1	1	0	8
9:45 AM	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	2
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	0	26	2	0	1	8	2	0	1	18	1	0	0	10	4	0	73
APPROACH %'s :	0.00%	92.86%	7.14%	0.00%	9.09%	72.73%	18.18%	0.00%	5.00%	90.00%	5.00%	0.00%	0.00%	71.43%	28.57%	0.00%	
PEAK HR :		- MA 00:80	09:00 AM														TOTAL
PEAK HR VOL :	0	11	2	0	1	0	0	0	0	12	0	0	0	6	2	0	34
PEAK HR FACTOR :	0.000	0.458	0.500	0.000	0.250	0.000	0.000	0.000	0.000	0.750	0.000	0.000	0.000	0.500	0.250	0.000	0.773
		0.54	2			0.25	50			0.75	50			0.40	00		0.775

NORTHBOUND						SOUTH	BOUND			EASTE	OUND			WESTE	BOUND		
PM	1	2	0	0	1	2	1	0	1	2.5	0.5	0	1	3	1	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
3:00 PM	0	1	2	0	0	3	0	0	0	0	1	0	0	1	0	0	8
3:15 PM	0	1	0	0	0	1	0	0	0	0	0	0	1	1	0	0	4
3:30 PM	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	2
3:45 PM	0	0	0	0	1	1	1	0	0	2	0	0	0	0	0	0	5
4:00 PM	0	0	0	0	0	2	0	0	0	0	0	0	0	0	2	0	4
4:15 PM	0	2	0	0	0	0	0	0	0	1	0	0	0	0	0	0	3
4:30 PM	0	0	0	0	1	1	0	0	0	0	0	0	0	1	0	0	3
4:45 PM	0	0	0	0	0	1	0	0	0	2	0	0	0	0	0	0	3
5:00 PM	0	0	0	0	0	3	3	0	0	0	0	0	0	2	0	0	8
5:15 PM	0	1	0	0	0	2	2	0	0	1	0	0	0	0	0	0	6
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	1	0	0	1	1	0	0	0	0	0	0	3
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	0	5	2	0	3	15	6	0	1	7	1	0	1	5	3	0	49
APPROACH %'s :	0.00%	71.43%	28.57%	0.00%	12.50%	62.50%	25.00%	0.00%	11.11%	77.78%	11.11%	0.00%	11.11%	55.56%	33.33%	0.00%	
PEAK HR :		05:00 PM -	06:00 PM											TOTAL			
PEAK HR VOL :	0	1	0	0	0	6	5	0	1	2	0	0	0	2	0	0	17
PEAK HR FACTOR :	0.00	0.250	0.000	0.000	0.000	0.500	0.417	0.000	0.250	0.500	0.000	0.000	0.000	0.250	0.000	0.000	0 521
		0.2	50			0.4	58		0.375				0.250				0.531

Location: Earlington Ac Claim Turning Movement of Count City: Los Angeles

-			Pede	strians	(Crossw	aiks)			
NS/EW Streets:	Barring	ton Ave	Barring	ton Ave	Gatew	ay Blvd	Gatewa		
AM	NORT EB	H LEG WB	SOUT EB	H LEG WB	EAST NB	r leg Sb	WEST NB	TOTAL	
7:00 AM		1	1	2	2	0	2	<u>SB</u> 2	11
7:15 AM		1	1	4	1	3	1	0	13
7:30 AM	0	1	0	0	1	0	3	1	6
7:45 AM	0	0	3	6	3	1	1	3	17
8:00 AM	1	0	1	3	0	0	4	0	9
8:15 AM	0	4	3	3	0	0	2	4	16
8:30 AM	0	0	4	3	2	4	0	3	16
8:45 AM		2	1	1	1	0	3	1	9
9:00 AM		0	0	0	2	0	0	1	3
9:15 AM		0	1	1	0	1	1	4	8
9:30 AM		0	1	2	2	1	1	1	8
9:45 AM	0	0	1	4	0	1	2	1	9
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	4	9	17	29	14	11	20	21	125
APPROACH %'s :	30.77%	69.23%	36.96%	63.04%	56.00%	44.00%	48.78%	51.22%	
PEAK HR :	08:00 AM	- 09:00 AM	MALOD SHOP						TOTAL
PEAK HR VOL :	1	6	9	10	3	4	9	8	50
PEAK HR FACTOR :	0.250	0.375	0.563	0.833	0.375	0.250	0.563	0.500	0.781
	0.4	138	0.6	579	0.2	292	0.7	/08	01/01

Pedestrians (Crosswalks)

PM	NORT	'H LEG	SOUT	h leg	EAS	Г LEG	WES	Г LEG	
PIVI	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
3:00 PM	0	0	3	3	0	0	1	1	8
3:15 PM	0	1	3	3	4	3	1	1	16
3:30 PM	2	1	4	5	2	3	1	4	22
3:45 PM	0	1	3	1	0	1	0	0	6
4:00 PM	0	1	1	0	1	0	0	1	4
4:15 PM	0	0	0	2	1	1	1	1	6
4:30 PM	2	0	2	1	1	2	0	3	11
4:45 PM	2	0	2	1	0	1	3	1	10
5:00 PM	0	2	1	0	0	1	0	1	5
5:15 PM	0	0	1	4	1	0	3	5	14
5:30 PM	0	0	5	2	2	0	0	1	10
5:45 PM	0	0	0	2	0	0	0	1	3
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	6	6	25	24	12	12	10	20	115
APPROACH %'s :	50.00%	50.00%	51.02%	48.98%	50.00%	50.00%	33.33%	66.67%	
PEAK HR :	05:00 PM	- 06:00 PM	05:00 PM						TOTAL
PEAK HR VOL :	0	2	7	8	3	1	3	8	32
PEAK HR FACTOR :		0.250	0.350	0.500	0.375	0.250	0.250	0.400	0 571
	0.2	250	0.5	36	0.	500	0.3	344	0.571

Intersection Turning Movement Count

City: Los Angeles

Control: Signalized

Project ID: 18-05794-005 Date: 12/12/2018

									_								
-								To	tal								
NS/EW Streets:		Barringto	on Ave			Barringto	on Ave			Nationa	l Blvd			Nationa	l Blvd		
		NORTH	BOUND			SOUTH	BOUND			EASTB	OUND			WESTE	BOUND		
AM	1	2	0	0	1	2	0	0	1	2	0	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	15	132	21	0	19	23	4	0	22	70	8	0	11	53	46	0	424
7:15 AM	17	199	23	0	33	49	13	0	27	85	11	0	11	98	49	0	615
7:30 AM	17	253	36	0	26	52	8	0	27	108	4	0	18	64	72	0	685
7:45 AM	19	247	26	0	56	80	18	0	33	100	6	0	21	100	69	0	775
8:00 AM	22	237	25	0	61	98	12	0	22	129	10	0	21	94	87	0	818
8:15 AM	10	230	47	1	70	101	13	0	30	141	21	0	15	70	82	0	831
8:30 AM	18	277	32	0	58	75	21	0	33	128	16	0	16	75	76	0	825
8:45 AM	26	301	26	0	69	72	20	0	31	109	19	0	17	84	81	0	855
9:00 AM	20	306	37	0	52	89	10	0	42	114	17	0	14	75	72	0	848
9:15 AM	24	284	27	0	52	72	8	0	35	90	15	0	22	83	56	0	768
9:30 AM	16	288	23	0	47	80	16	0	33	90	13	0	25	89	53	0	773
9:45 AM	16	230	34	0	43	63	6	0	17	85	10	0	31	69	48	0	652
	NU	NT	ND	NU I	C	CT.	CD	C1.1				511	14/1	11/7	11/0	14/1	TOTAL
TOTAL VOLUMES :	NL 220	NT 2984	NR 357	NU	SL 586	ST 854	SR 149	SU 0	EL 352	ET 1249	ER 150	EU 0	WL 222	WT 954	WR 791	WU 0	TOTAL 8869
				1				-				Ũ					
APPROACH %'s :	6.18%	83.77%	10.02%	0.03%	36.88%	53.74%	9.38%	0.00%	20.10%	71.33%	8.57%	0.00%	11.29%	48.50%	40.21%	0.00%	TOTAL
PEAK HR :	74	08:15 AM -		1	240	337	64	0	126	400	72	0	62	304	211	0	
PEAK HR VOL :		1114	142 0.755	0.250	249	0.834	64 0.762	0	136	492 0.872	73	0	62		311	0	3359
PEAK HR FACTOR :	0.712	0.910 0.91		0.250	0.889	0.834		0.000	0.810	0.872	0.869	0.000	0.912	0.905 0.93	0.948	0.000	0.982
		0.91	1/			0.80	55			0.91	13			0.9.	50		

		NORTH	BOUND			SOUTH	BOUND			EASTB	OUND			WESTE	BOUND		
PM	1	2	0	0	1	2	0	0	1	2	0	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
3:00 PM	14	96	27	0	93	243	9	0	24	128	15	0	26	92	49	0	816
3:15 PM	16	112	31	0	132	276	21	0	18	128	30	0	27	103	47	0	941
3:30 PM	12	120	37	0	145	273	18	0	22	144	21	0	25	111	32	0	960
3:45 PM	19	128	21	0	151	286	16	0	18	104	16	0	28	81	46	0	914
4:00 PM	13	89	26	0	162	272	36	0	16	143	21	0	18	79	51	0	926
4:15 PM	18	94	16	0	122	343	21	0	25	122	14	0	27	84	44	0	930
4:30 PM	12	99	29	0	116	362	19	0	21	107	13	0	28	99	46	0	951
4:45 PM	15	108	35	0	127	355	32	0	19	117	14	0	34	118	45	0	1019
5:00 PM	15	124	25	0	106	372	40	0	22	133	19	0	27	110	40	0	1033
5:15 PM	15	139	24	0	109	395	22	0	30	108	19	0	40	102	41	0	1044
5:30 PM	16	150	28	0	103	330	38	0	27	114	17	0	34	116	47	0	1020
5:45 PM	11	133	25	0	102	326	40	0	25	108	27	0	26	122	49	0	994
					<u> </u>	~~		<u></u>									
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	176	1392	324	0	1468	3833	312	0	267	1456	226	0	340	1217	537	0	11548
APPROACH %'s :	9.30%	73.57%	17.12%	0.00%	26.15%	68.29%	5.56%	0.00%	13.70%	74.70%	11.60%	0.00%	16.24%	58.12%	25.64%	0.00%	
PEAK HR :		04:45 PM -															TOTAL
PEAK HR VOL :	61	521	112	0	445	1452	132	0	98	472	69	0	135	446	173	0	4116
PEAK HR FACTOR :	0.953	0.868	0.800	0.000	0.876	0.919	0.825	0.000	0.817	0.887	0.908	0.000	0.844	0.945	0.920	0.000	0.986
		0.89	94			0.96	54			0.93	18			0.95	57		0.500

Intersection Turning Movement Count

Location: Barrington Ave & National Blvd City: Los Angeles

Control: Signalized

Project ID: 18-05794-005 Date: 12/12/2018

								Bik	es								
NS/EW Streets:		Barringto	on Ave			Barringto	on Ave			Nationa	l Blvd			Nationa	l Blvd		
		NORTH	BOUND			SOUTH	BOUND			EASTB	OUND			WESTE	BOUND		
AM	1	2	0	0	1	2	0	0	1	2	0	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
7:15 AM	0	3	0	0	0	2	0	0	0	0	1	0	0	1	0	0	7
7:30 AM	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
7:45 AM	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
8:00 AM	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
8:15 AM	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	2
8:30 AM	0	3	0	0	0	1	0	0	0	0	0	0	0	0	0	0	4
8:45 AM	0	3	1	0	0	0	0	0	0	0	0	0	0	0	0	0	4
9:00 AM	1	6	0	0	0	2	0	0	0	1	0	0	0	0	1	0	11
9:15 AM	0	4	0	0	0	2	0	0	0	1	1	0	1	1	0	0	10
9:30 AM	0	1	0	0	1	2	0	0	0	0	0	0	0	0	0	0	4
9:45 AM	0	0	1	0	0	1	0	0	0	0	0	0	0	1	0	0	3
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	1	24	2	0	1	11	0	0	0	4	2	0	1	3	1	0	50
APPROACH %'s :	3.70%	88.89%	7.41%	0.00%	8.33%	91.67%	0.00%	0.00%	0.00%	66.67%	33.33%	0.00%	20.00%	60.00%	20.00%	0.00%	
PEAK HR :	()8:15 AM -	09:15 AM														TOTAL
PEAK HR VOL :	1	13	1	0	0	3	0	0	0	2	0	0	0	0	1	0	21
PEAK HR FACTOR :	0.250	0.542 0.53	0.250	0.000	0.000	0.375 0.37	0.000	0.000	0.000	0.500 0.50	0.000	0.000	0.000	0.000 0.2	0.250	0.000	0.477

		NORTH	BOUND			SOUTH	BOUND			EASTE	BOUND			WESTE	BOUND		
PM	1	2	0	0	1	2	0	0	1	2	0	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
3:00 PM	1	3	0	0	0	1	1	0	0	0	0	0	0	0	0	0	6
3:15 PM	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	2
3:30 PM	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
3:45 PM	0	1	0	0	1	2	0	0	0	0	0	0	0	3	0	0	7
4:00 PM	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	2
4:15 PM	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	2
4:30 PM	0	0	0	0	0	2	0	0	0	0	1	0	0	0	0	0	3
4:45 PM	0	0	0	0	0	3	0	0	0	1	1	0	0	1	0	0	6
5:00 PM	0	4	0	0	0	4	0	0	0	2	0	0	0	0	0	0	10
5:15 PM	0	0	0	0	0	2	0	0	0	1	0	0	0	0	0	0	3
5:30 PM	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
5:45 PM	1	1	0	0	0	2	0	0	0	0	0	0	0	0	0	0	4
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	4	9	0	0	1	21	1	0	0	4	3	0	0	4	0	0	47
APPROACH %'s :	30.77%	69.23%	0.00%	0.00%	4.35%	91.30%	4.35%	0.00%	0.00%	57.14%	42.86%	0.00%	0.00%	100.00%	0.00%	0.00%	
PEAK HR :		04:45 PM -	05:45 PM														TOTAL
PEAK HR VOL :	0	4	0	0	0	10	0	0	0	4	1	0	0	1	0	0	20
PEAK HR FACTOR :	0.00	0.250	0.000	0.000	0.000	0.625	0.000	0.000	0.000	0.500	0.250	0.000	0.000	0.250	0.000	0.000	0.500
		0.00 0.250 0.000 0.000 0.250				0.6	25			0.6	25			0.2	50		0.500

Location: Earlingto Account Turning Movement of Count City: Los Angeles

			Peae	strians	(Crossw	aiks)			_
NS/EW Streets:	Barring	ton Ave	Barring	ton Ave	Nation	al Blvd	Nation	al Blvd	
AM	NORT EB	H LEG WB	SOUT EB	H LEG WB	EAST NB	r leg Sb	WEST NB	r leg Sb	TOTAL
7:00 AM	1	0	0	0	1	3	0	1	6
7:15 AM	5	2	5	0	4	4	5	6	31
7:30 AM	0	4	5	1	7	2	1	3	23
7:45 AM	2	2	4	3	2	4	1	6	24
8:00 AM	4	1	3	2	1	4	4	2	21
8:15 AM	2	4	1	4	6	4	4	0	25
8:30 AM	2	2	5	4	4	3	1	6	27
8:45 AM	3	2	5	6	3	5	2	3	29
9:00 AM	4	2	11	1	4	2	1	10	35
9:15 AM		4	1	4	6	7	3	1	34
9:30 AM		3	4	5	1	4	7	8	35
9:45 AM	3	4	7	3	2	3	3	6	31
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	37	30	51	33	41	45	32	52	321
APPROACH %'s :	55.22%	44.78%	60.71%	39.29%	47.67%	52.33%	38.10%	61.90%	
PEAK HR :	08:15 AM	- 09:15 AM	08215.444						TOTAL
PEAK HR VOL :	11	10	22	15	17	14	8	19	116
PEAK HR FACTOR :	0.688	0.625	0.500	0.625	0.708	0.700	0.500	0.475	0.829
	0.8	375	0.7	71	0.7	775	0.6	514	0.029

Pedestrians (Crosswalks)

PM	NORT	H LEG	SOUT	h leg	EAST	T LEG	WES	r leg	
PIVI	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
3:00 PM	0	1	1	7	3	3	2	2	19
3:15 PM	2	3	6	1	2	1	4	8	27
3:30 PM	2	3	3	4	5	3	0	5	25
3:45 PM	3	1	7	4	4	5	0	2	26
4:00 PM	3	2	6	11	4	10	8	7	51
4:15 PM	2	4	4	2	5	3	4	5	29
4:30 PM	5	3	5	2	6	4	3	3	31
4:45 PM	1	6	6	4	3	2	4	4	30
5:00 PM	5	1	9	4	4	4	4	1	32
5:15 PM	2	9	9	4	3	0	4	5	36
5:30 PM	1	2	3	10	3	5	5	1	30
5:45 PM	5	0	9	3	1	0	2	2	22
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	31	35	68	56	43	40	40	45	358
APPROACH %'s :	46.97%	53.03%	54.84%	45.16%	51.81%	48.19%	47.06%	52.94%	
PEAK HR :	04:45 PM	- 05:45 PM							TOTAL
PEAK HR VOL :	9	18	27	22	13	11	17	11	128
PEAK HR FACTOR :	0.450	0.500	0.750	0.550	0.813	0.550	0.850	0.550	0.000
	0.6	514	0.9	42	0.7	750	0.7	78	0.889

National Data & Surveying Services Intersection Turning Movement Count

Location: Gateway Blvd/Exposition Blvd & Pico Blvd City: Los Angeles Control: Signalized

Project ID: 18-05794-006 Date: 12/12/2018

	Ignalized												Tot	al											.2/ 12/ 2010		
NS/EW Streets:		Gateway B	Blvd/Expositi	ion Blvd			Gateway I	Blvd/Exposit	ion Blvd				Pico Blvd					Pico Blvd									
		N)			S	OUTHBOUND)			E	ASTBOUND				W	/ESTBOUND)				WESTB	DUND2			
AM	0 NL	0 NT	2 NR	0 NU	0 NR2	0 SL	1 ST	0 SR	0 SU	0 SL2	0 EL	2 ET	0 ER	0 EU	0 ET2	2 WL	2 WT	0 WR	0 WU	0 WU2	0 W2L	0 W2U	0 W2L2	0 W2T2	0 W2R2	0 W2U2	TOTAL
7:00 AM	0	0	87	0	0	0	0	0	0	0	0	97	1	0	12	51	129	8	0	1		0	0	1	0	10	397
7:15 AM	0	0	125	0	2	0	0	0	0	0	0	77	2	0	7	78	178	4	0	0		0	0	0	0	11	484
7:30 AM	0	0	171	0	9	1	0	1	0	0	0	141	9	0	15	84	173	6	0	0		0	0	1	0	15	626
7:45 AM	0	0	256	0	6	0	0	0	0	0	0	178	22	0	25	171	177	3	1	0		0	0	1	0	19	859
8:00 AM	0	0	240	0	5	1	0	0	0	0	0	217	74	0	20	141	151	14	0	0		0	0	0	0	16	879
8:15 AM 8:30 AM	0	0	299 374	0	11 9	1	0	0	0	0	0	243 207	21	0	31 42	118 100	132 152	11 14	0	0		0	0	0	0	15 17	882 925
8:30 AM 8:45 AM	0	0	255	0	11	3	0	2	0	0	0	207	5	0	42	100	152	14	0	0		0	0	0	0	24	925 870
9:00 AM	0	0	303	0	8	1	0	0	0	0	0	200	6	0	21	86	150	0	0	0		0	0	0	0	24	812
9:15 AM	0	ő	278	ő	2	1	ő	0	0	ő	ő	176	4	ő	15	98	153	11	ő	0		ő	ő	1	0	24	763
9:30 AM	ő	ŏ	208	ő	14	2	ŏ	ő	ŏ	ő	ŏ	196	7	õ	25	79	138	6	ő	ő		ŏ	ŏ	ō	ŏ	17	692
9:45 AM	ŏ	ŏ	196	ŏ	9	1	ŏ	3	ŏ	ŏ	ŏ	160	12	ŏ	18	114	174	13	ŏ	õ		ŏ	ŏ	ŏ	ŏ	16	716
	NL	NT	NR	NU	NR2	SL	ST	SR	SU	SL2	EL	ET	ER	EU	ET2	WL	WT	WR	WU	WU2	W2L	W2U	W2L2	W2T2	W2R2	W2U2	TOTAL
TOTAL VOLUMES :	0	0	2792	0	86	12	0	6	0	0	0	2186	167	0	247	1225	1866	104	1	1	0	0	0	4	0	208	8905
APPROACH %'s :	0.00%	0.00%	97.01%	0.00%	2.99%	66.67%	0.00%	33.33%	0.00%	0.00%	0.00%	84.08%	6.42%	0.00%	9.50%	38.32%	58.37%	3.25%	0.03%	0.03%	0.00%	0.00%	0.00%	1.89%	0.00%	98.11%	
PEAK HR :			AM - 09:00		24							055			100		500	17									TOTAL
PEAK HR VOL :	0	0	1168	0	36	6	0	2	0	0	0	955	104	0	109	464	593	47	0	0	0	0	0	0	0	72	3556
PEAK HR FACTOR :	0.000	0.000	0.781 0.786	0.000	0.818	0.500	0.000	0.250 0.400	0.000	0.000	0.000	0.829	0.351 0.939	0.000	0.649	0.823	0.938	0.839 0.902	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.750	0.961
			0.700					0.100					0.555					0.502					0.7.				
		N	ORTHBOUND)			S	OUTHBOUND)			E	ASTBOUND				W	/ESTBOUND)				WESTB	DUND2			
PM					-	0		•								2	2	0	0	- 1						0	
	0 NI	0 NT	2 NR	0 NU	0 NR2	0 SI	ST	0 SR	0 SU	0 SL 2	0 Fl	2 FT	0 FR	0 EU	0 FT2					0 WU2	0 W2I	0 W2U	0 W2L2	0 W2T2	0 W2R2		ΤΟΤΑΙ
	0 NL	NT	2 NR 148	NU	0 NR2 7	SL 2	ST	SR 2	0 SU	0 SL2	0 EL	ET	0 ER 6	0 EU	ET2	WL	ŴT	WR	WU	WU2	0 W2L	0 W2U	0 W2L2	0 W2T2	0 W2R2	W2U2	TOTAL 698
3:00 PM			148		NR2 7					SL2	EL	ET 183	ER	EU	ET2 47	WL 142	WT 146	WR 9	WU	WU2		W2U	W2L2		W2R2	W2U2	698
3:00 PM 3:15 PM		NT		NU	NR2 7 17					SL2 0	EL	ET 183 210	ER	EU	ET2 47 46	WL 142 141	WT 146 175	WR 9 8	WU	WU2		W2U	W2L2		W2R2	W2U2 5 5	698 778
3:00 PM		NT	148 167	NU	NR2 7					SL2 0 0	EL	ET 183	ER	EU	ET2 47	WL 142	WT 146	WR 9	WU	WU2		W2U	W2L2		W2R2	W2U2	698
3:00 PM 3:15 PM 3:30 PM		NT	148 167 188	NU 0 0 0	NR2 7 17 21	SL 2 1 0				SL2 0 0 0	EL	ET 183 210 150	ER	EU	ET2 47 46 46	WL 142 141 151	WT 146 175 156	WR 9 8 10	WU 0 1 2	WU2 0 1 1		W2U	W2L2		W2R2	W2U2 5 5 11	698 778 752
3:00 PM 3:15 PM 3:30 PM 3:45 PM 4:00 PM 4:15 PM		NT 0 0 0 0 0 0 0	148 167 188 209 123 186	NU 0 0 0 0 0 0	NR2 7 17 21 36 41 46	SL 2 1 0 15 8 15	0 0 0 0 0			SL2 0 0 0 0 0 0 0	EL 0 0 0 0 0 0	ET 183 210 150 98 127 96	ER	EU 0 1 0 0 0 0	ET2 47 46 46 43 45 45 42	WL 142 141 151 164 187 220	WT 146 175 156 125 157 122	WR 9 8 10 7 7 12	WU 0 1 2 0 1 0	WU2 0 1 0 0 1 0		W2U	W2L2		W2R2	W2U2 5 5 11 13	698 778 752 718 710 756
3:00 PM 3:15 PM 3:30 PM 3:45 PM 4:00 PM 4:15 PM 4:30 PM		NT 0 0 0 0 0 0 0 0 0 0	148 167 188 209 123 186 123	NU 0 0 0 0 0 0 0 0	NR2 7 17 21 36 41 46 44	SL 2 1 0 15 8 15 16	0 0 0 0 0 0			SL2 0 0 0 0 0 0 0 0 0	EL 0 0 0 0 0 0 0 0	ET 183 210 150 98 127 96 99	ER	EU 0 1 0 0 0 0 0	ET2 47 46 46 43 45 42 39	WL 142 141 151 164 187 220 234	WT 146 175 156 125 157 122 133	WR 9 8 10 7 7 12 6	WU 0 1 2 0 1 0 0 0	WU2 0 1 1 0 1 0 0 0		W2U	W2L2		W2R2	W2U2 5 5 11 13	698 778 752 718 710 756 709
3:00 PM 3:15 PM 3:30 PM 3:45 PM 4:00 PM 4:15 PM 4:30 PM 4:45 PM		NT 0 0 0 0 0 0 0 0 0 0 0 0	148 167 188 209 123 186 123 170	NU 0 0 0 0 0 0 0 0 0 0	NR2 7 17 21 36 41 46 44 26	SL 2 1 0 15 8 15 16 17	0 0 0 0 0			SL2 0 0 0 0 0 0 0 0 0 0	EL 0 0 0 0 0 0 0 0 0	ET 183 210 150 98 127 96 99 73	ER	EU 0 1 0 0 0 0 0 0 0	ET2 47 46 43 45 42 39 40	WL 142 141 151 164 187 220 234 258	WT 146 175 156 125 157 122 133 134	WR 9 8 10 7 7 12 6 8	WU 0 1 2 0 1 0 0 0 0 0	WU2 0 1 0 1 0 0 0 0		W2U	W2L2		W2R2 0 0 0 0 0 0 0 0 0 0 0 0 0	W2U2 5 5 11 13 6 8 4 8 4 8	698 778 752 718 710 756 709 743
3:00 PM 3:15 PM 3:30 PM 3:45 PM 4:00 PM 4:15 PM 4:30 PM 4:30 PM 4:45 PM 5:00 PM		NT 0 0 0 0 0 0 0 0 0 0 0 0 0	148 167 188 209 123 186 123 170 139	NU 0 0 0 0 0 0 0 0	NR2 7 17 21 36 41 46 44 26 32	SL 2 1 0 15 8 15 16 17 14	0 0 0 0 0 0			SL2 0 0 0 0 0 0 0 0 0 0 0 0	EL 0 0 0 0 0 0 0 0	ET 183 210 150 98 127 96 99 73 107	ER	EU 0 1 0 0 0 0 0	ET2 47 46 43 45 42 39 40 33	WL 142 141 151 164 187 220 234 258 257	WT 146 175 156 125 157 122 133 134 139	WR 9 8 10 7 7 12 6 8 10	WU 0 1 2 0 1 0 0 0 0 0	WU2 0 1 1 0 1 0 0 0 0 0		W2U	W2L2		W2R2 0 0 0 0 0 0 0 0 0 0 0 0	W2U2 5 5 11 13 6 8 4 4 8 10	698 778 752 718 710 756 709 743 748
3:00 PM 3:15 PM 3:30 PM 3:45 PM 4:00 PM 4:15 PM 4:30 PM 4:30 PM 5:00 PM 5:15 FM		NT 0 0 0 0 0 0 0 0 0 0 0 0	148 167 188 209 123 186 123 170 139 181	NU 0 0 0 0 0 0 0 0 0 0	NR2 7 17 21 36 41 46 44 26 32 52	SL 2 1 0 15 8 15 16 17 14 15	0 0 0 0 0 0			SL2 0 0 0 0 0 0 0 0 0 0 0 0	EL 0 0 0 0 0 0 0 0 0 0 0 0 0	ET 183 210 150 98 127 96 99 73 107 150	ER 6 2 7 3 1 5 6 3 3 6	EU 0 1 0 0 0 0 0 0 1	ET2 47 46 43 45 42 39 40 33 44	WL 142 141 151 164 187 220 234 258 257 263	WT 146 175 156 125 157 122 133 134 139 166	WR 9 8 10 7 7 12 6 8 8 10 15	WU 0 1 2 0 1 0 0 0 0 0 0	WU2 0 1 1 0 0 0 0 0 0 0		W2U	W2L2		W2R2 0 0 0 0 0 0 0 0 0 0 0 0 0 0	W2U2 5 5 11 13 6 8 4 8 4 8	698 778 752 718 710 756 709 743 748 906
3:00 PM 3:15 PM 3:30 PM 4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:10 PM 5:15 PM 5:30 PM		NT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	148 167 188 209 123 186 123 170 139 181 161	NU 0 0 0 0 0 0 0 0 0 0 0 0 0	NR2 7 17 21 36 41 46 44 26 32 52 52 58	SL 2 1 0 15 8 15 16 17 14 15 26	0 0 0 0 0 0 0 0 0 0 0	SR 2 2 7 5 5 4 5 6 4 6 4 6 5	SU 0 1 0 1 0 0 0 0 0 0 0	SL2 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EL 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ET 183 210 150 98 127 96 99 73 107 150 102	ER 6 2 7 3 1 5 6 3 3 6 10	EU 0 1 0 0 0 0 0 0 0 1 0	ET2 47 46 43 45 42 39 40 33 44 40	WL 142 141 151 164 187 220 234 258 257 263 291	WT 146 175 156 125 157 122 133 134 139 166 166	WR 9 8 10 7 7 12 6 8 10 15 7	WU 0 1 2 0 1 0 0 0 0 0 0 0	WU2 0 1 1 0 0 0 0 0 0 0 0 0 0 0		W2U 0 0 0 0 0 0 0 0 0 0 0 0 0 0	W2L2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	W2T2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0	W2R2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	W2U2 5 5 11 13 6 8 4 4 8 10	698 778 752 718 710 756 709 743 748 906 873
3:00 PM 3:15 PM 3:30 PM 3:45 PM 4:00 PM 4:15 PM 4:30 PM 4:30 PM 5:00 PM 5:15 FM		NT 0 0 0 0 0 0 0 0 0 0 0 0 0	148 167 188 209 123 186 123 170 139 181	NU 0 0 0 0 0 0 0 0 0 0	NR2 7 17 21 36 41 46 44 26 32 52	SL 2 1 0 15 8 15 16 17 14 15	0 0 0 0 0 0			SL2 0 0 0 0 0 0 0 0 0 0 0 0	EL 0 0 0 0 0 0 0 0 0 0 0 0	ET 183 210 150 98 127 96 99 73 107 150	ER 6 2 7 3 1 5 6 3 3 6	EU 0 1 0 0 0 0 0 0 1	ET2 47 46 43 45 42 39 40 33 44	WL 142 141 151 164 187 220 234 258 257 263	WT 146 175 156 125 157 122 133 134 139 166	WR 9 8 10 7 7 12 6 8 8 10 15	WU 0 1 2 0 1 0 0 0 0 0 0	WU2 0 1 1 0 0 0 0 0 0 0		W2U	W2L2		W2R2 0 0 0 0 0 0 0 0 0 0 0 0 0 0	W2U2 5 5 11 13 6 8 4 4 8 10	698 778 752 718 710 756 709 743 748 906
3:00 PM 3:15 PM 3:30 PM 4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:10 PM 5:15 PM 5:30 PM		NT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	148 167 188 209 123 186 123 170 139 181 161	NU 0 0 0 0 0 0 0 0 0 0 0 0 0	NR2 7 17 21 36 41 46 44 26 32 52 52 58	SL 2 1 0 15 8 15 16 17 14 15 26	0 0 0 0 0 0 0 0 0 0 0	SR 2 2 7 5 5 4 5 6 4 6 5 6 7	SU 0 0 1 0 0 0 0 0 0 0 0 0 0 0	SL2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EL 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ET 183 210 150 98 127 96 99 73 107 150 102	ER 6 2 7 3 1 5 6 3 3 6 10	EU 0 0 1 0 0 0 0 0 1 0 0 0	ET2 47 46 43 45 42 39 40 33 44 40	WL 142 141 151 164 187 220 234 258 257 263 291	WT 146 175 156 125 157 122 133 134 139 166 166	WR 9 8 10 7 7 12 6 8 10 15 7	WU 0 1 2 0 1 0 0 0 0 0 0 0	WU2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	W2L	W2U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	W2L2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	W2T2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0	W2R2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	W2U2 5 5 11 13 6 8 4 8 4 8 10 7 7 1	698 778 752 718 710 756 709 743 748 906 873
3:00 PM 3:15 PM 3:30 PM 4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:10 PM 5:15 PM 5:30 PM	NL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	148 167 188 209 123 186 123 170 139 181 161 202	NU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NR2 7 17 21 36 41 46 44 26 32 52 52 58 40	SL 2 1 0 15 8 15 16 17 14 15 26 20	0 0 0 0 0 0 0 0 0 0 0 0 0	SR 2 2 7 5 5 4 5 6 4 6 4 6 5	SU 0 1 0 1 0 0 0 0 0 0 0	SL2 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ET 183 210 150 98 127 96 99 73 107 150 102 97	ER 6 2 7 3 1 5 6 3 3 6 10 3 ER 55	EU 0 1 0 0 0 0 0 0 0 1 0	ET2 47 46 43 45 42 39 40 33 44 40 40	WL 142 141 151 164 187 220 234 258 257 263 291 278	WT 146 175 156 125 157 122 133 134 139 166 166 166 172 WT 1791	WR 9 8 10 7 7 7 12 6 8 10 15 7 10	WU 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WU2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		W2U 0 0 0 0 0 0 0 0 0 0 0 0 0 0	W2L2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	W2T2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0	W2R2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	W2U2 5 5 11 13 6 8 4 4 8 10	698 778 752 718 710 756 709 743 748 906 873 870
3:00 PM 3:15 PM 3:30 PM 4:00 PM 4:15 PM 4:15 PM 4:15 PM 4:30 PM 5:00 PM 5:15 PM 5:30 PM 5:30 PM 5:345 PM	NL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	148 167 188 209 123 186 123 170 139 181 161 202 NR	NU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NR2 7 17 21 36 41 46 44 26 32 52 58 40 NR2	SL 2 1 0 15 8 15 16 17 14 15 26 20 SL	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 T	SR 2 2 7 5 5 4 5 6 4 6 5 7 7 SR	SU 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SL2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ET 183 210 150 98 127 96 99 73 107 150 102 97 ET	ER 6 2 7 3 1 5 6 3 3 6 10 3 8 ER	EU 0 0 1 0 0 0 0 0 1 0 0 1 0 0 5 EU	ET2 47 46 43 45 42 39 40 33 40 40 40 ET2	WL 142 141 151 164 187 220 234 258 257 263 291 278 WL	WT 146 175 156 125 157 122 133 134 139 166 166 166 172 WT	WR 9 8 10 7 7 12 6 8 10 15 7 10 WR	WU 0 1 0 1 0	WU2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	W2L	W2U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	W2L2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	W2T2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0	W2R2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	W2U2 5 5 11 13 6 8 8 4 8 8 4 8 10 7 7 1 1 W2U2	698 778 752 718 710 756 709 743 748 906 873 870 TOTAL
3:00 PM 3:15 PM 3:30 PM 3:45 PM 4:00 PM 4:15 PM 4:35 PM 5:15 PM 5:30 PM 5:30 PM 5:37 PM 5:45 PM	NL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	148 167 188 209 123 186 123 170 139 181 161 202 NR 1997	NU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NR2 7 17 21 36 41 46 41 46 44 26 32 52 58 40 NR2 420 17.38%	SL 2 1 0 15 8 15 16 17 14 15 26 20 SL 149	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SR 2 7 5 5 4 5 6 4 6 5 7 7 8 8 8 8 27.75%	SU 0 1 0 1 0	SL2 0	EL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ET 183 210 150 98 127 96 99 73 107 150 102 97 ET 1492	ER 6 2 7 3 1 5 6 3 3 6 10 3 8 6 10 3 8 ER 55 2.68%	EU 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 2	ET2 47 46 43 45 42 39 40 33 44 40 40 ET2 505	WL 142 141 151 164 187 220 234 258 257 263 291 278 WL 2586	WT 146 175 156 125 157 122 133 134 139 166 166 166 172 WT 1791	WR 9 8 10 7 7 12 6 8 8 10 15 7 10 WR 109	WU 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WU2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	W2L W2L 0	W2U 0	W2L2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	W2T2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0	W2R2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	W2U2 5 5 11 13 6 8 4 8 10 7 7 1 W2U2 85	698 778 752 718 710 756 709 743 748 906 873 870 TOTAL
3:00 PM 3:15 PM 3:30 PM 3:45 PM 4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:35 PM 5:45 PM 5:45 PM	NL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	148 167 188 209 123 186 123 170 139 181 161 202 NR 1997 82.62% PM - 06:00 683	NU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NR2 7 17 21 36 41 46 44 26 52 52 58 40 NR2 420 17.38% 182	SL 2 1 0 15 16 17 14 15 26 20 SL 149 71.29% 75 75	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SR 2 2 7 5 4 5 6 4 6 4 6 5 7 SR 58 27.75% 22	SU 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SL2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ET 183 210 150 98 99 73 107 150 102 97 ET 1492 72.64% 456	ER 6 2 7 3 1 5 6 6 3 3 6 10 3 6 10 3 8 55 2.68% 22	EU 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ET2 47 46 43 45 42 39 40 40 33 44 40 40 ET2 505 24.59% 157	WL 142 141 151 164 187 220 234 258 257 263 291 278 WL 2586 57.56% 1089	WT 146 175 156 125 157 122 133 134 139 166 166 166 172 WT 1791 39.86% 643	WR 9 8 10 7 12 6 8 10 15 7 10 WR 109 2.43% 42	WU 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WU2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	W2L W2L 0 0.00%	W2U 0 0 0 0 0 0 0 0 0 0 0 0 0	W2L2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	W2T2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0	W2R2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	W2U2 5 5 5111 13 6 8 4 8 10 7 1 W2U2 85 96.59% 25	698 778 752 718 710 756 709 743 748 906 873 870 TOTAL 9261
3:00 PM 3:15 PM 3:30 PM 3:45 PM 4:00 PM 4:15 PM 4:31 PM 5:30 PM 5:30 PM 5:30 PM 5:30 PM 5:30 PM 5:30 PM 5:45 PM 5:45 PM 5:45 PM 5:45 PM 5:45 PM 5:46 PM 5:47 PM 5:47 PM 5:47 PM 5:48 PM 5:4	NL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00% 05:00	148 167 188 209 123 186 123 170 139 181 161 202 NR 1997 82.62% PM - 06:00	NU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NR2 7 17 21 36 41 46 41 46 44 26 32 52 58 40 NR2 420 17.38%	SL 2 1 0 15 8 15 16 17 14 15 20 SL 149 71.29%	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SR 2 7 5 5 4 5 6 4 6 5 7 7 8 8 8 8 27.75%	SU 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SL2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ET 183 210 150 98 99 99 73 107 150 102 97 ET 1492 72.64%	ER 6 2 7 3 1 5 6 3 3 6 10 3 8 6 10 3 8 ER 55 2.68%	EU 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 2	ET2 47 46 43 45 42 39 40 33 44 40 40 ET2 505 24.59%	WL 142 141 151 164 187 220 234 258 57.56%	WT 146 175 156 125 157 122 133 134 139 166 166 166 166 172 WT 1791 39.86%	WR 9 8 10 7 12 6 8 10 15 7 10 WR 109 2.43%	WU 0 1 2 0 1 0	WU2 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0	W2L W2L 0 0.00%	W2U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00%	W2L2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	W2T2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0	W2R2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	W2U2 5 5 111 13 6 8 8 4 8 8 10 7 7 1 1 W2U2 85 96.59%	698 778 752 710 756 709 743 748 906 873 870 TOTAL 9261 TOTAL

