

Division of Land / Environmental Review

City Hall • 200 N. Spring Street, Room 750 • Los Angeles, CA 90012

DRAFT ENVIRONMENTAL IMPACT REPORT

VOLUME IV – TECHNICAL APPENDICES: I THROUGH M

SHERMAN OAKS - STUDIO CITY - TOLUCA LAKE - CAHUENGA PASS COMMUNITY PLAN AREA

Buckley School Campus Enhancement Plan

ENV-2004-7171-EIR State Clearinghouse No. 2005011055

Council District 5

THIS DOCUMENT COMPRISES THE FIRST PART OF THE ENVIRONMENTAL IMPACT REPORT (EIR) FOR THE PROJECT DESCRIBED. THE FINAL EIR, WHICH WILL ALSO CIRCULATE FOR PUBLIC REVIEW AND COMMENT, WILL COMPRISE THE SECOND AND FINAL PART.

Project Address: 3900 Stansbury Avenue, Sherman Oaks, CA 91423

Project Description: The Buckley School (the School), the project Applicant, proposes to enhance its existing campus facilities located at 3900 Stansbury Avenue in the Sherman Oaks Community of the City of Los Angeles. The improvements are proposed as part of the Campus Enhancement Plan, the intent of which is to address the needs of existing and future school programs, including the provision of adequate teaching space for all educational levels, specialty teaching spaces, and multipurpose spaces for educational gatherings that cannot occur in a standard classroom. The project also provides for the modernization of existing facilities, improved disabled access, and energy efficiency upgrades. Included within the Campus Enhancement Plan are vehicular circulation and queuing improvements, increased parking within a new enclosed parking facility, the demolition of six buildings, construction of five new/replacement buildings, a central plant, and addition to and/or renovation of several existing buildings. Upon completion, a net addition of approximately 69,500 square feet of building area would be provided, resulting in a total of 168,650 square feet of educational facilities within the project site. Project implementation would require various approvals, including but not limited to, Specific Plan Exceptions and Environmental Findings pursuant to the Mulholland Scenic Parkway Specific Plan, a new Conditional Use Permit that among other things would allow an increase in enrollment of up to 80 students for a maximum enrollment of 830 students, Modification of the height regulations, Site Plan Review findings, a Parcel Map to create two legal lots, and Design Review pursuant to the Mulholland Scenic Parkway Specific Plan.

APPLICANT: The Buckley School

PREPARED BY: Environmental Review Section Los Angeles City Planning Department

Hydrology Study and Water Quality Report

HYDROLOGY STUDY & WATER QUALITY REPORT

for

BUCKLEY HIGH SCHOOL 3900 STANSBURY DRIVE

Prepared For:

THE BUCKLEY HIGH SCHOOL MASTER PLAN

Prepared By:

6080 Center Drive, Suite 300 Los Angeles, California 90045 (310)665-1536

May 24th, 2006

Job Number: 105370

TABLE OF CONTENT

I.	EXECUTIVE SUMMARY	1
II.	INTRODUCTION	2
 A.	Drainage Conditions	. 2
B.	Project Impacts	. 2
III.	PROJECT DESCRIPTION	3
A.	Site Description	. 3
B.	Drainage Systems	. 3
C.	Existing Drainage Deficiencies	. 3
D.	Rainfall and Runoff Coefficients	. 4
E.	Propose Drainage Patterns	. 4
F.	Groundwater	. 4
G.	Soil Characteristics	. 4
H.	Erosion Impacts	. 4
IV.	SOURCE IDENTIFICATION	5
A.	Study Area Characteristics	. 5
B.	Proposed Site Development	. 5
V.	HYDROLOGY	5
A.	Basin Descriptions	. 5
B.	Methodology	. 6
C.	Existing Drainage System	. 7
D.	The Buckley School On-Site hydrology	. 7
E.	System Hydraulics	. 8
VI.	BEST MANAGEMENT PRACTICES (BMPs)	9
A.	Potential pollutants Related to Construction Activities	. 9
B.	Contractor Activity	. 9
C.	Erosion and Sediment Control Practices	10
D.	Soil Stabilization and Dust Control Practices	11
E.	Sediment Control Practices	11
F.	Roadway Cleanliness Practices	12
G.	Post Construction	12
H.	Construction Vehicles and Equipment Cleaning Practices	12
I.	On-Site Delivery and Outdoor Handling of Materials	13
J.	Sediment and Erosion Control Management	13
К.	Building and Ground maintenance Practices	13
L.	Construction Maintenance Practices	14
Μ	. Construction – General Practices	14
N.	Non-Storm Water Management	15
VII	. MONITORING AND MAINTENANCE PLAN 1	15
A.	Maintenance and Repair	15
В.	Inspection	16
C.	Training	16
D.	Non-Storm Water Discharge Maintenance	16

LIST OF TABLES

Table 1: Surface Characteristics of the Project Site.	4
Table 2: Q ₅₀ Year Hydrology	6
Table 3: Hydraulic Results	8
Table 4: Soil Stabilization and Dust Control Practices	10
Table 5: Sediment Control Practices	10
Table 6: Roadway Cleanliness Practice	11
Table 7: Post Construction BMPs	11
Table 8: Non-Storm Water Control Practices	15

I. EXECUTIVE SUMMARY

The Buckley School campus is located at 3900 Stansbury Drive, Los Angeles, CA. The proposed site development consists of the remodel, reconstruction, and expansion of several on-site facilities. This report is based on the January 2006 Master Plan prepared by Jeffrey M. Kalban & Associates, Architecture, Inc. It important to note that the site master plan is preliminary and may change as design of the site is further developed. The critical goals of this report are to assess the adequacy of the existing and proposed drainage system and to provide a pollution prevention plan for construction activities within the project boundaries.

The existing campus is approximately 18.44 acres and consists of 36% impervious surfaces. The proposed site developments increase the site imperviousness by 40.5% to a total of 50.6%. This increase of on-site imperviousness did not have an affect n-site runoff, for a 50-year storm event, from 51.68 cfs to 52.27 cfs (approximately 1% increase). The existing drainage system was analyzed to determine if it was currently adequate to service the watershed and also to determine if any adverse affects would occur due to the proposed site development. Based on the analysis it was concluded that the current drainage system is adequate to allow unrestricted discharge for both the existing and proposed conditions in the watershed.

Best Management Practices (BMPs) for pre- and post- construction activities are included in the report. The appropriate BMPs for each phase of construction will be determined as the construction documents are developed. The intent of the BMPs is to prevent adverse off-site affects due to proposed on-site activities. A maintenance program is also included to ensure that all BMPs that are implemented for the site remain operational throughout the project.

II. INTRODUCTION

The purpose of this report is to evaluate and compare the existing and proposed drainage conditions for the Buckley School watershed. Potential environmental impacts will be discussed and appropriate preventative measures will be presented. If impacts can not be avoided potential mitigations will be reviewed. The proposed conditions are based on the January, 2006 Master Plan prepared by Jeffrey M. Kalban & Associates, Architecture, Inc. The following are general objectives of this report:

A. Drainage Conditions

- Characterize both existing and proposed hydrological conditions of the project site. This includes an analysis of the impervious surfaces and existing drainage patterns.
- Review of the existing drainage facilities located within the watershed, including general size and design capacities.
- Identify if there are any current deficiencies of the existing system.

B. Project Impacts

- Describe potential groundwater impacts, including interference with groundwater recharge and effects of groundwater on site stability.
- Calculate the net change in the amount of impervious surface resulting from the proposed project.
- Calculate and analyze the average and peak discharges of site runoff during the 50 year design storm event.
- Verify that the projected storm water runoff from the project site can be adequately conveyed.
- Asses whether the proposed modifications in drainage patterns would affect any offsite areas.
- Evaluate potential for impacts associated with erosion or sedimentation during construction and for the life of the proposed site development.
- Describe project features pertaining to water quality during construction and operations of the project, including point and on-point sources to be introduced and the nature of anticipated discharges.
- Provide a summary of what features are included in the project to comply with NPDES requirements including a list of Best Management Practice (BMP's) that would be implemented as part of the project.
- Identify mitigation measures or engineering recommendations to reduce any identified significant hydrology/surface water quality impacts. See section 4.

Section 1, 2, and 3 introduces the content of this report, and describes the proposed project. It provides a brief description of the site's physical characteristics, existing drainage system, and proposed drainage system. Information from the soils report concerning soil stability, ground water, and potential erosion impacts is also addressed in these sections.

Section 4 describes the hydrology of the different sub-areas of the watershed at the Buckley School site. Based on the hydrology results, the hydraulics of the existing drainage system is

evaluated. Any impacts of the proposed project on the existing on-site and off-site drainage system are evaluated and discussed.

Section 5 and 6 discusses the proper procedures that will be used during construction activities to reduce pollution at the source. These procedures are intended to prevent environmental problems from occurring. This will prevent costs to both the public and private sectors due to lose of resources and environmental restoration expenses.

The preparation of this Local Storm Water pollution Prevention Plan (LSWPPP) complies with the requirements set forth in the NPDES General permit issued by the State Water Resources Control Board. This document has been developed pursuant to the State Water Resources Control Board (State Water Board) Order No. 92-08 DWQ-"Waste Discharge Requirements (WDRS) for Discharges of Storm Water Runoff Associated with Construction Activity," Section A: Storm Water Pollution Prevention Plan.

This document has been developed utilizing the following phases: (1) site evaluation and design development (2) site assessment, (3) control selection and plan design, (4) certification and notification, (5) construction/implementation, and (6) final stabilization/termination. The contractor through a specific process known as Best Management Practices (BMP's) implements construction site erosion and pollution controls. Section 6 of this report identifies currently accepted BMP techniques.

A previous report that was produced by John M. Cruikshank Consultants, Inc., for an older Buckley School Master Plan, was referenced for this report.

III. PROJECT DESCRIPTION

A. Site Description

The Buckley School Campus Enhancement Plan consists of building new facilities and also renovation existing ones on its campus at 3900 Stansbury Avenue, in the city of Los Angeles. The site is located within partly developed residential area. The offsite region surrounding the school is partly vegetated. The approximately 18.44 acre site is located within the bottom of a filled-in canyon with relatively steep slopes on three sides.

The site development will include demolition and surface grading of some existing buildings to accommodate the proposed facility development. Some of the proposed site improvements include remodeling existing building, additions of proposed buildings, and proposed landscaping work throughout the premises.

B. Drainage Systems

The site generally drains downhill, south to north, with storm water runoff from the watershed discharging to the main line running through the Buckley School Campus. The main line is a 51" reinforced concrete pipe (RCP) which runs under the extension of Stansbury Avenue thru the campus. The pipe later expands to a 57" RCP at Stansbury Avenue (See Table 3 for pipe capacities). The main drainage system collects flow from the surrounding watershed of approximately 156 acres.

C. Existing Drainage Deficiencies

The inside conditions of the main drainage lines has not been explored. It is assumed that all existing pipes have been properly maintained and that they are properly functioning. Based on this assumptions and calculations within this report, the pipes are adequate to drain their respective sub-basins. The only location that has reported flooding was the Camino de La Cumbre Road area, this might be expected since the calculations indicate that the pipe for the

basin is at capacity, and could become backed up during larger storms. The most probable reason for any drainage problems involving all other systems would be due to lack of maintenance. The appropriate monitoring and periodc cleaning of the drainage inlets is necessary to prevent floods for both the existing and proposed conditions in the watershed.

D. Rainfall and Runoff Coefficients

The Los Angeles County Hydrology manual was used for precipitation of data for the project area. The site has mostly upper Los Angeles River soil classification 016 (See Hydrologic Map 1-H1-3 in Appendix A15) and is in rainfall zones "L" and "K". The 50-year event was selected as a design balance between storm water flows and runoff coefficients and as requirement for EIR reporting. The 13-minute time of concentration (Tc) rainfall intensity for the 50-year storm was calculated from the Average Rainfall Intensity Duration Curves as 2.88 inches/hour on average for all the sub-areas (See Isohyetal Map in the Appendix A14).

The LACDPW Rational Method was used to calculate the runoff coefficients. The runoff coefficient yielded from soil type No. 016 was 0.80 on average for all the sub-areas. The proposed development will not affect the imperviousness coefficient significantly for The Buckley campus. The difference in excess output due to an increase in building and hardscape areas: Predevelopment impervious area equals 289,410 square feet; post-development impervious are equals 406,683 square feet. The net increase in impervious area for the site is 117,274 square feet or approximately 40.5%.

E. Propose Drainage Patterns

The proposed construction activity will not considerably affect the drainage patterns, of any on-site or off-site areas. The proposed construction will increase the on-site impermeability by 40.5%; the area accounting for this increase of impermeability is negligible in terms of affecting the overall basin impermeability and drainage flows. Based on the calculations in this report the flow associated with the increased on-site impermeability is insignificant and the existing drainage system for the watershed will not be adversely affected.

F. Groundwater

The majority of the boring did not encounter groundwater. Water was observed at boring number 1 at a depth of 55' and at Boring 13 at a depth of 56.5'. Based on the soils engineer opinion, groundwater will not be a factor of the proposed buildings stability. Additionally the groundwater will not have any adverse impact from stormwater due to the depth of groundwater below the sites surface. Seasonal fluctuations may occur due to changes of climate, irrigation and other factors; however no adverse affects are anticipated for the site.

G. Soil Characteristics

Based on the soils report JG 19376-B by the J. Byer Group, Inc., fill, compacted fill, alluvium, residual soil, and bedrock were found on the site. The fill consists of an upper layer of clayey sand that is brown, moist, medium dense, and contains some gravel. The report also mentions the imported clayey sand fill with slate chips is relatively consistent throughout the property. The alluvium soils underlie the fill and consist of an upper layer of silty clay that is brown, moist, firm, and very porous. The alluvium extends to a depth of 28' below grade, to 59' below grade.

H. Erosion Impacts

Based on the tests performed by the J. Byer Group, the surficially stability of the soil on the site exceeds a 1.5 factor of safety. Based on the report's calculations, it is reasonable to assume that the natural residual soil is surficially stable. Erosion and sedimentation issues

will be prevented by following the BMP recommendations of the erosion control plans and this in this report.

IV. SOURCE IDENTIFICATION

A. Study Area Characteristics

The subject site is surrounded by steep vegetated terrain (+40% slopes). The slope levels to 4% at the northward end of the Buckley School Campus (Starting at the track, existing buildings, and other areas in the vicinity of the access road, to Stansbury Avenue).

The parking lot and most of the areas surrounding the existing buildings are paved. One of the main purposes of this report is to assess the drainage systems before and after the proposed development. The existing and proposed surface conditions, based on a percentage of the area within the Buckley School's property lines, are described in the following table.

Existing Conditions	Square Footage	Percentage
Landscape Areas	513,739	64.0%
Building Footprint	72,760	9.1%
Hardscape Areas	216,594	26.9%
Total	803,094	100%
Proposed Conditions	Square Footage	Percentage
Landscape Areas	396,501	49.4%
Building Footprint	104,242	13%
Hardscape Areas	302,351	37.6%
Total	803,094	100%

Table 1: Surface Characteristics of the Project Site

B. Proposed Site Development

The proposed site development used for this report was based on the January, 2006 Master Plan prepared by Jeffrey M. Kalban & Associates, Architecture, Inc. The proposed development consists of the remodel, reconstruction, and expansion of several on-site facilities.

The site Master Plan is preliminary and may change as construction documents are further developed. The critical goals with this report are to assess the adequacy of the existing and proposed drainage system and to provide a pollution prevention plan for construction activities within the project boundaries. It is helpful to understand what activities are planned so that proactive steps can be planned for implementing site erosion and pollution controls.

V. HYDROLOGY

A hydrology study was undertaken to evaluate the existing drainage infrastructure in The Buckley School watershed.

A. Basin Descriptions

The watershed was divided into five sub-areas (see Appendix A13).

• Sub-Area A1: This sub-area consists of highly sloping undeveloped and densely vegetated land. It drains directly to the main line at the northernmost point of the basin. This is the largest sub-area in the basin at 61 total acres.

- Sub-Area A2: This sub-area consists of the existing Buckley School site, and an offsite undeveloped region. The steep offsite region drains towards the Buckley School Campus and discharges into the main line located northward along Stansbury Avenue. The sub-area is approximately 20 acres in size.
- Sub-Area A3: This sub-area is a highly sloping region east of the Buckley School site. Based on a site inspection most of the flow of this area is collected and drained northward through a gutter system. The sub-area is about 20 acres in size.
- Sub-Area A4: This sub-area consists of steep slopes down to Camino de la Cumbre Street. The flow is captured by this street and conveyed by a main line system to Stansbury Avenue. The sub-area is about 32 acres in size.
- Sub-Area A5: This sub-area drains the neighborhood area located in the basin. The flow drains Camino de la Cumbre Drive, Gloretta Drive, and Coy Drive. The flow is then conveyed by a storm pipe down through the Buckley Campus where it connects to the main line. The sub-area is about 24 acres in size.

Hydrology Calculations were performed on the basin to determine the 50-year peak runoff for Sub-Areas 1 thru 5 (Table 2). The estimated peak runoff is necessary to determine if the existing drainage pipes and the city's main line are adequate for the existing and proposed runoff form the watershed. Calculations and data used for the hydrology analysis can be seen in Appendix A1-A4, it also includes information for a 25 year and 10-year frequency.

The soils of this region are type 016, based on the LACDPW classification system. The project has an average rainfall isohyet value of 7.5 (See appendix A14 & A15). Although all the surrounding contributing off-site areas have a high slope, the dense vegetation slows down the flow and mitigates the potential erosion problems.

B. Methodology

The data utilized to determine the potential runoff for the watershed was based upon record information that has been collected by the Los Angeles County Department of Public Works (LACDPW). The methods used to calculate the run-off rates were also provided by the LACDPW program called TC-calculator. The program uses the rational method, as described in the LACDPW Hydrology and Sedimentation manual (Dec. 1990) and the addendum to the manual (June 2002). The program provides predicted runoff for each of the sub-areas as shown in Table 2.

A 50-year recurrence interval was adopted for this analysis as prescribed in the LACDPW manuals. The 50 year analysis is used to ensure that designed systems can handle capacity of larger storm events without causing property damage.

					Q
Sub-Area	Тс	Intensity	C _D *I	Acres	(CFS)
A1	13	2.86	2.40	61	146
A2-proposed	12	2.97	2.58	20	52
A2-exist	12	2.97	2.55	20	51
A3	12	2.97	2.52	26	65
A4	18	2.45	1.98	25	49
A5	11	3.09	2.62	24	63

Table 2: Q	50 Year	Hydrology
------------	---------	-----------

Total Existing	156	376
Total Proposed	156	377

C. Existing Drainage System

The existing storm drain system was build prior to 1967. It was originally build by the City of Los Angeles, and is currently being maintained by the County of Los Angeles. The main drainage line for the area runs along the 20 foot wide sewer easement through the Buckley school campus. The main line is a 51"diameter pipe (Pipe 2) that runs through the Buckley School Campus. The 51" expands to a 57" diameter pipe (Pipe 4) at Stansbury Avenue at the end of the Buckley School site. The pipes that make up the local drainage system are all made of reinforced concrete. Pipe diameter information was found from the City of LA Vault Records. Appendix A20 shows the existing storm drain system for the sub basins.

There is a pipe draining the residential area of Sub-Area A5 that connects to the main line above. The diameter and type of pipe could not be verified from the City of LA as-built records (pipe 1).

An 18" RCP pipe drains Sub-Area A4 (Pipe 3). This pipe connects to the 51" main line just north of the 57" expansion.

Sub-Area A3 is drained through a gutter along the eastern side of the campus. This flow is collected by the main line at Stansbury Avenue.

D. The Buckley School On-Site hydrology

The total area of sub-area A2 is approximately 20 acres, with The Buckley School campus consisting of 18.44 acres (803,246 square feet) of the sub-area. However, the total watershed that affects the main line running through the campus is more that five time the area of The Buckley School area. As discussed previously most of the offsite runoff is collected in independent drainage pipes or gutters and discharged directly to the mainline system.

A separate hydrology study was undertaken to evaluate the water collected within the Buckley School Campus (sub-area A2). After an onsite analysis was performed it was discovered that a portion of Sub-Area 3 contributes directly to the Buckley drainage system at the soccer field area. The rest of the water flowing downhill from sub-area A3 is drained away from the Buckley campus by street gutters.

The area affecting the Buckley School drainage system is approximately 18.44 acres. The schools facilities are surrounded by very steep sloping hills (+40% slope). The hills influence the time of concentration of the hydrology study, as water travels faster at steeper slopes. The effect of the discharge quantity of the proposed improvement is minimal compared to the whole drainage system as analyzed above. The projected buildings and remodels account for an approximate increase of 40.5% of imperviousness area. This approximation is based on the net campus area after development is completed. The slight increase of the imperviousness coefficient was taken into account, and hydrology calculations with pre and post construction were compared. The Buckley School has a pre-development discharge of 51.68 cubic feet per second (cfs) and a post-development discharge of 52.27 cfs, as indicated in Table 2. The results yield a 1% increase in runoff after the proposed development is completed.

Drainage generally flows from the east and west towards the central of the campus, and the central region slopes northward. The flow for the Buckley School is not collected at a specific point, but rather at several locations to allow for smaller flow depths on the campus. The drainage points throughout the campus all drain to the main 51" storm drain line that runs through the campus. It was assumed that the water is collected at the lowest point of the site to quantify the flow contributed by the Buckley School.

E. System Hydraulics

The existing drainage system was evaluated based on the amount of discharge associated with a 50-year storm event frequency.

Hydraulic calculations were developed to assess the capacity of the main line draining the watershed. Other connecting lines were also evaluated in this analysis as to evaluate how they would affect the drainage system as a whole. A comparison of the peak 50-year discharge and the appropriate pipe conveying the flow was made. Calculations were performed using FlowMaster (hydraulic calculation software). The model uses the following variable to determine the capacity of the pipes: pipe material, diameter, and slope. The following assumptions were made for the system analysis:

- Based on a site observation performed by Jon M. Cruikshank Consultants, it was
 estimated that most of the flow from Sub-Area 3 reaches the main line outside the
 Buckley property. The portion of Sub-area 3 located adjacent to the soccer field is
 exempt from the gutter system, and is assumed to enter the main line at the Buckley
 Campus.
- Individual lines from the facilities at the Buckley School are connected directly to the main line.
- Flow from sub-area 4 is captured by a downstream debris basin and subsequently does not contribute any flow to the Buckley School site. Flow from this sub-area is conveyed along Camino de la Cumbre Street is to the Pipe 3 line connecting to the main line.
- The residential area within Sub-Area 4 lacks a storm drain system. It is assumed that the discharge flows northerly down hill via gutter flow, where it eventually contributes to the main line through Pipe 3.
- The size of the relief pipe draining Sub-Area 5 is unknown. This pipe connects at the Buckley School with the main line. It is assumed that this pipe can convey all the flow from sub-area 5 without causing system failure.
- All flow from sub-area A1, A2, and A5 contributes to Pipe 2.
- All the flow from the watershed is all conveyed off-site through Pipe 4.
- The City of Los Angeles vault records provided limited information on some of the pipe profiles. An average slope proportional to the ground slope is assumed for all pipes where further information couldn't be obtained.

A maximum flow capacity for the pipes was calculated based on the above assumptions and system variables. The resulting discharge of the respective sub-areas is compared in Table 3. The maximum capacity of the pipes exceeds the projected discharge in all the pipe systems (See the hydraulic calculations in Appendix A5-A10). The results indicate that the existing drainage system is adequate to convey both the existing and proposed 50-year flow as required by LACDPW.

The only pipe that is at discharge capacity is Pipe 3 which drains sub-area 4. If future development is to occur in sub-area 4, the 18" storm drain line would be required to be upsized to handle increased flow, due to an increase of impervious area due to development.

Pipe	Diameter	Slope	Material	Discharged Sub-Area	Full Capacity (cfs)	Maximum Capacity (cfs)	Projected Discharge (cfs)	Comments
1	Unknown	20%	RCP	A5	Unknown	Unknown	Unknown	Assumed to be adequately sized for the Sub-Area's discharge
2	51"	4%	RCP	A1 & A2	366	394	199	Max Post Development Discharge is less that estimated Max Capacity.
3	18"	17%	RCP	A4	47	51	49	The pipe is a capacity; any future development in sub-area A4 will require the pipe to be upsized.
4	57"	4%	RCP	All	492	529	377	Max Post Development Discharge is less that estimated Max Capacity.

Table 3: Hydraulic Results

VI. BEST MANAGEMENT PRACTICES (BMPs)

This section discusses the Best Management Practices (BMPs) identified for this project to reduce predictable pollutants in runoff from entering storm drain systems or traveling offsite. Proper implementation of the following BMPs will minimize erosion and sedimentation during construction. The BMPs will eliminate storm water pollution runoffs by any chemicals and construction materials. The section will also identify long-term post construction control measures to ensure future site contaminates are removed prior to discharge to public systems.

A. Potential pollutants Related to Construction Activities

The following descriptions are a variety of pollutants that can be introduced and discharged during regular construction activities:

Nutrients – New landscaping fertilizers consisting of nitrogen, phosphorous, and potassium that can be transported off-site by rainfall.

Sediment – Soil erosion is the most common pollutant during constructions. Sediments are transported via stormwater or heavy wind events. Typically stormwater picks up soil particles and carry them to receiving drainage facilities that outlet to receiving waters. Properly instituted Erosion control practices can reduce the off-site effects of sediment leaving the construction site.

Toxic Chemical Spills and Illegal Dumping of construction materials – Inadequate management of contaminated soil and water may produce storm water pollutants. Improperly storing and disposing of typical construction materials along with deliberate dumping into drainage systems can cause environmental harm.

Trace Materials – Coating and treatments that contain metals such as galvanized metal, painted surfaces, and preserved wood.

B. Contractor Activity

The following information provides a description of the Contractor's Activities that could result in the discharge of pollutants in the storm water runoff from the site:

Construction materials, equipment and vehicles that come in contact with storm water:

- Materials: concrete reinforcing, form work, sand, gravel, pipe, lumber, paints, stucco materials, roofing materials, landscape planting, fertilizers.
- Equipment/vehicles: bulldozers, scrapers, loaders, trucks, back-hoes, earth compaction rollers, concrete trucks, paving equipment, delivery vehicles, compressors, welders, painting equipment.
- Construction material loading, unloading and access area/activities:
 - Primary materials storage areas will be shown on a project site plan. General construction materials will be stored in a bermed area with exception of concrete, asphalt paving materials and liquid asphalt roofing materials, which will be used immediately upon delivery to the site. Temporary materials storage areas also may be established at other locations adjacent to areas currently being constructed. Bermed storage for these materials need not be provided unless rain is forecast.
- Equipment Storage, cleaning and maintenance areas/activities:
 - Equipment will be stored in a Bermed staging area. Fueling, cleaning and minor maintenance activities will take place within this staging area. Major maintenance activities will take place off-site.
- Storage and disposal of construction materials (on-site and off-site):
 - Material will be stored on pallets, blocking or on-grade if sand, gravel or other bulk material within the Bermed storage area. Loose materials will be covered to prevent wind or rain erosion. Waste materials will be placed in dumpsters nightly and disposed of weekly. Dumpsters will be placed in a waste containment area. Contaminated materials such as empty pain containers, excess asphalt materials, oil solvents, greases, etc., will be placed in separate dumpsters and disposed of weekly by a contractor approved to handle and dispose of such materials.

The BMPs discussed in the rest of this section have been selected to reduce pollutants associated with contractor activities as described above. Final determination of BMP placement will be determined in the field prior to commencement of construction operations. BMP selection and location shall be made utilizing the most effective erosion and sediment control measures to ensure that any toxic or chemical substances used or stored on-site shall not come in contact with storm runoff. The BMPs found later in the section are accepted practices to control erosion and to eliminate deleterious substances in runoff to storm water.

C. Erosion and Sediment Control Practices

The source and composition of the existing soil and fill material is detailed in the soils report for each individual development location within the project site. As part of the construction document plan preparation, KPFF Consulting engineers will be preparing erosion control plans that show temporary control measures to be implemented during project construction. These plans will be updated and revised to meet evolving construction conditions. These temporary erosion control plans will be sued in conjunction with the BMPs described below. The individual categories of erosion and sediment controls include soil stabilization and dust control practices, sediment control practices, and roadway cleanliness practices. Erosion control Plans give suggested locations of these selected BMPs, while applicable BMP fact sheets are guidance details can be found in Section 8.

D. Soil Stabilization and Dust Control Practices

The most effective means to control project erosion is to preserve existing vegetation or to vegetate disturbed soils as soon as possible. Table 4 provides a list of soil stabilization BMPs selected for possible implementation on the project. Actual selection of final BMPs will be made in the field depending on the progress of the work and the time of the year.

Table 4: Soil Stabilization and Dust Control Practices

BMPs Selected	BMP Name
EC1 – Scheduling	Construction sequencing to reduce erosion potential
EC2 – Preservation of Existing Vegetation	Contractors to take note of and protect existing vegetation.
EC10 – Seeding and Planting	Long-term stabilization for disturbed areas and slopes
EC11 – Mulching	Used to stabilize freshly seeded and planted areas
EC20 – Geotextiles and Mats	Stabilize steep slopes or channels
EC21 – Dust Controls	Water grading areas Frequently.

E. Sediment Control Practices

Due to the on-going nature of construction activities, the contractor will need temporary sediment control methods that can be used in-lieu of longer term practices such as listed above. Table 5 provides methods to reduce sediment runoff of disturbed soils during construction.

BMPs Selected	BMP Name
EC23 – Construction Road Stabilization	Stabilize with gravel immediately after grading.
EC24 – Stabilized Construction Entrance	Control vehicle sediment tracking onto public roads.
ES40 – Outlet Protection	Prevent soil scour caused by high pipe flow velocities.
Runoff Diversion BMPs:	
ESC30 – Earth Dick	Intercept and collect flows to prevent slope erosion.
ESC31 – Temporary Drains and Swales	Divert off-site runoff around the construction site
ESC32 – Slope Drain	Drain the top of the slope to a stable discharge point.
ESC40 – Outlet Protection	Prevent soil scour cause by high pipe flow velocities.
ESC41 – Check Dams	Sandbag rows to control flows in channels or swales.
ESC42 – Slope Roughening/Terracing	Reduce runoff velocity, increase infiltration, and trap sediments.
Sediment Trapping/Filtering BMPs:	•
ESC50 – Silt Fence	Detain sediment-laden water.
ESC51 – Straw Bale Barrier	Detain runoff.
ESC52 – Sand Bag Barrier	Control sheet flows and trap sediments.
ESC53 – Brush or Rock Filter	Reduce storm water velocities and trap sediments with this barrier.
ESC54 – Storm Drain Inlet Protection	Prevent sediment from entering catch basins.
ESC55 – Sediment Trap	Detain small drainage areas to allow sediment

Table 5: Sediment Control Practices

	settlement.
ESC56 – Sediment Basin	Retain or detain runoff sufficiently to allow
	sediment to settle.

F. Roadway Cleanliness Practices

Materials brought off the project sites by construction vehicles and onto public roads can be controlled by the roadway cleanliness BMPs shown in Table 6. Roadway maintenance practices for inspecting and cleaning will greatly reduce the negative impacts upon receiving waters.

Table 6: Roadw	ay Cleanliness Practices
BMPs Selected	BMP Name
SC70	Reduce discharges to storm water through regular street cleaning.
CA30 – Vehicle and Equipment Cleaning	Use of off-site cleaning facilities to reduce pollutant discharge.

G. Post Construction

Once Construction is complete at The Buckley School, source and treatment controls shall be installed and maintained to continue the reduction of pollutants to the surrounding water sources. The type and location of this project's post-construction controls are listed below in table 6.

Table 7: Post Construction BMPs

BMPs Selected	BMP Name
SC0 – Public Education/participation	Whenever possible a clear and consistent
	message will be presented to the public regarding storm water pollution
SC10 - Housekeeping Practices	Promote efficient and safe practices when
Se to – Housekeeping Practices	handling potentially harmful materials
SC11 – Safer Alternative Products	Promote the use of less harmful products.
SC20 – material Storage Control	Store materials in designated storage areas and minimize storage of hazardous materials on-site.
SC30 – Storm Drain System Signs	Stenciling of the storm drain system to discourage illegal dumping.
SC50	Implement measures to detect, correct, and enforce against illegal dumping.
SC70 – Street Cleaning	Reduce discharge of pollutants by conducting street cleaning on a regular basis.
SC71 – Catch Basin Cleaning	Clean catch basins and inlets on a regular basis to remove sediments and other pollutants.
SC72 – Vegetation Control	Use low maintenance vegetation, reduce cutting frequency, and dispose cutting properly. Controlling project vegetation.

H. Construction Vehicles and Equipment Cleaning Practices

All equipment will be washed in designated areas where runoff and infiltration will be limited. Run-off from this area will be contained within the area by the use of straw bales or sandbags. Washing of personal vehicles on-site is prohibited.

Concrete and gardening equipment will be washed in designated areas where runoff and infiltration will be limited. Use of soaps or detergents with phosphorous will be prohibited

on site. Run-off from this area will be contained within the area by the use of straw bales or sandbags. Washing of personal vehicles on-site is prohibited.

Trimmings and debris from construction must be removed and disposed of off-site per city standards.

Instructions will be posted for proper use of cleaning equipment, to ensure the above practices are followed through the construction process.

I. On-Site Delivery and Outdoor Handling of Materials

Exposure of hazardous material to rain (if stored outside) will be reduced by covering of materials with ran barriers such as tarps or plastic sheets. The tarps are to be held down with sandbags or steaks to prevent uncovering of the material during storm events.

All on-site personnel will comply with DOT packaging requirements for off-site transportation of hazardous waste.

Spill response training will be provided for on-site personnel who handle hazardous materials.

All minor spills will be cleaned up immediately.

All personnel will ensure loading and tie-down requirements are met.

Hazardous waste transportation vehicles will be equipped with spill kits.

Tank trucks or delivery vehicles will be parked away from unprotected storm drains or manholes, or the drains will be provided with temporary protections.

Major loading and unloading areas will be graded or bermed to prevent stormwater run-on or run-off.

Roof drain down spouts will be directed away from loading and unloading areas.

All tanks, drums and containers should be inspected regularly to ensure that they are not leaking.

J. Sediment and Erosion Control Management

As part of routine construction activities, soil is often disturbed and stockpiled for short periods of time. Contaminated soil excavated during environmental studies or remediation is segregated and placed in protect piles.

When possible, natural vegetation, especially trees and shrubs, will be preserved.

Excavated soil will be covered, until they are re-used on site or transported off-site.

Disturbed areas will be re-vegetated as soon as possible as determined by a professional landscape architect.

Contaminated soils will be removed from site and disposed of per City standards.

K. Building and Ground maintenance Practices

Outside building and grounds maintenance includes: cleaning walkways; parking lots and streets; providing landscape maintenance of plats, trees, vegetation, lawns and shrubbery (include fertilizer, herbicide, and pesticide application); cleaning weeds and hydro seeding drainage channels and unoccupied open areas. To prevent or reduce discharge of pollutants to stormwater from these activities, the following practices will be implemented for post construction:

• Natural vegetation will be preserved to reduce water, fertilizer, and pesticide requirements, and run-off.

- EPA-approved pesticides and fertilizers will be used on site, and their application will be applied by certified landscapers.
- Discharge of waste water to the ground or storm drain system will be prohibited.
- Paved areas will be routinely dry-swept.
- Piled sweepings will be disposed of as soon as possible.

L. Construction Maintenance Practices

To prevent or reduce the discharge of pollutants to storm water from building repair, remodeling, and construction, the following practices will be implemented:

- Discharge of anything other than clean storm water to the ground and storm drains will be prohibited. Waste liquids should not be dumped down the storm drains.
- Soil erosion control techniques will be used if bare ground is temporarily exposed.
- Permanent soil erosion control techniques will be used if remodeling clears buildings that will not be replaced.
- The work site will be kept clean and orderly and debris will be removed in a timely manner.
- Materials of particular concern, such as soil piles and paints, will be protected from weather damage.
- Spill response training will be provided for personnel who handle hazardous material (on-site and off-site).
- All on-site contractors will be informed of required practices for management of wastes and discharges.
- Materials normally used in repair and remodeling will be properly stored on-site.
- Good housekeeping practices for management and disposal of waste, discharges, and spills will be maintained. Appropriate provisions will be placed in contracts to enforce these policies.
- Nearby storm drains will be protected to minimize chances of inadvertent disposal or residual paint or liquid.
- Concrete truck drivers will be advised of the proper place for wash out.

M. Construction – General Practices

A grading plan will be prepared that establishes how the site will be graded to ensure that site drainage will not cause on-site flooding or ponding. The plan will also include earthwork requirements such as: when it will stop and start, the length and degree of finished slopes, and how excess materials will be disposed of.

Construction entrances will be stabilized to minimize off-site transportation of sediments by mud and sediments attached to vehicles. A gravel pad covered with filter cloth will be placed where construction traffic leaves a site to stabilize the entrance and prevent loss of soil.

A vehicle washing station will be established at the site exit to wash excessive sediments from vehicles. Runoff from this station will be diverted to sediment traps to ensure that sediments are kept on-site and disposed of properly.

Mulching will be used as a temporary erosion control practice for all exposed planning surfaces.

During rough grading, soil roughening can be used as a temporary erosion control practice.

To prevent dust from being transported by wind several dust control methods will be implemented. The methods include irrigation, hydro seeding, vegetative cover, mulching, wind breaks, stone riprap and spray-on chemical soil treatments.

Sediment traps will be used in vehicle washing areas to prevent sediment runoff from the site. These traps are temporary diversions to slow concentrated velocity run-off and catch sediments.

N. Non-Storm Water Management

Provisions shall be made to ensure, to the extent feasible, that no materials are discharged to receiving water in quantities causing an adverse environmental effect. Allowable non-storm water discharges associated with construction activates include:

- Uncontaminated fir fighting activity discharges
- Fire hydrant and potable waterline flushing
- Uncontaminated groundwater
- Uncontaminated excavation dewatering
- Uncontaminated foundation and footing drain flows
- Springs, riparian habitats, and wetlands flows
- Irrigation water and runoff associated with seeding and planting activities and soil stabilization
- Condensate from air-conditioning
- Concrete truck wash out
- Vehicle and equipment cleaning

Volumes associated with the discharges listed above are unknown, but generally limited. Still, non-storm water discharges can be managed by implementing the BMPs identified in Table 8, Non-Storm Water control Practices. Excavation dewatering, vehicle cleanup, and irrigation runoffs will be directed to sediment traps or basins (ESC55 and ESC56).

Concrete trucks working in these areas will not be allowed to washout on-site. Should on-site concrete washouts be required, the contractor will follow BMP CA23-Concrete Waste management.

Table 8: Non-Storm Water Control Practices

BMP ID	BMP Name
CA1	Dewatering Operations
CA23	Concrete Waste Management
CA30	Vehicle and Equipment Cleaning
ESC10	Seeding and Planting (Irrigation Requirements)

VII. MONITORING AND MAINTENANCE PLAN

The following maintenance/repair efforts will be implemented to ensure that both the temporary BMPs for erosion and sediment control and the permanent BMPs are implemented and in good operational conditions:

A. Maintenance and Repair

Temporary erosion and sediment control measures will be maintained and repaired as follows:

- Sediment will be removed from sandbag berms, silt fences, and inlet protection when sediment depth reaches one third of total available depth.
- Any sand bag berms, silt fences, or inlet protection which is washed out or otherwise disrupted will be replaced or repaired within 48 hours of discovery.

B. Inspection

The following inspection procedures and record keeping efforts will be implemented to ensure that the BMPs are properly maintained.

- Annual Inspection
- Pre-storm Inspection Before and after every rainfall with 0.25 inches or more of predicted or actual precipitation.
- Post-storm Inspection At 24-hour intervals during extended rainfall events.

C. Training

Individuals responsible for LSWPPP preparation, implementation, and permit compliance shall be appropriately trained, and the LSWPPP shall document all training that is required. This includes those personnel responsible for installation, inspection, maintenance, and repair of BMPs. Those responsible for overseeing, revising, and amending the LSWPPP shall also document their training. Training will be performed on an ongoing basis when it is appropriate and convenient, and should include training/workshops offered by the SWRCB, RWQCB, or other locally recognized agencies or professional organizations.

D. Non-Storm Water Discharge Maintenance

The following general maintenance procedures are for non-storm water discharges:

- Inspection and maintenance of the on-site storm drain system.
- Elimination of all unauthorized discharges to the storm drain system.
- Maintenance of a database to track changes to building drains.
- Visually inspect each discharge point each quarter, per the General Permit.*
- Keep all surface greats clear of debris.
- Interrupt high-debris flows with straw bales, and replace bales as required to maintain proper performance.

*The non-storm water discharges are authorized by the General permit: fire hydrant flushing; drinking fountain water; atmospheric condensate; air conditioning and compressor condensate; landscape watering; ground water; and foundation or footing drainage. All other non-storm water discharges are "unauthorized" and thus prohibited.

APPENDIX

Hydrology Calculations	
Existing Conditions	A1-A2
Proposed Conditions	A3-A4
Hydraulic Calculations	
Pipe 2	A5-A6
Pipe 3	A7-A8
Pipe 4	A9-A10
Site Location	A11-A12
Hydrology Background Information	
Drainage Map	A13
Isohvetal Map	A14

Hydrologic Map 1-H1-3	
Site Photographs	
Existing Storm Drain System	A20
City of LA Storm Drain As-builts	A21-A31

BUCKLY HIGHSCHOOL EXISTING HYDROLOGY CALCULATIONS
USING TC CALCULATOR
KPFF Job # 105370
By: DLJ
5/24/2006

Frequency Factor	0.714	0.878	1.000
Rainfall Depth	10-year 24 hour	25-year 24 hour	50-year 24 hour

	Flowrate (cfs)	146.55	114.68	77.93
	ទ	0.84	0.8	0.73
:	cr	0.84	0.79	0.72
	Intensity (in./hr)	2.86	2.35	1.75
	Tc-calculated (min.)	13	15	18
	lsohyet (in.)	7.5	6.59	5.36
	Slope (ft/ft)	0.036	0.036	0.036
	Length (ft)	2323	2323	2323
	Soil Type	16	16	16
	Return Time (yrs.)	50	25	10
	% Imp	5%	5%	5%
	Area (acres)	61	61	61
	Qevent	Q ₅₀	Q ₂₅	a ₁₀

MARKAGENI												
	Area		Return		Length	Slope	lsohyet	Tc-calculated	Intensity			Flowrate
Qevent	(acres)	% imp	Time (yrs.)	Soil Type	(t t)	(ft/ft)	(in.)	(min.)	(in./hr)	Cu	ខ	(cfs)
\mathbf{Q}_{50}	20	26%	50	16	2025	0.036	7.5	12	2.97	0.85	0.87	51.68
\mathbf{Q}_{25}	20	26%	25	16	2025	0.036	6:59	13	2.51	0.81	0.84	42.17
Q,	20	26%	10	16	2025	0.036	5.36	16	1.85	0.73	0.79	29.23

	Area		Return		Length	Slope	Isohyet	Tc-calculated	Intensity			Flowrate
Gevent	(acres)	% Imp	Time (yrs.)	Soil Type	(ft)	(ft/ft)	(in.)	(min.)	(in./hr)	G	B	(cfs)
\mathbf{Q}_{50}	26	1%	50	16	2164	0.036	7.5	12	2.97	0.85	0.85	65.64
Q ₂₅	26	1%	25	16	2164	0.036	6.59	14	2.42	0.8	0.0	50.34
Q 10	26	1%	10	16	2164	0.036	5.36	17	1.8	0.73	0.73	34.16

BUCKLY HIGHSCHOOL EXISTING HYDROLOGY CALCULATIONS
USING TC CALCULATOR
KPFF Job # 105370
By: DLJ
5/24/2006

Frequency Factor	0.714	0.878	1.000
Rainfall Depth	10-year 24 hour	25-year 24 hour	50-year 24 hour

			-			ĺ						
	Area		Return		Length	Slope	Isohyet	Tc-calculated	Intensity			Flowrate
Qevent	(acres)	% Imp	Time (yrs.)	Soil Type	(ft)	(ft/ft)	(in.)	(min.)	(in./hr)	Cu	BS	(cfs)
Q ₅₀	25	1%	50	16	3733	0.036	7.5	18	2.45	0.81	0.81	49.61
Q_{25}	25	1%	25	16	3733	0.036	6.59	21	5	0.76	0.76	38
Q ₁₀	25	1%	10	16	3733	0.036	5.36	26	1.47	0.67	0.67	24.62

wrate	(cfs)	63.04	51.36	33.92
Ĕ	P.	.85	0.82	74
	Cu (0.85 0	0.82	0.74 (
Intensity	(in./hr)	3.09	2.61	1.91
Tc-calculated	(min.)	11	12	15
Isohyet	(in.)	7.5	6.59	5.36
Slope	(ft/ft)	0.036	0.036	0.036
Length	(£)	1800	1800	1800
	Soll Type	16	16	16
Return	I Ime (yrs.)	50	25	10
-	dui %	0.01	0.01	0.01
Area	(acres)	24	24	24
	Mevent	°°°	Q_25	å

BUCKLY HIGHSCHOOL PROPOSED HYDROLOGY CALCULATIONS

USING Tc CALCULATOR KPFF Job # 105370 By: DLJ 5/24/2006

Rainfall Depth	Frequency Factor
10-year 24 hour	0.714
25-year 24 hour	0.878
50-year 24 hour	1.000

	Area		Return		Length	Slope	lsohyet	Tc-calculated	Intensity			Flowrate
Qevent	(acres)	% Imp	Time (yrs.)	Soil Type	(ft)	(ft/ft)	(in.)	(min.)	(in./hr)	Сu	BG	(cfs)
Q50	61	5%	50	16	2323	0.036	7.5	13	2.86	0.84	0.84	146.55
\mathbf{Q}_{25}	61	5%	25	16	2323	0.036	6.59	15	2.35	0.79	0.8	114.68
Q ₁₀	61	5%	10	16	2323	0.036	5.36	18	1.75	0.72	0.73	77.93

<u>200</u> 2	200 E											
Qevent	Area (acres)	% Imp	Return Time (yrs.)	Soil Type	Length (ft)	Slope (ft/ft)	lsohyet (in.)	Tc-calculated (min.)	Intensity (in./hr)	СĽ	PC	Flowrate (cfs)
Q ₅₀	20	36%	50	16	2025	0.036	7.5	12	2.97	0.85	0.88	52.27
Q ₂₅	20	36%	25	16	2025	0.036	6:59	13	2.51	0.81	0.86	43.17
Q 10	20	36%	10	16	2025	0.036	5.36	15	1.91	0.74	0.82	31.32

	Area		Return		Length	Slope	Isohyet	Tc-calculated	Intensity			Flowrate
Qevent	(acres)	% Imp	Time (yrs.)	Soil Type	(ft)	(ft/ft)	(in.)	(min.)	(in./hr)	Cu	P C	(cfs)
Q ₅₀	26	1%	50	16	2164	0.036	7.5	12	2.97	0.85	0.85	65.64
Q_{25}	26	1%	25	16	2164	0.036	6.59	14	2.42	0.8	0.8	50.34
Q ₁₀	26	1%	10	16	2164	0.036	5.36	17	1.8	0.73	0.73	34.16

BUCKLY HIGHSCHOOL PROPOSED HYDROLOGY CALCULATIONS	
USING TC CALCULATOR	
KPFF Job # 105370	

By: DLJ 5/24/2006

Rainfall Depth	Frequency Factor
10-year 24 hour	0.714
25-year 24 hour	0.878
50-year 24 hour	1.000

					:							
	Area		Return		Length	Slope	lsohyet	Tc-calculated	Intensity			Flowrate
Qevent	(acres)	% Imp	Time (yrs.)	Soil Type	(ft)	(ft/ft)	(in.)	(min.)	(in./hr)	ບິ	PC	(cfs)
Q ₅₀	25	1%	20	16	3733	0.036	7.5	18	2.45	0.81	0.81	49.61
\mathbf{Q}_{25}	25	1%	25	16	3733	0.036	6.59	21	2	0.76	0.76	38
Q. 0	25	1%	10	16	3733	0.036	5.36	26	1.47	0.67	0.67	24.62
											Γ	
	Area		Return		Length	Slope	Isohyet	Tc-calculated	Intensity			Flowrate
Qevent	(acres)	% Imp	Time (yrs.)	Soil Type	(£)	(ft/ft)	(in.)	(min.)	(in./hr)	ŋ	B	(cfs)
Q ₅₀	24	0.01	50	16	1800	0.036	7.5		3.09	0.85	0.85	63.04
\mathbf{Q}_{25}	24	0.01	25	16	1800	0.036	6:59	12	2.61	0.82	0.82	51.36
0 10	24	0.01	10	16	1800	0.036	5.36	15	1.91	0.74	0.74	33.92

	51" Main line - F	Pipe 2	2
Project Description			
Friction Method	Manning Formula		
Solve For	Discharge		
Input Data			n na serie de la serie de la companya de la serie de la serie Nota de la serie
Roughness Coefficient	0.0	12	
Channel Slope	0.040)0 ft/ft	
Normal Depth	4.:	25 ft	
Diameter	4.3	25 ft	
Results			an an ann an Anna Anna An Airteachan An Anna Anna Anna Anna An Anna Anna A
Discharge	365.6	2 ft³/s	
Flow Area	14.1	9 ft²	
Wetted Perimeter	13.3	5 ft	
Top Width	0.0	0 ft	
Critical Depth	4.2	2 ft	
Percent Full	100	0 %	
Critical Slope	0.0373	8 ft/ft	
Velocity	25.7	9 ft/s	
Velocity Head	10.3	3 ft	
Specific Energy	14.5	8 ft	
Froude Number	0.0	0	
Maximum Discharge	393.5	1 ft³/s	Company Quantum Quantum Company
Discharge Full	365.8	2 ft³/s	
Slope Full	0.0400	0 ft/ft	
Flow Type	SubCritical		
GVF Input Data		₹.,	
Downstream Depth	0.0) ft	
Length	0.0	Dît	
Number Of Steps		כ	
GVF Output Data			
Upstream Depth	0.0) ft	
Profile Description			
Profile Headloss	0.00) ft	
Average End Depth Over Rise	0.00) %	
Normal Depth Over Rise	100.00) %	
Downstream Velocity	Infinity	ft/s	
Upstream Velocity	Infinity	ft/s	

 Bentley Systems, Inc. Haestad Methods Solution Center
 FlowMaster [08.01.058.00]

 3/2/2006 6:41:35 PM
 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 2

51" Main line - Pipe 2

GVF Output Data		
Normal Depth	4.25	ft
Critical Depth	4.22	#

Critical Depth	4.22	ft
Channel Slope	0.04000	ft/ft
Critical Slope	0.03738	ft/ft

.....

	18" Pipe 3		
Project Description		nterante Philippi	
Friction Method	Manning Formula		
Solve For	Discharge		
Input Data		en. d de si	
Roughness Coefficient	0.012	2	
Channel Slope	0.1700) ft/ft	
Normal Depth	1.50) ft	
Diameter	1.50) ft	
Results	ne negater og sem skilderer for kilder som en s Som en som en		
Discharge	46.92	ft³/s	
Flow Area	1.77	ft²	
Wetted Perimeter	4.71	ft	
Top Width	0.00	ft	
Critical Depth	1.50	ft	
Percent Full	100.0	%	
Critical Slope	0.16615	ft/ft	
Velocity	26.55	ft/s	
Velocity Head	10.95	ft	
Specific Energy	12.45	ft	
Froude Number	0.00		
Maximum Discharge	50.47	ft³/s	Qm4
Discharge Full	46.92	ft³/s	
Slope Full	0.17000	ft/ft	
Flow Type	SubCritical		
GVF Input Data			
Downstream Depth	0.00	ft	
Length	0.00	ft	
Number Of Steps	0		
GVF Output Data		n dat	
Upstream Depth	0.00	ft	
Profile Description			
Profile Headloss	0.00	ft	
Average End Depth Over Rise	0.00	%	
Normal Depth Over Rise	100.00	%	
Downstream Velocity	Infinity	ft/s	
Upstream Velocity	Infinity	ft/s	

 Bentley Systems, Inc.
 Haestad Methods Solution Center
 FlowMaster [08.01.058.00]

 3/2/2006 6:44:17 PM
 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 2

18" Pipe 3

GVF Output Data

Normal Depth	1.50	ft
Critical Depth	1.50	ft
Channel Slope	0.17000	ft/ft
Critical Slope	0.16615	ft/ft

	57" Main Line -	Pipe	e 4
Project Description			
Friction Method	Manning Formula		
Solve For	Discharge		
Input Data			
Roughness Coefficient	0.01	2	
Channel Slope	0.0400	0 ft/	/ft
Normal Depth	4.7	5 ft	
Diameter	4.7	5 ft	
Results	yn de skielen gryfel of stillen of de syns search gryfel ar stranger e skiel geffingt stillen ar still		
Discharge	492.1	3 ft³/	Vs
Flow Area	17.7	2 ft²	2
Wetted Perimeter	14.9	2 ft	
Top Width	0.0	0 ft	
Critical Depth	4.7	2 ft	
Percent Full	100.	0%	
Critical Slope	0.0374	7 ft∕f	ft
Velocity	27.7	7 ft/s	S
Velocity Head	11.9	9 ft	
Specific Energy	16.7	4 ft	
Froude Number	0.0)	
Maximum Discharge	529.3	3 ft³/:	S CMAY
Discharge Full	492.1	3 ft³/:	's
Slope Full	0.0400) ft/ft	Ĩ
Flow Type	SubCritical		
GVF Input Data		: . : 	
Downstream Depth	0.00	ft	
Length	0.00	ft	
Number Of Steps	C)	
GVF Output Data		i u e u projet i	an a
Upstream Depth	0.00	ft	
Profile Description			
Profile Headloss	0.00	ft	
Average End Depth Over Rise	0.00	%	
Normal Depth Over Rise	100.00	%	
Downstream Velocity	Infinity	ft/s	
Upstream Velocity	Infinity	ft/s	

3/2/2006 6:46:08 PM

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemons Company Drive Sulte 200 W Watertown, CT 06795 USA +1-203-755-1666

FlowMaster [08.01.058.00] Page 1 of 2

57" Main Line - Pipe 4 GVF Output Data				
Critical Depth	4.72	ft		
Channel Slope	0.04000	ft/ft		
Critical Slope	0.03747	ft/ft		

AII

Storm Drain Inlet I (See hvdrology Map on py A24) PER MARCH 20TH REPORT BY JOHN M. CRUIKSHANK CONSULTANTS, ING.

Inlet 2

ş

Typical Section of Camino de La Combre Road

•

5.1

 $\tau \geq t$

- -

1

---`

- -

100

· · · · · · · · · · · · · · · · · · ·	
300	
-	
RAL NOTES	
e particular en estas Labor alter électra como de las dantes	
ngla Bernet Net - Store come, 962 (Bernet No.23)	
and it there are a my ingine fore at analis well, while attended Security	
Example Sharing System (200) (200) and an indicated in the specifications. 2000 Schemen and example a parameters of the sector of and the sector.	
an ann ann ann ann ann an 1993 an 1993 an 1995 ann ann ann ann ann ann ann ann ann an	6 -
1 10 10 11 10 101 10 101 500 100 2 102 30 2 0732	
intelligent in the second state of the second	
mitarte a per fra Dag 10 254, with 7, when any sume	
n beine fille i une une une procession Meil fiele be fine fill mit plas in the	
et pier is fit widte at int tant beim etajing inen int turt ertern	
generalises and typical active a treat a	
econstructed in economical with the "Medified Senarete Guilder Detail" Still, d.	
a partners and an engineers in course on the state	
13.1 (ise 2, 2017). 2, or 70(7).3 (ise 5 with min bearing of 90".	
She se had at the Existing Curb alus taw sizes. The updated out ONLE Own Ha 4 3815.	
find by the supreer to exect this conditions.	
anticia sailary sewers during costruction. [4 and not be used.	
all be received to find. Dwg. 2-0254, except as otherwise shares	
is the second other were being constructed recomplexity. We want the	S. S.
e constructed received an economic with the fity	
use recentions that are to be remodeled shill be abaltoned in place	
of the cost of the fam of the sever shell be constructed or relations	
t or the Sta Plan.	
f some sine all senitory sever rechtigeretten and completion	
129 rt he specifications.	
an obversion specified in Speci. No Itie the chier stand of and individual a set of	
mudded securiting servers, the entire server within the manufact	
is at and temps shall be commed across the manhale leading a second at the second at the second second second second at the Engineer will be second at the second s	
estance the summer be previated to flow over concrete changed while der	
insen hall br	
monitole from and cover sets per Standard Man the B 2832.	
I interviewed in prince and the sweet will install a new section.	
clase prisinity is, but which does not physically interfere with,	
ORM ORAIN BOND ISSUE	
FLOOD CONTROL DISTRICT	
PROJECT NO. 465	
LOCATION WAP	-A.
ANO INDEX	
letter City of La more and fall the first	
2-2 Prode to March AS SHOW MAY 1963	
AS BUILT DECYMANIST	
AtE	
te, al.: is scoutement of the City of the Angelets, and	
RET Z ATTENA C. >> filert	
A7.1	
AZI	

r 13

· ?

D-22510

I hereby certif official cit; r Section 534 of Section 34096.

Ξ

Entifield. Usfy that has a low and accurate copy of the record second or one, such the accurate with it are converted on the of the Angeles, and it is the cover such that 152. 193 Jo LAYTCE, City Clerk 19 Lawrence - Jenner

1.11

- - -

PCR Services

The Buckley School Campus Enhancement Project

Athletic Field and Mechanical Equipment

Report ref AAc/130291/R01

ISSUE

ARUP

PCR Services

The Buckley School Campus Enhancement Project

Athletic Field and Mechanical Equipment

Noise Analysis

May 2006

This report takes into account the particular instructions and requirements of our client.

It is not intended for and should not be relied upon by any third party and no responsibility is undertaken to any third party

Ove Arup & Partners California Ltd 2440 South Sepulveda Boulevard, Suite 180, Los Angeles, California 90064 Tel +1 310 312-5040 Fax +1 310 312-5788 www.arup.com/acoustics

Job number 130291

Document Verification

Page 1 of 1

Job title The Buckle		The Buckley S	chool Campus Enhanceme	Job number 130291					
Document title Athletic Field a		nd Mechanical Equipment	File reference						
Document re	f	AAc/130291/R	AAc/130291/R01						
Revision	Date	Filename	Rep-buckley school-03-2	1-06-draft.doc					
Draft 1	03/21/06	Description	First draft						
			Prepared by	Checked by	Approved by				
		Name	Nathan Blum, Sean Bui	Amir Yazdanniyaz	Amir Yazdanniyaz				
		Signature							
Issue	05/05/06	Filename	Rep-buckley school-05-0	5-06-Issue2doc					
		Description	Incorporate PCR comments.						
			Prepared by	Checked by	Approved by				
		Name	Nathan Blum, Sean Bui	Amir Yazdanniyaz	Amir Yazdanniyaz				
		Signature							
		Filename		·					
		Description							
			Prepared by	Checked by	Approved by				
		Name							
		Signature							
		Filename							
		Description							
			Prepared by	Checked by	Approved by				
		Name							
		Signature							

Issue Document Verification with Document

 \checkmark

Contents

			Page
1	Introdu	uction	1
2	Projec	t Description	1
3	Site S	pecific Sound Test	3
	3.1	Sound Propagation Test (measuring site specific noise attenuation)	3
	3.2	Sound Reflection Test	5
4	Schoo	Athletic Activities Noise Levels at Nearby Residential Locations	8
	4.1	Noise Prediction Model	8
	4.2	Athletic Activities Reference Noise Levels	9
	4.3	Athletic Activities Noise Levels at Nearby Residential Locations	9
5	Mecha	nical Equipment Noise Analysis	12

Tables

- Table 1 Summary of Sound Propagation Test
- Table 2 Athletic Activity Reference Noise Levels
- Table 3 Description of Residential Locations
- Table 4 Athletic Activities Noise Levels at Neighboring Residential Community

Figures

- Figure 1 Buckley School Existing Plan
- Figure 2 Buckley School Proposed Plan
- Figure 3 Aerial Photo Showing Sound Test Configuration
- Figure 4 Sound Reflection at Location A
- Figure 5 Sound Reflection at Location B
- Figure 6 Photos of Sound Measurement Locations
- Figure 7 Aerial Photo Showing Residential Locations near the School

Appendices

Appendix A

Sound Propagation Test Data

Appendix B

Noise Prediction Details

1 Introduction

In association with PCR Services (PCR), Arup has performed acoustical analysis specific to athletic field activities and the central plant noise emissions associated with the proposed Buckley School ("School") Campus Enhancement Project. The analysis addresses the following acoustical issues.

- a) Establish through measurements the site specific sound attenuations and identify any presence of possible sound reflections between the School site and the nearby residential community.
- b) Estimate noise levels at the nearby residential properties associated with the proposed future athletic activities within the vicinity of the athletic field.
- c) Estimate noise levels at the nearby residential properties associated with the School's future central plant.
- d) Provide technical information (results of items a through c above) to PCR to support the noise impact assessments for the proposed School Enhancement Project.

2 **Project Description**

The proposed Campus Enhancement Project includes replacing some of the existing school buildings, adding new classroom buildings and a central plant, and reconfiguring positions of the existing athletic field to provide a new aquatic center and basketball court. Figures 1 and 2 present the current site plan and proposed plan for the Buckley School Enhancement Project, respectively.

Figure 1 – Buckley School - Existing Plan

Figure 2 – Buckley School – Proposed Plan

3 Site Specific Sound Test

On December 2, 2004 Arup engineers visited the School site and performed sound tests to establish the site's noise attenuation provided by existing landscaping and buildings between the School site and the adjoining residential properties. Site sound tests were also carried out to establish potential sound amplifications that may result from reflection of sound from existing school buildings and the natural landscapes.

3.1 Sound Propagation Test (measuring site specific noise attenuation)

The sound propagation test was performed using a set of several loudspeakers placed within the existing athletic fields. Loudspeakers were connected to a sound amplifier and electronic noise generator capable of producing maximum sound levels of 100 dBA measured at a distance of 20 feet from the face of the loudspeakers. The speaker system's sound outputs were recorded simultaneously at the reference distance of 20 feet from the loudspeakers (baseline sound levels) and at the neighboring residential properties (sound receptor). In consultation with PCR, two residential properties locations were selected for the sound tests as depicted on Figure 3. Location A represents the nearest home to the Buckley School property, which is located due west on Camino de la Cumbre. Location B is approximately 800 feet north of the existing athletic field. The local grade elevation at Location B is approximately 100 feet higher than the School's grade elevation. Noise measurement data recorded at Location B, were utilized to approximate the School's operational noise outputs at the homes on Beverly Ridge Drive. Sound measurement Location A is representative of the closest home to the School campus, and has a line of sight to the athletic field, less than 300 feet from the noise source.

Figure 3 – Aerial Photo Showing Sound Test Configuration

The results of the sound propagation test including decibel reduction as a function of lateral distance between the noise source (i.e., athletic field) and the sound receptors (i.e., residences) are shown on Table 1. As shown in Table 1, the measured sound attenuations levels are primarily due to the presence of lateral distances and the presence of foliages/trees. Further analyses of the measured overall sound reductions were carried out in order to separate sound dissipation due to distance from that offered by the natural landscapes (foliages and trees). Detailed analysis of the site sound propagation tests are provided in Appendix A.

The results of the sound attenuation tests (Table 1) provide a basis for predicting the future School's athletic field related sound levels at the School's neighboring communities.

Sound Measurements Location (See Fig. 1)	Approximate Distance From Sound Source, ft (Distances are measured using Site Plans and Topographic Maps provided by PCR)	Measured Sound Attenuation, (dBA) (Total noise reductions)	Sound Attenuation Due to Distance Alone, (dBA) (Estimated based on Relative Distance between Speaker System and sound monitoring locations)	Excess Sound Attenuation, (dBA) (Noise reduction beyond that provided by the distance, the excess sound attenuation is likely due to sound absorption provided by the existing trees, and foliages)
A - Nearest residence to School boundary (Camino de la Cumbre)	300	24	24	0
B - On hill below the residence on Beverly Ridge Drive	800	35	32	3

Table 1 - Summary of Sound Propagation Test

3.2 Sound Reflection Test

The sound reflection test was conducted by producing an "impulsive sound"¹ of approximately 95 decibels. The impulsive sound level was measured at the existing athletic field and the sound receptor locations A and B. Recorded samples of the impulse sound at Locations A and B are presented on Figure 4 and 5, respectively. Figure 6 provides a snapshot of the noise monitoring equipment.

There were two "spikes" in the noise data shown in Figure 4 which were recorded approximately 83 and 125 milliseconds after the source of the impulsive sound was cut-off. The time delay between the direct and second and the third arrival of the noise signatures suggests that a "hard" structure located approximately 45 ft and 78 ft, respectively, from where the sound level was recorded is likely responsible for the sound reflection.

Site observations suggest that the noted sound reflection likely originated from the existing residence near Location A (see Figure 6). Basically, noise produced at the athletic field would likely bounce off the residential building structure north of the School campus and arrive at Location A a few milliseconds after arrival of the original sound. The net result of such reflection is that the residence at that location would likely hear the direct as well as the reflective sound levels from the same noise source; though within a few milliseconds of each other. However, it is important to keep in mind that reflective sound level is significantly lower than that of the direct sound levels; by as much as 15 dBA lower than

¹ "Impulsive Sound" is sound of short duration, usually less than one second, with an abrupt onset and rapid decay.

that of the direct sound. The 15 decibel difference in the sound strength between the direct and reflected noises suggests that reflective sound would likely have an insignificant affect on the listener.