National Data & Surveying Services Intersection Turning Movement Count

Location: Gateway Blvd/Exposition Blvd & Pico Blvd City: Los Angeles Control: Signalized

0

NT

0

NL

Gateway Blvd/Exposition Blvd NORTHBOUND

2

NR

05:00 PM - 06:00 PM

0.000 0.000

0

0

2

0

0.000 0.607

0

0.000

8

0.500

1

2

0.250 0.250

1

0.250 0.500

0

0.000 0.500

2

2

2

0.500 0.250

2

0.500 0.875

0

0

1

0.000 0.250

0

0

0.000 0.000 0.000 0.250 0.000 0.000 0.250

0 7

0.000 0.350 0.500

0

NU

0

NR2

NS/EW Streets:

7:00 AM 7:15 AM 7:30 AM 0 0 0 7:45 AM

AM

ΡM

PEAK HR :

0

0.00

0.000

PEAK HR VOL :

PEAK HR FACTOR

							0														
																	Pr		18-05794-0 12/12/2018		
							Bik	es													
	Gateway E	Blvd/Exposi	tion Blvd				Pico Blvd					Pico Blvd									
	SC	DUTHBOUN	D			E	ASTBOUND				V	VESTBOUND)				WESTB	OUND2			
0	1	0	0	0	0	2	0	0	0	2	2	0	0	0	0	0	0	0	0	0	
SL	ST	SR	SU	SL2	EL	ET	ER	EU	ET2	WL	WT	WR	WU	WU2	W2L	W2U	W2L2	W2T2	W2R2	W2U2	TOTAL
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0
2	0	0	0	0	0	1	0	0	0	0	1	1	0	0		0	0	0	0	0	5
0	0	0	0	0	0	1	0	0	0	1	2	5	0	0		0	0	1	1	0	11
0	0	0	0	0	0	0	0	0	0	0	0	3	0	0		0	1	0	0	0	6
1	0	0	0	1	0	0	0	0	0	0	0	5	0	0		0	0	0	1	0	9
2	0	0	0	0	0	0	0	0	0	2	0	4	0	0		0	0	0	1	0	15
3	0	0	0	0	0	0	0	0	0	2	0	0	0	0		0	1	1	4	0	13
0	0	0	0	0	0	1	0	0	0	0	1	7	0	0		0	0	0	2	0	17
4	0	0	0	0	0	0	0	0	1	1	3	3	0	0		0	0	0	1	0	16
2	0	0	0	0	0	1	0	0	0	0	0	2	0	0		0	0	0	0	0	7
0	0	0	0	0	1	1	0	0	0	1	0	6	0	0		0	0	1	1	0	13
0	0	0	0	0	0	0	0	0	0	0	0	2	0	0		0	0	0	3	0	5
SL	ST	SR	SU	SL2	EL	ET	ER	EU	ET2	WL	WT	WR	WU	WU2	W2L	W2U	W2L2	W2T2	W2R2	W2U2	TOTAL
14	0	0	0	1	1	5	0	0	1	7	7	38	0	0	0	0	2	3	14	0	117
93.33%	0.00%	0.00%	0.00%	6.67%	14.29%	71.43%	0.00%	0.00%	14.29%	13.46%	13.46%	73.08%	0.00%	0.00%	0.00%	0.00%	10.53%	15.79%	73.68%	0.00%	
																					TOTAL
6	0	0	0	1	0	1	0	0	0	4	1	16	0	0	0	0	1	1	8	0	54
0.500	0.000	0.000	0.000	0.250	0.000	0.250	0.000	0.000	0.000	0.500	0.250	0.571	0.000	0.000	0.000	0.000	0.250	0.250	0.500	0.000	0.794
		0.583					0.250					0.656					0.4	17			0.794
			_																		
•	SC	DUTHBOUN		•	•		ASTBOUND			2		VESTBOUND			0	0	WESTB		•	0	
U	1	0	0	0 SL2	0	2	0	0	0	2	2	0	0	0	0	0	0	0	0	0	TOTAL
SL	ST	SR	SU	SL2	EL	ET	ER	EU	ET2	WL	WT	WR	WU	WU2	W2L	W2U	W2L2	W2T2	W2R2	W2U2	TOTAL

11 5

9

6

10 9 11

8 6 8

11 6

TOTAL 100

TOTAL

31

0.705

0

0

W2U2

0 0.00%

0

0

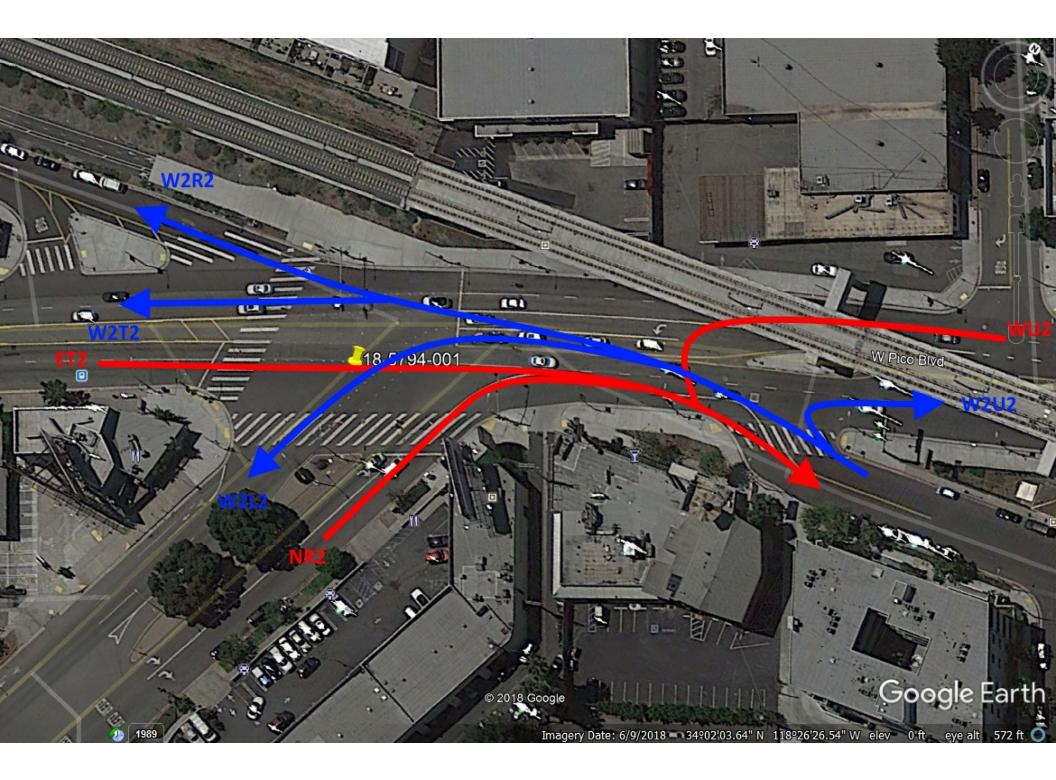
W2T2

2 40.00%

1

W2R2

0


0 0.00%

8:00 AM 8:15 AM 8:30 AM 8:45 AM 9:00 AM 0 9:15 AM 1 0 9:30 AM 0 0 9:45 AM 0 0 0 0 NL NT NR 18 NU 0 NR2 4 TOTAL VOLUMES : 0 2 APPROACH %'s : 8.33% 0.00% 16.67% 0.00% 75.00% PEAK HR : 08:00 AM - 09:00 AM PEAK HR VOL : PEAK HR FACTOR : 0 12 0.500 0 2
0.000 0.500 0.250 0.000 0.625 NORTHBOUND 0 0 0 0 2 NR NL NT NU NR2 3:00 PM 3:15 PM Ó 0 0 0 3:30 PM 0 3:45 PM 4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 0 5 0 Ó 5:30 PM 5:45 PM 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 2 1 1 NU 0 0.00% NR2 2 40.00% SL2 12 25.00% ER 1 5.26% EU 0 0.00% ET2 5 26.32% WR 9 39.13% WU 0 0.00% WU2 2 8.70% W2L 0 0.00% W2U 0 0.00% SL 30 62.50% ST 4 8.33% SR 1 2.08% SU 1 2.08% EL 5 26.32% ET 8 42.11% WL 3 13.04% WT 9 39.13% NR 1 W2L2 NL NT TOTAL VOLUMES : APPROACH %'s : 1 1 3 60.00% 20.00% 20.00% 20.00%

Location: Gateway Bild Experision Bild Experision Bild & GET Bild In Turning Movement Date: 12/12/2018 City: Los Angeles Intersection Pedestrians (Crosswalks)

_						(0)03344					_
NS/EW Streets:		rd/Exposition vd		d/Exposition vd	Pico	Blvd		Blvd			
	NORT	'H LEG	SOUT	h leg	EAS	Г LEG	WES	Г LEG	EAST	LEG 2	
AM	EB	WB	EB	WB	NB	SB	NB	SB	NB	SB	TOTAL
7:00 AM	0	1	0	3	0	0	1	0	0	0	5
7:15 AM	0	1	2	4	0	0	1	0	0	3	11
7:30 AM	0	0	2	1	0	0	1	0	1	2	7
7:45 AM	0	0	2	3	0	0	3	0	1	1	10
8:00 AM	1	1	3	10	0	0	3	7	2	2	29
8:15 AM	2	1	8	4	0	0	2	5	5	4	31
8:30 AM	0	2	3	3	0	0	5	2	0	2	17
8:45 AM	0	4	2	7	0	0	5	0	1	2	21
9:00 AM	1	2	2	8	0	0	8	1	4	4	30
9:15 AM	2	1	1	3	0	0	2	1	1	3	14
9:30 AM	2	2	1	3	0	0	2	2	0	3	15
9:45 AM	1	2	1	7	0	0	4	1	0	2	18
	EB	WB	EB	WB	NB	SB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	9	17	27	56	0	0	37	19	15	28	208
APPROACH %'s :	34.62%	65.38%	32.53%	67.47%			66.07%	33.93%	34.88%	65.12%	
PEAK HR :	08:00 AM	- 09:00 AM									TOTAL
PEAK HR VOL :	3	8	16	24	0	0	15	14	8	10	98
PEAK HR FACTOR :	0.375	0.500	0.500	0.600			0.750	0.500	0.400	0.625	0.790
	0.6	588	0.7	'69			0.7	725	0.5	500	0.790

WEST LEG EAST LEG 2 NORTH LEG SOUTH LEG EAST LEG PM EΒ WB EΒ WB NB SB NB SB SB TOTAL NB 3:00 PM 3:15 PM 3:30 PM 3:45 PM 4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM EB WB EB WB NB SB NB SB NB SB TOTAL **TOTAL VOLUMES :** APPROACH %'s : 35.00% 65.00% 62.11% 37.89% 32.81% 67.19% 52.63% 47.37% **PEAK HR:** 05:00 PM - 06:00 PM TOTAL **PEAK HR VOL :** 0.792 **PEAK HR FACTOR :** 0.750 0.425 0.639 0.750 0.750 0.833 0.594 0.838 0.479 0.683 0.889 0.679

Street Segments

Prepared by NDS/ATD DAILY TRAFFIC VOLUME

Pearl St W/O Stoner Ave

Day: Wednesday Date: 12/12/2018

City:	Los Ar	ngeles	
Project #:	CA18_	_5795	_001

				NB		SB		EB	V	/B					Тс	otal
	DAILY TOTALS			0		0		1,622	70	08					2,	330
AM Period	NB SB	EB		WB		тс	DTAL	PM Period	NB	SB	EB		WB		то	TAL
00:00		0		1		1		12:00			14		9		23	
00:15		0		1		1		12:15			10		21		31	
00:30		0		0		0		12:30			13		10		23	
00:45		0		0	2	0	2	12:45			15	52	17	57	32	109
01:00		0		0		0		13:00			18		7		25	
01:15		0		1		1		13:15			18		7		25	
01:30		0		0		0		13:30			14		8		22	
01:45		0		0	1	0	1	13:45			22	72	5	27	27	99
02:00		0		1		1		14:00			23		14		37	
02:15		0		0		0		14:15			15		7		22	
02:30		0		1		1		14:30			30	~ .	14		44	100
02:45		0		0	2	0	2	14:45 15:00			26	94	7	42	33	136
03:00		0		0 0		0		15:00			29 35		12 8		41	
03:15 03:30		1 0		0		1 0		15:30			35 42		8 11		43 53	
03:30		0	1	1	1	1	2	15:45			42	182	13	44	53 89	226
03:43		0	T	1	1	1	2	16:00			67	102	5	44	72	220
04:00		1		2		3		16:15			66		15		81	
04:30		0		0 0		0		16:30			71		8		79	
04:45		0	1	õ	3	Ő	4	16:45			76	280	10	38	86	318
05:00		0	-	3	5	3		17:00			62	200	9	50	71	510
05:15		1		2		3		17:15			78		16		94	
05:30		Ō		4		4		17:30			61		10		71	
05:45		2	3	3	12	5	15	17:45			74	275	7	42	81	317
06:00		2	5	4	12	6		18:00			45	275	9	12	54	517
06:15		6		3		9		18:15			56		16		72	
06:30		2		6		8		18:30			79		8		87	
06:45		1	11	8	21	9	32	18:45			78	258	8	41	86	299
07:00		4		2		6		19:00			29		10		39	
07:15		11		10		21		19:15			22		8		30	
07:30		6		17		23		19:30			14		7		21	
07:45		11	32	16	45	27	77	19:45			9	74	8	33	17	107
08:00		18		16		34		20:00			2		9		11	
08:15		20		17		37		20:15			5		5		10	
08:30		19		22		41		20:30			7		3		10	
08:45		18	75	17	72	35	147	20:45			5	19	8	25	13	44
09:00		21		28		49		21:00			4		6		10	
09:15		11		18		29		21:15			6		9		15	
09:30		10		12		22		21:30			3		3		6	
09:45		18	60	12	70	30	130	21:45			3	16	7	25	10	41
10:00		16		14		30		22:00			8		3		11	
10:15		13		10		23		22:15			7		5		12	
10:30		7	47	14		21		22:30			3	~~	3	40	6	22
10:45			47	8	46	19	93	22:45			2	20	2	13	4	33
11:00		9		13		22		23:00			2		4		6	
11:15		11		7		18		23:15			2		3		5	
11:30 11:45		11 13	44	8 7	35	19 20	79	23:30 23:45			1	6	1 3	11	2 4	17
TOTALS		13	274	/	35	20	584	TOTALS			1	1348	3	398	4	1746
SPLIT %			46.9%		53.1%		25.1%	SPLIT %				77.2%		22.8%		74.9%
SPLIT %			40.9%		55.1%		25.1%					//.2%		22.8%		
	DAILY TOTALS			NB		SB		EB		/B						otal
				0		0		1,622	70	08					2,	330

											_,
AM Peak Hour			08:15	08:30	08:15	PM Peak Hour			16:30	12:00	16:30
AM Pk Volume			78	85	162	PM Pk Volume			287	57	330
Pk Hr Factor			0.929	0.759	0.827	Pk Hr Factor			0.920	0.679	0.878
7 - 9 Volume	0	0	107	117	224	4 - 6 Volume	0	0	555	80	635
7 - 9 Peak Hour			08:00	08:00	08:00	4 - 6 Peak Hour			16:30	16:45	16:30
7 - 9 Pk Volume			75	72	147	4 - 6 Pk Volume			287	45	330
Pk Hr Factor	0.000	0.000	0.938	0.818	0.896	Pk Hr Factor	0.000	0.000	0.920	0.703	0.878

Prepared by NDS/ATD DAILY TRAFFIC VOLUME

Pearl St E/O Bundy Dr

Day: Wednesday Date: 12/12/2018 City: Los Angeles Project #: CA18_5795_002

	DAILY TOTALS			NB		SB		EB	WB						Тс	otal
	DAILY TUTALS			0		0		2,187	1,122						3,	309
AM Period	NB SB	EB		WB		TC	DTAL	PM Period	NB	SB	EB		WB		TO	TAL
00:00		0		3		3		12:00			14		13		27	
00:15		1		1		2		12:15			13		19		32	
00:30		0		0		0		12:30			17		14		31	
00:45		1	2	1	5	2	7	12:45			20	64	22	68	42	132
01:00		0		0		0		13:00			23		14		37	
01:15		0		1		1		13:15			24		11		35	
01:30		1		0		1		13:30			20		13		33	
01:45		0	1	0	1	0	2	13:45			18	85	10	48	28	133
02:00		0		0		0		14:00			25		12		37	
02:15		0		0		0		14:15			17		17		34	
02:30		0		0		0		14:30			38		17		55	
02:45		1	1	0		1	1	14:45			26	106	9	55	35	161
03:00		0		0		0		15:00			41		15		56	
03:15		1		0		1		15:15			44		11		55	
03:30		0		1		1		15:30			60		17		77	
03:45		0	1	1	2	1	3	15:45			86	231	15	58	101	289
04:00		1		0		1		16:00			80		15		95	
04:15		1		3		4		16:15			81		22		103	
04:30		0		2	-	2	_	16:30			79		18	6 7	97	
04:45		0	2	0	5	0	7	16:45			81	321	12	67	93	388
05:00		1		4		5		17:00			79		17		96	
05:15		2		2		4		17:15			119		19		138	
05:30		0		2	10	2		17:30			98	426	12	66	110	400
05:45		1	4	2	10	3	14	17:45			130	426	18	66	148	492
06:00		6		5		11		18:00			72		13		85	
06:15		7		5		12		18:15			81		11		92	
06:30		2		11		13		18:30			102		12		114	
06:45		2	17	16	37	18	54	18:45			100	355	9	45	109	400
07:00		9		11		20		19:00			54		13		67	
07:15		11		26		37		19:15			36		11		47	
07:30		12	42	25	00	37	1.4.1	19:30 19:45			17	122	10	12	27	105
07:45		10	42	37	99	47	141				16	123	8	42	24	165
08:00		17		30		47		20:00			7		8		15	
08:15		20		40		60		20:15			9		5		14	
08:30		16	70	43	140	59	220	20:30			16	4.1	6	21	22	70
08:45		<u>19</u> 28	72	35 46	148	54 74	220	20:45 21:00			9 12	41	<u>12</u> 9	31	21 21	72
09:00								21:00 21:15								
09:15		10		37		47		21:15 21:30			8		9		17	
09:30		24 18	00	29	140	53	220	21:30 21:45			10 7	27	4	22	14	70
09:45 10:00		23	80	28 24	140	46 47	220	21:45	ļ		11	37	<u>11</u> 8	33	18 19	70
10:00		23 15		24 14		47 29		22:00			11 12		8 6		19 18	
10:15		15		14 18		29 30		22:15			12		ь 5		18	
10:30		12	60	18 10	66	30 20	126	22:30			6	36	5 5	24	12	60
10:45		10	00	10	00	30	120	23:00			4	50	6	24	10	00
11:00		16		14 14		30 30		23:00			4 2		2		4	
11:30		13		14		29		23:30			2		2		5	
11:45		22	67	15	59	37	126	23:45			4	13	3	13	7	26
TOTALS		~~~	349	1.5	572	5,	921	TOTALS			-	1838	5	550		2388
SPLIT %			37.9%		62.1%		27.8%	SPLIT %				77.0%		23.0%		72.2%
			2.1070										_			
	DAILY TOTALS			NB		SB		EB	WB						-	otal
				0		0		2,187	1,122						3,:	309