With respect to the location of the athletic field and its proximity to the existing hills to the south and west, sound reflection to the neighboring homes (west of the School) from the surfaces of hills was found to be non-existent or non measurable. This is because: a) the sound tests as mentioned above did not reveal the presence of any sound reflection from existing natural landscapes surrounding school campus; and b) it is expected that sound reflection would not occur since the existing hills are covered by thick foliages which make the hill surfaces sound absorptive (opposite of sound reflective). See Figure 6.

At location B, on the other hand, the sound reflection tests indicate that the existing hills located north of the measurement positions generate sound reflection that is measurable at this receptor site. However, as shown in Figure 5, the reflective level is about 5 decibels lower than that of the direct sound levels. In contrast to Location A [where the reflective sound was a minimum 15 dBA lower that that of the direct component], the sound reflection off of the existing hills would likely have measurable impacts on the overall sound environment.

Figure 4 – Sound Reflection at Location A

Figure 5 – Sound Reflection at Location B

Figure 6 – Photos of Sound Measurement Locations

4 School Athletic Activities Noise Levels at Nearby Residential Locations

4.1 Noise Prediction Model

School athletic related noise levels at the nearby residential locations were calculated using a computer noise prediction model (Arup's proprietary outdoor noise prediction model). The model input data are specific to the Buckley School environment; that is, the model includes actual site topography and building structures, both existing and proposed. The noise prediction model also considers attenuations provided by the geometrical distance between the off-site receptors and the athletic field, noise shielding and/or reflections due to topography and building structure, sound absorption due to trees and vegetation, and atmospheric absorption. In addition, the model output was calibrated using the actual measured sound attenuation (as described in Section 3). The accuracy of the model prediction was deemed reasonable within ±2 dBA.

4.2 Athletic Activities Reference Noise Levels

The noise levels used in the sound prediction model are based on actual source noise measurements from similar projects and also from measurements conducted at the Buckley School. Typical noise levels for various athletic activities used in the noise analysis are shown in Table 2.

Sport Activity	Reference	Athletic Activities Noise Levels, (dBA)				
	Distance, (feet) (Distance from center of activities where noise levels were recorded)	Average Noise Levels, (L _{eq}) (Averaged over a period of 15 minutes)	Maximum Noise Levels, (L _{max})			
Flag Football ¹	20	72	90			
Swimming ²	20	82	90			
Softball Game ³	20	72	88			
Basketball Game ⁴	20	55	78			

Notes: 1. Measured noise level at a flag football game from a similar project, source Arup

- 2. Measured noise level at a swim meet from a similar project and adjusted for 240 spectators to present proposed aquatic center at Buckley School, source Arup
- 3. Measured noise level of a softball game at Buckley School, source Arup
- 4. Measured noise level of a basketball game/practice, source PCR Services

Table 2 – Athletic Activity Reference Noise Levels

4.3 Athletic Activities Noise Levels at Nearby Residential Locations

Noise analysis was carried out for a total of five nearby residential locations selected to represent the homes closest to the School. These locations are identified on Figure 7 as Locations A, B1, C, D and E. Approximate distance between the noted residential locations and School's athletic field, are shown in Table 3. Existing and the future athletic related noise levels at the nearby residential locations were estimated using the computer noise prediction model. The model utilized the reference noise levels described in previous sections. The estimated athletic activities noise levels measured in both L_{eq} (approximately 15 minutes) and L_{max} at the residential locations are presented in Table 4 for the existing and future athletic field configuration. The calculation details are included in Appendix B.

Nearby Residential Locations	Approx. Distance From Perimeter of Athletic Field (ft.)
A – Nearest residence on Camino de la Cumbre (Buckley Hill)	250
B1 – Nearest residence on Beverly Ridge Drive	800
C – Residence at 3852 Camino de Solana	500
D – Residence at 3931 Camino de la Cumbre	950
E – Nearest residence north of the School	1100

Table 3 – Description of Residential Locations

Figure 7 – Aerial Photo Showing Residential Locations near the School

		Estimated Noise Levels at Off-site Sound Receptors due to Athletic Activities, dBA						
	Average Noise Levels, L _{eq}			Maximum Noise Levels, L _{max}				
Sound	Existing / Future				Existing / Future			
Receptor Locations	Flag Football/ Soccer	Softball	Basketball	Swimming ¹	Flag Football/ Soccer	Softball	Basketball	Swimming
A ²	55 / 55	61 / 61	31 / 42	NA / 61	72 / 72	77 / 77	56 / 66	NA / 72
B1	38 / 38	40 / 40	20 / 24	NA / 47	55 / 55	56 / 56	43 / 47	NA / 58
С	42 / 42	46 / 46	25 / 32	NA / 36	60 / 60	62 / 62	49 / 56	NA / 47
D	37 / 37	39 / 39	21 / 24	NA / 31	53 / 53	55 / 55	45/ 48	NA / 41
E	33 / 33	35 / 35	19 / 20	NA / 34	52 / 52	51 / 51	42 / 43	NA / 45

Notes: 1. NA; future condition only

2. Softball game generates the highest noise level as it is closet to the sound receptor.

Table 4 - Athletic Activities Noise Levels at Neighboring Residential Community

5 Mechanical Equipment Noise Analysis

The future site plan was analyzed in order to address the potential noise impact on the neighboring residential community from the proposed central plant and other individual outdoor mechanical equipment. Mechanical equipment associated with the proposed enhancement project includes:

- A central plant to be located at the east side of the campus as shown on Figure 2. The central plant will incorporate Cooling Towers and an enclosed Chiller building.
- Packaged rooftop AHUs to be placed on the roofs of future buildings, including the Academic Building South, Library, Elementary School, and both sections of the Middle/Upper Academic Building.

The noise analysis assumes that the majority of the mechanical equipment will be operating during daytime hours (school hours). During nighttime hours, it is anticipated that the mechanical equipment will be operating at much lower capacity, which will also generate lower sound levels.

According to the City's Noise Regulations regarding exterior noise for mechanical equipment (Los Angeles Municipal Code Chapter XI, Noise Regulation), future equipment noise levels shall not exceed the existing ambient noise levels or City's presumed ambient² (whichever is greater) by more than 5 dBA at nearby residences. <u>The City's presumed ambient noise levels for residential uses are 50 dBA and 40 dBA for daytime and nighttime hours, respectively.</u> Existing ambient noise measurements were recorded and provided to Arup by PCR.

The lowest measured ambient noise levels (recorded during the hours of 7 a.m. to 10 p.m., weekdays) at the nearby residences varied from about 40 dBA (L_{eq}) at Location A to 44 dBA (L_{eq}) at Location E. Therefore, in accordance with the City's Noise Regulation, the exterior noise impact criteria for the mechanical equipment will be maximum 45 dBA at the nearby residences.

Detailed information regarding the mechanical design and selection of equipment is yet to be finalized. The analysis is based on defining maximum sound output (noise limit) from individual mechanical equipment so that the overall noise level at the residences will not exceed the exterior noise impact criteria.

The following noise limits for outdoor mechanical equipment, are recommended to ensure that the project will not exceed the established noise criteria:

- Noise generated by rooftop mechanical equipment including Air Handling Unit and Exhaust Fan shall not exceed seventy (70) dBA at a distance of 10 feet from the equipment.
- Noise generated by the Cooling Tower shall not exceed seventy (70) dBA at a distance of 25 feet from all sides of the equipment.
- Noise generated by the Chiller Room, through ventilation openings or exhausts fans, shall not exceed seventy (70) dBA at a distance of 25 feet.

² City's Noise Regulation, Section 111.03, "Where the ambient noise level is less than the presumed ambient noise level designated in this section, the presumed ambient noise level in this section shall be deemed to be the minimum ambient noise level for purposes of this chapter."

• The mechanical design should be reviewed by a qualified acoustical consultant to ensure that the design will meet the project noise criteria prior to construction.

Appendix A

Sound Propagation Test Data
Arup Acoustics				Job No.				Sheet N	0.	
Consultants in Acoustics • Noise • Vibration					1302	91-00			1	
				Date	12/14	1/2004		Made by SB	, 3 & JM &	NB
Title The Buckley School Enhancement Project Sound Propagation Test										
Description	Ref.				Octave I	Band Cer	ntre Frequ	Jency, Hz	<u>'</u>	
	Dist.	dB(A)	63	125	250	500	1k	2k	4k	8k
Sound Propagation Test										
Location A (300 from the noise source)							05			
Reference (pink noise) at 20th	20	98	88	94	89	92	85	91	92	93
Ambient at Legation A	300	14	7Z 52	75	71	20	70	07	03	52 25
Ambient at Location A		44 74	72	75	44 71	- 39 - 71	- 37 - 69	- 34 - 66	- 34 - 62	52
NR from Ref. to Location A		24	-16	-19	-18	-20	-15	-24	-29	-41
				10	10	20				
Distance Only (6dB/DD)			-24	-24	-24	-24	-24	-24	-24	-24
Site adjustment			8	5	6	4	9	0	-5	-18
Adjustment / 100 feet			2.7	1.5	1.8	1.2	2.8	-0.2	-1.8	-5.9
Location B (800 from the noise source)										
Reference (pink noise) at 20ft	20	96	88	94	90	90	85	90	93	95
Pink noise at location B	800	62	65	66	59	60	57	54	44	46
Ambient at Location B		55	60	57	53	53	50	37	35	28
Adjusted for ambient		61	63	65	58	59	56	53	43	45
NR from Ref. to Location B		35	-25	-29	-32	-31	-29	-37	-50	-49
Distance Only (6dB/DD)			-32	-32	-32	-32	-32	-32	-32	-32
Adjustment / 100 feet			/	3	01	0.1	3	-5 0.6	-17	-17
Adjustment / 100 leet			0.8	0.4	0.1	0.1	0.4	-0.6	-2.2	-2.1
										
									 	ļ
									 	
								—	—	
									 	
										1
				İ						
				<u> </u>					L	<u> </u>
				ļ			ļ	 	┣───	ļ
		1	1	1			1	L	1	1

Arup**Acoustics**

Appendix B Noise Prediction Details

T

run Acoustics .

Ar Co	up Acoustics nsultants in Acoustics • Noise • Vibration				Job No.	1302	91-00		Sheet N	o. 1	
					Date	3/13/	/2006		Made by	, SB & NB	
Title	The Buckley School - Noise Prediction, Existing Site Plan Location A. Residence Nearest to the field										
Des	cription	Ref.				Octave E	Band Cer	tre Frequ	Jency, Hz		
		Dist.	dB(A)	63	125	250	500	1k	2k	4k	8k
	Predicted SPL from ONPM										
1	Flag Football / Soccer Lmax		68				54	62	65	57	
	Leq		49				42	46	42	42	
2	Softball (game) Lmax		71				55	68	66	57	
			55				46	51	50	41	
3	Basketball (existing location)		49 25				43	47	41	32	
4	Leq Swimming Pool		20				20	23	19	10	
4											
5	Central Plant Leg										
6	Academic Building South Lea										
7	Library Leq										
8	Elementary School Leq										
9	M & U Academic Leq										
10	M & U Academic Leq										
	Site Adjustment from source to receiver										
	Flag Football / Soccer	250					4	9	0	-5	
	Softball (game)	150					4	9	0	-3	
_	Basketball	425					4	9	-1	-8	
	Swimming Pool	525					4	9	-1	-10	
	Central Plant	0					0	0	0	0	
	Academic Building South	0					0	0	0	0	
	Elementary School	0					0	0	0	0	
	M&U Academic	0					0	0	0	0	
	M&U Academic	0					0	0	0	0	
	Calculated SPL with Site Adjustment										
	Flag Football / Soccer Lmax		72				58	71	64	53	
	Leq		55				45	54	41	37	
	Softball (game) Lmax		77				58	76	65	54	
	Leq		61				50	60	50	38	
	Basketball (existing location) Lmax		56				47	55	40	22	
	Leq		32				24	31	18	0	
-	Central Plant Leg										
	Academic Building South Leg	1									
	Library Leq										
	Elementary School Leq										
	M&U Academic (north) Leq										
	M&U Academic (south) Leq										
I											
-											
-											
		1				1					
1											

T

run Acoustics .

Ar Co	up Acoustics nsultants in Acoustics • Noise • Vibration				Job No.	1302	91-00		Sheet N	o. 2	
					Date	3/13	/2006		Made by	/ SB & NE	
Title	The Buckley School - Noise Prediction, Existing Site Plan Location B1. Residence on the Bluff										
Des	cription	Ref.				Octave E	Band Cer	tre Frequ	Jency, Hz	2	
		Dist.	dB(A)	63	125	250	500	1k	2k	4k	8k
	Predicted SPL from ONPM										
1	Flag Football / Soccer Lmax		56				43	51	53	42	
			37				31	35	30	27	
2	Softball (game) Lmax		55				40	53	50	37	
2	Leq		39				32	36	34	22	
3			18				13	40	11	-2	
4	Swimming Pool Lmax										
	Leq										
5	Central Plant Leq										
6	Academic Building South Leq										
7	Library Leq										
8	Elementary School Leq										
9	M & U Academic Leq										
10	M & U Academic Leq										
	Site Adjustment from source to receiver	000					1	2	5	17	
	Flag Football / Soccel	725					1	3	-5	-17	
	Solibali (garie) Baskethall	1100					1	3	-4	-10	
-	Swimming Pool	1000					1	3	-6	-22	
	Central Plant	0					0	0	0	0	
	Academic Building South	0					0	0	0	0	
	Library	0					0	0	0	0	
	Elementary School	0					0	0	0	0	
	M&U Academic	0					0	0	0	0	
	M&U Academic	0					0	0	0	0	
	Calculated SPL with Site Adjustment		55				44	54	40	25	
			38				44 32	38 38	40 25	 	
	Softball (game)		56				41	56	46	22	
	Leq		40				33	39	30	6	
	Basketball (existing location) Lmax		43				37	43	27	-1	
	Leq		20				14	19	5	-23	
	Swimming Pool Lmax										
	Leq										
<u> </u>	Central Plant Leq										
	Academic Building South Leq										
	Library Leq										
	Leq										
	M&U Academic (north)										
<u> </u>											
I			<u> </u>								
 											
-											

Arun Acoustics

	rup Acoustics				Job No.	1000			Sheet N	0.	
UU					Date	3/13	/2006	<u> </u>	Made by	3 / SB & NE	3
Title	The Buckley School - Noise Prediction, Existing Site Plan Location C										
Des	cription	Ref.				Octave E	Band Cer	tre Freq	uency, H	Ζ	
		Dist.	dB(A)	63	125	250	500	1k	2k	4k	8k
	Predicted SPL from ONPM										
1	Flag Football / Soccer Lmax		60				47	54	57	47	
	Leq		41				34	38	33	32	
2	Softball (game) Lmax		60				45	58	55	44	
_			44				36	41	39	29	
3	Basketball (existing location)		47				41	45	39	29	
-	Leq		23				18	21	17		
4											
5	Central Plant Leg										
6	Academic Building South										
7											
8	Elementary School										
9	M & I Academic leg										
10	M & U Academic Leg										
	=======================================										
	Site Adjustment from source to receiver										
	Flag Football / Soccer	550					1	3	-3	-12	
	Softball (game)	450					1	3	-3	-10	
	Basketball	675					1	3	-4	-15	
	Swimming Pool	575					1	3	-3	-13	
	Central Plant	0					0	0	0	0	
	Academic Building South	0					0	0	0	0	
	Library	0					0	0	0	0	
	Elementary School	0					0	0	0	0	
	M&U Academic	0					0	0	0	0	
	M&U Academic	0					0	0	0	0	
	Calculated SPL with Site Adjustment										
	Flag Football / Soccer Lmax		60				48	58	54	35	
-	Leq		42				35	41	30	20	
	Softball (game) Lmax		62				46	61	52	34	
			46				37	44	37	19	<u> </u>
	Basketball (existing location)		49				42	48	35	16	
	Leq		25				19	24	13	-6	
-	Central Plant Log										
	Academic Building South										
	Library										
	Elementary School										
	M&U Academic (north)										
	M&U Academic (south) Leg										
									I	<u> </u>	L
			ļ				ļ		—		
I									 		
		1	1	1	1	1	1	1	1	1	1

Arup Acoustics

Ar Co	up Acoustics Insultants in Acoustics • Noise • Vibration				Job No.	1302	91-00		Sheet N	o. 4	
					Date	3/13	/2006		Made by	/ SB & NE	
Title	The Buckley School - Noise Prediction, Existing Site Plan Location D										
Des	cription	Ref.				Octave E	Band Cer	tre Frequ	uency, Hz	2	
		Dist.	dB(A)	63	125	250	500	1k	2k	4k	8k
	Predicted SPL from ONPM										
1	Flag Football / Soccer Lmax		54				42	49	51	39	
_			35				29	33	27	24	
2	Softball (game) Lmax		53				39	51	48	35	
3	Leq Baskethall (evisting location)		30				30	35	34	22	
<u> </u>	Leg		19				14	17	12	0	
4	Swimming Pool Lmax										
	Leq										
5	Central Plant Leq										
6	Academic Building South Leq										
7	Library Leq										
8	Elementary School Leq										
9	M & U Academic Leq										
10	M & U Academic Leq										
	Site Adjustment from source to receiver										
	Flag Football / Soccer	975					1	3	-6	-21	
	Softball (game)	875					1	3	-5	-19	
	Basketball	1000					1	3	-6	-22	
	Swimming Pool	900					1	3	-5	-20	
	Central Plant	0					0	0	0	0	
	Academic Building South	0					0	0	0	0	
	Library	0					0	0	0	0	
	Elementary School	0					0	0	0	0	
	M&U Academic	0					0	0	0	0	
	M&U Academic	0					0	0	0	0	
	Calculated SPL with Site Adjustment										
	Flag Football / Soccer Lmax		53				43	52	45	18	
	Leq		37				30	36	22	2	
	Softball (game) Lmax		55				40	54	43	16	
	Leq		39				31	38	27	0	
	Basketball (existing location) Lmax		45				38	44	29	3	
			21				15	20	7	-19	
	Swimming Pool Lmax										
⊢	Central Plant										
	Academic Building South										
	Library Leq										
	Elementary School Leq										
	M&U Academic (north) Leq										
	M&U Academic (south) Leq										
⊢					<u> </u>						
⊢											
┢──											
┢──											
F											
L											
1			I		1				I	I	

Arun Acoustics

	up Acoustics				Job No.	1200	01.00		Sheet N	lo.	
					Date	3/13	/2006		Made by	5 / SB & NE	8
Title	The Buckley School - Noise Prediction, Existing Site Plan										×
Des	cription	Ref.	I			Octave	Band Cer	tre Frea	Jency, H	z	
	•	Dist.	dB(A)	63	125	250	500	1k	2k	4k	8k
	Predicted SPL from ONPM										
1	Flag Football / Soccer Lmax		52				40	47	49	36	
	Leq		33				28	31	25	20	
2	Softball (game) Lmax		51				37	49	45	31	
	Leq		35				28	32	30	15	
3	Basketball (existing location)		42				37	40	34	22	
-			19				14	16	12	-1	
4	Swimming Pool Lmax										
5	Leq										
5	Academic Building South										
7	Library										
8	Elementary School Leg										
9	M & U Academic Leg										
10	M & U Academic Leg										
	Site Adjustment from source to receiver										
	Flag Football / Soccer	0					No site	effects ar	e include	ed for this	
	Softball (game)	0					receive	r locatior	h because	e it is far	
	Basketball	0					down	the valle	y and the	ere are	
	Swimming Pool	0					Inte	vening tr	ees/build	lings.	
	Central Plant	0					0	0	0	0	
-	Academic Building South	0					0	0	0	0	
	Library	0					0	0	0	0	
	Elementary School	0					0	0	0	0	
	M&U Academic	0					0	0	0	0	
		0					0	0	0	0	
	Calculated SPL with Site Adjustment										
	Flag Football / Soccer		52				40	47	49	36	
	Leg		33				28	31	25	20	
	Softball (game) Lmax		51				37	49	45	31	
	Leq		35				28	32	30	15	
	Basketball (existing location) Lmax		42				37	40	34	22	
	Leq		19				14	16	12	-1	
	Swimming Pool Lmax										
	Leq										
-	Central Plant Leq										
	Academic Building South Leq										
	Library Leq										
	Leq										
-	M&U Academic (north)										
			İ				İ		İ 🗌	İ	
—			L						<u> </u>		<u> </u>
—			ļ		<u> </u>		 		 	 	
							<u> </u>				
		1	1		1		1	1	1	1	1

T

run Acoustics .

Ar Co	Tup Acoustics				Job No.	1302	91-00		Sheet N	o. 6	
					Date	3/13	/2006		Made by	/ SB & NE	6
Title	The Buckley School - Noise Prediction, Proposed Site Plan Location A, Residence Nearest to the field										
Des	cription	Ref.				Octave E	Band Cer	tre Frequ	uency, Hz	2	
	·	Dist.	dB(A)	63	125	250	500	1k	2k	4k	8k
	Predicted SPL from ONPM										
1	Flag Football / Soccer Lmax		68 40				54	62	65	57	
2	Leq Softball (game)		49 71				4Z 55	40 68	42	42 57	
			55				46	51	50	41	
3	Basketball Lmax		59				53	57	51	44	
	Leq		36				30	33	29	22	
4	Swimming Pool Lmax		65				59	63	57	47	
	Leq		54				50	52	48	38	
5	Central Plant Leq		26	39	32	26	23	19	17	12	-5
6	Academic Building South Leq		40	44	53	39	35	32	25	19	10
/ و	Elementary Leq		35 32	39 37	48 46	34	30 28	28 25	20 17	13 0	-2 _9
9	M&U Academic Leg		35	39	48	34	30	25	20	9 12	-2
10	M&U Academic Leg		32	36	45	31	27	24	16	8	-11
	Site Adjustment from source to receiver										
	Flag Football / Soccer	250					4	9	0	-5	
	Softball (game)	150					4	9	0	-3	
	Basketball	180					4	9	0	-3	
	Swimming Pool	425					4	9	-1	-8	
	Central Plant	0					0	0	0	0	
	Library	0					0	0	0	0	
	Elementary School	0					0	0	0	0	
	M&U Academic	0					0	0	0	0	
	M&U Academic	0					0	0	0	0	
	Calculated SPL with Site Adjustment										
-	Flag Football / Soccer Lmax		72				58	71	64	53	
	Leq		55				45	54	41	37	
			61				50	60	50	38	
	Basketball Lmax		66				56	65	51	41	
	Leq		42				33	41	29	19	
	Swimming Pool Lmax		72				63	71	57	39	
	Leq		61				53	60	47	30	
—	Central Plant Leq		26	39	32	26	23	19	17	12	-5
	Academic Building South Leq		40	44	53	39	35	32	25	19	10
	Library Leq		35	39	48	34	30	28	20	13	-2
	M&I / Academic Leq		35	39	40	34	30	25	20	9 12	-0
	M&U Academic Leg		32	36	45	31	27	24	16	8	-11
<u> </u>											
 									 		
<u> </u>											
	<u> </u>										
									<u> </u>		
	1				1				İ		
[1							İ – – – – – – – – – – – – – – – – – – –	İ	İ
1					1				1		

T

run Acoustics .

Ar Co	up Acoustics				Job No.	1302	91-00		Sheet N	0. 7	
					Date	3/13/	2006		Made by	SB & NE	
Title	The Buckley School - Noise Prediction, Proposed Site Plan Location B1, Residence on the Bluff										
Des	cription	Ref.				Octave E	Band Cer	tre Frequ	uency, Hz	2	
		Dist.	dB(A)	63	125	250	500	1k	2k	4k	8k
	Predicted SPL from ONPM										
1	Flag Football / Soccer Lmax		56				43	51	53	42	
2	Leq		37				31	35 52	30 50	27 4	
2			39				32	36	34	22	
3	Basketball Lmax		45				40	44	38	27	
-	Leq		22				17	20	16	5	
4	Swimming Pool Lmax		56				51	55	48	34	
	Leq		46				42	43	39	26	
5	Central Plant Leq		20	35	28	22	18	12	10	2	-27
6	Academic Building South Leq		31	35	44	30	26	23	15	6	-15
7	Library Leq		30	34	43	29	25	22	14	4	-20
8	Learneritary School Lea		29	34	42	28	24	21	13	2	-24
9 10	M&U Academic Leg		29	32	42	20	24	20	13	2	-23
10			20	52	41	21	20	20		0	-23
	Site Adjustment from source to receiver										
	Flag Football / Soccer	800					1	3	-5	-17	
	Softball (game)	725					1	3	-4	-16	
	Basketball	750					1	3	-4	-16	
	Swimming Pool	1000					1	3	-6	-22	
	Central Plant	0					0	0	0	0	
	Academic Building South	0					0	0	0	0	
	LIDrary Elementary School	0					0	0	0	0	
	M&U Academic	0					0	0	0	0	
	M&U Academic	0					0	0	0	0	
	Calculated SPL with Site Adjustment										
	Flag Football / Soccer Lmax		55				44	54	48	25	
	Leq		38				32	38	25	9	
	Softball (game) Lmax		56				41	56	46	22	
	Leq		40				33	39	30	6	
			47				41	47	33	11	
	Swimming Pool		58				52	23 58	43	-11	
—	Lea		47			<u> </u>	43	46	33	4	
	Central Plant Leq	1	20	35	28	22	18	12	10	2	-27
	Academic Building South Leq		31	35	44	30	26	23	15	6	-15
	<i>Library</i> Leq		30	34	43	29	25	22	14	4	-20
	Elementary School Leq		29	34	42	28	24	21	13	2	-24
	M&U Academic Leq		29	34	42	28	24	21	13	2	-23
	M&U Academic Leq		28	32	41	27	23	20	11	0	-29
—											
<u> </u>											
					l						
	<u> </u>										
					<u> </u>						

T

Arun Acoustics

Ar Co	up Acoustics				Job No.	1302	91-00		Sheet N	o. 8	
					Date	3/13/	/2006		Made by	/ SB & NE	
Title	The Buckley School - Noise Prediction, Proposed Site Plan										
Des	cription	Ref.				Octave E	Band Cer	tre Frequ	Jency, Hz	2	
		Dist.	dB(A)	63	125	250	500	1k	2k	4k	8k
	Predicted SPL from ONPM										
1	Flag Football / Soccer Lmax		60				47	54	57	47	
	Leq		41				34	38	33	32	
2	Softball (game) Lmax		60				45	58	55	44	
	Leq		44				36	41	39	29	
3			34 31				48 25	52 28	46	38 16	
4	Swimming Pool		45				42	43	35	23	
-	Leg		34				33	32	25	15	
5	Central Plant Leq		28	41	34	28	25	22	20	17	4
6	Academic Building South Leq		41	46	55	41	36	34	27	21	13
7	Library Leq		43	47	56	42	38	36	28	23	16
8	Elementary School Leq		40	44	53	39	35	33	25	19	10
9	M&U Academic Leq		39	43	52	38	34	32	24	18	9
10	M&U Academic Leq		37	41	50	36	32	29	22	15	3
	Site Adjustment from source to receiver										
	Flag Football / Soccer	550					1	3	-3	-12	
	Softball (game)	450					1	3	-3	-10	
	Basketball	300					1	3	-2	-7	
	Swimming Pool	575					1	3	-3	-13	
	Central Plant	0					0	0	0	0	
	Academic Building South	0					0	0	0	0	
	Library	0					0	0	0	0	
	Elementary School	0					0	0	0	0	
	M&U Academic	0					0	0	0	0	
	M&U Academic	0					0	0	0	0	
	Calculated SPL with Site Adjustment										
	Flag Football / Soccer Lmax		60				48	58	54	35	
	Leq		42				35	41	30	20	
	Softball (game) Lmax		62				46	61	52	34	
	Leq		46				37	44	37	19	
	Basketball Lmax		56				49	55	45	32	
	Leq		32				26	31	23	10	
	Swimming Pool Lmax		47				43	46	31	11	
	Leq		30	41	24	20	34	35	22	2 17	4
-	Academic Building South		41	41	55	41	36	34	20	21	4 13
-	Library Leg		43	47	56	42	38	36	28	23	16
	Elementary School Leq		40	44	53	39	35	33	25	19	10
	M&U Academic Leq		39	43	52	38	34	32	24	18	9
	M&U Academic Leq		37	41	50	36	32	29	22	15	3
-											
-											
-									İ		
<u> </u>											
			1		1	1			1		

Arup Acoustics

Ar Co	up Acoustics Insultants in Acoustics • Noise • Vibration				Job No.	1302	91-00		Sheet N	o. 9	
					Date	3/13	/2006		Made by	/ SB & NE	8
Title	The Buckley School - Noise Prediction, Proposed Site Plan Location D										
Des	cription	Ref.				Octave E	Band Cer	tre Freq	uency, Hz	Z	
		Dist.	dB(A)	63	125	250	500	1k	2k	4k	8k
	Predicted SPL from ONPM										
1	Flag Football / Soccer Lmax		54				42	49	51	39	
	Leq		35				29	33	27	24	
2	Softball (game) Lmax		53				39	51	48	35	
	Leq		38				30	35	32	19	
3	Basketball Lmax		46				40	44	38	27	
<u> </u>			22				17	20	16	5	
4	Swimming Pool Lmax		39				37	37	29	16	
5	Leq		29	20	21	25	27	20	20	12	4
5	Central Plant Leq		20	30	31	20	22	19	17	13	-4
7	Library Leg		34	42	47 51	37	29	20	23	17	-0
8	Elementary School		42	46	55	41	37	35	23	22	14
9	M&I / Academic		36	40	49	35	30	28	20	13	0
10	M&U Academic Leg		38	42	51	37	33	31	23	17	6
	Site Adjustment from source to receiver										
	Flag Football / Soccer	975					1	3	-6	-21	
	Softball (game)	875					1	3	-5	-19	
	Basketball	750					1	3	-4	-16	
	Swimming Pool	900					1	3	-5	-20	
	Central Plant	0					0	0	0	0	
	Academic Building South	0					0	0	0	0	
	Library	0					0	0	0	0	
	Elementary School	0					0	0	0	0	
	M&U Academic	0					0	0	0	0	
	M&U Academic	0					0	0	0	0	
			50				40	50	45	40	
			27				43	52	45	18	
	Softball (game)		55				40	54	43	16	
			39				31	38	27	0	
	Basketball I max		48				41	47	33	11	
	Leg		24				18	23	11	-11	
	Swimming Pool Lmax		41				38	40	24	-4	
	Leq		31				28	29	15	-12	
	Central Plant Leq		25	38	31	25	22	19	17	13	-4
	Academic Building South Leq		34	38	47	33	29	26	18	11	-6
	Library Leq		38	42	51	37	33	31	23	17	6
	Elementary School Leq		42	46	55	41	37	35	27	22	14
	M&U Academic Leq		36	40	49	35	30	28	20	13	0
	M&U Academic Leq		38	42	51	37	33	31	23	17	6
-											
-					1						
Ē					1						
 					1						
1					1				i – – –		
Ī					1						
		l l	1				l		Î 👘		
İ.											

Arup Acoustics

Ar	up Acoustics				Job No.				Sheet N	0.	
Co	nsultants in Acoustics • Noise • Vibration				Data	1302	91-00		NA. 1. 1	10	
					Date	3/13	/2006		Made by	SB & NE	3
Title	The Buckley School - Noise Prediction, Proposed Site Plan Location E										
Des	cription	Ref.				Octave I	Band Cer	tre Frequ	uency, H	<u>Z</u>	
	·	Dist.	dB(A)	63	125	250	500	1k	2k	4k	8k
	Predicted SPL from ONPM										
1	Flag Football / Soccer Lmax		52				40	47	49	36	
_	Leq		33				28	31	25	20	
2	Solibali (game)		35				37	49 32	45	31	
3	Basketball I max		43				38	41	35	23	
-	Leg		20				15	17	13	1	
4	Swimming Pool Lmax		45				42	43	34	17	
	Leq		34				33	32	24	8	
5	Central Plant Leq		29	43	36	30	27	21	17	12	-5
6	Academic Building South Leq		31	36	45	31	26	24	16	7	-13
7	Library Leq		35	39	48	34	30	27	19	12	-3
8	Elementary School Leq		37	41	50	36	32	30	22	15	4
9	M&U Academic Leq		34	39	48	33	29	27	19	12	-4
10	Leq		39	43	52	38	33	31	24	18	1
	Site Adjustment from source to receiver										
	Flag Football / Soccer	0					Nie eite		l 		
	Softball (game)	0					no site e	effects an	n because	a for this it is far	
-	Basketball	0					down	the valle	y and the	ere are	
	Swimming Pool	0					inter	rvening tr	rees/build	lings.	
	Central Plant	0					0	0	0	0	
	Academic Building South	0					0	0	0	0	
	Library	0					0	0	0	0	
	Elementary School	0					0	0	0	0	
	M&U Academic	0					0	0	0	0	
	M&U Academic	0					0	0	0	0	
	Calculated SPL with Site Adjustment		50				40	47	40		
			52				40	47	49	30	
	Ley Softhall (game)		51				37	31 49	45	31	
			35				28	32	30	15	
	Basketball Lmax		43				38	41	35	23	
	Leq		20				15	17	13	1	
	Swimming Pool Lmax		45				42	43	34	17	
	Leq		34				33	32	24	8	
	Central Plant Leq		29	43	36	30	27	21	17	12	-5
	Academic Building South Leq		31	36	45	31	26	24	16	7	-13
	Library Leq		35	39	48	34	30	27	19	12	-3
	Elementary School Leq		37	41	50	36	32	30	22	15	4
	M&U Academic Leq		34	39 43	48 52	33	29	27	19	12	-4
			- 55	43	52	30	- 55	51	24	10	,
-											
<u> </u>	ļ									<u> </u>	
			<u> </u>				<u> </u>		<u> </u>	┣──	
—	<u> </u>					-				┣───	
—			l						 	┣───	
			 						<u> </u>	├──	
			<u> </u>				<u> </u>		<u> </u>		

Buckley School – Draft Environmental Impact Report

Noise Assessment Files

Provided by PCR Services Corporation

June 2006

- K-1 Noise Monitoring Data
- K-2 Roadway Noise Analysis (TENS)
- K-3 Construction Stationary and Traffic Noise
- K-4 Athletic Field Noise

Appendix K-1

- Noise Monitoring Data Sheets
 - Monitoring Tables
 - Monitoring Graphs

Project:	Buckley Sch	lool
----------	-------------	------

Location: Buckley South (Location A)

	03/02/05	03/03/05	03/04/05	03/05/05	Start Date and Time	
12:00:00 AM		93.43	33.08	92.18	3/2/2005 ▲ 12:00:00 AM ▲ 3/3/2005 1:00:00 AM	Start
1:00:00 AM		90.57	45.75	89.01	3/4/2005 2:00:00 AM	3/3/05 12:00 AM
2:00:00 AM		91.31	38.89	72.03	3/5/2005 ▼ 3:00:00 AM	End
3:00:00 AM		88.5	39.15	33.8	4:00:00 AM 5:00:00 AM	3/4/05 12:00 AM
4:00:00 AM		86.46	36.07	37.63	6:00:00 AM 🔻	
5:00:00 AM		87.91	45.46	90.12	CNEL	94.7
6:00:00 AM		88	47.84	80.14	L _{dn}	94.7
7:00:00 AM		87.1	57.77	49.29	24-hr Max.	93.4
8:00:00 AM		72.43	50.18	56.59	24-hr Min.	43.4
9:00:00 AM		54.98	50.45	51.26	24-hr Nighttime Average ^a	89.0
10:00:00 AM		54.65	54.87	54.38	24-hr Nighttime Max	93.4
11:00:00 AM		52.84	49.94	53.07	24-hr Nighttime Min	43.4
12:00:00 PM		54.86	56.07	53.85	24-hr Daytime Average ^a	75.5
1:00:00 PM	55.14	53.92	48.8	48.68	24-hr Daytime Max	87.1
2:00:00 PM	57.73	55.07	56.82	51.36	24-hr Daytime Min	49.0
3:00:00 PM	54.54	55.1	51.96	52.19	Total Period Average	81.9
4:00:00 PM	58.26	53.45	57.06	50.68	Total Period Max	93.4
5:00:00 PM	51.82	52.68	56.45	48.82	Total Period Min	33.1
6:00:00 PM	49.32	52.72	51.58	45.56	Total Period Daytime Average	70.0
7:00:00 PM	48.47	51.24	49.45	45.71	Total Period Daytime Max	87.1
8:00:00 PM	46.63	48.98	51.82	43.85	Total Period Daytime Min	45.6
9:00:00 PM	48.73	53.75	53.96	39.84	Total Period Nighttime Average	86.3
10:00:00 PM	38.66	46.68	50.77	37.92	Total Period Nighttime Max	93.4
11:00:00 PM	92.45	43.36	67.5	35.32	Total Period Nighttime Min	33.1

^a Daytime hours are from 7:00 a.m. to 10:00 p.m., and nighttime hours are from 10:00 p.m. to 7:00 a.m.

Community Noise Equivalent Level, CNEL.

Project:Buckley SchoolLocation:Buckley South (Location A)Sources:Traffic Volumes

Date: March 2-5, 2005

fieldcnel.xls

Project: Buckley School

Location: Buckley South (Location A)

	03/05/05	03/06/05	03/07/05	03/08/05	Start Date and Time	
12:00:00 AM	92.18	37.32	35.63	36.14	3/5/2005 ▲ 2:00:00 AM ▲	Start
1:00:00 AM	89.01	36.89	36.14	33.68	3/7/2005 3:00:00 AM	3/6/05 7:00 AM
2:00:00 AM	72.03	38.39	37.01	36.29	<u>3/8/2005</u> ▼ 5:00:00 AM	End
3:00:00 AM	33.8	64.33	37.45	35.59	6:00:00 AM 7:00:00 AM	3/7/05 7:00 AM
4:00:00 AM	37.63	98.26	38.22	33.87	8:00:00 AM	
5:00:00 AM	90.12	95.43	45.22	47.54	CNEL	53.8
6:00:00 AM	80.14	100.43	48.87	45.32	L _{dn}	53.1
7:00:00 AM	49.29	49.06	53.96	52.41	24-hr Max.	60.8
8:00:00 AM	56.59	52.5	54.34	51.27	24-hr Min.	35.6
9:00:00 AM	51.26	52.8	51.86	51.14	24-hr Nighttime Average ^a	43.3
10:00:00 AM	54.38	60.8	52.78	53.15	24-hr Nighttime Max	48.9
11:00:00 AM	53.07	52.63	51.66	49.43	24-hr Nighttime Min	35.6
12:00:00 PM	53.85	49.17	52.75	51	24-hr Daytime Average ^a	53.0
1:00:00 PM	48.68	47.82	51.92	50.51	24-hr Daytime Max	60.8
2:00:00 PM	51.36	53.54	54.25	55.61	24-hr Daytime Min	47.8
3:00:00 PM	52.19	49.27	53.77	53.71	Total Period Average	84.2
4:00:00 PM	50.68	51.59	52.85	53.34	Total Period Max	100.4
5:00:00 PM	48.82	49.53	51.85	55.19	Total Period Min	33.7
6:00:00 PM	45.56	51.24	50.22	52.39	Total Period Daytime Average	52.3
7:00:00 PM	45.71	49.82	43.18	49.89	Total Period Daytime Max	60.8
8:00:00 PM	43.85	52.53	45.08	48.49	Total Period Daytime Min	45.6
9:00:00 PM	39.84	49.28	45.5	52.17	Total Period Nighttime Average	88.5
10:00:00 PM	37.92	46.96	40.73	73.64	Total Period Nighttime Max	100.4
11:00:00 PM	35.32	39.08	43.1	86.78	Total Period Nighttime Min	33.7

^a Daytime hours are from 7:00 a.m. to 10:00 p.m., and nighttime hours are from 10:00 p.m. to 7:00 a.m.

Community Noise Equivalent Level, CNEL.

Project:Buckley SchoolLocation:Buckley South (Location A)Sources:Traffic Volumes

Date: March 5-8, 2005

Project:	Buckley S	chool			ocation: Buckley North (Location B)							
	03/03/05	03/04/05	03/05/05	03/06/05	Start Date and Time							
12:00:00 AM	81.15	40.56	54.33	47.23	3/3/2005 ▲ 12:00:00 AM ▲	Start						
1:00:00 AM	39.15	41.62	49.03	47.75	3/4/2005 1:00:00 AM 3/5/2005 2:00:00 AM	3/3/05 1:00 AM						
2:00:00 AM	40.33	41.71	53.26	46.94	<u>3/6/2005</u> ▼ 3:00:00 AM	End						
3:00:00 AM	40.62	40.64	49.4	47.73	4:00:00 AM 5:00:00 AM	3/4/05 1:00 AM						
4:00:00 AM	40.48	39.98	49.69	49.1	6:00:00 AM							
5:00:00 AM	40.44	39.5	49.51	48.8	CNEL	47.7						
6:00:00 AM	40.76	41.45	52.65	47.19	L _{dn}	47.3						
7:00:00 AM	40.89	43.1	33.28	47.5	24-hr Max.	46.7						
8:00:00 AM	40.98	40.87	34.03	48.4	24-hr Min.	39.2						
9:00:00 AM	41.19	41.48	46.95	48.51	24-hr Nighttime Average ^a	40.3						
10:00:00 AM	41.69	42.05	35.38	46.26	24-hr Nighttime Max	40.8						
11:00:00 AM	41.01	42.03	36.05	44.26	24-hr Nighttime Min	39.2						
12:00:00 PM	43.66	64.45	34.33	43.1	24-hr Daytime Average ^a	43.4						
1:00:00 PM	43.43	66.09	34.09	43.64	24-hr Daytime Max	46.7						
2:00:00 PM	45.78	66.57	51.29	47.98	24-hr Daytime Min	40.9						
3:00:00 PM	46.66	79.84	50.08	51.07	Total Period Average	64.3						
4:00:00 PM	45.15	62.54	45.19	52.36	Total Period Max	81.2						
5:00:00 PM	44.01	66.31	46.01	47.62	Total Period Min	33.3						
6:00:00 PM	43.86	42.05	46.02	49.26	Total Period Daytime Average	63.2						
7:00:00 PM	42.52	42.26	46.9	49.03	Total Period Daytime Max	79.8						
8:00:00 PM	40.87	42.14	46.63	48.69	Total Period Daytime Min	33.3						
9:00:00 PM	43.57	69.17	48.05	49.87	Total Period Nighttime Average	65.7						
10:00:00 PM	39.87	63.73	49.26	50.12	Total Period Nighttime Max	81.2						
11:00:00 PM	40.02	47.87	48.4	50	Total Period Nighttime Min	39.2						

^a Daytime hours are from 7:00 a.m. to 10:00 p.m., and nighttime hours are from 10:00 p.m. to 7:00 a.m.

Community Noise Equivalent Level, CNEL.

Project:Buckley SchoolLocation:Buckley North (Location B)Sources:Traffic Volumes

Date: March 3-5, 2005

Project: Buckley School

Location: 3852 Cdela Solana (Location C)

	01/24/05	01/25/05	01/26/05	01/27/05	Start Date and Time	
12:00:00 AM 1:00:00 AM 2:00:00 AM 3:00:00 AM 4:00:00 AM		45.59 45.18 44.27 49.34 50.22	50.60 50.91 48.95 49.03 54.57		1/24/2005 ▲ 7:00:00 AM ▲ 1/25/2005 8:00:00 AM 4 1/26/2005 9:00:00 AM 10:00:00 AM 1/27/2005 ▼ 10:00:00 AM 11:00:00 AM 12:00:00 PM 1:00:00 PM	Start 1/24/05 12:00 PM End 1/25/05 12:00 PM
5:00:00 AM 6:00:00 AM 7:00:00 AM 8:00:00 AM		50.36 52.31 55.89 58.54	57.56 62.89 65.27 63.07		CNEL L _{dn} 24-hr Max. 24-hr Min.	57.5 57.2 58.5 44.3
9:00:00 AM 10:00:00 AM 11:00:00 AM		55.19 57.48 54.64	64.32		24-hr Nighttime Average ^a 24-hr Nighttime Max 24-hr Nighttime Min	48.8 52.3 44.3
12:00:00 PM 1:00:00 PM 2:00:00 PM	56.80 57.14 58.50	57.79 56.68 58.17			24-hr Daytime Average ^a 24-hr Daytime Max 24-hr Daytime Min	55.9 58.5 48.6
3:00:00 PM 4:00:00 PM 5:00:00 PM	55.66 56.64 56.36	58.18 57.29			Total Period Average Total Period Max Total Period Min	57.3 65.3 44.3
6:00:00 PM 7:00:00 PM 8:00:00 PM	52.84 52.78 50.77				Total Period Daytime Average Total Period Daytime Max Total Period Daytime Min	58.6 65.3 52.8
9:00:00 PM 10:00:00 PM 11:00:00 PM	48.64 47.89 47.33				Total Period Nighttime Average Total Period Nighttime Max Total Period Nighttime Min	53.8 62.9 44.3

^a Daytime hours are from 7:00 a.m. to 10:00 p.m., and nighttime hours are from 10:00 p.m. to 7:00 a.m.

Community Noise Equivalent Level, CNEL.

Project:Buckley SchoolLocation:3852 Cdela Solana (Location C)Sources:Traffic Volumes

Date: January 24-25, 2005

fieldcnel.xls

Project: Buckley School

Location: 3931 Cdela Solana (Location D)

	01/24/05	01/25/05	01/26/05	01/27/05	Start Date and Time
12:00:00 AM 1:00:00 AM 2:00:00 AM 3:00:00 AM 4:00:00 AM		40.80 40.93 44.24 47.03 45.15			1/24/2005 10:00:00 AM ▲ Start 1/25/2005 11:00:00 AM ▲ 1/24/05 11:00 AN 1/26/2005 12:00:00 PM 1:00:00 PM End 1/27/2005 1:00:00 PM 1/25/05 11:00 AN 1/20:00 PM 1:00:00 PM 1/25/05 11:00 AN
5:00:00 AM 6:00:00 AM 7:00:00 AM 8:00:00 AM		45.73 49.82 53.26 56.40			CNEL 55.5 L _{dn} 55.2 24-hr Max. 57.9 24-hr Min. 40.8
9:00:00 AM 10:00:00 AM 11:00:00 AM	54.62	53.47 57.16 52.37			24-hr Nighttime Averagea45.824-hr Nighttime Max49.824-hr Nighttime Min40.8
12:00:00 PM 1:00:00 PM 2:00:00 PM	56.31 55.03 57.91	56.40 55.15 57.63			24-hr Daytime Averagea54.724-hr Daytime Max57.924-hr Daytime Min49.0
3:00:00 PM 4:00:00 PM 5:00:00 PM	55.33 54.69 55.55	57.50			Total Period Average53.8Total Period Max57.9Total Period Min40.8
6:00:00 PM 7:00:00 PM 8:00:00 PM	50.83 51.23 49.26				Total Period Daytime Average55.1Total Period Daytime Max57.9Total Period Daytime Min50.8
9:00:00 PM 10:00:00 PM 11:00:00 PM	48.98 45.66 46.05				Total Period Nighttime Average45.8Total Period Nighttime Max51.2Total Period Nighttime Min40.8

^a Daytime hours are from 7:00 a.m. to 10:00 p.m., and nighttime hours are from 10:00 p.m. to 7:00 a.m.

Community Noise Equivalent Level, CNEL.

Project:Buckley SchoolLocation:3931 Cdela Solana (Location D)Sources:Traffic Volumes

Date: January 24-25, 2005

fieldcnel.xls

Project: Buckley School

Location: Front Gate (Location E)

	02/01/05	02/02/05	02/03/05	02/04/05	Start Date and Time	
12:00:00 AM 1:00:00 AM 2:00:00 AM 3:00:00 AM 4:00:00 AM		39.05 41.59 36.71 44.09 40.82	36.64 37.78 42.15 40.96 41.75		2/1/2005 ▲ 10:00:00 AM 2/2/2005 11:00:00 AM 2/3/2005 12:00:00 PM 2/4/2005 ▼ 1:00:00 PM 2:00:00 PM 3:00:00 PM 4:00:00 PM	Start 2/1/05 11:00 AM End 2/2/05 11:00 AM
5:00:00 AM		43.90	42.98		CNEL	59.0
6:00:00 AM		55.56	45.33		L _{dn}	58.8
7:00:00 AM		56.80	58.19		24-hr Max.	68.0
8:00:00 AM		60.26	56.38		24-hr Min.	36.7
9:00:00 AM		51.19	50.98		24-hr Nighttime Average ^a	47.4
10:00:00 AM		67.96	49.26		24-hr Nighttime Max	55.6
11:00:00 AM	50.88	61.80	48.63		24-hr Nighttime Min	36.7
12:00:00 PM	50.57	66.54	63.50		24-hr Daytime Average ^a	59.5
1:00:00 PM	64.98	64.24	48.29		24-hr Daytime Max	68.0
2:00:00 PM	55.40	56.66	58.03		24-hr Daytime Min	46.3
3:00:00 PM	57.95	60.22			Total Period Average	57.6
4:00:00 PM	54.03	56.62			Total Period Max	68.0
5:00:00 PM	57.70	55.22			Total Period Min	36.6
6:00:00 PM	50.59	49.29			Total Period Daytime Average	59.3
7:00:00 PM	49.78	50.90			Total Period Daytime Max	68.0
8:00:00 PM	46.31	46.07			Total Period Daytime Min	48.3
9:00:00 PM	49.91	43.73			Total Period Nighttime Average	45.9
10:00:00 PM	43.63	49.51			Total Period Nighttime Max	55.6
11:00:00 PM	43.23	39.93			Total Period Nighttime Min	36.6

^a Daytime hours are from 7:00 a.m. to 10:00 p.m., and nighttime hours are from 10:00 p.m. to 7:00 a.m.

Community Noise Equivalent Level, CNEL.

Project:Buckley SchoolLocation:Front Gate (Location E)Sources:Traffic Volumes

Date: February 1-3, 2005

fieldcnel.xls

Appendix K-2

Roadway Noise Analysis (TENS)

Buckley School TENS Analysis (Residential Receptors)

Existing										
	1	Fraffic Volume	s		Leq			CNEL		
Roadway/Segment	AM	PM	ADT	ROW	50 Feet	100 Feet	ROW	50 Feet	100 Feet	
Stansbury Avenue, north of Valley Vista Boulevard	-	-	3427	61.4	56.8	54.6	61.3	56.7	54.5	
Stansbury Avenue, south of Valley Vista Boulevard	-	-	2366	59.8	55.1	53.0	59.7	55.1	52.9	
Valley Vista Boulevard, east of Stansbury Avenue	-	-	4110	62.2	57.5	55.4	62.1	57.5	55.3	
Valley Vista Boulevard, west of Stansbury Avenue	-	-	4609	62.7	58.0	55.9	62.6	58.0	55.8	
Greenleaf Street, west of Stansbury Avenue	-	-	1742	58.4	53.8	51.6	58.4	53.7	51.5	
Future No Project										
	1	Fraffic Volume	s		Leq			CNEL		
Roadway/Segment	AM	PM	ADT	ROW	50 Feet	100 Feet	ROW	50 Feet	100 Feet	
Stansbury Avenue, north of Valley Vista Boulevard	-	-	4253	62.3	57.7	55.5	62.2	57.6	55.4	
Stansbury Avenue, south of Valley Vista Boulevard	-	-	2506	60.0	55.4	53.2	59.9	55.3	53.1	
Valley Vista Boulevard, east of Stansbury Avenue	-	-	5301	63.3	58.6	56.5	63.2	58.6	56.4	
Valley Vista Boulevard, west of Stansbury Avenue	-	-	5787	63.7	59.0	56.8	63.6	58.9	56.8	
Greenleaf Street, west of Stansbury Avenue	-	-	2041	59.1	54.5	52.3	59.0	54.4	52.2	
Future With Project										
	1	Fraffic Volume	s		Leq			CNEL		
Roadway/Segment	AM	PM	ADT	ROW	50 Feet	100 Feet	ROW	50 Feet	100 Feet	
Stansbury Avenue, north of Valley Vista Boulevard	-	-	4409	62.5	57.8	55.7	62.4	57.8	55.6	
Stansbury Avenue, south of Valley Vista Boulevard	-	-	2799	60.5	55.9	53.7	60.4	55.8	53.6	
Valley Vista Boulevard, east of Stansbury Avenue	-	-	5367	63.3	58.7	56.5	63.2	58.6	56.4	
Valley Vista Boulevard, west of Stansbury Avenue	-	-	5867	63.7	59.1	56.9	63.6	59.0	56.8	
Greenleaf Street, west of Stansbury Avenue	-	-	2041	59.1	54.5	52.3	59.0	54.4	52.2	

	CNEL									
Summary	50 ft. fr	om ROW	At ROW							
	Project	Cumulative	Project	Cumulative						
Roadway/Segment	Increment	Increment	Increment	Increment						
Stansbury Avenue, north of Valley Vista Boulevard	0.2	1.1	0.2	1.1						
Stansbury Avenue, south of Valley Vista Boulevard	0.5	0.7	0.5	0.7						
Valley Vista Boulevard, east of Stansbury Avenue	0.0	1.1	0.0	1.1						
Valley Vista Boulevard, west of Stansbury Avenue	0.1	1.0	0.0	1.0						
Greenleaf Street, west of Stansbury Avenue	0.0	0.7	0.0	0.6						

Buckley School TENS Analysis (Residential Receptors)

Existing										
		Traffic Volume	s		Leq			CNEL		
Roadway/Segment	AM	AM PM		ROW	50 Feet 100 Fee		ROW	50 Feet	100 Feet	
6. Dickens St. west of Stansbury Ave	-	-	3527	61.5	56.9	54.7	61.4	56.8	54.6	
7. Camino de la Cumbre west of Stansbury Ave.	-	-	1189	56.8	52.2	50.0	56.7	52.1	49.9	
8. Camino de la Cumbre south of Valley Vista Blvd.	-	-	977	55.9	51.3	49.1	55.8	51.2	49.0	
Future No Project										
		Traffic Volume	s		Leq			CNEL		
Roadway/Segment	AM	PM	ADT	ROW	50 Feet	100 Feet	ROW	50 Feet	100 Feet	
6. Dickens St. west of Stansbury Ave	-	-	4132	62.2	57.6	55.4	62.1	57.5	55.3	
7. Camino de la Cumbre west of Stansbury Ave.	-	-	1393	57.5	52.8	50.7	57.4	52.8	50.6	
8. Camino de la Cumbre south of Valley Vista Blvd.	-	-	1145	56.6	52.0	49.8	56.5	51.9	49.7	
Future With Project	_									
		Traffic Volume	s		Leq			CNEL		
Roadway/Segment	AM	PM	ADT	ROW	50 Feet	100 Feet	ROW	50 Feet	100 Feet	
6. Dickens St. west of Stansbury Ave	-	-	4132	62.2	57.6	55.4	62.1	57.5	55.3	
7. Camino de la Cumbre west of Stansbury Ave.	-	-	1402	57.5	52.9	50.7	57.4	52.8	50.6	
8. Camino de la Cumbre south of Valley Vista Blvd.	-	-	1181	56.8	52.1	49.9	56.7	52.0	49.9	

	CNEL										
Summary	50 ft. fro	om ROW	At ROW								
	Project	Cumulative	Project	Cumulative							
Roadway/Segment	Increment	Increment	Increment	Increment							
6. Dickens St. west of Stansbury Ave	0.0	0.7	0.0	0.7							
7. Camino de la Cumbre west of Stansbury Ave.	0.0	0.7	0.0	0.7							
8. Camino de la Cumbre south of Valley Vista Blvd.	0.1	0.8	0.2	0.9							

Appendix K-3

- Construction On-site Noise Analysis
- Construction Traffic Noise Analysis

				Demo	lition	Grading/E	xcavation	Found	ations	Structural		Finishing/Renovation		
			Daytime Ambient			Increase		Increase		Increase		Increase	g.	Increase
	Representative Receptor	Distance to	Sound Level	Direct Line		over		over		over		over		over
Construction Phase	Locations	Receptor (ft.)	(dBA)	of Sight?	dBA (Leq)	Ambient	dBA (Leq)	Ambient	dBA (Leq)	Ambient	dBA (Leq)	Ambient	dBA (Leq)	Ambient
	3530 Coy Drive	1781	50	No	50.0	0.0	50.0	0.0	41.0	0.0	47.0	0.0	50.0	0.0
	3636 Camino de la Cumbre	1404	50	Yes	57.0	7.0	57.0	7.0	48.0	0.0	54.0	4.0	57.0	7.0
	3767 Camino de la Cumbre	596	55	Yes	64.5	9.5	64.5	9.5	55.5	0.5	61.5	6.5	64.5	9.5
	3852 Camino de Solana	305	57	Yes	70.3	13.3	70.3	13.3	61.3	4.3	67.3	10.3	70.3	13.3
Phase 1 (New Library and	2020 Stansbury Avenue	576	60	No	59.7	0.0	59.7	0.0	50.7	0.0	56.7	0.0	59.7	0.0
Technology Center)	3931 Camino de la Cumbre	412	55	No	38.9 62.7	2.2	58.9	0.0	49.9	0.0	50.7	0.0	58.9	0.0
	3943 Camino de la Cumbre	412	55	No	62.7	6.1	61.4	6.4	52.4	0.0	59.7	4.7	62.7	6.4
	3954 Camino de la Cumbre	543	55	No	60.3	5.3	60.3	5.3	51.3	0.0	57.3	2.3	60.3	5.3
	3957 Camino de la Cumbre	586	55	No	59.6	4.6	59.6	4.6	50.6	0.0	56.6	1.6	59.6	4.6
	Beverly Ridge Drive	713	50	No	57.9	7.9	57.9	7.9	48.9	0.0	54.9	4.9	57.9	7.9
	3530 Cov Drive	1916	50	No	49.3	0.0	49.3	0.0	40.3	0.0	46.3	0.0	49.3	0.0
	3636 Camino de la Cumbre	1553	50	Yes	56.2	6.2	56.2	6.2	47.2	0.0	53.2	3.2	56.2	6.2
	3767 Camino de la Cumbre	780	55	Yes	62.1	7.1	62.1	7.1	53.1	0.0	59.1	4.1	62.1	7.1
Phase 2 (New Middle and	3852 Camino de Solana	483	57	Yes	66.3	9.3	66.3	9.3	57.3	0.3	63.3	6.3	66.3	9.3
Upper School Main	3920 Stansbury Avenue	409	60	No	62.7	2.7	62.7	2.7	53.7	0.0	59.7	0.0	62.7	2.7
Academic Building and	3929 Stansbury Avenue	524	60	No	60.6	0.6	60.6	0.6	51.6	0.0	57.6	0.0	60.6	0.6
Parking Facility)	3931 Camino de la Cumbre	436	55	No	62.2	7.2	62.2	7.2	53.2	0.0	59.2	4.2	62.2	7.2
	3943 Camino de la Cumbre	473	55	No	61.5	6.5	61.5	6.5	52.5	0.0	58.5	3.5	61.5	6.5
	3954 Camino de la Cumbre	482	55	No	61.3	6.3	61.3	6.3	52.3	0.0	58.3	3.3	61.3	6.3
	3957 Camino de la Cumbre	579	55	No	59.7	4.7	59.7	4.7	50.7	0.0	56.7	1.7	59.7	4.7
	Beveriy Ridge Drive	889	50	No	56.0	6.0	56.0	6.0	47.0	0.0	53.0	3.0	56.0	6.0
	3636 Camino do la Cumbro	1598	50	No V	50.9	0.9	50.9	0.9	41.9	0.0	47.9	0.0	50.9	0.9
	3767 Camino de la Cumbro	786	55	10S Voc	62.1	12.2	62.1	12.2	53.2	5.2	59.2	9.2	62.1	7.1
	3852 Camino de Solana	452	57	Yes	66.9	7.1 9.0	66.9	7.1 Q Q	57.9	0.0	63.0	4.1	66.9	7.1 Q Q
	3920 Stansbury Avenue	387	60	No	63.2	3.2	63.2	3.2	54.2	0.0	60.2	0.7	63.2	3.2
Phase 3A (New Academic	3929 Stansbury Avenue	472	60	No	61.5	1.5	61.5	1.5	52.5	0.0	58.5	0.0	61.5	1.5
Building West)	3931 Camino de la Cumbre	347	55	No	64.2	9.2	64.2	9.2	55.2	0.2	61.2	6.2	64.2	9.2
	3943 Camino de la Cumbre	392	55	No	63.1	8.1	63.1	8.1	54.1	0.0	60.1	5.1	63.1	8.1
	3954 Camino de la Cumbre	409	55	No	62.7	7.7	62.7	7.7	53.7	0.0	59.7	4.7	62.7	7.7
	3957 Camino de la Cumbre	495	55	No	61.1	6.1	61.1	6.1	52.1	0.0	58.1	3.1	61.1	6.1
	Beverly Ridge Drive	834	50	No	56.6	6.6	56.6	6.6	47.6	0.0	53.6	3.6	56.6	6.6
	3530 Coy Drive	1541	50	No	51.2	1.2	51.2	1.2	42.2	0.0	48.2	0.0	51.2	1.2
	3636 Camino de la Cumbre	1129	50	Yes	58.9	8.9	58.9	8.9	49.9	0.0	55.9	5.9	58.9	8.9
	3767 Camino de la Cumbre	357	55	Yes	68.9	13.9	68.9	13.9	59.9	4.9	65.9	10.9	68.9	13.9
Dhase 2D (Addition and	3852 Camino de Solana	299	57	Yes	70.5	13.5	70.5	13.5	61.5	4.5	67.5	10.5	70.5	13.5
Instructure Number of the left of the	47.4	0.0	53.4	0.0	56.4	0.0								
	55.7	0.0												
Building South)	3943 Camino de la Cumbre	720	55	No	57.9	3.8	57.8	3.8	49.8	0.0	54.8	0.8	57.9	3.8
	3954 Camino de la Cumbre	813	55	No	56.8	1.8	56.8	1.8	40.8	0.0	53.8	0.0	56.8	1.8
	3957 Camino de la Cumbre	827	55	No	56.6	1.6	56.6	1.6	47.6	0.0	53.6	0.0	56.6	1.6
	Beverly Ridge Drive	782	50	No	57.1	7.1	57.1	7.1	48.1	0.0	54.1	4.1	57.1	7.1
	3530 Coy Drive	1502	50	No	51.4	1.4	51.4	1.4	42.4	0.0	48.4	0.0	51.4	1.4
	3636 Camino de la Cumbre	1174	50	Yes	58.6	8.6	58.6	8.6	49.6	0.0	55.6	5.6	58.6	8.6
	3767 Camino de la Cumbre	444	55	Yes	67.0	12.0	67.0	12.0	58.0	3.0	64.0	9.0	67.0	12.0
	3852 Camino de Solana	385	57	Yes	68.3	11.3	68.3	11.3	59.3	2.3	65.3	8.3	68.3	11.3
	3920 Stansbury Avenue	798	60	No	56.9	0.0	56.9	0.0	47.9	0.0	53.9	0.0	56.9	0.0
Phase 3C (Disney Pavilion)	3929 Stansbury Avenue	910	60	No	55.8	0.0	55.8	0.0	46.8	0.0	52.8	0.0	55.8	0.0
	3931 Camino de la Cumbre	680	55	No	58.3	3.3	58.3	3.3	49.3	0.0	55.3	0.3	58.3	3.3
	3954 Camino de la Cumbre	816	55	No	567	2.4	567	1.7	48.4	0.0	52.7	0.0	567	2.4
	3957 Camino de la Cumbre	855	55	No	56.3	1.7	56.3	1.7	47.3	0.0	53.3	0.0	56.3	1.7
	Beverly Ridge Drive	867	50	No	56.2	62	56.2	6.2	47.2	0.0	53.2	3.2	56.2	6.2
	3530 Coy Drive	1260	50	No	53.0	3.0	53.0	3.0	44.0	0.0	50.0	0.0	53.0	3.0
	3636 Camino de la Cumbre	965	50	Yes	60.3	10.3	60.3	10.3	51.3	1.3	57.3	7.3	60.3	10.3
	3767 Camino de la Cumbre	409	55	Yes	67.7	12.7	67.7	12.7	58.7	3.7	64.7	9.7	67.7	12.7
	3852 Camino de Solana	578	57	Yes	64.7	7.7	64.7	7.7	55.7	0.0	61.7	4.7	64.7	7.7
	3920 Stansbury Avenue	1061	60	No	54.5	0.0	54.5	0.0	45.5	0.0	51.5	0.0	54.5	0.0
Phase 3C (Aquatic Center)	3929 Stansbury Avenue	1177	60	No	53.6	0.0	53.6	0.0	44.6	0.0	50.6	0.0	53.6	0.0
	3931 Camino de la Cumbre	940	55	No	55.5	0.5	55.5	0.5	46.5	0.0	52.5	0.0	55.5	0.5
	3943 Camino de la Cumbre	1019	55	No	54.8	0.0	54.8	0.0	45.8	0.0	51.8	0.0	54.8	0.0
	3954 Camino de la Cumbre	1087	55	No	54.3	0.0	54.3	0.0	45.3	0.0	51.3	0.0	54.3	0.0
	Sec/ Camino de la Cumbre Rovorty Ridao Drivo	1117	55	No	54.0	0.0	54.0	0.0	45.0	0.0	51.0	0.0	54.0	0.0
	2520 Cov Drivo	2120	50	No	55.9	5.9	55.9	5.9	46.9	0.0	52.9	2.9	55.9	5.9
	3636 Camino de la Cumbre	1744	50	No	48.3	5.1							46.3	5.1
	3767 Camino de la Cumbre	937	55	Yes	60 5	5.5	1						60 5	5.5
	3852 Camino de Solana	556	57	Yes	65.1	8.1	I						65.1	8.1
Phase 0D (1 anno 0 3 3	3920 Stansbury Avenue	286	60	No	65.9	5.9	1						65.9	5.9
Phase 3D (Lower School	3929 Stansbury Avenue	282	60	No	66.0	6.0	1		Renovat	ion Only			66.0	6.0
Renovations)	3931 Camino de la Cumbre	251	55	No	67.0	12.0	1						67.0	12.0
	3943 Camino de la Cumbre	245	55	No	67.2	12.2	I						67.2	12.2
	3954 Camino de la Cumbre	218	55	No	68.2	13.2	I						68.2	13.2
	3957 Camino de la Cumbre	338	55	No	64.4	9.4	1						64.4	9.4
L	Beverly Ridge Drive	793	50	No	57.0	7.0	ļ						57.0	7.0
Max Increase 13.9 13.9 4.9 10.9												13.9		