				U	U	2,187	1,122				3,309
AM Peak Hour			08:15	08:15	08:15	PM Peak Hour			17:00	15:45	17:00
AM Pk Volume			83	164	247	PM Pk Volume			426	70	492
Pk Hr Factor			0.741	0.891	0.834	Pk Hr Factor			0.819	0.795	0.831
7 - 9 Volume	0	0	114	247	361	4 - 6 Volume	0	0	747	133	880
7 - 9 Peak Hour			08:00	07:45	08:00	4 - 6 Peak Hour			17:00	16:15	17:00
7 - 9 Pk Volume			72	150	220	4 - 6 Pk Volume			426	69	492
Pk Hr Factor	0.000	0.000	0.900	0.872	0.917	Pk Hr Factor	0.000	0.000	0.819	0.784	0.831

Existing Driveways

Prepared by National Data & Surveying Services

IN & OUT

Location: 2515 S Barrington - North driveway to Cleaners City: Los Angeles Date: 12/12/2018 Day: Wednesday

TIME	Volu	ume	
	IN	OUT	TOTAL
7:00 AM	0	0	0
7:15 AM	1	0	1
7:30 AM	0	1	1
7:45 AM	1	2	3
8:00 AM	0	1	1
8:15 AM	1	2	3
8:30 AM	2	0	2
8:45 AM	0	0	0
9:00 AM	0	1	1
9:15 AM	1	3	4
9:30 AM	1	4	5
9:45 AM	0	3	3
Totals	7	17	24
3:00 PM	3	1	4
3:15 PM	1	0	1
3:30 PM	1	1	2
3:45 PM	1	0	1
4:00 PM	3	0	3
4:15 PM	2	0	2
4:30 PM	1	0	1
4:45 PM	3	2	5
5:00 PM	1	0	1
5:15 PM	0	1	1
5:30 PM	1	1	2
5:45 PM	0	1	1
Totals	17	7	24
Grand Total	24	24	48

Prepared by National Data & Surveying Services

IN & OUT

Location: 2515 S Barrington - Alley driveway (west) to parking lot City: Los Angeles Date: 12/12/2018 Day: Wednesday

TIME	Volu	ume	Cut Through	Pick up & Drop Off	TOTAL
	IN	OUT	ET	ET	
7:00 AM	0	0	0	0	0
7:15 AM	0	0	0	0	0
7:30 AM	0	0	0	0	0
7:45 AM	1	0	0	0	1
8:00 AM	2	0	0	0	2
8:15 AM	0	1	1	0	2
8:30 AM	1	0	0	0	1
8:45 AM	2	0	0	0	2
9:00 AM	0	0	0	0	0
9:15 AM	1	0	0	0	1
9:30 AM	2	1	0	0	3
9:45 AM	3	0	0	0	3
Totals	12	2	1	0	15
3:00 PM	1	1	1	0	3
3:15 PM	0	0	1	0	1
3:30 PM	0	3	0	0	3
3:45 PM	2	0	0	0	2
4:00 PM	0	0	0	0	0
4:15 PM	0	1	0	0	1
4:30 PM	0	1	1	0	2
4:45 PM	0	2	0	0	2
5:00 PM	0	0	0	0	0
5:15 PM	0	0	1	0	1
5:30 PM	0	0	1	0	1
5:45 PM	0	1	0	0	1
Totals	3	9	5	0	17
Grand Total	15	11	6	0	32

Prepared by National Data & Surveying Services

IN & OUT

Location: 2515 S Barrington - Gateway driveway (east) to parking lot
City: Los Angeles
Date: 12/12/2018
Day: Wednesday

TIME	Volu	ume	Cut Through	Pick up & Drop Off	TOTAL
	IN	OUT	WT	WT	
7:00 AM	0	1	0	0	1
7:15 AM	0	0	0	0	0
7:30 AM	0	0	0	0	0
7:45 AM	2	2	0	0	4
8:00 AM	0	0	0	1	1
8:15 AM	0	0	0	0	0
8:30 AM	1	0	0	0	1
8:45 AM	0	1	0	0	1
9:00 AM	2	1	0	0	3
9:15 AM	0	0	0	0	0
9:30 AM	0	0	1	1	2
9:45 AM	1	2	1	1	5
Totals	6	7	2	3	18
5:00 PM	2	1	0	0	3
5:15 PM	1	0	0	0	1
5:30 PM	1	1	0	0	2
5:45 PM	0	0	0	0	0
6:00 PM	0	1	0	0	1
6:15 PM	0	2	1	0	3
6:30 PM	1	1	0	0	2
6:45 PM	0	1	0	0	1
7:00 PM	0	1	0	0	1
7:15 PM	0	0	0	0	0
7:30 PM	0	0	0	0	0
7:45 PM	0	0	0	0	0
Totals	5	8	1	0	14
Grand Total	11	15	3	3	32

DRIVEWAY TRAFFIC COUNT SUMMARY

TIME	Clea	ners	West D	riveway	East Dr	iveway	То	tal
	IN	OUT	IN	OUT	IN	OUT	IN	OUT
7:00 AM	0	0	0	0	0	1	0	1
7:15 AM	1	0	0	0	0	0	1	0
7:30 AM	0	1	0	0	0	0	0	1
7:45 AM	1	2	1	0	2	2	4	4
8:00 AM	0	1	2	0	0	0	2	1
8:15 AM	1	2	0	1	0	0	1	3
8:30 AM	2	0	1	0	1	0	4	0
8:45 AM	0	0	2	0	0	1	2	1
9:00 AM	0	1	0	0	2	1	2	2
9:15 AM	1	3	1	0	0	0	2	3
9:30 AM	1	4	2	1	0	0	3	5
9:45 AM	0	3	3	0	1	2	4	5
Totals	7	17	12	2	6	7	25	26
3:00 PM	3	1	1	1	2	1	6	3
3:15 PM	1	0	0	0	1	0	2	0
3:30 PM	1	1	0	3	1	1	2	5
3:45 PM	1	0	2	0	0	0	3	0
4:00 PM	3	0	0	0	0	1	3	1
4:15 PM	2	0	0	1	0	2	2	3
4:30 PM	1	0	0	1	1	1	2	2
4:45 PM	3	2	0	2	0	1	3	5
5:00 PM	1	0	0	0	0	1	1	1
5:15 PM	0	1	0	0	0	0	0	1
5:30 PM	1	1	0	0	0	0	1	1
5:45 PM	0	1	0	1	0	0	0	2
Totals	17	7	3	9	5	8	25	24
Grand Total	24	24	15	11	11	15	50	50

Represents Peak Hour

Appendix C

Level of Service Worksheets

Morning Peak Hour

(Circular 212 Method)

I/S #	North-South Street: Bundy D	reet: Pearl St No. of Phases			Yea	r of Count	: 2019	Amb	ient Grov	vth: (%):	1	Condu	cted by:	G	тс	Date:			
1						ction Year			Pea	ak Hour:	AM		wed by:			Project:	11701	Gateway	/ Blvd
				2			2				2				2	-		-	2
0	pposed Ø'ing: N/S-1, E/W-2 or Both-3?			0		0.0	0		0		0		0		0		0		0
Rigi	nt Turns: FREE-1, NRTOR-2 or OLA-3?	NB 0 EB 0	SB WB	0 0	NB EB	0 SI 0 W		NB EB	0 0	SB WB	0 0	NB EB	0 0	SB WB	0 0	NB EB	0 0	SB WB	0 0
	ATSAC-1 or ATSAC+ATCS-2?			2		•	2		, i i i i i i i i i i i i i i i i i i i		2		Ŭ		2		Ŭ		2
-	Override Capacity			0			0				0				0				0
	MOVEMENT	EXISTI	NG CONDI	-	-	ING PLUS P								-			W/ PROJE		
	MOVEMENT	Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
	≦) Left	201	1	201	0	201	201	0	207	1	207	0	207	1	207	0	207	1	207
a di	← Left-Through		0							0				0				0	
l d	∱ Through	1363	1	688	0	1363	688	16	1420	1	716	0	1420	1	716	0	1420	1	716
Ľ	Through-Right	12	1 0	12	0	12	12	0	12	1 0	12	0	12	1 0	12	0	12	1 0	12
NORTHBOUND	 Image: Arrow of the second sec	12	0	12		12	12	0	12	0	12	U	12	0	12	U	12	0	12
z	Left-Right		0							0				0				0	
		-		-															
₽	└→ Left ↓→ Left-Through	26	1 0	26	2	28	28	0	27	1 0	27	2	29	1 0	29	0	29	1	29
n n	↓ Through	1230	1	659	0	1230	659	14	1281	1	686	0	1281	1	686	0	1281	1	686
HBC	← Through-Right		1							1				1				1	
SOUTHBOUND	✓ Right	88	0	88	0	88	88	0	91	0 0	91	0	91	0 0	91	0	91	0	91
so	✓→ Left-Through-Right ↓ Left-Right		0							0				0				0	
	24			1															
_		25	0	25	0	25	25	0	26	0	26	0	26	0	26	0	26	0	26
Ň		42	0 0	194	0	42	194	0	43	0 0	200	0	43	0 0	200	0	43	0 0	200
EASTBOUND	→ Through-Right	42	0	134	0	42	134	0	45	0	200	0	40	0	200	U	40	0	200
AST	Right	127	0	0	0	127	0	0	131	0	0	0	131	0	0	0	131	0	0
Ы	Left-Through-Right		1 0							1 0				1 0				1 0	
	Left-Right	1	U							U				U				0	
	✓ Left	6	0	6	0	6	6	0	6	0	6	0	6	0	6	0	6	0	6
WESTBOUND	✓ Left-Through		0	450		00	400			0	404			0	400			0	100
BOL	← Through ← Through-Right	62	0 0	156	0	62	163	0	64	0 0	161	0	64	0 0	168	0	64	0 0	168
STI	Right	88	0	0	7	95	0	0	91	0 0	0	7	98	0	0	0	98	0	0
Ň	Left-Through-Right		1							1				1				1	
	├─ Left-Right	Nor	0 th-South:	860	No	rth-South:	860		Nor	0 th-South:	893		Nor	0 th-South:	893		Nor	0 th-South:	893
	CRITICAL VOLUMES		ast-West:	200		East-West:	200			ast-West:	206			ast-West:	206			ast-West:	206
			SUM:	1060		SUM:	1060			SUM:	1099		_	SUM:	1099			SUM:	1099
	VOLUME/CAPACITY (V/C) RATIO:			0.707			0.707				0.733				0.733				0.733
v	C LESS ATSAC/ATCS ADJUSTMENT:			0.607			0.607				0.633				0.633				0.633
	LEVEL OF SERVICE (LOS):			В			В				В				В				В
	REMARKS																		

REMARKS:

Version: 1i Beta; 8/4/2011

PROJECT IMPACT

Change in v/c due to project: 0.000 $\Delta v/c$ Significant impacted? NO

∆v/c after mitigation: 0.000 Fully mitigated? N/A

(Circular 212 Method)

I/S #:	North-South Street: Bundy	West Street: Ocean Park Blvd No. of Phases			Yea	r of Count	2019	Amb	ient Grov	vth: (%):	1	Condu	cted by:	G	тс	Date:			
2	East-West Street: Ocean	Park Blvd				ction Year			Pea	ak Hour:	AM		wed by:			Project:	11701	Gateway	/ Blvd
				4			4				4				4				4
Ор	posed Ø'ing: N/S-1, E/W-2 or Both-3?		60	0 3	ND	0 0	0 3 3	ND	0	60	0	ND	0	60	0	ND	0	60	0 3
Right	Turns: FREE-1, NRTOR-2 or OLA-3?	NB 0 EB 3	SB WB	0	NB EB	0 SE 3 W		NB EB	0 3	SB WB	3 0	NB EB	3	SB WB	3 0	NB EB	3	SB WB	3 0
	ATSAC-1 or ATSAC+ATCS-2?			2		•	2		^o		2		^o		2		Ŭ		2
	Override Capacity			0			0				0				0				0
	MOVEMENT	EXISTI	NG CONDI	-	-	ING PLUS P								-			W/ PROJE		
	MOVEMENT	Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
	ົງ Left	357	1	357	0	357	357		368	1	368		368	1	368		368	1	368
Q	⊷ Left-Through		0		Ŭ			Ŭ	000	0		Ŭ	000	0		, in the second s		0	
NORTHBOUND	Through	1417	1	918	0	1417	918	16	1476	1	954	0	1476	1	954	0	1476	1	954
E	Through-Right		1						100	1	400		400	1	400		100	1	400
- NO		419	0 0	419	0	419	419	0	432	0 0	432	0	432	0 0	432	0	432	0 0	432
ž	Y Left-Right		0							0				0				0	
		• •		-															
₽	└→ Left	28	1	28	0	28	28	0	29	1	29	0	29	1	29	0	29	1	29
NN	, └→ Left-Through ↓ Through	886	0 2	443	0	886	443	14	927	0 2	464	0	927	0 2	464	0	927	0 2	464
BC	<pre>↓ Through-Right</pre>	000	0	440	U U	000	440	14	521	0	-0-	U	521	0	404	Ŭ	521	0	404
SOUTHBOUND	Right	487	1	327	0	487	327	0	502	1	337	0	502	1	337	0	502	1	337
so	↔ Left-Through-Right		0 0							0 0				0 0				0 0	
	,, Left-Right	1	U							U				0				0	
	Left	160	1	160	0	160	160	0	165	1	165	0	165	1	165	0	165	1	165
R	→ Left-Through		0							0				0				0	
EASTBOUND	→ Through ᄀ Through-Right	476	2 0	238	0	476	238	6	496	2 0	248	0	496	2 0	248	0	496	2 0	248
STE	Right	284	1	0	0	284	0	0	293	1	0	0	293	1	0	0	293	1	0
EA	Left-Through-Right		0							0				0				0	
	-√ Left-Right	1	0							0				0				0	
	√ Left	178	1	178	1	179	179	0	183	1	183	1	184	1	184	0	184	1	184
Q	<pre>✓ Lon ✓ Left-Through</pre>		0		· ·			, v		0	100	, i	107	0	101	, v	107	0	107
no	← Through ← Through-Right	898	1	471	1	899	472	24	949	1	497	1	950	1	498	0	950	1	498
3TB	← Through-Right ↓ Right	44	1 0	44	0	44	44	0	45	1 0	45	0	45	1	45	0	45	1 0	45
WESTBOUND	Left-Through-Right	44	0	44		44	44	U	40	0	40	U	40	0	40	Ŭ	40	0	40
^	⊱ Left-Right		0							0				0				0	
	CRITICAL VOLUMES		th-South:	946 631		rth-South:	946 622			th-South:	983 662			th-South:	983			th-South:	983 663
	CRITICAL VOLUMES	Ea	ast-West: SUM:	631 1577	'	East-West: SUM:	632 1578		Eð	ast-West: SUM:	662 1645		Eð	ast-West: SUM:	663 1646		E	ast-West: SUM:	663 1646
	VOLUME/CAPACITY (V/C) RATIO:	1		1.147		<i>30m</i> .	1.148			2011/.	1.196			2011.	1.197			2011/.	1.197
V/0	C LESS ATSAC/ATCS ADJUSTMENT:			1.047			1.048				1.096				1.097				1.097
	LEVEL OF SERVICE (LOS):			F			F				F				F				F
L	DEMARKS:																		

REMARKS:

Version: 1i Beta; 8/4/2011

PROJECT IMPACT

Change in v/c due to project: 0.001 ∆v/c after mitigation: 0.001 Significant impacted? NO

Fully mitigated? N/A

(Circular 212 Method)

I/S #:	North-South Street: Barringt	eet: Pico Blvd No. of Phases /W-2 or Both-3?			Yea	r of Count	t: 2019	Amb	ient Grov	vth: (%):	1	Condu	cted by:	G	гс	Date:			
3	East-West Street: Pico Blv	d				ction Year			Pea	ak Hour:	AM		wed by:			Project:	11701	Gateway	/ Blvd
				2			2				2				2				2
Орр	oosed Ø'ing: N/S-1, E/W-2 or Both-3?		60	0 0	ND	0 0	0 B 0	ND	0	60	0 0	ND	0	60	0	ND	0	60	0
Right	Turns: FREE-1, NRTOR-2 or OLA-3?	NB 0 EB 0	SB WB	0	NB EB	0 SI 0 W		NB EB	0 0	SB WB	0	NB EB	0	SB WB	0 0	NB EB	0	SB WB	0
	ATSAC-1 or ATSAC+ATCS-2?			2		-	2				2				2				2
	Override Capacity			0			0				0				0				0
	MOVEMENT	EXISTI		-	-	ING PLUS P								-				CT W/ MIT	
	MOVEMENT	Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
	ົງ Left	237	1	237	0	237	237	0	244	1	244	0	244	1	244	0	244	1	244
QN	<∱ Left-Through		0							0				0				0	
30L	Through	1017	1	524	2	1019	526	13	1061	1	546	2	1063	1	548	0	1063	1	548
NORTHBOUND	Through-Right	30	1 0	30	2	32	32	0	31	1 0	31	2	33	1 0	33	0	33	1	33
OR	⊷ Left-Through-Right	50	0	50	2	52	52	U	51	0	51	2	55	0	55	U	55	0	55
z	<pre> Left-Right </pre>		0							0				0				0	
								_											
9	└→ Left └→ Left-Through	85	1 0	85	0	85	85	7	95	1 0	95	0	95	1 0	95	0	95	1 0	95
no	↓ Through	506	2	253	1	507	254	5	526	2	263	1	527	2	264	0	527	2	264
Α̈́Η	← Through-Right		0							0				0				0	
SOUTHBOUND	✓ Right ↓ Left-Through-Right	92	1	8	0	92	8	2	97	1	8	0	97	1	8	0	97	1	8
SC	راج Left-Right		0							0				0				0	
0	ープ Left ープ→ Left-Through	168	1 0	168	0	168	168	5	178	1 0	178	0	178	1 0	178	0	178	1	178
N	→ Leπ-Inrougn → Through	922	0 1	504	0	922	504	26	976	1	533	0	976	1	533	0	976	1	533
EASTBOUND	→ Through-Right		1		Ŭ	022			0.0	1			0.0	1		, in the second s	0.0	1	
₽ST	Right	86	0	86	0	86	86	0	89	0	89	0	89	0	89	0	89	0	89
Ш	✓ Left-Through-Right ✓ Left-Right		0							0 0				0				0	
	1 Lonright	1	v							U				Ŭ				Ŭ	
	← Left	31	1	31	1	32	32	0	32	1	32	1	33	1	33	0	33	1	33
N	 ✓ Left-Through ← Through 	510	0 1	282	0	510	282	73	598	0 1	338	0	598	0 1	338	0	598	0	338
B0	Through-Right	510	1	202		010	202	15	000	1	000	0	000	1	000	0	000	1	000
WESTBOUND	€ Right	53	0	53	0	53	53	22	77	0	77	0	77	0	77	0	77	0	77
Ň	└── Left-Through-Right └── Left-Right		0 0							0 0				0				0 0	
		Nor	th-South:	609	No	orth-South:	611		Nor	th-South:	641		Nor	th-South:	643		Nor	th-South:	643
	CRITICAL VOLUMES		ast-West:	535		East-West:	536			ast-West:	565			ast-West:	566			ast-West:	566
			SUM:	1144		SUM:	1147			SUM:	1206			SUM:	1209			SUM:	1209
	VOLUME/CAPACITY (V/C) RATIO:			0.763			0.765				0.804				0.806				0.806
V/C	CLESS ATSAC/ATCS ADJUSTMENT:			0.663			0.665				0.704				0.706				0.706
	LEVEL OF SERVICE (LOS):			В			В				С				С				С

REMARKS:

Version: 1i Beta; 8/4/2011

PROJECT IMPACT

Change in v/c due to project: 0.002 △v/c af Significant impacted? NO Fu

∆v/c after mitigation: 0.002 Fully mitigated? N/A

(Circular 212 Method)

I/S #:	North-South Street: Barring	Street: Gateway Blvd No. of Phases I, E/W-2 or Both-3?			Yea	r of Count	t: 2019	Amb	ient Grov	vth: (%):	1	Condu	cted by:	G	гс	Date:			
4	East-West Street: Gatewa	y Blvd				ction Year			Pea	ak Hour:	AM		wed by:			Project:	11701	Gateway	/ Blvd
				2			2				2				2				2
Ор	posed Ø'ing: N/S-1, E/W-2 or Both-3?		60	0 0	ND	0 0	0 B 0	ND	0	60	0 0	ND	0	60	0	ND	0	60	0
Right	Turns: FREE-1, NRTOR-2 or OLA-3?	NB 0 EB 0	SB WB	0	NB EB	0 SI 0 W		NB EB	0 0	SB WB	0	NB EB	0	SB WB	0 0	NB EB	0	SB WB	0
	ATSAC-1 or ATSAC+ATCS-2?			2		-	2				2				2				2
	Override Capacity			0			0				0				0				0
	MOVEMENT	EXISTI		-	-	ING PLUS P								-				CT W/ MIT	
	MOVEMENT	Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
	ົງ Left	257	1	257	0	257	257	0	265	1	265	0	265	1	265	0	265	1	265
NORTHBOUND	 ✓ Left-Through 		0							0				0				0	
SOL	↑ Through	1074	1	678	1	1075	679	13	1120	1	706	1	1121	1	706	0	1121	1	706
E	<pre> Through-Right</pre>	282	1 0	282	0	282	282	0	291	1 0	291	0	291	1 0	291	0	291	1	291
OR	← Left-Through-Right	202	0	202	0	202	202	U	291	0	231	U	291	0	231	Ŭ	231	0	291
z	<pre> Left-Right </pre>		0							0				0				0	
		1																	
9	└→ Left └→ Left-Through	48	1 0	48	0	48	48	0	49	1 0	49	0	49	1 0	49	0	49	1 0	49
Ino	↓ Through	501	2	251	4	505	253	5	521	2	261	4	525	2	263	0	525	2	263
ĒΗ	← Through-Right		0							0				0				0	
SOUTHBOUND	✓ Right ↓ Left-Through-Right	136	1 0	44	0	136	44	0	140	1	45	0	140	1	45	0	140	1	45
SC	Left-Right		0							0				0				0	
<u> </u>	Ĵ Left ユ→ Left-Through	184	1 0	184	0	184	184	0	190	1 0	190	0	190	1	190	0	190	1	190
EASTBOUND	\rightarrow Through	910	1	492	1	911	492	6	944	1	510	1	945	1	510	0	945	1	510
BO	→ Through-Right		1							1				1		-		1	
AST	Right	73	0	73	0	73	73	0	75	0	75	0	75	0	75	0	75	0	75
ш	☆ Left-Through-Right Left-Right		0 0							0 0				0				0 0	
	· · · · ·								_	<u> </u>							_	Ŭ	
	✓ Left ✓ Left	81	1	81	0	81	81	4	87	1	87	0	87	1	87	0	87	1	87
N	✓ Left-Through← Through	505	0 2	253	0	505	253	24	544	0 2	272	0	544	0 2	272	0	544	0 2	272
BO	Through-Right		0	200	Ĭ	000	200	21	017	ō	2.2	Ŭ	017	0	2.2	ľ	011	0	2.2
WESTBOUND	Right	37	1	13	0	37	13	0	38	1	14	0	38	1	14	0	38	1	14
Š	Left-Through-Right		0 0							0 0				0 0				0 0	
	¥g	Nor	th-South:	726	No	orth-South:	727		Nor	th-South:	755		Nor	th-South:	755		Nor	th-South:	755
	CRITICAL VOLUMES	Ea	ast-West:	573	<u> </u>	East-West:	573		E	ast-West:	597		Ea	ast-West:	597		E	ast-West:	597
	VOLUME/CARACITY (1/C) RATIO		SUM:	1299		SUM:	1300			SUM:	1352			SUM:	1352			SUM:	1352
1//	VOLUME/CAPACITY (V/C) RATIO: C LESS ATSAC/ATCS ADJUSTMENT:			0.866			0.867				0.901				0.901				0.901
V/C				0.766			0.767				0.801				0.801				0.801
	LEVEL OF SERVICE (LOS):			С			С				D				D				D

REMARKS:

Version: 1i Beta; 8/4/2011

PROJECT IMPACT

Change in v/c due to project: 0.000 $\Delta v/c$

Significant impacted? NO

∆v/c after mitigation: 0.000 Fully mitigated? N/A

(Circular 212 Method)

I/S #:	North-South Street:	treet: National Blvd No. of Phases				Yea	r of Count	2019	Amb	ient Grov	vth: (%):	1	Condu	cted by:	G	тс	Date:			
5	East-West Street:	National	Blvd				ction Year			Pea	ak Hour:	AM		wed by:			Project:	11701	Gateway	/ Blvd
					3			3				3				3				3
Ор	posed Ø'ing: N/S-1, E/W-2 or B	Both-3?	NB 0	60	0 0	ND	0 0	0 3 0	ND	0	60	0 0	ND	0	60	0 0	ND	0	60	0 0
Right	Turns: FREE-1, NRTOR-2 or C	DLA-3?	NB 0 EB 0	SB WB	0	NB EB	0 SE 0 W		NB EB	0	SB WB	0	NB EB	0	SB WB	0	NB EB	0	SB WB	0
	ATSAC-1 or ATSAC+AT	TCS-2?			2		•	2		Ŭ		2		Ŭ		2		Ŭ		2
	Override Ca	apacity			0			0				0				0				0
	MOVEMENT		EXISTI				ING PLUS P												CT W/ MIT	
	MOVEMENT		Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
	℃ Left		75	1	75	0	75	75	0	77	1	77	0	77	1	77	0	77	1	77
Q	← Left-Through			0							0				0				0	
lou	Through		1114	1	628	1	1115	629	13	1161	1	654	1	1162	1	654	0	1162	1	654
臣	Through-Right		140	1	140		140	140	0	146	1	146	0	146	1	146	0	146	1	146
NORTHBOUND			142	0	142	0	142	142	0	146	0 0	146	0	146	0	146	U	146	0	146
ž	Y Left-Right			0							0				0				0	
					-															
9	└→ Left ↓→ Left-Through		249	1 0	249	3	252	252	0	257	1 0	257	3	260	1 0	260	0	260	1	260
n n	Through		337	1	201	2	339	202	9	356	1	211	2	358	1	212	0	358	1	212
SOUTHBOUND	Through-Right			1					-		1		_		1		_		1	
E.	Right		64	0	64	0	64	64	0	66	0	66	0	66	0	66	0	66	0	66
so	<∱→ Left-Through-Right , Left-Right			0 0							0 0				0 0				0 0	
				V	1						U				U				U	
	Left		136	1	136	0	136	136	0	140	1	140	0	140	1	140	0	140	1	140
	→ Left-Through → Through		100	0 1	000	0	400	000	0	507	0 1	004	0	507	0 1	004	0	507	0	201
EASTBOUND	→ Through		492	1	283	0	492	283	U	507	1	291	0	507	1	291	U	507	1	291
STI	Right		73	0	73	0	73	73	0	75	0	75	0	75	0	75	0	75	0	75
EA	Left-Through-Right			0							0				0				0	
	- √ Left-Right			0							0				0				0	
	✓ Left		62	1	62	0	62	62	0	64	1	64	0	64	1	64	0	64	1	64
WESTBOUND	C Left-Through			0		_			_		0		_		0		_		0	
301	← Through ← Through-Right		304	1 1	304	0	304	304	0	313	1	313	0	313	1	313	0	313	1	313
STE	through-Right		311	0	187	1	312	186	0	320	0	192	1	321	0	191	0	321	0	191
Ň	Left-Through-Right			0							0				0				0	
	≻ Left-Right		N	0	077	N-	with Courts	004		A/	0	014		M	0	914		A/	0	014
	CRITICAL VOL	LUMES		th-South: ast-West:	877 440		orth-South: East-West:	881 440			th-South: ast-West:	911 453			th-South: ast-West:	914 453			th-South: ast-West:	914 453
				SUM:	1317		SUM:	1321			SUM:	1364			SUM:	1367			SUM:	1367
	VOLUME/CAPACITY (V/C)	RATIO:			0.924			0.927				0.957				0.959				0.959
V/0	C LESS ATSAC/ATCS ADJUST	MENT:			0.824			0.827				0.857				0.859				0.859
	LEVEL OF SERVICE	(LOS):			D			D				D				D				D
<u></u>		ARKS																		

REMARKS:

Version: 1i Beta; 8/4/2011

PROJECT IMPACT

Change in v/c due to project: 0.002 $\Delta v/c$ after $\Delta v/c$

Significant impacted? NO

∆v/c after mitigation: 0.002 Fully mitigated? N/A

(Circular 212 Method)