Date:	:	9/15/2006				Ambient No	bise Level		50 dBA											
	Speed		E	xistin	g		Cons	struction	Only	Cons	truction (Only	Con	struct	ion +			Existing	Future WP	Existing Combined
Hour	(mph)	Grade	v	olume	es	Existing		Volumes		Pe	ercentage	e	Existi	ng Vo	lumes	Construction +		Combined	Combined	vs. Future
			LDA	MDT	HDT	Leq	LDA	MDT	HDT	LDA	MDT	HDT	LDA	MDT	HDT	Existing Leq	Difference	Leq	Leq	Combined
0:00	25	0%	3	0	0	33.1							3	0	0	33.1		50.2		
1:00	25	0%	3	0	0	33.1							3	0	0	33.1		50.1		
2:00	25	0%	0	0	0	4.8							0	0	0	4.8		50.0		
3:00	25	0%	5	0	0	35.3							5	0	0	35.3		50.2		
4:00	25	0%	4	0	0	34.4							4	0	0	34.4		50.2		
5:00	25	0%	8	0	0	37.4							8	0	0	37.4		50.3		
6:00	25	0%	87	0	0	47.7				32%	30%	30%	87	0	0	47.7		52.2	52.4	+0.2
7:00	25	0%	470	0	0	55.1		1	9	32%	30%	30%	470	1	3	57.0	+2.0	56.8	61.3	+4.6
8:00	25	0%	498	0	0	55.3		1	9	32%	30%	30%	498	1	3	57.2	+1.9	57.1	61.4	+4.4
9:00	25	0%	190	0	0	51.1		1	9	32%	30%	30%	190	1	3	55.0	+3.8	54.3	60.6	+6.3
10:00	25	0%	102	0	0	48.4		1	9	32%	30%	30%	102	1	3	54.0	+5.6	53.2	60.4	+7.1
11:00	25	0%	83	0	0	47.5		1	9	32%	30%	30%	83	1	3	53.8	+6.3	53.0	60.3	+7.3
12:00	25	0%	72	0	0	46.9		1	9	32%	30%	30%	72	1	3	53.7	+6.8	53.0	60.3	+7.3
13:00	25	0%	68	0	0	46.7		1	9	32%	30%	30%	68	1	3	53.6	+7.0	53.2	60.4	+7.2
14:00	25	0%	90	0	0	47.9		1	9	32%	30%	30%	90	1	3	53.9	+6.0	54.1	60.6	+6.5
15:00	25	0%	165	0	0	50.5		1	9	32%	30%	30%	165	1	3	54.7	+4.2	55.4	60.9	+5.5
16:00	25	0%	110	0	0	48.8	37			32%	30%	30%	122	0	0	49.2	+0.4	55.7	55.8	+0.1
17:00	25	0%	94	0	0	48.1							94	0	0	48.1		55.8		
18:00	25	0%	92	0	0	48.0							92	0	0	48.0		55.5		
19:00	25	0%	70	0	0	46.8							70	0	0	46.8		54.1		
20:00	25	0%	44	0	0	44.8							44	0	0	44.8		52.4		
21:00	25	0%	34	0	0	43.7							34	0	0	43.7		52.2		
22:00	25	0%	25	0	0	42.3							25	0	0	42.3		51.4		
23:00	25	0%	7	0	0	36.8							7	0	0	36.8		50.5		
Max						55.3										57.2	+7.0	57.1	61.4	+7.3

Segment: Valley Vista Boulevard, West of Stansbury Avenue (Max HDT) - Westbound Date: 9/15/2008 Distance from ROW 50 ft

Date:		9/15/2008				Distance fro	m ROW		50 ft								
						Ambient No	ise Level		50 dBA								
	Speed		Existing			Construction Only			Cons	truction	Only	Con	struct	ion +			
Hour	(mph)	Grade	Volumes			Existing	Volumes			Pe	ercentage	e	Existing Volumes			Construction +	
			LDA	MDT	HDT	Leq	LDA	MDT	HDT	LDA	MDT	HDT	LDA	MDT	HDT	Existing Leq	Difference
0:00	25	2-6%	4	0	0	34.4							4	0	0	34.4	
1:00	25	2-6%	2	0	0	31.4							2	0	0	31.4	
2:00	25	2-6%	0	0	0	4.8							0	0	0	4.8	
3:00	25	2-6%	3	0	0	33.1							3	0	0	33.1	
4:00	25	2-6%	3	0	0	33.1							3	0	0	33.1	
5:00	25	2-6%	3	0	0	33.1							3	0	0	33.1	
6:00	25	2-6%	7	0	0	36.8	37			32%	30%	30%	19	0	0	41.1	+4.3
7:00	25	2-6%	81	0	0	47.4		1	9	32%	30%	30%	81	1	3	58.8	+11.3
8:00	25	2-6%	102	0	0	48.4		1	9	32%	30%	30%	102	1	3	58.9	+10.4
9:00	25	2-6%	60	0	0	46.1		1	9	32%	30%	30%	60	1	3	58.7	+12.6
10:00	25	2-6%	61	0	0	46.2		1	9	32%	30%	30%	61	1	3	58.7	+12.5
11:00	25	2-6%	62	0	0	46.3		1	9	32%	30%	30%	62	1	3	58.7	+12.4
12:00	25	2-6%	74	0	0	47.0		1	9	32%	30%	30%	74	1	3	58.7	+11.7
13:00	25	2-6%	93	0	0	48.0		1	9	32%	30%	30%	93	1	3	58.8	+10.8
14:00	25	2-6%	140	0	0	49.8		1	9	32%	30%	30%	140	1	3	59.0	+9.2
15:00	25	2-6%	195	0	0	51.2		1	9	32%	30%	30%	195	1	3	59.2	+8.0
16:00	25	2-6%	289	0	0	53.0				32%	30%	30%	289	0	0	53.0	
17:00	25	2-6%	312	0	0	53.3							312	0	0	53.3	
18:00	25	2-6%	285	0	0	52.9							285	0	0	52.9	
19:00	25	2-6%	159	0	0	50.4							159	0	0	50.4	
20:00	25	2-6%	65	0	0	46.5							65	0	0	46.5	
21:00	25	2-6%	64	0	0	46.4							64	0	0	46.4	
22:00	25	2-6%	32	0	0	43.4							32	0	0	43.4	
23:00	25	2-6%	10	0	0	38.3							10	0	0	38.3	
Max						53.3										59.2	+12.6
-																CNEL	55.6
																Future WP CNEL	57.3

Segment: Valley Vista Boulevard, West of Stansbury Avenue (Max HDT) - Eastbound

 CNEL
 55.6

 Future WP CNEL
 57.3

 Existing CNEL
 52.6

 CNEL Change
 +4.7

Date:	:	9/15/2008	5			Distance fro	om ROW		50 ft											
						Ambient No	oise Level		50 dBA											
	Speed						Cons	struction	Only	Cons	truction	Only	Con	struct	ion +			Existing	Future WP	Existing Combined
Hour	(mph)	Grade	Existi	Existing Volumes Exist		Existing	Volun			Pe	Percentage		Existing Volumes		lumes	Construction +		Combined	Combined	vs. Future
			LDA	MDT	HDT	Leq	LDA	MDT	HDT	LDA	MDT	HDT	LDA	MDT	HDT	Existing Leq	Difference	Leq	Leq	Combined
0:00	25	2-6%	5	0	0	35.3							5	0	0	35.3		50.2		
1:00	25	2-6%	3	0	0	33.1							3	0	0	33.1		50.3		
2:00	25	2-6%	0	0	0	4.8							0	0	0	4.8		50.0		
3:00	25	2-6%	4	0	0	34.4							4	0	0	34.4		50.2		
4:00	25	2-6%	6	0	0	36.1							6	0	0	36.1		50.3		
5:00	25	2-6%	5	0	0	35.3							5	0	0	35.3		50.2		
6:00	25	2-6%	47	0	0	45.1				15%	1%	1%	47	0	0	45.1		51.4	51.6	+0.1
7:00	25	2-6%	277	0	0	52.8		1	9	15%	1%	1%	277	1	1	56.3	+3.6	55.4	58.2	+2.8
8:00	25	2-6%	290	0	0	53.0		1	9	15%	1%	1%	290	1	1	56.4	+3.4	55.8	58.4	+2.6
9:00	25	2-6%	138	0	0	49.7		1	9	15%	1%	1%	138	1	1	55.2	+5.5	54.0	57.5	+3.5
10:00	25	2-6%	108	0	0	48.7		1	9	15%	1%	1%	108	1	1	55.0	+6.3	53.5	57.2	+3.8
11:00	25	2-6%	78	0	0	47.3		1	9	15%	1%	1%	78	1	1	54.7	+7.4	52.9	57.0	+4.1
12:00	25	2-6%	59	0	0	46.1		1	9	15%	1%	1%	59	1	1	54.5	+8.4	53.0	57.1	+4.0
13:00	25	2-6%	76	0	0	47.2		1	9	15%	1%	1%	76	1	1	54.6	+7.5	53.3	57.2	+3.9
14:00	25	2-6%	86	0	0	47.7		1	9	15%	1%	1%	86	1	1	54.7	+7.1	53.9	57.4	+3.5
15:00	25	2-6%	123	0	0	49.2		1	9	15%	1%	1%	123	1	1	55.1	+5.9	55.2	58.0	+2.9
16:00	25	2-6%	98	0	0	48.3	37			15%	1%	1%	104	0	0	48.5	+0.3	55.6	55.6	+0.0
17:00	25	2-6%	108	0	0	48.7							108	0	0	48.7		55.6		
18:00	25	2-6%	85	0	0	47.6							85	0	0	47.6		55.2		
19:00	25	2-6%	75	0	0	47.1							75	0	0	47.1		54.2		
20:00	25	2-6%	44	0	0	44.8							44	0	0	44.8		52.5		
21:00	25	2-6%	42	0	0	44.6							42	0	0	44.6		52.8		
22:00	25	2-6%	26	0	0	42.5							26	0	0	42.5		51.6		
23:00	25	2-6%	11	0	0	38.8							11	0	0	38.8		50.6		
Max						53.0										56.4	+8.4	55.8	58.4	+4.1

Segment: Valley Vista Boulevard, East of Stansbury Avenue (Max HDT) - Westbound

Date:		9/15/2008	6			Distance fro	m ROW	•	50 ft								
						Ambient No	ise Leve	I	50 dBA								
	Speed						Con	structior	n Only	Cons	truction (Only	Con	structi	ion +		
Hour	(mph)	Grade	Existing Volumes			Existing	Volumes			P	ercentage	•	Existi	ng Vo	lumes	Construction +	
			LDA	MDT	HDT	Leq	LDA	MDT	HDT	LDA	MDT	HDT	LDA	MDT	HDT	Existing Leq	Difference
0:00	25	0%	3	0	0	33.1							3	0	0	33.1	
1:00	25	0%	6	0	0	36.1							6	0	0	36.1	
2:00	25	0%	0	0	0	4.8							0	0	0	4.8	
3:00	25	0%	2	0	0	31.4							2	0	0	31.4	
4:00	25	0%	5	0	0	35.3							5	0	0	35.3	
5:00	25	0%	3	0	0	33.1							3	0	0	33.1	
6:00	25	0%	11	0	0	38.8	37			15%	1%	1%	17	0	0	40.6	+1.9
7:00	25	0%	84	0	0	47.6		1	9	15%	1%	1%	84	1	1	51.0	+3.4
8:00	25	0%	122	0	0	49.2		1	9	15%	1%	1%	122	1	1	51.8	+2.6
9:00	25	0%	80	0	0	47.4		1	9	15%	1%	1%	80	1	1	50.9	+3.5
10:00	25	0%	71	0	0	46.9		1	9	15%	1%	1%	71	1	1	50.7	+3.8
11:00	25	0%	58	0	0	46.0		1	9	15%	1%	1%	58	1	1	50.3	+4.3
12:00	25	0%	87	0	0	47.7		1	9	15%	1%	1%	87	1	1	51.1	+3.3
13:00	25	0%	91	0	0	47.9		1	9	15%	1%	1%	91	1	1	51.1	+3.2
14:00	25	0%	129	0	0	49.4		1	9	15%	1%	1%	129	1	1	51.9	+2.5
15:00	25	0%	212	0	0	51.6		1	9	15%	1%	1%	212	1	1	53.3	+1.7
16:00	25	0%	282	0	0	52.8				15%	1%	1%	282	0	0	52.8	
17:00	25	0%	280	0	0	52.8							280	0	0	52.8	
18:00	25	0%	253	0	0	52.4							253	0	0	52.4	
19:00	25	0%	167	0	0	50.6							167	0	0	50.6	
20:00	25	0%	72	0	0	46.9							72	0	0	46.9	
21:00	25	0%	91	0	0	47.9							91	0	0	47.9	
22:00	25	0%	38	0	0	44.1							38	0	0	44.1	
23:00	25	0%	9	0	0	37.9							9	0	0	37.9	
Max						52.8										53.3	+4.3
																Future WP CNEL	54.9
																Existing CNEL	52.4

Segment: Valley Vista Boulevard, East of Stansbury Avenue (Max HDT) - Eastbound

CNEL Change +2.4

Valley Vista, East of Stansbury
Date.		9/13/2000			Ambient No	bise Level		50 dBA											
	Speed		Exi	sting		Cons	struction	Only	Cons	truction (Only	Con	structi	ion +			Existing	Future WP	Existing Combined
Hour	(mph)	Grade	Volu	umes	Existing		Volumes		Pe	ercentage	•	Existi	ng Vo	lumes	Construction +		Combined	Combined	vs. Future
			LDA M	IDT HDT	Leq	LDA	MDT	HDT	LDA	MDT	HDT	LDA	MDT	HDT	Existing Leq	Difference	Leq	Leq	Combined
0:00	25	0%	1	0 0	28.4							1	0	0	28.4		50.1		
1:00	25	0%	0	0 0	4.8							0	0	0	4.8		50.0		
2:00	25	0%	0	0 0	4.8							0	0	0	4.8		50.0		
3:00	25	0%	1	0 0	28.4							1	0	0	28.4		50.1		
4:00	25	0%	3	0 0	33.1							3	0	0	33.1		50.1		
5:00	25	0%	0	0 0	4.8							0	0	0	4.8		50.0		
6:00	25	0%	0	0 0	4.8				100%	100%	100%	0	0	0	4.8		50.0	51.0	+1.0
7:00	25	0%	97	0 0	48.2		1	9	100%	100%	100%	97	1	9	57.8	+9.6	54.8	64.6	+9.8
8:00	25	0%	244	0 0	52.2		1	9	100%	100%	100%	244	1	9	58.4	+6.2	56.7	64.9	+8.2
9:00	25	0%	26	0 0	42.5		1	9	100%	100%	100%	26	1	9	57.4	+14.9	51.5	64.4	+12.9
10:00	25	0%	28	0 0	42.8		1	9	100%	100%	100%	28	1	9	57.4	+14.6	51.4	64.4	+13.0
11:00	25	0%	37	0 0	44.0		1	9	100%	100%	100%	37	1	9	57.5	+13.4	51.7	64.4	+12.7
12:00	25	0%	34	0 0	43.7		1	9	100%	100%	100%	34	1	9	57.5	+13.8	51.5	64.4	+12.9
13:00	25	0%	25	0 0	42.3		1	9	100%	100%	100%	25	1	9	57.4	+15.1	51.5	64.4	+12.9
14:00	25	0%	68	0 0	46.7		1	9	100%	100%	100%	68	1	9	57.6	+11.0	53.2	64.5	+11.3
15:00	25	0%	234	0 0	52.0		1	9	100%	100%	100%	234	1	9	58.4	+6.4	56.0	64.8	+8.8
16:00	25	0%	139	0 0	49.8	37			100%	100%	100%	176	0	0	50.8	+1.0	54.1	54.5	+0.4
17:00	25	0%	78	0 0	47.3							78	0	0	47.3		52.6		
18:00	25	0%	41	0 0	44.5							41	0	0	44.5		52.0		
19:00	25	0%	23	0 0	42.0							23	0	0	42.0		51.6		
20:00	25	0%	18	0 0	40.9							18	0	0	40.9		50.9		
21:00	25	0%	55	0 0	45.7							55	0	0	45.7		52.0		
22:00	25	0%	2	0 0	31.4							2	0	0	31.4		50.1		
23:00	25	0%	U	0 0	4.8							0	0	0	4.8		50.0		
Max					52.2										58.4	+15.1	56.7	64.9	+13.0

Segment: Stansbury Avenue, between School Gate and Valley Vista Boulevard (Max HDT) - Northbound Date: 9/15/2008 Distance from ROW 50 ft

Date:		9/15/2008				Distance fro	om ROW		50 ft								
	Speed		E	Existin	a	Ambient No	Con	structio	n Only	Cons	truction (Dnlv	Con	structi	on +		
Hour	(mph)	Grade	v	olum	es	Existing		Volume	s	P	ercentage	,	Existi	na Vol	umes	Construction +	
	、		LDA	MDT	HDT	Leq	LDA	MDT	HDT	LDA	MDT	HDT	LDA	MDT	HDT	Existing Leg	Difference
0:00	25	3-4%	1	0	0	28.4							1	0	0	28.4	
1:00	25	3-4%	0	0	0	4.8							0	0	0	4.8	
2:00	25	3-4%	0	0	0	4.8							0	0	0	4.8	
3:00	25	3-4%	1	0	0	28.4							1	0	0	28.4	
4:00	25	3-4%	1	0	0	28.4							1	0	0	28.4	
5:00	25	3-4%	0	0	0	4.8							0	0	0	4.8	
6:00	25	3-4%	1	0	0	28.4	37			100%	100%	100%	38	0	0	44.1	+15.8
7:00	25	3-4%	202	0	0	51.4		1	9	100%	100%	100%	202	1	9	63.4	+12.0
8:00	25	3-4%	287	0	0	52.9		1	9	100%	100%	100%	287	1	9	63.6	+10.6
9:00	25	3-4%	36	0	0	43.9		1	9	100%	100%	100%	36	1	9	63.2	+19.3
10:00	25	3-4%	26	0	0	42.5		1	9	100%	100%	100%	26	1	9	63.2	+20.7
11:00	25	3-4%	33	0	0	43.5		1	9	100%	100%	100%	33	1	9	63.2	+19.7
12:00	25	3-4%	27	0	0	42.7		1	9	100%	100%	100%	27	1	9	63.2	+20.5
13:00	25	3-4%	37	0	0	44.0		1	9	100%	100%	100%	37	1	9	63.2	+19.2
14:00	25	3-4%	92	0	0	48.0		1	9	100%	100%	100%	92	1	9	63.3	+15.3
15:00	25	3-4%	198	0	0	51.3		1	9	100%	100%	100%	198	1	9	63.4	+12.1
16:00	25	3-4%	90	0	0	47.9				100%	100%	100%	90	0	0	47.9	
17:00	25	3-4%	41	0	0	44.5							41	0	0	44.5	
18:00	25	3-4%	47	0	0	45.1							47	0	0	45.1	
19:00	25	3-4%	44	0	0	44.8							44	0	0	44.8	
20:00	25	3-4%	16	0	0	40.4							16	0	0	40.4	
21:00	25	3-4%	32	0	0	43.4							32	0	0	43.4	
22:00	25	3-4%	0	0	0	4.8							0	0	0	4.8	
23:00	25	3-4%	0	0	0	4.8							0	0	0	4.8	
Max						52.9										63.6	+20.7
																Future WP CNEL	60.3
																Existing CNEL	49.1

Segment: Stansbury Avenue, between School Gate and Valley Vista Boulevard (Max HDT) - Southbound

Existing CNEL49.1CNEL Change+11.2

Segme Date:	nt:	Stansburg 9/15/2008	y Avenue, North of	Valley Vist	a (Max H m ROW	DT) - Nor	thbound 50 ft	l										
				Ambient No	ise Level		50 dBA											
	Speed		Existing		Cons	truction	Only	Const	truction (Dnly	Cons	structi	on +			Existing	Future WP	Existing Combined
Hour	(mph)	Grade	Volumes	Existing		Volumes		Pe	ercentage	;	E	xisting	g	Construction +		Combined	Combined	vs. Future
			LDA MDT HDT	Leq	LDA	MDT	HDT	LDA	MDT	HDT	LDA	MDT	HDT	Existing Leq	Difference	Leq	Leq	Combined
0:00	25	0%	3 0 0	33.1							3	0	0	33.1		50.2		
1:00	25	0%	2 0 0	31.4							2	0	0	31.4		50.2		
2:00	25	0%	0 0 0	4.8							0	0	0	4.8		50.0		
3:00	25	0%	0 0 0	4.8							0	0	0	4.8		50.1		
4:00	25	0%	3 0 0	33.1							3	0	0	33.1		50.1		
5:00	25	0%	1 0 0	28.4							1	0	0	28.4		50.2		
6:00	25	0%	7 0 0	36.8				51%	69%	69%	7	0	0	36.8		51.4	51.8	+0.4
7:00	25	0%	79 0 0	47.3		1	9	51%	69%	69%	79	1	7	56.7	+9.4	56.4	63.9	+7.5
8:00	25	0%	154 0 0	50.2		1	9	51%	69%	69%	154	1	7	57.2	+7.0	57.0	64.0	+7.0
9:00	25	0%	58 0 0	46.0		1	9	51%	69%	69%	58	1	7	56.6	+10.6	53.9	63.6	+9.7
10:00	25	0%	57 0 0	45.9		1	9	51%	69%	69%	57	1	7	56.6	+10.7	52.7	63.5	+10.8
11:00	25	0%	50 0 0	45.3		1	9	51%	69%	69%	50	1	7	56.5	+11.2	52.4	63.4	+11.0
12:00	25	0%	46 0 0	45.0		1	9	51%	69%	69%	46	1	7	56.5	+11.5	52.7	63.5	+10.7
13:00	25	0%	45 0 0	44.9		1	9	51%	69%	69%	45	1	7	56.5	+11.6	52.4	63.4	+11.1
14:00	25	0%	66 0 0	46.5		1	9	51%	69%	69%	66	1	7	56.6	+10.1	53.5	63.5	+10.0
15:00	25	0%	148 0 0	50.0		1	9	51%	69%	69%	148	1	7	57.1	+7.1	54.6	63.7	+9.1
16:00	25	0%	151 0 0	50.1	37			51%	69%	69%	170	0	0	50.6	+0.5	54.5	54.7	+0.2
17:00	25	0%	145 0 0	50.0							145	0	0	50.0		54.0		
18:00	25	0%	110 0 0	48.8							110	0	0	48.8		53.7		
19:00	25	0%	54 0 0	45.7							54	0	0	45.7		52.5		
20:00	25	0%	25 0 0	42.3							25	0	0	42.3		51.4		
21:00	25	0%	45 0 0	44.9							45	0	0	44.9		52.1		
22:00	25	0%	13 0 0	39.5							13	0	0	39.5		50.9		
23:00	25	0%	4 0 0	34.4							4	0	0	34.4		50.3		
Max				50.2										57.2	+11.6	57.0	64.0	+11.1

Segme	nt:	Stansbur	y Aven	nue, N	orth o	f Valley Vist	a (Max H	IDT) - So	outhbound	ł							
Date:		9/15/2008				Distance fro	m ROW		50 ft								
						Ambient No	ise Leve		50 dBA								
	Speed		E	Existin	ng		Con	struction	n Only	Cons	truction (Only	Con	struct	ion +		
Hour	(mph)	Grade	v	olum	es	Existing		Volume	S	Pe	ercentage	e	E	Existin	g	Construction +	
			LDA	MDT	HDT	Leq	LDA	MDT	HDT	LDA	MDT	HDT	LDA	MDT	HDT	Existing Leq	Difference
0:00	25	3-4%	3	0	0	33.1							3	0	0	33.1	
1:00	25	3-4%	6	0	0	36.1							6	0	0	36.1	
2:00	25	3-4%	0	0	0	4.8							0	0	0	4.8	
3:00	25	3-4%	3	0	0	33.1							3	0	0	33.1	
4:00	25	3-4%	1	0	0	28.4							1	0	0	28.4	
5:00	25	3-4%	5	0	0	35.3							5	0	0	35.3	
6:00	25	3-4%	48	0	0	45.2	37			51%	69%	69%	66.9	0	0	46.6	+1.4
7:00	25	3-4%	412	0	0	54.5		1	9	51%	69%	69%	412	1	7	62.8	+8.3
8:00	25	3-4%	439	0	0	54.8		1	9	51%	69%	69%	439	1	7	62.8	+8.1
9:00	25	3-4%	153	0	0	50.2		1	9	51%	69%	69%	153	1	7	62.4	+12.2
10:00	25	3-4%	<mark>68</mark>	0	0	46.7		1	9	51%	69%	69%	68	1	7	62.2	+15.5
11:00	25	3-4%	60	0	0	46.1		1	9	51%	69%	69%	60	1	7	62.2	+16.1
12:00	25	3-4%	81	0	0	47.4		1	9	51%	69%	69%	81	1	7	62.2	+14.8
13:00	25	3-4%	62	0	0	46.3		1	9	51%	69%	69%	62	1	7	62.2	+15.9
14:00	25	3-4%	115	0	0	49.0		1	9	51%	69%	69%	115	1	7	62.3	+13.3
15:00	25	3-4%	127	0	0	49.4		1	9	51%	69%	69%	127	1	7	62.3	+12.9
16:00	25	3-4%	119	0	0	49.1				51%	69%	69%	119	0	0	49.1	
17:00	25	3-4%	74	0	0	47.0							74	0	0	47.0	
18:00	25	3-4%	89	0	0	47.8							89	0	0	47.8	
19:00	25	3-4%	58	0	0	46.0							58	0	0	46.0	
20:00	25	3-4%	31	0	0	43.3							31	0	0	43.3	
21:00	25	3-4%	46	0	0	45.0							46	0	0	45.0	
22:00	25	3-4%	22	0	0	41.8							22	0	0	41.8	
23:00	25	3-4%	6	0	0	36.1							6	0	0	36.1	
Max						54.8										62.8	+16.1
																Future WP CNEL	59.6
																Existing CNEL	51.5

CNEL Change +8.1

													ROUND					Exceed	Exceed
DWB	Year	Month	Phase	I	II	Ш	IV	v	VI	VII	VIII	IX	TRIPS	LDA	MDT	HDT	PCE	+5 dBA CNEL?	+5 dBA Leq?
5/4	2009	5	Phase 1	1	3	18	2	5	5	0	1	0	35	22	2	11	380.7	No	No
5/11	2009	5	Phase 1	1	4	20	2	6	8	0	1	3	45	25	2	18	600	No	Yes
5/18	2009	5	Phase 1	1	4	20	2	7	15	0	2	3	54	25	2	27	878.1	Yes	Yes
5/25	2009	5	Phase 1	1	3	22	2	7	6	5	1	3	50	26	2	22	724.6	Yes	Yes
6/1	2009	6	Phase 1	1	2	20	2	1	3	10	0	3	42	23	2	17	567.1	No	Yes
6/8	2009	6	Phase 1	1	3	20	2	2	3	12	0	3	46	24	2	20	660.8	Yes	Yes
6/15	2009	6	Phase 1	1	3	20	2	1	4	10	0	3	44	24	2	18	599	No	Yes
6/22	2009	6	Phase 1	1	2	20	2	3	2	15	0	4	49	23	2	24	783.4	Yes	Yes
6/29	2009	6	Phase 1	1	2	20	2	1	1	25	0	2	54	23	2	29	937.9	Yes	Yes
7/6	2009	/	Phase 1	2	2	25	3	2	2	25	0	2	63	29	3	31	1015.1	Yes	Yes
7/13	2009	7	Phase 1	2	2	25	4	3	3	25	0	2	66	29	4	33	1080.3	res	Yes
7/20	2009	7	Phase 1	2	3	25	4	4	3	20	0	2	63	30	4	29	903.7 724.0	Yes	Voc
0/2	2009	/	Phase 1	2	<u> </u>	20	5	2	<u> </u>	0	0	2 1	55	29	C 4	12	124.9	res	Voc
0/3 8/10	2009	0	Phase 1	3	5	21	4	2 1	2	6	0	1	10	24	4	12	200.6	No	No
8/17	2009	0	Phase 1		6	24	5	1	2	5	0	1	40	34	4	10 8	328.2	No	No
8/2/	2009	8	Phase 1	4	8	25	1	1	1	3	0	1	47	37	1	6	260	No	No
8/31	2009	8	Phase 1	4	6	25	4	2	1	3	0	1	46	35	4	7	288.9	No	No
9/7	2009	q	Phase 1	4	6	25	4	2	2	3	0	2	48	35	4	9	350.7	No	No
9/14	2009	9	Phase 1	4	3	25	2	- 3	3	3	Ő	3	46	32	2	12	421.6	No	Yes
9/21	2009	9	Phase 1	4	8	25	6	1	2	3	0	2	51	37	6	8	340.6	No	No
9/28	2009	9	Phase 1	4	6	25	4	2	2	2	0	1	46	35	4	7	288.9	No	No
10/5	2009	10	Phase 1	4	7	24	4	2	2	1	0	1	45	35	4	6	258	No	No
10/12	2009	10	Phase 1	4	7	26	5	3	2	1	0	1	49	37	5	7	300.3	No	No
10/19	2009	10	Phase 1	4	5	26	5	1	3	1	0	1	46	35	5	6	267.4	No	No
10/26	2009	10	Phase 1	4	8	24	6	2	1	1	0	1	47	36	6	5	246.9	No	No
11/2	2009	11	Phase 1	4	7	31	4	2	2	1	0	1	52	42	4	6	265	No	No
11/9	2009	11	Phase 1	4	7	30	5	3	3	1	0	1	54	41	5	8	335.2	No	No
11/16	2009	11	Phase 1	4	5	29	5	1	3	1	0	1	49	38	5	6	270.4	No	No
11/23	2009	11	Phase 1	4	7	30	6	2	2	1	0	1	53	41	6	6	282.8	No	No
11/30	2009	11	Phase 1	4	6	30	5	1	1	1	0	1	49	40	5	4	210.6	No	No
12/7	2009	12	Phase 1	4	4	33	7	4	3	1	0	1	57	41	7	9	384.9	No	No
12/14	2009	12	Phase 1	4	7	33	8	4	3	1	0	1	61	44	8	9	397.3	No	No
12/21	2009	12	Phase 1	4	5	27	7	4	3	1	0	1	52	36	7	9	379.9	No	No
12/29	2009	12	Phase 1	4	5	27	7	4	3	1	0	2	53	36	7	10	410.8	No	No
1/4	2010	1	Phase 1	4	8	29	/	3	1	0	0	1	53	41	1	5	261.3	NO	NO
1/11	2010	1	Phase 1	4	6	30	4	1	2	0	0	1	48	40	4	4	201.2	NO	NO No
1/18	2010	1	Phase 1	4	1	30	0	1	1	0	0	1	50	41	6	5	190.1	NO No	NO
2/1	2010	1	Phase 1	4	0	26	4	3	1	0	0	1	52	43	4	5	255.1	No	No
2/1	2010	2	Phase 1	4	8	40	4	1	2	0	0	1	57	40	0	5	200.9	No	No
2/15	2010	2	Phase 1	4	7	40	-	1	2	0	0	1	62	53	5	4	213.2	No	No
2/13	2010	2	Phase 1	4	7	42	6	2	1	0	0	1	63	53	6	4	223.0	No	No
3/1	2010	2	Phase 1	4	5	40	0	1	1	6	0	2	63	49	4	10	395.6	No	No
3/8	2010	3	Phase 1	4	7	40	5	2	2	6	0	2	68	51	5	12	468.8	No	Yes
3/15	2010	3	Phase 1	4	4	38	7	2	3	6	Ő	2	66	46	7	13	513.5	No	Yes
3/22	2010	3	Phase 1	4	5	40	6	3	1	6	Ő	2	67	49	6	12	476.2	No	Yes
3/29	2010	3	Phase 1	4	6	42	5	2	2	6	Õ	2	69	52	5	12	469.8	No	Yes
4/5	2010	4	Phase 1	4	6	30	4	4	7	5	0	2	62	40	4	18	633.8	Yes	Yes
4/12	2010	4	Phase 1	4	4	26	5	4	7	6	0	2	58	34	5	19	668.1	Yes	Yes
4/19	2010	4	Phase 1	4	4	24	6	4	7	6	0	2	57	32	6	19	675.5	Yes	Yes
4/26	2010	4	Phase 1	4	5	20	4	4	7	5	0	2	51	29	4	18	622.8	No	Yes
5/3	2010	5	Phase 2	4	15	25	2	2	0	0	0	0	48	44	2	2	124.6	No	No

													ROUND					Exceed	Exceed
DWB	Year	Month	Phase	I	II	III	IV	V	VI	VII	VIII	IX	TRIPS	LDA	MDT	HDT	PCE	+5 dBA CNEL?	+5 dBA Leq?
5/10	2010	5	Phase 2	4	15	36	6	10	15	0	0	5	91	55	6	30	1038.4	Yes	Yes
5/17	2010	5	Phase 2	4	5	42	7	12	18	0	0	5	93	51	7	35	1198.3	Yes	Yes
5/24	2010	5	Phase 2	4	5	46	7	10	15	0	0	5	92	55	7	30	1047.8	Yes	Yes
5/31	2010	5	Phase 2	4	4	52	8	13	16	0	2	5	104	60	8	36	1247.6	Yes	Yes
6/7	2010	6	Phase 2	4	5	58	6	5	22	12	3	6	121	67	6	48	1606.6	Yes	Yes
6/14	2010	6	Phase 2	4	5	60	6	6	18	15	3	6	123	69	6	48	1608.6	Yes	Yes
6/21	2010	6	Phase 2	4	6	60	7	7	20	15	3	6	128	70	7	51	1711.7	Yes	Yes
6/28	2010	6	Phase 2	4	6	62	3	9	25	15	3	4	131	72	3	56	1830.6	Yes	Yes
7/5	2010	7	Phase 2	5	8	60	4	7	7	50	0	4	145	73	4	68	2211.8	Yes	Yes
7/12	2010	7	Phase 2	5	7	60	7	8	8	60	0	4	159	72	7	80	2609.8	Yes	Yes
7/19	2010	7	Phase 2	5	7	58	5	4	6	50	0	3	138	70	5	63	2063.7	Yes	Yes
7/26	2010	1	Phase 2	5	1	62	/	5	1	50	0	4	147	74	/	66	2179.2	Yes	Yes
8/2	2010	8	Phase 2	6	6	66	/	2	3	20	0	4	114	78	/	29	1039.9	Yes	Yes
8/9	2010	8	Phase 2	6	/	69	9	3	4	20	0	5	123	82	9	32	1155.4	Yes	res
8/16	2010	8	Phase 2	6	3	71	9	<u> </u>	0	20	0	4	121	80	9	32	1153.4	Yes	res
0/23	2010	0	Phase 2	0	0	72	3	4	2	10	0	4	110	04	5	29	1027.1	Voc	Voc
0/30	2010	0	Phase 2	0	1	71	4	4	3	19	0	4	119	00	4	50	1049.6	Vee	Vee
9/0	2010	9	Phase 2	6	7	60	0	4	4	00	0	4	152	00	/	71	2004.0	Voc	Voc
9/13	2010	9	Phase 2	6	2	71	9	3	4	50	0	4	151	02 90	9	62	2300.3	Voc	Voc
9/20	2010	9	Phase 2	6	6	60	9	<u> </u>	2	50	0	4	147	00 91	9	61	2000.4	Vec	Vec
<u> </u>	2010		Phase 2	6	6	66	7	2	3	18	0	4	147	78	7	27	978 1	Yes	Ves
10/4	2010	10	Phase 2	6	7	65	9	2	1	18	0	5	112	78	9	30	1089.6	Yes	Ves
10/18	2010	10	Phase 2	6	3	64	9	2		10	0		112	73	9	30	1084.6	Yes	Ves
10/25	2010	10	Phase 2	6	6	65	5	4	3	18	0	4	111	77	5	29	1020.1	Yes	Yes
11/1	2010	11	Phase 2	6	6	60	7	8	6	2	Ő	3	98	72	7	19	724.9	Yes	Yes
11/8	2010	11	Phase 2	6	7	58	9	10	10	2	0	4	106	71	9	26	959	Yes	Yes
11/15	2010	11	Phase 2	6	6	58	5	8	9	2	0	4	98	70	5	23	827.7	Yes	Yes
11/22	2010	11	Phase 2	6	8	52	9	11	13	2	0	4	105	66	9	30	1077.6	Yes	Yes
11/29	2010	11	Phase 2	6	6	48	7	5	10	12	0	4	98	60	7	31	1083.7	Yes	Yes
12/6	2010	12	Phase 2	6	6	50	8	5	10	12	0	3	100	62	8	30	1064.2	Yes	Yes
12/13	2010	12	Phase 2	6	8	52	10	10	6	15	0	3	110	66	10	34	1210.6	Yes	Yes
12/20	2010	12	Phase 2	6	7	58	7	3	7	10	0	4	102	71	7	24	878.4	Yes	Yes
12/27	2010	12	Phase 2	6	6	60	6	5	6	10	0	3	102	72	6	24	870	Yes	Yes
1/3	2011	1	Phase 2	6	6	60	7	10	3	1	0	4	97	72	7	18	694	Yes	Yes
1/10	2011	1	Phase 2	6	6	60	6	6	4	1	0	3	92	72	6	14	561	No	Yes
1/17	2011	1	Phase 2	6	7	60	9	3	4	1	0	3	93	73	9	11	497.5	No	Yes
1/24	2011	1	Phase 2	6	8	60	7	8	2	1	0	2	94	74	7	13	541.5	No	Yes
1/31	2011	1	Phase 2	6	5	60	2	10	6	0	0	3	92	71	2	19	676.9	Yes	Yes
2/7	2011	2	Phase 2	7	5	76	2	10	6	0	0	3	109	88	2	19	693.9	Yes	Yes
2/14	2011	2	Phase 2	7	9	80	6	12	7	0	0	4	125	96	6	23	863.1	Yes	Yes
2/21	2011	2	Phase 2	7	7	82	4	8	3	0	0	2	113	96	4	13	535.3	No	Yes
2/28	2011	2	Phase 2	7	7	82	5	7	6	0	0	2	116	96	5	15	606.5	No	Yes
3/7	2011	3	Phase 2	7	6	80	7	3	2	0	0	3	108	93	7	8	406	No	No
3/14	2011	3	Phase 2	7	8	80	4	5	2	0	0	3	109	95	4	10	441.6	No	Yes
3/21	2011	3	Phase 2	7	6	80	4	3	1	2	0	1	104	93	4	7	346.9	No	No
3/28	2011	3	Phase 2	7	6	80	4	2	1	2	0	1	103	93	4	6	316	No	No
4/4	2011	4	Phase 2	8	6	88	6	3	3	0	0	2	116	102	6	8	405.6	No	No
4/11	2011	4	Phase 2	8	10	88	(8	3	0	0	1	125	106	/	12	542.6	NO	Yes
4/18	2011	4	Phase 2	ŏ	10	92	8	5	4	0	0	2	129	110	× ×	11	525.1	INO	Yes
4/20	2011	4	Phase 2	ŏ o	10	92	4	4	3 2	0	0	3	1/24	104	4	0	407.6	NO	res
5/2	2011	5	Phase 2	0	10	90	0	ა 	3	0	0	∠ 1	125	104	0	0	407.0 542.6	No	Vec
5/5	2011	5	111111111111111111111111111111111111111	0	10	00		0	5	0	0	1 1	120	100		1 14	042.0	INU	103

DWB	Year	Month	Phase		Ш	ш	IV	v	VI	VII	VIII	IX	ROUND		MDT	HDT	PCF	Exceed	Exceed
5115	Tour	month	1 11000	•				•	••	•	•	iX.	TRIPS	LBA	ind i	ne i	. 01	CNEL?	Leq?
5/16	2011	5	Phase 2	8	10	88	8	5	4	0	0	2	125	106	8	11	521.1	No	Yes
5/23	2011	5	Phase 2	8	10	92	4	4	3	0	0	3	124	110	4	10	456.6	No	Yes
5/30	2011	5	Phase 2	8	9	92	6	3	3	0	0	2	123	109	6	8	412.6	No	No
6/6	2011	6	Phase 2	9	8	98	3	7	3	6	0	2	136	115	3	18	699.4	Yes	Yes
6/13	2011	6	Phase 2	9	8	100	10	6	4	5	0	3	145	117	10	18	767.2	Yes	Yes
6/20	2011	6	Phase 2	9	6	102	12	8	3	5	0	2	147	117	12	18	786	Yes	Yes
6/27	2011	6	Phase 2	9	7	100	10	6	4	6	0	2	144	116	10	18	766.2	Yes	Yes
7/4	2011	7	Phase 2	9	8	102	8	5	3	8	0	2	145	119	8	18	750.4	Yes	Yes
7/11	2011	7	Phase 2	9	7	100	10	4	4	7	0	2	143	116	10	17	735.3	Yes	Yes
7/18	2011	7	Phase 2	9	8	100	12	4	3	6	0	1	143	117	12	14	662.4	Yes	Yes
7/25	2011	7	Phase 2	9	7	98	10	4	3	6	0	2	139	114	10	15	671.5	Yes	Yes
8/1	2011	8	Phase 2	9	8	98	8	5	3	6	0	2	139	115	8	16	684.6	Yes	Yes
8/8	2011	8	Phase 2	9	8	100	10	4	4	5	0	1	141	117	10	14	643.6	Yes	Yes
8/15	2011	8	Phase 2	9	6	102	8	3	3	5	0	2	138	117	8	13	593.9	No	Yes
8/22	2011	8	Phase 2	9	7	100	10	4	4	5	0	1	140	116	10	14	642.6	Yes	Yes
8/29	2011	8	Phase 2	9	7	100	10	4	4	6	0	1	141	116	10	15	673.5	Yes	Yes
9/5	2011	9	Phase 2	8	9	95	6	4	4	3	0	1	130	112	6	12	539.2	No	Yes
9/12	2011	9	Phase 2	8	10	90	5	3	4	3	0	2	125	108	5	12	525.8	No	Yes
9/19	2011	9	Phase 2	8	9	90	6	4	3	2	0	1	123	107	6	10	472.4	No	Yes
9/26	2011	9	Phase 2	8	12	85	6	3	4	2	0	1	121	105	6	10	470.4	No	Yes
10/3	2011	10	Phase 2	8	12	82	3	3	2	0	0	0	110	102	3	5	284.7	No	No
10/10	2011	10	Phase 2	8	12	80	2	2	3	1	0	0	108	100	2	6	304.2	No	No
10/17	2011	10	Phase 2	8	12	80	2	1	1	0	0	0	104	100	2	2	180.6	No	No
10/24	2011	10	Phase 2	8	10	80	2	1	1	0	0	0	102	98	2	2	178.6	No	No
10/31	2011	10	Phase 2	8	12	78	2	1	1	0	0	0	102	98	2	2	178.6	No	No
5/6	2013	5	Phase 3A	1	3	18	2	5	5	0	1	0	35	22	2	11	380.7	No	No
5/13	2013	5	Phase 3A	1	4	20	2	6	8	0	1	1	43	25	2	16	538.2	No	Yes
5/20	2013	5	Phase 3A	1	4	20	2	7	15	8	2	1	60	25	2	33	1063.5	Yes	Yes
5/27	2013	5	Phase 3A	1	3	22	2	7	6	8	1	1	51	26	2	23	755.5	Yes	Yes
6/3	2013	6	Phase 3A	1	2	25	2	1	3	10	0	2	46	28	2	16	541.2	No	Yes
6/10	2013	6	Phase 3A	1	3	25	2	2	3	12	0	2	50	29	2	19	634.9	Yes	Yes
6/17	2013	6	Phase 3A	1	3	24	2	1	4	10	0	2	47	28	2	17	572.1	No	Yes
6/24	2013	6	Phase 3A	1	2	26	2	3	2	15	0	2	53	29	2	22	727.6	Yes	Yes
7/1	2013	7	Phase 3A	2	2	25	3	2	2	25	0	2	63	29	3	31	1015.1	Yes	Yes
7/8	2013	7	Phase 3A	2	2	25	4	3	3	25	0	2	66	29	4	33	1086.3	Yes	Yes
//15	2013	1	Phase 3A	2	3	25	4	4	3	20	0	2	63	30	4	29	963.7	Yes	Yes
7/22	2013	1	Phase 3A	2	2	25	5	2	2	18	0	2	58	29	5	24	817.6	Yes	Yes
//29	2013	1	Phase 3A	2	2	25	4	2	3	16	0	2	56	29	4	23	///.3	Yes	Yes
8/5	2013	8	Phase 3A	3	5	28	4	2	1	8	0	2	53	36	4	13	4/5.3	NO	Yes
8/12	2013	8	Phase 3A	3	1	29	4	1	2	6	0	2	54	39	4	11	416.5	NO	Yes
8/19	2013	8	Phase 3A	4	6	31	5	1	1	5	0	2	55	41	5	9	300.1	NO	INO No
8/26	2013	8	Phase 3A	4	8	32	4	1	1	3	0	2	55	44	4	/	297.9	NO	INO N I
9/2	2013	9	Phase 3A	4	0	25	4	2	2	3	0	2	48	35	4	9	350.7	NO	INO N I
9/9	2013	9	Phase 3A	4	ঁ	20	2	3	3	3	0	2	45	32	2	11	390.7	INO No	INO No
9/16	2013	9	Phase 3A	4	ð C	25	0	1	2	3	0	1	50	31	6	/	309.7	INO	INO
9/23	2013	9	Phase 3A	4	0 7	20	4	2	2	2 1	0	1	40	30 25	4	1	200.9	INU No	NO No
10/1	2013	10	Phase 3A	4	1	24	4	2	2		0	1	40	30 27	4	р 2	200 2	INU No	NO No
10/14	2013	10	Phase 3A	4	/ F	20	5	3	2		0	1	49	31 25	5	1	300.3	INU No	NO No
10/21	2013	10	Phase 3A	4	<u>о</u>	20) 6	1	3		0		40	30	5 6	0	207.4	NO No	NO
11/20	2013	10	Phase 3A	4	0	24	0	2	2	1	0	1	47	30	0	5	240.9	No	No
11/4	2013	11	Phase 3A	4	7	20	4 F	2	2	1	0	1	40	30	4	0	209	No	No
11/12	2013	11	Phase 3A	4	5	20	5	3	2	1	0	1	49	30	5	6	267 /	No	No
11/10	2013		1 11030 371	+	5	20	5		5	1 1	0		+0	55	J	0	201.4	110	140

												iv.	ROUND					Exceed	Exceed
DMR	Year	Month	Phase	1	п	ш	IV	v	VI	VII	VIII	IX	TRIPS	LDA	MDT	HDT	PCE	+5 dBA CNEL?	+5 dBA Leq?
11/25	2013	11	Phase 3A	4	7	24	6	2	2	1	0	1	47	35	6	6	276.8	No	No
12/2	2013	12	Phase 3A	4	4	32	7	4	3	1	0	1	56	40	7	9	383.9	No	No
12/9	2013	12	Phase 3A	4	7	32	8	4	3	1	0	1	60	43	8	9	396.3	No	No
12/16	2013	12	Phase 3A	4	5	30	7	4	3	1	0	1	55	39	7	9	382.9	No	No
12/23	2013	12	Phase 3A	4	5	28	7	4	3	1	0	2	54	37	7	10	411.8	No	No
12/30	2013	12	Phase 3A	4	5	28	7	4	3	1	0	2	54	37	7	10	411.8	No	No
1/6	2014	1	Phase 3A	4	8	29	7	3	1	0	0	1	53	41	7	5	261.3	No	No
1/13	2014	1	Phase 3A	4	6	30	4	1	2	0	0	1	48	40	4	4	201.2	No	No
1/20	2014	1	Phase 3A	4	7	30	6	1	1	0	0	1	50	41	6	3	190.1	No	No
1/27	2014	1	Phase 3A	4	8	31	4	3	1	0	0	1	52	43	4	5	235.1	No	No
2/3	2014	2	Phase 3A	4	6	32	6	3	1	0	0	1	53	42	6	5	252.9	NO	NO
2/10	2014	2	Phase 3A	4	8	30	4	1	2	0	0	1	50	42	4	4	203.2	NO	NO
2/17	2014	2	Phase 3A	4	7	30	5	1	2	0	0	1	50	41	5	4	211.6	NO	NO No
2/24	2014	2	Phase 3A	4	/ 	28	6	2	1	0	0	1	49	39	6	4	219	NO	NO No
3/3	2014	3	Phase 3A	4	5	30	4	1	1	6	0	2	53	39	4	10	385.0	NO No	INO
3/10	2014	3	Phase 3A	4	1	28	5	2	2	6	0	2	50	39	5	12	400.8	NO	Yes
3/17	2014	3	Phase 3A	4	4	30	1	2	3	6	0	2	56	30	1	13	505.5	NO	Vee
3/24	2014	3	Phase 3A	4	5	32	0	3	7	6	0	2	59	41	6	12	408.2	NO	Yes
4/1	2014	4	Phase 3A	4	0	30	4	4	7	5 6	0	2	6 <u>2</u>	40	4	10	669.1	Yes	Voc
4/14	2014	4	Phase 3A	4	4	20	5	4	7	6	0	2	57	34	5	19	675.5	Ves	Vec
4/21	2014	4	Phase 3A	4	4	24	0	4	7	5	0	2	51	20	0	19	622.8	No	Vec
5/5	2014	5	Phase 3R	4	3	18	2	5	5	0	1	0	35	23	2	11	380.7	No	No
5/12	2014	5	Phase 3B	1	1	20	2	6	8	0	1	1	43	25	2	16	538.2	No	Yes
5/19	2014	5	Phase 3B	1	4	20	2	7	15	6	2	1	58	25	2	31	1001 7	Yes	Yes
5/26	2014	5	Phase 3B	1	3	20	2	7	6	10	1	1	53	26	2	25	817.3	Yes	Yes
6/2	2014	6	Phase 3B	1	2	28	2	1	3	12	0	2	51	31	2	18	606	No	Yes
6/9	2014	6	Phase 3B	1	3	30	2	2	3	12	0	2	55	34	2	19	639.9	Yes	Yes
6/16	2014	6	Phase 3B	1	3	32	2	1	4	12	0	2	57	36	2	19	641.9	Yes	Yes
6/23	2014	6	Phase 3B	1	2	32	2	3	2	14	0	2	58	35	2	21	702.7	Yes	Yes
6/30	2014	6	Phase 3B	1	2	28	2	2	4	12	0	2	53	31	2	20	667.8	Yes	Yes
7/7	2014	7	Phase 3B	2	2	28	3	2	2	15	0	2	56	32	3	21	709.1	Yes	Yes
7/14	2014	7	Phase 3B	2	2	30	4	3	3	18	0	2	64	34	4	26	875	Yes	Yes
7/21	2014	7	Phase 3B	2	3	32	4	4	3	15	0	2	65	37	4	24	816.2	Yes	Yes
7/28	2014	7	Phase 3B	2	2	30	5	2	2	14	0	2	59	34	5	20	699	Yes	Yes
8/4	2014	8	Phase 3B	3	5	36	4	2	1	8	0	2	61	44	4	13	483.3	No	Yes
8/11	2014	8	Phase 3B	3	7	38	4	1	2	6	0	2	63	48	4	11	425.5	No	Yes
8/18	2014	8	Phase 3B	4	6	40	5	1	1	5	0	2	64	50	5	9	375.1	No	No
8/25	2014	8	Phase 3B	4	8	42	4	1	1	3	0	2	65	54	4	7	307.9	No	No
9/1	2014	9	Phase 3B	4	6	32	4	2	2	3	0	2	55	42	4	9	357.7	No	No
9/8	2014	9	Phase 3B	4	3	32	2	3	3	3	0	2	52	39	2	11	397.7	No	No
9/15	2014	9	Phase 3B	4	8	30	6	1	2	3	0	1	55	42	6	7	314.7	No	No
9/22	2014	9	Phase 3B	4	6	28	4	2	2	2	0	1	49	38	4	7	291.9	No	No
9/29	2014	9	Phase 3B	4	6	28	4	2	2	2	0	1	49	38	4	7	291.9	No	No
10/6	2014	10	Phase 3B	4	7	30	4	2	2	1	0	1	51	41	4	6	264	No	No
10/13	2014	10	Phase 3B	4	7	30	5	3	2	1	0	1	53	41	5	7	304.3	No	No
10/20	2014	10	Phase 3B	4	5	30	5	1	3	1	0	1	50	39	5	6	271.4	No	No
10/27	2014	10	Phase 3B	4	8	30	6	2	1	1	0	1	53	42	6	5	252.9	No	No
11/3	2014	11	Phase 3B	4	7	32	4	2	2	1	0		53	43	4	6	266	NO	NO
11/10	2014	11	Phase 3B	4	/	30	5	3	3	1	0		54	41	5	8	335.2	NO	NO
11/1/	2014	11	Phase 3B	4	5	30	5	1	3	1	0	1	50	39	5	6	2/1.4	INO No	NO No
11/24	2014	11	Phase 3B	4	1	28	6 7	2	2	1	0	1	51	39	6	6	280.8	INO No	NO No
12/1	2014	12	Phase 3B	4	4	- 32		4	3	1 1	0	1 1	90	40	1 (9	383.9	INO	INO

													ROUND					Exceed	Exceed
DWB	Year	Month	Phase	I	II	ш	IV	V	VI	VII	VIII	IX	TRIPS	LDA	MDT	HDT	PCE	+5 dBA CNEL?	+5 dBA Leq?
12/8	2014	12	Phase 3B	4	7	30	8	4	3	1	0	1	58	41	8	9	394.3	No	No
12/15	2014	12	Phase 3B	4	5	32	7	4	3	1	0	1	57	41	7	9	384.9	No	No
12/22	2014	12	Phase 3B	4	5	28	7	4	3	1	0	2	54	37	7	10	411.8	No	No
12/29	2014	12	Phase 3B	4	5	28	7	4	3	1	0	2	54	37	7	10	411.8	No	No
1/5	2015	1	Phase 3B	4	8	29	7	3	1	0	0	1	53	41	7	5	261.3	No	No
1/12	2015	1	Phase 3B	4	6	30	4	1	2	0	0	1	48	40	4	4	201.2	No	No
1/19	2015	1	Phase 3B	4	7	30	6	1	1	0	0	1	50	41	6	3	190.1	No	No
1/26	2015	1	Phase 3B	4	8	31	4	3	1	0	0	1	52	43	4	5	235.1	No	No
2/2	2015	2	Phase 3B	4	6	32	6	3	1	0	0	1	53	42	6	5	252.9	No	No
2/9	2015	2	Phase 3B	4	8	30	4	1	2	0	0	1	50	42	4	4	203.2	No	No
2/16	2015	2	Phase 3B	4		30	5	1	2	0	0	1	50	41	5	4	211.6	No	NO
2/23	2015	2	Phase 3B	4	- /	28	6	2	1	0	0	1	49	39	6	4	219	NO	NO
3/2	2015	3	Phase 3B	4	5	28	4	1	1	6	0	2	51	37	4	10	383.6	NO	INO Mari
3/9	2015	3	Phase 3B	4	1	28	5	2	2	6	0	2	56	39	5	12	456.8	NO	Yes
3/16	2015	3	Phase 3B	4	4	30	1	2	3	6	0	2	58	38	1	13	505.5	NO	Yes
3/23	2015	3	Phase 3B	4	5	34	0	3	7	6	0	2	51	43	6	12	470.Z	NO	Yes
4/0	2015	4	Phase 3B	4	0	42	4	4	7	5	0	2	74	32	4	10	040.0 690.1	Yes	Vee
4/13	2015	4	Phase 3B	4	4	40	5	4	7	6	0	2	62	48	5	19	082.1 691.5	res	Yes
4/20	2015	4	Phase 3D	4	4	30	0	4	7	5	0	2	56	30	0	19	627.9	Yes	Voc
4/Z1 5/5	2015	4	Phase 3D	4	2	20	4	4	0	0	0	2 1	21	34 17	4	10	027.0	No	No
5/12	2014	5	Phase 3C1	1	2	14	2	5	0 8	10	0	1	21	17	2	24	97.0 786.8	Ves	Vec
5/10	2014	5	Phase 3C1	1	2	16	2	5	8	10	0	1	44	10	2	24	700.0	Ves	Yes
5/26	2014	5	Phase 3C1	1	2	16	2	6	8	10	0	1	45	19	2	24	810.3	Ves	Yes
6/2	2014	6	Phase 3C1	1	2	38	4	7	3	15	0	1	71	41	4	26	882	Yes	Yes
6/9	2014	6	Phase 3C1	1	2	42	2	7	6	18	0	1	79	45	2	32	1052.6	Yes	Yes
6/16	2014	6	Phase 3C1	1	2	40	2	8	8	15	Ő	1	77	43	2	32	1050.6	Yes	Yes
6/23	2014	6	Phase 3C1	1	2	40	2	3	2	12	0	1	63	43	2	18	618	No	Yes
6/30	2014	6	Phase 3C1	1	2	40	2	3	2	10	Ő	1	61	43	2	16	556.2	No	Yes
7/7	2014	7	Phase 3C1	2	2	30	4	2	2	8	2	2	54	34	4	16	566	No	Yes
7/14	2014	7	Phase 3C1	2	6	30	6	10	12	10	2	2	80	38	6	36	1206.8	Yes	Yes
7/21	2014	7	Phase 3C1	2	6	30	5	3	1	10	2	2	61	38	5	18	641.2	Yes	Yes
7/28	2014	7	Phase 3C1	2	7	30	4	4	2	10	2	2	63	39	4	20	694.6	Yes	Yes
8/4	2014	8	Phase 3C1	3	6	30	4	7	2	6	0	2	60	39	4	17	601.9	No	Yes
8/11	2014	8	Phase 3C1	3	8	30	5	8	3	7	0	2	66	41	5	20	706	Yes	Yes
8/18	2014	8	Phase 3C1	3	7	32	5	8	1	8	0	2	66	42	5	19	676.1	Yes	Yes
8/25	2014	8	Phase 3C1	3	5	28	6	9	2	5	0	2	60	36	6	18	648.6	Yes	Yes
9/1	2014	9	Phase 3C1	3	7	25	6	2	3	3	0	1	50	35	6	9	369.5	No	No
9/8	2014	9	Phase 3C1	3	2	26	4	2	1	3	0	2	43	31	4	8	315.8	No	No
9/15	2014	9	Phase 3C1	3	5	26	5	4	1	3	0	2	49	34	5	10	390	No	No
9/22	2014	9	Phase 3C1	3	6	24	4	3	2	3	0	2	47	33	4	10	379.6	No	No
9/29	2014	9	Phase 3C1	3	6	24	5	4	2	3	0	2	49	33	5	11	419.9	No	Yes
10/6	2014	10	Phase 3C1	3	6	25	6	5	1	0	0	1	47	34	6	7	306.7	No	No
10/13	2014	10	Phase 3C1	3	7	26	6	4	1	0	0	1	48	36	6	6	277.8	No	No
10/20	2014	10	Phase 3C1	3	2	25	3	3	1	1	0	1	39	30	3	6	243.6	No	No
10/27	2014	10	Phase 3C1	3	2	24	3	4	2	1	0	1	40	29	3	8	304.4	No	No
11/3	2014	11	Phase 3C1	3	3	30	6	2	7	1	0	1	53	36	6	11	432.3	No	Yes
11/10	2014	11	Phase 3C1	3	4	31	4	3	6	1	0		53	38	4	11	415.5	NO	Yes
11/1/	2014	11	Phase 3C1	3	/	28	4	3	3	3	0	1	52	38	4	10	384.6	NO No	NO No
11/24	2014	11	Phase 3C1	3	1	31	4	4	2	2	0	1	54	41	4	9	356.7	NO No	NO No
12/1	2014	12	Phase 3C1	4	4 E	30	0	4	<u>∠</u>	1	0	4	49	30	0	C A	248.9	INU No	INO No
12/ð	2014	12	Phase 301	4) 7	30	0			1	0	1	49	39	0	4	219	NO	NO
12/10	2014	14	Flidse SUI	4		32	1 4	1 1		1 1	0	1 1	1 31	43	1 4	4	204.2	INU	INU

													ROUND					Exceed	Exceed
DWB	Year	Month	Phase	I	II	Ш	IV	V	VI	VII	VIII	IX	TRIPS	LDA	MDT	HDT	PCE	+5 dBA CNEL?	+5 dBA Leq?
12/22	2014	12	Phase 3C1	4	8	26	4	1	1	1	0	1	46	38	4	4	199.2	No	No
12/22	2014	12	Phase 3C1	4	8	32	5	1	1	1	0	1	53	44	5	4	214.6	No	No
1/5	2015	1	Phase 3C1	4	3	32	4	9	4	1	0	1	58	39	4	15	540.1	No	Yes
1/12	2015	1	Phase 3C1	4	8	32	4	4	4	1	0	1	58	44	4	10	390.6	No	No
1/19	2015	1	Phase 3C1	4	5	28	4	1	1	1	0	1	45	37	4	4	198.2	No	No
1/26	2015	1	Phase 3C1	4	8	28	4	4	1	1	0	1	51	40	4	7	293.9	No	No
2/2	2015	2	Phase 3C1	4	7	28	3	6	1	1	0	1	51	39	3	9	345.3	No	No
2/9	2015	2	Phase 3C1	4	5	32	4	2	1	1	0	1	50	41	4	5	233.1	No	No
2/16	2015	2	Phase 3C1	4	6	32	5	3	2	1	0	1	54	42	5	7	305.3	No	No
2/23	2015	2	Phase 3C1	4	6	28	5	2	1	1	0	1	48	38	5	5	239.5	No	No
3/2	2015	3	Phase 3C1	4	6	20	2	2	1	1	0	1	37	30	2	5	203.3	No	No
3/9	2015	3	Phase 3C1	4	/	18	2	2	1	1	0	1	36	29	2	5	202.3	NO	NO
3/16	2015	3	Phase 3C1	4	8	15	3	0	0	0	0	0	30	27	3	0	55.2	NO	INO N I
3/23	2015	3	Phase 3C1	4	6	12	2	0	0	0	0	0	24	22	2	0	40.8	NO	INO No
3/30	2015	3	Phase 3C1	4	0	10	2	0	0	0	0	0	22	20	2	0	38.8	NO No	NO No
3/2	2015	3	Phase 3C2	1	2	14	2	1	0	0	0	1	21	17	2		97.0	NO No	INO Voc
3/9	2015	3	Phase 3C2	1	2	14	3	5	0	0	0	1	34	10	3	14	4/7.0	No	Vee
3/16	2015	3	Phase 3C2	1	2	15	2	5	8	0	0	1	34	10	2	14	409.4	NO No	res
3/23	2015	3	Phase 3C2	1	2	16	2	6	0	0	0	1	30	19	2	15	501.3	NO	Voc
3/30	2015	3	Phase 3C2	1	2	28	Z /	7	0	6	0	1		19	<u> </u>	15	603.0	No	Vec
4/0	2015	4	Phase 3C2	1	2	30	4	7	6	6	0	1	67	41	4	20	681.8	Ves	Vec
4/13	2015	4	Phase 3C2	1	2	42	2	8	8	6	0	1	68	43	2	20	772.5	Ves	Ves
4/20	2015	4	Phase 3C2	1	2	40	2	3	2	6	0	1	57	43	2	12	432.6	No	Ves
5/4	2015	5	Phase 3C2	2	2	40	4	2	2	4	0	1	57	43	4	9	359.7	No	No
5/11	2015	5	Phase 3C2	2	6	40	6	10	12	3	0	1	80	48	6	26	907.8	Yes	Yes
5/18	2015	5	Phase 3C2	2	6	40	5	3	1	2	0	1	60	48	5	7	311.3	No	No
5/25	2015	5	Phase 3C2	2	7	40	4	4	2	2	0	1	62	49	4	9	364.7	No	No
6/1	2015	6	Phase 3C2	3	6	38	4	7	2	2	0	1	63	47	4	12	455.4	No	Yes
6/8	2015	6	Phase 3C2	3	8	42	5	8	3	2	0	1	72	53	5	14	532.6	No	Yes
6/15	2015	6	Phase 3C2	3	7	40	5	8	1	2	0	1	67	50	5	12	467.8	No	Yes
6/22	2015	6	Phase 3C2	3	5	40	6	9	2	2	0	1	68	48	6	14	537	No	Yes
6/29	2015	6	Phase 3C2	3	5	40	6	9	2	2	0	1	68	48	6	14	537	No	Yes
7/6	2015	7	Phase 3C2	3	7	40	6	2	3	2	0	1	64	50	6	8	353.6	No	No
7/13	2015	7	Phase 3C2	3	2	40	4	2	1	2	0	1	55	45	4	6	268	No	No
7/20	2015	7	Phase 3C2	3	5	40	5	4	1	2	0	1	61	48	5	8	342.2	No	No
7/27	2015	7	Phase 3C2	3	6	40	5	4	2	2	0	1	63	49	5	9	374.1	No	No
8/3	2015	8	Phase 3C2	3	6	38	6	5	1	1	0	1	61	47	6	8	350.6	No	No
8/10	2015	8	Phase 3C2	3	7	40	6	4	1	0	0	1	62	50	6	6	291.8	No	No
8/17	2015	8	Phase 3C2	3	2	42	3	3	1	1	0	1	56	47	3	6	260.6	No	No
8/24	2015	8	Phase 3C2	3	2	42	3	4	2	1	0	1	58	47	3	8	322.4	No	No
8/31	2015	8	Phase 3C2	3	2	38	3	4	2	1	0	1	54	43	3	8	318.4	No	No
9/7	2015	9	Phase 3C2	3	3	40	6	2	7	1	0	1	63	46	6	11	442.3	No	Yes
9/14	2015	9	Phase 3C2	3	4	42	4	3	6	1	0	1	64	49	4	11	426.5	No	Yes
9/21	2015	9	Phase 3C2	3	7	38	4	3	3	1	0	1	60	48	4	8	332.8	No	No
9/28	2015	9	Phase 3C2	3	7	40	4	4	2	1	0	1	62	50	4	8	334.8	No	No
10/5	2015	10	Phase 3C2	4	4	30	6	1	2	1	0	1	49	38	6	5	248.9	No	No
10/12	2015	10	Phase 3C2	4	5	30	6	1	1	1	0	1	49	39	6	4	219	No	No
10/19	2015	10	Phase 3C2	4	7	30	4	1	1	1	0		49	41	4	4	202.2	No	No
10/26	2015	10	Phase 3C2	4	8	30	5	1	1	1	0		51	42	5	4	212.6	NO	NO
11/2	2015	11	Phase 3C2	4	3	30	6	2	(1	0	1	54	3/	6	11	433.3	NO No	Yes
11/9	2015	11	Phase 3C2	4	4	31	4	3	6	1	0	1	54	39	4	11	416.5	NO No	Yes
11/10	2015	11	mase 302	4		Zŏ	4	3	3	1	0	1 1	51	39	4	ŏ	3Z3.0	INO	INO