I/S #:	North-South Street:				lvd	Yea	r of Count	2019	Amb	ient Grov	vth: (%):	1	Condu	cted by:	G	тс	Date:			
6	East-West Street:	Pico Blv	ď				ction Year			Pea	ak Hour:	AM		wed by:			Project:	11701	Gateway	/ Blvd
					3			3				3				3	-		-	3
Ор	posed Ø'ing: N/S-1, E/W-2 or	Both-3?			0		2 0	0		2		0		2		0		2		0
Right	Turns: FREE-1, NRTOR-2 or	OLA-3?	NB 3 EB 0	SB WB	0 0	NB EB	3 SE 0 W		NB EB	3 0	SB WB	0 0	NB EB	3 0	SB WB	0 0	NB EB	3 0	SB WB	0
	ATSAC-1 or ATSAC+	ATCS-2?			2		•	2		Ŭ		2		Ŭ		2		Ŭ		2
	Override	Capacity			0			0				0				0				0
			EXISTI	NG CONDI	-	-	ING PLUS P								-				CT W/ MIT	
	MOVEMENT		Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
	Š Left			0	0	0	0	0		0	0	0		0	0	0		0	0	0
QN	← Left-Through		, in the second s	0	v		0	Ŭ	Ŭ	Ŭ	0	Ŭ	Ŭ	Ū	0	Ŭ	, in the second s	Ŭ	0	Ŭ
NORTHBOUND	Through		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EHB	Through-Right		1001	0			1000		47	4057	0			1050	0		•	1050	0	
DR1			1204	2 0	407	2	1206	407	17	1257	2 0	428	2	1259	2 0	429	0	1259	2 0	429
ž	✓ Left-Right			0							0				0				0	
	-				-															
₽	└→ Left		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NNC	└→ Left-Through ↓ Through		0	0 0	0	0	0	0	0	0	0 0	0	0	0	0 0	0	0	0	0 0	0
- PG	✓ Through-Right		Ŭ	0	Ŭ	Ŭ	0	Ŭ	Ŭ	0	Ō	Ŭ	, in the second s	Ũ	0	Ŭ	Ŭ	Ũ	0	Ũ
SOUTHBOUND	لَّ Right		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
so	↔ Left-Through-Right ↓ Left-Right			0 0							0 0				0				0	
			1	U							0				U				U	
	Left		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	→ Left-Through		1070	0			4070				0 1			1110	0	005		1110	0	005
EASTBOUND	→ Through ୖୖ√ Through-Right		1070	1	587	2	1072	588	39	1141	1	624	2	1143	1	625	0	1143	1	625
STI	Right		104	0	104	0	104	104	0	107	0	107	0	107	0	107	0	107	0	107
EA	Left-Through-Right			0							0				0				0	
	- ≺ Left-Right		1	0							0				0				0	
	√ Left		464	2	255	1	465	256	0	478	2	263	1	479	2	263	0	479	2	263
DN	✓ Left-Through			0							0				0				0	
sol	← Through		593	1	320	1	594	321	102	713	1	381	1	714	1	381	0	714	1	381
WESTBOUND	through-Right		47	0	47	0	47	47	0	48	0	48	0	48	0	48	0	48	0	48
Ň	Left-Through-Right			0					5		0				0				0	
	⊱ Left-Right			0	407			407			0	400			0	400			0	400
	CRITICAL V	OLUMES		th-South: ast-West:	407 842		rth-South: East-West:	407 844			th-South: ast-West:	428 887			th-South: ast-West:	429 888			th-South: ast-West:	429 888
				SUM:	1249	'	SUM:	1251		L	SUM:	1315		Le	SUM:	1317		L	SUM:	1317
	VOLUME/CAPACITY (V/C)) ratio:			0.876			0.878				0.923				0.924				0.924
V/0	C LESS ATSAC/ATCS ADJUS	STMENT:			0.776			0.778				0.823				0.824				0.824
	LEVEL OF SERVIC	E (LOS):			С			С				D				D				D
Ľ		MADKS.	8						l											

REMARKS:

Version: 1i Beta; 8/4/2011

PROJECT IMPACT

Change in v/c due to project: 0.001 $\Delta v/c$ after mitigation: 0.001

Significant impacted? NO

Fully mitigated? N/A

Afternoon Peak Hour

(Circular 212 Method)

I/S #:	North-South Street: Bundy	Dr			Yea	r of Count	2019	Amb	ient Grov	vth: (%):	1	Condu	cted by:	G	тс	Date:			
1	East-West Street: Pearl S	t				ction Year			Pea	ak Hour:	PM		wed by:			Project:	11701	Gateway	/ Blvd
	No. of Phases			2			2				2				2	-		•	2
Ор	posed Ø'ing: N/S-1, E/W-2 or Both-3?			0		0.00	0		0		0		0		0		0		0
Right	Turns: FREE-1, NRTOR-2 or OLA-3?	NB 0 EB 0	SB WB	0 0	NB EB	0 SE 0 WI		NB EB	0 0	SB WB	0 0	NB EB	0 0	SB WB	0 0	NB EB	0 0	SB WB	0
	ATSAC-1 or ATSAC+ATCS-2?			2		•	2		Ŭ		2		Ŭ		2		Ŭ		2
	Override Capacity			0			0				0				0				0
	MOVEMENT	EXISTI	NG CONDI															CT W/ MIT	
				Lane Volume	Project Total Lane Traffic Volume Volume			Added Volume	Added Total No. of L Volume Volume Lanes Vo			Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
	€) Left	94	1	94	0	94	94		97	1	Volume 97		97	1	97		97	1	97
Q	⊷ Left-Through	•.	0	•	Ŭ	0.	•.	, in the second s	0.	0	•.	Ŭ	0.	0	•••	, in the second s	0.	0	•••
no	Through	903	1	462	0	903	462	15	945	1	483	0	945	1	483	0	945	1	483
NORTHBOUND	Through-Right		1	00		00	00	•	04	1	04	•	04	1	04		04	1	04
OR		20	0	20	0	20	20	0	21	0 0	21	0	21	0	21	0	21	0 0	21
ž	Left-Right		0							0				0				0	
				-															
9	└→ Left └→ Left-Through	77	1 0	77	11	88	88	0	79	1 0	79	11	90	1 0	90	0	90	1	90
SOUTHBOUND	↓ Through	1342	1	704	0	1342	704	21	1404	1	736	0	1404	1	736	0	1404	1	736
HBC	✓ Through-Right		1		Ŭ					1		Ŭ		1		, in the second s		1	
E.	Right	65	0	65	0	65	65	0	67	0	67	0	67	0	67	0	67	0	67
so	✓ Left-Through-Right ↓ Left-Right		0							0 0				0 0				0	
		1	Ŭ	1						Ŭ				Ŭ				Ŭ	
	Left	63	0	63	0	63	63	0	65	0	65	0	65	0	65	0	65	0	65
N N	→ Left-Through → Through	141	0	386	0	141	386	0	145	0 0	398	0	145	0 0	398	0	145	0	398
EASTBOUND	→ Through-Right	141	0	300	0	141	300	U	145	0	390	0	145	0	390	U	145	0	390
νsτ	Right	182	0	0	0	182	0	0	188	0	0	0	188	0	0	0	188	0	0
Ē	Left-Through-Right		1 0							1 0				1				1	
	- ≺ Left-Right	1	U							U				U				U	
	✓ Left	4	0	4	0	4	4	0	4	0	4	0	4	0	4	0	4	0	4
WESTBOUND	✓ Left-Through		0		_		70	_		0	05	<u>^</u>		0	70	~	00	0	70
BOI	← Through ← Through-Right	22	0 0	63	0	22	70	0	23	0 0	65	0	23	0 0	72	0	23	0 0	72
ST	t Right	37	0 0	0	7	44	0	0	38	0	0	7	45	0	0	0	45	0	0
ME	Left-Through-Right		1							1				1				1	
	⊱ Left-Right	Nor	0 th-South:	798	No	rth-South:	798		Nor	0 th-South:	833		Nor	0 th-South:	833		Nor	0 th-South:	833
	CRITICAL VOLUMES	-	ast-West:	390	-	East-West:	390			ast-West:	402			ast-West:	402			ast-West:	402
			SUM:	1188		SUM:	1188			SUM:	1235			SUM:	1235			SUM:	1235
	VOLUME/CAPACITY (V/C) RATIO:			0.792			0.792				0.823				0.823				0.823
V/0	C LESS ATSAC/ATCS ADJUSTMENT:			0.692			0.692				0.723				0.723				0.723
	LEVEL OF SERVICE (LOS):			В			В				С				С				С
	REMARKS.																		

REMARKS:

Version: 1i Beta; 8/4/2011

PROJECT IMPACT

 Change in v/c due to project:
 0.000
 ∆v/c at

 Significant impacted?
 NO
 Free

∆v/c after mitigation: 0.000 Fully mitigated? N/A

(Circular 212 Method)

I/S #:	North-South Street: Bundy D)r			Yea	r of Coun	t: 2019	Amb	ient Grov	vth: (%):	1	Condu	cted by:	G	тс	Date:			
2	East-West Street: Ocean P	ark Blvd				ction Yea			Pe	ak Hour:	PM		wed by:			Project:	11701	Gateway	/ Blvd
	No. of Phases			4			4				4				4				4
Ор	posed Ø'ing: N/S-1, E/W-2 or Both-3?	NB 0	SB	0 3	NB	0 SI	0 B 3	NB	0	SB	0 3	NB	0	SB	0 3	NB	0	SB	0 3
Right	Turns: FREE-1, NRTOR-2 or OLA-3?	EB 3	зв WB	0	КВ ЕВ	3 W		EB	3	зв WB	0	КВ ЕВ	3	зв WB	0	EB	3	зв WB	0
	ATSAC-1 or ATSAC+ATCS-2?			2			2				2				2				2
	Override Capacity			0			0				0				0			0	
	MOVEMENT	EXIST	NG CONDI No. of	Lane	Project	ING PLUS P		Added	E CONDITI Total	No. of	Lane	Added	RE CONDIT	No. of	Lane	Added	E W/ PROJE	Lane	
	MOVEMENT	Volume	Lanes	Volume	Traffic	Total Volume	Lane Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Volume	
	ົງ Left	221	1	221	0	221	221	0	228	1	228	0	228	1	228	0	228	1	228
NORTHBOUND	<∱ Left-Through		0							0				0				0	
BOI	↑ Through	799	1 1	570	0	799	571	15	838	1	595	0	838	1	596	0	838	1	596
TH	<pre> Through-Right</pre>	341	0	341	2	343	343	0	351	0	351	2	353	0	353	0	353	0	353
IOR	↓ Left-Through-Right	•	0	011	-	010	010	Ŭ	001	0	001	-	000	0	000	ľ	000	0	000
~	t Left-Right		0							0				0				0	
	└→ Left	57	1	F 7	0	57	57	0	59	1	50	0	59	1	50	0	59	1	50
Q	ເ Leπ ↓ Left-Through	57	0	57	0	57	57	0	59	0	59	0	59	0	59	0	59	0	59
no	Through	1258	2	629	0	1258	629	21	1317	2	659	0	1317	2	659	0	1317	2	659
HB	← Through-Right		0			50				0				0				0	0
SOUTHBOUND	✓ Right ↓ Left-Through-Right	59	1 0	0	0	59	0	0	61	1 0	0	0	61	1	0	0	61	1	0
S	Left-Right		0							0				0				0	
	4																		
Ω	ープ Left ープ→ Left-Through	85	1 0	85	0	85	85	0	88	1 0	88	0	88	1 0	88	0	88	1	88
NN	\rightarrow Through	929	2	465	2	931	466	49	1006	2	503	2	1008	2	504	0	1008	2	504
EASTBOUND	→ Through-Right		0							0				0				0	
AST		680	1 0	459	0	680	459	0	701	1 0	473	0	701	1	473	0	701	1	473
ш	↓ Left-Right		0							0				0				0	
	*			-						-				-				-	
	✓ Left	207	1	207	1	208	208	0	213	1	213	1	214	1 0	214	0	214	1 0	214
WESTBOUND	✓ Left-Through← Through	441	0 1	230	1	442	230	28	482	0 1	251	1	483	0	251	0	483	0 1	251
BO	Through-Right		1	200	· ·	112	200	20	102	1	201			1	201	ľ	100	1	201
ESI	Right	18	0	18	0	18	18	0	19	0	19	0	19	0	19	0	19	0	19
3	Left-Through-Right		0 0							0 0				0 0				0 0	
	¥	Nor	th-South:	850	No	orth-South:	850		Nor	th-South:	887		Nort	th-South:	887		Nor	th-South:	887
	CRITICAL VOLUMES	Ea	ast-West:	672	1	East-West:	674		E	ast-West:	716		Ea	ast-West:	718		E	ast-West:	718
			SUM:	1522		SUM:	1524			SUM:	1603			SUM:	1605			SUM:	1605
	VOLUME/CAPACITY (V/C) RATIO:			1.107			1.108				1.166				1.167				1.167
V/0	C LESS ATSAC/ATCS ADJUSTMENT:			1.007			1.008				1.066				1.067				1.067
	LEVEL OF SERVICE (LOS):			F			F				F				F				F

REMARKS:

Version: 1i Beta; 8/4/2011

PROJECT IMPACT

Change in v/c due to project: 0.001 ∆v/c after mitigation: 0.001 Significant impacted? NO

Fully mitigated? N/A

(Circular 212 Method)

I/S #:	North-South Street: Barring	ton Ave			Yea	r of Count	2019	Amb	ient Grov	vth: (%):	1	Condu	cted by:	G	тс	Date:				
3	East-West Street: Pico Bl	/d				ction Year			Pe	ak Hour:	РМ		wed by:			Project:	11701	Gateway	/ Blvd	
	No. of Phases			2			2				2				2				2	
Ор	posed Ø'ing: N/S-1, E/W-2 or Both-3?		60	0 0	ND	0 SI	0 3 0	ND	0	60	0 0	ND	0	00	0	ND	0	60	0 0	
Right	Turns: FREE-1, NRTOR-2 or OLA-3?	NB 0 EB 0	SB WB	0	NB EB	0 SE 0 W		NB EB	0 0	SB WB	0	NB EB	0	SB WB	0 0	NB EB	0	SB WB	0	
	ATSAC-1 or ATSAC+ATCS-2?			2			2				2				2				2	
	Override Capacity			0			0				0				0			0		
	MOVEMENT	EXISTI				ING PLUS P											JTURE W/ PROJECT W/ MITI			
	WOVEMENT	Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Total No. of Volume Volume Lanes			Lane Volume	
	ົງ Left	101	1	101	0	101	101	0	104	1	104	0	104	1	104	0	104	1	104	
DN	<∱ Left-Through		0							0				0				0		
30L	↑ Through	599	1	311	2	601	313	8	625	1	324	2	627	1	326	0	627	1	326	
THE	, Through-Right	22	1	22	2	24	24	0	23	1 0	23	2	25	1 0	25	0	25	1	25	
NORTHBOUND	← Left-Through-Right	~~~	0	22	2	24	24	, v	20	0	20	2	20	0	20		20	0	25	
z			0							0				0				0		
		142		140		110	110	54	470	4	470		470	4	470		470	4	470	
Ð	└→ Left ↓→ Left-Through	118	1 0	118	0	118	118	51	173	1 0	173	0	173	1 0	173	0	173	1 0	173	
SOUTHBOUND	↓ Through	1476	2	738	3	1479	740	15	1536	2	768	3	1539	2	770	0	1539	2	770	
HB.	Through-Right		0							0				0				0		
DUT	✓ Right ↓ Left-Through-Right	81	1 0	28	0	81	28	7	90	1 0	33	0	90	1	33	0	90	1	33	
SC	Left-Right		0							0				0				0		
		-		-																
Ω	ノ Left ♪ Left-Through	106	1 0	106	0	106	106	6	115	1 0	115	0	115	1 0	115	0	115	1 0	115	
NN	\rightarrow Through	546	1	401	0	546	401	136	699	1	481	0	699	1	481	0	699	1	481	
EASTBOUND	→ Through-Right		1							1				1				1		
ASI	Right	255	0	255	0	255	255	0	263	0 0	263	0	263	0	263	0	263	0	263	
ш	✓ Left-Through-Right ✓ Left-Right		0							0				0				0		
	•			-														-		
0	✓ Left	72	1 0	72	3	75	75	0	74	1 0	74	3	77	1 0	77	0	77	1 0	77	
WESTBOUND	✓ Left-Through← Through	554	0 1	299	0	554	299	84	655	1	366	0	655	1	366	0	655	1	366	
LBC	Through-Right		1							1				1				1		
ES]	Right	44	0	44	0	44	44	31	76	0 0	76	0	76	0	76	0	76	0	76	
≥	Left-Through-Right		0 0							0				0				0		
	- · · · · · · · · · · · · · · · · · · ·	_	th-South:	839		rth-South:	841			th-South:	872			th-South:	874			th-South:	874	
	CRITICAL VOLUMES	E	ast-West:	473		East-West:	476		E	ast-West:	555		Ea	ast-West:	558		E	ast-West:	558	
	VOLUME/CAPACITY (V/C) RATIO:		SUM:	1312		SUM:	1317			SUM:	1427			SUM:	1432			SUM:	1432	
1//	C LESS ATSAC/ATCS ADJUSTMENT:			0.875			0.878				0.951 0.851				0.955				0.955 0.855	
	LEVEL OF SERVICE (LOS):			0.775 C			0.778 C				0.851 D				0.855 D				0.855 D	
L	REMARKS	<u> </u>		U			U				U	l			U					

REMARKS:

Version: 1i Beta; 8/4/2011

PROJECT IMPACT

Change in v/c due to project: 0.004 △v/c af Significant impacted? NO Fu

∆v/c after mitigation: 0.004 Fully mitigated? N/A

(Circular 212 Method)

I/S #:	North-South Street: Barrin	gton Ave			Yea	r of Count	t: 2019	Amb	ient Grov	vth: (%):	1	Condu	cted by:	G	тс	Date:			
4	East-West Street: Gatew	ay Blvd				ction Year			Pea	ak Hour:	PM		wed by:			Project:	11701	Gateway	/ Blvd
	No. of Phase			2			2				2		-		2				2
Ор	posed Ø'ing: N/S-1, E/W-2 or Both-3		60	0 0	ND	0 0	0 B 0	ND	0	60	0 0	ND	0	60	0	ND	0	60	0
Right	Turns: FREE-1, NRTOR-2 or OLA-31	, NB 0 EB 0	SB WB	0	NB EB	0 SI 0 W		NB EB	0 0	SB WB	0	NB EB	0	SB WB	0 0	NB EB	0	SB WB	0
	ATSAC-1 or ATSAC+ATCS-2			2		-	2				2				2				2
	Override Capacit			0			0				0				0			0	
	MOVEMENT	EXIST		-	-	ING PLUS P								-				CT W/ MIT	
	MOVEMENT	Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
	ົງ Left	73	1	73	0	73	73	0	75	1	75	0	75	1	75	0	75	1	75
	<∱ Left-Through		0							0				0				0	
301	↑ Through	619	1	383	9	628	388	8	646	1	400	9	655	1	405	0	655	1	405
NORTHBOUND	→ Through-Right → Right	147	1 0	147	0	147	147	3	154	1 0	154	0	154	1 0	154	0	154	1 0	154
NOR NOR	✓ Left-Through-Right	177	0	147	Ŭ	147	147	Ŭ	104	0	104	Ŭ	104	0	104	Ŭ	104	0	104
~	t Left-Right		0							0				0				0	
	└→ Left	200	1		0	200	200	0	045	1	045	0	045	1	045	0	045	1	015
Q	∽ Leπ ↓∽ Left-Through	209	1 0	209	0	209	209	0	215	0	215	0	215	0	215	0	215	0	215
NO	Through	1719	2	860	7	1726	863	15	1786	2	893	7	1793	2	897	0	1793	2	897
HB	Through-Right		0							0				0				0	
SOUTHBOUND	✓ Right ✓ Left-Through-Right	96	1	62	0	96	62	0	99	1 0	64	0	99	1	64	0	99	1	64
Š	Left-Right		0							0				0				0	
	1								<i></i> ;										
≏	ノ Left ユ→ Left-Through	69	1	69	0	69	69	0	71	1 0	71	0	71	1	71	0	71	1	71
NN	→ Through	740	1	485	3	743	487	49	811	1	524	3	814	1	526	0	814	1	526
EASTBOUND	→ Through-Right		1							1				1				1	
.SE	<pre></pre>	230	0	230	0	230	230	0	237	0 0	237	0	237	0 0	237	0	237	0	237
ш	- ∠ Left-Right		0							0				0 0				0	
		-	I .									-				-			
₽	<pre>✓ Left ✓ Left-Through</pre>	94	1 0	94	0	94	94	1	98	1 0	98	0	98	1 0	98	0	98	1 0	98
WESTBOUND	← Through	865	2	433	4	869	435	28	919	2	460	4	923	2	462	0	923	2	462
TBC	Through-Right		0							0				0				0	
.ES.	C Right ✓ Left-Through-Right	24	1 0	0	0	24	0	0	25	1 0	0	0	25	1	0	0	25	1	0
3	Left-Right		0							0				0				0	
			th-South:	933		orth-South:	936			th-South:	968			th-South:	972			th-South:	972
		S E	ast-West: SUM:	579 1512	'	East-West: SUM:	581 1517		E	ast-West: SUM:	622 1590		Ea	ast-West: SUM:	624 1596		E	ast-West: SUM:	624 1596
	VOLUME/CAPACITY (V/C) RATIO	:	30141:	1.008		50W:	1517 1.011			30111:	1.060			30M:	1.064			30W:	1.064
VIC	C LESS ATSAC/ATCS ADJUSTMENT			0.908			0.911				0.960				0.964				0.964
	LEVEL OF SERVICE (LOS)			0.908 E			E				0.960 E				0.964 F				0.964 E
				C			-				E	l			-	l			E.

REMARKS:

Version: 1i Beta; 8/4/2011

PROJECT IMPACT

Change in v/c due to project: 0.004 $\Delta v/c$ at

Significant impacted? NO

∆v/c after mitigation: 0.004 Fully mitigated? N/A

(Circular 212 Method)

I/S #:	North-South Street: Barring	ton Ave			Yea	r of Count	2019	Amb	ient Grov	vth: (%):	1	Condu	cted by:	G	тс	Date:			
5	East-West Street: Nation	al Blvd				ction Year			Pea	ak Hour:	PM		wed by:			Project:	11701	Gateway	/ Blvd
	No. of Phases			3			3				3				3				3
Орр	oosed Ø'ing: N/S-1, E/W-2 or Both-3?		60	0 0	ND	0 0	0 3 0		0	60	0 0	ND	0	60	0	ND	0	60	0
Right	Turns: FREE-1, NRTOR-2 or OLA-3?	NB 0 EB 0	SB WB	0	NB EB	0 SI 0 W		NB EB	0 0	SB WB	0	NB EB	0	SB WB	0 0	NB EB	0	SB WB	0
	ATSAC-1 or ATSAC+ATCS-2?			2		•	2		Ŭ		2		Ŭ		2		, in the second s		2
-	Override Capacity			0			0				0				0		0		
	NOVENENT	EXISTI	NG CONDI	-	-	ING PLUS P								-			W/ PROJE		
				Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
	ົງ Left	61	1	61	0	61	61		63	1	63		63	1	63		63	1	63
Q	⊷ Left-Through		0	•.	Ŭ	01	•.	Ŭ	00	0		Ŭ	00	0		Ŭ	00	0	
NORTHBOUND	Through	521	1	317	3	524	318	10	547	1	331	3	550	1	333	0	550	1	333
E	Through-Right		1							1				1				1	445
LN I		112	0 0	112	0	112	112	0	115	0 0	115	0	115	0 0	115	0	115	0	115
ž	↔ Left-Through-Right ★ Left-Right		0							0				0				0	
ľ				1															
Ω	└→ Left	445	1	445	3	448	448	0	458	1	458	3	461	1	461	0	461	1	461
N	└→ Left-Through ↓ Through	4450	0 1	700	2	4454	700	10	4540	0 1	004	0	4544	0 1	0.05	0	4544	0 1	005
BO	↓ Through-Right	1452	1	792	2	1454	793	16	1512	1	824	2	1514	1	825	0	1514	1	825
H	↓ Right	132	0	132	0	132	132	0	136	0	136	0	136	0	136	0	136	0	136
SOUTHBOUND	↔ Left-Through-Right		0							0				0				0	
<i>"</i>	,, Left-Right		0							0				0				0	
1	_ ^J Left	98	1	98	0	98	98	0	101	1	101	0	101	1	101	0	101	1	101
₽	⊥ Left-Through		0		l í			, in the second s		0		, in the second s		0		Ŭ		0	
EASTBOUND	→ Through	472	1	271	0	472	271	0	486	1	279	0	486	1	279	0	486	1	279
ΞB	✓ Through-Right → Right	60	1 0	69	0	69	69	0	71	1 0	71	0	71	1 0	71	0	71	1 0	71
SE	Left-Through-Right	69	0	69	0	09	09	0	71	0	/ 1	0	71	0	71	0	71	0	71
	- ∠Left-Right		0							0				0				0	
						10-5	105		100						105				
₽	✓ Left ✓ Left-Through	135	1 0	135	0	135	135	0	139	1 0	139	0	139	1 0	139	0	139	1 0	139
WESTBOUND	← Through	446	1	310	0	446	312	0	460	1	319	0	460	1	322	0	460	1	322
BC	Through-Right		1							1				1				1	
ESI	Right	173	0	173	5	178	178	0	178	0	178	5	183	0	183	0	183	0	183
≥	Left-Through-Right		0 0							0 0				0				0 0	
┣───┛	↓ Lon-rugin	Nor	th-South:	853	No	rth-South:	854		Nor	th-South:	887		Nor	th-South:	888		Nor	th-South:	888
	CRITICAL VOLUMES	E	ast-West:	408	L 1	East-West:	410		Ea	ast-West:	420		Ea	ast-West:	423		E	ast-West:	423
			SUM:	1261		SUM:	1264			SUM:	1307			SUM:	1311			SUM:	1311
	VOLUME/CAPACITY (V/C) RATIO:			0.885			0.887				0.917				0.920				0.920
V/C	CLESS ATSAC/ATCS ADJUSTMENT:			0.785			0.787				0.817				0.820				0.820
	LEVEL OF SERVICE (LOS):			С			С				D				D				D

REMARKS:

Version: 1i Beta; 8/4/2011

PROJECT IMPACT

Change in v/c due to project: 0.003 $\Delta v/c$ after mitigation: 0.003

Significant impacted? NO

Fully mitigated? N/A

(Circular 212 Method)

I/S #:	North-South Street:	Expositi	on Blvd / Ga	ateway B	lvd	Yea	r of Count	2019	Amb	ient Grov	vth: (%):	1	Condu	cted by:	G	тс	Date:			
6	East-West Street:	Pico Blv	d				ction Year			Pea	ak Hour:	PM		wed by:			Project:	11701	Gateway	/ Blvd
		f Phases			3			3				3				3				3
Ор	posed Ø'ing: N/S-1, E/W-2 or	Both-3?		60	0 0	ND	2 0	0 3 0	ND	3	60	0 0	ND	3	60	0	ND	3	60	0
Right	Turns: FREE-1, NRTOR-2 or	OLA-3?	NB 3 EB 0	SB WB	0	NB EB	3 SI 0 W		NB EB	0	SB WB	0	NB EB	0	SB WB	0 0	NB EB	0	SB WB	0
	ATSAC-1 or ATSAC+	ATCS-2?			2		-	2				2				2				2
	Override	Capacity			0			0				0				0		UTURE W/ PROJECT W/ MIT		
	MOVEMENT		EXISTI	NG CONDI	-	-	ING PLUS P								-					
	MOVEMENT		Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume				Lane Volume
_	`) Left		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NORTHBOUND	<∱ Left-Through			0							0				0				0	
301	Through		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H	→ Through-Right		865	0 2	0	2	867	0	3	894	0 2	0	2	896	0 2	0	0	896	0 2	0
OR	Left-Through-Right		000	0	v	2	007	U	, v	034	0	U	2	030	0	U	Ŭ	030	0	U
z	Y Left-Right			0							0				0				0	
	1.6						0	0				0		0	0	0			0	0
P	└→ Left ↓→ Left-Through		0	0 0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0 0	0
no	Through		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EH.	← Through-Right			0							0				0				0	
SOUTHBOUND	✓ Right ↔ Left-Through-Right		0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0
S	↓ Left-Right			0							0 0				0				0	
	1				-			_				_								_
Ω	Ĵ Left ♪ Left-Through		0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0
EASTBOUND	→ Through		688	1	355	2	690	356	226	935	1	479	2	937	1	480	0	937	1	480
IBC	Through-Right			1							1				1				1	
AS ⁻	<pre></pre>		22	0 0	22	0	22	22	0	23	0 0	23	0	23	0	23	0	23	0	23
ш	→ Left-Right			0							0				0				0	
<u>_</u>	 ✓ Left ✓ Left-Through 		1089	2 0	599	3	1092	601	10	1132	2 0	623	3	1135	2 0	624	0	1135	2 0	624
WESTBOUND	← Through		643	1	343	3	646	344	140	802	1	423	3	805	1	424	0	805	1	424
IBC	Through-Right			1							1				1				1	
ES.	✓ Right ✓ Left-Through-Right		42	0 0	42	0	42	42	0	43	0 0	43	0	43	0	43	0	43	0	43
3	Left-Right			0							0				0				0	
	V U			th-South:	0		rth-South:	0			th-South:	0			th-South:	0			th-South:	0
	CRITICAL V	OLUMES	Ea	ast-West:	954		East-West:	957 057		Ea	ast-West:	1102		Ea	ast-West:	1104		E	ast-West:	1104
	VOLUME/CAPACITY (V/C			SUM:	954		SUM:	957			SUM:	1102			SUM:	1104			SUM:	1104
V//	C LESS ATSAC/ATCS ADJUS				0.669			0.672				0.773				0.775				0.775
v/(LEVEL OF SERVIC				0.569 A			0.572 A				0.673 B				0.675 B				0.675 B
L		E (LUS):			A			A				Ď				D				Ď

REMARKS:

Version: 1i Beta; 8/4/2011

PROJECT IMPACT

Change in v/c due to project: 0.002 ∆v/c after mitigation: 0.002 Significant impacted? NO

Fully mitigated? N/A

Environmental Solutions

Assessment - Engineering - Management

May 9, 2017 Project No. ES17-018

Mr. Bob Halavi <u>Camdaily, LLC</u> 10850 Wilshire Blvd., Suite 720 Los Angeles, California 90024

<u>The Barrington/Gateway Property</u> <u>Indoor Ambient Air Sampling</u> @ Gateway Cleaners 2503 - 2515 S. Barrington Avenue, Los Angeles, California 90064

Attached to this cover letter is the indoor ambient air sampling report and the laboratory analyses results. Based on this sampling episode, the results of the searched volatile organic compounds (VOC) and other searched constituents were detected at either below the analytical sensitivity, non-detected or below the regional screening levels or at very low concentration levels (see attached report) that do not pose a significant human health risk to the occupants.