													POUND					Exceed	Exceed
DWB	Year	Month	Phase	I	II		IV	V	VI	VII	VIII	IX	TRIPS	LDA	MDT	HDT	PCE	+5 dBA CNEL?	+5 dBA Leq?
11/23	2015	11	Phase 3C2	4	7	31	4	4	2	1	0	1	54	42	4	8	326.8	No	No
11/30	2015	11	Phase 3C2	4	7	30	4	4	2	1	0	1	53	41	4	8	325.8	No	No
12/7	2015	12	Phase 3C2	4	4	30	6	1	2	1	0	1	49	38	6	5	248.9	No	No
12/14	2015	12	Phase 3C2	4	5	28	6	1	1	1	0	1	47	37	6	4	217	No	No
12/21	2015	12	Phase 3C2	4	7	24	4	1	1	1	0	1	43	35	4	4	196.2	No	No
12/28	2015	12	Phase 3C2	4	8	18	5	1	1	1	0	1	39	30	5	4	200.6	No	No
5/6	2013	5	Phase 3D1	1	2	29	2	2	1	0	0	1	38	32	2	4	174.4	No	No
5/13	2013	5	Phase 3D1	1	2	30	1	2	1	1	0	1	39	33	1	5	196.9	No	No
5/20	2013	5	Phase 3D1	1	2	30	2	2	1	2	0	1	41	33	2	6	237.2	No	No
5/27	2013	5	Phase 3D1	1	2	32	3	2	1	2	0	1	44	35	3	6	248.6	No	No
6/3	2013	6	Phase 3D1	1	2	28	2	1	2	0	0	1	37	31	2	4	173.4	No	No
6/10	2013	6	Phase 3D1	1	2	28	1	2	2	1	0	1	38	31	1	6	225.8	No	No
6/17	2013	6	Phase 3D1	1	2	30	2	3	1	0	0	1	40	33	2	5	206.3	No	No
6/24	2013	6	Phase 3D1	1	2	34	3	4	1	1	0	1	47	37	3	7	281.5	No	No
7/1	2013	7	Phase 3D1	1	2	39	3	4	1	1	0	1	52	42	3	7	286.5	No	No
7/8	2013	7	Phase 3D1	1	2	42	2	3	1	1	0	1	53	45	2	6	249.2	No	No
7/15	2013	7	Phase 3D1	1	2	41	2	3	1	0	0	1	51	44	2	5	217.3	No	No
7/22	2013	7	Phase 3D1	1	2	40	1	2	1	0	0	1	48	43	1	4	176	No	No
7/29	2013	7	Phase 3D1	1	2	39	1	2	1	0	0	1	47	42	1	4	175	No	No
8/5	2013	8	Phase 3D1	1	2	40	1	2	1	0	0	1	48	43	1	4	176	No	No
8/12	2013	8	Phase 3D1	1	2	41	2	1	1	1	0	1	50	44	2	4	186.4	No	No
8/19	2013	8	Phase 3D1	1	2	40	2	1	1	0	0	1	48	43	2	3	154.5	No	No
8/26	2013	8	Phase 3D1	1	2	39	2	2	1	1	0	1	49	42	2	5	215.3	No	No
9/2	2013	9	Phase 3D1	1	2	9	2	1	1	2	Ő	1	19	12	2	5	185.3	No	No
9/9	2013	9	Phase 3D1	1	2	10	1	1	1	1	0	1	18	13	1	4	146	No	No
9/16	2013	9	Phase 3D1	1	2	12	3	3	0	2	0	0	23	15	3	5	197.7	No	No
9/23	2013	9	Phase 3D1	1	2	10	2	1	Ő	0	0	0	16	13	2	1	62.7	No	No
9/30	2013	9	Phase 3D1	1	2	9	2	1	1	0	0	0	16	12	2	2	92.6	No	No
5/6	2014	5	Phase 3D2	1	2	29	2	2	1	0	0	1	38	32	2	4	174.4	No	No
5/13	2014	5	Phase 3D2	1	2	30	1	2	1	1	0	1	39	33	1	5	196.9	No	No
5/20	2014	5	Phase 3D2	1	2	30	2	2	1	2	0	1	41	33	2	6	237.2	No	No
5/27	2014	5	Phase 3D2	1	2	32	3	2	1	2	Ő	1	44	35	3	6	248.6	No	No
6/3	2014	6	Phase 3D2	1	2	28	2	1	2	0	Ő	1	37	31	2	4	173.4	No	No
6/10	2014	6	Phase 3D2	1	2	28	1	2	2	1	Ő	1	38	31	1	6	225.8	No	No
6/17	2014	6	Phase 3D2	1	2	30	2	3	1	Ó	Ő	1	40	33	2	5	206.3	No	No
6/24	2014	6	Phase 3D2	1	2	34	3	4	1	1	Ő	1	47	37	3	7	281.5	No	No
7/1	2014	7	Phase 3D2	1	2	39	3	4	1	1	Ő	1	52	42	3	7	286.5	No	No
7/8	2014	7	Phase 3D2	1	2	42	2	3	1	1	Ő	1	53	45	2	6	249.2	No	No
7/15	2014	7	Phase 3D2	1	2	41	2	3	1	Ó	Ő	1	51	44	2	5	217.3	No	No
7/22	2014	7	Phase 3D2	1	2	40	1	2	1	0	0	1	48	43	1	4	176	No	No
7/29	2014	7	Phase 3D2	1	2	30	1	2	1	0	0	1	40	40	1	4	175	No	No
8/5	2014	8	Phase 3D2	1	2	40	1	2	1	0	0	1	48	43	1	4	176	No	No
8/12	2014	0 9	Phase 3D2	1	2	40	2	1	1	1	0	1	50	43	2	4	186.4	No	No
8/10	2014	0 9	Phase 3D2	1	2	41	2	1	1	0	0	1	48	44	2	4	154.5	No	No
8/26	2014	0 9	Phase 3D2	1	2	40	2	2	1	1	0	1	40	43	2	5	215.3	No	No
0/20	2014	a	Phase 3D2	1	2	0	2	<u> </u>	1	2	0	1	10	12	2	5	185.3	No	No
0/0	2014	9 0	Phase 3D2	1	2	10	∠ 1	1	1	<u> </u>	0	1	10	12		1	1/6	No	No
9/9	2014	9	Phase 3D2	1	2	10	3	3		2	0		10	15	3	4	107.7	No	No
9/10	2014	3	Phase 3D2	1	2	10	3 2	3	0	2	0	0	23 16	10	3 2	1	627	No	No
9/23	2014	3	Phase 3D2	1	2	0	2	1	1	0	0	0	10	10	2	1 2	02.1	No	No
9/30	2014	9	Phase 3D2	1	2	30	2	2	1	0	0	1	20	12	2	<u>∠</u>	92.0	NO	No
0/C 5/10	2015	5	Phone 2D2	1	2	29	<u>∠</u>	2	4	1	0	4	30	<u>3∠</u>	4	4	1/4.4	INU No	No
5/13	2015	5	Phase 3D3	1	2	30		2			0		39	33		5	190.9	INU N-	INU NI-
5/20	2015	5	mase 3D3	1	2	30	L 2	L 2	1 1	L 2	0	1 1	41	- 33	L 2	0	231.2	INO	INO

DWB	Year	Month	Phase	I	II	Ш	IV	v	VI	VII	VIII	IX	Round Trips	LDA	MDT	HDT	PCE	Exceed +5 dBA CNEL?	Exceed +5 dBA Leq?
5/27	2015	5	Phase 3D3	1	2	32	3	2	1	2	0	1	44	35	3	6	248.6	No	No
6/3	2015	6	Phase 3D3	1	2	28	2	1	2	0	0	1	37	31	2	4	173.4	No	No
6/10	2015	6	Phase 3D3	1	2	28	1	2	2	1	0	1	38	31	1	6	225.8	No	No
6/17	2015	6	Phase 3D3	1	2	30	2	3	1	0	0	1	40	33	2	5	206.3	No	No
6/24	2015	6	Phase 3D3	1	2	34	3	4	1	1	0	1	47	37	3	7	281.5	No	No
7/1	2015	7	Phase 3D3	1	2	39	3	4	1	1	0	1	52	42	3	7	286.5	No	No
7/8	2015	7	Phase 3D3	1	2	42	2	3	1	1	0	1	53	45	2	6	249.2	No	No
7/15	2015	7	Phase 3D3	1	2	41	2	3	1	0	0	1	51	44	2	5	217.3	No	No
7/22	2015	7	Phase 3D3	1	2	40	1	2	1	0	0	1	48	43	1	4	176	No	No
7/29	2015	7	Phase 3D3	1	2	39	1	2	1	0	0	1	47	42	1	4	175	No	No
8/5	2015	8	Phase 3D3	1	2	40	1	2	1	0	0	1	48	43	1	4	176	No	No
8/12	2015	8	Phase 3D3	1	2	41	2	1	1	1	0	1	50	44	2	4	186.4	No	No
8/19	2015	8	Phase 3D3	1	2	40	2	1	1	0	0	1	48	43	2	3	154.5	No	No
8/26	2015	8	Phase 3D3	1	2	39	2	2	1	1	0	1	49	42	2	5	215.3	No	No
9/2	2015	9	Phase 3D3	1	2	9	2	1	1	2	0	1	19	12	2	5	185.3	No	No
9/9	2015	9	Phase 3D3	1	2	10	1	1	1	1	0	1	18	13	1	4	146	No	No
9/16	2015	9	Phase 3D3	1	2	12	3	3	0	2	0	0	23	15	3	5	197.7	No	No
9/23	2015	9	Phase 3D3	1	2	10	2	1	0	0	0	0	16	13	2	1	62.7	No	No
9/30	2015	9	Phase 3D3	1	2	9	2	1	1	0	0	0	16	12	2	2	92.6	No	No

Passenger Car Equivalent (PCE)

Maximum - 2609.8 PCE to Exceed +5 dBA CNEL- 626.09 PCE to Exceed +5 dBA Leq - 413.59

Buckley School Passenger Car Equivalent - Construction Traffic Noise Calculations

		[CNEL			Leq				
Scenario	Max PCE	Receptor	Α	В	С	D	Α	В	С	D
Phase 1	1086		56.5	55.8	53.5	51.1	61.1	60.2	57.6	54.6
Phase 2	2610		60.3	59.6	57.3	54.9	64.9	64.0	61.4	58.4
Phase 3A	1086		56.5	55.8	53.5	51.1	61.1	60.2	57.6	54.6
Phase 3B	1002		56.1	55.4	53.1	50.7	60.7	59.8	57.2	54.2
Phase 3C1	1207		57.0	56.3	54.0	51.6	61.6	60.7	58.1	55.1
Phase 3C2	908		55.7	55.0	52.7	50.3	60.3	59.4	56.8	53.8
Phase 3D1	287		50.7	50.0	47.7	45.3	55.3	54.4	51.8	48.8
Phase 3D2	287		50.7	50.0	47.7	45.3	55.3	54.4	51.8	48.8
Phase 3D3	287		50.7	50.0	47.7	45.3	55.3	54.4	51.8	48.8
-				CN	IEL			Le	eq	
Scenario	Avg PCE	Receptor	Α	В	С	D	Α	В	С	D
Phase 1	457		52.7	52.0	49.7	47.3	57.3	56.4	53.8	50.8
Phase 2	898		55.7	55.0	52.7	50.3	60.3	59.4	56.8	53.8
Phase 3A	463		52.8	52.1	49.8	47.4	57.4	56.5	53.9	50.9
Phase 3B	447		52.6	51.9	49.6	47.2	57.2	56.3	53.7	50.7
Phase 3C1	440		52.6	51.9	49.6	47.2	57.2	56.3	53.7	50.7
Phase 3C2	386		52.0	51.3	49.0	46.6	56.6	55.7	53.1	50.1
Phase 3D1	194		49.0	48.3	46.0	43.6	53.6	52.7	50.1	47.1
Phase 3D2	194		49.0	48.3	46.0	43.6	53.6	52.7	50.1	47.1
Phase 3D3	194		49.0	48.3	46.0	43.6	53.6	52.7	50.1	47.1

			CNEL			Leq				
Scenario	Max PCE	Receptor	Α	В	С	D	Α	В	Ċ	D
Phase 1	1086		+7.4	+4.3	+0.9	0	+9.2	+7.3	+3.5	+0.3
Phase 2	2610		+11.2	+8.1	+4.7	+2.4	+13.0	+11.1	+7.3	+4.1
Phase 3A	1086		+7.4	+4.3	+0.9	0	+9.2	+7.3	+3.5	+0.3
Phase 3B	1002		+7.0	+3.9	+0.5	0	+8.8	+6.9	+3.1	0
Phase 3C1	1207		+7.9	+4.8	+1.4	0	+9.7	+7.8	+4.0	+0.8
Phase 3C2	908		+6.6	+3.5	+0.1	0	+8.4	+6.5	+2.7	0
Phase 3D1	287		+1.6	0	0	0	+3.4	+1.5	0	0
Phase 3D2	287		+1.6	0	0	0	+3.4	+1.5	0	0
Phase 3D3	287		+1.6	0	0	0	+3.4	+1.5	0	0
				CN	IEL			Le	ed 🛛	
Scenario	Avg PCE	Receptor	Α	В	С	D	Α	В	С	D
Phase 1	457		3.6	0.5	-2.9	-5.2	5.4	3.5	-0.3	-3.5
Phase 2	898		6.6	3.5	0.1	-2.2	8.4	6.5	2.7	-0.5
Phase 3A	463		3.7	0.6	-2.8	-5.1	5.5	3.6	-0.2	-3.4
Phase 3B	447		3.5	0.4	-3.0	-5.3	5.3	3.4	-0.4	-3.6
Phase 3C1	440		3.5	0.4	-3.0	-5.3	5.3	3.4	-0.4	-3.6
Phase 3C2	386		2.9	-0.2	-3.6	-5.9	4.7	2.8	-1.0	-4.2
Phase 3D1	194		-0.1	-3.2	-6.6	-8.9	1.7	-0.2	-4.0	-7.2
Phase 3D2	194		-0.1	-3.2	-6.6	-8.9	1.7	-0.2	-4.0	-7.2
Phase 3D3	194		-0.1	-3.2	-6.6	-8.9	1.7	-0.2	-4.0	-7.2

Appendix K-4

o Athletic Field Noise Summary

Buckley School Athletic Field Noise Calculations

Noise	Ambient			Maximum Noise Levels, Lmax									
Measurement	Noise	Distance	Flag Fo	ootball	Soft	ball	Baske	etball	Swimming		Composite Athleti	c + Ambient Noise	Existing vs.
Location	Levels	(ft.)	Existing	Future	Existing	Future	Existing	Future	Existing	Future	Existing	Future	Future
A	48	250	72	72	77	77	56	66	NA	72	78.2	79.3	+1.1
В	41	800	55	55	56	56	43	47	NA	58	58.7	61.5	+2.8
С	57	500	60	60	62	62	49	56	NA	47	65.0	65.5	+0.5
D	55	950	53	53	55	55	45	48	NA	41	59.4	59.6	+0.2
E	60	1100	52	52	51	51	42	43	NA	45	61.1	61.3	+0.1
Noise	Ambient			Average Noise Levels, Leq									
Measurement	Noise	Distance	Flag Fo	ootball	Soft	ball	Baske	etball	Swimming (Composite Athleti	c + Ambient Noise	Existing vs.
Location	Levels	(ft.)	Existing	Future	Existing	Future	Existing	Future	Existing	Future	Existing	Future	Future
A	48	250	55	55	61	61	31	42	NA	61	62.1	64.6	+2.5
В	41	800	38	38	40	40	20	24	NA	47	44.6	49.0	+4.4
С	57	500	42	42	46	46	25	32	NA	36	57.5	57.5	+0.0
D	55	950	37	37	39	39	21	24	NA	31	55.2	55.2	+0.0
E	60	1100	33	33	35	35	19	20	NA	34	60.0	60.0	+0.0

TRAFFIC IMPACT STUDY FOR PROPOSED BUCKLEY SCHOOL REVISED CAMPUS ENHANCEMENT PLAN, 3900 NORTH STANSBURY AVENUE, SHERMAN OAKS

Prepared for:

THE BUCKLEY SCHOOL

Prepared By:

Crain & Associates 2007 Sawtelle Boulevard, Suite 4 Los Angeles, California 90025 (310) 473-6508

March 2006

EXECUTIVE SUMMARY

This traffic impact and parking study addresses the proposal by the Applicant, Buckley School (the School), to implement the revised Campus Enhancement Plan (project) in order to improve its existing campus located at 3900 Stansbury Avenue in the Sherman Oaks community of the City of Los Angeles. Situated at the southerly terminus of Stansbury Avenue, the 18.44-acre campus is currently utilized by approximately 750 students enrolled in Kindergarten through Grade 12. Implementation of the project would serve to upgrade and improve campus facilities in order to provide sufficient and appropriately sized classrooms; additional teaching space for specialty and precollegiate preparatory classes; improved supporting and athletic facilities; enhanced pedestrian and vehicular circulation and queuing on-site; and adequate parking for vehicles on campus. Additionally, as part of the project, the School is seeking to incrementally increase its student enrollment by up to a maximum of 80 students by year 2014. Staffing needs would require an increase of up to eight faculty members and eight staff members above the existing 117 faculty and 45 staff members.

As proposed, construction of the project would result in a net building area increase of approximately 69,500 square feet to the existing 99,150 square feet for a future total building area of approximately 168,650 square feet. These improvements would be organized in three phases and would be comprised of the demolition of six buildings, construction of five new/replacement buildings including a new enclosed parking facility, and additions to and/or renovations of two existing buildings.

In addition to the new and renovated classrooms and teaching facilities, the supply of on-site parking would be increased by approximately 43 percent, from 214 existing spaces to 306 marked spaces. This on-site supply is sufficient to accommodate the parking demand experienced during the typical school day, and exceeds the supply required by the City Planning and Zoning Code of the Los Angeles Municipal Code

i

(LAMC) for concurrent assembly use. This supply would also be sufficient to meet the demands of most annually scheduled school functions held on campus. For large functions or events on campus for which the parking demand is expected to exceed the parking supply, "stack" parking, valet parking and/or other methods to increase on-site parking capacity would be used to accommodate the demand similar to special event parking programs at other independent schools.

With construction of the new enclosed parking facility and arrival plaza, traffic circulation would be improved on-site and school-related vehicles queuing on the adjacent residential street would be eliminated. The existing front parking lot, except for the northeast portion, will be replaced with a new internal roadway for vehicles accessing a small visitor parking lot, the new enclosed parking facility, and arrival plaza. Adequate on-site queuing space is designed on both levels of the parking facility to accommodate the maximum demand for queuing space during the peak drop-off and pick-up periods, with separated bus queuing and loading spaces located within the arrival plaza.

The scope of the traffic impact study was determined based upon discussions with the Los Angeles Department of Transportation (LADOT). The study analyzed existing (2006) and future (2014) AM and PM traffic conditions at ten intersections and eight residential street segments in the project study area.

The cumulative traffic conditions attributable to 29 potential related projects in the surrounding area were also analyzed. It is anticipated that prior to mitigation, the project would create significant traffic impacts at the following three intersections and one residential street segment location.

Significantly Impacted Study Intersections

- 3. Ventura Boulevard and Stansbury Avenue
- 8. Valley Vista Boulevard (south) and Beverly Glen Boulevard
- 9. Valley Vista Boulevard and Stansbury Avenue

ii

Significantly Impacted Street Segment Location

2. Stansbury Avenue, south of Valley Vista Boulevard

Traffic mitigation measures have been identified which, upon implementation, would reduce the traffic impacts to a level of insignificance. These improvements are identified below.

- <u>Transportation Demand Management (TDM)</u> Implement an enhanced TDM Plan that improves carpooling and bus ridership for students and achieves at least a 40 percent reduction in project daily trips. The ultimate goal of the TDM Plan would be to reduce project trips so there would be no increase in daily trips above that currently generated by the site. Details of the preliminary TDM Plan are provided in a separate document. The final TDM Plan would be refined in consultation with LADOT.
- <u>Ventura Boulevard and Stansbury Avenue</u> Stripe Stansbury Avenue to provide one left-turn lane and one right-turn-only lane in the northbound direction. The removal of approximately six metered parking spaces would be required along the east side of Stansbury Avenue south of the intersection.
- <u>Valley Vista Boulevard and Stansbury Avenue</u> Stripe Stansbury Avenue to provide one left-turn/through shared lane and one right-turn-only lane in the southbound direction. The removal of approximately three on-street parking spaces would be required along the west side of Stansbury Avenue north of the intersection.

The aforementioned mitigation measures are feasible and would reduce the proposed project traffic impacts to a level of insignificance. However, the following project feature has been volunteered by the School which would improve overall traffic conditions within and around the project site.

 <u>Access and Parking Improvements</u> – A new arrival plaza and enclosed parking facility would be constructed, which would ensure that no vehicular queuing and no on-street parking attributable to the School occurs within the vicinity of the School.

Project traffic impacts were also analyzed for Congestion Management Program (CMP) locations. No significant regional traffic impacts were determined for the CMP designated intersections or freeway monitoring locations.

Construction Traffic and Parking

In response to neighborhood concerns, a comprehensive construction traffic impact analysis was prepared to examine the potential traffic and parking impacts associated with the project construction period. Project construction activities are expected to begin in 2009, with basic construction completed approximately 2015. It should be noted that the potential operational project traffic impacts discussed previously are based on a future year of 2014, which is when the full student enrollment is expected to be achieved. However, actual construction would take approximately one year longer.

Construction activities would be sequenced in three basic phases, which would allow the School to operate without interruption during construction. It is estimated that short-term and intermittent significant impacts due to construction-related traffic could occur on the following street segment:

<u>Stansbury Avenue south of Valley Vista Boulevard</u>
 Weekday & Saturday: 8 months (not all consecutive)
 Saturday Only: 33 months (not all consecutive)

No feasible physical measures are available to mitigate these construction traffic impacts as providing improved street capacity would not affect the manner in which these impacts are determined. The only alternative would be to reduce the amount of construction traffic generated, which would extend the construction time frame so that many fewer workers and construction vehicles are present at any given time. However, such a measure would be greatly inefficient, more costly, and more disruptive over the long term to School operations, student activities and the surrounding residential neighborhood. Nevertheless, it is recommended that the School implement the following mitigation measures during construction, as these measures would be beneficial despite their inability to fully mitigate the expected short-term impacts to a level of less than significant. These measures are in addition to features of the construction period that are also included below.

iv

Features of Project Construction Period

- Construction-related vehicles shall not be permitted to arrive at the project site prior to 6:30 AM on weekdays and 7:30 AM on Saturday, except for those vehicles used by persons engaged in supervisory, management or inspection activities.
- All medium-duty and heavy-duty construction trucks shall access the project site via Stansbury Avenue or Valley Vista Boulevard west of Stansbury Avenue. Such vehicles may use Valley Vista Boulevard east of Stansbury Avenue only in cases of emergency.
- No construction-related vehicles shall be allowed on Camino de la Cumbre, except in cases of emergency.
- All construction-related vehicles shall be parked on-site or in off-site parking lots, pursuant to a Temporary Parking Plan. On-street parking of construction-related vehicles shall be prohibited on nearby local residential streets in the area.
- Construction trucks, materials and equipment shall not be staged on Local or Collector Streets, Valley Vista Boulevard, Van Nuys Boulevard, or Beverly Glen Boulevard south of Ventura Boulevard.
- A "hot line" shall be established by the School to receive constructionrelated inquiries.
- A construction relations officer shall be designated by the School to serve as a liaison with the surrounding community and general public, and to respond to their construction-related inquiries.

Recommended Mitigation Measures

- Temporary "Truck Crossing" warning signs shall be placed in each direction in advance of the intersection of Stansbury Avenue and Valley Vista Boulevard.
- A flag person or persons shall be positioned near the project site to assist truck operators in entering and exiting the project area, and to help minimize conflicts with pedestrians and other motorists.

 To the greatest extent possible, the arrival and departure of construction trucks shall be minimized during peak student arrival and departure periods, and peak commuter periods.

All construction-related vehicles would be parked or stored in designated areas on-site as much as possible. The new parking facility would also be used for construction parking when it becomes available. However, on those occasions during construction when sufficient space is not available to park all users on-site, the School would implement a parking plan that provides temporary off-site parking for construction workers and, if necessary, faculty/staff and/or students. A shuttle service would be operated between the off-site parking location and the project site. Two possible locations for off-site parking are the Sherman Oaks Fashion Square parking lot located at the southwest corner of Riverside Drive and Woodman Avenue and the Sunkist building parking lot located at the southwest corner of Riverside Drive and Hazeltine Avenue. Under this parking plan, an adequate parking supply would be available to accommodate all construction- and School-related vehicles without the use of any on-street parking nearby.

The project also includes a variety of features that address School-related parking demand during construction, which are summarized below.

Features of Project Construction Period

- All construction-related vehicles shall be parked on-site to the extent feasible.
- <u>Temporary Parking Plan</u> Temporary off-site parking shall be provided at a designated off-site location(s) such as the Fashion Square parking lot or the Sunkist lot whenever there is insufficient space for construction workers, faculty/staff members and/or students to park on-site. The School shall implement a parking plan involving the temporary off-site location(s) and shuttle service to accommodate either the construction workers, faculty/staff members and/or students.

- <u>School Visitor Parking</u> The School shall make interim operational changes and reassign existing parking areas to accommodate visitor parking needs, as necessary. The School shall manage its visitation schedule during class hours so that parking demand by visitors does not occur during the student arrival and departure periods.
- <u>Parking for After-School Activities</u> Parking demand associated with after-school activities shall be addressed as follows to prevent the use of street parking during construction:
 - The School shall use the athletic field and other open areas on campus, to the extent feasible, for overflow parking during its more popular non-field athletic games, with team practices that rely on the field scheduled around these game dates.
 - The School shall schedule its more heavily attended interscholastic field games at "away" sites, such as the opposing team's home field or a nearby neutral site, whenever feasible and when on-site parking is inadequate to accommodate all users.
 - The School shall manage its calendar for after-school activities to minimize overlap of popular athletic games.
- <u>Parking for Annually Scheduled School Functions</u> Parking demand associated with most active annually scheduled school functions shall be addressed as follows:
 - <u>Construction Rescheduling and Off-Site Parking</u> No construction-related activity shall be scheduled during the annual Buckley School Fair or the Commencement proceedings. These two scheduled functions shall require the use of on-site parking in combination with an off-site parking program and shuttle service as is currently done.
 - <u>Added Parking Management</u> A parking management program shall be undertaken for functions that are anticipated to use the combination of on-site and off-site parking in order to better manage the level of on-site parking usage that is otherwise anticipated. The parking management program will appeal to the need for families to go above and beyond their regular rideshare behavior to reduce parking demand and understand that on-street parking is

prohibited on nearby streets when the annual Buckley School Fair and Commencement proceedings occur.

With these project features, no parking impacts due to construction-related or School-related activities are expected to occur during the construction period.

TABLE OF CONTENTS

<u>Page</u>

Introduction	1			
Project Description				
Environmental Setting Existing Freeways Existing Streets and Highways Existing Public Transit Existing School Transit Existing School Transit Existing (2006) Traffic Volumes Existing Average Vehicle Ridership Analysis of Existing (2006) Traffic Conditions	12 12 13 15 16 17 22 23			
Project Traffic Traffic Generation Traffic Distribution Traffic Assignment Access and Parking Vehicle Queuing	28 28 30 31 36 39			
Future Traffic Conditions Traffic Growth Related Projects Future Highway Improvements Analysis of Future (2014) Traffic Conditions Significant Traffic Impact Criteria Residential Street Traffic Impact Analysis Impacts on Regional Transportation System	41 42 56 57 61 63 65			
Mitigation Measures	68			
Construction Traffic and Parking Impacts Construction Traffic Impact Analysis Construction Traffic Measures Parking During Construction	70 76 87 89			
Appendix A – Parking Demand Study Appendix B – Study Intersections Geometric and Traffic Control Operations Appendix C – Project Trip Generation Rates, Manual Driveway Vehicle Count Appendix D – Project Distribution (Student Population Zip Code Information) Appendix E – Existing Traffic Count Data Appendix F – CMA Calculation Worksheets Appendix G – Construction Traffic Impact Analysis Tables				

LIST OF FIGURES

<u>Figure No</u> .		Page
1	Site Vicinity Map	. 3
2	Study Intersections	. 4
3(a)	Existing Site Plan	. 6
3(b)	Proposed Project Site Plan	. 11
4	Existing (2006) Peak Hour Traffic Volumes	. 19
5	Project Traffic Distribution	. 32
6	Project Traffic Volumes	. 33
7	Related Projects Locations	. 43
8	Total Related Projects Peak Hour Traffic Volumes	. 50
9	Future (2014) Without Project Peak Hour Traffic Volumes	. 53
10	Future (2014) With Project Peak Hour Traffic Volumes	. 58
11	Construction-Related Trip Generation (PCE)	. 79
12	Construction Traffic Study Locations	. 85

LIST OF TABLES

<u>Table No</u>.

<u>Page</u>

1	Proposed Facilities	8
2	Driveway Counts – Arrival Mode	22
3	Level of Service Definition – Critical Movement Volume Ranges	25
4	Level of Service Criteria (CMA Values)	26
5	CMA Summary – Existing (2006) Conditions	27
6	Project Trip Generation Rates	29
7	Project Traffic Generation	30
8	Directional Trip Distribution	31
9	Project Parking Summary	38
10	Related Projects Description and Trip Generation	44
11	Related Projects ITE Trip Generation Rates	47
12	CMA Summary – Future (2014) Without and With Project	62
13	Residential Street Significant Impact Criteria	64
14	Residential Street Traffic Impact Analysis	65
15	CMA Summary – Future (2014) With Project Plus Mitigation	69
16	Project Construction Phases	70
17	Construction Truck Activity	73
18	Estimated Project Construction Traffic	81

<u>Page</u>

INTRODUCTION

This traffic impact study addresses the proposal by the Buckley School (the School) to implement the revised Campus Enhancement Plan (project) in order to improve the existing campus through new construction and renovation of existing buildings as well as provide improved parking and circulation on-site. The proposed improvements consist of the demolition of six buildings, construction of five new/replacement buildings including a new enclosed parking facility, and additions to and/or renovations of two buildings. Along with these enhancements, the School proposes an incremental increase in enrollment by up to a maximum of 80 students by year 2014. The campus is located in the Sherman Oaks community of the City of Los Angeles and provides classes for Kindergarten through Grade 12. The project site is located at the southerly terminus of Stansbury Avenue south of Valley Vista Boulevard as shown on Figure 1, Site Vicinity Map.

Crain & Associates has been retained to conduct a traffic study in order to evaluate the impact of the proposed project on the surrounding street system. This report presents the results of an analysis of existing conditions as well as projected future traffic conditions with the maximum student enrollment increase. As recommended by the Los Angeles Department of Transportation (LADOT), this analysis incorporates a detailed evaluation of existing and future traffic conditions at the following ten intersections and eight residential street segment locations:

Study Intersections

- 1. Ventura Boulevard and Van Nuys Boulevard
- 2. Ventura Boulevard and Beverly Glen Boulevard/Tyrone Avenue
- 3. Ventura Boulevard and Stansbury Avenue
- 4. Ventura Boulevard and Hazeltine Avenue
- 5. Ventura Boulevard and Woodman Avenue
- 6. Valley Vista Boulevard and Van Nuys Boulevard

1

- 7. Valley Vista Boulevard/Roblar Place and Beverly Glen Boulevard
- 8. Valley Vista Boulevard (south) and Beverly Glen Boulevard
- 9. Valley Vista Boulevard and Stansbury Avenue
- 10. Valley Vista Boulevard and Benedict Canyon Drive

Street Segment Locations

- 1. Stansbury Avenue, north of Valley Vista Boulevard
- 2. Stansbury Avenue, south of Valley Vista Boulevard
- 3. Valley Vista Boulevard, east of Stansbury Avenue
- 4. Valley Vista Boulevard, west of Stansbury Avenue
- 5. Greenleaf Street, west of Stansbury Avenue
- 6. Dickens Street, west of Stansbury Avenue
- 7. Camino de la Cumbre, west of Stansbury Avenue
- 8. Camino de la Cumbre, south of Valley Vista Boulevard

These intersections and street segment locations are near the project site and, as such, are those expected to be most directly impacted by project traffic. The locations of these study intersections and street segment locations with relation to the project site are shown in Figure 2.

PROJECT DESCRIPTION

The approximate 18.44-acre Buckley School campus is located within the Sherman Oaks community of the City of Los Angeles and has an address of 3900 North Stansbury Avenue. Situated in a canyon setting at the southern terminus of Stansbury Avenue, the School is generally bounded by Camino de la Cumbre to the west, single-family residences to the north, and the preserved land of the Santa Monica Mountains Conservancy (SMMC) to the south and east. The campus currently has approximately 99,150 square feet of instruction, administrative, indoor athletic and maintenance space as illustrated in Figure 3(a), Existing Site Plan.

Existing student enrollment at the School is approximately 750 students in grades Kindergarten through 12 which is structured into three levels known as Lower School (Kindergarten to Grade 5), Middle School (Grades 6 to 8), and Upper School (Grades 9 to 12). To minimize vehicular queuing, the current class hours of operation are staggered with all Lower School students attending School from 8:15 AM to 2:45 PM (1:45 PM Friday dismissal); the majority of Middle School students attending School from 8:45 AM to 3:15 PM (2:20 PM Friday dismissal); and most Upper School students attending School from 8:00 AM to 3:15 PM (1:30 PM Friday dismissal).

The School proposes the revised Campus Enhancement Plan, a program which includes construction of new and remodeled teaching and supporting facilities as well as a comprehensive improvement to the aesthetic quality of the campus through landscaping. The project improvement construction would result in a net building area increase of approximately 69,500 square feet to the existing 99,150 square feet for a future total building area of 168,650 square feet. Organized in three general construction phases, these improvements are comprised of the demolition of six buildings, construction of five new/replacement buildings including a new enclosed parking facility, and additions to

5

LEGEND

- Guard House 1.
- Lower Elementary Arts Bldg.
 Assembly Room Bldg.
- K1 Classroom Bldg.
- 4. 5. Bell Tower

- Bell Tower
 Elementary School Bldg.
 Elementary School Bldg.
 Robert Young Library
 Administration Bldg.
 Middle School Humanities Bldg.
 Upper School Humanities Bldg.
 Disney Pavilion
 Science and Arts Classroom Bldg.
 Tansportation Bldg.
- 14. Transportation Bldg.
 15. Field House

FIGURE 3(a)

FN: BUCKLEY SCHOOL\SITEPLAN(EXIST)-2

2/9/06

NORTH

さ

and/or renovations of two buildings, with a phased student enrollment increase based upon the capacity of the completed campus during each construction phase.

Phase 1 would require an approximate 12 month construction period, commencing in May 2009. This phase would include the construction of a Library and Technology Center housing 18,770 square feet of teaching, library, administrative, and storage spaces. As part of Phase 1, an existing 700 square-foot Milk House with outdoor seating area will be removed for the new Library and Technology Center. Phase 2 would entail approximately 18 months for the construction of the new 61,420 square foot Middle and Upper School Main Academic Center with an enclosed two-level parking facility below, a replacement Guard House, new Central Plant, a new basketball court, and arrival plaza. Five existing buildings (Administration Building, Robert Young Library, Middle and Upper School Humanities buildings, and Guard House) totaling 25,650 square feet will be removed for Phase 2 construction. The timing of this phase is anticipated to begin in May 2010, following the end of Phase 1, or may begin approximately one year after the completion of Phase 1 in May 2011. Phase 3 would require a two-year construction period, beginning in May 2013. This phase includes the construction of the new 5,180 square-foot Academic Building West for additional administrative and teaching spaces and a new 3,330 square-foot Aquatic Center. Also included in Phase 3 is the addition of approximately 7,000 square feet of classroom space to the existing Academic Building South and other renovations to the existing Disney Pavilion and Lower School Building.

It should be noted that prior to the start of the regular and more intensive construction schedules for the phases described above, it is anticipated that each phase would be preceded by an approximate two-month period during which minor preparatory work would occur. This minor preparatory work would involve only a small number of workers

7

and no heavy-duty equipment or vehicles. Table 1 below provides a detailed summary of

the proposed facilities for each phase of the project development.

Table 1 Proposed Facilities

-

Project Phases and Building Components	(approx. square feet) ^a
Phase 1	
New Library and Technology Center	18,770
Phase 2	
New Middle and Upper School Main Academic Center and Enclosed Parking Facility, Replacement Guard House, New Central Plant, and New Basketball Court	61,570
Phase 3	
New Academic Building West, Addition to and Renovation of the Existing Academic Building South, New Aquatic Center, Disney Pavilion Renovation, and Lower School Renovation.	15,510
Total New Building Area for all Phases	95,850
Total Building Area to be Removed	(26,350)
Net Area Increase in Building Area	69,500
Total Existing Building Area	<u>+ 99,150</u>
Total Building Area Upon Completion	168,650

^a These building area square footage calculations refer to FAR program space and do not include areas such as exterior covered walkways, exterior covered balconies, roof overhangs, and mechanical areas. Such exterior areas as well as mechanical rooms are not included in the Los Angeles Planning Code definition of floor area (LAMC §12.03), but may be included in the Los Angeles Building Code definition of floor area.

Source: PCR Services Corporation; Jeffrey M. Kalban & Associates Architecture, Inc., 2006.

As part of the Campus Enhancement Plan, the School proposes to incrementally increase

its student population, by up to a maximum of 80 new students, for a future maximum

enrollment of 830 students. To accommodate the increase in enrollment, approximately

eight new faculty members and eight additional staff members would also be required. For

a conservative analysis and purposes of this traffic analysis, only the final year 2014

("buildout") project condition with the associated maximum 80-student increase was

analyzed.

Access to the School would continue to be provided by the main entrance/exit driveway at the southern terminus of Stansbury Avenue. Currently, the southern driveway, on Camino de la Cumbre, primarily allows for minimal plant operation personnel use during the day; however, some faculty and staff members do utilize this driveway for exiting after school. During periods when the main entrance/exit is closed, vehicles on campus are required to exit via Camino de la Cumbre. For the 2005-2006 school year, approximately 116 students are enrolled in the busing program, 398 students participate in carpools, and approximately 10 students walk or bike to School. The existing campus configuration accommodates approximately 214 surface parking spaces on-site with stack parking available. An additional 100 student parking spaces are leased off-site at the Sherman Oaks Fashion Square Mall surface parking lot located at the southwest corner of Riverside Drive and Woodman Avenue just north of the Ventura Freeway and approximately one mile north of campus. Students who park at the off-site facility are shuttled to the school grounds by a shuttle bus operated by Tumbleweed Transportation.

In addition to the new and renovated classrooms and teaching facilities, a new enclosed two-level parking facility would be constructed to accommodate the parking needs of the students, faculty/staff members, and visitors on-site, thereby increasing the total on-site parking supply by approximately 43%, from 214 existing spaces to 306 marked spaces. The new parking facility would provide approximately 240 spaces with the remaining 66 parking spaces interspersed throughout campus. This supply would exceed the parking demand experienced during the typical school day of 270 spaces (Appendix A), and would also exceed the City Planning and Zoning Code of the Los Angeles Municipal Code (LAMC) requirements for concurrent assembly use of Disney Pavilion and the new Multipurpose room.

9
With construction of the enclosed parking facility and the new arrival plaza on campus, traffic circulation would be improved on-site and school-related vehicles queuing on the adjacent residential street would be removed. The parking facility would provide increased vehicle queuing space on campus during the peak drop-off and pick-up periods, by utilizing both levels as needed by demand. The arrival plaza would provide the dual flexibility of bus queuing and loading space as well as overflow visitor and delivery parking during the off-peak hours.

Internal circulation on-site would be improved as most vehicular traffic would be separated from pedestrian traffic. Since School-related vehicles (students/parents, faculty/staff, visitors) would generally be prohibited from using the Camino de la Cumbre gate, these vehicles would directly access the site via the Stansbury Avenue gate and proceed to the new arrival plaza, turn into the visitor parking lot or lower level of the new parking facility, or continue straight to enter the upper level of the parking facility. Limited access via the Camino de la Cumbre gate would continue to be available for service vehicles, deliveries, some employees, athletic field access, and emergency access. To facilitate the separation of pedestrian and vehicular traffic on campus, the existing internal roadway through campus would be redesigned as a pedestrian walkway and provide emergency vehicle access when necessary. Figure 3(b), Conceptual Project Site Plan, provides an illustration of the proposed project layout.

LEGEND

- (P) Guard House
 (E) Lower Elementary Arts Bldg.
 (E) Assembly Room Bldg.
- 4. (E) K1 Classroom Bldg.
- 5. (E) Bell Tower

- (E) Bell I ower
 (E) Elementary School Bldg.
 (E) Elementary School Bldg.
 (P) Academic Bldg. West
 (P) Middle / Upper Main Academic Center
 (P) Library / Technology Center
 (P) Central Plant

- 12. (A) Academic Bldg. South
 13. (E) Disney Pavilion
 14. (P) Aquatics Center

- 15 (E) Transportation Bldg.
- 16. (E) Field House
- (P) Proposed
- (E) Existing
- (A) Addition to Existing

FIGURE 3(b) FN: BUCKLEY SCHOOL\SITEPLAN(PROP)-2 **CRAIN & ASSOCIATES**

2007 Sawtelle Boulevard Los Angeles, California 90025 (310) 473-6508 Transportation Planning • Traffic Engineering

NORT

2/9/06

ENVIRONMENTAL SETTING

The Buckley School is located in the Sherman Oaks-Studio City-Toluca Lake-Cahuenga Pass Community Plan area in the southerly portion of the San Fernando Valley. Single-family residential housing surrounds the School to the north and the west. Open space remains east and immediately south of the project site. South of the School are the Santa Monica Mountains, which are also developed with single-family residential housing. The Ventura Boulevard corridor, north of the site, is developed with moderate to dense commercial uses throughout its length and serves as the primary commercial focal point of the study area.

The streets and freeways within the study area are under the jurisdictions of the City of Los Angeles and the California Department of Transportation (Caltrans). The project area is well-served by a grid of arterial streets, including Ventura Boulevard and Van Nuys Boulevard. Two regional freeways, the San Diego Freeway (I-405) and the Ventura Freeway (US-101), also serve the project area. These transportation facilities and other local roadways are described in more detail below.

Existing Freeways

The <u>San Diego Freeway (I-405)</u> is a north-south oriented freeway located approximately two miles west of the project site. This freeway typically provides four mainline travel lanes and one high-occupancy vehicle (HOV) lane per direction, although additional auxiliary lanes are present in the project area between some sets of on- and off-ramps. The San Diego Freeway provides a west side alternative route across the Santa Monica Mountains and interchanges with the Ventura Freeway (US-101) north of Ventura Boulevard, northwest of the project site. Northbound on- and off-ramps are available on Sepulveda Boulevard south of Ventura Boulevard. Additionally, northbound and southbound on-ramps on Ventura Boulevard are also available west of Sepulveda

Boulevard. Further south, southbound on- and off-ramps are provided on Sepulveda Boulevard and on Fiume Street just west of Sepulveda Boulevard, respectively. According to the most current 2004 data available through the Caltrans Website, traffic volumes along the San Diego Freeway segment between Mulholland Drive and the Ventura Freeway interchange are approximately 282,000 vehicles per day (VPD) with peak-hour volumes of approximately 17,600 vehicles per hour (VPH).

The <u>Ventura Freeway (US-101)</u> is the primary east-west freeway in this part of the San Fernando Valley. This freeway, which is located less than one mile north of the project site, provides a continuous route from beyond Ventura County to the Hollywood Freeway, where it diverges and continues eastbound as State Highway 134 and southbound as US-101. Five travel lanes in each direction are provided along the freeway segment in the study area. Average daily traffic volumes on the Ventura Freeway segment between Van Nuys Boulevard and the San Diego Freeway interchange are approximately 310,000 VPD with peak-hour volumes of approximately 20,500 VPH according to Caltrans. Full sets of freeway ramps are provided at Van Nuys Boulevard and Woodman Avenue. These are the freeway access locations most likely to be used by regional traffic accessing the School.

Existing Streets and Highways

<u>Ventura Boulevard</u> is designated as a Major Highway Class II approximately one-half mile north of the project site. This east-west roadway is generally 80 feet in width and provides two to three through lanes plus left-turn channelizations per direction in the project vicinity. Ventura Boulevard extends from the City of Hidden Hills to its eastern terminus at the western boundary of Universal City, where it becomes Cahuenga Boulevard. The average daily traffic volume on Ventura Boulevard is approximately 50,000 VPD. This daily volume also includes a significant amount of regional traffic traveling through the study area on Ventura Boulevard to avoid the nearby freeway congestion. Traffic signals

exist on Ventura Boulevard at its intersections with Beverly Glen Boulevard, Van Nuys Boulevard, Hazeltine Avenue, and Woodman Avenue.

<u>Valley Vista Boulevard</u> is an east-west designated Secondary Highway from Ventura Boulevard to Sepulveda Boulevard and a Collector Street west of the San Diego Freeway. Near the project site, this roadway is generally 40 feet in width and provides one lane in each direction. The south intersection of Valley Vista Boulevard and Beverly Glen Boulevard is a two-way stop-sign controlled intersection. Daily traffic volume on this roadway is approximately 4,500 VPD east and west of Stansbury Avenue.

<u>Van Nuys Boulevard</u>, located west of the project site, is a north-south Major Highway Class II north of Ventura Boulevard with two lanes in each direction and left-turn channelization. South of Ventura Boulevard, Van Nuys Boulevard is designated as a Secondary Highway that terminates at Valley Vista Boulevard.

<u>Beverly Glen Boulevard</u> is a north-south Secondary and Scenic Highway that extends southerly over the Santa Monica Mountains from Ventura Boulevard in Sherman Oaks to Pico Boulevard in West Los Angeles. Beverly Glen Boulevard also connects to Mulholland Drive, an east-west Scenic Highway that travels across the Santa Monica Mountains. This roadway provides one lane of traffic in each direction in the project vicinity.

<u>Camino de la Cumbre</u> is a narrow winding Local Street that forms the immediate western boundary of the project site. This north-south facility extends southerly from the intersection of Greenleaf Street and Stansbury Avenue, and winds its way upward to serve a residential hillside area. A back gate which currently serves as a secondary access to the School is also provided on Camino de la Cumbre. A turn restriction posted on Valley Vista Boulevard prohibits westbound vehicles on Valley Vista Boulevard from turning left onto Camino de la Cumbre from 7:00 AM to 9:00 AM, except during weekends.

<u>Stansbury Avenue</u> is designated as a north-south Collector Street between Ventura Boulevard and Valley Vista Boulevard, and a Local Street south of Valley Vista Boulevard. South of Ventura Boulevard, the roadway width is 36-40 feet with one lane of traffic in each direction. Stop signs control traffic on Stansbury Avenue at its intersection with Ventura Boulevard and Valley Vista Boulevard. The street is fully developed with multi-family and single-family residences south of Ventura Boulevard. Average daily traffic volumes on Stansbury Avenue are approximately 2,500 VPD north of Valley Vista Boulevard and 3,500 VPD south of Valley Vista Boulevard.

<u>Hazeltine Avenue</u> jogs at Ventura Boulevard where it is a north-south Secondary Highway from Ventura Boulevard to Covello Street and a Local Street from Ventura Boulevard to Davana Road. North of Ventura Boulevard, this street generally provides two lanes in each direction with left- and right-turn channelizations at major intersections. This roadway is approximately 65 feet wide just north of Ventura Boulevard. To the south, Hazeltine Avenue provides one lane each way and is imposed with residential permit parking restrictions.

<u>Woodman Avenue</u> is a north-south Major Highway Class II north of Ventura Boulevard and a Local Street from Ventura Boulevard to Valley Vista Boulevard. South of Ventura Boulevard, this street generally provides one lane in each direction with left-turn channelization available at its intersection with Ventura Boulevard.

<u>Benedict Canyon Drive</u>, is a short north-south Collector Street extending from south of Ventura Boulevard from Woodman Avenue to Valley Vista Boulevard. One lane of travel is provided in each direction.

Public Transit

The Los Angeles County Metropolitan Transportation Authority (MTA) has several bus routes that serve the project area. Primary destination points of the MTA system include

the Los Angeles International Airport, Westwood, UCLA and Downtown Los Angeles. Current regional transit information available through the MTA indicates that three bus routes provide service within fairly reasonable walking distance (approximately one mile) of the School campus. These routes (Metro Rapid Route 750, Metro Route 150-240, and Metro Route 158) could be used by students or employees traveling to and from the School.

Although only these three routes are aligned within reasonable walking distance of campus, several transfer opportunities are available. When these transfer opportunities are considered, much of the Los Angeles Metropolitan area can be accessed via public transportation to and from the project site. However, due to the absence of bus stops closer than those on Ventura Boulevard, as well as the absence of sidewalks on some of the adjacent streets, public transit use to/from the project site was not expected to figure prominently in this analysis.

School Transit

Tumbleweed Transportation, an independent school bus service provider, is currently contracted by the School to provide pick-up point service to and from the School. Eight bus routes are provided, serving the following areas: 1) Pacific Palisades/Brentwood/Bel Air Estates/Sherman Oaks; 2) Los Angeles/Beverly Hills; 3) Coldwater Canyon/Summit/Deep Canyon; 4) Westwood/Beverly Glen; 5) Los Angeles/Hancock Park; 6) Studio City; 7) Woodland Hills/Tarzana/Encino; 8) Calabasas/Northridge. Tumbleweed Transportation has eight buses available to operate these routes, six buses, which seat approximately 32 students each and two buses, which seat approximately 48 students each. In addition to the 116 students enrolled in the bus program for the 2005-2006 school year, approximately 300 day passes are sold to students for the buses throughout the year.

The bus program experiences a somewhat higher ridership in the morning than in the afternoon due to student participation in after-school extracurricular activities. In order to prevent on-campus extracurricular activities from becoming an impediment to the bus program enrollment, a "late bus" service is also provided to accommodate students who remain on campus for such activities. The provision of this added service helps to reduce the number of vehicle trips generated by the School during peak hours. For Monday through Friday, in addition to the 3:30 PM bus, the "late bus" is provided at 5:30 PM for middle and upper school students. Friday bus departures operate one hour earlier, similar to student class instruction hours.

Existing (2006) Traffic Volumes

Traffic count information was conducted during October 2004 for the ten study intersections. These weekday counts were collected manually during the AM peak period (7:00 AM to 9:00 AM), the School afternoon peak period (2:00 PM to 4:00 PM) and the PM peak period for commuter traffic (4:00 PM to 6:00 PM). These traffic counts were conducted while the School was in full session during a typical school week. Traffic count personnel from a traffic data collection company counted the number of vehicles crossing each of the study intersections, noting the number of vehicles making each possible turning movement. The peak-hour traffic volume for each intersection was then determined for analysis purposes by finding the four highest consecutive 15-minute volumes for all traffic movements combined. This method provides a "worst case" scenario, as it calculates the peak hour for each intersection independent of all other intersections. A growth factor of two percent, compounded annually, was applied to these counts to reflect existing (2006) traffic conditions per standard LADOT methodology. The existing peak-hour traffic volumes for the ten study intersections are illustrated in Figures 4(a), 4(b) and 4(c) for the AM peak hour, School PM peak hour and commuter PM peak hour, respectively. These intersection counts are contained in Appendix E.

Automated 24-hour traffic counts were also collected at the two existing driveway locations, on Stansbury Avenue and Camino de la Cumbre. These counts included the vehicles exiting and entering the School for a three-day average period during normal school operating conditions. Crain & Associates also conducted a concurrent count of student-operated vehicles utilizing off-site parking at the Sherman Oaks Fashion Square parking lot leased by the School. This outdoor parking lot is located at the southwest corner of Riverside Drive and Woodman Avenue, approximately one mile north of campus. Students are required to have registered permission with the School to park in this lot and are transported to campus by a shuttle operating within approximately 20-minute intervals to coincide with peak arrival and departure periods. The student-operated vehicles parked at the remote Fashion Square lot were added to the on-site traffic in order to determine the actual School peak hours. As with the study intersections, data collection at the two existing driveways (on-site) and Fashion Square lot (off-site) occurred on typical School days and were used to determine the peak hours. The School's AM peak hour occurred from 7:45 AM to 8:45 AM, the School's afternoon peak hour occurred from 3:00 PM to 4:00 PM, and the School's PM peak hour within the peak period for commuter traffic occurred from 4:15 PM to 5:15 PM.

Upon discussions with LADOT, additional information was collected to determine the School's existing average vehicle ridership (AVR) for the AM peak hour. Monitoring was performed by Crain & Associates, through manual vehicle counts taken at the School driveways with a concurrent observation of students, faculty, and staff members arriving by each travel mode. These driveway occupancy counts were conducted in October 2004, from 7:00 AM to 9:00 AM during a typical School day. The results of the occupancy counts are discussed in the following section.

Existing Average Vehicle Ridership (AVR)

The number of inbound and outbound vehicle trips observed at each School driveway and overall during the two hour (7:00 AM to 9:00 AM) monitoring period is shown in Appendix C. As the data show, the AM peak hour occurred from 7:45 AM to 8:45 AM, corresponding to the School's staggered start time. A total of 380 inbound and 306 outbound vehicle trips were observed at both driveways during this peak hour for a total of 686 vehicle trips.

The results of the concurrent count of students and faculty/staff arriving by each mode of transportation, as observed at the campus driveways, are shown in Table 2 for the School's AM peak hour. Students observed to utilize the off-site Fashion Square lot and shuttled to campus were excluded from the School driveway volumes, since the focus of the AVR calculation is on the campus driveway activity. For a conservative analysis, they are not included as carpools in the AVR calculation.

Table 2Driveway Count ResultsOctober 25, 2004 -- AM Peak Hour

				Faculty/Staff (F/S)						
Time	Bus		Carpool		Walk	Bicycle	Carpool		Walk	Bicycle
Period	Students	Vehicles	Students	Vehicles			<u>F/S</u>	Vehicles		
7:45 – 8:00	80	3	124	74	0	0	7	7	0	0
8:00 - 8:15	27	1	153	107	0	0	15	15	0	0
8:15 – 8:30	0	0	144	105	0	1	13	12	0	0
8:30 - 8:45	27	1	51	39	0	0	16	16 16		0
Total:	134	5	472	325	0	1	51 50		0	0

Arrival Travel Mode

AM peak hour AVR calculation based on: 658 passengers (students, faculty, staff) / 380 Vehicles = 1.73

The number of student bus riders was not derived by direct count, since the accuracy of such a count is compromised by the fact that the buses tend to arrive at the same time.

This number was instead estimated by taking the remainder of students unaccounted for by the other modes (including the student-operated carpools authorized to park at the off-site lot), less the 5.4 percent absentee rate reported by the School for October 25 2004, the count date. In conclusion, the mode split data collected demonstrate that the School is currently achieving a 1.73 AVR during the AM peak hour.

In order to address the impact of the proposed new development on the residential streets in the project vicinity, 24-hour automated traffic counts were conducted on the eight neighborhood street segments discussed previously. These counts were collected in October 2004, during the same week as the manual intersection counts, while the School was in full session. The average daily traffic volumes along these street segments were analyzed and summarized in the *Residential Street Traffic Impact Analysis* section of this report.

Analysis of Existing (2006) Traffic Conditions

An analysis of current traffic conditions was conducted on the study intersections serving the project area. Detailed traffic analyses of existing conditions were performed at the following intersections:

- 1. Ventura Boulevard and Van Nuys Boulevard
- 2. Ventura Boulevard and Beverly Glen Boulevard/Tyrone Avenue
- 3. Ventura Boulevard and Stansbury Avenue ^[1]
- 4. Ventura and Hazeltine Avenue
- 5. Ventura Boulevard and Woodman Avenue
- 6. Valley Vista Boulevard and Van Nuys Boulevard^[1]
- 7. Valley Vista Boulevard/Roblar Place and Beverly Glen Boulevard
- 8. Valley Vista Boulevard (south) and Beverly Glen Boulevard^[1]
- 9. Valley Vista Boulevard and Stansbury Avenue^[2]
- 10. Valley Vista Boulevard and Benedict Canyon Drive

^[1] Two-way stop-sign controlled intersection.

^[2] All-way stop-sign controlled intersection.

The traffic analysis was performed through the use of the Critical Movement Analysis (CMA) technique. The new peak-hour traffic volumes described earlier were used to calculate the existing volume-to-capacity ratio at the study intersections. As noted above, four of the ten intersections currently operate as two-way or all-way stop-sign controlled intersections. Information pertaining to intersection geometrics, street parking restrictions, traffic signal operations, and right-of-way control necessary for the analysis was obtained through field surveys of the study locations. Appendix B provides a diagram of the study intersections geometric and traffic control operations.

The methodology used in this study for the analysis and evaluation of traffic operations at each study intersection is based on procedures outlined in Circular Number 212 of the Transportation Research Board.¹ In the discussion of Critical Movement Analysis for signalized intersections, procedures have been developed for determining operating characteristics of an intersection in terms of the "Level of Service" (LOS) provided for different levels of traffic volume and other variables, such as the number of signal phases. The term LOS describes the quality of traffic flow. LOS A to C operate quite well. LOS D is recognized as the satisfactory level of service in the City of Los Angeles. LOS E represents volumes at or near the capacity of the highway which might result in stoppages of momentary duration and fairly unstable flow. LOS F occurs when a facility is overloaded and is characterized by stop-and-go traffic with stoppages of long duration.

A determination of the LOS at an intersection, where traffic volumes are known or have been projected, can be obtained through a summation of the critical movement volumes at that intersection. Once the sum of critical movement volumes has been obtained, the values indicated in Table 3 can be used to determine the applicable LOS.

¹ <u>Interim Materials on Highway Capacity</u>, Circular Number 212, Transportation Research Board, Washington, D.C., 1980.

Table 3Critical Movement Volume Ranges*For Determining Levels of Service

	Maximum Su	m of Critical	Volumes (VPH)
Level of	Two	Three	Four or
<u>Service</u>	<u>Phase</u>	<u>Phase</u>	More Phases
А	900	855	825
В	1,050	1,000	965
С	1,200	1,140	1,100
D	1,350	1,275	1,225
Е	1,500	1,425	1,375
F		Not Applicab	e

* For planning applications only, i.e., not appropriate for operations and design applications.

"Capacity" represents the maximum total hourly movement volume of vehicles in the critical lanes which has a reasonable expectation of passing through an intersection under prevailing roadway and traffic conditions. For planning purposes, capacity equates to the maximum value of Level of Service E, as indicated in Table 3. A capacity of 1,000 VPH and 1,200 VPH was utilized for all-way and two-way stop-sign controlled intersections, respectively. The CMA indices used in this study were calculated by dividing the sum of critical movement volumes by the appropriate capacity value for the type of signal control present or proposed at the study intersections. Table 4 further describes the various LOS and corresponding range of CMA values.

Table 4Level of Service CriteriaAs a Function of CMA Values

Level of <u>Service</u>	Description of Operating Characteristics	Range of <u>CMA Values</u>
A	Uncongested operations; all vehicles clear in a single cycle.	< 0.60
В	Same as above.	>0.60 < 0.70
С	Light congestion; occasional backups on critical approaches.	>0.70 < 0.80
D	Congestion on critical approaches, but intersection functional. Vehicles required to wait through more than one cycle during short peaks. No long-standing lines formed.	>0.80 < 0.90
E	Severe congestion with some long-standing lines on critical approaches. Blockage of intersection may occur if traffic signal does not provide for protected turning movements.	>0.90 < 1.00
F	Forced flow with stoppages of long duration.	> 1.00

By applying these procedures to the study intersections, the CMA value and the corresponding LOS for existing traffic conditions were calculated. Those values, for existing (2006) AM, School PM, and commuter PM peak-hour conditions, are summarized in Table 5. (The CMA calculation worksheets for existing conditions are included in Appendix F.)

Review of the critical movement analysis shows that five study intersections operate at LOS E or F during either one of the peak hours, with two intersections located along Ventura Boulevard and three intersections on Valley Vista Boulevard. The two intersections along Ventura Boulevard are at Van Nuys Boulevard, which operates at LOS E during the School PM peak hour and LOS F during the AM and commuter PM peak hours, and at Stansbury Avenue which operates at LOS F during the AM peak hour

and LOS E during the commuter PM peak hour. The intersections of Valley Vista Boulevard-Roblar Place/Beverly Glen Boulevard and Valley Vista Boulevard/Stansbury Avenue operate at LOS E during the AM peak hour and Valley Vista Boulevard (South)/Beverly Glen Boulevard operates at LOS F during the School and commuter PM peak hours. It should be noted that all traffic generated by the current enrollment at the School is reflected in the existing base data information.

Table 5CMA and LOS SummaryExisting (2006) Traffic Conditions

. .

				Sch	001	Commuter			
		AM Pea	k Hour	PM Pea	k Hour	PM Peak Hour			
No.	Intersection	CMA	LOS	CMA	LOS	СМА	LOS		
1.	Ventura Blvd. & Van Nuys Blvd.	1.004	F	0.968	E	1.064	F		
2.	Ventura Blvd. & Beverly Glen Blvd./Tyrone Ave.	0.634	В	0.765	С	0.815	D		
3.	Ventura Blvd. & Stansbury Ave.	1.072	F	0.868	D	0.940	Е		
4.	Ventura Blvd. & Hazeltine Ave.	0.717	С	0.611	В	0.656	В		
5.	Ventura Blvd. & Woodman Ave.	0.785	С	0.735	С	0.839	D		
6.	Valley Vista Blvd. & Van Nuys Blvd.	0.611	В	0.438	A	0.517	A		
7.	Valley Vista Blvd./Roblar Pl. & Beverly Glen Blvd.	0.920	Е	0.625	В	0.641	В		
8.	Valley Vista Blvd. (South) & Beverly Glen Blvd.	0.877	D	1.339	F	1.390	F		
9.	Valley Vista Blvd. & Stansbury Ave.	0.954	Е	0.482	A	0.479	A		
10.	Valley Vista Blvd. & Benedict Canvon Dr.	0.301	А	0.234	A	0.281	A		

PROJECT TRAFFIC

The following section describes the methodology used to determine the trip generation, distribution, and assignment of the traffic flow for the proposed project. This methodology is consistent with standard LADOT traffic study policies and procedures.

Traffic Generation

Project traffic generation was computed using data collected at the existing School site and procedures approved by LADOT. This data was compared with private school trip generation studies documented in the 7th Edition <u>Trip Generation</u> manual, published by the Institute of Transportation Engineers (ITE). A comparison of the two sets of rates is shown in Table 6 and it indicates the site-specific peak-hour trip rates for the School are generally higher than the reported national ITE trip generation rates for the AM, School PM, and commuter PM peak hour.