Please keep in mind that the analyses results were obtained as the result of sampling the air during the operating hours at the subject location with the building doors open (as they commonly are). Therefore, it is my opinion that, these results are realistic with respect to the time of day and type of activities during the operating hours. Also, it is my opinion that the low concentrations of TCE and Benzene (slightly over the ESLs) found in the analyses of two of the samples may be the result of the on-site activities and/or caused by external factors such as passing traffic or outdoor influence.

Should you have any questions with regards to the content of this letter or the attached report, please call me at your convenience.

Environmental Solutions

Michael Rezvani, PE, REPA #554617, CAC #93-1225 Senior Environmental Advisor

Office: (626) 292-1271 Fax: (626) 309-9978 5075 Walnut Grove Avenue San Gabriel, CA 91776

May 8, 2017

CAMDAILY LLC. MR. BOB HALAVI 10850 WILSHIRE BLVD, SUITE 720 LOS ANGELES, CALIF 90024

> RE: BARRINGTON / GATEWAY 2503 S BARRINGTON AVE & 11701 GATEWAY BLVD, LOS ANGELES, CALIFORNIA 90064

Dear Mr. Halavi,

At the request of Michael Rezvani, CPI Geologic & Engineering Consulting (CPI Geologic) in cooperation with Environmental Solutions (ES) has been contracted by Mr. Bob Halavi of Camdaily LLC., the property owner (client) to conduct an Ambient Indoor/Outdoor Air Sampling Investigation at the property located at the referenced property. The purpose of collecting these air samples is to evaluate the airborne concentrations of tetrachloroethene (a.k.a. perchloroethene = PCE) at the subject facility during operating hours. Recently, Alpha Environmental (AE) conducted a Phase I Environmental Site Assessment dated September 1, 2016 and subsequently conducted an Environmental Site Assessment for Soil/Soil Vapor operations documented on a Phase II ESA Report dated November 16, 2016 (filed under separated cover) to evaluate any potential environmental impairment. Most recently, CPI Geologic and ES conducted ambient air sampling at the 2515 South Barrington Avenue that was occupied and active by Gateway Dry Cleaners at the time of sampling operations. On behalf of the client, CPI Geologic submits this report for the evaluation of ambient indoor/outdoor air as a concern of risks to human health. All work was performed by California Professional geologists.

SITE DESCRIPTION

As Alpha Environmental describes in the Phase II report, "The Site is located at 11701 Gateway Blvd, is situated in the west corner of the intersection of Gateway Blvd. and South Barrington Avenue in the City and County of Los Angeles, California. The Site is improved with an L-shaped, 1 and 2 story multi-tenant commercial (office / retail) building of the north portion of the parcel. The north portion of the building is one-story; and the south portion of the building has two stories, along with a penthouse level. A courtyard area is located to the northeast of the subject building and an associated asphalt paved parking area occupies the south portion of the Site".

The location of the Site is shown on Figure 1, Site Location Map. The Site is located in a mixed commercial and residential neighborhood. The Site and surrounding areas are

zoned for commercial and residential use (see Figure 2; Site Plan – Google Map 2017).

PROCEDURES

On April 26, 2017 two area air samples were collected for an eight hour period inside unit 2515 South Barrington Avenue (the dry-cleaner). Ambient air sample #3 was collected from interior front side space and ambient air sample #2 was collected from interior backside space of Gateway Dry Cleaners. One additional ambient air sample was also collected from the roof exterior of the building during the same time period (see Figure 2 for Ambient Air Sample locations) for back-ground comparison. The purpose of collecting these air samples was to evaluate ambient airborne concentrations of VOCs as PCE and TCE at each location during a typical day during active business hours.

Each air sample was collected using an evacuated steel SUMMA[®] canister equipped with an inlet air flow regulator; this equipment had been provided for the day by Advanced Technology Laboratories from the City of Signal Hill, California. The sampling process consisted of opening the valve on each canister in turn and allowing the atmosphere inside the canister to come to equilibrium with the ambient air over the duration of about eight hours (see attached pictures). For each sample, the gauge on the inlet air flow regulator registered a fully evacuated canister at the moment the valve was first opened. Care was taken that no one remained close to the canister during sample collection, to avoid drawing into the canister extraneous material not otherwise related to the sampling location itself. Each canister had been positioned so as to be as free of obstacles as much as possible and in a location representative of the ambient conditions at the time.

Each indoor air sample was collected at approximate breathing zone height for an adult. A light breeze was recorded consistently in a southerly direction throughout the morning hours and in an opposite direction in the afternoon hours. At the end of the sampling period, the valve on each canister's air flow regulator was closed, entrapping a sample of the ambient air in the vicinity during the time the air sample had been collected. Each canister was then labeled with the date and time of air sampling, the initials of the person collecting the sample, a brief description of the location where the sample had been collected, and a unique sample identification number. This information was entered as well on the chain-of-custody which was retained with the samples throughout their handling, to establish and maintain an unequivocal record (see attached chain-of-custody record).

The samplers were hand delivered to Advanced Technology Laboratories the next day for analysis of the air collected in each canister for PCE and TCE as well as other volatile organic compounds identifiable by the National Institute for Occupational Safety and Health (NIOSH) TO-15 protocol. The samples were analyzed by gas chromatography, with a library search to confirm the identities of the compounds detected. Advanced Technology Laboratories has been accredited for analytical proficiency by the California State Environmental Laboratory Accreditation Program branch.

CPIGEOLOGIC

OBSERVATIONS

The weather on the day of sampling was typical for the location and the season of the year. Dry conditions and clear skies were observed with the ambient temperature ranging between 58°F and 75°F and a prevailing breeze coming consistently from the south in the morning and from the north in the afternoon. The building where the samples were collected was occupied throughout the day.

The locations from where the air samples were collected were selected on the basis of previous soil borings identified by AE.

LABORATORY RESULTS

A copy of the analytical report is attached. Table I below summarizes the analytical data for three ambient air samples analyzed via method TO-15. In addition, one of the ambient air sample locations was selected based on AE soil boring and soil gas locations.

Sample ID	Matrix	Sample Location	concen	ethene/ PCE tration μg/m ³	Trichloroet concent μg/L -	tration	Benz concent µg/L -	tration
#1	Ambient Air	Roof / Exterior	0.00010	0.10	ND	ND	0.00079	0.79
#2	Ambient Air	Rear of interior near DC machine	0.00073	0.73	0.0047	4.7	0.0011	1.1
#3	Ambient Air	Front interior near front counter	0.00027	0.27	0.00085	0.85	0.0012	1.2
	ESLs – com	mercial/industrial	0.0021	2.1	0.003	3.0	0.00042	0.42

TABLE I

ND - Not detected above laboratory reporting limits (limits vary), see laboratory report

Micro grams per liter = $\mu g/L$, micro grams per cubic meter = $\mu g/m3$

ESLs Environmental Screening Levels - San Francisco Bay Regional Water Quality Control Board (Rev. 3 Feb 2016).

The ESLs were established by the California Environmental Protection Agency for VOCs. Of these aforementioned chemicals, only TCE and benzene were detected slightly over the ESLs. TCE was detected in the interior back of the building at 0.0047 μ g/L in ambient air sample #2. In addition, the highest benzene concentration was detected in the interior front of the building at 0.0012 μ g/L for in ambient air sample #3. The ESLs for TCE in commercial properties are 0.003 μ g/L for ambient air and for benzene is 0.00042 μ g/L for ambient air.

DISCUSSION

ESLs for Indoor Air and Soil Gas provide guidelines for PCE, TCE and other VOCs concentrations for indoor air and shallow soil gas. Those ESLs are not regulatory cleanup standards; the California Environmental Protection Agency (Cal-EPA) document dated February 2016 use of ESLs in Evaluation of Contaminated Properties states that "At sites where cleanup of contaminated soils to levels at or below the ESLs would be costly, the time and effort to develop more site-specific cleanup may be desired". The soil gas ESLs are intended for the evaluation of potential vapor intrusion into buildings and subsequent impacts to indoor air quality and are applicable for shallow soil gas samples (≤ 5 feet below a building foundation or the ground surface).

AE analytical results indicated PCE and benzene concentrations as high as 40 μ g/L and 0.74 μ g/L respectively, in soil vapor sample SV-7 recovered at 5' bgs. However, recent CPI Geologic ambient indoor air samples tested below ESLs for PCE; yet, TCE was detected in the rear interior of the building slightly above ESLs at 0.0047 μ g/L in ambient air sample #2. Moreover, benzene was detected in all three ambient air samples slightly above ESLs as high as 0.0012 μ g/L. Therefore, the results indicate no major vapor intrusion has migrated into the building space for human occupancy.

CONCLUSSION & RECOMMENDATIONS

Based upon the results of this Ambient Indoor/Outdoor Air Sampling Investigation, CPI Geologic offers the following:

- 1. A recognized environmental condition was discovered at the subject property by AE Limited ESA Phase II report dated November 16, 2016. This study indicated that a historic release of some VOCs, from historic dry cleaning and gasoline fueling station activity at the subject Site, has impacted subsurface soil at marginal levels of some VOCs concentrations under the subject site.
- 2. Detectable TCE concentrations above ESLs from ambient air sample #2 was measured at 0.0047 μ g/L in the rear of the building interior near the dry cleaning machine. As a result there is a detectable vapor intrusion of TCE concentration in ambient air in the backside of the subject Unit. The source and the intrusion path of this vapor cannot be determined by this air sampling episode.
- 3. Detectable benzene concentrations above ESLs from ambient air samples #2 and #3 were measured at 0.0011 and 0.0012 μ g/L respectively, in the building interior samples. As a result there is a detectable vapor intrusion of benzene concentration in ambient air inside of the subject Unit. This intrusion could be caused by the activities in or around the subject property.

- 4. A background ambient air testing was conducted by CPI Geologic outside on the roof exterior of the subject site for comparison purposes. Ambient air sample #1 verified the absence of any detectable PCE and TCE below ESLs and/or analytical sensitivity of the laboratory method. However, benzene was detected slightly above ESLs in this sample; this may be the result of background induced benzene levels due to outside auto gasoline fueling activities.
- 5. TCE residual concentrations inside the building could be the result of lack of ventilation. Proper ventilation and air circulation system needs to be considered to meet the average air change rate for occupation.

REPORT LIMITATIONS

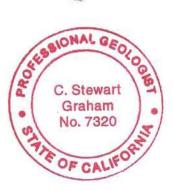
This report was prepared for the exclusive use of the client for the property located at Barrington / Gateway 2503 South Barrington Avenue and 11701 Gateway Blvd., Los Angeles, California. The conclusions and recommendations presented above are based upon the agreed scope of work as approved by the Client. CPI Geologic makes no guarantees as to the accuracy or completeness of information obtained from others. It is possible that additional soil, soil gas and/or water data exists beyond the scope of this investigation.

It is the opinion of CPI Geologic that further investigation may be warranted around AE boring SV-7 at this site regarding the subterranean impact to soil gas threat to human health occupants. However, CPI Geologic is not a governmental regulatory agency and as such cannot render anything other than an opinion. Only a governmental agency can obligate the property owner additional requirements. Although there are standard practices all environmental professionals abide by, every site is unique with respect to location and other physical and geologic conditions.

The professional services rendered at the Site were performed in a manner generally consistent with industry practices at the time the services were provided, using that degree of care and skill ordinarily exercised under similar circumstances by other professional geologists and engineers practicing in this field. No other warranty, expressed or implied is made.

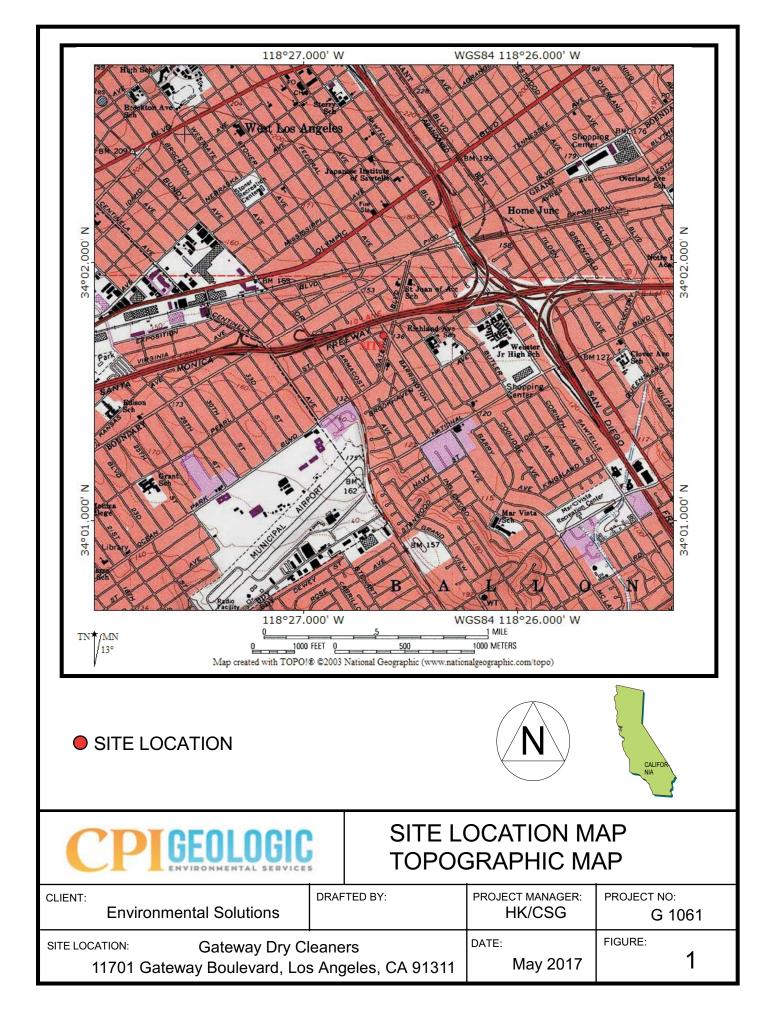
The findings in this report are based on field observations and analytical data provided by an independent laboratory. All laboratory work cited in this report were prepared under the direction and supervision of Eddie Rodriguez of Advanced Technology Laboratories (Signal Hill) who is solely responsible for the contents and conclusions of the chemical analysis data. Furthermore, results of this investigation represent conditions at the time and specific locations where ambient air and soil gas samples were collected. It does not fully characterize the site for products not specified for analyses, or for other areas/structures not investigated.

Opinions and recommendations contained in this report apply to conditions existing when services were performed and are intended for client use under the scope of work of the project described herein. CPI Geologic is not responsible for impacts or any changes in environmental standards, practices, or regulations subsequent to the performance of these services. CPI Geologic does not warrant the accuracy of information supplied by others or the use of segregated portions of this report, or the reliance of this report by a third party.


If there are any questions concerning any portions of this report, please contact Mr. Hamid Khorzani and C. Stewart Graham, Professional Geologists at *(626) 292-1279*

Respectfully submitted,

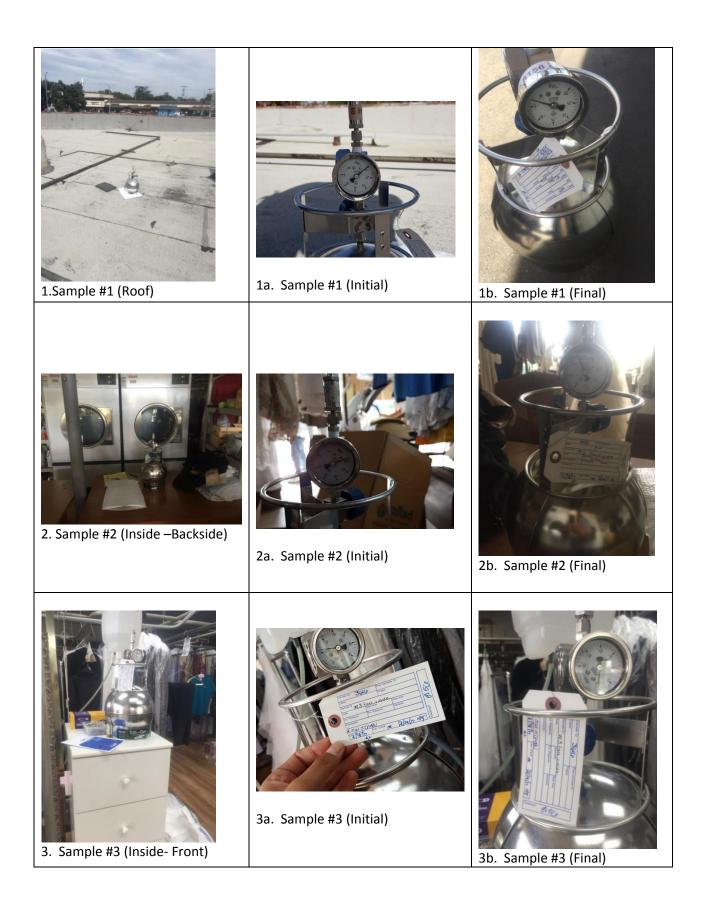
Hamid Khorzani Professional Geologist #6833 President


C. Stewart Graham Professional Geologist #7320 Vice President



CPICEOLOGIC

G 1061


LEGEND:

Google Map 2017

Indoor & Outdoor Sample Locations

SCALE IN FEET	PROJECT MANAGER: CSG/HK	SITE PLAN		
DRAFTED BY:	DATE: May 2017	CLIENT: Gateway Dry Cleaners 11701 Gateway Blvd. LA, CA 90064	PROJECT NO: G 1061	FIGURE:

May 05, 2017

Hamid Khorzani / Stewart Graham CPI Geologic & Engineering Consulting 5075 Walnut Grove Avenue San Gabriel, CA 91776 Tel: (626) 292-1271 Fax:(626) 309-9978

ELAP No.: 1838 CSDLAC No.: 10196 ORELAP No.: CA300003 TCEQ No. : T104704502

Re: ATL Work Order Number : 1701744 Client Reference : Camdaily, LLC, G1061

Enclosed are the results for sample(s) received on April 27, 2017 by Advanced Technology Laboratories. The sample(s) are tested for the parameters as indicated on the enclosed chain of custody in accordance with applicable laboratory certifications. The laboratory results contained in this report specifically pertains to the sample(s) submitted.

Thank you for the opportunity to serve the needs of your company. If you have any questions, please feel free to contact me or your Project Manager.

Sincerely,

Eddie Rodriguez Laboratory Director

The cover letter and the case narrative are an integral part of this analytical report and its absence renders the report invalid. Test results contained within this data package meet the requirements of applicable state-specific certification programs. The report cannot be reproduced without written permission from the client and Advanced Technology Laboratories.

3275 Walnut Avenue, Signal Hill, CA 90755 • Tel: 562-989-4045 • Fax: 562-989-4040 www.atlglobal.com

CPI Geologic & Engineering Consulting

5075 Walnut Grove Avenue

San Gabriel, CA 91776

Project Number :Camdaily, LLC, G1061Report To :Hamid Khorzani / Stewart GrahamReported :05/05/2017

SUMMARY OF SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
#1 (Roof)	1701744-01	Air	4/26/17 8:30	4/27/17 11:15
#3 (Inside in front)	1701744-02	Air	4/26/17 8:40	4/27/17 11:15
#2 (Inside backside)	1701744-03	Air	4/26/17 8:50	4/27/17 11:15

CASE NARRATIVE

Samples were subcontracted to Air Technology Laboratories, Inc. with NELAC LA Cert #04140.

May 5, 2017

Advanced Technology Laboratories ATTN: Carmen Aguila 3275 Walnut Ave. Signal Hill, CA 90755

ADE-1461 EPA Methods TO3, TO14A, TO15 SIM & SCAN ASTM D1946

LA Cert #04140 EPA Methods TO3, TO14A, TO15, 25C/3C, RSK-175

TX Cert T104704450-14-6 EPA Methods T014A, T015

UT Cert CA0133332015-3 EPA Methods TO3, TO14A, TO15, RSK-175

LABORATORY TEST RESULTS

Project Reference: 1701744 Lab Number: 1042805-01/03

Enclosed are results for sample(s) received 4/28/17 by Air Technology Laboratories. Samples were received intact. Analyses were performed according to specifications on the chain of custody provided with the sample(s).

Report Narrative:

- trans-1,3-dichloroethene and styrene were outside the criteria of 30% RSD in the initial calibration. Results for these analytes may be approximate.
- Unless otherwise noted in the report, sample analyses were performed within method performance criteria and meet all requirements of the NELAC Standards.
- The enclosed results relate only to the sample(s).

ATL appreciates the opportunity to provide testing services to your company. If you have any questions regarding these results, please call me at (626) 964-4032.

Sincerely,

Mark Johnson Operations Manager MJohnson@AirTechLabs.com

Enclosures

Note: The cover letter is an integral part of this analytical report.

	ICI	DA Math	od TO15 S	IM				
L	Er	Awiein	ou 1015 S.	IIVI				
Lab No.:	104280	5-01	104280	5-02	I042805	5-03		
Client Sample I.D.:	1701744-0 (Roo		1701744- (Inside in		1701744-((Inside ba			
Date/Time Sampled:	4/26/17	8:30	4/26/17	8:40	4/26/17	8:50		
Date/Time Analyzed:	5/5/17 2	2:47	5/5/17	3:31	5/5/17 4	4:16		
QC Batch No.:	170504M	[S2A1	170504N	1S2A1	170504M	S2A1		
Analyst Initials:	DT		D7	Γ	DT			
Dilution Factor:	1.0		1.0)	1.0			
ANALYTE	Result ug/L	RL ug/L	Result ug/L	RL ug/L	Result ug/L	RL ug/L		
Dichlorodifluoromethane (12)	0.0020	0.000049	0.0021	0.000049	0.0020	0.000049		
Chloromethane	0.0013	0.000021	0.0012	0.000021	0.0014	0.000021		
Vinyl Chloride	ND	0.000013	ND	0.000013	ND	0.000013		
Chloroethane	0.000060	0.000026	ND	0.000026	0.000048	0.000026		
Trichlorofluoromethane (11)	0.0011	0.00011	0.0011	0.00011	0.0011	0.00011		
1,1,2-Cl 1,2,2-F ethane (113)	0.00047	0.00015	0.00048	0.00015	0.00047	0.00015		
1,1-Dichloroethene	ND	0.000020	ND	0.000020	ND	0.000020		
Methylene Chloride	0.00064	0.00017	0.00082	0.00017	0.00092	0.00017		
t-1,2-Dichloroethene	ND	0.000040	ND	0.000040	ND	0.000040		
1,1-Dichloroethane	ND	0.000040	ND	0.000040	ND	0.000040		
c-1,2-Dichloroethene	ND	0.000040	ND	0.000040	ND	0.000040		
Chloroform	0.00013	0.000049	0.00015	0.000049	0.00014	0.000049		
1,1,1-Trichloroethane	ND	0.000055	ND	0.000055	ND	0.000055		L
Carbon Tetrachloride	0.00046	0.000063	0.00046	0.000063	0.00046	0.000063		
Benzene	0.00079	0.00016	0.0012	0.00016	0.0011	0.00016		
1,2-Dichloroethane	0.000073	0.000040	0.000075	0.000040	0.000077	0.000040		
Trichloroethene	ND	0.000054	0.00085	0.000054	0.0047	0.000054		
1,2-Dichloropropane	ND	0.000092	ND	0.000092	ND	0.000092		
Bromodichloromethane	ND	0.000067	ND	0.000067	ND	0.000067		
Toluene	0.0029	0.000075	0.0035	0.000075	0.0029	0:000075	· · ·	
t-1,3-Dichloropropene	ND	0.000045	ND	0.000045	ND	0.000045		
1,1,2-Trichloroethane	ND	0.000055	ND	0.000055	ND	0.000055		
Tetrachloroethene	0.00010	0.000068	0.00027	0.000068	0.00073	0.000068		
1,2-Dibromoethane	ND	0.00015	ND	0.00015	ND	0.00015		
Ethylbenzene	0.00063	0.000087	0.00076	0.000087	0.00057	0.000087		
p,&m-Xylene	0.0026	0.000087	0.0032	0.000087	0.0022	0.000087		
o-Xylene	0.0012	0.000087	0.0015	0.000087	0.0012	0.000087		
Styrene	0.00017	0.000085	0.00023	0.000085	0.00022	0.000085		
1,1,2,2-Tetrachloroethane	ND	0.00014	ND	0.00014	ND	0.00014		

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Operations Manager

Date 5/5/17

1042805 sim xls

is an integral part of this analytical report

Air TECHNOLOGY Laboratories, Inc.

18501 E. Gale Avenue, Suite 130 City of Industry, CA 91748 Ph: (626) 964-4032 Fx: (626) 964-5832

Client:Advanced Technology LaboratoriesAttn:Carmen AguilaProject Name:NAProject No.:1701744Date Received:04/28/17Matrix:AirReporting Units:ug/L

	E	PA Method	TO15 SI	M				
Lab No.:	METHO	D BLANK						
Client Sample I.D.:		-				9 D D 2 -		
Date/Time Sampled:		-						
Date/Time Analyzed:	5/4/1'	7 22:59						
QC Batch No.:	170504	MS2A1						
Analyst Initials:	Ι	ЭT						
Dilution Factor:	1	.0						
ANALYTE	Result ug/L	RL ug/L						
Dichlorodifluoromethane (12)	ND	0.000049						
Chloromethane	ND	0.000021						
Vinyl Chloride	ND	0.000013						
Chloroethane	ND	0.000026						
Trichlorofluoromethane (11)	ND	0.00011						
1,1,2-Cl 1,2,2-F ethane (113)	ND	0.00015						
1,1-Dichloroethene	ND	0.000020						
Methylene Chloride	ND	0.00017					9	
t-1,2-Dichloroethene	ND	0.000040						
1,1-Dichloroethane	ND	0.000040						
c-1,2-Dichloroethene	ND	0.000040						
Chloroform	ND	0.000049						
1,1,1-Trichloroethane	ND	0.000055						
Carbon Tetrachloride	ND	0.000063						
Benzene	ND	0.00016						
1,2-Dichloroethane	ND	0.000040						
Trichloroethene	ND	0.000054						
1,2-Dichloropropane	ND	0.000092						
Bromodichloromethane	ND	0.000067						
Toluene	ND	0.000075						
t-1,3-Dichloropropene	ND	0.000045						
1,1,2-Trichloroethane	ND	0.000055						
Tetrachloroethene	ND	0.000068						
1,2-Dibromoethane	ND	0.00015						
Ethylbenzene	ND	0.000087						
p,&m-Xylene	ND	0.000087						
o-Xylene	ND	0.000087						
Styrene	ND	0.000085			- J			
1,1,2,2-Tetrachloroethane	ND	0.00014						

ND = Not Detected (below RL) RL = Reporting Limit

Reviewed/Approved By: _

Mell. **Operations Manager**

Date _____5/17

The cover letter is an integral part of this analytical report

AirTECHNOLOGY Laboratories, Inc.

SIM MULTICOLUMN 2017-2.xlsx

4 of 5 1042805

Page 5 of 8

18501 E. Gale Avenue, Suite 130 City of Industry, CA 91748 Ph: (626) 964-4032 Fx: (626) 964-5832

LCS/LCSD Recovery and RPD Summary Report

QC Batch #: 170504MS2A1

Matrix: Air

		EPA Met	thod T(D-15 SI	М						
Lab No:	Method Blank		L	CS	LC	CSD					
Date Analyzed:	05/04/17		05/0)4/17	05/0)4/17					
Data File ID:	04MAY020.D		04MA	Y018.D	04MA	Y019.D					
Analyst Initials:	DT		E	т	Ľ	т					
Dilution Factor:	1.0		1	.0	1	.0			Limits		
ANALYTE	Result pptv	Spike Amount	Result pptv	% Rec	Result pptv	% Rec	RPD	Low %Rec	High %Rec	Max. RPD	Pass/ Fail
Vinyl Chloride	0.0	500	572	114	565	113	1.2	70	130	30	Pass
1,1-Dichloroethene	0.0	500	480	96	479	96	0.3	70	130	30	Pass
1,1,1-Trichloroethane	0.0	500	474	95	474	95	0.0	70	130	30	Pass
Benzene	4.7	500	468	94	466	93	0.6	70	130	30	Pass
Trichloroethene	0.0	500	465	93	460	92	1.1	70	130	30	Pass
Tetrachloroethene	0.8	500	450	90	448	90	0.6	. 70	130	30	Pass

Reviewed/Approved By:

Mark Johnson Operations Manager

MAR. 1

Date: 5/5/17

The cover letter is an integral part of this analytical report

2 of 5 I042805

Ъ

Page .