The weekday AM, School PM, and commuter PM peak-hour trip generation rates for the proposed project were derived based on empirical data collected from the patterns of the School's existing student population. These data, collected in October 2004, counted the number of vehicles observed to enter/exit all access points for the School as well as the off-site lot during the peak hours. The 702 total vehicle trip average in the morning equates to an AM peak-hour trip generation rate of 0.94 vehicle trips per student, once divided by the current enrollment of approximately 750 students.

Two afternoon peak-hour time periods were calculated and analyzed: the School's peak hours and the commuter's peak hours. The peak hour of the adjacent street system represents the traffic generation during the highest hour between 4:00 and 6:00 PM when the adjacent street traffic flow is at its peak. The peak hour of the generator (School) is the traffic volume during the highest hour of traffic entering and exiting the School site in

the afternoon. It should be noted that the School's peak hour in the afternoon does not coincide with the adjacent street peak hour of traffic flow. Detailed calculations of the derived rates are contained in Appendix C.

The traffic generation rates presented in Table 6 provides a comparison of the ITE trip generation rates versus the School rates which were used in this report to determine project traffic impacts at the study intersections and on the study street segments. Since the School's trip generation rates for the daily, morning, and afternoon peak hours exceeded those of the standard ITE rates, projections of the amount of new traffic to be generated by the proposed increase in enrollment was calculated based on these empirical rates.

Table 6									
Project	Trip	Generation	Rates						

ITE Private School (K - 12) per st	<u>udent – Land Use 536</u>
Daily:	T = 2.48 (S)
AM Peak Hour:	T = 0.79 (S); I/B = 61%, O/B = 39%
PM Peak Hour of Generate	or: $T = 0.55$ (S); I/B = 41%, O/B = 59%
PM Peak Hour of Adjacent	t Street: $T = 0.17$ (S); $I/B = 43\%$, $O/B = 57\%$
Buckley School (K-12) per studer	<u>nt *</u>
Daily:	T = 4.11 (S)
AM Peak Hour:	T = 0.94 (S); I/B = 56%, O/B = 44%
School PM Peak Hour:	T = 0.59 (S); I/B = 47%, O/B = 53%
Commuter PM Peak Hour:	T = 0.31 (S); I/B = 36%, O/B = 64%
Where:	
T = trip ends	I/B = inbound percentages
S = student	O/B = outbound percentages

Source: <u>Trip Generation</u>, 7th Edition, Institute of Transportation Engineers, Washington DC, 2003. * Rates shown are based on empirical data per discussion with LADOT.

The School rates were applied to the proposed 80-student maximum enrollment increase and presented in Table 7 where the project would be expected to generate 329 new daily vehicle trips, 75 AM peak-hour trips, 47 School PM peak-hour trips, and 25 commuter PM peak-hour trips.

		Table	e 7
Proj	ject	Traffic	Generation

					S	chool I	PM	Commuter PM			
		AM Peak Hour			P	eak Ho	ur	Peak Hour			
Proposed Uses	Daily	<u>I/B</u>	<u>O/B</u>	Total	I/B	<u>O/B</u>	Total	I/B	<u>O/B</u>	Total	
The Buckley School:											
Enrollment Expansion	329	42	33	75	22	25	47	9	16	25	
(80 students)											

It has been recognized by LADOT in previous reviews of traffic studies for other private schools that such institutions draw students from a much larger region than do public schools. Private schools also exercise a great deal of control over the trip-making activities associated with their students. Carpooling and shuttle/bus programs to reduce vehicle trips are common features, and in some cases are prerequisites for admission. These programs substantially reduce trips produced by private schools. While the School already has some programs of this type in place, implementation of an enhanced TDM program would further reduce the School's vehicle trip generation during its peak hours.

Traffic Distribution

Determination of the geographic distribution of the project trips was the next step in the process. The primary factor affecting this trip distribution is the relative distribution of the student population. A review and analysis of the existing student population by zip code was completed and used to determine the likely student distribution for the proposed enrollment increase. Appendix D contains a visual representation of the student

population by zip code boundaries. Based on this student data, the directional percentage distribution of project trips is shown in Table 8 below.

Table 8 Directional Trip Distribution

Direction	Percentage of Trips
North	19%
South	33%
East	20%
<u>West</u>	<u>28%</u>
Total:	100%

Traffic Assignment

The assignment of project traffic volumes to the street network was calculated in several steps. First, the directional distribution percentages in Table 8 were disaggregated and assigned to specific routes within the study area that are expected to be used to access the project site. These project trip assignment percentages, as agreed to by LADOT, are presented in Figure 5 for the proposed project. As the vehicular trips get closer to the project site the vehicles will maneuver to approach the project driveway and a variance in the overall trip distribution will be noted. Applying these inbound and outbound percentages to the project trip generations previously calculated in Table 7, total project only traffic volumes at the study intersections and the project site were determined for the AM, School PM, and commuter PM peak hours, as shown in Figures 6(a), 6(b), and 6(c), respectively. This analysis also accounts for limited site access via Camino de la Cumbre for some service vehicles and deliveries, some employees, athletic field access, and emergency vehicles at project completion. The conservative results of this traffic assignment provide the necessary level of detail to conduct the traffic impact analysis.

Access and Parking

Two driveways currently provide direct access to the School. The main entrance/exit driveway is located at the southern terminus of Stansbury Avenue, south of Valley Vista Boulevard. A secondary driveway, located on Camino de la Cumbre, provides gated access for minimal plant operation personnel use during the day, and serves as an exit for some faculty, staff and other vehicles after school, and when the main entrance/exit is closed. Currently, during the morning and afternoon peak hours, parking attendants and security personnel stationed on campus and Stansbury Avenue direct traffic flow into and out of the site to expedite morning and afternoon arrivals and departures. Staff members also help load and unload students during peak periods to improve the efficiency of the drop-off area and to reduce the time that vehicles queue on Stansbury Avenue.

Approximately 214 on-site marked parking spaces are currently provided for student carpools, faculty/staff, and visitors to the School. The School has leased an additional 100 parking spaces available at the Sherman Oaks Fashion Square parking lot located at the southwest corner of Riverside Drive and Woodman Avenue, approximately one mile north of campus. Students (sophomores, juniors and seniors) who park in this remote lot are shuttled to campus via a shuttle bus operated by Tumbleweed Transportation. On-street parking on neighboring streets by students and faculty/staff members is strictly prohibited. This "good neighbor" policy has been adopted and students are subject to detention and/or suspension if found to be parking in the neighborhood.

As part of the Campus Enhancement Plan, primary access to the School will continue to be provided by the main driveway on Stansbury Avenue. The new configuration will require all vehicles entering the Stansbury Avenue gate to proceed to the new arrival plaza, visitor parking area, or enter the enclosed parking facility, and students, faculty/staff members, and visitors will not be permitted to travel through the site to the southerly

portion of campus. The existing internal roadway through the campus will be redesigned as a pedestrian walkway, with emergency vehicle access.

A new enclosed parking facility is proposed as part of the project to accommodate the parking needs of the students, faculty/staff members, and visitors on-site. The two-level parking facility would be situated on the eastern side of the campus and is designed to provide 130 spaces on the lower level and 110 spaces on the upper level totaling 240 standard, compact, and disabled-access spaces in the parking facility. In addition to the parking facility, approximately 66 other surface spaces would occur throughout the campus primarily for visitor, disabled-access, maintenance and service vehicles. This total on-site parking supply of 306 spaces exceeds the parking demand of 270 spaces expected during the typical school day as determined by the Parking Demand Study (Appendix A) and exceeds the City Planning and Zoning Code requirements for the School including concurrent assembly usage of Disney Pavilion and the new Multipurpose room. This supply would also be sufficient to meet the demands of most annually scheduled school functions held on campus. For large functions or events on campus for which the parking demand is expected to exceed the parking supply, "stack" parking, valet parking, and/or other methods to increase on-site parking capacity would be used to accommodate the demand similar to special event parking programs at other independent schools. Table 9 summarizes the project parking requirements according to the current LAMC parking regulations for concurrent assembly use and the project's proposed parking supply. As the project proposes a total on-site parking supply of 306 spaces, 12 surplus parking spaces will remain on-site and no off-site parking impacts would be expected as a result of this project.

Table 9Project Parking Summary

Proposed Land Use	<u>Size</u>	Parking <u>Ratio</u>	Parking <u>Spaces</u>						
Code Required Project Parking*									
High School Use (Largest Assembly)	6,868 sf	1/35 sf	196						
Elementary School Use	20 rm	1/1 rm	20						
2 nd High School Assembly Space* (Multipurpose Room)	392 st	1/5 st	78						
Total Parking for Concurrent Assembly Use, [A]									
Proposed Project Parking Supply									
Parking Facility:									
Standard Spaces			117						
Compact Spaces			116						
Handicap Spaces			7						
Surface Parking									
Standard Spaces			60						
Compact Spaces			6						
	Total Proposed I	Parking Supply, [B]	306						

Surplus Parking Above Requirement, [B – A] 12

* Code parking requirement for high schools is only based on the largest assembly use facility. As indicated in Table 9, even with the code parking requirement for two assembly use facilities, there would be more than adequate parking provided on site.

In addition to vehicular traffic from normal daily activities, there are other users of the public street right-of-way. Particular concern has been expressed by nearby residents regarding the project impacts on emergency access. It is recognized that both emergency vehicles must share the public street right-of-way with vehicular traffic accessing the School.

The improved access and parking scheme would enable vehicular queues associated with the daily student drop-off and pick-up activities to be contained within the campus, which in turn would facilitate the movement of emergency vehicles and pedestrians in and around the site perimeter. The planned pedestrian-oriented walkway through the campus would also improve on-site safety by separating students, faculty and staff from most vehicles accessing the site. The pedestrian walkway would be developed in accordance with applicable fire safety standards as documented in the Los Angeles City Fire Code, as well as requirements specific to development within the Very High Fire Hazard Severity Zone, as stated in the LAMC. The combination of improved site circulation, increased parking and vehicle queuing areas are all elements included in the Campus Enhancement Plan to ensure emergency access and pedestrian safety.

Vehicle Queuing

The site currently has inadequate vehicular storage space and therefore vehicles queue along Stansbury Avenue and wait for the next available opportunity to enter the driveway. In order to eliminate off-site vehicle queuing on Stansbury Avenue, the existing front parking lot at the northeastern portion of the site would be reconstructed to provide proper access and circulation for the visitor parking lot, the enclosed parking facility, and the new arrival plaza. The new parking facility, including its access connection, will be able to provide queuing for approximately 51 vehicles on the lower level and approximately 18 vehicles on the upper level, for a total of 69 vehicles. Vehicles in queue for peak drop-off or pick-up activities would enter campus via Stansbury Avenue and turn left to enter the lower level of the parking facility, where dual queuing lanes would form and continue to circle up the ramp to the upper level before stopping at the northwest area of the parking facility for supervised loading/unloading activities. After completing the pick-up or drop-off activities, vehicles would exit the upper level of the parking facility without interfering with entering vehicles on the lower level. Parking attendants and security personnel would continue to direct traffic flow and student drop-off/pick-up process at the Stansbury Avenue driveway and on-site in order to maximize the efficiency of the planned loading area and to eliminate the vehicle queues on Stansbury Avenue.

In addition, the new arrival plaza included under this proposal would serve to maximize the vehicle queuing capacity of the campus by enabling nine buses to stage for passenger

loading and unloading within campus but outside the main vehicle circulation and queuing areas. The buses, once loaded, would have priority egress from the site, much as they do now, which would then open the bus staging area to passenger vehicle use during the off-peak period. Under this plan, vehicles queuing on Stansbury Avenue as indicated by prior field observations and projected future conditions, adjacent to the campus driveway, would be eliminated.

FUTURE TRAFFIC CONDITIONS

Other projects under development or consideration could contribute additional traffic to the project area. For this reason, the analysis of future traffic conditions has been expanded to include potential traffic from yet undeveloped or unoccupied projects. The methodology for estimating future traffic volumes included determining current traffic volumes by traffic counts (as described in a preceding section) and then applying a traffic growth factor of two percent compounded annually to the existing (2006) traffic volumes to develop future (2014) "baseline" volumes. Future year 2014 was selected as a possible "buildout" year as part of a worst-case study procedure. Trips attributable to related projects were then added to the baseline volumes to form future "Without Project" volumes for the analysis of cumulative traffic conditions in the area. Finally, the School project traffic, calculated previously based on the enrollment increase, was analyzed as an incremental addition to the future "Without Project" volumes to arrive at the future "With Project" traffic conditions.

Traffic Growth

Based on an analysis of trends in traffic growth in this portion of the San Fernando Valley over the last several years and upon discussions with LADOT, an annual traffic growth factor of two percent was utilized. This conservative growth factor would account for increases in traffic resulting from minor projects, projects not yet proposed, and projects outside of the study area. This growth factor, compounded annually, was applied to the existing (2006) traffic volumes to develop an estimate of future (2014) baseline volumes.

Related Projects

In addition to the use of an annual growth rate, recent information regarding potential related projects located within an approximate 2.5-mile radius of the project site was obtained from LADOT and the City of Los Angeles Planning Department, and recent studies of entitlements requests filed in the study area. A review of this information determined that 29 related projects could potentially contribute significant traffic volumes at some of the study intersections. The locations of the related projects are shown in Figure 7, with their corresponding descriptions and trip generation estimates summarized in Table 10. Trips generated by these related projects were estimated by using the trip generation formulas and rates provided in Table 11, or were obtained from previous traffic studies as cited. To evaluate future (2014) "Without Project" traffic conditions, the related project peak-hour trips estimated in Table 10 were assigned to the area circulation system, using methods similar to those previously described for project traffic assignment. Total related projects traffic volumes are shown in Figures 8(a), 8(b) and 8(c) for the AM, School PM, and commuter PM peak hours.

The related projects' traffic volumes were then combined with the growth-factored, background traffic volumes described in the previous section, resulting in the future (2014) "Without Project" AM, School PM, and commuter PM peak-hour traffic estimates shown in Figures 9(a), 9(b) and 9(c), respectively. These estimates are the "benchmark" volumes used in determining project traffic impacts on the street system. Actual future traffic volumes in the study area could be substantially less because the timing of the completion (if at all) of the cumulative projects is speculative. However, they were included in this traffic analysis to present the most conservative conditions reasonably expected to occur.

Table 10Related Projects Descriptions and Trip Generations

Man						AM Peak Hour			School PM			Commuter PM		
No.	Address/Location	Size		Project Description	Daily	<u>I/B</u>		Total	<u> /B</u>	<u>0/B</u>	Total	<u> /B</u>	O/B	Total
1.	5638 Sepulveda Blvd.	96	rm	Hotel	784	33	21	54	30	27	57	30	27	57
2.	5628 Sepulveda Blvd.	2,437	sf	Fast-food restaurant w/ drive-through window Less Pass-by Trips (50%) Subtotal	1,209 <u>(605)</u> 604	66 <u>(33)</u> 33	63 <u>(32)</u> 31	129 <u>(65)</u> 64	44 <u>(22)</u> 22	40 <u>(20)</u> 20	84 <u>(42)</u> 42	44 <u>(22)</u> 22	40 <u>(20)</u> 20	84 <u>(42)</u> 42
3.	5546 Sepulveda Blvd.	10,737	sf	Car-wash Less Pass-by Trips (20%) Subtotal	1,685 <u>(337)</u> 1,348	34 <u>(7)</u> 27	33 <u>(7)</u> 26	67 <u>(14)</u> 53	76 <u>(15)</u> 61	76 <u>(15)</u> 61	152 <u>(30)</u> 122	76 <u>(15)</u> 61	76 <u>(15)</u> 61	152 <u>(30)</u> 122
4.	Burbank Blvd. e/o Sepulveda Blvd.	15	du	Condominium	88	1	6	7	5	3	8	5	3	8
5.	15357 Magnolia Blvd.	98	du	Apartment	659	10	40	50	40	21	61	40	21	61
6.	Magnolia Blvd. w/o Kester Ave.	12	du	Condominium	70	1	4	5	4	2	6	4	2	6
7.	14850 Burbank Blvd.	1,722	sf	Gas station w/ convenience market Less Pass-by Trips (50%) Subtotal	1,500 <u>(750)</u> 750	68 <u>(34)</u> 34	66 <u>(33)</u> 33	134 <u>(67)</u> 67	83 <u>(42)</u> 41	83 <u>(42)</u> 41	166 <u>(84)</u> 82	83 <u>(42)</u> 41	83 <u>(42)</u> 41	166 <u>(84)</u> 82
8.	5746 Van Nuys Blvd.	48,017	sf	New car dealership	1,601	73	25	98	50	77	127	50	77	127
9.	5344 Van Nuys Blvd.	40,852	sf	Automobile Sales Less Pass-by Trips (10%) Subtotal	1,362 <u>(136)</u> 1,226	62 <u>(6)</u> 56	22 <u>(2)</u> 20	84 <u>(8)</u> 76	42 <u>(4)</u> 38	66 <u>(7)</u> 59	108 <u>(11)</u> 97	42 <u>(4)</u> 38	66 <u>(7)</u> 59	108 <u>(11)</u> 97
10.	5300 Coldwater Canyon Ave.	60,250	sf	Self-storage	151	5	4	9	8	8	16	8	8	16
11.	12828 Riverside Dr.	29,475	sf	General office	521	62	9	71	19	93	112	19	93	112
12.	13256 Riverside Dr.	N/A		Gas station w/ convenience market [1]	1,086	30	29	59	33	33	66	33	33	66
13.	13401 Riverside Dr.	142	du	Apartment	954	14	58	72	57	31	88	57	31	88
14.	13900 Riverside Dr.	220,000	sf	Westfield Fashion Square (expansion) ^[1]	11,337	46	28	74	182	196	378	182	196	378
15.	13920 Ventura Blvd.	11,244	sf	Pharmacy	1,013	21	15	36	48	47	95	48	47	95
16.	Hazeltine Ave./Moorpark St.	50	du	Condominium ^[2]	293	4	18	22	17	9	26	17	9	26

Table 10 (cont.)Related Projects Descriptions and Trip Generations

Мар					AM Peak Hour			School PM Peak Hour			Commuter PM Peak Hour		
<u>No.</u>	Address/Location	Size	Project Description	Daily	<u>I/B</u>	<u>O/B</u>	<u>Total</u>	<u>I/B</u>	<u>O/B</u>	<u>Total</u>	<u>I/B</u>	<u>O/B</u>	<u>Total</u>
17.	14121 Ventura Blvd.	6,000 sf	Retail Less Pass-by Trips (10%)	1,091 (109)	18 (2)	11 (1)	29 (3)	47 (5)	51 (5)	98 (10)	47 (5)	51 (5)	98 (10)
		7,000 sf	Quality Restaurant Less Pass-by Trips (10%)	630 (63)	4 0	2 0	6 0	35 (4)	17 (2)	52 (6)	35 (4)	17 (2)	52 (6)
		3,500 sf	Fast-food restaurant w/out drive-through window Less Pass-by Trips (50%)	2,506 (1,253)	92 (46)	62 (31)	154 (77)	47 (24)	45 (23)	92 (47)	47 (24)	45 (23)	92 (47)
		118 du	Apartment Subtotal	<u>793</u> 3,595	<u>12</u> 78	<u>48</u> 91	<u>60</u> 169	<u>47</u> 143	2 <u>6</u> 109	<u>73</u> 252	<u>47</u> 143	2 <u>6</u> 109	<u>73</u> 252
18.	14478 Ventura Blvd.	392 sf	Gas Station (expansion) Less Pass-by Trips (50%) Subtotal	341 <u>(171)</u> 170	15 <u>(8)</u> 7	15 <u>(8)</u> 7	30 <u>(16)</u> 14	19 <u>(10)</u> 9	19 <u>(10)</u> 9	38 <u>(20)</u> 18	19 <u>(10)</u> 9	19 <u>(10)</u> 9	38 <u>(20)</u> 18
19.	Moorpark St. e/o Van Nuys Blvd.	24 du	Condominium ^[3]	141	2	9	11	8	4	12	8	4	12
20.	4454 Van Nuys Blvd.	98 du	Condominium	574	7	36	43	34	17	51	34	17	51
21.	4500 Van Nuys Blvd.	60,000 sf (928) st	Electronics store Theater (to be removed) Subtotal	2,702 <u>(1,670)</u> 1,032	9 <u>neg.</u> 9	8 <u>neg.</u> 8	17 <u>neg.</u> 17	132 <u>(25)</u> 107	138 <u>(40)</u> 98	270 <u>(65)</u> 205	132 <u>(25)</u> 107	138 <u>(40)</u> 98	270 <u>(65)</u> 205
22.	Kester Ave. n/o Moorpark St.	8 du	Apartment	54	1	3	4	3	2	5	3	2	5
23.	15222 Ventura Blvd.	52 du	Condominium	305	4	19	23	18	9	27	18	9	27
24.	4805 Sepulveda Blvd.	500 du 45,000 sf 10,000 sf (24) du (11) du (52,452) sf	<u>IL Villaggio Toscano ^[4]</u> Apartment Grocery store Specialty retail <i>Apartment (to be removed)</i> Single-family housing (to be removed) Office (to be removed)	5,844	101	220	321	319	230	549	319	230	549
25.	15530 Hesby St.	528 st	LAUSD Magnet School (K-8) ^[5]	796	259	187	446	67	81	148	67	81	148
26.	15821 Ventura Blvd.	6,400 sf	Bank ^[6]	801	10	11	21	85	85	170	85	85	170
27.	16200 Mulholland Dr. *	240 st 60 st (240) st (60) st	School (K-8) ^[7] Pre-School <i>Middle School (to be removed)</i> <i>Pre-School (to be removed)</i>	0	0	0	0	0	0	0	0	0	0
Table 10 (cont.)Related Projects Descriptions and Trip Generations

								Sc	hool F	M	Con	nmuter	PM
Мар					AM	Peak H	lour	Pe	ak Ho	ur	Pe	ak Hou	ur
<u>No.</u>	Address/Location	Size	Project Description	Daily	I/B	O/B	Total	I/B	O/B	Total	I/B	O/B	Total
28.	16100 Mulholland Dr.	890 st 650 st 290 st	Stephen S. Wise Consolidated Middle/High School ^[7] High School (existing) Nursery School (existing)	(340)	20	(10)	10	(34)	(36)	(70)	(67)	(56)	(123)
29.	15500 Stephen S. Wise Dr.	290 st	Stephen S. Wise Temple Nursery School [7]	1,444	103	91	194	91	103	194	91	103	194

Sources:

[2] Potential project mentioned in IL Villaggio Toscano EAF No: EN-V-2004-6000-EIR December 13, 2004 NOP comment, although it could not be confirmed through City records; size of 50 du assumed.

[4] Traffic Impact Study for IL Villagio Toscano, Proposed Mixed-Use Project at Sepulveda Boulevard and Camarillo Street, Community of Sherman Oaks, Crain & Associates, September 2004.

[5] Traffic Assessment for the Proposed LAUSD Academy K-8 School for 528 Students at 15530 Hesby Street, City of Los Angeles Inter-departmental Correspondence from Sergio D. Valdez (Department of Transportation) to Joe Gibson (Office of Environmental Health and Safety LAUSD), DOT Case No. SFV 04-067, August 2004.

[6] Traffic Analysis for the California United Bank at 15821 Ventura Boulevard, City of Los Angeles, Crain & Associates, December 2004.

[7] Traffic Impact Study for Stephen S. Wise Middle School Relocation Project Los Angeles, California, Linscott Law & Greenspan, September 13, 2004.

Note:

Proposed site to replace existing Stephen S. Wise Temple Middle School (240 st) and preschool (60 st) at 16221 Mulholland Dr. No net new trip generation is forecast

^[1] Trip generation provided by LADOT related projects database.

^[3] Potential project mentioned in IL Villaggio Toscano EAF No: EN-V-2004-6000-EIR December 13, 2004 NOP comment, although it could not be confirmed through City records.

Table 11Trip Generation Rates for Related Projects

Mini-Warehouse (per 1,00	<u>00 sf) – LU 151</u>
Daily:	T = 2.50 (A)
AM Peak Hour:	T = 0.15 (A); I/B = 59%, O/B = 41%
PM Peak Hour:	T = 0.26 (A); I/B = 51%, O/B = 49%
Apartment (per dwelling u	<u>init) – LU 220</u>
Daily:	T = 6.72 (D)
AM Peak Hour:	T = 0.51 (D); I/B = 20%, O/B = 80%
PM Peak Hour:	T = 0.62 (D); I/B = 65%, O/B = 35%
Condominium/Townhouse	(per dwelling unit) – LU 230
Daily:	T = 5.86 (D)
AM Peak Hour:	T = 0.44 (D); I/B = 17%, O/B = 83%
PM Peak Hour:	T = 0.52 (D); I/B = 67%, O/B = 33%
Hotel (per room) – LU 310	<u>)</u>
Daily:	T = 8.17 (R)
AM Peak Hour:	T = 0.56 (R); I/B = 61%, O/B = 39%
PM Peak Hour:	T = 0.59 (R); I/B = 53%, O/B = 47%
Movie Theater with Matine	ee (per seat) – LU 444
Daily:*	T = 1.8 (S)
AM Peak Hour:	N/A
PM Peak Hour:	T = 0.07 (S); I/B = 39%, O/B = 61%
Elementary School (per s	<u>tudent) – LU 520</u>
Daily:	T = 1.29 (St)
AM Peak Hour:	T = 0.42 (St); I/B = 55%, O/B = 45%
PM Peak Hour:	T = 0.28 (St)
General Office (per 1,000	<u>sf) – LU 710</u>
Daily:	Ln(T) = 0.77 Ln(A) + 3.65
AM Peak Hour:	Ln(T) = 0.80 Ln(A) + 1.55; I/B = 88%, O/B = 12%
PM Peak Hour:	T = 1.12 (A) + 78.81; I/B = 17%, O/B = 83%

Table 11 (cont.)Trip Generation Rates for Related Projects

Shopping Center (per 1,0	<u>00 sf) – LU 820</u>
Daily:	Ln(T) = 0.65 Ln(A) + 5.83
AM Peak Hour:	Ln(T) = 0.60 Ln(A) + 2.29; I/B = 61%, O/B = 39%
PM Peak Hour:	Ln(T) = 0.66 Ln(A) + 3.40; I/B = 48%, O/B = 52%
New Car Sales (per 1,000	<u>) sf) – LU 841</u>
Daily:	T = 33.34 (A)
AM Peak Hour:	T = 2.05 (A); I/B = 74%, O/B = 26%
PM Peak Hour:	T = 2.64 (A); I/B = 39%, O/B = 61%
Electronic Superstore (pe	<u>r 1,000 sf) – LU 863</u>
Daily:	T = 45.04 (A)
AM Peak Hour:	T = 0.28 (A); I/B = 53%, O/B = 47%
PM Peak Hour:	T = 4.50 (A); I/B = 49%, O/B = 51%
Pharmacy/Drugstore withc	out Drive-Through Window (per 1,000 sf) – LU 880
Daily:	T = 90.06 (A)
AM Peak Hour:	T = 3.20 (A); I/B = 59%, O/B = 41%
PM Peak Hour:	T = 8.42 (A); I/B = 50%, O/B = 50%
Quality Restaurant (per 1,	<u>,000 sf) – LU 931</u>
Daily:	T = 89.95 (A)
AM Peak Hour ^[1] :	T = 0.81 (A); I/B = 61%, O/B = 39%
PM Peak Hour:	T = 7.49 (A); I/B = 67%, O/B = 33%
Fast-Food Restaurant with	nout Drive-Through Window (per 1,000 sf) – LU 933
Daily:	T = 716.00 (A)
AM Peak Hour:	T = 43.87 (A); I/B = 60%, O/B = 40%
PM Peak Hour:	T = 26.15 (A); I/B = 51%, O/B = 49%
Fast-Food Restaurant with	n Drive-Through Window (per 1,000 sf) – LU 934
Daily:	T = 496.12 (A)
AM Peak Hour:	T = 53.11 (A); I/B = 51%, O/B = 49%
PM Peak Hour:	T = 34.64 (A); I/B = 52%, O/B = 48%

Table 11 (cont.)Trip Generation Rates for Related Projects

Gas Station with Convenience Market (per 1,000 sf) - LU 945

Daily ^[2] :	T = 870.25 (A)
AM Peak Hour:	T = 77.68 (A); I/B = 51%, O/B = 49%
PM Peak Hour:	T = 96.37 (A); I/B = 50%, O/B = 50%

Automated Car Wash (per 1,000 sf)

Daily ^[3] :	T = 156.89 (A)
AM Peak Hour ^[3] :	T = 6.28 (A); I/B = 50%, O/B = 50%
PM Peak Hour*:	T = 14.12 (A); I/B = 50%, O/B = 50%

Where:

Т	=	trip ends	A =	building area in 1,000's of square feet
I/B	=	inbound percentages	D =	dwelling unit
O/B	=	outbound percentages	S =	seat
LU	=	ITE land use code	St =	student

Notes:

- [1] Directional percentages not available; assumed high-turnover (sit-down) restaurant (LU 932) directional percentages for AM peak hour.
- [2] Daily rate not available; estimated by applying multiplier of 5 to sum of AM and PM peak hour rates.
- [3] Rates not available; derived by applying proportion of SANDAG PM peak hour rates versus AM peak hour and daily rates.

Sources:

Trip Generation, 7th Edition, Institute of Transportation Engineers, Washington DC, 2003.

* San Diego Traffic Generators, San Diego Association of Governments (SANDAG), 2002.

Future Highway Improvements

A review of the City of Los Angeles' planned improvements for the study area indicates that there are future ongoing improvements to the roadway system in the study area. LADOT has been installing the Automated Traffic Surveillance and Control System (ATSAC) city-wide since the first ATSAC system was completed just prior to the 1984 Olympic Games in Los Angeles. This ATSAC system provides transportation engineers with the means to change traffic signal timing from a centralized location based on real time data on traffic conditions and can increase the capacity of an intersection by at least seven percent. Five of the six signalized study intersections are part of the Victory/Ventura Corridor ATSAC System. This system is being supplemented with additional capacity increasing technology which relates real time traffic Conditions between signals and optimizes signal timing known as Adaptive Traffic Control System (ATCS). Most of the signalized intersections within the vicinity of the proposed project, including four study intersections, have also been connected to the City's ATCS network. Therefore, the analysis of existing and future traffic conditions included the effects of ATSAC/ATCS implementation at the study intersections.

Additionally, many traffic control improvements have already been implemented at critical points within the existing highway network serving the proposed project. For example, parking restrictions are enforced along critical intersection approaches where necessary. Left-turn channelizations are incorporated in the roadway geometrics throughout this portion of the San Fernando Valley. Future street widenings and improvements listed under the City of Los Angeles 2002-2005 Capital Improvement Program in the project vicinity include major transportation corridors such as Van Nuys Boulevard, Coldwater Canyon Avenue and Magnolia Boulevard. Additional future improvements on Van Nuys Boulevard include the modification of its intersection with the existing westbound ramps

for the Ventura Freeway for easier freeway access and to relieve local traffic congestion. Coldwater Canyon Avenue is planned to be widened to provide dual left-turn lanes to the Ventura Freeway on-ramps. Magnolia Boulevard is also planned to be widened between Colfax Avenue and Laurel Canyon Boulevard. It should be noted that these conceptual street projects, developed through a collaborative effort by LADOT, Department of City Planning, Bureaus of Engineering and Street Services, are in the earliest stages of development and have not been submitted for funding. Thus, for analysis purposes of future traffic conditions, as discussed in the following section, none of these future street improvements were assumed since it is uncertain if these improvements would be fully implemented by the project buildout year.

Analysis of Future (2014) Traffic Conditions (With and Without Project)

The analysis of future traffic conditions at the study intersections for future year (2014) was performed using the same CMA methodology described earlier. For future traffic conditions, the roadway system was considered to not have been improved or changed from the existing conditions. Traffic volumes for these conditions were developed as follows:

- As described earlier, the Without Project (2014) traffic volumes were obtained by combining growth-factored existing volumes and potential traffic from related projects in the study area. The future Without Project intersection volumes for the AM, School PM, and commuter PM peak hours were previously illustrated in Figures 9(a), 9(b), and 9(c) respectively.
- Traffic volumes generated by the project were then combined with the Without Project (2014) volumes to form the "With Project" traffic volumes, as illustrated in Figures 10(a), 10(b) and 10(c). These volumes were used to determine traffic impacts directly attributable to the proposed project.

Table 12 on the following page presents the results of the CMA and LOS analysis of the future (2014) conditions without and with the proposed project. The growth factor and additional cumulative traffic, without the project, would slightly deteriorate conditions at the ten intersections. With the addition of project traffic, peak-hour conditions would change only nominally, depending on the intersection. (The CMA worksheets for future conditions are included in Appendix F.)

Significant Traffic Impact Criteria

According to LADOT policy, a project is deemed to have a significant traffic impact at an intersection when it results in a change in the volume-to-capacity ratio (or CMA value) of 0.010 or more and a final LOS of E or F, a CMA increase of 0.020 or more where the final LOS is D, or a CMA increase of 0.040 or more when the final LOS is C. No significant impacts are deemed to occur at LOS A or B, as these operating conditions exhibit sufficient surplus capacities to accommodate large traffic increases with little effect on traffic flows. Based on these criteria and as indicated in Table 12, three of the ten study intersections (Ventura Boulevard/Stansbury Avenue, Valley Vista Boulevard (south)/ Beverly Glen Boulevard, Valley Vista Boulevard/Stansbury Avenue) are expected to be significantly impacted by the completed project, prior to the implementation of mitigation measures.

Table 12CMA and LOS SummaryFuture (2014) Traffic Conditions - Without and With Project

		Peak	Without	Project	With Project			
No.	Intersection	Hour	СМА	LOS	CMA	LOS	Impact	
1.	Ventura Blvd. & Van Nuys Blvd.	AM School PM Commuter PM	1.253 1.301 1.412	F F F	1.258 1.305 1.414	F F F	0.005 0.004 0.002	
2.	Ventura Blvd. & Beverly Glen Blvd./Tyrone Ave.	AM School PM Commuter PM	0.802 0.989 1.047	D E F	0.809 0.993 1.049	D E F	0.007 0.004 0.002	
3.	Ventura Blvd. & Stansbury Ave.	AM School PM Commuter PM	1.311 1.113 1.197	F F F	1.336 1.130 1.205	F F F	0.025 * 0.017 * 0.008	
4.	Ventura Blvd. & Hazeltine Ave.	AM School PM Commuter PM	0.899 0.813 0.865	D D D	0.901 0.815 0.866	E D D	0.002 0.002 0.001	
5.	Ventura Blvd. & Woodman Ave.	AM School PM Commuter PM	0.981 0.942 1.068	E E F	0.986 0.945 1.070	E E F	0.005 0.003 0.002	
6.	Valley Vista Blvd. & Van Nuys Blvd.	AM School PM Commuter PM	0.732 0.538 0.632	C A B	0.733 0.539 0.632	C A B	0.001 0.001 0.000	
7.	Valley Vista Blvd./Roblar Pl. & Beverly Glen Blvd.	AM School PM Commuter PM	1.106 0.767 0.787	F C C	1.109 0.769 0.789	F C C	0.003 0.002 0.002	
8.	Valley Vista Blvd. (South) & Beverly Glen Blvd.	AM School PM Commuter PM	1.043 1.595 1.655	F F F	1.058 1.605 1.661	F F F	0.015 * 0.010 * 0.006	
9.	Valley Vista Blvd. & Stansbury Ave.	AM School PM Commuter PM	1.131 0.590 0.584	F A A	1.168 0.616 0.594	F B A	0.037 * 0.026 0.010	
10.	Valley Vista Blvd. & Benedict Canyon Dr.	AM School PM Commuter PM	0.360 0.289 0.342	A A A	0.367 0.293 0.345	A A A	0.007 0.004 0.003	

* Denotes significant project traffic impact, prior to implementation of project mitigation.

Residential Street Traffic Impact Analysis

This study also analyzed the potential impacts of traffic on the nearby residential streets surrounding the project site as a result of the completed project. In addition to the analysis of project-related traffic impacts at the ten study intersections, the potential increase of project-related traffic volumes on Stansbury Avenue between Valley Vista Boulevard and the School site have also been addressed. This portion of Stansbury Avenue is the only street designated as a local residential street by the City of Los Angeles that is located on a route used for School access. Collector Streets (i.e., Stansbury Avenue north of Valley Vista Boulevard, and Benedict Canyon Drive south of Ventura Boulevard) and Secondary Highways (i.e., Valley Vista Boulevard and Beverly Glen Boulevard) generally do not require a local residential street impact analysis because of their roadway classification.

In order to address local residential neighborhood concerns, a residential street impact analysis was prepared for Valley Vista Boulevard east and west of Stansbury Avenue, Stansbury Avenue north of Valley Vista Boulevard, and nearby residential streets in the area such as Greenleaf Street, Dickens Street, and Camino de la Cumbre. Coy Drive was not included in the residential street impact analysis due to its distance from the project site and the fact that it does not provide reasonably direct site access due to its circuitous alignment. Therefore, whatever project-related traffic that might use Coy Drive would be negligible, if any. Furthermore, the project would limit the use of the Camino de la Cumbre gate and provide an efficient loading and parking area which would accommodate School-related traffic via the Stansbury Avenue main entrance.

Neighborhood residential street impacts are evaluated by LADOT based on the average daily traffic (ADT) along the street segment analyzed. For the purpose of this calculation, "With Project" is defined as the future study year projected ADT, including ambient and

related project traffic growth plus project traffic. Incremental project-related increases in the daily traffic of a residential street are determined to be significant based upon the following LADOT criteria summarized in Table 13.

Table 13Residential Street Significant Impact Criteria

Projected Average Daily Traffic With Project (Final ADT)	Project-Related Increase in ADT
0 to 999	16 percent or more of final ADT
1,000 or more	12 percent or more of final ADT
2,000 or more	10 percent or more of final ADT
3,000 or more	8 percent or more of final ADT

Source: LADOT Traffic Study Policies and Procedures, Revised May 2001.

As mentioned earlier in the report, 24-hour traffic counts were conducted in October 2004 and have been used to calculate the project-related traffic impacts on the eight locations set forth in Table 14. (The existing daily traffic counts for the eight locations are in Appendix E.) A growth factor of two percent compounded annually was applied to nearly all these counts to reflect existing (2006) traffic conditions. No growth factor was applied to the traffic volume on Stansbury Avenue south of Valley Vista Boulevard as this segment is not a through street and, therefore, not expected to experience an increase in traffic volume due to through traffic. For future (2014) daily traffic conditions, these counts were then growth-factored by two percent per year (except for Stansbury Avenue south of Valley Vista Boulevard) with the addition of related project volumes. It is estimated that the project would add approximately 293 trips per day to Stansbury Avenue south of Valley Vista Boulevard since this directly accesses the School's main entrance. Table 14 shows that according to the above criteria, the project would result in one significantly impacted street segment location at Stansbury Avenue south of Valley Vista Boulevard.

The School would implement an enhanced Transportation Demand Management (TDM) Plan to mitigate this impact to a level of insignificance as addressed in the Mitigation Measures section of this report.

Exist				Future (2	2014) ADT	
	Street Segment	(2006) ADT	Without Project	Project Traffic ^[1]	With Project	% Project Traffic
1.	Stansbury Ave. north of Valley Vista Blvd.	3,427	4,253	156	4,409	3.54 %
2.	Stansbury Ave. south of Valley Vista Blvd.	2,366	2,506	293	2,799	10.47 % *
3.	Valley Vista Blvd. east of Stansbury Ave.	4,110	5,301	66	5,367	1.23 %
4.	Valley Vista Blvd. west of Stansbury Ave.	4,609	5,787	80	5,867	1.36 %
5.	Greenleaf St. west of Stansbury Ave.	1,742	2,041	0	2,041	0 %
6.	Dickens St. west of Stansbury Ave.	3,527	4,132	0	4,132	0 %
7.	Camino de la Cumbre west of Stansbury Ave.	1,189	1,393	9	1,402	0.64 %
8.	Camino de la Cumbre south of Valley Vista Blvd.	977	1,145	36	1,181	3.05 %

Table 14Residential Street Traffic Impact Analysis

^[1] Accounts for limited site access via Camino de la Cumbre for some service vehicles and deliveries, some employees, athletic field access, and emergency access.

Impacts on Regional Transportation System

The Congestion Management Program (CMP) was enacted by Proposition 111 in 1990 with the intent of providing the analytical basis for transportation decisions through the State Transportation Improvement Program (STIP) process. A countywide approach has been established by the MTA, the local CMP agency, designating a highway network that includes all state highways and principal arterials within the County and monitoring the network's LOS to implement the statutory requirements of the CMP. This monitoring of the

CMP network is one of the responsibilities of local jurisdictions. If LOS standards deteriorate, then local jurisdictions must prepare a deficiency plan to be in conformance with the countywide plan.

The CMP traffic impact analysis (TIA) requires that all freeway segments where the project adds 150 or more trips in any direction during the peak hours be analyzed. An analysis is also required at all CMP intersections where the project will add 50 or more trips during the peak hour. For purposes of the CMP analysis, a significant traffic impact occurs when a proposed project increases traffic demand on a CMP facility by two percent of capacity, causing or worsening LOS F.

Two intersections nearest to the project site along Ventura Boulevard at Woodman Avenue and Sepulveda Boulevard are designated CMP monitoring intersections. The addition of project traffic at these two study intersections would result in impacts substantially less than two percent. A review of the project trip distribution and net project traffic additions to the study vicinity shows that the proposed project would not add 50 or more trips to either of the CMP intersections located on Ventura Boulevard. At most, it is estimated that for the Ventura Boulevard/Woodman Avenue intersection less than one mile northeast of the project site, there would be 18 project trips during the AM peak hour, 11 project trips during the School PM peak hour, and six project trips during the commuter PM peak hour traversing this intersection. Furthermore, as previously analyzed in Table 12, no significant intersection impact would be anticipated to occur at this CMP location due to the proposed project. For the intersection of Ventura Boulevard/Sepulveda Boulevard approximately two miles northwest of the project site, no more than 25 project trips during the AM peak hour, 15 project trips during the School PM peak hour, and eight project trips during the commuter PM peak hour, be added to this

intersection. As these volumes are well below the threshold of 50 trips, no further CMP intersection analysis is warranted.

In addition to the intersection monitoring locations, the CMP requires that any freeway segment where a project is expected to add 150 or more trips in any direction during either the morning or afternoon peak hours also be analyzed. According to Table 7, for the proposed project, the maximum number of directional trips would be 42 inbound trips during the AM peak hour. Therefore, as the peak-hour trips expected to use the freeway network for project site access are substantially less than the freeway threshold of 150 directional trips, no significant project impact to any CMP freeway monitoring location is anticipated and no additional freeway analysis is necessary.

MITIGATION MEASURES

In order to mitigate significant traffic impacts attributable to the School Campus Enhancement Plan, and to address existing traffic, access, parking and circulation concerns near the School, it is recommended that the project implement the following measures:

- <u>Transportation Demand Management (TDM)</u> Implement an enhanced TDM Plan that improves carpooling and bus ridership for students and achieves at least a 40 percent reduction in project daily trips. The ultimate goal of the TDM Plan would be to reduce project trips so there would be no increase in daily trips above that currently generated by the site. Details of the preliminary TDM Plan are provided in a separate document. The final TDM Plan would be refined in consultation with LADOT.
- <u>Ventura Boulevard and Stansbury Avenue</u> Stripe Stansbury Avenue to provide one left-turn lane and one right-turn-only lane in the northbound direction. The removal of approximately six metered parking spaces would be required along the east side of Stansbury Avenue south of the intersection.
- <u>Valley Vista Boulevard and Stansbury Avenue</u> Stripe Stansbury Avenue to provide one left-turn/through shared lane and one right-turn-only lane in the southbound direction. The removal of approximately three on-street parking spaces would be required along the west side of Stansbury Avenue north of the intersection.

With implementation of the above measures, project traffic impacts would be reduced to less than significant levels, as shown in Table 15(a) for the intersection impacts and Table 15(b) for the residential street impact.

Table 15(a)CMA and LOS SummaryFuture (2014) Traffic Conditions - With Project, Plus Mitigation

			With	out				W	ith Pro	ject
		Peak	k Project With Project			oject	Plus Mitigation			
No.	Intersection	Hour	CMA	LOS	СМА	LOS	Impact	CMA	LOS	Impact
3.	Ventura Blvd. &	AM	1.311	F	1.336	F	0.025 *	1.151	F	-0.160
	Stansbury Ave.	School PM	1.113	F	1.130	F	0.017 *	1.039	F	-0.074
		Commuter PM	1.197	F	1.205	F	0.008	1.113	F	-0.084
8.	Valley Vista Blvd. (S) &	AM	1.043	F	1.058	F	0.015 *	1.052	F	0.009
	Beverly Glen Blvd.	School PM	1.595	F	1.605	F	0.010 *	1.601	F	0.006
		Commuter PM	1.655	F	1.661	F	0.006	1.658	F	0.003
9.	Valley Vista Blvd. &	AM	1.131	F	1.168	F	0.037 *	0.886	D	-0.245
	Stansbury Ave.	School PM	0.590	А	0.616	В	0.026	0.601	В	0.011
		Commuter PM	0.584	А	0.594	А	0.010	0.586	А	0.002

* Denotes a significant project traffic impact, prior to mitigation implementation.

Table 15(b)

Residential Street Traffic Impact Analysis

Future (2014) Average Daily Traffic Conditions - With Project, Plus Mitigation

Street Segment	Without	Project	With	% Project	W/ Project +	% Project
	Project	Traffic	Project	Traffic	Mitigation	Traffic
 Stansbury Ave. south of Valley Vista Blvd. 	2,506	293	2,799	10.47 % *	2,682	6.56 %

* Denotes a significant project traffic impact, prior to mitigation implementation.

In addition, the following project feature has been volunteered by the School which would improve overall traffic conditions within and around the project site.

 <u>Access and Parking Improvements</u> – A new arrival plaza and enclosed parking facility would be constructed, which would ensure that no vehicular queuing and no on-street parking attributable to the School occurs within the vicinity of the School.

CONSTRUCTION TRAFFIC AND PARKING IMPACTS

Overall project construction activities are estimated to occur over an approximate 80month period, beginning approximately May 2009 and ending approximately December 2015. The construction of minor renovation projects would occur over an approximate five-month period of May-September 2013 or May-September 2014. The proposed construction work days and hours are expected to be Monday through Friday, 7:00 AM to 5:00 PM each day, and Saturday, 8:00 AM to 5:00 PM.

It should be noted that as previously discussed, full student enrollment is expected to be achieved by approximately 2014. However, construction of all of the campus enhancement facilities would take longer to complete, hence the one-year difference in operational and construction time frames.

Construction activities would be sequenced in several phases as shown below in Table 16, in order to allow School operations to continue during project construction.

Table 16Project Construction Phases

<u>Phase</u>	Project Building	Approximate Time Period
1	New Library and Technology Center	May '09 through Apr. '10
2	New Middle and Upper School Main Academic Building and Parking Facility	May '10 through Oct. '11
3A	New Academic Building West	May '13 through Apr. '14
3B	Addition and Renovation of Existing Academic Building South	May '14 through Apr. '15
3C	New Outdoor Aquatic Center and Disney Pavilion Renovation	May '14 through Dec. '15
3D	Lower School Renovation	May '13 through Sep. '13 or
		May '14 through Sep. '14

As can be seen, Phase 1 would encompass an approximate 12-month time frame. For purposes of a conservative analysis, it was assumed that Phase 2 would immediately follow and cover a period of approximately 18 months, after which there could be a break of up to approximately 18 months. Phase 3A would have a duration of approximately 12 months, after which both Phase 3B and Phase 3C would start. Phase 3B would occur over approximately 12 months, while Phase 3C would take approximately 20 months. The shortest phase, 3D, would overlap either with Phase 3A or 3B and 3C. For purposes of a "worst" case analysis, the overlapping of Phases 3B, 3C and 3D was assumed. It should be noted that the above construction schedule is tentative, and that changes may occur due to unforeseen circumstances, in which case the above phasing may need to be adjusted. It should also be noted that there would likely be an approximate two-month period for minor preparatory work before the start of Phases 1, 2 and 3A. This minor preparatory work would involve only a small number of workers and no heavy-duty equipment or vehicles.

Construction workers would be expected to arrive at the site prior to the 7:00 AM start time, with most of them leaving by 4:00 PM and some soon thereafter. Once on-site, it is anticipated that the construction workers would stay on-site until their quitting time. Generally, construction supervisors/managers would arrive earlier and leave later than the construction workers, and would be expected to make trips to and from the site during work hours. Visitor trips at the site are generally estimated to be between 8:00 AM and 5:00 PM. Construction truck trips are estimated to arrive and depart between 7:00 AM and 5:00 PM. On Saturday, the initial arrival times to the site would be approximately one hour later. For purposes of a conservative analysis reflecting maximum construction traffic generated at the site and on surrounding streets, it was assumed that all construction-related vehicles, including construction personnel vehicles, would park or be stored on-site throughout the construction process.

During most months of construction, it is expected that construction activity would fluctuate on a weekly basis, depending largely on the number of workmen and construction trucks involved. Again, for a conservative analysis, the highest daily construction-related traffic generated per week each month was analyzed and assumed to represent the other weeks of the month as well.

The construction activities that may be involved in each phase or some portion of it include, but are not necessarily limited to the following:

- o Clearing
- o Demolition
- o Grading
- o Retaining walls
- o Caissons
- o Foundations
- o Structures
- o Structural improvements
- o Mechanical systems
- o Electrical systems
- o Plumbing systems
- o Walls/membranes
- o Finishes
- o Trenching
- o Paving & hardscape
- o Fine grade landscape
- o Inspection & clean-up

It is estimated that there would be up to approximately five construction

supervisors/managers on-site on a daily basis. The number of construction workers

on-site per day would vary according to the construction phase, as estimated below.

^	Phase 1	Approx 20 10 workers	
0	1 11036 1	Appion. 20 - 40 workers	

o Phase 2 Approx. 25 – 100 workers

0	Phase 3A	Approx. 20 – 30 workers
0	Phase 3B	Approx. 20 – 40 workers
0	Phase 3C	Approx. 15 – 40 workers
0	Phase 3D	Approx. 10 – 40 workers

It is estimated that when phases overlap, the total number of construction workers on-site per day would be approximately as follows:

0	Phases 3B, 3C & 3D, 5 months overlap	Approx. 65 – 110 workers
0	Phases 3B & 3C, 6 months overlap	Approx. 55 – 70 workers

No staging area for construction trucks has yet been confirmed; however, for the purposes of this analysis, it is anticipated that construction trucks would stage on Ventura Boulevard, which is frequently used for such purposes. The type, purpose and frequency of the construction trucks during each phase are estimated below in Table 17.

Table 17
Construction Truck Activity

<u>Phase</u>	Truck Type	Purpose and Estimated Trips
1	Delivery, 2-axle Bob Tail, medium-duty	Avg. 3 I/B & 3 O/B trips/day; 6 cy solids, 10-20 cy volume/truck
	Delivery/Hauling, 3-axle (10-wheel), heavy-duty	Avg. 2 I/B & 2 O/B trip/day; 10 cy solids, 20-40 cy volume/truck
	Delivery/Hauling, 5-axle (18-wheel), heavy-duty	Avg. 3 I/B & 3 O/B trip/day; 15 cy solids, 40-60 cy volume/truck; approx. 14 days
	Concrete, heavy-duty	Up to 13 I/B & 13 O/B trips/day; 7-12 cy/truck; approx. 14 days
	Bottom Dump/Soil & Aggregate, 2 trailers, heavy-duty	On-site only during excavation; 20 cy solids/truck; approx. 14 days
	Special, heavy-duty	Avg. 2 I/B & 2 O/B trips/day; various needs

Table 17 (cont.) Construction Truck Activity

<u>Phase</u>	Truck Type	Purpose and Frequency
2	Delivery, 2-axle Bob Tail,	Avg. 5 I/B & 5 O/B trips/day; 6 cy solids, 10-20 cy volume/truck
	Delivery/Hauling, 3-axle (10-wheel), heavy-duty	Avg. 4 I/B & 4 O/B trips/day; 10 cy solids, 20-40 cy volume/truck
	Delivery/Hauling, 5-axle (18-wheel), heavy-duty	Avg. 4 I/B & 4 O/B trips/day; 15 cy solids, 40-60 cy volume/truck
	Concrete, heavy-duty	Up to 30 I/B & 30 O/B trips/day; 7-12 cy/truck, approx. 100 days
	Bottom Dump/Soil & Aggregate, 2 trailers, heavy-duty	On-site only; 20 cy solids/truck
	Special, heavy-duty	Avg. 2 I/B & 2 O/B trips/day; various needs
3A	Delivery, 2-axle Bob Tail, medium-duty	Same as Phase 1
	Delivery/Hauling, 3-axle (10-wheel), heavy-duty	Same as Phase 1
	Delivery/Hauling, 5-axle (18-wheel), heavy-duty	Same as Phase 1
	Concrete, heavy-duty	Same as Phase 1
	Bottom Dump/Soil & Aggregate, 2 trailers, heavy-duty	Up to 1 I/B & 1 O/B trip/day; 20 cy solids/truck; approx. 21 days
	Special, heavy-duty	Avg. 1 I/B & 1 O/B trip/day; various needs
3B	Delivery, 2-axle Bob Tail, medium-duty	Same as Phase 1
	Delivery/Hauling, 3-axle (10-wheel), heavy-duty	Same as Phase 1
	Delivery/Hauling, 5-axle (18-wheel), heavy-duty	Same as Phase 1
	Concrete, heavy-duty	Up to 9 I/B & 9 O/B trips/day; 7-12 cy/truck; approx. 14 days
	Bottom Dump/Soil & Aggregate, 2 trailers, heavy-duty	Up to 1 I/B & 1 O/B trip/day; 20 cy solids/truck; approx. 7 days
	Special, heavy-duty	Same as Phase 3A

Table 17 (cont.)Construction Truck Activity

<u>Phase</u>	Truck Type	Purpose and Frequency
3B	Delivery, 2-axle Bob Tail, medium-duty	Same as Phase 1
	Delivery/Hauling, 3-axle (10-wheel), heavy-duty	Same as Phase 1
	Delivery/Hauling, 5-axle (18-wheel), heavy-duty	Same as Phase 1
	Concrete, heavy-duty	Up to 9 I/B & 9 O/B trips/day; 7-12 cy/truck; approx. 14 days
	Bottom Dump/Soil & Aggregate, 2 trailers, heavy-duty	Up to 1 I/B & 1 O/B trip/day; 20 cy solids/truck; approx. 7 days
	Special, heavy-duty	Same as Phase 3A
3C	Delivery, 2-axle Bob Tail medium duty	Avg. 3 I/B & 3 O/B trips/day; 6 cy solids, 10-20 cy volume/truck
	Delivery/Hauling, 3-axle (10-wheel), heavy-duty	Avg. 3 I/B & 3 O/B trips/day; 10 cy solids, 20-40 cy volume/truck
	Delivery/Hauling, 5-axle (18-wheel), heavy-duty	Avg. 3 I/B & 3 O/B trips/day; 15 cy solids, 40-60 cy volume/truck
	Concrete, heavy-duty	Up to 9 I/B & 9 O/B trips/day; 7-12 cy/truck; approx. 14 days
	Bottom Dump/Soil & Aggregate, 2 trailers, heavy-duty	Up to 1 I/B & 1 O/B trip/day; 20 cy solids/truck; approx. 14 days
	Special, heavy-duty	Avg. 1 I/B & 1 O/B trip/day; various needs
3D	Delivery, 2-axle Bob Tail medium duty	Avg. 2 I/B & 2 O/B trips/day; 6 cy solids, 10-20 cy volume/truck
	Delivery/Hauling, 3-axle (10-wheel), heavy-duty	Avg. 2 I/B & 2 O/B trips/day; 10 cy solids, 20-40 cy volume/truck
	Delivery/Hauling, 5-axle (18-wheel), heavy-duty	Avg. 1 I/B & 1 O/B trip/day; 15 cy solids, 40-60 cy volume/truck
	Concrete, heavy-duty	Up to 1 I/B & 1 O/B trip/day; 7-12 cy/truck; approx. 7 days
	Special, heavy-duty	Avg. 1 I/B & 1 O/B trip/day; various needs

The construction work force and visitors would be from all parts of the region and,

therefore, would arrive from all directions. Based on discussions with the contractor, it is

likely that most of this traffic would be using the Ventura or San Diego Freeway for most of their travel to the general site area. From these freeways, this traffic would be expected to use the routes providing the most direct site access. Near the site, it is estimated that approximately 51 percent would arrive from the north via Stansbury Avenue; 2 percent from the south via Beverly Glen Boulevard; 15 percent from the east via Valley Vista Boulevard; and 32 percent from the west via Valley Vista Boulevard.

The location receiving the debris and other materials excavated from the site during clearing, demolition and grading has not been established. However, for purposes of this analysis, it was assumed that the Bradley landfill in Sun Valley would be the receptor site. It is anticipated that the trucks hauling these materials would travel north on Stansbury Avenue to Ventura Boulevard; east on Ventura Boulevard to Woodman Avenue; north on Woodman Avenue to the Ventura Freeway; east on the Ventura Freeway to the Hollywood Freeway; and north on the Hollywood Freeway to eventually reach the landfill.

Delivery, concrete and special oversize trucks are expected to originate from various parts of the region. On average, it is estimated that the great majority of these trucks, approximately 69 percent, would arrive via Stansbury Avenue north of Valley Vista Boulevard. The assignment of the remaining 31 percent is estimated as approximately 27 percent via Van Nuys Boulevard and 1 percent via Beverly Glen Boulevard to Valley Vista Boulevard, and approximately 3 percent (medium-duty or lighter delivery vehicles) via Valley Vista Boulevard west of Van Nuys Boulevard. None of these vehicles are expected from the south.

Construction Traffic Impact Analysis

LADOT has formulated criteria to identify potential significant traffic impacts associated with the construction of a project. Construction impacts are relatively short-term effects, but there may be situations where such impacts could, nevertheless, be considered

significant and should be quantitatively assessed. The LADOT construction traffic impact criteria are as follows:

A quantitative analysis of construction-related traffic impacts attributable to a project shall be required, provided all of the following criteria have been determined to be applicable:

- That hillside residential streets proximate to the construction site are expected to provide primary access for construction-related traffic;
- That the duration of the construction period, including site preparation, clearance and/or grading, is expected to exceed 12 months; and
- That an average of 120 or more construction-related trips per day (in Passenger Car Equivalents or PCE) are expected to be generated at the site driveway(s) or on the street(s) abutting the site, prior to any mitigation.

The calculation of construction-related traffic impacts shall be made on segments of those hillside residential streets proximate to the site that are expected to provide primary access for construction-related traffic. A hillside residential street shall be deemed significantly impacted by construction-related traffic, based on the following increase in projected average daily traffic (ADT) volumes:

Projected Average Daily Traffic with Construction-Related Traffic (Final ADT in PCE)	Construction-Related Traffic Increase in ADT
0 to 999	120 or more trips of final ADT
1,000 to 1,999	12 percent or more of final ADT
2,000 to 2,999	10 percent or more of final ADT
3,000 or more	8 percent or more of final ADT

It was determined that all of the above criteria applied to the proposed project. Therefore, a construction traffic impact analysis was prepared. As indicated previously, it was assumed that all construction supervisors, managers and workers, and site visitors would park their vehicles on-site. Construction truck trips were converted to Passenger Car Equivalents (PCEs) by using a multiplier factor. According to Interim Materials on <u>Highway Capacity</u>, Circular Number 212, truck trips would typically be converted using a PCE multiplier of 2.0. However, in this case, to further ensure a conservative analysis and more fully account for the hillside terrain around the site, a PCE factor of 2.5 was applied to medium-duty or lighter delivery trucks, while a PCE factor of 3.0 was applied to heavy-duty delivery/hauling, concrete, bottom dump and special use trucks.

Figure 11 graphically depicts the estimated daily generation of construction-related trips (converted to PCEs as appropriate) for each month of construction activity. As can be seen, construction traffic is expected to range from approximately 84 to 416 trips per day, with an average of 176 trips per day. In addition, Table 18 provides a monthly summary of both the estimated daily construction traffic and the amount generated during six selected peak hours, i.e., 6:00-7:00 AM, 7:00-8:00 AM, 8:00-9:00 AM, 3:00-4:00 PM, 4:00-5:00 PM and 5:00-6:00 PM.

Table 18	
Estimated Project Construction	Traffic

Approximate		6-7	AM	7-8 AM		8-9 AM		3-4 PM		4-5 PM		5-6 PM	
Month & Phase	Daily	I/B	O/B	I/B	O/B	I/B	O/B	I/B	O/B	I/B	O/B	I/B	O/B
1. May 2009 Phase 1	140	10	0	7	2	9	4	0	12	0	3	0	0
2. June 2009 Phase 1	144	10	0	8	2	9	5	0	13	0	3	0	0
3. July 2009 Phase 1	166	12	0	10	2	10	7	0	15	0	4	0	0
4. August 2009 Phase 1	98	14	0	5	1	4	2	0	11	0	4	0	1
5. September 2009 Phase 1	112	13	0	7	0	6	4	0	12	0	4	0	1
6. October 2009 Phase 1	98	13	0	6	0	4	3	0	11	0	4	0	1
7. November 2009 Phase 1	104	16	0	6	0	4	3	0	13	0	5	0	1
8. December 2009 Phase 1	108	16	0	7	0	4	3	0	15	0	5	0	1
9. January 2010 Phase 1	90	16	0	5	0	3	2	0	13	0	5	0	1
10. February 2010 Phase 1	100	20	0	6	0	3	2	0	17	0	6	0	1
11. March 2010 Phase 1	128	20	0	8	0	5	4	0	19	0	6	0	1
12. April 2010 Phase 1	122	15	0	8	1	6	4	0	14	0	5	0	1
13. May 2010 Phase 2	210	24	0	12	2	11	7	1	25	0	8	0	1
14. June 2010 Phase 2	284	28	0	17	4	16	10	0	32	0	9	0	1
15. July 2010 Phase 2	336	28	0	19	7	21	12	0	34	0	9	0	1
16. August 2010 Phase 2	228	33	0	14	3	10	6	1	31	0	12	0	1
17. September 2010 Phase 2	342	33	0	19	6	19	12	1	37	0	12	0	1
18. October 2010 Phase 2	214	30	0	14	2	9	6	1	29	0	11	0	1
19. November 2010 Phase 2	236	28	0	14	4	12	7	1	29	0	10	0	1
20. December 2010 Phase 2	230	28	0	14	4	11	7	1	29	0	10	0	1
21. January 2011 Phase 2	172	28	0	11	2	6	4	1	26	0	10	0	1
22. February 2011 Phase 2	196	38	0	12	2	9	5	1	33	0	12	0	1
23. March 2011 Phase 2	154	37	0	10	0	4	2	0	29	0	12	0	1
24. April 2011 Phase 2	186	42	0	12	1	7	4	1	35	0	14	0	1
25. May 2011 Phase 2	184	42	0	12	1	7	4	1	35	0	14	0	1
26. June 2011 Phase 2	216	47	0	14	2	7	4	1	40	0	16	0	2
27. July 2011 Phase 2	212	47	0	14	2	7	4	1	40	0	16	0	2
Table 18 (cont.)Estimated Project Construction Traffic

Approximate		6-7	AM	7-8	AM	8-9 AM		3-4	PM	4-5	PM	5-6 PM	
Month & Phase	Daily	I/B	O/B	I/B	O/B	I/B	O/B	I/B	O/B	I/B	O/B	I/B	O/B
28. August 2011 Phase 2	206	47	0	14	1	5	4	1	40	0	16	0	2
29. September 2011 Phase 2	190	44	0	13	0	6	5	1	38	0	14	0	1
30. October 2011 Phase 2	152	38	0	9	0	3	3	1	32	0	12	0	1
31. November 2011	0	0	0	0	0	0	0	0	0	0	0	0	0
32. December 2011	0	0	0	0	0	0	0	0	0	0	0	0	0
33. January 2012	0	0	0	0	0	0	0	0	0	0	0	0	0
34. February 2012	0	0	0	0	0	0	0	0	0	0	0	0	0
35. March 2012	0	0	0	0	0	0	0	0	0	0	0	0	0
36. April 2012	0	0	0	0	0	0	0	0	0	0	0	0	0
37. May 2012	0	0	0	0	0	0	0	0	0	0	0	0	0
38. June 2012	0	0	0	0	0	0	0	0	0	0	0	0	0
39. July 2012	0	0	0	0	0	0	0	0	0	0	0	0	0
40. August 2012	0	0	0	0	0	0	0	0	0	0	0	0	0
41. September 2012	0	0	0	0	0	0	0	0	0	0	0	0	0
42. October 2012	0	0	0	0	0	0	0	0	0	0	0	0	0
43. November 2012	0	0	0	0	0	0	0	0	0	0	0	0	0
44. December 2012	0	0	0	0	0	0	0	0	0	0	0	0	0
45. January 2013	0	0	0	0	0	0	0	0	0	0	0	0	0
46. February 2013	0	0	0	0	0	0	0	0	0	0	0	0	0
47. March 2013	0	0	0	0	0	0	0	0	0	0	0	0	0
48. April 2013	0	0	0	0	0	0	0	0	0	0	0	0	0
49. May 2013 Phase 3A	142	10	0	7	3	9	4	0	12	0	3	0	0
50. June 2013 Phase 3A	124	12	0	7	1	7	4	0	13	0	4	0	0
51. July 2013 Phase 3A	166	12	0	10	2	10	7	0	15	0	4	0	0
52. August 2013 Phase 3A	102	16	0	5	1	4	2	0	12	0	5	0	1
53. September 2013 Phase 3A	108	13	0	7	0	5	4	0	12	0	4	0	1
54. October 2013 Phase 3A	98	13	0	6	0	4	3	0	11	0	4	0	1

Table 18 (cont.)Estimated Project Construction Traffic

Approximate		6-7 AM 7-8 AM 8-9 AM		3-4 PM		И 4-5 PM		5-6 PM					
Month & Phase	Daily	I/B	O/B	I/B	O/B	I/B	O/B	I/B	O/B	I/B	O/B	I/B	O/B
55. November 2013 Phase 3A	98	13	0	6	0	4	3	0	11	0	4	0	1
56. December 2013 Phase 3A	106	16	0	6	0	4	3	0	13	0	5	0	1
57. January 2014 Phase 3A	90	16	0	5	0	3	2	0	12	0	5	0	1
58. February 2014 Phase 3A	88	16	0	5	0	3	2	0	12	0	5	0	1
59. March 2014 Phase 3A	118	16	0	7	0	5	4	0	14	0	5	0	1
60. April 2014 Phase 3A	122	15	0	8	1	6	4	0	14	0	5	0	1
61. May 2014 Phase 3B, 3C-Agu, 3D	334	33	0	17	5	16	9	0	34	0	10	0	0
62. June 2014 Phase 3B, 3C-Agu, 3D	374	50	0	21	4	17	10	0	49	0	16	0	0
63. July 2014 Phase 3B, 3C-Agu, 3D	416	48	0	25	4	19	14	0	49	0	16	0	0
64. August 2014 Phase 3B, 3C-Agu, 3D	328	55	0	18	3	12	7	0	46	0	17	0	2
65. September 2014 Phase 3B, 3C-Agu, 3D	282	35	0	17	0	12	9	0	31	0	11	0	2
66. October 2014 Phase 3B, 3C-Agu	192	28	0	12	0	7	5	0	23	0	9	0	2
67. November 2014 Phase 3B, 3C-Agu	226	32	0	13	1	10	7	0	27	0	10	0	2
68. December 2014 Phase 3B, 3C-Agu	190	32	0	10	0	6	4	0	24	0	10	0	2
69. January 2015 Phase 3B, 3C-Agu	206	32	0	11	1	7	5	0	26	0	10	0	2
70. February 2015 Phase 3B, 3C-Agu	186	32	0	10	0	6	4	0	24	0	10	0	2
71. March 2015 Phase 3B, 3C-Agu, 3C-Dis	266	35	0	15	1	10	6	0	31	0	10	0	2
72. April 2015 Phase 3B, 3C-Dis	260	39	0	15	3	12	7	0	36	0	12	0	1
73. May 2015 Phase 3C-Dis	162	18	0	10	2	8	6	0	19	0	6	0	0
74. June 2015 Phase 3C-Dis	132	20	0	8	1	5	4	0	18	0	6	0	1
75. July 2015 Phase 3C-Dis	112	19	0	7	0	4	3	0	16	0	6	0	1
76. August 2015 Phase 3C-Dis	106	20	0	6	0	3	2	0	16	0	6	0	1
77. September 2015 Phase 3C-Dis	122	20	0	7	1	5	3	0	17	0	6	0	1
78. October 2015 Phase 3C-Dis	84	15	0	5	0	2	1	0	11	0	5	0	1
79. November 2015 Phase 3C-Dis	112	16	0	6	1	5	3	0	13	0	5	0	1
80. December 2015 Phase 3C-Dis	84	15	0	5	0	2	1	0	11	0	5	0	1

It should be reiterated that for purposes of a conservative analysis, all of these trips are based on the highest daily construction-related traffic generated per week each month, rather than an average of all of the weeks in each month. As was previously indicated, this analysis is based on the construction schedule that is presently anticipated; however, there may be changes in schedule due to unforeseen circumstances, in which case the construction traffic generation may be more or less than has been estimated for the months shown.