SUBCONTRACT ORDER

Work Order: 1701744

SENDING LABORATORY:

I

6

Advanced Technology Laboratories 3275 Walnut Avenue Signal Hill, CA 90755 Phone: 562.989.4045 Fax: 562.989.6348 Carmen Aguila (Carmen@atlglobal.com) Project Manager: Sampler: Hamid Khorzani

RECEIVING LABORATORY:

Air Technology Laboratories, Inc. 18501 E. Gale Ave, Suite 130 City of Industry, CA 91748 Phone :(626) 964-4032 Fax: (626) 964-5832 PO#: SC11537- STANDARD TAT

IX42985- 21/03

IMPORTANT : Please include Work Order # and PO # in your invoice.

	Analysis	Due	Expires	Sampled	Comments
51	ATL Lab#: 1701744-01 /#1 (Roof) TO15_C_SIM_UG/L [Volatile Organic Compounds in Air] 1-Canister - 6L	05/12/17 17:00	Air 05/26/17 08:30	04/26/17 08:30	Need Excel EDD
ット	ATL Lab#: 1701744-02 /#3 (Inside in from TO15_C_SIM_UG/L [Volatile Organic Compounds in Air] 1-Canister - 6L	nt) 05/12/17 17:00	Air 05/26/17 08:40	04/26/17 08:40	
0	ATL Lab#: 1701744-03 / #2 (Inside backsi TO15_C_SIM_UG/L [Volatile Organic Compounds in Air] 1-Canister - 6L	de) 05/12/17 17:00	Air 05/26/17 08:50	04/26/17 08:50	

9 Date Received By Released By

Date

		and the set of the set		CHAIN OF	CHAIN OF CUSTODY RECORD	RECORD	
	TECHNOLOGY	18501 E. Gale Ave., Suite 130 City of Industry, CA 01748	TURNAR	TURNAROUND TIME	DELIVERABLES	1	OF)
	Lahoratories. Inc.	Ph: 626-964-4032	Standard	48 hours	EDD 🗌	Condition upon receipt:	
VVV		Fx: 626-964-5832	Same Day	72 hours	EDF	Sealed Yes	S No □
Project No.: <	G 1061		24 hours	96 hours		Intact Yes	□ N N
Project Name:	Camdaily, LLC		Other:			Chilled	deg C
	MAMID KHORZANI / C.	Stewart Graham	BIL	BILLING	A	ANALYSIS REQUEST	
	1		P.O. No.:				
	0	AVENUE	Bill to: CPL	CPI Geo 1991C			
ate/Zip:	16.1	1776					
	626/292-1271 626	1309-9978			ر		
e-mail: I-1an	Hande CpI Geologic, Con /	Stewer 10 Coldestagic. con			-7 -	-AL: 142-	
LAB USE ONLY		SAMPLE IDENTIFICATION	ajamar etad ajamar etad	TIME MATRIX CONTAINER TYPE	-01		
	(Joan) · 1#	\mathcal{F}	4/26/17 8:30	Air S			
in the second	(Ins.) E #	(Inside in Frant)	ahi's		>		
	#2 (Inside	ide backside)	er:2	•	>		
			-				
AUTHORIZATION TO PERFORM WORK	M WORK COMPANY	Q	DATE/TIME	COMMENTS	intersection of the second		
and	Khorzani company	915	DATE/TIME 4/26/17 8134-4:3.				
	4/27/17 1150	A -	DATE/TIME 1115				
	17 MUD	A wmiach	142	א הנים			
RELINQUISHED BY	/ þáterímé	RECEIVED BY	DATE/TIME				
METHOD OF TRANS	METHOD OF TRANSPORT (circle one): Walk-In FedEx	UPS Courier ATLI Oth	er				
DISTRIBUTION: Whit	DISTRIBUTION: White & Yellow - Lab Copies / Pink - Customer Copy	na z o na mana mana do zi mini kan ja Andrika ang ang bina da kan na da ang bina na mang mang bina na mang bina	Preservation: H=H	Preservation: H=HCL N=None / Container: B=Bag C=Can V=VOA 0=Other	ner: B=Bag C=Ca	n V=VOA O=Other	Rev. 03 - 5/7/09

Exhibit C Public Communication

March 4, 2019

Board of the Mar Vista Community Counci Mar Vista Community Council, Planning and Land Use Committee P.O. Box 66871 Mar Vista, CA 90066

To whom it may concern,

We are writing to you in support of the proposed 73-unit mixed-use development, including 6 dedicated Very Low Income units and 5,354 square feet of commercial space, at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF. We urge the city to grant an off-menu waiver to allow a maximum Floor Area Ratio (FAR) of 3.25:1 in lieu of the 1.5 permitted by the C2-1VL Zone. We also urge the city to grant an off-menu waiver to allow a height of 56 feet overall, with a limit of 45 feet within 50 feet of the adjacent R1 zone, in lieu of the transitional height requirement, since the project is not within 1,500 feet of a Metro Rapid bus stop.

The greater Los Angeles region is facing a severe housing shortage. This project will provide much needed housing. By creating new housing in a desirable neighborhood, it will help to reduce issues of gentrification and displacement in other parts of the region. Abundant Housing LA believes that these housing challenges can only be addressed if everyone in the region does their part.

This project is in a great location for housing. It is in a very transit-friendly location with frequent Big Blue Bus service at its corner (Route 8 between Santa Monica and UCLA). Additionally, it is less than one mile from the Metro Expo Line, which runs between Santa Monica and downtown LA, with stops at employment and education centers including Santa Monica College, Sony Studios, USC, LA Trade Tech College, and Staples Center/L.A. Live. There are an elementary school and middle school within one mile, and a recreation center and parks within 1. 5 miles. Many desirable neighborhood amenities such as restaurants and retail are in easy walking and bicycling distance.

It is great to see the developer using the Density Bonus program to bring both market rate and badly needed affordable housing to the city. Affordable housing programs that depend on a percentage of new construction being affordable need a lot of new construction to have an impact, and the city should work to increase the number of developers using the Density Bonus.

This project is a good project for Los Angeles and for the region. Again, we urge the city to grant the Density Bonus On-Menu Incentives and the Waivers of Development Standards.

Best Regards,

The Abundant Housing LA Steering Committee:

Matt Dim

Matt Dixon 620 W Wilson Ave, Unit H Glendale 91203

Mark Vallianatos 3591 Canada St Los Angeles 90065

pot la **Brent Gaisford** Downtown LA resident, CD 14 Los Angeles 90013

Lintan Markth

Me

Leonora Camner 1013 16th St, Unit 102 Santa Monica 90403

Mark Edwards 1174 N Curson Ave, #8 West Hollywood 90046

Gabe Rose

Br C

Chelsea Byers

11701 Gateway Blvd CPC-2018-3430-DB-SPR

1 message

tponton4mv@gmail.com <tponton4mv@gmail.com>

Tue, Mar 19, 2019 at 7:33 PM To: Oliver Netburn <oliver.netburn@lacity.org>, Len Nguyen <len.nguyen@lacity.org>, Hannah Levien <hannah.levien@lacity.org>

Mr. Netburn, Mr. Nguyen, and Ms. Levien,

As I lifelong resident of Mar Vista and co-founder of the Mar Vista Community Council, the Mar Vista Park Advisory Board and the Mar Vista Roller Hockey Rink and League, I am pleased to lend my support to the proposed development at 11701 Gateway Blvd. at the corner of Gateway and Barrington.

The project contains ground floor retail space which will help activate the area with well-lit and community-serving uses and includes 73 housing units, with seven below-market rate, which will provide quality, inclusive housing in Mar Vista. In addition, the project's proximity to the Metro Expo Line and many bus stops will allow residents to live car-free.

Thus far, the developer has shown a commitment to engaging with community members on this project. In response to neighborhood concerns they have added car parking to the project, enclosed their ground floor commercial outdoor patio space and added additional affordable housing to the project. Significantly, the developer has also committed to landscaping the medians on Gateway Blvd. on both sides of Barrington Ave. As a resident and business owner in the area I cannot express how much of a benefit this will be to the community and I look forward to a continuing dialogue with the developer as this project moves forward.

Please approve this project.

Sincerely,

Tom Ponton

310-710-1015

11701 Gateway Project

1 message

JOSHUA GILBERT BAUM <joshuabaum93@ucla.edu> Wed, Mar 13, 2019 at 3:49 PM To: Hannah Levien <Hannah.Levien@lacity.org>, len.nguyen@lacity.org, oliver.netburn@lacity.org

Dear Mr. Netburn, Mr. Nguyen and Ms. Levien,

I am a Mar Vista resident and I am writing to you today in support of the proposed 73-unit mixed-use development at 11701 Gateway Blvd in Mar Vista. For the reasons below, I urge you to approve this project.

Los Angeles is in the midst of a severe housing crisis and this project will replace what is now entirely commercial space with 73 new units of housing for Mar Vista. It also includes 6 affordable units – which are a crucial component of making sure that Mar Vista and Los Angeles remains open to all residents. The new ground level commercial space and new sidewalks, combined with the new housing on site, will create a pedestrian-oriented space that will serve this community for decades to come.

Importantly, this project is in a great location for new housing. There is frequent Big Blue Bus service right surrounding the site and it is walking distance from the Metro Expo Line. This project will provide badly needed housing in a location that will encourage people to live without a car and use alternative forms of transportation like bikes and scooters – which I was also happy to see the project accommodate.

I urge you to approve this project!

Thank you,

Joshua Baum 3101 Sawtelle Blvd Apt 322 Los Angeles, CA 90066

Development in Mar Vista

1 message

Jeremy Abbott <jeremykeithabbott@gmail.com> To: oliver.netburn@lacity.org, len.nguyen@lacity.org, Hannah.levien@lacity.org Tue, Feb 19, 2019 at 10:43 AM

Dear Mr. Netburn, Mr. Nguyen and Ms. Levien,

As a Mar Vista resident, I would like to urge you to support and approve the proposed project at 11701 Gateway Blvd.

Replacing the current commercial center at the site with 73 units of housing is exactly what we need in Mar Vista. This project is situated walking distance from the Metro Expo Line, which will help get residents out of their cars and on to public transit, helping to reduce traffic and increase pedestrian activity at Gateway and Barrington and in Mar Vista.

In addition, the ground floor commercial/retail uses of this project are very open and well-lit and will help activate the corner with so many new pedestrian, bike and scooter uses. It will be much more enjoyable and safe to walk, sit or spend time in Mar Vista with projects like this.

I am excited about this project and I urge you to approve it!

Thank you,

Jeremy Abbott

3271 Sawtelle Blvd.

Los Angeles, CA 90066

Fwd: Support for proposed 73-unit mixed-use development at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF

1 message

Len Nguyen <len.nguyen@lacity.org> To: Oliver Netburn <oliver.netburn@lacity.org> Wed, May 29, 2019 at 1:42 PM

FYI...

Len Nguyen Senior Planning Deputy Councilmember Mike Bonin City of Los Angeles 213-473-7011 | www.11thdistrict.com

Sign Up for Mike's Email Updates

Download the City of Los Angeles MyLA311 app for smartphones!

ANDROID APP ON Cownload on the Coogle play

MyLA311 links Angelenos with the services and information they need to enjoy their city, beautify their community and stay connected with their local

------ Forwarded message ------From: **Daniel Ahadian** <daniel@everyactioncustom.com> Date: Sun, Mar 24, 2019 at 7:25 PM Subject: Support for proposed 73-unit mixed-use development at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF To: <Hannah.levien@lacity.org>

Dear Hannah Levien,

I am writing to you in support of the proposed 73-unit mixed-use development, including 6 dedicated Very Low Income units and 5,354 square feet of commercial space, at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF. I urge the city to grant an off-menu waiver to allow a maximum Floor Area Ratio (FAR) of 3.25:1 in lieu of the 1.5 permitted by the C2-1VL Zone. I also urge the city to grant an off-menu waiver to allow a height of 56 feet overall, with a limit of 45 feet within 50 feet of the adjacent R1 zone, in lieu of the transitional height requirement, since the project is not within 1,500 feet of a Metro Rapid bus stop.

The greater Los Angeles region is facing a severe housing shortage. This project will provide much needed housing. By creating new housing in a desirable neighborhood, it will help to reduce issues of gentrification and displacement in other parts of the region. Abundant Housing LA believes that these housing challenges can only be addressed if everyone in the region does their part.

This project is in a great location for housing. It is in a very transit-friendly location with frequent Big Blue Bus service at its corner (Route 8 between Santa Monica and UCLA). Additionally, it is less than one mile from the Metro Expo Line, which runs between Santa Monica and downtown LA, with stops at employment and education centers including Santa Monica College, Sony Studios, USC, LA Trade Tech College, and Staples Center/L.A. Live. There are an elementary school and middle school within one mile, and a recreation center and parks within 1.5 miles. Many desirable neighborhood amenities such as restaurants and retail are in easy walking and bicycling distance.

It is great to see the developer using the Density Bonus program to bring both market rate and badly needed affordable housing to the city. Affordable housing programs that depend on a percentage of new construction being affordable need a lot of new construction to have an impact, and the city should work to increase the number of developers using the Density Bonus.

6/4/2019 City of Los Angeles Mail - Fwd: Support for proposed 73-unit mixed-use development at 11701 Gateway Blvd, cases CPC-2018-3430-DB-...

This project is a good project for Los Angeles and for the region. Again, I urge the city to grant the Density Bonus On-Menu Incentives and the Waivers of Development Standards.

Personally sent by Daniel Ahadian using Abundant Housing LA's Adovcacy Tool. Abundant Housing LA is a grassroots organization dedicated to advocacting for more housing.

Sincerely, Daniel Ahadian Los Angeles, CA 90019 daniel@nurdevelopment.com

Hannah Levien Field Deputy - Del Rey/Mar Vista Councilmember Mike Bonin City of Los Angeles 213-265-5384 | www.11thdistrict.com

Sign Up for Mike's Email Updates

Download the City of Los Angeles MyLA311 app for smartphones!

MyLA311 links Angelenos with the services and information they need to enjoy their city, beautify their community and stay connected with their local government. With MyLA311, City of Los Angeles information and services are just a few taps away.

Support for proposed 73-unit mixed-use development at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF

1 message

Daniel Ahadian <daniel@everyactioncustom.com> Reply-To: daniel@nurdevelopment.com To: oliver.netburn@lacity.org Sun, Mar 24, 2019 at 7:25 PM

Dear Oliver Netburn,

I am writing to you in support of the proposed 73-unit mixed-use development, including 6 dedicated Very Low Income units and 5,354 square feet of commercial space, at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF. I urge the city to grant an off-menu waiver to allow a maximum Floor Area Ratio (FAR) of 3.25:1 in lieu of the 1.5 permitted by the C2-1VL Zone. I also urge the city to grant an off-menu waiver to allow a height of 56 feet overall, with a limit of 45 feet within 50 feet of the adjacent R1 zone, in lieu of the transitional height requirement, since the project is not within 1,500 feet of a Metro Rapid bus stop.

The greater Los Angeles region is facing a severe housing shortage. This project will provide much needed housing. By creating new housing in a desirable neighborhood, it will help to reduce issues of gentrification and displacement in other parts of the region. Abundant Housing LA believes that these housing challenges can only be addressed if everyone in the region does their part.

This project is in a great location for housing. It is in a very transit-friendly location with frequent Big Blue Bus service at its corner (Route 8 between Santa Monica and UCLA). Additionally, it is less than one mile from the Metro Expo Line, which runs between Santa Monica and downtown LA, with stops at employment and education centers including Santa Monica College, Sony Studios, USC, LA Trade Tech College, and Staples Center/L.A. Live. There are an elementary school and middle school within one mile, and a recreation center and parks within 1. 5 miles. Many desirable neighborhood amenities such as restaurants and retail are in easy walking and bicycling distance.

It is great to see the developer using the Density Bonus program to bring both market rate and badly needed affordable housing to the city. Affordable housing programs that depend on a percentage of new construction being affordable need a lot of new construction to have an impact, and the city should work to increase the number of developers using the Density Bonus.

This project is a good project for Los Angeles and for the region. Again, I urge the city to grant the Density Bonus On-Menu Incentives and the Waivers of Development Standards.

Personally sent by Daniel Ahadian using Abundant Housing LA's Adovcacy Tool. Abundant Housing LA is a grassroots organization dedicated to advocacting for more housing.

Sincerely, Daniel Ahadian Los Angeles, CA 90019 daniel@nurdevelopment.com

Support for proposed 73-unit mixed-use development at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF

1 message

David Barboza <dejaybe@everyactioncustom.com> Reply-To: dejaybe@gmail.com To: oliver.netburn@lacity.org Wed, Mar 6, 2019 at 9:03 PM

Dear Oliver Netburn,

I am writing to you in support of the proposed 73-unit mixed-use development, including 6 dedicated Very Low Income units and 5,354 square feet of commercial space, at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF. I urge the city to grant an off-menu waiver to allow a maximum Floor Area Ratio (FAR) of 3.25:1 in lieu of the 1.5 permitted by the C2-1VL Zone. I also urge the city to grant an off-menu waiver to allow a height of 56 feet overall, with a limit of 45 feet within 50 feet of the adjacent R1 zone, in lieu of the transitional height requirement, since the project is not within 1,500 feet of a Metro Rapid bus stop.

The greater Los Angeles region is facing a severe housing shortage. This project will provide much needed housing. By creating new housing in a desirable neighborhood, it will help to reduce issues of gentrification and displacement in other parts of the region. Abundant Housing LA believes that these housing challenges can only be addressed if everyone in the region does their part.

This project is in a great location for housing. It is in a very transit-friendly location with frequent Big Blue Bus service at its corner (Route 8 between Santa Monica and UCLA). Additionally, it is less than one mile from the Metro Expo Line, which runs between Santa Monica and downtown LA, with stops at employment and education centers including Santa Monica College, Sony Studios, USC, LA Trade Tech College, and Staples Center/L.A. Live. There are an elementary school and middle school within one mile, and a recreation center and parks within 1. 5 miles. Many desirable neighborhood amenities such as restaurants and retail are in easy walking and bicycling distance.

It is great to see the developer using the Density Bonus program to bring both market rate and badly needed affordable housing to the city. Affordable housing programs that depend on a percentage of new construction being affordable need a lot of new construction to have an impact, and the city should work to increase the number of developers using the Density Bonus.

This project is a good project for Los Angeles and for the region. Again, I urge the city to grant the Density Bonus On-Menu Incentives and the Waivers of Development Standards.

Personally sent by David Barboza using Abundant Housing LA's Adovcacy Tool. Abundant Housing LA is a grassroots organization dedicated to advocacting for more housing.

Sincerely, David Barboza Whittier, CA 90602 dejaybe@gmail.com

Support for proposed 73-unit mixed-use development at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF

1 message

Michael Busse <michaelrbusse@everyactioncustom.com> Reply-To: michaelrbusse@gmail.com To: oliver.netburn@lacity.org Wed, Mar 6, 2019 at 8:56 PM

Dear Oliver Netburn,

I am writing to you in support of the proposed 73-unit mixed-use development, including 6 dedicated Very Low Income units and 5,354 square feet of commercial space, at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF. I urge the city to grant an off-menu waiver to allow a maximum Floor Area Ratio (FAR) of 3.25:1 in lieu of the 1.5 permitted by the C2-1VL Zone. I also urge the city to grant an off-menu waiver to allow a height of 56 feet overall, with a limit of 45 feet within 50 feet of the adjacent R1 zone, in lieu of the transitional height requirement, since the project is not within 1,500 feet of a Metro Rapid bus stop.

The greater Los Angeles region is facing a severe housing shortage. This project will provide much-needed housing. By creating new housing in a desirable neighborhood, it will help to reduce issues of gentrification and displacement in other parts of the region. Abundant Housing LA and I believe that these housing challenges can only be addressed if everyone in the region does their part.

This project is in a great location for housing. It is in a very transit-friendly location with frequent Big Blue Bus service at its corner (Route 8 between Santa Monica and UCLA). Additionally, it is less than one mile from the Metro Expo Line, which runs between Santa Monica and downtown LA, with stops at employment and education centers including Santa Monica College, Sony Studios, USC, LA Trade Tech College, and Staples Center/L.A. Live. There are an elementary school and middle school within one mile, and a recreation center and parks within 1. 5 miles. Many desirable neighborhood amenities such as restaurants and retail are in easy walking and bicycling distance.

It is great to see the developer using the Density Bonus program to bring both market rate and badly needed affordable housing to the city. Affordable housing programs that depend on a percentage of new construction being affordable need a lot of new construction to have an impact, and the city should work to increase the number of developers using the Density Bonus.

This project is a good project for Los Angeles and for the region. Again, I urge the city to grant the Density Bonus On-Menu Incentives and the Waivers of Development Standards.

Personally sent by Michael Busse using Abundant Housing LA's Adovcacy Tool. Abundant Housing LA is a grassroots organization dedicated to advocacting for more housing.

Sincerely, Michael Busse Los Angeles, CA 90034 michaelrbusse@gmail.com

Support for proposed 73-unit mixed-use development at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF

1 message

Yurhe Lim <yurhelee@everyactioncustom.com> Reply-To: yurhelee@gmail.com To: oliver.netburn@lacity.org Wed, Mar 6, 2019 at 1:01 PM

Dear Oliver Netburn,

I am writing to you in support of the proposed 73-unit mixed-use development, including 6 dedicated Very Low Income units and 5,354 square feet of commercial space, at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF. I urge the city to grant an off-menu waiver to allow a maximum Floor Area Ratio (FAR) of 3.25:1 in lieu of the 1.5 permitted by the C2-1VL Zone. I also urge the city to grant an off-menu waiver to allow a height of 56 feet overall, with a limit of 45 feet within 50 feet of the adjacent R1 zone, in lieu of the transitional height requirement, since the project is not within 1,500 feet of a Metro Rapid bus stop.

The greater Los Angeles region is facing a severe housing shortage. This project will provide much needed housing. By creating new housing in a desirable neighborhood, it will help to reduce issues of gentrification and displacement in other parts of the region. Abundant Housing LA believes that these housing challenges can only be addressed if everyone in the region does their part.

This project is in a great location for housing. It is in a very transit-friendly location with frequent Big Blue Bus service at its corner (Route 8 between Santa Monica and UCLA). Additionally, it is less than one mile from the Metro Expo Line, which runs between Santa Monica and downtown LA, with stops at employment and education centers including Santa Monica College, Sony Studios, USC, LA Trade Tech College, and Staples Center/L.A. Live. There are an elementary school and middle school within one mile, and a recreation center and parks within 1. 5 miles. Many desirable neighborhood amenities such as restaurants and retail are in easy walking and bicycling distance.

It is great to see the developer using the Density Bonus program to bring both market rate and badly needed affordable housing to the city. Affordable housing programs that depend on a percentage of new construction being affordable need a lot of new construction to have an impact, and the city should work to increase the number of developers using the Density Bonus.

This project is a good project for Los Angeles and for the region. Again, I urge the city to grant the Density Bonus On-Menu Incentives and the Waivers of Development Standards.

Personally sent by Yurhe Lim using Abundant Housing LA's Adovcacy Tool. Abundant Housing LA is a grassroots organization dedicated to advocacting for more housing.

Sincerely, Yurhe Lim Los Angeles, CA 90015 yurhelee@gmail.com

Support for proposed 73-unit mixed-use development at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF

1 message

Ann Bickerton <aebickerton@everyactioncustom.com> Reply-To: aebickerton@gmail.com To: oliver.netburn@lacity.org Tue, Mar 5, 2019 at 4:23 PM

Dear Oliver Netburn,

I am writing to you in support of the proposed 73-unit mixed-use development, including 6 dedicated Very Low Income units and 5,354 square feet of commercial space, at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF. I urge the city to grant an off-menu waiver to allow a maximum Floor Area Ratio (FAR) of 3.25:1 in lieu of the 1.5 permitted by the C2-1VL Zone. I also urge the city to grant an off-menu waiver to allow a height of 56 feet overall, with a limit of 45 feet within 50 feet of the adjacent R1 zone, in lieu of the transitional height requirement, since the project is not within 1,500 feet of a Metro Rapid bus stop.

The greater Los Angeles region is facing a severe housing shortage. This project will provide much needed housing. By creating new housing in a desirable neighborhood, it will help to reduce issues of gentrification and displacement in other parts of the region. Abundant Housing LA believes that these housing challenges can only be addressed if everyone in the region does their part.

This project is in a great location for housing. It is in a very transit-friendly location with frequent Big Blue Bus service at its corner (Route 8 between Santa Monica and UCLA). Additionally, it is less than one mile from the Metro Expo Line, which runs between Santa Monica and downtown LA, with stops at employment and education centers including Santa Monica College, Sony Studios, USC, LA Trade Tech College, and Staples Center/L.A. Live. There are an elementary school and middle school within one mile, and a recreation center and parks within 1. 5 miles. Many desirable neighborhood amenities such as restaurants and retail are in easy walking and bicycling distance.

It is great to see the developer using the Density Bonus program to bring both market rate and badly needed affordable housing to the city. Affordable housing programs that depend on a percentage of new construction being affordable need a lot of new construction to have an impact, and the city should work to increase the number of developers using the Density Bonus.

This project is a good project for Los Angeles and for the region. Again, I urge the city to grant the Density Bonus On-Menu Incentives and the Waivers of Development Standards.

Personally sent by Ann Bickerton using Abundant Housing LA's Adovcacy Tool. Abundant Housing LA is a grassroots organization dedicated to advocacting for more housing.

Sincerely, Ann Bickerton Los Angeles, CA 90066 aebickerton@gmail.com

Support for proposed 73-unit mixed-use development at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF

1 message

Nicholas Burns III <nkburns3@everyactioncustom.com> Reply-To: nkburns3@gmail.com To: oliver.netburn@lacity.org Tue, Mar 5, 2019 at 4:22 PM

Dear Oliver Netburn,

As a resident of Sawtelle, I am writing to you in support of the proposed 73-unit mixed-use development, including 6 dedicated Very Low Income units and 5,354 square feet of commercial space, at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF. I urge the city to grant an off-menu waiver to allow a maximum Floor Area Ratio (FAR) of 3.25:1 in lieu of the 1.5 permitted by the C2-1VL Zone. I also urge the city to grant an off-menu waiver to allow a height of 56 feet overall, with a limit of 45 feet within 50 feet of the adjacent R1 zone, in lieu of the transitional height requirement, since the project is not within 1,500 feet of a Metro Rapid bus stop.

The greater Los Angeles region is facing a severe housing shortage. This project will provide much needed housing. By creating new housing in a desirable neighborhood, it will help to reduce issues of gentrification and displacement in other parts of the region. Abundant Housing LA believes that these housing challenges can only be addressed if everyone in the region does their part.

This project is in a great location for housing. It is in a very transit-friendly location with frequent Big Blue Bus service at its corner (Route 8 between Santa Monica and UCLA). Additionally, it is less than one mile from the Metro Expo Line, which runs between Santa Monica and downtown LA, with stops at employment and education centers including Santa Monica College, Sony Studios, USC, LA Trade Tech College, and Staples Center/L.A. Live. There are an elementary school and middle school within one mile, and a recreation center and parks within 1. 5 miles. Many desirable neighborhood amenities such as restaurants and retail are in easy walking and bicycling distance.

It is great to see the developer using the Density Bonus program to bring both market rate and badly needed affordable housing to the city. Affordable housing programs that depend on a percentage of new construction being affordable need a lot of new construction to have an impact, and the city should work to increase the number of developers using the Density Bonus.

This project is a good project for Los Angeles and for the region. Again, I urge the city to grant the Density Bonus On-Menu Incentives and the Waivers of Development Standards.

Personally sent by Nicholas Burns III using Abundant Housing LA's Adovcacy Tool. Abundant Housing LA is a grassroots organization dedicated to advocacting for more housing.

Sincerely, Nicholas Burns III Los Angeles, CA 90025 nkburns3@gmail.com

Support for proposed 73-unit mixed-use development at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF

1 message

Ethan Stanislawski <ethan@everyactioncustom.com> Reply-To: ethan@ethanstanislawski.com To: oliver.netburn@lacity.org Mon, Mar 4, 2019 at 9:34 PM

Dear Oliver Netburn,

I am writing to you in support of the proposed 73-unit mixed-use development, including 6 dedicated Very Low Income units and 5,354 square feet of commercial space, at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF. I urge the city to grant an off-menu waiver to allow a maximum Floor Area Ratio (FAR) of 3.25:1 in lieu of the 1.5 permitted by the C2-1VL Zone. I also urge the city to grant an off-menu waiver to allow a height of 56 feet overall, with a limit of 45 feet within 50 feet of the adjacent R1 zone, in lieu of the transitional height requirement, since the project is not within 1,500 feet of a Metro Rapid bus stop.

The greater Los Angeles region is facing a severe housing shortage. This project will provide much needed housing. By creating new housing in a desirable neighborhood, it will help to reduce issues of gentrification and displacement in other parts of the region. Abundant Housing LA believes that these housing challenges can only be addressed if everyone in the region does their part.

This project is in a great location for housing. It is in a very transit-friendly location with frequent Big Blue Bus service at its corner (Route 8 between Santa Monica and UCLA). Additionally, it is less than one mile from the Metro Expo Line, which runs between Santa Monica and downtown LA, with stops at employment and education centers including Santa Monica College, Sony Studios, USC, LA Trade Tech College, and Staples Center/L.A. Live. There are an elementary school and middle school within one mile, and a recreation center and parks within 1. 5 miles. Many desirable neighborhood amenities such as restaurants and retail are in easy walking and bicycling distance.

It is great to see the developer using the Density Bonus program to bring both market rate and badly needed affordable housing to the city. Affordable housing programs that depend on a percentage of new construction being affordable need a lot of new construction to have an impact, and the city should work to increase the number of developers using the Density Bonus.