Seventeen street segments, as shown in Figure 12 and listed below, were selected for analysis of construction traffic impacts.^[2]

- 1 Dickens St. between Van Nuys Blvd. and Beverly Glen Blvd.
- 2. Greenleaf St. between Van Nuys Blvd. and Beverly Glen Blvd.
- 3. Greenleaf St. west of Stansbury Ave.
- 4. Valley Vista Blvd. east of Kester Ave.
- 5. Valley Vista Blvd. east of Van Nuys Blvd.
- 6. Valley Vista Blvd. west of Camino de la Cumbre
- 7. Valley Vista Blvd. west of Stansbury Ave.
- 8. Valley Vista Blvd. east of Stansbury Ave.
- 9. Van Nuys Blvd. between Benefit St. and Greenleaf St.
- 10. Beverly Glen Blvd. between Benefit St. and Greenleaf St.
- 11. Beverly Glen Blvd south of Millbrook Dr.
- 12. Camino de la Cumbre south of Valley Vista Blvd.
- 13. Stansbury Ave. between Dickens St. and Greenleaf St.
- 14. Stansbury Ave. north of Valley Vista Blvd.
- 15. Stansbury Ave. south of Valley Vista Blvd.
- 16. Hazeltine Ave. between Dickens St. and Greenleaf St.
- 17. Benedict Canyon Dr. between Ventura Blvd. and Valley Vista Blvd.

^[2] The segments of Valley Vista Boulevard, Van Nuys Boulevard and Beverly Glen Boulevard are classified as Secondary highways, and the segments of Dickens Street, Stansbury Avenue (except south of Valley Vista Boulevard) and Benedict Canyon Drive are classified as Collector Streets. Although these are not local street segments, they have been included in the analysis due to their residential character and anticipated use by construction-related traffic.

Weekday traffic volumes on the 17 study segments were obtained from 24-hour traffic counts conducted in October 2004 and February 2005, nearly all of which were increased by a growth factor of 2.0 percent per year (compounded) to estimate traffic volumes for the existing year of 2006. No growth factor was applied to the traffic volume on Stansbury Avenue south of Valley Vista Boulevard as this segment is not a through street and, therefore, not expected to experience an increase in traffic volume due to through traffic. For each year of construction, the existing volumes were further increased by the 2.0 percent annual growth factor to account for ambient traffic growth (except for Stansbury Avenue south of Valley Vista Boulevard). This is the same growth factor procedure used in the analysis of operational project traffic impacts. Estimated weekday daily trips generated on these segments by related projects were then combined with the growth-factored volumes to create the baseline weekday daily volumes.

Existing (2006) daily traffic volumes for Saturday were determined from 24-hour traffic counts conducted in February and April of 2005 that were also growth-factored by 2.0 percent as described above. The Saturday counts were conducted on the same 17 segments. Following the same procedure as for weekday, traffic due to ambient growth and Saturday trip generation by related projects were added to the existing daily volumes to obtain Saturday baseline daily volumes on the study segments.

The daily construction trips for each month were then distributed and assigned to the 17 study segments, and added to the baseline volumes on those segments. The same amount of construction trips was assumed for both weekday and Saturday conditions. Based on the criteria presented on page 77, an impact assessment was made for each construction month for each study segment, which is presented in Tables G-1 and G-2, Appendix G. This assessment indicates that all significant construction traffic impacts

86

would occur on one street segment only, i.e., Stansbury Avenue south of Valley Vista Boulevard, as follows:

Stansbury Avenue south of Valley Vista Boulevard								
Weekday & Saturday:	8 months: June - July & September 2010, Ph. 2; May - September 2014, Ph. 3B, 3C & 3D							
Saturday Only:	<u>33 months</u> : May - July 2009 & March - April 2010, Ph. 1; May - June 2010, August 2010, October 2010 -							
	October 2011, Ph. 2; April 2014, Ph. 3A; September							
	2014, Ph. 3B, 3C & 3D; October 2014 - June 2015, Ph.							
	3B & 3C; September 2015, Ph. 3C.							

Construction Traffic Measures

0

No feasible physical measures are available to mitigate the significant construction traffic impacts to a level below significance. For example, even if it were possible to temporarily provide additional traffic lanes on some of these streets and thereby disperse traffic volumes into more lanes, such as perhaps through the removal of on-street parking, this would have no quantitative mitigation benefit according to the City's construction traffic impact criteria. These criteria only consider whether a street is deemed a residential street and the amount of daily traffic it carries, regardless of the number of lanes it has. Therefore, under these criteria, the only reasonable alternative mitigation would be to extend the construction time frame so that less construction personnel and vehicles would be present at any given time. However, such a condition would be inefficient, more costly, and more disruptive over the long term to School operations and activities, and possibly to the surrounding residential neighborhood.

Nevertheless, it is recommended that the School implement the following traffic mitigation measures during construction, as these measures are beneficial despite their inability to adequately mitigate the expected short-term impacts to less than significant levels.

87

These measures are in addition to the features of the construction period described below. Note that some of the construction period features and mitigation measures introduced within this section also affect parking and, therefore, are discussed in the next section on parking.

Features of Project Construction Period

- Construction-related vehicles shall not be permitted to arrive at the project site prior to 6:30 AM on weekdays and 7:30 AM on Saturday, except for those vehicles used by persons engaged in supervisory, management or inspection activities.
- All medium-duty and heavy-duty construction trucks shall access the project site via Stansbury Avenue or Valley Vista Boulevard west of Stansbury Avenue. Such vehicles may use Valley Vista Boulevard east of Stansbury Avenue only in cases of emergency.
- No construction-related vehicles shall be allowed on Camino de la Cumbre, except in cases of emergency.
- All construction-related vehicles shall be parked on-site or in off-site parking lots, pursuant to a Temporary Parking Plan. On-street parking of construction-related vehicles shall be prohibited on nearby local residential streets in the area.
- Construction trucks, materials and equipment shall not be staged on Local or Collector Streets, Valley Vista Boulevard, Van Nuys Boulevard, or Beverly Glen Boulevard south of Ventura Boulevard.
- A "hot line" shall be established by the School to receive constructionrelated inquiries.
- A construction relations officer shall be designated by the School to serve as a liaison with the surrounding community and general public, and to respond to their construction-related inquiries.

Recommended Mitigation Measures

- Temporary "Truck Crossing" warning signs shall be placed in each direction in advance of the intersection of Stansbury Avenue and Valley Vista Boulevard.
- A flag person or persons shall be positioned near the project site to assist truck operators in entering and exiting the project area, and to help minimize conflicts with pedestrians and other motorists.
- To the greatest extent possible, the arrival and departure of construction trucks shall be minimized during peak student arrival and departure periods, and peak commuter periods.

Parking During Construction

As previously noted, it was assumed in the construction impact analysis that all construction-related vehicles would directly access the project site in order to reflect the maximum number of construction trips on the surrounding street system. All construction-related vehicles would be parked or stored in designated areas on-site as much as possible. The new parking facility, with approximately 240 spaces, is expected to be completed around January 2011, after which it would be available for construction for construction personnel parking. It is also possible that this facility could be in usable condition for construction personnel parking a few months prior to its completion date. School faculty/staff members would also park in the facility as much as possible after its completion.

However, there is the likelihood that there would be occasions during construction when sufficient space is not available to park all users on-site. On those occasions, the School would implement a parking plan that provides temporary off-site parking for construction workers and, if necessary, faculty/staff and/or students. A shuttle service would be

89

operated between the off-site parking location and the project site. Two possible locations for the off-site parking are the Sherman Oaks Fashion Square parking lot at the southwest corner of Riverside Drive and Woodman Avenue, and the Sunkist building parking lot at the southwest corner of Riverside Drive and Hazeltine Avenue. Both locations are approximately one mile from the project site. Under this parking plan, an adequate parking supply would be available to accommodate all construction- and School-related vehicles without the use of any on-street parking nearby. Therefore, no parking impacts due to construction-related activities are anticipated on the surrounding streets.

The School would also make interim operational changes as necessary to accommodate visitor parking needs. For example, the manner in which parking areas are currently used could be modified or reassigned, and visitor schedules could be revised to minimize overlaps with student drop-off/pick-up periods. Therefore, such interim operational changes, in conjunction with the off-site parking plan, would be expected to result in no parking impacts associated with school-day operations.

Parking demand for after-school athletic events during construction would be addressed through a combination of on-site and off-site parking, as not all of the School's student drop-off/pick-up capacity would be available nor sufficient to accommodate the parking demand of the more popular games. The School would also use its field for overflow stack parking during its more popular non-field athletic games, with team practices that rely on the field scheduled around these game dates. In addition, the School would schedule its more popular interscholastic field games at "away" sites, such as the opposing team's home field or a nearby neutral site, whenever feasible. The School would manage its calendar for after-school activities to minimize overlap of popular athletic games. Furthermore, the new parking facility would become available approximately in the middle of Phase 2, which would enhance the capability to

90

accommodate the parking demand associated with after-school athletic events. With these features of the project construction period, no parking impacts due to School athletic events would be expected to occur.

The parking features of the project construction period discussed thus far are summarized below. This section concludes with a discussion on parking for annually scheduled school functions during the construction period.

Features of Project Construction Period

- All construction-related vehicles shall be parked on-site to the extent feasible.
- <u>Temporary Parking Plan</u> Temporary off-site parking shall be provided at a designated off-site location(s) such as the Sherman Oaks Fashion Square parking lot or the Sunkist Building lot whenever there is insufficient space for construction workers, faculty/staff members, and/or students to park on-site. The School shall implement a parking plan involving the temporary off-site location(s) and shuttle service to accommodate either the construction workers and/or faculty/staff members.
- <u>School Visitor Parking</u> The School shall make interim operational changes and reassign existing parking areas to accommodate visitor parking needs, as necessary. The School shall manage its visitation schedule during class hours so that parking demand by visitors does not occur during the student arrival and departure periods.
- <u>Parking for After-School Activities</u> Parking demand associated with after-school activities shall be addressed as follows to prevent the use of street parking during construction:
 - The School shall use the athletic field and other open areas on campus, to the extent feasible, for overflow parking during its more popular non-field athletic games. Team practices that rely on the field shall be scheduled around these game dates.

- The School shall schedule its more heavily attended interscholastic field games at "away" sites, such as the opposing team's home field or a nearby neutral site, whenever feasible and when on-site parking is inadequate to accommodate all users.
- The School shall manage its calendar for after-school activities to minimize overlap of popular athletic games.

Annually Scheduled School Functions

The parking needs associated with the most active School functions during construction were also evaluated. The School would not have the new parking facility available for use until approximately nine months after the start of Phase 2. Prior to that availability, the existing surface lots and field area would still be in place and could be used for organized parking as is done presently.

During the latter part of Phase 2 and in subsequent phases, the project site would benefit from access to the new parking facility and circulation areas of the improved campus. Through deployment of organized parking, which may involve stacked parking, valet parking, or other methods, it is estimated that the campus could accommodate up to approximately 375 parked vehicles in the structure and on surface lots and areas.

The features outlined below are designed to manage the anticipated parking demand and provide sufficient parking on-site or at a designated parking lot off-site to prevent the use of nearby street parking when annual School functions are held. These features include the rearrangement of the construction activity schedule around two major annual school functions. Furthermore, the same off-site parking location(s) discussed previously would be used to park faculty/staff members and attendees of the annually scheduled school functions, as necessary. The functions specifically targeted for the latter strategy are the Admissions Open Houses and Back-to-School Nights, both of which have high

faculty/staff attendance. There is no single strategy that would work for all functions, given the various ranges of attendees and operational features of the functions. Instead, the School is proposing a mixture of scheduling strategies and combination use of on-site and off-site parking facilities to manage the amount of parking it would need during the construction period.

Features of Project Construction Period

- <u>Construction Rescheduling and Off-Site Parking</u> No construction-related activity shall be scheduled during the annual Buckley School Fair or the Commencement proceedings, each of which occurs on one Saturday or Sunday each school year. These two scheduled functions shall require the use of on-site parking in combination with an off-site parking program and shuttle service as is currently done.
- <u>Added Parking Management</u> A parking management program shall be undertaken for functions that are anticipated to use the combination of on-site and off-site parking in order to better manage the level of on-site parking usage that is otherwise anticipated. The parking management program shall appeal to the need for families to go above and beyond their regular rideshare behavior to reduce parking demand and understand that on-street parking is prohibited on nearby streets when the annual Buckley School Fair and Commencement proceedings occur.

APPENDICES

APPENDIX A

PARKING DEMAND STUDY

APPENDIX A PARKING DEMAND STUDY

The traffic generation study was also designed to analyze the parking demand at the proposed School site. The parking demands for existing and future conditions with the proposed student enrollment increase are detailed in the pages that follow.

Study Methodology

The vehicle counts were collected by a variety of data collection means. These counts were conducted for a three-day period from Tuesday, October 14 through Thursday, October 16, 2003. This period was during a typical, but heavier than normal school week. Data collection personnel were stationed at the two access points to campus in order to conduct manual peak-hour vehicle counts. These two access points consisted of the main entrance/exit driveway at the southern terminus of Stansbury Avenue and the southern back gate on Camino de la Cumbre. To collect the manual counts, survey personnel manually recorded the turning movements for each vehicle as it entered or exited through each access point. These counts were conducted from 8:00 AM to 9:00 AM and 3:00 PM to 4:00 PM on each of these three days.

Additionally, 24-hour automated counts at the two vehicle access points were conducted for the three-day study period. Automated counters were used to establish trends over the entire duration of each day. The data collection personnel and the automated counters accumulated vehicle trips by 15-minute periods, counting inbound and outbound vehicle trips separately.

On the similar three-day period as when the automated and manual counts were collected at the driveways (Tuesday, October 14 through Thursday, October 16, 2003), parking utilization data were collected by survey personnel at all of the School parking

facilities including the previously leased Sunkist Building Parking Lot at the southwest corner of Riverside Drive and Hazeltine Avenue which was utilized for assigned student drivers. The total parking counts at the School and the remote lot were conducted at 7:15 AM, 10:30 AM, 1:30 PM, and 4:30 PM on each of the study days.

The data, once collected, were assembled in tabular form. Separate tables were prepared for manual and automatic counts. The information presented in the tables and graphs that follow is an average of data collected for all days within the survey period. Each day was separately tabulated for each driveway access to the School. These counts were then combined to form an average daily trip profile at each driveway. The steps used to form this profile were:

- The manual traffic counts for each weekday were compared to those for the other weekdays to assure its consistency. Then, the manual counts at each driveway were then used directly in the subsequent analyses.
- 2. On-site and off-site parking counts were averaged for each of the three study hours (7:15 AM, 10:30 AM, 1:30 PM and 4:00 PM). These averages are also considered the most accurate estimates of parking demand and were similarly utilized in the subsequent analysis directly.
- 3. The automated traffic counts were utilized to develop a daily profile of trips entering and exiting the site and the total vehicles parked on the School at any given time. As a first step, the average number of inbound and outbound vehicles counted in the manual counts was compared to the average of the automated counts for the same peak periods. The resulting ratio was applied to the automated counts to adjust for any a) tendency to over count vehicles crossing the count tubes diagonally, b) tendency to undercount vehicles which simultaneously cross the count tubes, and c) over-counting of three or more axle

vehicles. Separate inbound and outbound factors were developed for each access location.

- 4. The automated count volumes for each 15-minute period not included in the manual counts were separately averaged over the three weekdays for each direction at each driveway. The resulting values were then multiplied by the calibration factors developed in Step 3. These values were combined with the manual count averages for the peak periods to produce a profile of average vehicles entering and exiting each gate by a 15-minute period. A final balancing of volumes was then performed so that the estimates for the total volumes entering the site were equal to the total volumes exiting the site. This was accomplished by adjusting the automated count calibration factors so that both the total inbound and the total outbound vehicle estimates were equal to one-half of the initial daily vehicle trip estimate.
- The increase or decrease in vehicles accumulated on the site during each
 15-minute period was calculated as the difference in the average vehicles
 entering the site and the average vehicles leaving the site.

These procedures were used to provide the complete profile of the parking accumulations (Table A-2) for the School.

The Buckley School Parking Demand

The School's existing parking demand on an hourly basis is shown in Figure A-1 for the average weekday of the study period. As can be seen by this illustration, the maximum parking demand for the School is 246 spaces and occurred at approximately 3:00 PM. The maximum parking demand includes both vehicles parked on campus as well as vehicles parked at the off-site Sunkist Lot. It should be noted that vehicles not utilizing

standard parking and vehicles that are temporarily parked for pick-up/drop-off have been excluded from this parking demand.

The existing parking supply of 214 on-site standard spaces was verified through a field survey of the School and the additional 73 standard spaces were also counted at the off-site Sunkist Lot. These field reviews indicate that a total parking supply of 287 spaces was available for usage.

The parking accumulation counts were compared to the vehicle trip count data collected at School access points to confirm the consistency of the two data sets. The expected change in parking demand was calculated as the difference between the number of vehicles entering and the number of vehicles exiting the same site during each 15-minute increment. The number of parked cars for the site was counted for several different time periods during the day. Thus, the change in the number of parked cars calculated from the difference of entering and exiting vehicles should be the same as the difference in the number of counted parked cars between time periods. (Some difference is inevitable as the count of parked vehicles is not instantaneous.)

Table A-1 lists the parking demand by time of day for each of the four time periods surveyed during the three-day period. A review of the study results leads to the conclusion that the current total parking inventory of 287 spaces (on-site and off-site) is sufficient to provide parking for the current parking demand. However, with the proposed 80-student enrollment increase, the maximum parking demand could be expected to be higher, unless there is a change in the project trip generation. For the renovated campus, if trip making is required to stay at existing levels as proposed under the TDM mitigation measure, parking demand can be expected to remain at current levels. To provide adequate parking and ensure proper circulation, 10 percent additional spaces should be provided above the 246 spaces demanded. This equates to providing at least 270 on-site spaces in the future.

Table A-1Average Study Period Parking Demand

			Tuesday, October 14, 2003									
Parking		7:15-8	:00 AM	10:30-1	1:30 AM	1:30-2	:30 PM	4:30-5:30 PM				
Lots	Supply ¹	Spaces Used	% Occupied	Spaces Used	% Occupied	Spaces Used	% Occupied	Spaces Used	% Occupied			
On-Site:	214	56	26%	165	77%	153	71%	124	58%			
Off-Site:	73	20	27%	58	79%	58	79%	20	27%			
Total:	287	76	26%	223	78%	211	74%	144	50%			

			Wednesday, October 15, 2003										
Parking	Parking 7:15-8:00 AM				1:30 AM	1:30-2	:30 PM	4:30-5:30 PM					
Lots	Supply ¹	Spaces Used	% Occupied	Spaces Used	% Occupied	Spaces Used	% Occupied	Spaces Used	% Occupied				
On-Site:	214	181	85%	179	84%	174	81%	124	58%				
Off-Site:	73	11	15%	57	78%	59	81%	17	23%				
Total:	287	192	67%	236	82%	233	81%	141	49%				

			Thursday, October 16, 2003									
Parking		7:15-8	:00 AM	10:30-1 ⁻	1:30 AM	1:30-2	:30 PM	4:30-5:30 PM				
Lots	Supply ¹	Spaces Used	% Occupied	Spaces Used	% Occupied	Spaces Used	% Occupied	Spaces Used	% Occupied			
On-Site:	214	60	28%	167	78%	169	79%	164	77%			
Off-Site:	73	21	29%	58	79%	55	75%	20	27%			
Total:	287	81	28%	225	78%	224	78%	184	64%			

			Three-Day Average									
Parking		7:15-8	7:15-8:00 AM		1:30 AM	1:30-2	:30 PM	4:30-5:30 PM				
Lots	Supply ¹	Spaces Used	<u>% Occupied</u>	Spaces Used	<u>% Occupied</u>	Spaces Used	% Occupied	Spaces Used	<u>% Occupied</u>			
On-Site:	214	99	46%	170	80%	165	77%	137	64%			
Off-Site:	73	17	24%	58	79%	57	79%	19	26%			
Total:	287	116	41%	228	79%	223	78%	156	54%			

¹ The supply is based on information determined through field check.

A-6

-6

Table A-2Parking Demand AccumulationWeekday Average Traffic Volumes

Bal Hourly Perioc	/ d 10/14	T+W+TH /0310/16	6/03	T+W+TH 10/14/0310/16/03			T- 10/14/0	+W+TH 03…10/16/0	Existing	Existing	
Count Start	t Dri t Stans	veway: 1 sbury Aven	nue	Drive Camino	eway: 2 de la Cur	nbre	S Drive	Sum of way 1 & 2	T ()	(on-site) Parking	off-site) Parking
1 ime	е I/В	0/В	I otal	I/B	0/в	l otal	I/B 	0/в	l otal	Demand	Demand
12:00 AM	0	0	0	0	0	0	0	0	0	3	3
12:15 AM	0	0	0	0	0	0	0	0	0	3	3
12:30 AM	0	0	0	0	0	0	0	0	0	3	3
12:45 AM	0	0	0	0	0	0	0	0	0	3	3
01:00 AM	0	0	0	8	0	8	8	0	8	8	8
01:15 AM	0	0	0	1	0	1	1	0	1	8	8
01:30 AM	0	0	0	0	0	0	0	0	0	8	8
01:45 AM	0	0	0	0	0	0	0	0	0	8	8
02:00 AM	0	0	0	0	0	0	0	0	0	8	8
02:15 AM	0	0	0	0	0	0	0	0	0	8	8
02:30 AM	0	0	0	0	0	0	0	0	0	8	8
02:45 AM	0	0	0	0	0	0	0	0	0	8	8
03:00 AM	0	0	0	0	0	0	0	0	0	8	8
03:15 AM	0	0	0	0	0	0	0	0	0	8	8
03:30 AM	0	0	0	0	0	0	0	0	0	8	8
03:45 AM	0	0	0	0	0	0	0	0	0	8	8
04:00 AM	0	0	0	0	0	0	0	0	0	8	8
04:15 AM	0	0	0	0	0	0	0	0	0	8	8
04:30 AM	0	0	0	0	0	0	0	0	0	8	8
04:45 AM	0	0	0	1	0	1	0	0	1	0	Ö O
05.00 AM	0	0	0	1	0	1	1	0	1	9	9
05.15 AM	1	0	1	1	0	1	1	0	ו 2	10	10
05:30 AM	1	0	1	1	0	1	2	0	5	12	12
05:45 AM	1	0	1	4	0	4	4	0	5	10	10
06:15 AM	1	0	1	3	0	т 3	4	0	4	10	19
06:30 AM	1	0	1	5	0	5	- 6	0	- 6	22	22
06:45 AM	2	0	2	5	0	5	7	0	7	26	26
07:00 AM	14	6	20	0	0	0	14	6	20	31	31
07:15 AM	11	7	18	Õ	Õ	0 0	11	7	18	34	51
07:30 AM	43	9	52	Õ	Õ	Ő	43	9	52	54	71
07:45 AM	131	29	160	1	Õ	1	132	29	161	116	133
08:00 AM	130	92	222	2	1	3	132	93	225	139	159
08:15 AM	100	95	195	1	1	2	101	96	197	142	162
08:30 AM	47	51	98	0	0	0	47	51	98	140	160
08:45 AM	16	14	30	0	0	0	16	14	30	141	161
09:00 AM	12	11	23	0	0	0	12	11	23	142	162
09:15 AM	7	3	10	0	0	0	7	3	10	144	164
09:30 AM	7	5	13	0	0	0	7	5	13	145	165
09:45 AM	4	6	11	0	0	0	4	6	11	144	164
10:00 AM	8	4	12	2	2	3	9	6	15	146	166
10:15 AM	11	2	13	0	0	0	11	2	13	151	172
10:30 AM	7	8	15	0	0	0	7	8	15	151	209
10:45 AM	8	3	11	0	0	0	8	3	11	154	212
11:00 AM	5	8	13	0	0	0	5	8	13	152	210
11:15 AM	4	9	13	0	0	0	4	9	13	149	207
11:30 AM	11	3	14	0	0	0	11	3	14	154	214
11:45 AM	6	8	14	0	0	0	6	8	14	152	211
12:00 PM	7	7	14	0	0	0	7	7	14	152	211

Table A-2 (cont.)Parking Demand AccumulationWeekday Average Traffic Volumes

Bal Hourly Period	10/14	T+W+TH /0310/10	6/03	T+W+TH 10/14/0310/16/03			10/14	T+W+T /0310/16	6/03		Existing
Count	Driv	veway: 1		Drive	eway: 2			Sum of		Existing (on-site)	(on-site & off-site)
Start	Stans	bury Aver	nue	Camino	de la Cui	mbre	Driv	veway 1 &	2	Parking	Parking
lime	I/B	O/B	Iotal	I/B	O/B	Iotal	I/B	O/B	Iotal	Demand	Demand
12:15 PM	8	4	12	0	0	0	8	4	12	155	215
12:30 PM	2	6	8	0	0	0	2	6	8	152	211
12:45 PM	9	4	13	0	0	0	9	4	13	155	215
01:00 PM	11	6	17	0	0	0	11	6	17	158	219
01:15 PM	6	3	9	0	0	0	6	3	9	160	222
01:30 PM	6	7	13	0	0	0	6	7	13	160	217
01:45 PM	7	4	10	0	0	0	7	4	10	161	218
02:00 PM	6	7	12	0	0	0	6	7	12	161	218
02:15 PM	23	4	27	0	0	0	23	4	27	172	229
02:30 PM	25	7	33	0	0	0	25	7	33	183	244
02:45 PM	35	34	69	1	0	1	36	35	70	184	245
03:00 PM	48	46	95	1	2	3	50	48	98	185	246 *
03:15 PM	23	38	61	6	9	15	29	47	76	174	231
03:30 PM	55	63	118	g	10	18	64	73	136	169	224
03:45 PM	47	50	98	2	2	3	49	52	101	167	221
04:00 PM	25	30	55	0	0	0	25	30	55	164	217
04:15 PM	31	17	48	0	0	0	31	17	48	1/2	228
04:30 PM	27	51	78	0	0	0	27	51	78	158	177
04:45 PM	20	56	75	0	0	0	20	56	75	136	155
05:00 PIVI	13	75	88	0	0	0	13	/5	88	99	118
05:15 PIVI	20	27	40	0	0	0	20	21	40	95	114
05:30 PIVI	10	33	49	0	0	0	10	33	49	84 71	101
05.45 PIVI	6	33	44	0	0	0	6	33	44	65	00 70
06:15 DM	25	10	24	0	11	15	20	10	22 19	00 71	70
06:30 PM	2.5 1.4	6	20	4	20	28	23	26	40	68	81
06:45 PM	4	16	10	1	20	20	5	10	23	60	71
07:00 PM	0	8	8	0	1	1	1	9	23 9	55	65
07:15 PM	1	7	8	0	1	1	1	8	9	51	60
07:30 PM	1	15	16	0	0	1	1	15	16	43	51
07:45 PM	0	3	3	0	1	1	1	4	4	41	49
08:00 PM	1	46	47	1	2	3	2	48	50	13	16
08:15 PM	0	11	11	1	1	2	1	13	13	6	7
08:30 PM	0	0	0	0	0	0	0	0	0	6	7
08:45 PM	0	0	0	0	0	0	0	0	0	6	7
09:00 PM	0	0	0	0	1	1	0	1	1	5	6
09:15 PM	0	0	0	0	0	0	0	0	0	5	6
09:30 PM	0	0	0	0	1	1	0	1	1	5	6
09:45 PM	0	0	0	0	0	0	0	0	0	5	6
10:00 PM	0	0	0	0	0	0	0	0	0	5	6
10:15 PM	0	0	0	0	0	1	0	0	1	5	6
10:30 PM	0	0	0	0	0	0	0	0	0	5	6
10:45 PM	0	0	0	2	4	6	2	4	6	4	5
11:00 PM	0	0	0	1	1	1	1	1	1	4	5
11:15 PM	0	0	0	0	0	0	0	0	0	4	5
11:30 PM	0	0	0	0	0	0	0	0	0	4	5
11:45 PM	0	0	0	0	0	0	0	0	0	4	5
Daily Sum:	====== = 1,120	====== = 1,122	2,242	 76	====== = 74	====== = 150	====== = 1,198	====== = 1,197	2,395		

APPENDIX B

STUDY INTERSECTIONS GEOMETRIC AND TRAFFIC CONTROL OPERATIONS

CRAIN & ASSOCIATES 2007 Sawtelle Boulevard Los Angeles, California 90025 (310) 473-6508 Transportation Planning • Traffic Engineering

INTERSECTION	EXISTING (2006)	FUTURE (2014) WITH + WITHOUT PROJECT	FUTURE (2014) WITH PROJECT + MITIGATION
6. VALLEY VISTA BLVD. & VAN NUYS BLVD.	FREE	SAME AS	NONE
	<u> </u>	EXISTING (2006)	REQUIRED
7. VALLEY VISTA BLVD./	2-WAY SS		
ROBLAR PL. & BEVERLY GLEN BLVD.		SAME AS	
		EXISTING (2006)	NONE REQUIRED
	4Ø, ATSAC		
3. VALLEY VISTA BLVD. (S) & BEVERLY GLEN BLVD.			
		SAME AS EXISTING	NONE REQUIRED
	FREE	(2006)	
	2-WAY SS		
 VALLEY VISTA BLVD. & STANSBURY AVE. 	1		_
		SAME AS EXISTING	
	T T	(2006)	
	ALL-WAY SS		ALL-WAY SS
10. VALLEY VISTA BLVD. & BENEDICT CANYON DR.			
	<u>↔</u> ↔	SAME AS EXISTING (2006)	NONE REQUIRED
	20		
EGEND: ATSAC :AUTOMATED TRAFFIC SURVEILLANCE AND COM	OPP :OPP	I OSED PHASING SS :S RLAP F	
	APPE		NORTH
			FN: BUCKLEY SCHOOL/LANE-

 ζ_{a}

Transportation Planning • Traffic Engineering

APPENDIX C

SITE SPECIFIC PROJECT TRIP GENERATION RATES AND MANUAL DRIVEWAY VEHICLE COUNT

APPENDIX C Site Specific Project Trip Generation Rates

				Total			
		Inbound	Outbound	Vehicle		Existing	Derived
Time Period	Observed Location	Vehicles	Vehicles	Trips		Enrollment	Rate
Daily	Stansbury Avenue Driveway			2,767			
	Camino de la Cumbre Driveway			175			
	Off-Site Fashion Square Lot			140	-		
				3,082	÷	750 students =	4.11
AM	Stansbury Avenue Driveway	380	306	686			
Peak Hour	Camino de la Cumbre Driveway	0	0	0			
(7:45-8:45)	Off-Site Fashion Square Lot	13	3	16			
		393	309	702	÷	750 students =	0.94
School PM	Stansbury Avenue Driveway	197	213	410			
Peak Hour	Camino de la Cumbre Driveway	0	0	0			
(3:00-4:00)	Off-Site Fashion Square Lot	9	24	33			
		206	237	443	÷	750 students =	0.59
Commuter PM	Stansbury Avenue Driveway	76	137	213			
Peak Hour	Camino de la Cumbre Driveway	0	0	0			
(4:15-5:15)	Off-Site Fashion Square Lot	6	11	17			
		82	148	230	÷	750 students =	0.31

APPENDIX C (cont.) Inbound and Outbound Vehicle Count

TIME PERIOD:	AM PEAK HOUR			DATE:	ANNOUNCED COUNT MONDAY, OCTOBER 25, 2004
IIME	SIA	NSBURY DWY.			
PERIOD	INBOUND	<u>OUTBOUND</u>	<u>TOTAL</u>		
7:00-8:00	127	85	212		
7:15-8:15	239	188	427		
7:30-8:30	346	278	624		
7:45-8:45	380	306	686	***	
8:00-9:00	308	244	552		
TIME	CAMINO DE LA	CUMBRE DWY.	[CLOSED]		
PERIOD	INBOUND	<u>OUTBOUND</u>	<u>TOTAL</u>		
7:00-8:00	0	0	0		
7:15-8:15	0	0	0		
7:30-8:30	0	0	0		
7:45-8:45	0	0	0	***	
8:00-9:00	0	0	0		
TIME	15-MINUTE		TIME	HOURLY	
<u>PERIOD</u>	<u>TOTAL</u>		<u>PERIOD</u>	<u>TOTAL</u>	
7:00-7:15	12		7:00-8:00	212	
7:15-7:30	13		7:15-8:15	427	
7:30-7:45	28		7:30-8:30	624	
7:45-8:00	159		7:45-8:45	686	***
8:00-8:15	227 ***		8:00-9:00	552	
8:15-8:30	210				
8:30-8:45	90				
8:45-9:00	25				

*** MAXIMUM VOLUME AT SCHOOL DRIVEWAYS

APPENDIX D

PROJECT DISTRIBUTION (STUDENT POPULATION ZIP CODE INFORMATION)

APPENDIX E

EXISTING TRAFFIC COUNT DATA

City of Los Angeles Department of Transportation

North	n/South	-	VAN NU	YS BO	ULEVAR	D							
East/	West	-	VENTUF	RA BOI	JLEVARD)							
Day:	AM PM-SC	THURS	SDAY SDAY		Date: Date:		BER 28TH	1, 2004 1, 2004	_Weather	:	CLEAR		
Hour	PM s:	7-9 AM	2-4 PM	4-6 P	М	OCTOB	SER 2811	1, 2004	_				
Scho	ol Day:	-	YES		District	:	LOS AN	GELES					
		-	N/B			S/B			E/B		-	W/B	
WHE BIKE BUSI	L- ELED IS ES		N/A N/A N/A			N/A N/A N/A			N/A N/A N/A			N/A N/A N/A	
		-	N/B	TIME		S/B	TIME		E/B	TIME	_	W/B	TIME
AM P	PK 15 MIN		145	8:00		410	8:00		436	8:15		435	8:00
PM S	C-PK 15 N	MIN	180	3:30		314	3:35		407	3:30		395	2:30
PM P	YK 15 MIN		214	5:30		325	5:30		430	5:15		443	5:15
AM P	K HOUR		498	7:45		1,487	8:00		1,586	7:30		1,699	7:30
PM S	С-РК НО	JR	675	2:45		1,137	3:00		1,557	3:00		1,467	2:30
PM P	K HOUR		784	4:45		1,190	5:00		1,663	5:00		1,630	5:00
NOR	THBOUND) Appro	ach				SOUTH	BOUND A	pproach				TOTAL
Hour	s	Lt	Th	Rt	Total		Hours	Lt	Th	Rt	Total		N-S
7 - 8		25	305	62	392	2	7 - 8	246	6 494	501	1,241	Γ	1,633
8 - 9		40	369	86	495	5	8 - 9	265	5 543	679	1,487		1,982
2 - 3		60	455	57	572	2	2 - 3	171	353	437	961		1,533
3 - 4		70	529	74	673	3	3 - 4	246	6 443	448	1,137		1,810
4 - 5		69	559	94	722	2	4 - 5	232	2 425	476	1,133		1,855
5 - 6		79	608	90	777	7	5 - 6	221	449	520	1,190		1,967
тоти	4L	343	2,825	463	3,631		TOTAL	1,381	2,707	3,061	7,149		10,780
EAS		Approac	:h				WESTB	OUND Ap	proach				TOTAL
		• .						• .					

Hours	Lt	Th	Rt	Total
7 - 8	203	1,015	132	1,350
8 - 9	227	1,105	140	1,472
2 - 3	341	997	75	1,413
3 - 4	333	1,100	124	1,557
4 - 5	366	1,123	116	1,605
5 - 6	374	1,181	108	1,663
TOTAL	1,844	6,521	695	9,060

STREET:

Hours	Lt	Th	Rt	Total
7 - 8	91	1,221	111	1,423
8 - 9	156	1,311	156	1,623
2 - 3	75	967	298	1,340
3 - 4	104	1,029	333	1,466
4 - 5	93	1,115	347	1,555
5 - 6	108	1,206	316	1,630
TOTAL	627	6,849	1,561	9,037

OTAL	XING S/L	XING N/L		
N-S	Ped Sch	Ped Sch		
1,633	N/A N/A	N/A N/A		
1,982	N/A N/A	N/A N/A		
1,533	N/A N/A	N/A N/A		
1,810	N/A N/A	N/A N/A		
1,855	N/A N/A	N/A N/A		
1,967	N/A N/A	N/A N/A		
10,780	N/A N/A	N/A N/A		
OTAL	XING W/L	XING E/L		
E-W	Ped Sch	Ped Sch		
2,773	N/A N/A	N/A N/A		
3,095	N/A N/A	N/A N/A		
2,753	N/A N/A	N/A N/A		
3.023				
· · · · · ·	N/A N/A	N/A N/A		
3,160	N/A N/A N/A N/A	N/A N/A N/A N/A		
3,160 3,293	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A		

City of Los Angeles Department of Transportation

XING N/L

Ped Sch N/A N/A

N/A N/A N/A N/A

N/A N/A

N/A N/A

N/A N/A

N/A N/A

XING E/L

Ped Sch N/A N/A N/A N/A

N/A N/A

N/A N/A

N/A N/A

N/A N/A

N/A N/A

STREET.												Depair	inent of frans
North/South		TYRON	E AVE	/ BEVERI	Y GLE	N BLVD.							
East/West		VENTUR	RA BOI	JLEVARD									
Day: AM PM-SC PM		SDAY SDAY		Date: Date:		3ER 28TH, 3ER 28TH, 3ER 28TH	, 2004 , 2004 2004	Weather	: _	CLEAR			
Hours:	7-9 AN	1 2-4 PM	4-6 P	м	00101	521(2011),	, 2004	-					
School Day:		YES		District	-	LOS ANG	ELES						
		N/B			S/B			E/B		_	W/B		
DUAL- WHEELED		N/A			N/A			N/A			N/A		
BIKES		N/A			N/A			N/A			N/A		
BUSES		N/A			N/A			N/A			N/A		
		N/B	TIME		S/B	TIME		E/B	TIME	_	W/B	TIME	
AM PK 15 MIN	l	86	8:45		131	7:00		401	7:30		362	7:45	
PM SC-PK 15	MIN	221	3:35		124	3:30		378	3:30		360	2:15	
PM PK 15 MIN		232	4:15		107	5:45		392	5:00		377	4:00	
AM PK HOUR		319	8:00		470	7:00		1,500	7:30		1,368	7:45	
РМ SC-РК НО	UR	835	3:00		395	3:00		1,439	3:00		1,379	2:00	
PM PK HOUR		898	4:45		417	4:30		1,538	4:30		1,417	4:45	
NORTHBOUN	D Appro	ach				SOUTHBO		oproach				TOTAL	XING S/L
Hours	Lt	Th	Rt	Total		Hours	Lt	Th	Rt	Total		N-S	Ped Sch
7 - 8	56	113	76	245]	7 - 8	10	217	243	470		715	N/A N/A
8 - 9	90	133	96	319	1	8 - 9	16	196	158	370		689	N/A N/A
2 - 3	156	343	143	642		2 - 3	29	197	97	323		965	N/A N/A
3 - 4	206	469	160	835		3 - 4	28	258	109	395		1,230	N/A N/A
4 - 5	201	506	160	867		4 - 5	35	252	101	388		1,255	N/A N/A
5 - 6	197	560	135	892		5 - 6	32	290	93	415		1,307	N/A N/A
TOTAL	906	2,124	770	3,800		TOTAL	150	1,410	801	2,361		6,161	N/A N/A
EASTBOUND	Approad	ch				WESTBO	UND Ap	oroach				TOTAL	XING W/L
Hours	Lt	Th	Rt	Total		Hours	Lt	Th	Rt	Total		E-W	Ped Sch
7 - 8	67	1,155	136	1,358]	7 - 8	119	1,088	9	1,216		2,574	N/A N/A

1,203

1,186

1,173

1,206

1,210

7,066

92

149

123

144

134

761

17

44

42

61

64

237

1,312

1,379

1,338

1,411

1,408

8,064

2,727

2,722

2,777

2,886

2,883

16,569

N/A N/A

N/A N/A

N/A N/A

N/A N/A

N/A N/A

N/A N/A

Hours	Lt	Th	Rt	Total	Hours
7 - 8	67	1,155	136	1,358	7 - 8
8 - 9	90	1,225	100	1,415	8 - 9
2 - 3	102	1,140	101	1,343	2 - 3
3 - 4	116	1,213	110	1,439	3 - 4
4 - 5	123	1,231	121	1,475	4 - 5
5 - 6	123	1,237	115	1,475	5 - 6
TOTAL	621	7,201	683	8,505	TOTAL

STREET:

City of Los Angeles Department of Transportation

STREET: North/South	STANSE	BURY AVENUE						Depa
East/West	VENTUR	RA BOULEVAR	D					
Day: AM PM-SC PM Hours:	THURSDAY THURSDAY THURSDAY 7-9 AM 2-4 PM	Date: Date: Date:	OCTOB OCTOB OCTOB	ER 28TH, 2004 ER 28TH, 2004 ER 28TH, 2004	_Weather	CLEAR		
School Day:	YES	Distric	:t:	LOS ANGELES				
DUAL-	<u>N/B</u>		S/B		E/B		W/B	
WHEELED	N/A		N/A		N/A		N/A	
BIKES	N/A		N/A		N/A		N/A	
BUSES	N/A		N/A		N/A		N/A	
	N/B	TIME	S/B	TIME	E/B	TIME	W/B	TIME
AM PK 15 MIN	51	8:00	0	7:00	359	7:30	440	7:45
PM SC-PK 15 M	IN 53	3:35	0	2:00	372	3:30	430	2:45
PM PK 15 MIN	64	5:45	0	4:00	382	5:00	414	5:30
AM PK HOUR	173	7:30	0	7:00	1,400	7:30	1,751	7:30
PM SC-PK HOU	R 185	3:00	0	2:00	1,422	3:00	1,503	2:45
PM PK HOUR	217	5:00	0	4:00	1,488	4:30	1,600	5:00

NORTHBOUND Approach

Hours	Lt	Th	Rt	Total	Hours	Lt
7 - 8	2	0	121	123	7 - 8	(
8 - 9	9	0	152	161	8 - 9	(
2 - 3	9	0	126	135	2 - 3	(
3 - 4	11	0	174	185	3 - 4	(
4 - 5	9	0	193	202	4 - 5	(
5 - 6	10	0	207	217	5 - 6	(
TOTAL	50	0	973	1,023	TOTAL	(

EASTBOUND Approach

Hours	Lt	Th	Rt	Total
7 - 8	0	1,037	162	1,199
8 - 9	0	1,164	153	1,317
2 - 3	0	1,223	67	1,290
3 - 4	0	1,373	49	1,422
4 - 5	0	1,414	64	1,478
5 - 6	0	1,396	50	1,446
TOTAL	0	7,607	545	8,152

SOUTHBOUND Approach

lours	Lt	Th	Rt	Total
- 8	0	0	0	0
- 9	0	0	0	0
- 3	0	0	0	0
- 4	0	0	0	0
- 5	0	0	0	0
- 6	0	0	0	0
OTAL	0	0	0	0

WESTBOUND Approach

Hours	Lt	Th	Rt	Total
7 - 8	297	1,214	0	1,511
8 - 9	347	1,336	0	1,683
2 - 3	113	1,378	0	1,491
3 - 4	114	1,317	0	1,431
4 - 5	96	1,408	0	1,504
5 - 6	145	1,455	0	1,600
TOTAL	1,112	8,108	0	9,220

TOTAL	XING S/L	XING N/L
N-S	Ped Sch	Ped Sch
123	N/A N/A	N/A N/A
161	N/A N/A	N/A N/A
135	N/A N/A	N/A N/A
185	N/A N/A	N/A N/A
202	N/A N/A	N/A N/A
217	N/A N/A	N/A N/A
1,023	N/A N/A	N/A N/A
TOTAL	XING W/L	XING E/L
E-W	Ped Sch	Ped Sch
2,710	N/A N/A	N/A N/A
3.000	NI/A NI/A	
	N/A N/A	N/A N/A
2,781	N/A N/A	N/A N/A N/A N/A
2,781 2,853	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A
2,781 2,853 2,982	N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A
2,781 2,853 2,982 3,046	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

City of Los Angeles Department of Transportation

North/South	-	HAZELT	INE A	VENUE (N	lo.)					-	
East/West	<u>-</u>	VENTUF	RA BO	JLEVARD)					_	
Day: AM PM-SC PM Hours:	THURS THURS THURS 7-9 AM	DAY DAY DAY 2-4 PM	4-6 P	Date: Date: M	OCTOB OCTOB OCTOB	ER 28TH, 2004 ER 28TH, 2004 ER 28TH, 2004	Weather	: _	CLEAR		
School Day:	<u>_</u>	YES		District	:	LOS ANGELES					
	-	N/B			S/B		E/B			W/B	
WHEELED BIKES BUSES		N/A N/A N/A			N/A N/A N/A		N/A N/A N/A			N/A N/A N/A	
	_	N/B	TIME		S/B	TIME	E/B	TIME		W/B	TIME
AM PK 15 MIN		0	7:00		175	8:15	362	7:30		406	8:00
PM SC-PK 15 M	MIN	0	2:00		113	3:35	405	3:30		415	2:45
PM PK 15 MIN		0	4:00		112	5:00	412	5:00		417	5:00
AM PK HOUR		0	7:00		614	7:45	1,359	7:30		1,523	7:30
PM SC-PK HO	UR	0	2:00		369	3:00	1,536	3:00		1,522	2:45
PM PK HOUR		0	4:00		406	4:30	1,602	4:15		1,618	5:00

NORTHBOUND Approach

STREET:

Hours	Lt	Th	Rt	Total	Но
7 - 8	0	0	0	0	7 -
8 - 9	0	0	0	0	8 -
2 - 3	0	0	0	0	2 -
3 - 4	0	0	0	0	3 -
4 - 5	0	0	0	0	4 -
5 - 6	0	0	0	0	5 -
TOTAL	0	0	0	0	TC

EASTBOUND Approach

Hours	Lt	Th	Rt	Total
7 - 8	97	1,064	0	1,161
8 - 9	100	1,167	0	1,267
2 - 3	146	1,193	0	1,339
3 - 4	174	1,362	0	1,536
4 - 5	148	1,433	0	1,581
5 - 6	147	1,393	0	1,540
TOTAL	812	7,612	0	8,424

SOUTHBOUND Approach

lours	Lt	Th	Rt	Total
- 8	159	0	355	514
- 9	243	0	346	589
- 3	135	0	210	345
- 4	165	0	204	369
- 5	184	0	195	379
- 6	188	0	215	403
OTAL	1,074	0	1,525	2,599

WESTBOUND Approach

Hours	Lt	Th	Rt	Total
7 - 8	0	1,181	99	1,280
8 - 9	0	1,403	99	1,502
2 - 3	0	1,295	175	1,470
3 - 4	0	1,259	209	1,468
4 - 5	0	1,315	271	1,586
5 - 6	0	1,334	284	1,618
TOTAL	0	7,787	1,137	8,924

TOTAL	XING S/L	XING N/L
N-S	Ped Sch	Ped Sch
514	N/A N/A	N/A N/A
589	N/A N/A	N/A N/A
345	N/A N/A	N/A N/A
369	N/A N/A	N/A N/A
379	N/A N/A	N/A N/A
403	N/A N/A	N/A N/A
2,599	N/A N/A	N/A N/A
TOTAL	XING W/L	XING E/L
TOTAL	XING W/L Ped Sch	XING E/L Ped Sch
TOTAL E-W 2,441	XING W/L Ped Sch N/A N/A	XING E/L Ped Sch N/A N/A
TOTAL E-W 2,441 2,769	XING W/L Ped Sch N/A N/A N/A N/A	XING E/L Ped Sch N/A N/A N/A N/A
TOTAL E-W 2,441 2,769 2,809	XING W/L Ped Sch N/A N/A N/A N/A N/A N/A	XING E/L Ped Sch N/A N/A N/A N/A N/A N/A
TOTAL E-W 2,441 2,769 2,809 3,004	XING W/L Ped Sch N/A N/A N/A N/A N/A N/A N/A N/A	XING E/L Ped Sch N/A N/A N/A N/A N/A N/A
TOTAL E-W 2,441 2,769 2,809 3,004 3,167	XING W/L Ped Sch N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	XING E/L Ped Sch N/A N/A N/A N/A N/A N/A N/A N/A
TOTAL E-W 2,441 2,769 2,809 3,004 3,167 3,158	XING W/L Ped Sch N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	XING E/L Ped Sch N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

City of Los Angeles Department of Transportation

North/South		WOODN		/ENUE								Depar
East/West		VENTUR	RA BOI	JLEVARD)							
Day: AM PM-SC		SDAY SDAY		Date: Date:		ER 28TH, ER 28TH,	2004 2004	Weather	: <u>(</u>	CLEAR		
PM Hours:	THUR 7-9 AN	SDAY 1 2-4 PM	4-6 P	М	OCTOB	ER 28TH,	2004	_				
School Day:		YES		District	:	LOS ANG	BELES					
		N/B			S/B			E/B		-	W/B	
DUAL- WHEELED		N/A			N/A			N/A			N/A	
BIKES		N/A			N/A			N/A			N/A	
BUSES		N/A			N/A			N/A			N/A	
		N/B	TIME		S/B	TIME		E/B	TIME	-	W/B	TIME
AM PK 15 MIN		78	8:00		273	8:45		405	8:15		382	8:00
PM SC-PK 15 N	IIN	80	2:00		150	3:35		363	3:35		337	2:45
PM PK 15 MIN		104	5:00		239	5:00		411	4:45		350	4:00
AM PK HOUR		283	7:45		969	8:00		1,483	7:30		1,254	7:30
PM SC-PK HOU	JR	291	2:45		565	3:00		1,358	3:00		1,268	2:15
PM PK HOUR		354	4:30		747	4:15		1,509	4:00		1,325	4:00
NORTHBOUND	Appro	ach				SOUTHB	OUND A	pproach			,	TOTAL
Hours	Lt	Th	Rt	Total	_	Hours	Lt	Th	Rt	Total	-	N-S
7 - 8	38	169	16	223		7 - 8	229	184	304	717		940
8 - 9	54	189	33	276		8 - 9	299	302	368	969	-	1,245
2 - 3	63	174	46	283		2-3	148	3 118	195	461	-	744
3-4	52	189	39	280		3-4	200		228	565	-	845
4-5	60	240	30	342	-	4-5	210	103	291	660	-	1,014
	222	243	200	1 742	,	5 - 0 TOTAI	1 204	1/2	204	4 044	-	5 796
IUIAL	332	1,210	200	1,742	1	IUIAL	1,298	0,076	1,070	4,044	l	J,/00
EASTBOUND A	Approa	ch				WESTBO	UND Ap	proach				TOTAL
Hours	Lt	Th	Rt	Total	7	Hours	Lt	Th	Rt	Total	r	E-W
7 - 8	171	1,060	22	1,253	<u>i</u>	7 - 8	35	5 901	77	1,013	F	2,266
8 - 9	140	1,229	18	1,387	1	8 - 9	69	1,076	102	1,247	F	2,634
2 - 3	206	999	64	1,269	0	2 - 3	63	973	167	1,203		2,472

STREET:

3 - 4

4 - 5

5 - 6

TOTAL

175

182

179

1,053

1,145

1,287

1,212

6,932

38

40

59

241

1,358

1,509

1,450

8,226

3 - 4

4 - 5

5 - 6

TOTAL

49

37

46

299

1,034

1,117

1,071

6,172

164

171

170

851

1,247

1,325

1,287

7,322

15,548

1,245	N/A	N/A	N//	A N/A
744	N/A	N/A	N//	A N/A
845	N/A	N/A	N//	A N/A
1,014	N/A	N/A	N//	A N/A
998	N/A	N/A	N//	A N/A
5,786	N/A	N/A	N//	A N/A
DTAL	XIN	IG W/		NG E/L
E-W	Ped	Sch	Pe	d Sch
E-W 2,266	Ped N/A	Sch N/A	Pee N//	d Sch A N/A
E-W 2,266 2,634	Ped N/A N/A	Sch N/A N/A	Per N// N//	d Sch A N/A A N/A
E-W 2,266 2,634 2,472	Ped N/A N/A N/A	Sch N/A N/A N/A	Pee N// N//	d Sch A N/A A N/A A N/A
E-W 2,266 2,634 2,472 2,605	Ped N/A N/A N/A N/A	Sch N/A N/A N/A N/A	Pec N// N// N//	d Sch A N/A A N/A A N/A A N/A
E-W 2,266 2,634 2,472 2,605 2,834	Ped N/A N/A N/A N/A	Sch N/A N/A N/A N/A N/A	Pee N// N// N// N//	d Sch A N/A A N/A A N/A A N/A A N/A
E-W 2,266 2,634 2,472 2,605 2,834 2,737	Ped N/A N/A N/A N/A N/A	Sch N/A N/A N/A N/A N/A N/A	Pec N// N// N// N// N//	d Sch A N/A A N/A A N/A A N/A A N/A A N/A
E-W 2,266 2,634 2,472 2,605 2,834 2,737 15,548	Ped N/A N/A N/A N/A N/A N/A	Sch N/A N/A N/A N/A N/A N/A N/A	Pec N// N// N// N// N// N//	d Sch A N/A A N/A A N/A A N/A A N/A A N/A A N/A

XING S/L

Ped Sch N/A N/A XING N/L

Ped Sch N/A N/A
City of Los Angeles Department of Transportation

North/South	VAN	IUYS B	OULEVAF	RD					Depa
East/West	VALL	EY VIST	A BOULE	VARD					
Day: AM PM-SC PM	THURSDAY THURSDAY THURSDAY		Date: Date:		BER 28TH, 2004 BER 28TH, 2004 BER 28TH, 2004	Weather	CLEAR	<u> </u>	
Hours:	7-9 AM 2-4 F	M 4-6	PM						
School Day:	YES	_	Distric	t:	LOS ANGELES				
DUAL-	N/	B		S/B	-	E/B		W/B	
WHEELED	N/	Α		N/A		N/A		N/A	
BIKES	N/	A		N/A		N/A		N/A	
BUSES	N/	A		N/A		N/A		N/A	
	N/	в тіме	_	S/B	TIME	E/B	TIME	W/B	TIME
AM PK 15 MIN		0 7:00	I	155	7:00	66	7:45	86	8:15
PM SC-PK 15 N	IIN	0 2:00	I	115	2:45	45	2:45	172	3:35
PM PK 15 MIN		0 4:00	I	141	5:30	67	5:30	163	4:45
AM PK HOUR		0 7:00	I	554	7:00	203	7:30	318	7:45
PM SC-PK HOU	IR	0 2:00	I	407	2:00	156	2:45	602	3:00
PM PK HOUR		0 4:00	I	482	4:45	197	5:00	636	4:45

NORTHBOUND Approach

STREET:

Hours	Lt	Th	Rt	Total	_
7 - 8	0	0	0	0)
8 - 9	0	0	0	C)
2 - 3	0	0	0	C)
3 - 4	0	0	0	C)
4 - 5	0	0	0	C)
5 - 6	0	0	0	C)
TOTAL	0	0	0	C)

EASTBOUND Approach

Hours	Lt	Th	Rt	Total
7 - 8	83	94	0	177
8 - 9	86	91	0	177
2 - 3	68	63	0	131
3 - 4	75	74	0	149
4 - 5	74	89	0	163
5 - 6	90	107	0	197
TOTAL	476	518	0	994

SOUTHBOUND Approach

Hours	Lt	Th	Rt	Total
7 - 8	523	0	31	554
8 - 9	493	0	41	534
2 - 3	340	0	67	407
3 - 4	310	0	63	373
4 - 5	416	0	61	477
5 - 6	377	0	82	459
TOTAL	2,459	0	345	2,804

Hours	Lt	Th	Rt	Total
7 - 8	0	68	198	266
8 - 9	0	88	219	307
2 - 3	0	76	366	442
3 - 4	0	119	483	602
4 - 5	0	87	511	598
5 - 6	0	91	518	609
TOTAL	0	529	2,295	2,824

TOTAL	XING S/L	XING N/L
N-S	Ped Sch	Ped Sch
554	N/A N/A	N/A N/A
534	N/A N/A	N/A N/A
407	N/A N/A	N/A N/A
373	N/A N/A	N/A N/A
477	N/A N/A	N/A N/A
459	N/A N/A	N/A N/A
2,804	N/A N/A	N/A N/A
TOTAL	XING W/L	XING E/L
TOTAL E-W	XING W/L Ped Sch	XING E/L Ped Sch
TOTAL E-W 443	XING W/L Ped Sch N/A N/A	XING E/L Ped Sch
TOTAL E-W 443 484	XING W/L Ped Sch N/A N/A N/A N/A	XING E/L Ped Sch N/A N/A N/A N/A
TOTAL E-W 443 484 573	XING W/L Ped Sch N/A N/A N/A N/A N/A N/A	XING E/L Ped Sch N/A N/A N/A N/A N/A N/A
TOTAL E-W 443 484 573 751	XING W/L Ped Sch N/A N/A N/A N/A N/A N/A N/A N/A	XING E/L Ped Sch N/A N/A N/A N/A N/A N/A N/A N/A
TOTAL E-W 443 484 573 751 761	XING W/L Ped Sch N/A N/A N/A N/A N/A N/A N/A N/A	XING E/L Ped Sch N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
TOTAL E-W 443 484 573 751 761 806	XING W/L Ped Sch N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	XING E/L Ped Sch N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

City of Los Angeles Department of Transportation

North/South	BEVERL	Y GLEN	BOULE	VARD					_	
East/West	VALLEY	VISTA B	LVD/ RO	OBLAR	PL.				_	
Day: AM PM-SC	THURSDAY THURSDAY	D)ate:)ate:	ОСТОВ ОСТОВ	ER 28TH, 2004 ER 28TH, 2004	Weather	:	CLEAR		
PM 1 Hours: 7	THURSDAY 7-9 AM 2-4 PM	4-6 PM	-	ОСТОВ	ER 28TH, 2004					
School Day:	YES	D)istrict:	_	LOS ANGELES					
	N/B		-	S/B		E/B			W/B	
DUAL- WHEELED BIKES	N/A N/A			N/A N/A		N/A N/A			N/A N/A	
BUSES	N/A			N/A		N/A			N/A	
	N/B	TIME	-	S/B		E/B	ТІМЕ		W/B	TIME
AM PK 15 MIN	161	8:15		183	7:30	175	8:15		13	8:15
PM SC-PK 15 MI	N 335	3:15		104	3:30	105	2:30		5	2:45
PM PK 15 MIN	355	5:30		112	4:00	134	5:30		7	4:00
AM PK HOUR	536	7:30		683	7:30	653	7:00		41	8:00
PM SC-PK HOUP	R 1,294	3:00		364	3:00	387	2:15		13	2:00
PM PK HOUR	1,360	4:45		430	4:00	483	5:00		18	5:00

NORTHBOUND Approach

STREET:

Hours	Lt	Th	Rt	Total
7 - 8	239	212	7	458
8 - 9	284	195	10	489
2 - 3	395	565	1	961
3 - 4	517	777	0	1,294
4 - 5	554	760	4	1,318
5 - 6	477	835	10	1,322
TOTAL	2,466	3,344	32	5,842

EASTBOUND Approach

Hours	Lt	Th	Rt	Total
7 - 8	3	3	647	653
8 - 9	1	0	590	591
2 - 3	19	6	349	374
3 - 4	24	10	336	370
4 - 5	31	7	395	433
5 - 6	34	7	442	483
TOTAL	112	33	2,759	2,904

SOUTHBOUND Approach

Hours	Lt	Th	Rt	Total
7 - 8	1	647	4	652
8 - 9	1	656	2	659
2 - 3	3	315	14	332
3 - 4	2	344	18	364
4 - 5	3	403	24	430
5 - 6	6	351	22	379
TOTAL	16	2,716	84	2,816

Hours	Lt	Th	Rt	Total
7 - 8	10	11	1	22
8 - 9	29	11	1	41
2 - 3	3	7	3	13
3 - 4	4	3	1	8
4 - 5	6	5	1	12
5 - 6	8	5	5	18
TOTAL	60	42	12	114

TOTAL	XING S/L	XING N/L
N-S	Ped Sch	Ped Sch
1,110	N/A N/A	N/A N/A
1,148	N/A N/A	N/A N/A
1,293	N/A N/A	N/A N/A
1,658	N/A N/A	N/A N/A
1,748	N/A N/A	N/A N/A
1,701	N/A N/A	N/A N/A
8,658	N/A N/A	N/A N/A
TOTAL	XING W/L	XING E/L
E-W	Ped Sch	Ped Sch
675	N/A N/A	N/A N/A
632	N/A N/A	N/A N/A
387	N/A N/A	N/A N/A
378	N/A N/A	N/A N/A
445	N/A N/A	N/A N/A
501	N/A N/A	N/A N/A
0.040		