This project is a good project for Los Angeles and for the region. Again, I urge the city to grant the Density Bonus On-Menu Incentives and the Waivers of Development Standards.

Personally sent by Ethan Stanislawski using Abundant Housing LA's Adovcacy Tool. Abundant Housing LA is a grassroots organization dedicated to advocacting for more housing.

Sincerely, Ethan Stanislawski Los Angeles, CA 90068 ethan@ethanstanislawski.com

Support for proposed 73-unit mixed-use development at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF

1 message

Matthew Dixon <northendmatt@everyactioncustom.com> Reply-To: northendmatt@gmail.com To: oliver.netburn@lacity.org Mon, Mar 4, 2019 at 8:24 PM

Dear Oliver Netburn,

I am writing to you in support of the proposed 73-unit mixed-use development, including 6 dedicated Very Low Income units and 5,354 square feet of commercial space, at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF. I urge the city to grant an off-menu waiver to allow a maximum Floor Area Ratio (FAR) of 3.25:1 in lieu of the 1.5 permitted by the C2-1VL Zone. I also urge the city to grant an off-menu waiver to allow a height of 56 feet overall, with a limit of 45 feet within 50 feet of the adjacent R1 zone, in lieu of the transitional height requirement, since the project is not within 1,500 feet of a Metro Rapid bus stop.

The greater Los Angeles region is facing a severe housing shortage. This project will provide much needed housing. By creating new housing in a desirable neighborhood, it will help to reduce issues of gentrification and displacement in other parts of the region. Abundant Housing LA believes that these housing challenges can only be addressed if everyone in the region does their part.

This project is in a great location for housing. It is in a very transit-friendly location with frequent Big Blue Bus service at its corner (Route 8 between Santa Monica and UCLA). Additionally, it is less than one mile from the Metro Expo Line, which runs between Santa Monica and downtown LA, with stops at employment and education centers including Santa Monica College, Sony Studios, USC, LA Trade Tech College, and Staples Center/L.A. Live. There are an elementary school and middle school within one mile, and a recreation center and parks within 1. 5 miles. Many desirable neighborhood amenities such as restaurants and retail are in easy walking and bicycling distance.

It is great to see the developer using the Density Bonus program to bring both market rate and badly needed affordable housing to the city. Affordable housing programs that depend on a percentage of new construction being affordable need a lot of new construction to have an impact, and the city should work to increase the number of developers using the Density Bonus.

This project is a good project for Los Angeles and for the region. Again, I urge the city to grant the Density Bonus On-Menu Incentives and the Waivers of Development Standards.

Personally sent by Matthew Dixon using Abundant Housing LA's Adovcacy Tool. Abundant Housing LA is a grassroots organization dedicated to advocacting for more housing.

Sincerely, Matthew Dixon Glendale, CA 91203 northendmatt@gmail.com

Support for proposed 73-unit mixed-use development at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF

1 message

Mark Yetter <mark.yetter1@everyactioncustom.com> Reply-To: mark.yetter1@gmail.com To: oliver.netburn@lacity.org Mon, Mar 4, 2019 at 8:22 PM

Dear Oliver Netburn,

I am writing to you in support of the proposed 73-unit mixed-use development, including 6 dedicated Very Low Income units and 5,354 square feet of commercial space, at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF. I urge the city to grant an off-menu waiver to allow a maximum Floor Area Ratio (FAR) of 3.25:1 in lieu of the 1.5 permitted by the C2-1VL Zone. I also urge the city to grant an off-menu waiver to allow a height of 56 feet overall, with a limit of 45 feet within 50 feet of the adjacent R1 zone, in lieu of the transitional height requirement, since the project is not within 1,500 feet of a Metro Rapid bus stop.

The greater Los Angeles region is facing a severe housing shortage. This project will provide much needed housing. By creating new housing in a desirable neighborhood, it will help to reduce issues of gentrification and displacement in other parts of the region. Abundant Housing LA believes that these housing challenges can only be addressed if everyone in the region does their part.

This project is in a great location for housing. It is in a very transit-friendly location with frequent Big Blue Bus service at its corner (Route 8 between Santa Monica and UCLA). Additionally, it is less than one mile from the Metro Expo Line, which runs between Santa Monica and downtown LA, with stops at employment and education centers including Santa Monica College, Sony Studios, USC, LA Trade Tech College, and Staples Center/L.A. Live. There are an elementary school and middle school within one mile, and a recreation center and parks within 1. 5 miles. Many desirable neighborhood amenities such as restaurants and retail are in easy walking and bicycling distance.

It is great to see the developer using the Density Bonus program to bring both market rate and badly needed affordable housing to the city. Affordable housing programs that depend on a percentage of new construction being affordable need a lot of new construction to have an impact, and the city should work to increase the number of developers using the Density Bonus.

This project is a good project for Los Angeles and for the region. Again, I urge the city to grant the Density Bonus On-Menu Incentives and the Waivers of Development Standards.

Personally sent by Mark Yetter using Abundant Housing LA's Adovcacy Tool. Abundant Housing LA is a grassroots organization dedicated to advocacting for more housing.

Sincerely, Mark Yetter Santa Monica, CA 90403 mark.yetter1@gmail.com

Support for proposed 73-unit mixed-use development at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF

1 message

Matt Stauffer <stauffermt@everyactioncustom.com> Reply-To: stauffermt@gmail.com To: oliver.netburn@lacity.org Mon, Mar 4, 2019 at 8:17 PM

Dear Oliver Netburn,

I am writing to you in support of the proposed 73-unit mixed-use development, including 6 dedicated Very Low Income units and 5,354 square feet of commercial space, at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF. I urge the city to grant an off-menu waiver to allow a maximum Floor Area Ratio (FAR) of 3.25:1 in lieu of the 1.5 permitted by the C2-1VL Zone. I also urge the city to grant an off-menu waiver to allow a height of 56 feet overall, with a limit of 45 feet within 50 feet of the adjacent R1 zone, in lieu of the transitional height requirement, since the project is not within 1,500 feet of a Metro Rapid bus stop.

The greater Los Angeles region is facing a severe housing shortage. This project will provide much needed housing. By creating new housing in a desirable neighborhood, it will help to reduce issues of gentrification and displacement in other parts of the region. Abundant Housing LA believes that these housing challenges can only be addressed if everyone in the region does their part.

This project is in a great location for housing. It is in a very transit-friendly location with frequent Big Blue Bus service at its corner (Route 8 between Santa Monica and UCLA). Additionally, it is less than one mile from the Metro Expo Line, which runs between Santa Monica and downtown LA, with stops at employment and education centers including Santa Monica College, Sony Studios, USC, LA Trade Tech College, and Staples Center/L.A. Live. There are an elementary school and middle school within one mile, and a recreation center and parks within 1. 5 miles. Many desirable neighborhood amenities such as restaurants and retail are in easy walking and bicycling distance.

It is great to see the developer using the Density Bonus program to bring both market rate and badly needed affordable housing to the city. Affordable housing programs that depend on a percentage of new construction being affordable need a lot of new construction to have an impact, and the city should work to increase the number of developers using the Density Bonus.

This project is a good project for Los Angeles and for the region. Again, I urge the city to grant the Density Bonus On-Menu Incentives and the Waivers of Development Standards.

Personally sent by Matt Stauffer using Abundant Housing LA's Adovcacy Tool. Abundant Housing LA is a grassroots organization dedicated to advocacting for more housing.

Sincerely, Matt Stauffer Los Angeles, CA 90006 stauffermt@gmail.com

Support for proposed 73-unit mixed-use development at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF

1 message

Leonora Camner <leonorasc@everyactioncustom.com> Reply-To: leonorasc@gmail.com To: oliver.netburn@lacity.org Mon, Mar 4, 2019 at 8:13 PM

Dear Oliver Netburn,

I am writing to you in support of the proposed 73-unit mixed-use development, including 6 dedicated Very Low Income units and 5,354 square feet of commercial space, at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF. I urge the city to grant an off-menu waiver to allow a maximum Floor Area Ratio (FAR) of 3.25:1 in lieu of the 1.5 permitted by the C2-1VL Zone. I also urge the city to grant an off-menu waiver to allow a height of 56 feet overall, with a limit of 45 feet within 50 feet of the adjacent R1 zone, in lieu of the transitional height requirement, since the project is not within 1,500 feet of a Metro Rapid bus stop.

The greater Los Angeles region is facing a severe housing shortage. This project will provide much needed housing. By creating new housing in a desirable neighborhood, it will help to reduce issues of gentrification and displacement in other parts of the region. Abundant Housing LA believes that these housing challenges can only be addressed if everyone in the region does their part.

This project is in a great location for housing. It is in a very transit-friendly location with frequent Big Blue Bus service at its corner (Route 8 between Santa Monica and UCLA). Additionally, it is less than one mile from the Metro Expo Line, which runs between Santa Monica and downtown LA, with stops at employment and education centers including Santa Monica College, Sony Studios, USC, LA Trade Tech College, and Staples Center/L.A. Live. There are an elementary school and middle school within one mile, and a recreation center and parks within 1. 5 miles. Many desirable neighborhood amenities such as restaurants and retail are in easy walking and bicycling distance.

It is great to see the developer using the Density Bonus program to bring both market rate and badly needed affordable housing to the city. Affordable housing programs that depend on a percentage of new construction being affordable need a lot of new construction to have an impact, and the city should work to increase the number of developers using the Density Bonus.

This project is a good project for Los Angeles and for the region. Again, I urge the city to grant the Density Bonus On-Menu Incentives and the Waivers of Development Standards.

Personally sent by Leonora Camner using Abundant Housing LA's Adovcacy Tool. Abundant Housing LA is a grassroots organization dedicated to advocacting for more housing.

Sincerely, Leonora Camner Santa Monica, CA 90403 leonorasc@gmail.com

Support for proposed 73-unit mixed-use development at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF

1 message

Alex Chen <aznyellojersey@everyactioncustom.com> Reply-To: aznyellojersey@gmail.com To: oliver.netburn@lacity.org Mon, Mar 4, 2019 at 8:07 PM

Dear Oliver Netburn,

I am writing to you in support of the proposed 73-unit mixed-use development, including 6 dedicated Very Low Income units and 5,354 square feet of commercial space, at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF. I urge the city to grant an off-menu waiver to allow a maximum Floor Area Ratio (FAR) of 3.25:1 in lieu of the 1.5 permitted by the C2-1VL Zone. I also urge the city to grant an off-menu waiver to allow a height of 56 feet overall, with a limit of 45 feet within 50 feet of the adjacent R1 zone, in lieu of the transitional height requirement, since the project is not within 1,500 feet of a Metro Rapid bus stop.

The greater Los Angeles region is facing a severe housing shortage. This project will provide much needed housing. By creating new housing in a desirable neighborhood, it will help to reduce issues of gentrification and displacement in other parts of the region. Abundant Housing LA believes that these housing challenges can only be addressed if everyone in the region does their part.

This project is in a great location for housing. It is in a very transit-friendly location with frequent Big Blue Bus service at its corner (Route 8 between Santa Monica and UCLA). Additionally, it is less than one mile from the Metro Expo Line, which runs between Santa Monica and downtown LA, with stops at employment and education centers including Santa Monica College, Sony Studios, USC, LA Trade Tech College, and Staples Center/L.A. Live. There are an elementary school and middle school within one mile, and a recreation center and parks within 1. 5 miles. Many desirable neighborhood amenities such as restaurants and retail are in easy walking and bicycling distance.

It is great to see the developer using the Density Bonus program to bring both market rate and badly needed affordable housing to the city. Affordable housing programs that depend on a percentage of new construction being affordable need a lot of new construction to have an impact, and the city should work to increase the number of developers using the Density Bonus.

This project is a good project for Los Angeles and for the region. Again, I urge the city to grant the Density Bonus On-Menu Incentives and the Waivers of Development Standards.

Personally sent by Alex Chen using Abundant Housing LA's Adovcacy Tool. Abundant Housing LA is a grassroots organization dedicated to advocacting for more housing.

Sincerely, Alex Chen Los Angeles, CA 90012 aznyellojersey@gmail.com

Support for proposed 73-unit mixed-use development at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF

1 message

Krystof Litomisky <krystof.litomisky@everyactioncustom.com> Reply-To: krystof.litomisky@gmail.com To: oliver.netburn@lacity.org Mon, Mar 4, 2019 at 7:58 PM

Dear Oliver Netburn,

I am writing to you in support of the proposed 73-unit mixed-use development, including 6 dedicated Very Low Income units and 5,354 square feet of commercial space, at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF. I urge the city to grant an off-menu waiver to allow a maximum Floor Area Ratio (FAR) of 3.25:1 in lieu of the 1.5 permitted by the C2-1VL Zone. I also urge the city to grant an off-menu waiver to allow a height of 56 feet overall, with a limit of 45 feet within 50 feet of the adjacent R1 zone, in lieu of the transitional height requirement, since the project is not within 1,500 feet of a Metro Rapid bus stop.

The greater Los Angeles region is facing a severe housing shortage. This project will provide much needed housing. By creating new housing in a desirable neighborhood, it will help to reduce issues of gentrification and displacement in other parts of the region. Abundant Housing LA believes that these housing challenges can only be addressed if everyone in the region does their part.

This project is in a great location for housing. It is in a very transit-friendly location with frequent Big Blue Bus service at its corner (Route 8 between Santa Monica and UCLA). Additionally, it is less than one mile from the Metro Expo Line, which runs between Santa Monica and downtown LA, with stops at employment and education centers including Santa Monica College, Sony Studios, USC, LA Trade Tech College, and Staples Center/L.A. Live. There are an elementary school and middle school within one mile, and a recreation center and parks within 1. 5 miles. Many desirable neighborhood amenities such as restaurants and retail are in easy walking and bicycling distance.

It is great to see the developer using the Density Bonus program to bring both market rate and badly needed affordable housing to the city. Affordable housing programs that depend on a percentage of new construction being affordable need a lot of new construction to have an impact, and the city should work to increase the number of developers using the Density Bonus.

This project is a good project for Los Angeles and for the region. Again, I urge the city to grant the Density Bonus On-Menu Incentives and the Waivers of Development Standards.

Personally sent by Krystof Litomisky using Abundant Housing LA's Adovcacy Tool. Abundant Housing LA is a grassroots organization dedicated to advocacting for more housing.

Sincerely, Krystof Litomisky Studio City, CA 91604 krystof.litomisky@gmail.com

Support for proposed 73-unit mixed-use development at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF

1 message

Babak Mozaffari <bm@everyactioncustom.com> Reply-To: bm@contactbm.com To: oliver.netburn@lacity.org Mon, Mar 4, 2019 at 7:16 PM

Dear Oliver Netburn,

I am writing to you in support of the proposed 73-unit mixed-use development, including 6 dedicated Very Low Income units and 5,354 square feet of commercial space, at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF. I urge the city to grant an off-menu waiver to allow a maximum Floor Area Ratio (FAR) of 3.25:1 in lieu of the 1.5 permitted by the C2-1VL Zone. I also urge the city to grant an off-menu waiver to allow a height of 56 feet overall, with a limit of 45 feet within 50 feet of the adjacent R1 zone, in lieu of the transitional height requirement, since the project is not within 1,500 feet of a Metro Rapid bus stop.

The greater Los Angeles region is facing a severe housing shortage. This project will provide much needed housing. By creating new housing in a desirable neighborhood, it will help to reduce issues of gentrification and displacement in other parts of the region. Abundant Housing LA believes that these housing challenges can only be addressed if everyone in the region does their part.

This project is in a great location for housing. It is in a very transit-friendly location with frequent Big Blue Bus service at its corner (Route 8 between Santa Monica and UCLA). Additionally, it is less than one mile from the Metro Expo Line, which runs between Santa Monica and downtown LA, with stops at employment and education centers including Santa Monica College, Sony Studios, USC, LA Trade Tech College, and Staples Center/L.A. Live. There are an elementary school and middle school within one mile, and a recreation center and parks within 1. 5 miles. Many desirable neighborhood amenities such as restaurants and retail are in easy walking and bicycling distance.

It is great to see the developer using the Density Bonus program to bring both market rate and badly needed affordable housing to the city. Affordable housing programs that depend on a percentage of new construction being affordable need a lot of new construction to have an impact, and the city should work to increase the number of developers using the Density Bonus.

This project is a good project for Los Angeles and for the region. Again, I urge the city to grant the Density Bonus On-Menu Incentives and the Waivers of Development Standards.

Personally sent by Babak Mozaffari using Abundant Housing LA's Adovcacy Tool. Abundant Housing LA is a grassroots organization dedicated to advocacting for more housing.

Sincerely, Babak Mozaffari Santa Monica, CA 90401 bm@contactbm.com

Support for proposed 73-unit mixed-use development at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF

1 message

john contreras <johnaco@everyactioncustom.com> Reply-To: johnaco@verizon.net To: oliver.netburn@lacity.org Mon, Mar 4, 2019 at 6:35 PM

Dear Oliver Netburn,

I am writing to you in support of the proposed 73-unit mixed-use development, including 6 dedicated Very Low Income units and 5,354 square feet of commercial space, at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF. I urge the city to grant an off-menu waiver to allow a maximum Floor Area Ratio (FAR) of 3.25:1 in lieu of the 1.5 permitted by the C2-1VL Zone. I also urge the city to grant an off-menu waiver to allow a height of 56 feet overall, with a limit of 45 feet within 50 feet of the adjacent R1 zone, in lieu of the transitional height requirement, since the project is not within 1,500 feet of a Metro Rapid bus stop.

The greater Los Angeles region is facing a severe housing shortage. This project will provide much needed housing. By creating new housing in a desirable neighborhood, it will help to reduce issues of gentrification and displacement in other parts of the region. Abundant Housing LA believes that these housing challenges can only be addressed if everyone in the region does their part.

This project is in a great location for housing. It is in a very transit-friendly location with frequent Big Blue Bus service at its corner (Route 8 between Santa Monica and UCLA). Additionally, it is less than one mile from the Metro Expo Line, which runs between Santa Monica and downtown LA, with stops at employment and education centers including Santa Monica College, Sony Studios, USC, LA Trade Tech College, and Staples Center/L.A. Live. There are an elementary school and middle school within one mile, and a recreation center and parks within 1. 5 miles. Many desirable neighborhood amenities such as restaurants and retail are in easy walking and bicycling distance.

It is great to see the developer using the Density Bonus program to bring both market rate and badly needed affordable housing to the city. Affordable housing programs that depend on a percentage of new construction being affordable need a lot of new construction to have an impact, and the city should work to increase the number of developers using the Density Bonus.

This project is a good project for Los Angeles and for the region. Again, I urge the city to grant the Density Bonus On-Menu Incentives and the Waivers of Development Standards.

Personally sent by john contreras using Abundant Housing LA's Adovcacy Tool. Abundant Housing LA is a grassroots organization dedicated to advocacting for more housing.

Sincerely, john contreras Long Beach, CA 90803 johnaco@verizon.net

Support for proposed 73-unit mixed-use development at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF

1 message

Bret Contreras <bretmattc@everyactioncustom.com> Reply-To: bretmattc@gmail.com To: oliver.netburn@lacity.org Mon, Mar 4, 2019 at 6:19 PM

Dear Oliver Netburn,

I am writing to you in support of the proposed 73-unit mixed-use development, including 6 dedicated Very Low Income units and 5,354 square feet of commercial space, at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF. I urge the city to grant an off-menu waiver to allow a maximum Floor Area Ratio (FAR) of 3.25:1 in lieu of the 1.5 permitted by the C2-1VL Zone. I also urge the city to grant an off-menu waiver to allow a height of 56 feet overall, with a limit of 45 feet within 50 feet of the adjacent R1 zone, in lieu of the transitional height requirement, since the project is not within 1,500 feet of a Metro Rapid bus stop.

The greater Los Angeles region is facing a severe housing shortage. This project will provide much needed housing. By creating new housing in a desirable neighborhood, it will help to reduce issues of gentrification and displacement in other parts of the region. Abundant Housing LA believes that these housing challenges can only be addressed if everyone in the region does their part.

This project is in a great location for housing. It is in a very transit-friendly location with frequent Big Blue Bus service at its corner (Route 8 between Santa Monica and UCLA). Additionally, it is less than one mile from the Metro Expo Line, which runs between Santa Monica and downtown LA, with stops at employment and education centers including Santa Monica College, Sony Studios, USC, LA Trade Tech College, and Staples Center/L.A. Live. There are an elementary school and middle school within one mile, and a recreation center and parks within 1. 5 miles. Many desirable neighborhood amenities such as restaurants and retail are in easy walking and bicycling distance.

It is great to see the developer using the Density Bonus program to bring both market rate and badly needed affordable housing to the city. Affordable housing programs that depend on a percentage of new construction being affordable need a lot of new construction to have an impact, and the city should work to increase the number of developers using the Density Bonus.

This project is a good project for Los Angeles and for the region. Again, I urge the city to grant the Density Bonus On-Menu Incentives and the Waivers of Development Standards.

Personally sent by Bret Contreras using Abundant Housing LA's Adovcacy Tool. Abundant Housing LA is a grassroots organization dedicated to advocacting for more housing.

Sincerely, Bret Contreras Playa Vista, CA 90094 bretmattc@gmail.com

Support for proposed 73-unit mixed-use development at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF

1 message

Virginia Postrel <vp@everyactioncustom.com> Reply-To: vp@vpostrel.com To: oliver.netburn@lacity.org Mon, Mar 4, 2019 at 5:52 PM

Dear Oliver Netburn,

I am writing to you in support of the proposed 73-unit mixed-use development, including 6 dedicated Very Low Income units and 5,354 square feet of commercial space, at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF. I urge the city to grant an off-menu waiver to allow a maximum Floor Area Ratio (FAR) of 3.25:1 in lieu of the 1.5 permitted by the C2-1VL Zone. I also urge the city to grant an off-menu waiver to allow a height of 56 feet overall, with a limit of 45 feet within 50 feet of the adjacent R1 zone, in lieu of the transitional height requirement, since the project is not within 1,500 feet of a Metro Rapid bus stop.

The greater Los Angeles region is facing a severe housing shortage. This project will provide much needed housing. By creating new housing in a desirable neighborhood, it will help to reduce issues of gentrification and displacement in other parts of the region. Abundant Housing LA believes that these housing challenges can only be addressed if everyone in the region does their part.

This project is in a great location for housing. It is in a very transit-friendly location with frequent Big Blue Bus service at its corner (Route 8 between Santa Monica and UCLA). Additionally, it is less than one mile from the Metro Expo Line, which runs between Santa Monica and downtown LA, with stops at employment and education centers including Santa Monica College, Sony Studios, USC, LA Trade Tech College, and Staples Center/L.A. Live. There are an elementary school and middle school within one mile, and a recreation center and parks within 1. 5 miles. Many desirable neighborhood amenities such as restaurants and retail are in easy walking and bicycling distance.

It is great to see the developer using the Density Bonus program to bring both market rate and badly needed affordable housing to the city. Affordable housing programs that depend on a percentage of new construction being affordable need a lot of new construction to have an impact, and the city should work to increase the number of developers using the Density Bonus.

This project is a good project for Los Angeles and for the region. Again, I urge the city to grant the Density Bonus On-Menu Incentives and the Waivers of Development Standards.

Personally sent by Virginia Postrel using Abundant Housing LA's Adovcacy Tool. Abundant Housing LA is a grassroots organization dedicated to advocacting for more housing.

Sincerely, Virginia Postrel Los Angeles, CA 90025 vp@vpostrel.com

Support for proposed 73-unit mixed-use development at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF

1 message

GREGORY DINA <gregdina@everyactioncustom.com> Reply-To: gregdina@gmail.com To: oliver.netburn@lacity.org Mon, Mar 4, 2019 at 5:04 PM

Dear Oliver Netburn,

I am writing to you in support of the proposed 73-unit mixed-use development, including 6 dedicated Very Low Income units and 5,354 square feet of commercial space, at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF. I urge the city to grant an off-menu waiver to allow a maximum Floor Area Ratio (FAR) of 3.25:1 in lieu of the 1.5 permitted by the C2-1VL Zone. I also urge the city to grant an off-menu waiver to allow a height of 56 feet overall, with a limit of 45 feet within 50 feet of the adjacent R1 zone, in lieu of the transitional height requirement, since the project is not within 1,500 feet of a Metro Rapid bus stop.

The greater Los Angeles region is facing a severe housing shortage. This project will provide much needed housing. By creating new housing in a desirable neighborhood, it will help to reduce issues of gentrification and displacement in other parts of the region. Abundant Housing LA believes that these housing challenges can only be addressed if everyone in the region does their part.

This project is in a great location for housing. It is in a very transit-friendly location with frequent Big Blue Bus service at its corner (Route 8 between Santa Monica and UCLA). Additionally, it is less than one mile from the Metro Expo Line, which runs between Santa Monica and downtown LA, with stops at employment and education centers including Santa Monica College, Sony Studios, USC, LA Trade Tech College, and Staples Center/L.A. Live. There are an elementary school and middle school within one mile, and a recreation center and parks within 1. 5 miles. Many desirable neighborhood amenities such as restaurants and retail are in easy walking and bicycling distance.

It is great to see the developer using the Density Bonus program to bring both market rate and badly needed affordable housing to the city. Affordable housing programs that depend on a percentage of new construction being affordable need a lot of new construction to have an impact, and the city should work to increase the number of developers using the Density Bonus.

This project is a good project for Los Angeles and for the region. Again, I urge the city to grant the Density Bonus On-Menu Incentives and the Waivers of Development Standards.

Personally sent by GREGORY DINA using Abundant Housing LA's Adovcacy Tool. Abundant Housing LA is a grassroots organization dedicated to advocacting for more housing.

Sincerely, GREGORY DINA Los Angeles, CA 90045 gregdina@gmail.com

Support for proposed 73-unit mixed-use development at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF

1 message

NEEL SODHA <neel.sodha@everyactioncustom.com> Reply-To: neel.sodha@gmail.com To: oliver.netburn@lacity.org Mon, Mar 4, 2019 at 5:04 PM

Dear Oliver Netburn,

I am writing to you in support of the proposed 73-unit mixed-use development, including 6 dedicated Very Low Income units and 5,354 square feet of commercial space, at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF. I urge the city to grant an off-menu waiver to allow a maximum Floor Area Ratio (FAR) of 3.25:1 in lieu of the 1.5 permitted by the C2-1VL Zone. I also urge the city to grant an off-menu waiver to allow a height of 56 feet overall, with a limit of 45 feet within 50 feet of the adjacent R1 zone, in lieu of the transitional height requirement, since the project is not within 1,500 feet of a Metro Rapid bus stop.

The greater Los Angeles region is facing a severe housing shortage. This project will provide much needed housing. By creating new housing in a desirable neighborhood, it will help to reduce issues of gentrification and displacement in other parts of the region. Abundant Housing LA believes that these housing challenges can only be addressed if everyone in the region does their part.

This project is in a great location for housing. It is in a very transit-friendly location with frequent Big Blue Bus service at its corner (Route 8 between Santa Monica and UCLA). Additionally, it is less than one mile from the Metro Expo Line, which runs between Santa Monica and downtown LA, with stops at employment and education centers including Santa Monica College, Sony Studios, USC, LA Trade Tech College, and Staples Center/L.A. Live. There are an elementary school and middle school within one mile, and a recreation center and parks within 1. 5 miles. Many desirable neighborhood amenities such as restaurants and retail are in easy walking and bicycling distance.

It is great to see the developer using the Density Bonus program to bring both market rate and badly needed affordable housing to the city. Affordable housing programs that depend on a percentage of new construction being affordable need a lot of new construction to have an impact, and the city should work to increase the number of developers using the Density Bonus.

This project is a good project for Los Angeles and for the region. Again, I urge the city to grant the Density Bonus On-Menu Incentives and the Waivers of Development Standards.

Personally sent by Neel Sodha using Abundant Housing LA's Advocacy Tool. Abundant Housing LA is a grassroots organization dedicated to advocating for more housing.

Sincerely, NEEL SODHA Los Angeles, CA 90015 neel.sodha@gmail.com

Support for proposed 73-unit mixed-use development at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF

1 message

Jamison Bradley <jsbradley523@everyactioncustom.com> Reply-To: jsbradley523@gmail.com To: oliver.netburn@lacity.org Mon, Mar 4, 2019 at 4:07 PM

Dear Oliver Netburn,

I am writing to you in support of the proposed 73-unit mixed-use development, including 6 dedicated Very Low Income units and 5,354 square feet of commercial space, at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF. I urge the city to grant an off-menu waiver to allow a maximum Floor Area Ratio (FAR) of 3.25:1 in lieu of the 1.5 permitted by the C2-1VL Zone. I also urge the city to grant an off-menu waiver to allow a height of 56 feet overall, with a limit of 45 feet within 50 feet of the adjacent R1 zone, in lieu of the transitional height requirement, since the project is not within 1,500 feet of a Metro Rapid bus stop.

The greater Los Angeles region is facing a severe housing shortage. This project will provide much needed housing. By creating new housing in a desirable neighborhood, it will help to reduce issues of gentrification and displacement in other parts of the region. Abundant Housing LA believes that these housing challenges can only be addressed if everyone in the region does their part.

This project is in a great location for housing. It is in a very transit-friendly location with frequent Big Blue Bus service at its corner (Route 8 between Santa Monica and UCLA). Additionally, it is less than one mile from the Metro Expo Line, which runs between Santa Monica and downtown LA, with stops at employment and education centers including Santa Monica College, Sony Studios, USC, LA Trade Tech College, and Staples Center/L.A. Live. There are an elementary school and middle school within one mile, and a recreation center and parks within 1. 5 miles. Many desirable neighborhood amenities such as restaurants and retail are in easy walking and bicycling distance.

It is great to see the developer using the Density Bonus program to bring both market rate and badly needed affordable housing to the city. Affordable housing programs that depend on a percentage of new construction being affordable need a lot of new construction to have an impact, and the city should work to increase the number of developers using the Density Bonus.

This project is a good project for Los Angeles and for the region. Again, I urge the city to grant the Density Bonus On-Menu Incentives and the Waivers of Development Standards.

Personally sent by Jamison Bradley using Abundant Housing LA's Adovcacy Tool. Abundant Housing LA is a grassroots organization dedicated to advocacting for more housing.

Sincerely, Jamison Bradley Los Angeles, CA 90034 jsbradley523@gmail.com

Support for proposed 73-unit mixed-use development at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF

1 message

Victoria Englert <vyki.englert@everyactioncustom.com> Reply-To: vyki.englert@gmail.com To: oliver.netburn@lacity.org Mon, Mar 4, 2019 at 3:54 PM

Dear Oliver Netburn,

I am writing to you in support of the proposed 73-unit mixed-use development, including 6 dedicated Very Low Income units and 5,354 square feet of commercial space, at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF. I urge the city to grant an off-menu waiver to allow a maximum Floor Area Ratio (FAR) of 3.25:1 in lieu of the 1.5 permitted by the C2-1VL Zone. I also urge the city to grant an off-menu waiver to allow a height of 56 feet overall, with a limit of 45 feet within 50 feet of the adjacent R1 zone, in lieu of the transitional height requirement, since the project is not within 1,500 feet of a Metro Rapid bus stop.

The greater Los Angeles region is facing a severe housing shortage. This project will provide much needed housing. By creating new housing in a desirable neighborhood, it will help to reduce issues of gentrification and displacement in other parts of the region. Abundant Housing LA believes that these housing challenges can only be addressed if everyone in the region does their part.

This project is in a great location for housing. It is in a very transit-friendly location with frequent Big Blue Bus service at its corner (Route 8 between Santa Monica and UCLA). Additionally, it is less than one mile from the Metro Expo Line, which runs between Santa Monica and downtown LA, with stops at employment and education centers including Santa Monica College, Sony Studios, USC, LA Trade Tech College, and Staples Center/L.A. Live. There are an elementary school and middle school within one mile, and a recreation center and parks within 1. 5 miles. Many desirable neighborhood amenities such as restaurants and retail are in easy walking and bicycling distance.

It is great to see the developer using the Density Bonus program to bring both market rate and badly needed affordable housing to the city. Affordable housing programs that depend on a percentage of new construction being affordable need a lot of new construction to have an impact, and the city should work to increase the number of developers using the Density Bonus.

This project is a good project for Los Angeles and for the region. Again, I urge the city to grant the Density Bonus On-Menu Incentives and the Waivers of Development Standards.

Personally sent by Victoria Englert using Abundant Housing LA's Adovcacy Tool. Abundant Housing LA is a grassroots organization dedicated to advocacting for more housing.

Sincerely, Victoria Englert Los Angeles, CA 90065 vyki.englert@gmail.com

Support for proposed 73-unit mixed-use development at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF

1 message

Michael Hayes <michael@everyactioncustom.com> Reply-To: michael@everelle.build To: oliver.netburn@lacity.org Mon, Mar 4, 2019 at 3:39 PM

Dear Oliver Netburn,

I am writing to you in support of the proposed 73-unit mixed-use development, including 6 dedicated Very Low Income units and 5,354 square feet of commercial space, at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF. I urge the city to grant an off-menu waiver to allow a maximum Floor Area Ratio (FAR) of 3.25:1 in lieu of the 1.5 permitted by the C2-1VL Zone. I also urge the city to grant an off-menu waiver to allow a height of 56 feet overall, with a limit of 45 feet within 50 feet of the adjacent R1 zone, in lieu of the transitional height requirement, since the project is not within 1,500 feet of a Metro Rapid bus stop.

The greater Los Angeles region is facing a severe housing shortage. This project will provide much needed housing. By creating new housing in a desirable neighborhood, it will help to reduce issues of gentrification and displacement in other parts of the region. Abundant Housing LA believes that these housing challenges can only be addressed if everyone in the region does their part.

This project is in a great location for housing. It is in a very transit-friendly location with frequent Big Blue Bus service at its corner (Route 8 between Santa Monica and UCLA). Additionally, it is less than one mile from the Metro Expo Line, which runs between Santa Monica and downtown LA, with stops at employment and education centers including Santa Monica College, Sony Studios, USC, LA Trade Tech College, and Staples Center/L.A. Live. There are an elementary school and middle school within one mile, and a recreation center and parks within 1. 5 miles. Many desirable neighborhood amenities such as restaurants and retail are in easy walking and bicycling distance.

It is great to see the developer using the Density Bonus program to bring both market rate and badly needed affordable housing to the city. Affordable housing programs that depend on a percentage of new construction being affordable need a lot of new construction to have an impact, and the city should work to increase the number of developers using the Density Bonus.

This project is a good project for Los Angeles and for the region. Again, I urge the city to grant the Density Bonus On-Menu Incentives and the Waivers of Development Standards.

Personally sent by Michael Hayes using Abundant Housing LA's Adovcacy Tool. Abundant Housing LA is a grassroots organization dedicated to advocacting for more housing.

Sincerely, Michael Hayes Los Angeles, CA 90026 michael@everelle.build

Support for proposed 73-unit mixed-use development at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF

1 message

Zachary Steinert-Threlkeld <zsteinert@everyactioncustom.com> Reply-To: zsteinert@gmail.com To: oliver.netburn@lacity.org Mon, Mar 4, 2019 at 3:35 PM

Dear Oliver Netburn,

I am writing to you in support of the proposed 73-unit mixed-use development, including 6 dedicated Very Low Income units and 5,354 square feet of commercial space, at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF. I urge the city to grant an off-menu waiver to allow a maximum Floor Area Ratio (FAR) of 3.25:1 in lieu of the 1.5 permitted by the C2-1VL Zone. I also urge the city to grant an off-menu waiver to allow a height of 56 feet overall, with a limit of 45 feet within 50 feet of the adjacent R1 zone, in lieu of the transitional height requirement, since the project is not within 1,500 feet of a Metro Rapid bus stop.

The greater Los Angeles region is facing a severe housing shortage. This project will provide much needed housing. By creating new housing in a desirable neighborhood, it will help to reduce issues of gentrification and displacement in other parts of the region. Abundant Housing LA believes that these housing challenges can only be addressed if everyone in the region does their part.

This project is in a great location for housing. It is in a very transit-friendly location with frequent Big Blue Bus service at its corner (Route 8 between Santa Monica and UCLA). Additionally, it is less than one mile from the Metro Expo Line, which runs between Santa Monica and downtown LA, with stops at employment and education centers including Santa Monica College, Sony Studios, USC, LA Trade Tech College, and Staples Center/L.A. Live. There are an elementary school and middle school within one mile, and a recreation center and parks within 1. 5 miles. Many desirable neighborhood amenities such as restaurants and retail are in easy walking and bicycling distance.

It is great to see the developer using the Density Bonus program to bring both market rate and badly needed affordable housing to the city. Affordable housing programs that depend on a percentage of new construction being affordable need a lot of new construction to have an impact, and the city should work to increase the number of developers using the Density Bonus.

This project is a good project for Los Angeles and for the region. Again, I urge the city to grant the Density Bonus On-Menu Incentives and the Waivers of Development Standards.

Personally sent by Zachary Steinert-Threlkeld using Abundant Housing LA's Adovcacy Tool. Abundant Housing LA is a grassroots organization dedicated to advocacting for more housing.

Sincerely, Zachary Steinert-Threlkeld Los Angeles, CA 90029 zsteinert@gmail.com

Support for proposed 73-unit mixed-use development at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF

1 message

Adria Rossi <adriarss@everyactioncustom.com> Reply-To: adriarss@yahoo.com To: oliver.netburn@lacity.org Mon, Mar 4, 2019 at 3:29 PM

Dear Oliver Netburn,

I am writing to you in support of the proposed 73-unit mixed-use development, including 6 dedicated Very Low Income units and 5,354 square feet of commercial space, at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF. I urge the city to grant an off-menu waiver to allow a maximum Floor Area Ratio (FAR) of 3.25:1 in lieu of the 1.5 permitted by the C2-1VL Zone. I also urge the city to grant an off-menu waiver to allow a height of 56 feet overall, with a limit of 45 feet within 50 feet of the adjacent R1 zone, in lieu of the transitional height requirement, since the project is not within 1,500 feet of a Metro Rapid bus stop.

The greater Los Angeles region is facing a severe housing shortage. This project will provide much needed housing. By creating new housing in a desirable neighborhood, it will help to reduce issues of gentrification and displacement in other parts of the region. Abundant Housing LA believes that these housing challenges can only be addressed if everyone in the region does their part.

This project is in a great location for housing. It is in a very transit-friendly location with frequent Big Blue Bus service at its corner (Route 8 between Santa Monica and UCLA). Additionally, it is less than one mile from the Metro Expo Line, which runs between Santa Monica and downtown LA, with stops at employment and education centers including Santa Monica College, Sony Studios, USC, LA Trade Tech College, and Staples Center/L.A. Live. There are an elementary school and middle school within one mile, and a recreation center and parks within 1. 5 miles. Many desirable neighborhood amenities such as restaurants and retail are in easy walking and bicycling distance.

It is great to see the developer using the Density Bonus program to bring both market rate and badly needed affordable housing to the city. Affordable housing programs that depend on a percentage of new construction being affordable need a lot of new construction to have an impact, and the city should work to increase the number of developers using the Density Bonus.

This project is a good project for Los Angeles and for the region. Again, I urge the city to grant the Density Bonus On-Menu Incentives and the Waivers of Development Standards.

Personally sent by Adria Rossi using Abundant Housing LA's Adovcacy Tool. Abundant Housing LA is a grassroots organization dedicated to advocacting for more housing.

Sincerely, Adria Rossi Los Angeles, CA 90036 adriarss@yahoo.com

Support for proposed 73-unit mixed-use development at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF

1 message

Chelsea Byers <chels.byers@everyactioncustom.com> Reply-To: chels.byers@gmail.com To: oliver.netburn@lacity.org Mon, Mar 4, 2019 at 2:52 PM

Dear Oliver Netburn,

I am writing to you in support of the proposed 73-unit mixed-use development, including 6 dedicated Very Low Income units and 5,354 square feet of commercial space, at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF. I urge the city to grant an off-menu waiver to allow a maximum Floor Area Ratio (FAR) of 3.25:1 in lieu of the 1.5 permitted by the C2-1VL Zone. I also urge the city to grant an off-menu waiver to allow a height of 56 feet overall, with a limit of 45 feet within 50 feet of the adjacent R1 zone, in lieu of the transitional height requirement, since the project is not within 1,500 feet of a Metro Rapid bus stop.

The greater Los Angeles region is facing a severe housing shortage. This project will provide much needed housing. By creating new housing in a desirable neighborhood, it will help to reduce issues of gentrification and displacement in other parts of the region. Abundant Housing LA believes that these housing challenges can only be addressed if everyone in the region does their part.

This project is in a great location for housing. It is in a very transit-friendly location with frequent Big Blue Bus service at its corner (Route 8 between Santa Monica and UCLA). Additionally, it is less than one mile from the Metro Expo Line, which runs between Santa Monica and downtown LA, with stops at employment and education centers including Santa Monica College, Sony Studios, USC, LA Trade Tech College, and Staples Center/L.A. Live. There are an elementary school and middle school within one mile, and a recreation center and parks within 1. 5 miles. Many desirable neighborhood amenities such as restaurants and retail are in easy walking and bicycling distance.

It is great to see the developer using the Density Bonus program to bring both market rate and badly needed affordable housing to the city. Affordable housing programs that depend on a percentage of new construction being affordable need a lot of new construction to have an impact, and the city should work to increase the number of developers using the Density Bonus.

This project is a good project for Los Angeles and for the region. Again, I urge the city to grant the Density Bonus On-Menu Incentives and the Waivers of Development Standards.

Personally sent by Chelsea Byers using Abundant Housing LA's Adovcacy Tool. Abundant Housing LA is a grassroots organization dedicated to advocacting for more housing.

Sincerely, Chelsea Byers Culver City, CA 90230 chels.byers@gmail.com

Support for proposed 73-unit mixed-use development at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF

1 message

Andy Freeland <andy@everyactioncustom.com> Reply-To: andy@andyfreeland.net To: oliver.netburn@lacity.org Mon, Mar 4, 2019 at 2:49 PM

Dear Oliver Netburn,

I am writing to you in support of the proposed 73-unit mixed-use development, including 6 dedicated Very Low Income units and 5,354 square feet of commercial space, at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF. I urge the city to grant an off-menu waiver to allow a maximum Floor Area Ratio (FAR) of 3.25:1 in lieu of the 1.5 permitted by the C2-1VL Zone. I also urge the city to grant an off-menu waiver to allow a height of 56 feet overall, with a limit of 45 feet within 50 feet of the adjacent R1 zone, in lieu of the transitional height requirement, since the project is not within 1,500 feet of a Metro Rapid bus stop.

The greater Los Angeles region is facing a severe housing shortage. This project will provide much needed housing. By creating new housing in a desirable neighborhood, it will help to reduce issues of gentrification and displacement in other parts of the region. Abundant Housing LA believes that these housing challenges can only be addressed if everyone in the region does their part.

This project is in a great location for housing. It is in a very transit-friendly location with frequent Big Blue Bus service at its corner (Route 8 between Santa Monica and UCLA). Additionally, it is less than one mile from the Metro Expo Line, which runs between Santa Monica and downtown LA, with stops at employment and education centers including Santa Monica College, Sony Studios, USC, LA Trade Tech College, and Staples Center/L.A. Live. There are an elementary school and middle school within one mile, and a recreation center and parks within 1. 5 miles. Many desirable neighborhood amenities such as restaurants and retail are in easy walking and bicycling distance.

It is great to see the developer using the Density Bonus program to bring both market rate and badly needed affordable housing to the city. Affordable housing programs that depend on a percentage of new construction being affordable need a lot of new construction to have an impact, and the city should work to increase the number of developers using the Density Bonus.

This project is a good project for Los Angeles and for the region. Again, I urge the city to grant the Density Bonus On-Menu Incentives and the Waivers of Development Standards.

Personally sent by Andy Freeland using Abundant Housing LA's Adovcacy Tool. Abundant Housing LA is a grassroots organization dedicated to advocacting for more housing.

Sincerely, Andy Freeland Los Angeles, CA 90015 andy@andyfreeland.net

Support for proposed 73-unit mixed-use development at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF

1 message

Janos Mann <janosmann@everyactioncustom.com> Reply-To: janosmann@gmail.com To: oliver.netburn@lacity.org Mon, Mar 4, 2019 at 2:44 PM

Dear Oliver Netburn,

I am writing to you in support of the proposed 73-unit mixed-use development, including 6 dedicated Very Low Income units and 5,354 square feet of commercial space, at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF. I urge the city to grant an off-menu waiver to allow a maximum Floor Area Ratio (FAR) of 3.25:1 in lieu of the 1.5 permitted by the C2-1VL Zone. I also urge the city to grant an off-menu waiver to allow a height of 56 feet overall, with a limit of 45 feet within 50 feet of the adjacent R1 zone, in lieu of the transitional height requirement, since the project is not within 1,500 feet of a Metro Rapid bus stop.

The greater Los Angeles region is facing a severe housing shortage. This project will provide much needed housing. By creating new housing in a desirable neighborhood, it will help to reduce issues of gentrification and displacement in other parts of the region. Abundant Housing LA believes that these housing challenges can only be addressed if everyone in the region does their part.

This project is in a great location for housing. It is in a very transit-friendly location with frequent Big Blue Bus service at its corner (Route 8 between Santa Monica and UCLA). Additionally, it is less than one mile from the Metro Expo Line, which runs between Santa Monica and downtown LA, with stops at employment and education centers including Santa Monica College, Sony Studios, USC, LA Trade Tech College, and Staples Center/L.A. Live. There are an elementary school and middle school within one mile, and a recreation center and parks within 1. 5 miles. Many desirable neighborhood amenities such as restaurants and retail are in easy walking and bicycling distance.

It is great to see the developer using the Density Bonus program to bring both market rate and badly needed affordable housing to the city. Affordable housing programs that depend on a percentage of new construction being affordable need a lot of new construction to have an impact, and the city should work to increase the number of developers using the Density Bonus.

This project is a good project for Los Angeles and for the region. Again, I urge the city to grant the Density Bonus On-Menu Incentives and the Waivers of Development Standards.

Personally sent by Janos Mann using Abundant Housing LA's Adovcacy Tool. Abundant Housing LA is a grassroots organization dedicated to advocacting for more housing.

Sincerely, Janos Mann Los Angeles, CA 90034 janosmann@gmail.com

Support for proposed 73-unit mixed-use development at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF

1 message

Jake Malott <jake@everyactioncustom.com> Reply-To: jake@crestrealestate.com To: oliver.netburn@lacity.org Mon, Mar 4, 2019 at 2:32 PM

Dear Oliver Netburn,

I am writing to you in support of the proposed 73-unit mixed-use development, including 6 dedicated Very Low Income units and 5,354 square feet of commercial space, at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF. I urge the city to grant an off-menu waiver to allow a maximum Floor Area Ratio (FAR) of 3.25:1 in lieu of the 1.5 permitted by the C2-1VL Zone. I also urge the city to grant an off-menu waiver to allow a height of 56 feet overall, with a limit of 45 feet within 50 feet of the adjacent R1 zone, in lieu of the transitional height requirement, since the project is not within 1,500 feet of a Metro Rapid bus stop.

The greater Los Angeles region is facing a severe housing shortage. This project will provide much needed housing. By creating new housing in a desirable neighborhood, it will help to reduce issues of gentrification and displacement in other parts of the region. Abundant Housing LA believes that these housing challenges can only be addressed if everyone in the region does their part.

This project is in a great location for housing. It is in a very transit-friendly location with frequent Big Blue Bus service at its corner (Route 8 between Santa Monica and UCLA). Additionally, it is less than one mile from the Metro Expo Line, which runs between Santa Monica and downtown LA, with stops at employment and education centers including Santa Monica College, Sony Studios, USC, LA Trade Tech College, and Staples Center/L.A. Live. There are an elementary school and middle school within one mile, and a recreation center and parks within 1. 5 miles. Many desirable neighborhood amenities such as restaurants and retail are in easy walking and bicycling distance.

It is great to see the developer using the Density Bonus program to bring both market rate and badly needed affordable housing to the city. Affordable housing programs that depend on a percentage of new construction being affordable need a lot of new construction to have an impact, and the city should work to increase the number of developers using the Density Bonus.

This project is a good project for Los Angeles and for the region. Again, I urge the city to grant the Density Bonus On-Menu Incentives and the Waivers of Development Standards.

Personally sent by Jake Malott using Abundant Housing LA's Adovcacy Tool. Abundant Housing LA is a grassroots organization dedicated to advocacting for more housing.

Sincerely, Jake Malott Santa Monica, CA 90403 jake@crestrealestate.com

Support for proposed 73-unit mixed-use development at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF

1 message

Gerald Lam <geraldlam05@everyactioncustom.com> Reply-To: geraldlam05@gmail.com To: oliver.netburn@lacity.org Mon, Mar 4, 2019 at 2:27 PM

Dear Oliver Netburn,

I am writing to you in support of the proposed 73-unit mixed-use development, including 6 dedicated Very Low Income units and 5,354 square feet of commercial space, at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF. I urge the city to grant an off-menu waiver to allow a maximum Floor Area Ratio (FAR) of 3.25:1 in lieu of the 1.5 permitted by the C2-1VL Zone. I also urge the city to grant an off-menu waiver to allow a height of 56 feet overall, with a limit of 45 feet within 50 feet of the adjacent R1 zone, in lieu of the transitional height requirement, since the project is not within 1,500 feet of a Metro Rapid bus stop.

The greater Los Angeles region is facing a severe housing shortage. This project will provide much needed housing. By creating new housing in a desirable neighborhood, it will help to reduce issues of gentrification and displacement in other parts of the region. Abundant Housing LA believes that these housing challenges can only be addressed if everyone in the region does their part.

This project is in a great location for housing. It is in a very transit-friendly location with frequent Big Blue Bus service at its corner (Route 8 between Santa Monica and UCLA). Additionally, it is less than one mile from the Metro Expo Line, which runs between Santa Monica and downtown LA, with stops at employment and education centers including Santa Monica College, Sony Studios, USC, LA Trade Tech College, and Staples Center/L.A. Live. There are an elementary school and middle school within one mile, and a recreation center and parks within 1. 5 miles. Many desirable neighborhood amenities such as restaurants and retail are in easy walking and bicycling distance.

It is great to see the developer using the Density Bonus program to bring both market rate and badly needed affordable housing to the city. Affordable housing programs that depend on a percentage of new construction being affordable need a lot of new construction to have an impact, and the city should work to increase the number of developers using the Density Bonus.

This project is a good project for Los Angeles and for the region. Again, I urge the city to grant the Density Bonus On-Menu Incentives and the Waivers of Development Standards.

Personally sent by Gerald Lam using Abundant Housing LA's Adovcacy Tool. Abundant Housing LA is a grassroots organization dedicated to advocacting for more housing.

Sincerely, Gerald Lam Palos Verdes Peninsula, CA 90274 geraldlam05@gmail.com

Support for proposed 73-unit mixed-use development at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF

1 message

Cyndy Nguyen <cyndytherealtor@everyactioncustom.com> Reply-To: cyndytherealtor@gmail.com To: oliver.netburn@lacity.org Mon, Mar 4, 2019 at 2:23 PM

Dear Oliver Netburn,

I am writing to you in support of the proposed 73-unit mixed-use development, including 6 dedicated Very Low Income units and 5,354 square feet of commercial space, at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF. I urge the city to grant an off-menu waiver to allow a maximum Floor Area Ratio (FAR) of 3.25:1 in lieu of the 1.5 permitted by the C2-1VL Zone. I also urge the city to grant an off-menu waiver to allow a height of 56 feet overall, with a limit of 45 feet within 50 feet of the adjacent R1 zone, in lieu of the transitional height requirement, since the project is not within 1,500 feet of a Metro Rapid bus stop.

The greater Los Angeles region is facing a severe housing shortage. This project will provide much needed housing. By creating new housing in a desirable neighborhood, it will help to reduce issues of gentrification and displacement in other parts of the region. Abundant Housing LA believes that these housing challenges can only be addressed if everyone in the region does their part.

This project is in a great location for housing. It is in a very transit-friendly location with frequent Big Blue Bus service at its corner (Route 8 between Santa Monica and UCLA). Additionally, it is less than one mile from the Metro Expo Line, which runs between Santa Monica and downtown LA, with stops at employment and education centers including Santa Monica College, Sony Studios, USC, LA Trade Tech College, and Staples Center/L.A. Live. There are an elementary school and middle school within one mile, and a recreation center and parks within 1. 5 miles. Many desirable neighborhood amenities such as restaurants and retail are in easy walking and bicycling distance.

It is great to see the developer using the Density Bonus program to bring both market rate and badly needed affordable housing to the city. Affordable housing programs that depend on a percentage of new construction being affordable need a lot of new construction to have an impact, and the city should work to increase the number of developers using the Density Bonus.

This project is a good project for Los Angeles and for the region. Again, I urge the city to grant the Density Bonus On-Menu Incentives and the Waivers of Development Standards.

Personally sent by Cyndy Nguyen using Abundant Housing LA's Adovcacy Tool. Abundant Housing LA is a grassroots organization dedicated to advocacting for more housing.

Sincerely, Cyndy Nguyen Los Angeles, CA 90065 cyndytherealtor@gmail.com

Support for proposed 73-unit mixed-use development at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF

1 message

Tami Kagan-Abrams <tami@everyactioncustom.com> Reply-To: tami@abramsgroup.org To: oliver.netburn@lacity.org Mon, Mar 4, 2019 at 2:19 PM

Dear Oliver Netburn,

I am writing to you in support of the proposed 73-unit mixed-use development, including 6 dedicated Very Low Income units and 5,354 square feet of commercial space, at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF. I urge the city to grant an off-menu waiver to allow a maximum Floor Area Ratio (FAR) of 3.25:1 in lieu of the 1.5 permitted by the C2-1VL Zone. I also urge the city to grant an off-menu waiver to allow a height of 56 feet overall, with a limit of 45 feet within 50 feet of the adjacent R1 zone, in lieu of the transitional height requirement, since the project is not within 1,500 feet of a Metro Rapid bus stop.

The greater Los Angeles region is facing a severe housing shortage. This project will provide much needed housing. By creating new housing in a desirable neighborhood, it will help to reduce issues of gentrification and displacement in other parts of the region. Abundant Housing LA believes that these housing challenges can only be addressed if everyone in the region does their part.

This project is in a great location for housing. It is in a very transit-friendly location with frequent Big Blue Bus service at its corner (Route 8 between Santa Monica and UCLA). Additionally, it is less than one mile from the Metro Expo Line, which runs between Santa Monica and downtown LA, with stops at employment and education centers including Santa Monica College, Sony Studios, USC, LA Trade Tech College, and Staples Center/L.A. Live. There are an elementary school and middle school within one mile, and a recreation center and parks within 1. 5 miles. Many desirable neighborhood amenities such as restaurants and retail are in easy walking and bicycling distance.

It is great to see the developer using the Density Bonus program to bring both market rate and badly needed affordable housing to the city. Affordable housing programs that depend on a percentage of new construction being affordable need a lot of new construction to have an impact, and the city should work to increase the number of developers using the Density Bonus.

This project is a good project for Los Angeles and for the region. Again, I urge the city to grant the Density Bonus On-Menu Incentives and the Waivers of Development Standards.

Personally sent by Tami Kagan-Abrams using Abundant Housing LA's Adovcacy Tool. Abundant Housing LA is a grassroots organization dedicated to advocacting for more housing.

Sincerely, Tami Kagan-Abrams Los Angeles, CA 90046 tami@abramsgroup.org

Support for proposed 73-unit mixed-use development at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF

1 message

Joshua Blumenkopf <jblumenkopf@everyactioncustom.com> Reply-To: jblumenkopf@gmail.com To: oliver.netburn@lacity.org Mon, Mar 4, 2019 at 2:08 PM

Dear Oliver Netburn,

I am writing to you in support of the proposed 73-unit mixed-use development, including 6 dedicated Very Low Income units and 5,354 square feet of commercial space, at 11701 Gateway Blvd, cases CPC-2018-3430-DB-SPR and ENV-2018-3431-EAF. I urge the city to grant an off-menu waiver to allow a maximum Floor Area Ratio (FAR) of 3.25:1 in lieu of the 1.5 permitted by the C2-1VL Zone. I also urge the city to grant an off-menu waiver to allow a height of 56 feet overall, with a limit of 45 feet within 50 feet of the adjacent R1 zone, in lieu of the transitional height requirement, since the project is not within 1,500 feet of a Metro Rapid bus stop.

The greater Los Angeles region is facing a severe housing shortage. This project will provide much needed housing. By creating new housing in a desirable neighborhood, it will help to reduce issues of gentrification and displacement in other parts of the region. Abundant Housing LA believes that these housing challenges can only be addressed if everyone in the region does their part.

This project is in a great location for housing. It is in a very transit-friendly location with frequent Big Blue Bus service at its corner (Route 8 between Santa Monica and UCLA). Additionally, it is less than one mile from the Metro Expo Line, which runs between Santa Monica and downtown LA, with stops at employment and education centers including Santa Monica College, Sony Studios, USC, LA Trade Tech College, and Staples Center/L.A. Live. There are an elementary school and middle school within one mile, and a recreation center and parks within 1. 5 miles. Many desirable neighborhood amenities such as restaurants and retail are in easy walking and bicycling distance.

It is great to see the developer using the Density Bonus program to bring both market rate and badly needed affordable housing to the city. Affordable housing programs that depend on a percentage of new construction being affordable need a lot of new construction to have an impact, and the city should work to increase the number of developers using the Density Bonus.

This project is a good project for Los Angeles and for the region. Again, I urge the city to grant the Density Bonus On-Menu Incentives and the Waivers of Development Standards.

Personally sent by Joshua Blumenkopf using Abundant Housing LA's Adovcacy Tool. Abundant Housing LA is a grassroots organization dedicated to advocacting for more housing.

Sincerely, Joshua Blumenkopf Pasadena, CA 91101 jblumenkopf@gmail.com Mr. Netburn, Mr. Nguyen, and Ms. Levien,

As I lifelong resident of Mar Vista and co-founder of the Mar Vista Community Council, the Mar Vista Park Advisory Board and the Mar Vista Roller Hockey Rink and League, I am pleased to lend my support to the proposed development at 11701 Gateway Blvd. at the corner of Gateway and Barrington.

The project contains ground floor retail space which will help activate the area with well-lit and community-serving uses and includes 73 housing units, with seven below-market rate, which will provide quality, inclusive housing in Mar Vista. In addition, the project's proximity to the Metro Expo Line and many bus stops will allow residents to live car-free.

Thus far, the developer has shown a commitment to engaging with community members on this project. In response to neighborhood concerns they have added car parking to the project, enclosed their ground floor commercial outdoor patio space and added additional affordable housing to the project. Significantly, the developer has also committed to landscaping the medians on Gateway Blvd. on both sides of Barrington Ave. As a resident and business owner in the area I cannot express how much of a benefit this will be to the community and I look forward to a continuing dialogue with the developer as this project moves forward.

Please approve this project.

Sincerely,

Tom Ponton