City of Los Angeles Department of Transportation

North/South		BEVERL	Y GLE	N BOULE	EVARD						
East/West		VALLEY		BOULE	/ARD						
Day: AM PM-SC	THUR THUR	SDAY SDAY		Date: Date:		ER 28TH, 2004 ER 28TH, 2004	Weather	:	CLEAR		
PM Hours:	THUR 7-9 AI	SDAY M 2-4 PM	4-6 P	м	ОСТОВ	ER 28TH, 2004					
School Day:		YES		District	:	LOS ANGELES					
		N/B			S/B		E/B			W/B	
DUAL- WHEELED		N/A			N/A		N/A			N/A	
BUSES		N/A N/A			N/A N/A		N/A N/A			N/A N/A	
		N/B	TIME		S/B	TIME	E/B	TIME	-	W/B	TIME
AM PK 15 MIN		135	8:15		342	7:00	0	7:00		143	8:15
PM SC-PK 15	MIN	362	3:35		198	3:35	0	2:00		58	3:00
PM PK 15 MIN		385	4:30		219	5:45	0	4:00		51	4:45
AM PK HOUR		517	7:30		1,312	7:30	0	7:00		495	7:30
РМ SC-РК НО	UR	1,361	3:00		696	3:00	0	2:00		183	3:00
PM PK HOUR		1,493	5:00		805	5:00	0	4:00		141	4:30
NORTHBOUN	D Appro	oach				SOUTHBOUND	Approach			т	OTAL

nours	LL	IN	Rt	lotal
7 - 8	0	349	97	446
8 - 9	0	401	90	491
2 - 3	0	900	104	1,004
3 - 4	0	1,186	175	1,361
4 - 5	0	1,215	229	1,444
5 - 6	0	1,258	235	1,493
TOTAL	0	5,309	930	6,239

EASTBOUND Approach

STREET:

Hours	Lt	Th	Rt	Total
7 - 8	0	0	0	0
8 - 9	0	0	0	0
2 - 3	0	0	0	0
3 - 4	0	0	0	0
4 - 5	0	0	0	0
5 - 6	0	0	0	0
TOTAL	0	0	0	0

Hours	Lt	Th	Rt	Total
7 - 8	15	1,293	0	1,308
8 - 9	24	1,265	0	1,289
2 - 3	58	616	0	674
3 - 4	68	628	0	696
4 - 5	74	725	0	799
5 - 6	77	728	0	805
TOTAL	316	5,255	0	5,571

Hours	Lt	Th	Rt	Total
7 - 8	321	0	94	415
8 - 9	363	0	112	475
2 - 3	37	0	51	88
3 - 4	62	0	121	183
4 - 5	32	0	98	130
5 - 6	34	0	77	111
TOTAL	849	0	553	1,402

TOTAL	XING S/L	XING N/L
N-S	Ped Sch	Ped Sch
1,754	N/A N/A	N/A N/A
1,780	N/A N/A	N/A N/A
1,678	N/A N/A	N/A N/A
2,057	N/A N/A	N/A N/A
2,243	N/A N/A	N/A N/A
2.298	N/A N/A	N/A N/A
11.810	N/A N/A	N/A N/A
TOTAL	XING W/L	XING E/L
TOTAL E-W	XING W/L Ped Sch	XING E/L Ped Sch
TOTAL E-W 415	XING W/L Ped Sch N/A N/A	XING E/L Ped Sch N/A N/A
TOTAL E-W 415 475	XING W/L Ped Sch N/A N/A N/A N/A	XING E/L Ped Sch N/A N/A N/A N/A
TOTAL E-W 415 475 88	XING W/L Ped Sch N/A N/A N/A N/A N/A N/A	XING E/L Ped Sch N/A N/A N/A N/A
TOTAL E-W 415 475 88 183	XING W/L Ped Sch N/A N/A N/A N/A N/A N/A N/A N/A	XING E/L Ped Sch N/A N/A N/A N/A N/A N/A
TOTAL E-W 415 475 88 183 130	XING W/L Ped Sch N/A N/A N/A N/A N/A N/A N/A N/A	XING E/L Ped Sch N/A N/A N/A N/A N/A N/A N/A N/A
TOTAL E-W 415 475 88 183 130 111	XING W/L Ped Sch N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	XING E/L Ped Sch N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

City of Los Angeles Department of Transportation

STREET: North/South Fast/West	<u>ST</u>		BURY A							_	Depa
Day: AM PM-SC PM Hours:	THURSDA THURSDA THURSDA 7-9 AM 2-4	Y Y Y 4 PM	4-6 PI	Date: Date: Date:	OCTOB OCTOB OCTOB	ER 28TH, 2004 ER 28TH, 2004 ER 28TH, 2004	_Weather: 		CLEAR	_	
School Day:	YES	3		District	: _	LOS ANGELES					
DUAL- WHEELED		N/B N/A			S/B N/A		<u> </u>			W/B N/A	
BUSES		N/A N/A			N/A N/A		N/A N/A			N/A N/A	
		N/B	TIME		S/B	TIME	E/B	TIME		W/B	TIME
AM PK 15 MIN		116	8:00		152	8:00	39	7:45		92	8:00
PM SC-PK 15 M	IN	74	3:30		40	3:30	58	3:15		40	3:15
PM PK 15 MIN		48	4:30		29	4:15	74	4:15		32	5:15
AM PK HOUR		317	7:45		494	7:30	128	7:30		342	7:30
PM SC-PK HOU	R	230	3:00		126	2:45	199	2:45		143	2:45
PM PK HOUR		143	4:00		107	4:00	255	4:00		112	4:45

NORTHBOUND Approach

Hours	Lt	Th	Rt	Total
7 - 8	24	56	28	108
8 - 9	60	134	55	249
2 - 3	22	34	22	78
3 - 4	76	102	52	230
4 - 5	37	74	32	143
5 - 6	16	46	21	83
TOTAL	235	446	210	891

EASTBOUND Approach

Hours	Lt	Th	Rt	Total
7 - 8	5	41	38	84
8 - 9	9	45	47	101
2 - 3	15	87	43	145
3 - 4	23	134	41	198
4 - 5	20	212	23	255
5 - 6	12	229	8	249
TOTAL	84	748	200	1,032

SOUTHBOUND Approach

Hours	Lt	Th	Rt	Total
7 - 8	25	150	225	400
8 - 9	21	155	222	398
2 - 3	21	58	20	99
3 - 4	25	75	18	118
4 - 5	39	48	20	107
5 - 6	31	28	12	71
TOTAL	162	514	517	1,193

WESTBOUND Approach

Hours	Lt	Th	Rt	Total
7 - 8	40	226	15	281
8 - 9	66	225	13	304
2 - 3	23	56	16	95
3 - 4	28	77	25	130
4 - 5	23	56	28	107
5 - 6	12	68	32	112
TOTAL	192	708	129	1,029

TOTAL	XING S/L	XING N/L
N-S	Ped Sch	Ped Sch
508		
500		
647	N/A N/A	N/A N/A
177	N/A N/A	N/A N/A
348	N/A N/A	N/A N/A
250	N/A N/A	N/A N/A
154	N/A N/A	N/A N/A
2,084	N/A N/A	N/A N/A
TOTAL	XING W/L	XING E/L
TOTAL E-W	XING W/L Ped Sch	XING E/L Ped Sch
TOTAL E-W	XING W/L Ped Sch	XING E/L Ped Sch
TOTAL E-W 365	XING W/L Ped Sch N/A N/A	XING E/L Ped Sch N/A N/A
TOTAL E-W 365 405	XING W/L Ped Sch N/A N/A N/A N/A	XING E/L Ped Sch N/A N/A N/A N/A
TOTAL E-W 365 405 240	XING W/L Ped Sch N/A N/A N/A N/A N/A N/A	XING E/L Ped Sch N/A N/A N/A N/A N/A N/A
TOTAL E-W 365 405 240 328	XING W/L Ped Sch N/A N/A N/A N/A N/A N/A N/A N/A	XING E/L Ped Sch N/A N/A N/A N/A N/A N/A N/A N/A
TOTAL E-W 365 405 240 328 362	XING W/L Ped Sch N/A N/A N/A N/A N/A N/A N/A N/A	XING E/L Ped Sch N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
TOTAL E-W 365 405 240 328 362 361	XING W/L Ped Sch N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	XING E/L Ped Sch N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

N/A N/A

City of Los Angeles Department of Transportation

North/South	BENEDI	CT CAN	NYON DR	RIVE					-	
East/West	VALLEY	VISTA	BOULE	/ARD					-	
Day: AM <u>TH</u> PM-SC <u>TH</u> PM TH	IURSDAY IURSDAY IURSDAY		Date: Date:	OCTOB OCTOB OCTOB	ER 28TH, 2004 ER 28TH, 2004 ER 28TH, 2004	Weather	-	CLEAR		
Hours: 7-9	9 AM 2-4 PM	4-6 PN	M							
School Day:	YES		District:	:	LOS ANGELES					
	<u>N/B</u>			S/B		E/B			W/B	
WHEELED	N/A			N/A		N/A			N/A	
BIKES	N/A			N/A		N/A			N/A	
BUSES	N/A			N/A		N/A			N/A	
	N/B	TIME		S/B	TIME	E/B	TIME		W/B	TIME
AM PK 15 MIN	0	7:00		61	8:15	67	8:00		46	7:45
PM SC-PK 15 MIN	0	2:00		33	2:45	79	3:35		42	3:00
PM PK 15 MIN	0	4:00		30	4:45	88	5:15		32	4:00
AM PK HOUR	0	7:00		207	7:45	230	7:30		154	7:15
PM SC-PK HOUR	0	2:00		94	2:45	252	3:00		121	2:45
PM PK HOUR	0	4:00		101	4:45	312	4:30		103	5:00

NORTHBOUND Approach

STREET:

Hours	Lt	Th	Rt	Total	
7 - 8	0	0	0		0
8 - 9	0	0	0		0
2 - 3	0	0	0		0
3 - 4	0	0	0		0
4 - 5	0	0	0		0
5 - 6	0	0	0		0
TOTAL	0	0	0		0

EASTBOUND Approach

Hours	Lt	Th	Rt	Total
7 - 8	55	108	0	163
8 - 9	49	157	0	206
2 - 3	60	117	0	177
3 - 4	61	191	0	252
4 - 5	62	245	0	307
5 - 6	65	240	0	305
TOTAL	352	1,058	0	1,410

SOUTHBOUND Approach

Hours	Lt	Th	Rt	Total
7 - 8	7	0	129	136
8 - 9	18	0	180	198
2 - 3	18	0	71	89
3 - 4	8	0	78	86
4 - 5	20	0	76	96
5 - 6	25	0	74	99
TOTAL	96	0	608	704

Hours	Lt	Th	Rt	Total
7 - 8	0	132	3	135
8 - 9	0	126	1	127
2 - 3	0	59	7	66
3 - 4	0	110	8	118
4 - 5	0	82	12	94
5 - 6	0	86	17	103
TOTAL	0	595	48	643

TOTAL	XING S/L	XING N/L
N-S	Ped Sch	Ped Sch
136	N/A N/A	N/A N/A
198	N/A N/A	N/A N/A
89	N/A N/A	N/A N/A
86	N/A N/A	N/A N/A
96	N/A N/A	N/A N/A
99	N/A N/A	N/A N/A
704	N/A N/A	N/A N/A
TOTAL		
TOTAL	XING W/L	XING E/L
E-W	XING W/L Ped Sch	XING E/L Ped Sch
E-W 298	XING W/L Ped Sch N/A N/A	XING E/L Ped Sch N/A N/A
E-W 298 333	XING W/L Ped Sch N/A N/A N/A N/A	XING E/L Ped Sch N/A N/A N/A N/A
E-W 298 333 243	XING W/L Ped Sch N/A N/A N/A N/A N/A N/A	XING E/L Ped Sch N/A N/A N/A N/A N/A N/A
E-W 298 333 243 370	XING W/L Ped Sch N/A N/A N/A N/A N/A N/A N/A N/A	XING E/L Ped Sch N/A N/A N/A N/A N/A N/A
E-W 298 333 243 370 401	XING W/L Ped Sch N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	XING E/L Ped Sch N/A N/A N/A N/A N/A N/A N/A N/A
E-W 298 333 243 370 401 408	XING W/L Ped Sch N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	XING E/L Ped Sch N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Phone: (626) 564-1944 Fax: (626) 564-0969

٦

24-HOUR ADT COUNT SUMMARY

CLIENT:	CRAIN & ASSOCIATES
PROJECT:	BUCKLEY SCHOOL
LOCATION:	BUCKLEY SCHOOL DRIVEWAY
	STANSBURY AVENUE GATE
DATE:	MONDAY, OCTOBER 25TH, 2004

DIRECT	ION:		ENTER		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	0	0	0	0	0
1:00	0	0	0	0	0
2:00	0	0	0	0	0
3:00	0	0	0	0	0
4:00	0	0	0	0	0
5:00	0	0	0	0	0
6:00	0	0	0	4	4
7:00	11	10	45	136	202
8:00	133	82	51	13	279
9:00	10	5	6	8	29
10:00	5	8	4	4	21
11:00	4	4	8	6	22
12:00	6	6	6	2	20
13:00	8	4	8	7	27
14:00	13	18	24	38	93
15:00	66	37	49	48	200
16:00	30	24	20	18	92
17:00	17	14	10	9	50
18:00	0	0	0	0	0
19:00	0	0	0	0	0
20:00	0	0	0	0	0
21:00	0	0	0	0	0
22:00	0	0	0	0	0
23:00	0	0	0	0	0
				TOTAL	1039
	AM PEAK HOUR			0745-08	45
VOLUM	E		402		
PM PEA		२		1500-16	00
VOLUM	E			200	

DIRECT	ION:		EXIT		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	0	0	0	0	0
1:00	0	0	0	0	0
2:00	0	0	0	0	0
3:00	0	0	0	0	0
4:00	0	0	0	0	0
5:00	0	0	0	0	0
6:00	0	0	0	0	0
7:00	1	1	14	102	118
8:00	136	110	44	16	306
9:00	8	6	3	6	23
10:00	7	6	8	10	31
11:00	5	3	4	10	22
12:00	8	2	7	9	26
13:00	8	2	10	7	27
14:00	8	7	24	43	82
15:00	86	54	108	69	317
16:00	34	22	64	42	162
17:00	72	34	50	37	193
18:00	0	0	0	0	0
19:00	0	0	0	0	0
20:00	0	0	0	0	0
21:00	0	0	0	0	0
22:00	0	0	0	0	0
23:00	0	0	0	0	0
				TOTAL	1307
AM PEAK HOUR			0745-0845		
VOLUM	E		392		
PM PEA		२		1500-16	600
VOLUM	E		317		

Phone: (626) 564-1944 Fax: (626) 564-0969

24-HOUR ADT COUNT SUMMARY

CLIENT:	CRAIN & ASSOCIATES
PROJECT:	BUCKLEY SCHOOL
LOCATION:	BUCKLEY SCHOOL DRIVEWAY
	STANSBURY AVENUE GATE
DATE:	TUESDAY, OCTOBER 26TH, 2004

DIRECT	ION:		ENTER		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	0	0	0	0	0
1:00	0	0	0	0	0
2:00	0	0	0	0	0
3:00	0	0	0	0	0
4:00	0	0	0	0	0
5:00	0	0	0	0	0
6:00	0	0	0	0	0
7:00	14	12	57	140	223
8:00	122	84	34	11	251
9:00	2	8	12	4	26
10:00	4	6	3	8	21
11:00	8	7	4	10	29
12:00	6	7	1	4	18
13:00	4	2	6	6	18
14:00	6	19	18	41	84
15:00	60	39	54	42	195
16:00	44	36	30	34	144
17:00	18	11	16	11	56
18:00	6	3	1	0	10
19:00	0	0	2	4	6
20:00	0	0	0	0	0
21:00	0	0	0	0	0
22:00	0	0	0	0	0
23:00	0	0	0	0	0
				TOTAL	1081
AM PEA		२		0730-08	30
VOLUM	OLUME 403				
PM PEA	K HOUF	२		1500-16	00
VOLUM	E			195	

DIRECTION:		EXIT			
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	0	0	0	0	0
1:00	0	0	0	0	0
2:00	0	0	0	0	0
3:00	0	0	0	0	0
4:00	0	0	0	0	0
5:00	0	0	0	0	0
6:00	0	0	0	0	0
7:00	0	6	23	110	139
8:00	122	121	40	19	302
9:00	6	10	6	2	24
10:00	5	5	4	3	17
11:00	6	6	6	8	26
12:00	5	2	3	8	18
13:00	3	12	10	5	30
14:00	1	12	20	28	61
15:00	74	72	98	48	292
16:00	35	33	60	64	192
17:00	42	34	30	53	159
18:00	23	6	10	0	39
19:00	0	0	0	0	0
20:00	0	0	0	0	0
21:00	0	0	0	0	0
22:00	0	0	0	0	0
23:00	0	0	0	0	0
				TOTAL	1299
AM PEAK HOUR			0745-08	345	
VOLUME		393			
PM PEA		२	1500-1600		
VOLUM	E		292		

τοται	VOLUME
IUIAL	

DIRECTION:

TIME 00-15 15-30

Phone: (626) 564-1944 Fax: (626) 564-0969

24-HOUR ADT COUNT SUMMARY

CLIENT:	CRAIN & ASSOCIATES
PROJECT:	BUCKLEY SCHOOL
LOCATION:	BUCKLEY SCHOOL DRIVEWAY
	STANSBURY AVENUE GATE
DATE:	WEDNESDAY, OCTOBER 27TH, 2004

ENTER

30-45

45-60

HOUR

DIRECTION:		EXIT		
00-15	15-30	30-45	45-60	HOUR
				TOTALS
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
4	1	32	98	135
124	128	38	14	304
4	6	6	14	30
10	2	6	8	26
14	4	4	12	34
4	4	8	9	25
12	3	4	2	21
8	7	18	35	68
66	84	106	66	322
34	25	78	38	175
70	72	61	16	219
14	4	8	12	38
22	1	0	0	23
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
			TOTAL	1420
			0745.00	A F
		0/45-0845		
		300		
F	`	322		
	ION: 00-15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 124 4 124 4 124 4 124 4 124 4 124 4 124 4 124 4 124 4 124 12	ION: 15-30 00-15 15-30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 124 128 4 6 10 2 14 4 4 4 4 4 4 4 12 3 8 7 66 84 34 25 70 72 14 4 22 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ION: EXIT 00-15 15-30 30-45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 66 84 106 34 25 78 70 72 61 14 4 8 22 1 0 0 0 0 0 0 0 0 0 0	ION: EXIT 00-15 15-30 30-45 45-60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 128 38 14 4 6 6 14 10 2 6 8 112 3 4 2 8 7 18 35 66 84 106 66 34 25 78 38 70 72

DEDINECTIONAL	VOLUNIL

Phone: (626) 564-1944 Fax: (626) 564-0969

24-HOUR ADT COUNT SUMMARY

CRAIN & ASSOCIATES
BUCKLEY SCHOOL
BUCKLEY SCHOOL DRIVEWAY
CAMINO DE LA CUMBRE AVENUE
MONDAY, OCTOBER 25TH, 2004

DATE:

DIRECTION:			TOTAL		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	0	0	0	0	0
1:00	0	0	0	0	0
2:00	0	0	0	0	0
3:00	0	0	0	0	0
4:00	0	0	0	0	0
5:00	0	0	2	2	4
6:00	4	4	4	2	14
7:00	0	0	0	0	0
8:00	0	0	0	0	0
9:00	0	0	0	0	0
10:00	0	0	0	0	0
11:00	0	0	0	0	0
12:00	0	0	0	0	0
13:00	0	0	0	0	0
14:00	0	0	0	0	0
15:00	10	10	14	4	38
16:00	0	0	0	0	0
17:00	0	0	0	0	0
18:00	20	29	40	15	104
19:00	2	1	0	0	3
20:00	2	0	2	0	4
21:00	0	0	0	0	0
22:00	0	0	4	2	6
23:00	2	0	0	0	2
				TOTAL	175
AM PEAK HOUR			0545-06	45	
VOLUME		14			
PM PEA	PM PEAK HOUR		1800-1900		
VOLUM	E		104		

DIRECTION:			0		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	0	0	0	0	0
1:00	0	0	0	0	0
2:00	0	0	0	0	0
3:00	0	0	0	0	0
4:00	0	0	0	0	0
5:00	0	0	0	0	0
6:00	0	0	0	0	0
7:00	0	0	0	0	0
8:00	0	0	0	0	0
9:00	0	0	0	0	0
10:00	0	0	0	0	0
11:00	0	0	0	0	0
12:00	0	0	0	0	0
13:00	0	0	0	0	0
14:00	0	0	0	0	0
15:00	0	0	0	0	0
16:00	0	0	0	0	0
17:00	0	0	0	0	0
18:00	0	0	0	0	0
19:00	0	0	0	0	0
20:00	0	0	0	0	0
21:00	0	0	0	0	0
22:00	0	0	0	0	0
23:00	0	0	0	0	0
			TOTAL	0	
AM PEAK HOUR		0000-0100			
VOLUM	E		0		
PM PEA	K HOUF	२	1200-1300		
VOLUM	E		0		

TOTAL BI-DIRECTIONAL VOLUME	-
-----------------------------	---

DIRECTION:

TIME 00-15 15-30

Phone: (626) 564-1944

Fax: (626) 564-0969

24-HOUR ADT COUNT SUMMARY

CLIENT:	CRAIN & ASSOCIATES
PROJECT:	BUCKLEY SCHOOL
LOCATION:	BUCKLEY SCHOOL DRIVEWAY
	CAMINO DE LA CUMBRE AVENUE
DATE:	TUESDAY, OCTOBER 26TH, 2004

TOTAL

30-45

45-60

HOUR TOTALS

DIRECTION:			0		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	0	0	0	0	0
1:00	0	0	0	0	0
2:00	0	0	0	0	0
3:00	0	0	0	0	0
4:00	0	0	0	0	0
5:00	0	0	0	0	0
6:00	0	0	0	0	0
7:00	0	0	0	0	0
8:00	0	0	0	0	0
9:00	0	0	0	0	0
10:00	0	0	0	0	0
11:00	0	0	0	0	0
12:00	0	0	0	0	0
13:00	0	0	0	0	0
14:00	0	0	0	0	0
15:00	0	0	0	0	0
16:00	0	0	0	0	0
17:00	0	0	0	0	0
18:00	0	0	0	0	0
19:00	0	0	0	0	0
20:00	0	0	0	0	0
21:00	0	0	0	0	0
22:00	0	0	0	0	0
23:00	0	0	0	0	0
			TOTAL	0	
AM PEAK HOUR			0730-08	330	
VOLUME		0			
PM PEA	K HOUF	२	1200-1300		
VOLUM	E		0		

IUIAL	

Phone: (626) 564-1944

Fax: (626) 564-0969

24-HOUR ADT COUNT SUMMARY

CRAIN & ASSOCIATES
BUCKLEY SCHOOL
BUCKLEY SCHOOL DRIVEWAY
CAMINO DE LA CUMBRE AVENUE
WEDNESDAY, OCTOBER 27TH, 2004

DIRECTION: TOTAL TIME 00-15 15-30 30-45 45-60 HOUR TOTALS 0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 TOTAL AM PEAK HOUR 0600-0700 VOLUME PM PEAK HOUR 1830-1930 VOLUME

DIRECT	DIRECTION:		0		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	0	0	0	0	0
1:00	0	0	0	0	0
2:00	0	0	0	0	0
3:00	0	0	0	0	0
4:00	0	0	0	0	0
5:00	0	0	0	0	0
6:00	0	0	0	0	0
7:00	0	0	0	0	0
8:00	0	0	0	0	0
9:00	0	0	0	0	0
10:00	0	0	0	0	0
11:00	0	0	0	0	0
12:00	0	0	0	0	0
13:00	0	0	0	0	0
14:00	0	0	0	0	0
15:00	0	0	0	0	0
16:00	0	0	0	0	0
17:00	0	0	0	0	0
18:00	0	0	0	0	0
19:00	0	0	0	0	0
20:00	0	0	0	0	0
21:00	0	0	0	0	0
22:00	0	0	0	0	0
23:00	0	0	0	0	0
				TOTAL	0
AM PEA		२		0730-08	330
VOLUM	E	-		0	
PM PEA	K HOUF	२		1200-13	300
VOLUM	OLUME 0				

TOTAL	BI-DIRECTION	NAL VOLUI	ME

Phone: (626) 564-1944 Fax: (626) 564-0969

24-HOUR ADT COUNT SUMMARY

CRAIN & ASSOCIATES
BUCKLEY SCHOOL
STANSBURY AVENUE NORTH OF
VALLEY VISTA BOULEVARD
THURSDAY, OCTOBER 28TH, 2004

-

DIRECTION:			NB		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	1	1	1	0	3
1:00	2	0	0	0	2
2:00	0	0	0	0	0
3:00	0	0	0	0	0
4:00	2	0	1	0	3
5:00	0	0	1	0	1
6:00	0	0	1	6	7
7:00	8	4	14	53	79
8:00	63	50	27	14	154
9:00	10	16	18	14	58
10:00	15	14	12	16	57
11:00	15	13	9	13	50
12:00	18	8	14	6	46
13:00	10	9	18	8	45
14:00	12	12	10	32	66
15:00	27	36	41	44	148
16:00	33	30	52	36	151
17:00	38	34	38	35	145
18:00	33	21	31	25	110
19:00	21	12	9	12	54
20:00	7	3	5	10	25
21:00	20	11	6	8	45
22:00	8	2	1	2	13
23:00	0	1	3	0	4
				TOTAL	1266
AM PEAK HOUR				0745-08	45
VOLUM	E			193	
PM PEA		२		1630-17	'30
VOLUM	E			160	

DIRECT	DIRECTION:		SB		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	2	1	0	0	3
1:00	4	2	0	0	6
2:00	0	0	0	0	0
3:00	0	0	2	1	3
4:00	0	0	1	0	1
5:00	0	0	2	3	5
6:00	4	4	6	34	48
7:00	56	88	124	144	412
8:00	158	120	91	70	439
9:00	45	46	32	30	153
10:00	14	12	20	22	68
11:00	18	14	18	10	60
12:00	28	21	16	16	81
13:00	18	13	19	12	62
14:00	24	24	36	31	115
15:00	35	33	30	29	127
16:00	31	29	28	31	119
17:00	22	23	15	14	74
18:00	24	19	24	22	89
19:00	26	11	10	11	58
20:00	6	9	6	10	31
21:00	21	12	10	3	46
22:00	5	8	5	4	22
23:00	0	1	3	2	6
				TOTAL	2028
AM PEAK HOUR			0730-08	330	
VOLUM	E			546	
PM PEA		२		1430-15	530
VOLUM	E 135				

TOTAL	BI-DIRECTIONAL VOLUME

Phone: (626) 564-1944

Fax: (626) 564-0969

24-HOUR ADT COUNT SUMMARY

CRAIN & ASSOCIATES
BUCKLEY SCHOOL
STANSBURY AVENUE SOUTH OF
VALLEY VISTA BOULEVARD
THURSDAY, OCTOBER 28TH, 2004

23:00

VOLUME

VOLUME

AM PEAK HOUR

PM PEAK HOUR

TOTAL

0745-0845

1500-1600

DIRECTION:			SB		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	0	1	0	0	1
1:00	0	0	0	0	0
2:00	0	0	0	0	0
3:00	0	0	1	0	1
4:00	0	0	1	0	1
5:00	0	0	0	0	0
6:00	0	0	0	1	1
7:00	6	13	49	134	202
8:00	148	77	52	10	287
9:00	7	9	8	12	36
10:00	8	4	8	6	26
11:00	4	7	15	7	33
12:00	7	8	7	5	27
13:00	5	8	14	10	37
14:00	19	11	25	37	92
15:00	83	35	56	24	198
16:00	17	31	20	22	90
17:00	11	12	10	8	41
18:00	10	6	11	20	47
19:00	22	12	4	6	44
20:00	0	5	3	8	16
21:00	18	8	6	0	32
22:00	0	0	0	0	0
23:00	0	0	0	0	0
				TOTAL	1212
ΔΜ ΡΕΔΚ ΗΟΠΒ				0745-08	345
VOLUM	E	-		411	
PM PEA		ર		1445-15	545
VOLUM	E			211	

TOTAL BI-DIRECTIONAL VOLUME	

Phone: (626) 564-1944

Fax: (626) 564-0969

24-HOUR ADT COUNT SUMMARY

CLIENT: CRAIN & ASSOCIATES PROJECT: BUCKLEY SCHOOL LOCATION: VALLEY VISTA BOULEVARD EAST OF STANSBURY AVENUE DATE: THURSDAY, OCTOBER 28TH, 2004

DATE

DIRECTION:			EB			
TIME	00-15	15-30	30-45	45-60	HOUR	
					TOTALS	
0:00	1	1	1	0	3	
1:00	4	2	0	0	6	
2:00	0	0	0	0	0	
3:00	0	0	1	1	2	
4:00	1	1	1	2	5	
5:00	0	2	1	0	3	
6:00	1	1	2	7	11	
7:00	10	11	24	39	84	
8:00	46	34	28	14	122	
9:00	20	19	18	23	80	
10:00	20	12	11	28	71	
11:00	16	12	16	14	58	
12:00	21	29	15	22	87	
13:00	19	23	30	19	91	
14:00	36	36	22	35	129	
15:00	44	49	50	69	212	
16:00	71	66	73	72	282	
17:00	54	74	80	72	280	
18:00	77	58	59	59	253	
19:00	77	38	33	19	167	
20:00	24	17	13	18	72	
21:00	36	21	19	15	91	
22:00	12	9	9	8	38	
23:00	4	3	2	0	9	
				TOTAL	2156	
				0745 09	45	
			1/40-00	940		
		2		1715_19	15	
	F	`		303	10	
	<u> </u>		303			

DIRECTION:			WB		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	1	2	1	1	5
1:00	1	1	0	1	3
2:00	0	0	0	0	0
3:00	0	1	3	0	4
4:00	2	2	2	0	6
5:00	1	1	1	2	5
6:00	2	11	13	21	47
7:00	51	66	69	91	277
8:00	78	90	68	54	290
9:00	54	28	30	26	138
10:00	31	28	28	21	108
11:00	22	14	22	20	78
12:00	13	17	16	13	59
13:00	18	13	17	28	76
14:00	22	10	16	38	86
15:00	35	34	34	20	123
16:00	22	25	23	28	98
17:00	27	24	29	28	108
18:00	24	25	22	14	85
19:00	22	22	20	11	75
20:00	14	12	8	10	44
21:00	14	10	12	6	42
22:00	14	6	4	2	26
23:00	1	0	9	1	11
				TOTAL	1794
AM PEAK HOUR			0730-08	330	
VOLUM	E			328	
PM PEA		२		1445-15	545
			141		

Phone: (626) 564-1944

24-HOUR ADT COUNT SUMMARY

CLIENT: **CRAIN & ASSOCIATES** PROJECT: BUCKLEY SCHOOL LOCATION: VALLEY VISTA BOULEVARD WEST OF STANSBURY AVENUE THURSDAY, OCTOBER 28TH, 2004

DATE:

PM PEAK HOUR

VOLUME

DIRECTION:			WB		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	2	1	0	0	3
1:00	0	2	0	1	3
2:00	0	0	0	0	0
3:00	0	2	3	0	5
4:00	1	2	0	1	4
5:00	1	1	3	3	8
6:00	8	13	20	46	87
7:00	94	129	124	123	470
8:00	124	156	118	100	498
9:00	80	46	36	28	190
10:00	29	26	29	18	102
11:00	27	14	22	20	83
12:00	21	18	18	15	72
13:00	16	13	14	25	68
14:00	17	19	24	30	90
15:00	52	46	44	23	165
16:00	25	16	38	31	110
17:00	22	25	23	24	94
18:00	28	27	28	9	92
19:00	26	22	14	8	70
20:00	12	13	8	11	44
21:00	12	10	7	5	34
22:00	10	6	5	4	25
23:00	1	0	6	0	7
				TOTAL	2324
AM PEAK HOUR			0730-0830		
VOLUME			527		
PM PEAK HOUR			1445-1545		
VOLUME			172		

|--|

1715-1815

Phone: (626) 564-1944 Fax: (626) 564-0969

24-HOUR ADT COUNT SUMMARY

CLIENT:	CRAIN & ASSOCIATES
PROJECT:	BUCKLEY SCHOOL
LOCATION:	GREENLEAF STREET WEST OF
	STANSBURY AVENUE
DATE:	THURSDAY, OCTOBER 28TH, 2004

DATE:

DIRECTION: EB					
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	1	2	0	0	3
1:00	0	1	1	0	2
2:00	0	0	0	0	0
3:00	0	0	0	0	0
4:00	0	0	1	0	1
5:00	0	0	2	1	3
6:00	0	0	1	2	3
7:00	2	3	12	7	24
8:00	6	5	3	7	21
9:00	5	6	6	3	20
10:00	1	1	5	4	11
11:00	1	1	1	1	4
12:00	8	1	1	0	10
13:00	4	0	2	0	6
14:00	5	0	1	1	7
15:00	3	2	4	8	17
16:00	13	16	16	12	57
17:00	11	14	16	18	59
18:00	28	26	22	14	90
19:00	14	5	6	6	31
20:00	4	4	1	2	11
21:00	6	3	4	3	16
22:00	2	3	4	2	11
23:00	2	0	2	1	5
				TOTAL	412
AM PEAK HOUR			0730-0830		
VOLUME			30		
PM PEAK HOUR			1730-1830		
VOLUME			88		

DIRECTION:			WB		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	4	3	1	1	9
1:00	0	0	4	0	4
2:00	0	0	3	0	3
3:00	0	0	0	0	0
4:00	2	0	0	1	3
5:00	0	1	2	1	4
6:00	0	2	4	14	20
7:00	22	26	52	70	170
8:00	46	63	62	43	214
9:00	26	18	18	16	78
10:00	14	14	8	18	54
11:00	10	12	9	13	44
12:00	22	15	16	12	65
13:00	28	21	16	12	77
14:00	8	24	18	23	73
15:00	19	16	24	24	83
16:00	20	16	32	26	94
17:00	22	17	30	18	87
18:00	26	10	20	14	70
19:00	9	17	14	12	52
20:00	6	1	6	6	19
21:00	14	4	4	2	24
22:00	1	2	4	1	8
23:00	0	2	2	3	7
				TOTAL	1262
AM PEAK HOUR			0745-0845		
VOLUME			241		
PM PEAK HOUR			1630-1730		
VOLUME			97		

TOTAL BI-DIRECTIONAL VOLUME

DIRECTION:

AM PEAK HOUR

PM PEAK HOUR

VOLUME

VOLUME

Phone: (626) 564-1944

Fax: (626) 564-0969

24-HOUR ADT COUNT SUMMARY

CLIENT:	CRAIN & ASSOCIATES
PROJECT:	BUCKLEY SCHOOL
LOCATION:	DICKENS STREET WEST OF
	STANSBURY AVENUE
DATE:	THURSDAY, OCTOBER 28TH, 2004

EΒ

DIRECTION:			WB		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	2	0	2	2	6
1:00	2	3	0	3	8
2:00	2	0	2	1	5
3:00	0	0	0	0	0
4:00	1	0	2	1	4
5:00	1	1	1	4	7
6:00	2	2	4	10	18
7:00	13	20	38	54	125
8:00	78	58	47	18	201
9:00	20	26	21	15	82
10:00	27	20	30	14	91
11:00	18	22	28	16	84
12:00	12	20	16	25	73
13:00	31	30	25	28	114
14:00	26	22	22	23	93
15:00	28	36	36	36	136
16:00	28	30	37	40	135
17:00	44	44	42	42	172
18:00	32	30	22	39	123
19:00	36	19	27	31	113
20:00	20	13	11	16	60
21:00	9	7	8	12	36
22:00	13	11	5	4	33
23:00	6	4	4	3	17
				TOTAL	1736
AM PEAK HOUR			0745-0845		
VOLUME			237		
PM PEAK HOUR			1700-1800		
VOLUME			172		

TOTAL BI-DIRECTIONAL VOLUME

0815-0915

1700-1800

DIRECTION:

TIME 00-15

Phone: (626) 564-1944

Fax: (626) 564-0969

24-HOUR ADT COUNT SUMMARY

CLIENT:	CRAIN & ASSOCIATES
PROJECT:	BUCKLEY SCHOOL
LOCATION:	CAMINO DE LA CUMBRE WEST OF
	STANSBURY AVENUE
DATE:	THURSDAY, OCTOBER 28TH, 2004

TOTAL

30-45

45-60

HOUR

15-30

DIRECTION:			0		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	0	0	0	0	0
1:00	0	0	0	0	0
2:00	0	0	0	0	0
3:00	0	0	0	0	0
4:00	0	0	0	0	0
5:00	0	0	0	0	0
6:00	0	0	0	0	0
7:00	0	0	0	0	0
8:00	0	0	0	0	0
9:00	0	0	0	0	0
10:00	0	0	0	0	0
11:00	0	0	0	0	0
12:00	0	0	0	0	0
13:00	0	0	0	0	0
14:00	0	0	0	0	0
15:00	0	0	0	0	0
16:00	0	0	0	0	0
17:00	0	0	0	0	0
18:00	0	0	0	0	0
19:00	0	0	0	0	0
20:00	0	0	0	0	0
21:00	0	0	0	0	0
22:00	0	0	0	0	0
23:00	0	0	0	0	0
				TOTAL	0
AM PEAK HOUR			0000-0100		
VOLUME			0		
PM PEAK HOUR			1200-1300		
VOLUME			0		

TOTAL BI-DIRECTIONAL VOLUME

Phone: (626) 564-1944

Fax: (626) 564-0969

24-HOUR ADT COUNT SUMMARY

CLIENT: CRAIN & ASSOCIATES PROJECT: BUCKLEY SCHOOL LOCATION: CAMINO DE LA CUMBRE SOUTH OF VALLEY VISTA AVENUE DATE: THURSDAY, OCTOBER 28TH, 2004

DIRECTION:			TOTAL			
TIME	00-15	15-30	30-45	45-60	HOUR	
					TOTALS	
0:00	0	0	4	0	4	
1:00	0	1	0	0	1	
2:00	0	0	0	0	0	
3:00	0	0	0	0	0	
4:00	0	0	0	0	0	
5:00	1	2	0	1	4	
6:00	7	3	5	7	22	
7:00	15	19	26	28	88	
8:00	20	36	31	28	115	
9:00	30	20	10	17	77	
10:00	6	6	8	10	30	
11:00	8	8	8	9	33	
12:00	6	6	7	14	33	
13:00	12	8	15	6	41	
14:00	12	14	6	12	44	
15:00	17	12	15	13	57	
16:00	20	28	19	17	84	
17:00	21	27	22	35	105	
18:00	26	24	26	22	98	
19:00	10	9	4	14	37	
20:00	9	8	2	1	20	
21:00	5	6	6	4	21	
22:00	6	4	6	5	21	
23:00	2	2	0	0	4	
· · · ·				TOTAL	939	
AM PEAK HOUR				0815-09	15	
VOLUME				125		
PM PEAK HOUR			1745-1845			
VOLUME			111			

DIRECT	ION:		0		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	0	0	0	0	0
1:00	0	0	0	0	0
2:00	0	0	0	0	0
3:00	0	0	0	0	0
4:00	0	0	0	0	0
5:00	0	0	0	0	0
6:00	0	0	0	0	0
7:00	0	0	0	0	0
8:00	0	0	0	0	0
9:00	0	0	0	0	0
10:00	0	0	0	0	0
11:00	0	0	0	0	0
12:00	0	0	0	0	0
13:00	0	0	0	0	0
14:00	0	0	0	0	0
15:00	0	0	0	0	0
16:00	0	0	0	0	0
17:00	0	0	0	0	0
18:00	0	0	0	0	0
19:00	0	0	0	0	0
20:00	0	0	0	0	0
21:00	0	0	0	0	0
22:00	0	0	0	0	0
23:00	0	0	0	0	0
				TOTAL	0
AM PEAK HOUR			0000-01	00	
VOLUME			0		
PM PEAK HOUR		1200-1300			
VOLUME		0			

ADDITIONAL COUNTS FOR CONSTRUCTION TRAFFIC ANALYSIS

24-HOUR ADT COUNT SUMMARY

CLIENT: **CRAIN & ASSOCIATES** BUCKLEY SCHOOL PROJECT: LOCATION: DICKENS STREET BETWEEN VAN NUYS BOULEVARD AND BEVERLY GLEN BOULEVARD WEDNESDAY FEBRUARY 9, 2005

DATE:

DIRECTION:			EB		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	1	0	0	2	3
1:00	1	2	1	1	5
2:00	2	1	0	0	3
3:00	0	0	0	0	0
4:00	0	0	1	0	1
5:00	0	1	1	1	3
6:00	1	2	5	6	14
7:00	14	12	22	14	62
8:00	22	23	19	21	85
9:00	31	29	25	16	101
10:00	15	21	22	22	80
11:00	19	21	15	15	70
12:00	23	26	24	21	94
13:00	25	34	22	30	111
14:00	31	33	34	22	120
15:00	30	43	39	35	147
16:00	40	39	41	44	164
17:00	53	36	51	39	179
18:00	44	32	32	41	149
19:00	39	44	36	32	151
20:00	30	22	22	19	93
21:00	22	13	9	14	58
22:00	14	6	6	4	30
23:00	3	5	2	4	14
				TOTAL	1737
AM PEAK HOUR				0845-00	45
VOLUME		106			
PM PEAK HOUR		1645-1745			
VOLUM	E		184		

DIRECTION:			WB		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	2	2	1	1	6
1:00	2	0	1	1	4
2:00	1	0	1	2	4
3:00	0	0	0	0	0
4:00	2	2	1	0	5
5:00	0	1	2	3	6
6:00	1	5	9	6	21
7:00	14	23	41	70	148
8:00	54	54	63	42	213
9:00	39	52	34	18	143
10:00	21	18	18	16	73
11:00	26	32	21	40	119
12:00	30	35	27	19	111
13:00	31	26	22	22	101
14:00	25	26	34	29	114
15:00	34	33	44	28	139
16:00	38	44	40	49	171
17:00	38	39	53	44	174
18:00	38	44	34	30	146
19:00	31	30	23	21	105
20:00	22	22	13	13	70
21:00	25	20	16	12	73
22:00	14	6	4	10	34
23:00	3	3	5	3	14
				TOTAL	1994
AM PEAK HOUR				0745-08	345
VOLUME		241			
PM PEAK HOUR		1645-1745			
VOLUME			179		

TOTAL BI-DIRECTIONAL VOLUME	3731

24-HOUR ADT COUNT SUMMARY

CLIENT: **CRAIN & ASSOCIATES** PROJECT: BUCKLEY SCHOOL LOCATION: **GREENLEAF STREET BETWEEN** VAN NUYS BOULEVARD AND BEVERLY GLEN BOULEVARD **TUESDAY FEBRUARY 8, 2005**

DATE:

DIRECTION:			EB			
TIME	00-15	15-30	30-45	45-60	HOUR	
					TOTALS	
0:00	0	0	0	1	1	
1:00	0	0	0	0	0	
2:00	0	1	1	0	2	
3:00	0	0	0	0	0	
4:00	0	0	0	0	0	
5:00	0	0	0	0	0	
6:00	0	2	1	18	21	
7:00	29	38	31	31	129	
8:00	33	42	29	24	128	
9:00	25	21	10	7	63	
10:00	9	3	1	6	19	
11:00	5	10	7	7	29	
12:00	6	5	5	8	24	
13:00	4	8	10	9	31	
14:00	8	12	5	12	37	
15:00	10	8	14	18	50	
16:00	7	11	7	14	39	
17:00	14	16	16	16	62	
18:00	14	14	14	4	46	
19:00	10	6	4	8	28	
20:00	1	1	3	6	11	
21:00	2	4	3	3	12	
22:00	1	1	1	2	5	
23:00	2	0	1	1	4	
				TOTAL	741	
				0700.00	00	
		0730-0830				
				137		
		7	1/00-1800			
VOLUME			62			

DIRECTION:			WB		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	1	0	0	0	1
1:00	0	1	0	0	1
2:00	1	0	0	0	1
3:00	0	0	0	0	0
4:00	1	0	0	0	1
5:00	1	0	0	2	3
6:00	2	6	3	2	13
7:00	15	10	14	11	50
8:00	23	24	19	12	78
9:00	3	13	12	12	40
10:00	7	7	16	8	38
11:00	10	16	8	13	47
12:00	11	13	6	14	44
13:00	12	16	12	14	54
14:00	12	19	22	18	71
15:00	15	18	22	10	65
16:00	19	18	18	24	79
17:00	20	18	15	15	68
18:00	15	7	14	14	50
19:00	14	14	20	3	51
20:00	8	8	8	4	28
21:00	6	2	2	3	13
22:00	0	3	1	1	5
23:00	2	0	1	1	4
				TOTAL	805
AM PEAK HOUR				0800-00	00
VOLUME				78	
PM PEAK HOUR			1615-1715		
VOLUME			80		

TOTAL BI-DIRECTIONAL VOLUME	1546

24-HOUR ADT COUNT SUMMARY

CLIENT:	CRAIN & ASSOCIATES
PROJECT:	BUCKLEY SCHOOL
LOCATION:	VALLEY VISTA BOULEVARD EAST OF
	KESTER AVENUE
DATE:	WEDNESDAY FEBRUARY 9, 2005

DIRECT	ION:		EB		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	1	0	1	0	2
1:00	0	1	0	1	2
2:00	0	0	0	1	1
3:00	0	0	0	0	0
4:00	1	1	2	0	4
5:00	1	1	0	2	4
6:00	1	1	4	14	20
7:00	22	44	51	44	161
8:00	62	53	55	52	222
9:00	42	34	31	34	141
10:00	20	25	23	24	92
11:00	20	23	28	25	96
12:00	35	22	18	23	98
13:00	23	30	25	16	94
14:00	22	22	31	39	114
15:00	28	34	33	42	137
16:00	41	33	53	41	168
17:00	39	61	56	52	208
18:00	50	44	44	34	172
19:00	22	33	18	18	91
20:00	15	20	20	10	65
21:00	22	4	10	6	42
22:00	6	8	4	3	21
23:00	3	6	3	1	13
				TOTAL	1968
				0000 00	00
			0800-0900		
		`	1/15-1815		
VOLUME		219			

DIRECTION:			WB		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	0	3	0	1	4
1:00	0	1	0	3	4
2:00	0	0	0	1	1
3:00	0	1	1	0	2
4:00	0	0	0	2	2
5:00	1	1	1	2	5
6:00	2	4	5	14	25
7:00	14	22	21	26	83
8:00	40	36	33	31	140
9:00	30	31	33	33	127
10:00	26	35	32	29	122
11:00	26	16	22	25	89
12:00	19	30	26	32	107
13:00	26	18	29	24	97
14:00	33	24	24	35	116
15:00	46	34	32	34	146
16:00	38	40	22	44	144
17:00	44	42	35	41	162
18:00	36	30	38	41	145
19:00	29	15	24	18	86
20:00	14	14	22	16	66
21:00	10	10	9	9	38
22:00	0	5	0	3	8
23:00	6	0	0	2	8
				TOTAL	1727
AM PEAK HOUR			0800-0900		
VOLUME			140		
		۲		1045-17	40
VOLUME		165			

TOTAL BI-DIRECTIONAL VOLUME	3695

WILTEC 24-HOUR ADT COUNT SUMMARY

CLIENT:	CRAIN & ASSOCIATES
PROJECT:	BUCKLEY SCHOOL
LOCATION:	VALLEY VISTA BOULEVARD EAST OF
	VAN NUYS BOULEVARD
DATE:	TUESDAY FEBRUARY 8, 2005

DIRECTION:			EB		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	14	8	8	6	36
1:00	6	2	4	3	15
2:00	4	1	3	1	9
3:00	4	0	4	3	11
4:00	1	5	6	7	19
5:00	13	22	29	35	99
6:00	62	136	188	148	534
7:00	174	158	150	168	650
8:00	156	168	156	172	652
9:00	168	186	168	180	702
10:00	174	175	136	122	607
11:00	130	108	118	95	451
12:00	108	96	134	100	438
13:00	114	114	102	70	400
14:00	112	94	119	112	437
15:00	112	132	123	107	474
16:00	112	122	86	124	444
17:00	124	129	107	94	454
18:00	111	113	91	83	398
19:00	87	91	72	64	314
20:00	67	57	53	36	213
21:00	54	44	44	22	164
22:00	44	44	22	22	132
23:00	19	15	14	16	64
				TOTAL	7717
				0015 10	15
			709		
			1645-1745		
	F	`	1040-1740		
VOLUIVIE			404		

DIRECTION:			WB		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	7	7	1	5	20
1:00	6	4	2	5	17
2:00	2	4	2	1	9
3:00	3	0	1	0	4
4:00	1	2	1	1	5
5:00	3	3	9	6	21
6:00	9	10	14	22	55
7:00	20	40	50	54	164
8:00	48	50	46	66	210
9:00	52	71	58	67	248
10:00	68	59	105	68	300
11:00	73	80	66	74	293
12:00	88	77	76	100	341
13:00	86	104	112	112	414
14:00	96	95	122	110	423
15:00	158	160	166	138	622
16:00	163	146	156	133	598
17:00	142	152	152	135	581
18:00	168	136	130	135	569
19:00	135	145	148	123	551
20:00	114	87	80	54	335
21:00	54	40	34	34	162
22:00	42	44	24	20	130
23:00	22	23	16	14	75
				TOTAL	6147
				4000	
			1030-1130		
			326		
		۲	1515-1615		
VOLUME			627		

TOTAL BI-DIRECTIONAL VOLUME	13864

24-HOUR ADT COUNT SUMMARY

CRAIN & ASSOCIATES
BUCKLEY SCHOOL
VALLEY VISTA BOULEVARD WEST OF
CAMINO DE LA CUMBRE
TUESDAY FEBRUARY 8, 2005

DIRECTION:			EB		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	3	0	2	1	6
1:00	2	0	1	0	3
2:00	1	0	2	0	3
3:00	0	2	0	0	2
4:00	1	0	2	0	3
5:00	0	1	1	0	2
6:00	1	0	4	6	11
7:00	7	34	70	92	203
8:00	105	83	69	68	325
9:00	21	20	28	32	101
10:00	28	16	29	18	91
11:00	23	24	20	32	99
12:00	28	38	32	24	122
13:00	34	32	32	44	142
14:00	35	40	56	54	185
15:00	69	57	56	58	240
16:00	48	70	80	64	262
17:00	84	60	70	67	281
18:00	60	58	71	58	247
19:00	76	87	61	39	263
20:00	41	18	22	27	108
21:00	19	16	14	10	59
22:00	20	16	8	7	51
23:00	4	3	6	2	15
				TOTAL	2824
AM PEAK HOUR			0730-0830		
VOLUME			350		
PM PEA		۲	1615-1715		
VOLUME			298		

DIRECTION:			WB		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	2	1	1	1	5
1:00	1	1	0	0	2
2:00	0	0	1	0	1
3:00	0	1	0	0	1
4:00	0	3	1	0	4
5:00	1	2	4	9	16
6:00	6	16	37	86	145
7:00	131	132	112	128	503
8:00	126	102	120	106	454
9:00	81	62	40	40	223
10:00	44	53	42	32	171
11:00	34	39	27	35	135
12:00	26	44	29	27	126
13:00	30	31	31	36	128
14:00	28	28	22	42	120
15:00	63	45	53	22	183
16:00	34	28	29	32	123
17:00	34	42	38	35	149
18:00	18	26	10	23	77
19:00	24	11	21	12	68
20:00	9	6	4	3	22
21:00	8	3	7	7	25
22:00	6	4	0	3	13
23:00	2	5	0	0	7
				TOTAL	2701
ΔΜ ΡΕΔΚ ΗΟΠΒ				0700-08	300
VOLUME			503		
PM PEAK HOUR			1445-1545		
VOLUM	E		203		

TOTAL BI-DIRECTIONAL VOLUME	5525

24-HOUR ADT COUNT SUMMARY

CLIENT: **CRAIN & ASSOCIATES** BUCKLEY SCHOOL PROJECT: LOCATION: VAN NUYS BOULEVARD BETWEEN BENEFIT STREET AND GREENLEAF STREET **TUESDAY FEBRUARY 8, 2005**

DATE:

DIRECTION:			NB		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	14	5	3	8	30
1:00	6	4	2	4	16
2:00	3	4	1	1	9
3:00	3	0	1	0	4
4:00	3	1	3	1	8
5:00	5	6	11	10	32
6:00	16	13	30	16	75
7:00	32	46	58	55	191
8:00	94	58	29	68	249
9:00	68	85	73	87	313
10:00	63	59	104	83	309
11:00	70	94	72	102	338
12:00	96	88	81	92	357
13:00	90	112	115	98	415
14:00	106	108	138	119	471
15:00	146	130	132	138	546
16:00	144	144	144	144	576
17:00	132	146	153	154	585
18:00	140	178	138	114	570
19:00	129	135	150	116	530
20:00	119	90	86	54	349
21:00	51	36	38	30	155
22:00	32	42	18	21	113
23:00	29	24	22	22	97
				TOTAL	6338
		_	r		
AM PEAK HOUR			1030-1130		
VOLUM	E		351		
PM PEA	K HOUF	२		1730-18	30
VOLUME			625		

DIRECTION:			SB		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	14	7	9	9	39
1:00	7	2	3	3	15
2:00	3	0	5	1	9
3:00	5	0	3	2	10
4:00	2	4	6	9	21
5:00	15	17	28	32	92
6:00	62	135	182	184	563
7:00	195	124	125	156	600
8:00	156	150	136	160	602
9:00	179	168	171	190	708
10:00	167	171	132	128	598
11:00	143	122	112	96	473
12:00	104	110	117	104	435
13:00	116	116	116	89	437
14:00	106	114	110	110	440
15:00	110	142	131	122	505
16:00	122	107	88	122	439
17:00	130	130	102	95	457
18:00	116	96	103	99	414
19:00	82	80	83	75	320
20:00	82	69	60	54	265
21:00	58	44	49	35	186
22:00	43	50	29	31	153
23:00	22	18	16	16	72
				TOTAL	7853
AM PEAK HOUR		0900-1000			
VOLUME			708		
PM PEA		२	1515-1615		
VOLUME			517		

TOTAL BI-DIRECTIONAL VOLUME	14191

24-HOUR ADT COUNT SUMMARY

CLIENT:	CRAIN & ASSOCIATES
PROJECT:	BUCKLEY SCHOOL
LOCATION:	BEVERLY GLEN BOULEVARD BETWEEN
	BENEFIT STREET AND GREENLEAF STREET
DATE:	THURSDAY FEBRUARY 10, 2005

DIRECTION:		NB			
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	12	22	5	9	48
1:00	4	6	1	3	14
2:00	1	5	2	2	10
3:00	1	2	1	0	4
4:00	0	0	2	3	5
5:00	4	6	8	14	32
6:00	12	16	42	36	106
7:00	52	78	88	96	314
8:00	97	100	90	97	384
9:00	77	78	80	86	321
10:00	80	78	88	78	324
11:00	90	77	70	77	314
12:00	70	90	90	94	344
13:00	118	104	123	130	475
14:00	124	149	190	199	662
15:00	191	218	216	205	830
16:00	186	178	203	180	747
17:00	198	196	220	198	812
18:00	196	220	198	206	820
19:00	182	135	136	105	558
20:00	74	83	58	42	257
21:00	43	61	48	48	200
22:00	46	41	33	22	142
23:00	22	22	20	21	85
				TOTAL	7808
			0800-09	00	
				384	20
		۲		1/30-18	50
VULUME				034	

DIRECT	ION:		SB		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	10	8	8	5	31
1:00	5	4	2	6	17
2:00	3	0	1	4	8
3:00	1	2	2	0	5
4:00	2	3	8	10	23
5:00	13	13	23	34	83
6:00	64	120	192	198	574
7:00	146	140	120	124	530
8:00	148	119	130	150	547
9:00	132	144	190	152	618
10:00	144	115	122	96	477
11:00	95	92	88	94	369
12:00	93	98	90	100	381
13:00	88	90	86	77	341
14:00	86	98	105	95	384
15:00	112	112	110	108	442
16:00	95	123	105	90	413
17:00	98	121	108	138	465
18:00	126	129	132	124	511
19:00	87	85	50	66	288
20:00	59	40	52	21	172
21:00	31	34	46	22	133
22:00	21	23	22	14	80
23:00	14	14	4	4	36
				TOTAL	6928
AM PEAK HOUR			0630-07	30	
		6/6			
		7		525	940

TOTAL BI-DIRECTIONAL VOLUME	14736

24-HOUR ADT COUNT SUMMARY

CRAIN & ASSOCIATES
BUCKLEY SCHOOL
BEVERLY GLEN BOULEVARD SOUTH OF
MILLBROOK DRIVE
TUESDAY FEBRUARY 8, 2005

DIRECT	DIRECTION:		NB		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	15	15	15	15	60
1:00	7	8	8	14	37
2:00	4	8	6	3	21
3:00	4	0	0	2	6
4:00	2	2	2	4	10
5:00	8	5	9	6	28
6:00	23	18	34	41	116
7:00	60	80	122	123	385
8:00	136	136	123	110	505
9:00	120	128	120	124	492
10:00	128	108	103	130	469
11:00	130	124	132	144	530
12:00	123	167	155	158	603
13:00	152	180	212	206	750
14:00	208	188	248	272	916
15:00	286	360	340	336	1322
16:00	324	364	391	340	1419
17:00	340	246	326	328	1240
18:00	369	364	376	388	1497
19:00	390	412	390	342	1534
20:00	296	228	172	144	840
21:00	124	118	84	80	406
22:00	88	72	60	66	286
23:00	48	39	42	30	159
				TOTAL	13631
AM PEA	AM PEAK HOUR			1100-12	200
VOLUM	E		530		
PM PEAK HOUR		1845-1945			
VOLUM	E		1580		

DIRECT	ION:		SB		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	9	10	14	12	45
1:00	9	1	5	0	15
2:00	2	2	3	2	9
3:00	4	2	5	1	12
4:00	4	10	10	15	39
5:00	32	29	45	68	174
6:00	117	252	382	405	1156
7:00	413	418	406	402	1639
8:00	406	400	414	412	1632
9:00	402	412	402	414	1630
10:00	372	349	316	303	1340
11:00	254	186	190	190	820
12:00	164	179	208	199	750
13:00	194	183	172	146	695
14:00	178	175	172	167	692
15:00	190	202	208	200	800
16:00	179	172	142	172	665
17:00	188	204	192	164	748
18:00	173	185	155	145	658
19:00	134	123	110	97	464
20:00	100	81	69	62	312
21:00	71	50	64	43	228
22:00	42	56	32	23	153
23:00	29	22	14	21	86
				TOTAL	14762
AM PEAK HOUR			0645-07	'45	
VOLUME		1642			
PM PEAK HOUR 1500-		1500-16	600		
VOLUM	.UME 800				

TOTAL BI-DIRECTIONAL VOLUME	28393
TOTAL BI-DIRECTIONAL VOLUME	28393

24-HOUR ADT COUNT SUMMARY

CLIENT: **CRAIN & ASSOCIATES** PROJECT: **BUCKLEY SCHOOL** LOCATION: STANSBURY AVENUE BETWEEN DICKENS STREET AND GREENLEAF STREET WEDNESDAY FEBRUARY 9, 2005

DATE:

DIRECTION:		NB			
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	5	4	4	0	13
1:00	5	1	1	1	8
2:00	4	0	1	0	5
3:00	0	1	0	0	1
4:00	0	1	1	0	2
5:00	2	2	2	3	9
6:00	2	2	5	9	18
7:00	14	14	22	62	112
8:00	66	48	48	36	198
9:00	28	33	15	31	107
10:00	22	22	23	30	97
11:00	22	22	32	22	98
12:00	20	23	34	22	99
13:00	23	22	22	22	89
14:00	18	21	32	34	105
15:00	44	50	72	51	217
16:00	43	50	64	64	221
17:00	44	32	46	57	179
18:00	48	39	39	34	160
19:00	36	35	22	15	108
20:00	21	15	22	8	66
21:00	34	40	30	12	116
22:00	2	7	5	4	18
23:00	1	6	1	1	9
				TOTAL	2055
AM PEAK HOUR			0745-08	345	
VOLUME		224			
PM PEAK HOUR		1615-1715			
VOLUM	E		222		

DIRECT	ION:		SB		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	3	2	1	3	9
1:00	3	1	0	1	5
2:00	0	0	0	0	0
3:00	1	1	2	0	4
4:00	0	1	0	1	2
5:00	1	1	3	6	11
6:00	8	10	22	65	105
7:00	94	106	123	144	467
8:00	129	122	96	78	425
9:00	62	70	36	36	204
10:00	23	30	16	26	95
11:00	14	22	20	20	76
12:00	29	21	26	26	102
13:00	20	25	20	22	87
14:00	22	30	23	50	125
15:00	42	40	42	36	160
16:00	36	32	36	35	139
17:00	36	30	31	33	130
18:00	34	22	33	34	123
19:00	22	25	25	22	94
20:00	19	15	7	19	60
21:00	20	16	14	8	58
22:00	5	6	4	10	25
23:00	3	3	3	3	12
				TOTAL	2518
				0720 00	20
		518			
PM PEAK HOUR 1445 1545		45			
VOLUM	E	`	174		

TOTAL BI-DIRECTIONAL VOLUME	4573

24-HOUR ADT COUNT SUMMARY

CLIENT:	CRAIN & ASSOCIATES
PROJECT:	BUCKLEY SCHOOL
LOCATION:	HAZELTINE AVENUE BETWEEN DICKENS STREET
	AND GREENLEAF STREET
DATE:	WEDNESDAY FEBRUARY 9, 2005

VOLUME

DIRECT	ION:		NB		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	0	0	0	0	0
1:00	0	1	0	0	1
2:00	0	0	0	0	0
3:00	0	0	0	0	0
4:00	0	0	0	0	0
5:00	0	0	0	4	4
6:00	1	3	2	5	11
7:00	9	18	14	20	61
8:00	14	14	22	15	65
9:00	15	14	0	18	47
10:00	12	11	22	10	55
11:00	4	11	11	18	44
12:00	16	10	22	9	57
13:00	7	10	15	18	50
14:00	8	22	18	22	70
15:00	15	21	16	20	72
16:00	19	19	25	23	86
17:00	18	19	22	20	79
18:00	22	20	18	10	70
19:00	22	14	10	14	60
20:00	1	5	3	4	13
21:00	4	4	1	1	10
22:00	1	1	3	1	6
23:00	0	0	2	2	4
				TOTAL	865
AM PEA		२		0745-08	45
VOLUME				70	
PM PEAK HOUR			1600-1700		

DIRECTION: SB					
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	1	0	0	0	1
1:00	0	0	1	0	1
2:00	0	0	1	0	1
3:00	0	1	0	0	1
4:00	0	2	0	0	2
5:00	0	0	1	0	1
6:00	0	0	2	5	7
7:00	14	22	38	39	113
8:00	44	46	28	25	143
9:00	22	14	8	2	46
10:00	8	6	14	11	39
11:00	5	18	4	15	42
12:00	6	8	8	14	36
13:00	5	10	7	22	44
14:00	18	16	11	12	57
15:00	11	18	15	14	58
16:00	14	14	22	19	69
17:00	15	9	15	6	45
18:00	8	16	19	15	58
19:00	6	8	16	19	49
20:00	15	9	7	7	38
21:00	2	1	2	2	7
22:00	4	1	3	1	9
23:00	1	0	1	1	3
				TOTAL	870
AM PEAK HOUR				0730-08	330
VOLUME			167		
PM PEA	K HOUF	२	1615-1715		
			70		

TOTAL BI-DIRECTIONAL VOLUME	1735
-----------------------------	------

24-HOUR ADT COUNT SUMMARY

CLIENT:	CRAIN & ASSOCIATES
PROJECT:	BUCKLEY SCHOOL
LOCATION:	BENEDICT CANYON DRIVE BETWEEN
	VENTURA BOULEVARD AND VALLEY VISTA BOULEVARD
DATE:	WEDNESDAY FEBRUARY 9, 2005

DIRECT	ION:		NB		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	2	1	0	0	3
1:00	0	0	1	0	1
2:00	0	1	0	0	1
3:00	0	2	1	0	3
4:00	1	0	1	1	3
5:00	0	2	1	3	6
6:00	3	7	7	7	24
7:00	14	15	9	14	52
8:00	16	16	12	8	52
9:00	14	14	15	11	54
10:00	13	13	13	15	54
11:00	11	10	6	8	35
12:00	12	14	11	13	50
13:00	10	13	7	16	46
14:00	13	16	21	18	68
15:00	14	20	20	13	67
16:00	18	19	19	21	77
17:00	15	21	21	7	64
18:00	16	14	19	14	63
19:00	18	7	22	14	61
20:00	2	2	4	3	11
21:00	3	6	14	3	26
22:00	4	8	4	8	24
23:00	4	1	1	1	7
				TOTAL	852
AM PEAK HOUR				0745-08	45
VOLUME			58		
PM PEAK HOUR				1645-17	45
VOLUM	E		78		

DIRECTION:			SB		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	2	4	1	0	7
1:00	1	0	0	1	2
2:00	0	0	1	0	1
3:00	1	2	1	0	4
4:00	0	0	0	0	0
5:00	1	2	3	0	6
6:00	3	2	3	22	30
7:00	14	38	29	31	112
8:00	40	40	43	24	147
9:00	25	6	22	14	67
10:00	14	19	18	11	62
11:00	20	16	14	15	65
12:00	22	22	24	11	79
13:00	21	14	16	22	73
14:00	18	22	15	22	77
15:00	18	20	20	22	80
16:00	22	23	23	15	83
17:00	19	23	24	22	88
18:00	21	19	20	22	82
19:00	21	19	15	20	75
20:00	11	14	12	2	39
21:00	4	14	9	9	36
22:00	10	5	14	0	29
23:00	4	0	1	1	6
				TOTAL	1250
AM PEAK HOUR				0745-08	345
VOLUME			154		
PM PEA	K HOUF	२	1545-1645		
VOLUME			90		

TOTAL BI-DIRECTIONAL VOLUME	2102

24-HOUR ADT COUNT SUMMARY

CLIENT: **CRAIN & ASSOCIATES** PROJECT: BUCKLEY SCHOOL LOCATION: 14440 DICKENS STREET BETWEEN VAN NUYS BOULEVARD AND BEVERLY GLEN BOULEVARD SATURDAY APRIL 16TH, 2005

DATE:

DIRECTION:			EB		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	6	6	1	5	18
1:00	4	10	10	3	27
2:00	2	3	2	3	10
3:00	4	1	1	1	7
4:00	0	0	1	1	2
5:00	0	0	0	3	3
6:00	4	6	4	3	17
7:00	5	8	9	8	30
8:00	16	16	20	12	64
9:00	30	25	29	28	112
10:00	24	22	30	22	98
11:00	32	32	59	59	182
12:00	44	44	46	33	167
13:00	39	59	44	42	184
14:00	44	43	38	40	165
15:00	32	36	22	40	130
16:00	21	40	34	35	130
17:00	26	33	30	22	111
18:00	22	48	59	59	188
19:00	31	25	30	24	110
20:00	22	20	16	22	80
21:00	20	19	14	14	67
22:00	10	14	14	21	59
23:00	26	30	20	23	99
				TOTAL	2060
				1100-12	200
VOLUME			182		
			1815-1915		
VOLUM	E			197	

DIRECTION: WB					
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	7	0	3	2	12
1:00	5	2	4	0	11
2:00	3	3	3	0	9
3:00	4	2	0	0	6
4:00	0	0	1	1	2
5:00	0	1	0	0	1
6:00	0	3	5	9	17
7:00	2	14	20	16	52
8:00	12	20	14	25	71
9:00	20	20	25	20	85
10:00	20	14	14	22	70
11:00	30	24	22	41	117
12:00	30	26	38	38	132
13:00	30	28	29	30	117
14:00	24	12	20	18	74
15:00	18	16	30	26	90
16:00	22	26	21	23	92
17:00	22	23	12	26	83
18:00	24	14	28	24	90
19:00	20	12	20	16	68
20:00	10	12	10	9	41
21:00	10	12	6	14	42
22:00	10	14	14	14	52
23:00	9	6	12	10	37
				TOTAL	1371
				1100 10	200
				1100-12	.00
		1230 1330			
	F	`		134	,

	0.404
TOTAL BI-DIRECTIONAL VOLUME	3431

24-HOUR ADT COUNT SUMMARY

CLIENT: **CRAIN & ASSOCIATES** PROJECT: **BUCKLEY SCHOOL** LOCATION: 14466 GREENLEAF BETWEEN VAN NUYS BOULEVARD AND BEVERLY GLEN BOULEVARD SATURDAY APRIL 16TH, 2005

DATE:

DIRECTION: WB					
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	0	0	0	0	0
1:00	0	0	0	0	0
2:00	0	0	0	0	0
3:00	0	0	0	0	0
4:00	0	0	0	0	0
5:00	0	0	0	0	0
6:00	0	0	2	4	6
7:00	6	4	2	1	13
8:00	3	2	4	4	13
9:00	4	4	2	2	12
10:00	4	8	4	8	24
11:00	4	4	8	4	20
12:00	14	10	16	16	56
13:00	22	14	14	4	54
14:00	14	8	14	5	41
15:00	10	14	6	8	38
16:00	6	14	8	16	44
17:00	14	14	14	14	56
18:00	8	4	4	8	24
19:00	8	6	4	4	22
20:00	2	1	0	8	11
21:00	0	2	1	1	4
22:00	0	2	0	3	5
23:00	0	1	1	1	3
				TOTAL	446
AM PEAK HOUR				1000-11	00
VOLUME				24	
PM PEAK HOUR		1230-1330			
VOLUME 68					

TOTAL BI-DIRECTIONAL VOLUME	1000

24-HOUR ADT COUNT SUMMARY

CLIENT: **CRAIN & ASSOCIATES** PROJECT: BUCKLEY SCHOOL LOCATION: 14158 GREENLEAF STREET BETWEEN BEVERLY GLEN BOULEVARD AND CAMINO DE LA CUMBRE SATURDAY FEBRUARY 26, 2005

DATE:

DIRECT	ION:	EB			
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	0	1	3	0	4
1:00	0	0	0	0	0
2:00	0	0	0	0	0
3:00	0	0	0	0	0
4:00	0	0	0	0	0
5:00	0	1	0	1	2
6:00	0	0	0	1	1
7:00	1	0	1	0	2
8:00	2	1	4	8	15
9:00	3	5	12	12	32
10:00	8	11	6	6	31
11:00	6	7	8	17	38
12:00	5	9	8	8	30
13:00	9	10	10	13	42
14:00	6	10	9	12	37
15:00	17	7	7	11	42
16:00	7	12	6	8	33
17:00	9	39	8	9	65
18:00	8	7	9	8	32
19:00	5	3	5	5	18
20:00	2	6	2	4	14
21:00	4	3	2	1	10
22:00	1	3	0	2	6
23:00	2	4	2	3	11
				TOTAL	465
AM PEAK HOUR			0000-01	00	
VOLUME			43		
PM PEAK HOUR 17		1700-18	00		
VOLUM	/OLUME 65				

DIRECT	ION:		WB		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	1	1	6	1	9
1:00	0	1	1	2	4
2:00	1	0	1	0	2
3:00	0	1	1	0	2
4:00	0	1	0	0	1
5:00	0	1	0	0	1
6:00	0	2	1	0	3
7:00	4	1	5	5	15
8:00	4	5	3	9	21
9:00	8	7	6	5	26
10:00	5	7	15	10	37
11:00	9	11	13	10	43
12:00	14	12	14	11	51
13:00	15	15	7	8	45
14:00	14	14	13	15	56
15:00	9	13	8	9	39
16:00	12	11	12	13	48
17:00	12	11	12	12	47
18:00	7	14	7	5	33
19:00	7	4	5	8	24
20:00	9	7	2	7	25
21:00	3	0	3	4	10
22:00	2	7	2	3	14
23:00	4	5	2	4	15
				TOTAL	571
		>	ſ	1030-11	130
VOLUM	OLUME 45				
PM PEA	AK HOUR 1400-1500		500		
VOLUME			56		

	4000
TOTAL BI-DIRECTIONAL VOLUME	1036

24-HOUR ADT COUNT SUMMARY

CLIENT:	CRAIN & ASSOCIATES
PROJECT:	BUCKLEY SCHOOL
LOCATION:	14850 VALLEY VISTA BOULEVARD
	EAST OF KESTER AVENUE
DATE:	SATURDAY FEBRUARY 26, 2005

DIRECT	ION:	EB			
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	4	0	1	2	7
1:00	2	1	1	0	4
2:00	0	0	1	0	1
3:00	0	0	1	0	1
4:00	0	2	0	1	3
5:00	0	0	1	0	1
6:00	1	0	1	0	2
7:00	0	0	1	1	2
8:00	2	4	2	18	26
9:00	7	20	13	15	55
10:00	30	25	18	19	92
11:00	25	27	27	23	102
12:00	26	28	34	41	129
13:00	31	31	23	42	127
14:00	28	27	28	36	119
15:00	22	33	30	30	115
16:00	24	30	31	21	106
17:00	35	30	20	18	103
18:00	24	22	24	26	96
19:00	30	23	17	16	86
20:00	12	13	4	5	34
21:00	2	12	7	9	30
22:00	8	9	14	9	40
23:00	5	7	5	5	22
			TOTAL	1303	
AM PEA	M PEAK HOUR 0000-0100		00		
VOLUM	VOLUME 102				
PM PEA	PM PEAK HOUR 1230-1330		30		
VOLUME 137					

DIRECT	ION:		WB		WB		
TIME	00-15	15-30	30-45	45-60	HOUR		
					TOTALS		
0:00	11	8	9	6	34		
1:00	6	1	4	1	12		
2:00	2	1	3	1	7		
3:00	0	2	1	0	3		
4:00	2	0	4	1	7		
5:00	1	3	2	1	7		
6:00	3	1	8	1	13		
7:00	11	9	11	15	46		
8:00	16	28	23	14	81		
9:00	13	14	27	20	74		
10:00	23	16	17	13	69		
11:00	35	20	24	25	104		
12:00	23	34	29	34	120		
13:00	33	24	28	40	125		
14:00	29	32	40	28	129		
15:00	46	26	29	37	138		
16:00	33	38	38	34	143		
17:00	36	36	26	37	135		
18:00	40	25	22	23	110		
19:00	26	17	15	17	75		
20:00	12	10	15	12	49		
21:00	6	11	8	8	33		
22:00	8	4	7	12	31		
23:00	16	8	9	8	41		
				TOTAL	1586		
AM PEAK HOUR 1100-1200		200					
VOLUME 104							
PM PEAK HOUR 1415-1515		515					
VOLUME 146							

TOTAL BI-DIRECTIONAL VOLUME	2889

24-HOUR ADT COUNT SUMMARY

CLIENT:	CRAIN & ASSOCIATES
PROJECT:	BUCKLEY SCHOOL
LOCATION:	14466 VALLEY VISTA BOULEVARD EAST OF
	VAN NUYS BOULEVARD
DATE:	SATURDAY FEBRUARY 26, 2005

DIRECT	ION:		WB		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	19	14	28	14	75
1:00	18	11	12	4	45
2:00	8	9	6	4	27
3:00	6	3	3	3	15
4:00	1	2	2	1	6
5:00	1	4	6	2	13
6:00	2	10	9	12	33
7:00	14	20	29	36	99
8:00	42	42	52	61	197
9:00	81	65	74	88	308
10:00	84	78	98	88	348
11:00	74	86	92	88	340
12:00	82	100	96	101	379
13:00	94	94	90	92	370
14:00	92	86	100	94	372
15:00	93	108	97	124	422
16:00	112	121	106	95	434
17:00	88	105	100	104	397
18:00	106	96	96	88	386
19:00	72	84	62	66	284
20:00	47	48	28	35	158
21:00	42	40	42	46	170
22:00	35	40	50	40	165
23:00	38	36	28	25	127
				TOTAL	5170
AM PEA	AM PEAK HOUR 0945-1045		45		
VOLUM	VOLUME			348	
PM PEAK HOUR			1545-1645		645
VOLUME			463		

TOTAL BI-DIRECTIONAL VOLUME	11469
24-HOUR ADT COUNT SUMMARY

CLIENT:CRAIN & ASSOCIATESPROJECT:BUCKLEY SCHOOLLOCATION:14269 VALLEY VISTA BOULEVARD WEST OF
CAMINO DE LA CUMBREDATE:SATURDAY APRIL 16TH, 2005

DIRECTION:			EB		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	6	2	2	6	16
1:00	3	2	1	0	6
2:00	3	2	0	0	5
3:00	1	0	0	2	3
4:00	0	1	0	1	2
5:00	1	0	1	0	2
6:00	1	0	3	0	4
7:00	1	2	8	6	17
8:00	4	8	15	15	42
9:00	14	8	10	14	46
10:00	14	20	14	22	70
11:00	14	20	22	20	76
12:00	32	23	18	20	93
13:00	30	22	22	28	102
14:00	20	26	26	22	94
15:00	23	20	28	30	101
16:00	24	32	24	31	111
17:00	22	21	22	32	97
18:00	21	24	22	22	89
19:00	14	26	15	8	63
20:00	10	8	21	15	54
21:00	2	12	3	6	23
22:00	9	14	10	15	48
23:00	11	8	4	2	25
				TOTAL	1189
AM PEAK HOUR			1045-11	45	
VOLUME		78			
PM PEAK HOUR		1530-1630			
VOLUME		114			

DIRECTION:			WB			
TIME	00-15	15-30	30-45	45-60	HOUR	
					TOTALS	
0:00	6	2	0	3	11	
1:00	2	0	1	0	3	
2:00	1	0	0	0	1	
3:00	0	2	0	1	3	
4:00	0	0	1	0	1	
5:00	0	2	0	0	2	
6:00	1	0	9	9	19	
7:00	3	3	6	16	28	
8:00	22	22	20	22	86	
9:00	22	22	22	22	88	
10:00	20	31	32	22	105	
11:00	22	36	22	22	102	
12:00	30	20	44	22	116	
13:00	21	33	30	25	109	
14:00	24	22	22	22	90	
15:00	20	22	22	18	82	
16:00	24	18	22	22	86	
17:00	24	24	28	22	98	
18:00	24	20	24	20	88	
19:00	20	12	12	14	58	
20:00	12	14	14	14	54	
21:00	11	11	5	10	37	
22:00	12	7	14	14	47	
23:00	7	8	7	14	36	
				TOTAL	1350	
			r			
AM PEAK HOUR			1030-11	30		
VOLUME			112			
PM PEA	K HOUF	२		1230-1330		
VOLUME			120			

TOTAL BI-DIRECTIONAL VOLUME	2539

24-HOUR ADT COUNT SUMMARY

CRAIN & ASSOCIATES
BUCKLEY SCHOOL
14148 VALLEY VISTA BOULEVARD WEST OF
STANSBURY AVENUE
SATURDAY, APRIL 23RD, 2005

DIRECTION:			EB		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	4	4	0	1	9
1:00	2	3	1	1	7
2:00	0	1	3	1	5
3:00	1	2	0	0	3
4:00	0	0	1	0	1
5:00	1	0	0	2	3
6:00	0	0	0	3	3
7:00	2	5	9	6	22
8:00	5	11	12	10	38
9:00	6	13	9	14	42
10:00	14	20	21	21	76
11:00	22	20	22	20	84
12:00	16	20	22	32	90
13:00	25	20	25	20	90
14:00	31	22	21	24	98
15:00	14	25	23	20	82
16:00	30	30	32	30	122
17:00	25	25	21	28	99
18:00	24	21	24	21	90
19:00	15	15	8	14	52
20:00	10	14	14	7	45
21:00	14	14	8	14	50
22:00	14	15	9	15	53
23:00	10	14	7	5	36
				TOTAL	1200
AM PEAK HOUR			1045-11	45	
VOLUME		85			
PM PEAK HOUR		1600-1700			
VOLUME			122		

DIRECT	ION:		WB		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	2	1	1	3	7
1:00	3	0	2	0	5
2:00	1	1	1	0	3
3:00	1	0	0	0	1
4:00	0	0	0	1	1
5:00	1	1	0	0	2
6:00	2	1	2	2	7
7:00	2	2	4	15	23
8:00	6	10	15	15	46
9:00	10	20	20	22	72
10:00	22	20	20	22	84
11:00	22	20	22	22	86
12:00	22	22	21	30	95
13:00	22	20	22	20	84
14:00	22	30	20	22	94
15:00	22	20	22	20	84
16:00	20	14	14	20	68
17:00	22	22	20	22	86
18:00	31	20	20	9	80
19:00	14	16	9	5	44
20:00	11	12	8	4	35
21:00	8	11	11	10	40
22:00	20	2	7	14	43
23:00	4	7	7	3	21
			TOTAL	1111	
AM PEAK HOUR			1045-11	45	
VOLUME			86	70	
PM PEAK HOUR		1200-1300			
VOLUME			95		

	TOTAL BI-DIRECTIONAL VOLUME	2311
--	-----------------------------	------

Т

WILTEC 24-HOUR ADT COUNT SUMMARY

CRAIN & ASSOCIATES
BUCKLEY SCHOOL
14075 VALLEY VISTA BOULEVARD EAST OF
HOLLYLINE AVENUE
SATURDAY FEBRUARY 26, 2005

DIRECTION:			EB		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	5	3	8	0	16
1:00	0	1	1	0	2
2:00	1	4	2	0	7
3:00	1	0	0	0	1
4:00	0	1	1	0	2
5:00	0	1	0	0	1
6:00	2	0	2	5	9
7:00	3	6	9	14	32
8:00	4	9	14	18	45
9:00	18	14	14	21	67
10:00	16	20	24	22	82
11:00	19	28	19	22	88
12:00	32	29	36	19	116
13:00	31	32	23	28	114
14:00	24	35	22	20	101
15:00	32	21	32	30	115
16:00	22	33	30	22	107
17:00	19	22	36	22	99
18:00	22	23	20	18	83
19:00	30	14	16	16	76
20:00	10	12	8	8	38
21:00	6	8	6	10	30
22:00	13	11	9	12	45
23:00	10	6	7	6	29
				TOTAL	1305
AM PEAK HOUR			1030-11	30	
VOLUME		93			
PM PEAK HOUR		1230-1330			
VOLUME			118		

DIRECTION:		WB			
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	6	2	3	2	13
1:00	2	2	2	2	8
2:00	0	0	2	2	4
3:00	0	0	1	2	3
4:00	0	0	0	0	0
5:00	1	0	0	0	1
6:00	2	3	3	2	10
7:00	0	5	10	13	28
8:00	15	18	10	28	71
9:00	24	16	20	18	78
10:00	22	23	25	22	92
11:00	26	20	28	17	91
12:00	28	38	26	23	115
13:00	34	33	22	22	111
14:00	30	30	22	26	108
15:00	22	31	26	32	111
16:00	37	35	34	34	140
17:00	24	23	31	33	111
18:00	28	20	28	18	94
19:00	17	14	22	21	74
20:00	14	6	9	4	33
21:00	7	14	4	3	28
22:00	7	6	7	10	30
23:00	7	6	9	6	28
			TOTAL	1382	
AM PEAK HOUR			1015-11	15	
VOLUME			96		
PM PEAK HOUR		1600-1700			
VOLUME			140		

TOTAL BI-DIRECTIONAL VOLUME	2687

24-HOUR ADT COUNT SUMMARY

CLIENT:	CRAIN & ASSOCIATES
PROJECT:	BUCKLEY SCHOOL
LOCATION:	4269 VAN NUYS BOULEVARD BETWEEN
	BENEFIT STREET AND GREENLEAF STREET
DATE:	SATURDAY FEBRUARY 26, 2005

DIRECTION:			NB		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	18	26	31	11	86
1:00	13	16	10	5	44
2:00	6	7	5	5	23
3:00	4	3	3	3	13
4:00	2	2	1	1	6
5:00	2	4	9	5	20
6:00	5	10	9	10	34
7:00	18	24	35	48	125
8:00	54	51	65	67	237
9:00	80	74	83	108	345
10:00	110	90	119	112	431
11:00	94	106	113	98	411
12:00	101	118	114	113	446
13:00	106	101	93	104	404
14:00	120	104	125	102	451
15:00	97	100	108	107	412
16:00	123	126	100	95	444
17:00	97	116	106	102	421
18:00	106	107	104	86	403
19:00	85	88	74	72	319
20:00	55	49	31	41	176
21:00	40	39	52	36	167
22:00	40	44	49	28	161
23:00	39	31	22	38	130
-				TOTAL	5709
AM PEA	K HOUF	२		1000-11	00
VOLUM	E		431		
PM PEA		२	1530-1630		
VOLUME			464		

DIRECTION:			SB		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	22	22	16	10	70
1:00	21	10	10	5	46
2:00	7	5	2	6	20
3:00	6	2	3	1	12
4:00	2	3	5	8	18
5:00	3	3	10	6	22
6:00	27	30	44	54	155
7:00	42	86	80	78	286
8:00	70	108	100	102	380
9:00	68	74	108	98	348
10:00	116	101	89	108	414
11:00	94	118	110	102	424
12:00	103	108	115	103	429
13:00	106	104	115	116	441
14:00	116	100	95	92	403
15:00	111	120	95	94	420
16:00	106	100	111	86	403
17:00	119	168	136	102	525
18:00	114	98	112	80	404
19:00	90	82	74	66	312
20:00	81	50	54	46	231
21:00	42	64	54	60	220
22:00	44	53	54	49	200
23:00	55	41	30	33	159
				TOTAL	6342
AM PEA	K HOUF	२		1045-11	45
VOLUM	E		430		
PM PEA	K HOUF	२	1700-1800		
VOLUME		525			

TOTAL BI-DIRECTIONAL VOLUME	12051

24-HOUR ADT COUNT SUMMARY

CLIENT: **CRAIN & ASSOCIATES** PROJECT: BUCKLEY SCHOOL LOCATION: 4264 BEVERLY GLEN BOULEVARD BETWEEN BENEFIT STREET AND GREENLEAF STREET SATURDAY FEBRUARY 26, 2005

DATE:

DIRECT	ION:		NB		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	30	26	27	15	98
1:00	19	21	15	7	62
2:00	5	10	7	8	30
3:00	4	8	1	2	15
4:00	7	1	1	3	12
5:00	1	6	4	3	14
6:00	2	10	8	10	30
7:00	14	22	28	28	92
8:00	38	38	41	58	175
9:00	60	62	57	79	258
10:00	93	94	84	109	380
11:00	93	88	101	108	390
12:00	104	108	114	118	444
13:00	90	104	102	114	410
14:00	96	116	109	115	436
15:00	98	128	142	124	492
16:00	124	134	138	126	522
17:00	128	113	118	103	462
18:00	98	106	117	95	416
19:00	90	84	58	73	305
20:00	60	40	44	36	180
21:00	44	42	38	40	164
22:00	56	60	46	66	228
23:00	45	56	42	31	174
				TOTAL	5789
			r		
AM PEA	K HOUF	२		1045-11	45
VOLUM	E			391	
PM PEA	K HOUF	२	1615-1715		
VOLUME			526		

DIRECTION:			SB		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	14	6	9	11	40
1:00	8	8	9	8	33
2:00	5	5	5	7	22
3:00	3	4	3	1	11
4:00	1	3	2	5	11
5:00	4	6	7	4	21
6:00	6	18	25	27	76
7:00	25	30	60	68	183
8:00	49	56	76	72	253
9:00	54	88	68	97	307
10:00	74	86	80	83	323
11:00	70	81	86	88	325
12:00	65	82	99	92	338
13:00	94	88	91	95	368
14:00	85	98	108	97	388
15:00	111	116	90	90	407
16:00	96	90	96	100	382
17:00	82	66	79	91	318
18:00	92	92	95	77	356
19:00	81	68	49	54	252
20:00	50	48	30	36	164
21:00	24	39	31	34	128
22:00	31	24	38	15	108
23:00	24	29	29	14	96
			TOTAL	4910	
AM PEA	K HOUF	२	0945-1045		
VOLUM	E			337	
PM PEA	K HOUF	२	1430-1530		
VOLUME		432			

	10699
TOTAL DI-DIRECTIONAL VOLUME	10033

24-HOUR ADT COUNT SUMMARY

CLIENT	CRAIN & ASSOCIATES
PROJECT:	BUCKLEY SCHOOL
LOCATION:	3995 BEVERLY GLEN BOULEVARD
	SOUTH OF MILLBROOK DRIVE
DATE:	SATURDAY FEBRUARY 26, 2005

DIRECTION:			NB		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	54	47	57	32	190
1:00	41	30	25	12	108
2:00	14	21	16	12	63
3:00	12	14	3	5	34
4:00	7	4	6	6	23
5:00	4	8	10	6	28
0:00	14	3	22	28	67
7:00	40	56	66	76	238
8:00	80	83	175	128	466
9:00	130	106	126	144	506
10:00	158	152	177	176	663
11:00	120	170	159	179	628
12:00	184	193	192	198	767
13:00	169	170	182	189	710
14:00	206	254	197	206	863
15:00	254	197	168	184	803
16:00	198	226	232	234	890
17:00	225	220	215	200	860
18:00	208	181	198	196	783
19:00	200	192	188	144	724
20:00	159	114	118	106	497
21:00	88	70	85	87	330
22:00	98	108	98	108	412
23:00	87	94	80	78	339
				TOTAL	10992
AM PEA		٦	1000-1100		
VOLUM	E		663		
PM PEA		۲	1615-1715		
VOLUME			917		

DIRECTION:			SB		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	22	21	16	15	74
1:00	16	13	12	12	53
2:00	8	4	4	9	25
3:00	4	4	4	0	12
4:00	1	4	4	8	17
5:00	10	6	14	8	38
6:00	20	32	60	70	182
7:00	52	88	112	116	368
8:00	99	144	66	159	468
9:00	106	151	139	174	570
10:00	154	170	150	153	627
11:00	134	164	171	160	629
12:00	144	150	168	168	630
13:00	166	178	168	166	678
14:00	136	117	179	181	613
15:00	181	202	161	144	688
16:00	173	168	176	171	688
17:00	152	168	200	162	682
18:00	174	176	160	136	646
19:00	152	136	102	102	492
20:00	92	80	66	70	308
21:00	522	84	57	69	732
22:00	64	50	72	44	230
23:00	50	48	48	28	174
				TOTAL	9624
AM PEAK HOUR			0945-1045		
VOLUM	JME 648				
PM PEA		२		1430-15	530
VOLUM	E		743		

TOTAL BI-DIRECTIONAL VOLUME	20616

24-HOUR ADT COUNT SUMMARY

CLIENT:CRAIN & ASSOCIATESPROJECT:BUCKLEY SCHOOLLOCATION:4060 CAMINO DE LA CUMBRE SOUTH OFVALLEY VISTA BOULEVARDDATE:SATURDAY APRIL 16TH, 2005

DIRECTION:			TOTAL		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	0	1	0	0	1
1:00	0	0	0	0	0
2:00	2	1	0	0	3
3:00	0	0	0	0	0
4:00	0	0	0	0	0
5:00	0	1	0	0	1
6:00	1	0	2	2	5
7:00	0	2	2	5	9
8:00	3	5	4	18	30
9:00	7	14	8	4	33
10:00	14	7	11	10	42
11:00	22	4	10	12	48
12:00	19	32	14	11	76
13:00	14	14	14	14	56
14:00	6	8	14	8	36
15:00	12	6	14	10	42
16:00	9	7	14	14	44
17:00	9	9	10	14	42
18:00	11	14	7	7	39
19:00	14	9	6	2	31
20:00	3	5	6	5	19
21:00	4	4	0	2	10
22:00	5	2	3	2	12
23:00	0	1	2	1	4
				TOTAL	583
		_		4045 44	45
		۲	1015-1115		
			20 1200, 1300		
	E	`		76	,00
20:00 21:00 22:00 23:00 AM PEA VOLUM PM PEA	3 4 5 0 K HOUF E K HOUF E	5 4 2 1 7	0 3 2	5 2 2 1 TOTAL 1015-11 50 1200-13 76	19 10 12 4 583 15 300

DIRECT	ION:		0		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	0	0	0	0	0
1:00	0	0	0	0	0
2:00	0	0	0	0	0
3:00	0	0	0	0	0
4:00	0	0	0	0	0
5:00	0	0	0	0	0
6:00	0	0	0	0	0
7:00	0	0	0	0	0
8:00	0	0	0	0	0
9:00	0	0	0	0	0
10:00	0	0	0	0	0
11:00	0	0	0	0	0
12:00	0	0	0	0	0
13:00	0	0	0	0	0
14:00	0	0	0	0	0
15:00	0	0	0	0	0
16:00	0	0	0	0	0
17:00	0	0	0	0	0
18:00	0	0	0	0	0
19:00	0	0	0	0	0
20:00	0	0	0	0	0
21:00	0	0	0	0	0
22:00	0	0	0	0	0
23:00	0	0	0	0	0
				TOTAL	0
AM PEAK HOUR 0000-0100		00			
VOLUM	<u>E</u>			0	
PM PEA	NK HOUF	२		1200-13	300
VOLUME			0		

	502
TOTAL BI-DIRECTIONAL VOLUME	203

24-HOUR ADT COUNT SUMMARY

CLIENT:	CRAIN & ASSOCIATES
PROJECT:	BUCKLEY SCHOOL
LOCATION:	4230 STANSBURY AVENUE BETWEEN
	DICKENS STREET AND GREENLEAF STREET
DATE:	SATURDAY APRIL 16TH, 2005

			NR		
	00.15	15.20	20.45	45.60	
	00-15	15-50	30-45	45-00	
0.00	6	2	2	6	TUTALS
0.00	0	2	<u> </u>	0	10
1:00	2	3	1	0	0
2:00	0	3	1	0	4
3.00	<u></u> 1	2	1	0	<u> </u>
4.00	1	0	۱ د	0	2
5.00	0	0	Z	1	J 14
0.00	10	ں 11	0 10	0	14 50
1.00	10	11	10	21	52
0.00	20	15	10	24	03
9.00	19	10	10	34 22	00
11:00	24	14	20	22	00
12:00	20	20	20	29	110
12.00	10	20	28	21	00
14.00	24	18	20 18	۲ <u>۲</u>	90 78
14.00	24	22	27	20	70 80
16:00	20	10	21	20	03
17:00	20	10	21	10	97
12:00	20	20	10	19	67
10.00	12	10	13	20 16	61
20.00	10	14	14	6	46
21:00	6	14	8	10	38
22:00	14	14	6	6	40
23.00	8	7	7	7	29
20.00	0	,	,	, TOTAI	1281
				101712	.201
AM PEAK HOUR			1100-12	200	
VOLUME		111			
PM PEA	K HOUF	२	1200-1300		
VOLUM	E			110	

DIRECT	ION:		SB		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	3	4	3	8	18
1:00	1	2	2	2	7
2:00	1	2	3	3	9
3:00	0	0	0	0	0
4:00	0	1	1	1	3
5:00	1	0	0	2	3
6:00	1	3	5	5	14
7:00	7	9	6	14	36
8:00	10	16	18	14	58
9:00	14	20	21	20	75
10:00	29	16	18	25	88
11:00	28	16	29	32	105
12:00	25	28	14	22	89
13:00	23	19	31	18	91
14:00	22	32	14	22	90
15:00	24	18	24	19	85
16:00	22	22	20	23	87
17:00	22	22	22	25	91
18:00	18	24	24	20	86
19:00	10	14	14	2	40
20:00	20	14	22	14	70
21:00	14	8	7	7	36
22:00	13	7	13	9	42
23:00	14	2	6	6	28
			-	TOTAL	1251
ΔΜ ΡΕΔΚ ΗΟΠΒ			1100-12	200	
VOLUME		105			
PM PEAK HOUR		1330-1430			
VOLUM	E			103	

	0500
TOTAL BI-DIRECTIONAL VOLUME	2532

WILTEC 24-HOUR ADT COUNT SUMMARY

CLIENT:	CRAIN & ASSOCIATES
PROJECT:	BUCKLEY SCHOOL
LOCATION:	4050 STANSBURY AVENUE
	ROBLAR ROAD
DATE:	SATURDAY FEBRUARY 26, 2005

ION:	NB			
00-15	15-30	30-45	45-60	HOUR
				TOTALS
1	3	5	0	9
2	0	1	1	4
2	0	0	1	3
0	0	1	0	1
1	0	1	0	2
0	0	0	0	0
0	1	0	2	3
0	0	0	5	5
5	3	6	13	27
14	13	5	10	42
13	20	10	6	49
14	16	18	20	68
17	12	14	18	61
14	20	14	12	60
14	12	16	14	56
12	5	5	12	34
4	10	15	17	46
9	16	4	8	37
10	12	8	8	38
6	6	6	6	24
4	9	4	4	21
2	7	5	1	15
3	6	3	2	14
3	3	1	2	9
			TOTAL	628
AM PEAK HOUR			0015-01	15
		68		
		1230-1330		
E			66	
	ION: 00-15 1 2 0 1 2 0 1 0 0 0 0 0 0 0 0 5 14 13 14 14 14 14 14 14 14 12 4 9 10 6 4 2 3 3 3 K HOUF E	ION: 00-15 15-30 1 3 2 0 2 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 14 13 13 20 14 13 13 20 14 12 14 12 14 12 14 12 12 5 4 10 9 16 10 12 6 6 4 9 2 7 3 6 3 3 3 3 XK HOUR E K K	ION: NB 00-15 15-30 30-45 1 3 5 2 0 1 2 0 0 0 0 1 1 0 1 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 20 10 14 13 5 13 20 14 14 12 16 12 5 5 4 10 15 9 16 4 10 12 8 6 6 6 4 9 4 2 7	ION: NB 00-15 15-30 30-45 45-60 1 3 5 0 2 0 1 1 2 0 1 1 2 0 1 1 2 0 0 1 0 1 0 1 0 1 0 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 13 5 10 13 20 10 6 14 16 18 20 14 12 14 12 14 12 16 14 12 14 12 14 12 16 14 12 14 12 14 12 14 12 14

DIRECTION:			SB		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	3	4	2	2	11
1:00	3	0	0	1	4
2:00	0	0	1	0	1
3:00	1	1	0	0	2
4:00	1	1	0	0	2
5:00	0	0	0	0	0
6:00	3	5	4	2	14
7:00	2	4	13	6	25
8:00	2	10	16	14	42
9:00	10	12	12	14	48
10:00	6	10	15	20	51
11:00	22	22	24	12	80
12:00	17	20	17	28	82
13:00	16	23	21	16	76
14:00	18	14	19	21	72
15:00	15	13	17	22	67
16:00	28	16	7	20	71
17:00	14	38	20	12	84
18:00	14	9	12	4	39
19:00	6	8	16	10	40
20:00	12	8	8	10	38
21:00	8	7	4	6	25
22:00	5	6	5	4	20
23:00	6	6	8	3	23
				TOTAL	917
AM PEAK HOUR			1045-11	45	
VOLUME		88			
PM PEAK HOUR		1645-1745			
VOLUM	E			92	

	1545
TOTAL BI-DIRECTIONAL VOLUME	1545

24-HOUR ADT COUNT SUMMARY

CLIENT:	CRAIN & ASSOCIATES
PROJECT:	BUCKLEY SCHOOL
LOCATION:	3951 STANSBURY AVENUE SOUTH OF
	VALLEY VISTA BOULEVARD
DATE:	SATURDAY FEBRUARY 26, 2005

DIRECT	ION:		NB		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	0	0	0	0	0
1:00	4	0	0	0	4
2:00	0	0	0	0	0
3:00	0	0	1	1	2
4:00	0	0	0	0	0
5:00	0	1	0	0	1
6:00	1	1	0	0	2
7:00	0	1	0	0	1
8:00	0	0	2	1	3
9:00	5	0	0	3	8
10:00	2	1	1	6	10
11:00	1	1	2	2	6
12:00	0	2	0	5	7
13:00	3	4	2	1	10
14:00	0	0	2	5	7
15:00	1	1	0	0	2
16:00	1	2	3	3	9
17:00	2	6	0	1	9
18:00	1	1	0	1	3
19:00	0	1	0	0	1
20:00	5	5	1	0	11
21:00	0	0	0	0	0
22:00	0	0	0	2	2
23:00	0	1	1	0	2
			TOTAL	100	
			0015-01	15	
		10			
		1245-1345			
VOLUM	OLUME 14				

DIRECT	ION:		SB		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	0	0	0	0	0
1:00	0	0	0	0	0
2:00	2	0	0	0	2
3:00	0	1	0	1	2
4:00	0	0	0	0	0
5:00	0	1	0	0	1
6:00	1	0	1	0	2
7:00	0	1	2	0	3
8:00	0	2	4	2	8
9:00	4	0	0	6	10
10:00	1	1	2	10	14
11:00	1	1	3	0	5
12:00	4	7	4	13	28
13:00	6	6	0	2	14
14:00	4	2	5	1	12
15:00	4	2	0	1	7
16:00	2	3	0	1	6
17:00	0	4	0	1	5
18:00	1	1	1	1	4
19:00	0	1	1	0	2
20:00	5	7	4	0	16
21:00	1	2	1	0	4
22:00	0	1	0	1	2
23:00	0	1	1	0	2
				TOTAL	149
ΔΜ ΡΕΔΚ ΗΟΠΡ			1045-11	45	
		15			
		1215-1315			
VOLUM	E		30		

TOTAL BI-DIRECTIONAL VOLUME	249

24-HOUR ADT COUNT SUMMARY

CLIENT:	CRAIN & ASSOCIATES
PROJECT:	BUCKLEY SCHOOL
LOCATION:	4217 HAZELTINE AVENUE BETWEEN
	DICKENS STREET AND GREENLEAF STREET
DATE:	SATURDAY, APRIL 23RD, 2005

DIRECT	ION		SB			
TIME	00-15	15-30	30-45	45-60	HOUR	
	00.10	10 00	00.10	10 00	TOTALS	
0:00	0	1	0	0	1	
1:00	0	0	0	0	0	
2:00	1	1	1	1	4	
3:00	0	2	0	1	3	
4:00	0	0	1	1	2	
5:00	2	1	0	1	4	
6:00	0	2	4	1	7	
7:00	2	1	0	4	7	
8:00	5	5	2	2	14	
9:00	3	5	7	7	22	
10:00	8	14	6	14	42	
11:00	14	25	7	15	61	
12:00	16	22	10	16	64	
13:00	6	8	14	8	36	
14:00	6	12	9	12	39	
15:00	14	14	14	8	50	
16:00	9	6	7	6	28	
17:00	6	10	10	10	36	
18:00	12	14	14	14	54	
19:00	4	14	8	4	30	
20:00	4	5	4	6	19	
21:00	1	8	0	2	11	
22:00	3	2	4	3	12	
23:00	2	3	1	1	7	
				TOTAL	553	
AM PEA	AM PEAK HOUR			1100-1200		
VOLUM	E	_	61			
PM PEA	K HOUF	२		1200-13	300	
VOLUM	E		64			

	(000
TOTAL BI-DIRECTIONAL VOLUME	1268

24-HOUR ADT COUNT SUMMARY

CLIENT: **CRAIN & ASSOCIATES** PROJECT: BUCKLEY SCHOOL LOCATION: 4115 BENEDICT CANYON DRIVE BETWEEN VENTURA BOULEVARD AND VALLEY VISTA BOULEVARD SATURDAY FEBRUARY 26, 2005

DATE:

DIRECTION: NB							
TIME	00-15	15-30	30-45	45-60	HOUR		
					TOTALS		
0:00	2	2	2	4	10		
1:00	2	1	8	0	11		
2:00	4	2	1	0	7		
3:00	0	0	1	0	1		
4:00	0	1	0	0	1		
5:00	1	0	2	1	4		
6:00	1	3	2	5	11		
7:00	2	2	5	11	20		
8:00	9	11	11	14	45		
9:00	25	18	13	12	68		
10:00	5	10	24	18	57		
11:00	13	16	15	15	59		
12:00	23	17	16	21	77		
13:00	12	12	7	14	45		
14:00	10	23	16	12	61		
15:00	27	25	13	12	77		
16:00	17	17	15	9	58		
17:00	10	15	13	16	54		
18:00	7	11	12	12	42		
19:00	13	8	11	12	44		
20:00	5	4	2	9	20		
21:00	9	3	5	5	22		
22:00	6	2	5	3	16		
23:00	1	0	5	1	7		
				TOTAL	817		
AM PEA	AM PEAK HOUR 1030-1130			30			
VOLUME			71				
PM PEA	K HOUF	२		1430-1530			
VOLUME 80							

DIRECT	ION:		SB		
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
0:00	6	4	1	4	15
1:00	0	3	1	0	4
2:00	3	0	1	1	5
3:00	0	1	0	0	1
4:00	1	0	0	0	1
5:00	0	0	0	0	0
6:00	2	4	3	2	11
7:00	4	2	6	7	19
8:00	14	22	18	19	73
9:00	15	11	17	19	62
10:00	14	17	19	15	65
11:00	18	18	19	17	72
12:00	16	19	20	15	70
13:00	22	25	19	17	83
14:00	19	20	20	21	80
15:00	23	22	15	23	83
16:00	40	23	20	15	98
17:00	25	23	20	21	89
18:00	21	21	19	16	77
19:00	11	7	15	13	46
20:00	21	5	8	9	43
21:00	10	7	11	11	39
22:00	15	11	12	10	48
23:00	5	10	14	3	32
				TOTAL	1116
				15	
	F	`	74		
PM PFA		2	1545-1645		
VOLUM	E	-		106	

	(000
TOTAL BI-DIRECTIONAL VOLUME	1933

APPENDIX F

CMA CALCULATION WORKSHEETS

EXISTING (2006) TRAFFIC CONDITIONS

INTERSECTION:1, VENTURA BLVD. & VAN NUYS BLVD. DATE: 2/28/2006 INITIALS: CT PERIOD: AM PEAK HOUR CASE: EXISTING (2006)

** INPUT VOLUMES **

APPROACH			* *	RIGHT 1	TURNS	**
	LEFT	THROUGH	MIN ON G	REEN	MAX	ON RED
WESTBOUND	145	1478	145			0
EASTBOUND	254	1236	160			0
NORTHBOUND	28	380	100			0
SOUTHBOUND	266	538	528			140

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	1	1	0	0	3
EASTBOUND	2	0	1	1	0	0	4
NORTHBOUND	1	0	1	1	0	0	3
SOUTHBOUND	1	0	1	0	1	0	3

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLI	SHARED	ONLI	SHARED	ONLI	SHARED
WESTBOUND	145	N/A	812	812	N/A	N/A
EASTBOUND	140	N/A	698	698	N/A	N/A
NORTHBOUND	28	N/A	240	240	N/A	N/A
SOUTHBOUND	266	N/A	538	N/A	528	N/A

EAST-WEST CRITICAL VOLUMES	952
NORTH-SOUTH CRITICAL VOLUMES	566
THE SUM OF CRITICAL VOLUMES	1518
NUMBER OF CRITICAL CLEARANCE INTERVALS	4*
CMA VALUE	1.004
LEVEL OF SERVICE	F

* Includes CMA value decreased due to ATCS Implementation.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 2
2/28/2006 3:13:21 PM

INTERSECTION:2, VENTURA BLVD. & BEVERLY GLEN BLVD./TYRONE AVE. DATE: 2/28/2006 INITIALS: CT PERIOD: AM PEAK HOUR CASE: EXISTING (2006)

** INPUT VOLUMES **

APPROACH			* *	RIGHT	TURNS	**
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	102	1283	:	21		0
EASTBOUND	98	1362	10	01		0
NORTHBOUND	76	135	9	92		0
SOUTHBOUND	16	191	14	49		91

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	1	1	0	0	3
EASTBOUND	1	0	1	1	0	0	3
NORTHBOUND	1	0	1	1	0	0	3
SOUTHBOUND	1	0	1	0	1	0	3

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	102	N/A	652	652	N/A	N/A
EASTBOUND	98	N/A	732	732	N/A	N/A
NORTHBOUND	76	N/A	114	114	N/A	N/A
SOUTHBOUND	16	N/A	191	N/A	149	N/A

EAST-WEST CRITICAL VOLUMES	834
NORTH-SOUTH CRITICAL VOLUMES	267
THE SUM OF CRITICAL VOLUMES	1101
	^ +
NUMBER OF CRITICAL CLEARANCE INTERVALS	۷^
CMA VALUE	0.634
LEVEL OF SERVICE	в

* Includes CMA value decreased due to ATCS Implementation.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 3
2/28/2006 3:13:21 PM

INTERSECTION:3, VENTURA BLVD. & STANSBURY AVE. DATE: 2/28/2006 INITIALS: CT PERIOD: AM PEAK HOUR CASE: EXISTING (2006)

** INPUT VOLUMES **

APPROACH			* *	RIGHT	TURNS	* *
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	379	1443		0		0
EASTBOUND	0	1244	2	12		0
NORTHBOUND	7	0	1'	73		0
SOUTHBOUND	0	0		0		0

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	2	0	0	0	3
EASTBOUND	0	0	1	1	0	0	2
NORTHBOUND	0	0	0	0	0	1	1
SOUTHBOUND	0	0	0	0	0	0	0

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	379	N/A	722	N/A	N/A	N/A
EASTBOUND	N/A	N/A	728	728	N/A	N/A
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	180
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	N/A

EAST-WEST CRITICAL VOLUMES	1107
NORTH-SOUTH CRITICAL VOLUMES	180
THE SUM OF CRITICAL VOLUMES	1287
NUMBER OF CRITICAL CLEARANCE INTERVALS	0
CMA VALUE	1.072
LEVEL OF SERVICE	F

Capacity used = 1200.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 4
2/28/2006 3:13:21 PM

INTERSECTION:4, VENTURA BLVD. & HAZELTINE AVE. DATE: 2/28/2006 INITIALS: CT PERIOD: AM PEAK HOUR CASE: EXISTING (2006)

** INPUT VOLUMES **

APPROACH			**	RIGHT	TURNS	**
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	0	1472	11	L2		0
EASTBOUND	109	1305		0		0
NORTHBOUND	0	0		0		0
SOUTHBOUND	250	0	32	25		54

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	1	1	0	0	2
EASTBOUND	1	0	2	0	0	0	3
NORTHBOUND	0	0	0	0	0	0	0
SOUTHBOUND	2	0	0	0	1	0	3

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	N/A	N/A	792	792	N/A	N/A
EASTBOUND	109	N/A	652	N/A	N/A	N/A
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	N/A
SOUTHBOUND	138	N/A	N/A	N/A	325	N/A

EAST-WEST CRITICAL VOLUMES	901
NORTH-SOUTH CRITICAL VOLUMES	325
THE SUM OF CRITICAL VOLUMES	1226
NUMBER OF CRITICAL CLEARANCE INTERVALS	2*
	0 717
CHA VALUE	0.717
LEVEL OF SERVICE	C

* Includes CMA value decreased due to ATCS Implementation.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 5
2/28/2006 3:13:21 PM

INTERSECTION:5, VENTURA BLVD. & WOODMAN AVE. DATE: 2/28/2006 INITIALS: CT PERIOD: AM PEAK HOUR CASE: EXISTING (2006)

** INPUT VOLUMES **

APPROACH			* *	RIGHT	TURNS	* *
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	67	1149	ŧ	39		0
EASTBOUND	187	1333	:	23		0
NORTHBOUND	52	208	:	30		0
SOUTHBOUND	284	290	28	35		94

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	1	1	0	0	3
EASTBOUND	1	0	1	1	0	0	3
NORTHBOUND	1	0	0	1	0	0	2
SOUTHBOUND	1	0	1	0	1	0	3

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLI	SHARED	ONLI	SHARED	ONLI	SHARED
WESTBOUND	67	N/A	619	619	N/A	N/A
EASTBOUND	187	N/A	678	678	N/A	N/A
NORTHBOUND	52	N/A	N/A	238	N/A	N/A
SOUTHBOUND	284	N/A	290	N/A	285	N/A

EAST-WEST CRITICAL VOLUMES	806
NORTH-SOUTH CRITICAL VOLUMES	522
THE SUM OF CRITICAL VOLUMES	1328
NUMBER OF CRITICAL CLEARANCE INTERVALS	2*
CMA VALUE	0.785
LEVEL OF SERVICE	C

* Includes CMA value decreased due to ATCS Implementation.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 6
2/28/2006 3:13:21 PM

INTERSECTION:6, VALLEY VISTA BLVD. & VAN NUYS BLVD. DATE: 2/28/2006 INITIALS: CT PERIOD: AM PEAK HOUR CASE: EXISTING (2006)

** INPUT VOLUMES **

APPROACH			**	RIGHT	TURNS	* *
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	0	98		0		233
EASTBOUND	114	85		0		0
NORTHBOUND	0	0		0		0
SOUTHBOUND	521	0		0		38

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	1	0	1	0	2
EASTBOUND	0	1	0	0	0	0	1
NORTHBOUND	0	0	0	0	0	0	0
SOUTHBOUND	1	0	0	0	1	0	2

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	N/A	N/A	98	N/A	0	N/A
EASTBOUND	N/A	199	N/A	N/A	N/A	N/A
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	N/A
SOUTHBOUND	521	N/A	N/A	N/A	0	N/A

EAST-WEST CRITICAL VOLUMES	212
NORTH-SOUTH CRITICAL VOLUMES	521
THE SUM OF CRITICAL VOLUMES	733
NUMBER OF CRITICAL CLEARANCE INTERVALS	0
CMA VALUE	0.611
LEVEL OF SERVICE	в

Capacity used = 1200.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 7
2/28/2006 3:13:21 PM

INTERSECTION:7, VALLEY VISTA BLVD./ROBLAR PL. & BEVERLY GLEN BLVD. DATE: 2/28/2006 INITIALS: CT PERIOD: AM PEAK HOUR CASE: EXISTING (2006)

** INPUT VOLUMES **

APPROACH			**	RIGHT	TURNS	* *
	LEFT	THROUGH	MIN (ON GREEN	MAX	ON RED
WESTBOUND	19	10		1		0
EASTBOUND	2	2		338		294
NORTHBOUND	294	254		9		0
SOUTHBOUND	0	707		3		0

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	0	1	0	0	2
EASTBOUND	0	1	0	0	1	0	2
NORTHBOUND	1	0	0	1	0	0	2
SOUTHBOUND	0	0	0	0	0	1	1

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	19	N/A	N/A	11	N/A	N/A
EASTBOUND	N/A	4	N/A	N/A	338	N/A
NORTHBOUND	294	N/A	N/A	263	N/A	N/A
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	710

EAST-WEST CRITICAL VOLUMES	357
NORTH-SOUTH CRITICAL VOLUMES	1004
THE SUM OF CRITICAL VOLUMES	1361
NUMBER OF CRITICAL CLEARANCE INTERVALS	4*
CMA VALUE	0.920
LEVEL OF SERVICE	Е

* Includes CMA value decreased due to ATSAC Implementation.

Eastbound and Westbound approaches have opposed signal phases.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 8
2/28/2006 3:13:21 PM

INTERSECTION:8, VALLEY VISTA BLVD. (SOUTH) & BEVERLY GLEN BLVD. DATE: 2/28/2006 INITIALS: CT PERIOD: AM PEAK HOUR CASE: EXISTING (2006)

** INPUT VOLUMES **

APPROACH			**	RIGHT	TURNS	**
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	388	127		0		0
EASTBOUND	0	24		0	1	L341
NORTHBOUND	420	0	11	.8		0
SOUTHBOUND	0	0		0		0

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	1	0	0	0	0	1
EASTBOUND	0	0	1	0	1	0	2
NORTHBOUND	0	0	0	0	0	1	1
SOUTHBOUND	0	0	0	0	0	0	0

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	N/A	515	N/A	N/A	N/A	N/A
EASTBOUND	N/A	N/A	24	N/A	0	N/A
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	538
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	N/A

EAST-WEST CRITICAL VOLUMES	515
NORTH-SOUTH CRITICAL VOLUMES	538
THE SUM OF CRITICAL VOLUMES	1053
NUMBER OF CRITICAL CLEARANCE INTERVALS	0
CMA VALUE	0.877
LEVEL OF SERVICE	D

Capacity used = 1200.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 9
2/28/2006 3:13:21 PM

INTERSECTION:9, VALLEY VISTA BLVD. & STANSBURY AVE. DATE: 2/28/2006 INITIALS: CT PERIOD: AM PEAK HOUR CASE: EXISTING (2006)

** INPUT VOLUMES **

APPROACH			* *	RIGHT	TURNS	**
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	91	252	1	4		0
EASTBOUND	8	51	7	4		0
NORTHBOUND	75	165	6	58		0
SOUTHBOUND	30	257	22	27		0

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	0	0	0	1	1
EASTBOUND	0	0	0	0	0	1	1
NORTHBOUND	0	0	0	0	0	1	1
SOUTHBOUND	0	0	0	0	0	1	1

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	N/A	N/A	N/A	N/A	N/A	357
EASTBOUND	N/A	N/A	N/A	N/A	N/A	133
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	308
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	514

EAST-WEST CRITICAL VOLUMES	365
NORTH-SOUTH CRITICAL VOLUMES	589
THE SUM OF CRITICAL VOLUMES	954
NUMBER OF CRITICAL CLEARANCE INTERVALS	0
CMA VALUE	0.954
LEVEL OF SERVICE	Е

Capacity used = 1000.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 10
2/28/2006 3:13:21 PM

INTERSECTION:10, VALLEY VISTA BLVD. & BENEDICT CANYON DR. DATE: 2/28/2006 INITIALS: CT PERIOD: AM PEAK HOUR CASE: EXISTING (2006)

** INPUT VOLUMES **

APPROACH			* *	RIGHT	TURNS	* *
	LEFT	THROUGH	MIN ON (GREEN	MAX	ON RED
WESTBOUND	0	156	:	2		0
EASTBOUND	54	182	(0		0
NORTHBOUND	0	0	(0		0
SOUTHBOUND	11	0	204	4		0

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	0	0	0	1	1
EASTBOUND	0	0	0	0	0	1	1
NORTHBOUND	0	0	0	0	0	0	0
SOUTHBOUND	0	0	0	0	0	1	1

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	N/A	N/A	N/A	N/A	N/A	158
EASTBOUND	N/A	N/A	N/A	N/A	N/A	236
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	N/A
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	215

EAST-WEST CRITICAL VOLUMES	236
NORTH-SOUTH CRITICAL VOLUMES	215
THE SUM OF CRITICAL VOLUMES	451
NUMBER OF CRITICAL CLEARANCE INTERVALS	2
CMA VALUE	0.301
LEVEL OF SERVICE	А

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 11
2/28/2006 3:13:21 PM

INTERSECTION:1, VENTURA BLVD. & VAN NUYS BLVD. DATE: 2/28/2006 INITIALS: CT PERIOD: SCHOOL PM PEAK HOUR CASE: EXISTING (2006)

** INPUT VOLUMES **

APPROACH			* *	RIGHT	TURNS	* *
	LEFT	THROUGH	MIN ON G	GREEN	MAX	ON RED
WESTBOUND	108	1071	346	5		0
EASTBOUND	346	1144	129	Ð		0
NORTHBOUND	73	550	77	7		0
SOUTHBOUND	256	461	276	5		190

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	1	1	0	0	3
EASTBOUND	2	0	1	1	0	0	4
NORTHBOUND	1	0	1	1	0	0	3
SOUTHBOUND	1	0	1	0	1	0	3

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT Shared	THROUGH	RIGHT	RIGHT	L/T/R
	ONDI	SIIAKED		SIIAKED	ONDI	JIARD
WESTBOUND	108	N/A	708	708	N/A	N/A
EASTBOUND	190	N/A	636	636	N/A	N/A
NORTHBOUND	73	N/A	314	314	N/A	N/A
SOUTHBOUND	256	N/A	461	N/A	276	N/A

EAST-WEST CRITICAL VOLUMES	898
NORTH-SOUTH CRITICAL VOLUMES	570
THE SUM OF CRITICAL VOLUMES	1468
NUMBER OF CRITICAL CLEARANCE INTERVALS	4*
CMA VALUE	0.968
LEVEL OF SERVICE	Е

* Includes CMA value decreased due to ATCS Implementation.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total (SP), Row: 2
2/28/2006 3:13:56 PM

INTERSECTION:2, VENTURA BLVD. & BEVERLY GLEN BLVD./TYRONE AVE. DATE: 2/28/2006 INITIALS: CT PERIOD: SCHOOL PM PEAK HOUR CASE: EXISTING (2006)

** INPUT VOLUMES **

APPROACH			* *	RIGHT	TURNS	* *
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	128	1220		44		0
EASTBOUND	121	1262	1	14		0
NORTHBOUND	214	488	1	66		0
SOUTHBOUND	29	268		21		92

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	1	1	0	0	3
EASTBOUND	1	0	1	1	0	0	3
NORTHBOUND	1	0	1	1	0	0	3
SOUTHBOUND	1	0	1	0	1	0	3

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	128	N/A	632	632	N/A	N/A
EASTBOUND	121	N/A	688	688	N/A	N/A
NORTHBOUND	214	N/A	327	327	N/A	N/A
SOUTHBOUND	29	N/A	268	N/A	21	N/A

EAST-WEST CRITICAL VOLUMES	816
NORTH-SOUTH CRITICAL VOLUMES	482
THE SUM OF CRITICAL VOLUMES	1298
NUMBER OF CRITICAL CLEARANCE INTERVALS	2*
CMA VALUE	0.765
LEVEL OF SERVICE	C

* Includes CMA value decreased due to ATCS Implementation.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total (SP), Row: 3
2/28/2006 3:13:56 PM

INTERSECTION:3, VENTURA BLVD. & STANSBURY AVE. DATE: 2/28/2006 INITIALS: CT PERIOD: SCHOOL PM PEAK HOUR CASE: EXISTING (2006)

** INPUT VOLUMES **

APPROACH			**	RIGHT	TURNS	* *
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	131	1433		0		0
EASTBOUND	0	1396	!	54		0
NORTHBOUND	12	0	1'	74		0
SOUTHBOUND	0	0		0		0

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	2	0	0	0	3
EASTBOUND	0	0	1	1	0	0	2
NORTHBOUND	0	0	0	0	0	1	1
SOUTHBOUND	0	0	0	0	0	0	0

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	131	N/A	716	N/A	N/A	N/A
EASTBOUND	N/A	N/A	725	725	N/A	N/A
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	186
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	N/A

EAST-WEST CRITICAL VOLUMES	856
NORTH-SOUTH CRITICAL VOLUMES	186
THE SUM OF CRITICAL VOLUMES	1042
NUMBER OF CRITICAL CLEARANCE INTERVALS	0
	Ũ
CMA VALUE	0.868
LEVEL OF SERVICE	D

Capacity used = 1200.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total (SP), Row: 4
2/28/2006 3:13:56 PM

INTERSECTION:4, VENTURA BLVD. & HAZELTINE AVE. DATE: 2/28/2006 INITIALS: CT PERIOD: SCHOOL PM PEAK HOUR CASE: EXISTING (2006)

** INPUT VOLUMES **

APPROACH			* *	RIGHT	TURNS	**
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	0	1310	21	L7		0
EASTBOUND	181	1417		0		0
NORTHBOUND	0	0		0		0
SOUTHBOUND	172	0	12	22		90

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	1	1	0	0	2
EASTBOUND	1	0	2	0	0	0	3
NORTHBOUND	0	0	0	0	0	0	0
SOUTHBOUND	2	0	0	0	1	0	3

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	N/A	N/A	764	764	N/A	N/A
EASTBOUND	181	N/A	708	N/A	N/A	N/A
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	N/A
SOUTHBOUND	95	N/A	N/A	N/A	122	N/A

EAST-WEST CRITICAL VOLUMES	945
NORTH-SOUTH CRITICAL VOLUMES	122
THE SUM OF CRITICAL VOLUMES	1067
NUMBER OF CRITICAL CLEARANCE INTERVALS	2*
CMA VALUE	0.611
LEVEL OF SERVICE	в

* Includes CMA value decreased due to ATCS Implementation.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total (SP), Row: 5
2/28/2006 3:13:56 PM

INTERSECTION:5, VENTURA BLVD. & WOODMAN AVE. DATE: 2/28/2006 INITIALS: CT PERIOD: SCHOOL PM PEAK HOUR CASE: EXISTING (2006)

** INPUT VOLUMES **

APPROACH			** I	RIGHT 1	URNS	* *
	LEFT	THROUGH	MIN ON GH	REEN	MAX	ON RED
WESTBOUND	51	1076	171			0
EASTBOUND	182	1191	40			0
NORTHBOUND	54	197	41			0
SOUTHBOUND	208	143	146			91

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	1	1	0	0	3
EASTBOUND	1	0	1	1	0	0	3
NORTHBOUND	1	0	0	1	0	0	2
SOUTHBOUND	1	0	1	0	1	0	3

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	51	N/A	624	624	N/A	N/A
EASTBOUND	182	N/A	616	616	N/A	N/A
NORTHBOUND	54	N/A	N/A	238	N/A	N/A
SOUTHBOUND	208	N/A	143	N/A	146	N/A

EAST-WEST CRITICAL VOLUMES	806
NORTH-SOUTH CRITICAL VOLUMES	446
THE SUM OF CRITICAL VOLUMES	1252
NUMBER OF CRITICAL CLEARANCE INTERVALS	2*
CMA VALUE	0.735
LEVEL OF SERVICE	С

* Includes CMA value decreased due to ATCS Implementation.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total (SP), Row: 6
2/28/2006 3:13:56 PM

INTERSECTION:6, VALLEY VISTA BLVD. & VAN NUYS BLVD. DATE: 2/28/2006 INITIALS: CT PERIOD: SCHOOL PM PEAK HOUR CASE: EXISTING (2006)

** INPUT VOLUMES **

APPROACH			**		RIGHT	TURNS	**	k
	LEFT	THROUGH	MIN	ON	GREEN	MAX	ON REI	כ
WESTBOUND	0	124			0		503	
EASTBOUND	78	77			0		0	
NORTHBOUND	0	0			0		0	
SOUTHBOUND	323	0			0		66	

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	1	0	1	0	2
EASTBOUND	0	1	0	0	0	0	1
NORTHBOUND	0	0	0	0	0	0	0
SOUTHBOUND	1	0	0	0	1	0	2

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	N/A	N/A	124	N/A	0	N/A
EASTBOUND	N/A	155	N/A	N/A	N/A	N/A
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	N/A
SOUTHBOUND	323	N/A	N/A	N/A	0	N/A

EAST-WEST CRITICAL VOLUMES	202
NORTH-SOUTH CRITICAL VOLUMES	323
THE SUM OF CRITICAL VOLUMES	525
NUMBER OF CRITICAL CLEARANCE INTERVALS	0
CMA VALUE	0.438
LEVEL OF SERVICE	А

Capacity used = 1200.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total (SP), Row: 7
2/28/2006 3:13:56 PM

INTERSECTION:7, VALLEY VISTA BLVD./ROBLAR PL. & BEVERLY GLEN BLVD. DATE: 2/28/2006 INITIALS: CT PERIOD: SCHOOL PM PEAK HOUR CASE: EXISTING (2006)

** INPUT VOLUMES **

APPROACH			**	RIGHT	TURNS	**
	LEFT	THROUGH	MIN	ON GREEN	MAX	ON RED
WESTBOUND	4	3		1		0
EASTBOUND	25	10		0		350
NORTHBOUND	538	808		0		0
SOUTHBOUND	2	358		19		0

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	0	1	0	0	2
EASTBOUND	0	1	0	0	1	0	2
NORTHBOUND	1	0	0	1	0	0	2
SOUTHBOUND	0	0	0	0	0	1	1

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	4	N/A	N/A	4	N/A	N/A
EASTBOUND	N/A	35	N/A	N/A	0	N/A
NORTHBOUND	538	N/A	N/A	808	N/A	N/A
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	379

EAST-WEST CRITICAL VOLUMES	39
NORTH-SOUTH CRITICAL VOLUMES	917
THE SUM OF CRITICAL VOLUMES	956
NUMBER OF CRITICAL CLEARANCE INTERVALS	4*
	0 625
CMA VALUE	0.025
LEVEL OF SERVICE	в

* Includes CMA value decreased due to ATSAC Implementation.

Eastbound and Westbound approaches have opposed signal phases.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total (SP), Row: 8
2/28/2006 3:13:56 PM

INTERSECTION:8, VALLEY VISTA BLVD. (SOUTH) & BEVERLY GLEN BLVD. DATE: 2/28/2006 INITIALS: CT PERIOD: SCHOOL PM PEAK HOUR CASE: EXISTING (2006)

** INPUT VOLUMES **

APPROACH			**	RIGHT	TURNS		**
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON R	ED
WESTBOUND	65	126		0		0	
EASTBOUND	0	71		0		653	
NORTHBOUND	1234	0	18	2		0	
SOUTHBOUND	0	0		0		0	

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	1	0	0	0	0	1
EASTBOUND	0	0	1	0	1	0	2
NORTHBOUND	0	0	0	0	0	1	1
SOUTHBOUND	0	0	0	0	0	0	0

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	N/A	191	N/A	N/A	N/A	N/A
EASTBOUND	N/A	N/A	71	N/A	0	N/A
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	1416
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	N/A

EAST-WEST CRITICAL VOLUMES	191
NORTH-SOUTH CRITICAL VOLUMES	1416
THE SUM OF CRITICAL VOLUMES	1607
NUMBER OF CRITICAL CLEARANCE INTERVALS	0
CMA VALUE	1.339
LEVEL OF SERVICE	F

Capacity used = 1200.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total (SP), Row: 9
2/28/2006 3:13:56 PM

INTERSECTION:9, VALLEY VISTA BLVD. & STANSBURY AVE. DATE: 2/28/2006 INITIALS: CT PERIOD: SCHOOL PM PEAK HOUR CASE: EXISTING (2006)

** INPUT VOLUMES **

APPROACH			* *	RIGHT	TURNS	**
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	31	82		35		0
EASTBOUND	29	113		65		0
NORTHBOUND	86	87		51		0
SOUTHBOUND	20	89	:	22		0

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	0	0	0	1	1
EASTBOUND	0	0	0	0	0	1	1
NORTHBOUND	0	0	0	0	0	1	1
SOUTHBOUND	0	0	0	0	0	1	1

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	N/A	N/A	N/A	N/A	N/A	148
EASTBOUND	N/A	N/A	N/A	N/A	N/A	207
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	224
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	131

EAST-WEST CRITICAL VOLUMES	238
NORTH-SOUTH CRITICAL VOLUMES	244
THE SUM OF CRITICAL VOLUMES	482
NUMBER OF CRITICAL CLEARANCE INTERVALS	0
CMA VALUE	0.482
LEVEL OF SERVICE	А

Capacity used = 1000.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total (SP), Row: 10
2/28/2006 3:13:56 PM

INTERSECTION:10, VALLEY VISTA BLVD. & BENEDICT CANYON DR. DATE: 2/28/2006 INITIALS: CT PERIOD: SCHOOL PM PEAK HOUR CASE: EXISTING (2006)

** INPUT VOLUMES **

APPROACH			**	RIGHT	TURNS	**
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	0	114		8		0
EASTBOUND	63	199		0		0
NORTHBOUND	0	0		0		0
SOUTHBOUND	8	0	8	1		0

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	0	0	0	1	1
EASTBOUND	0	0	0	0	0	1	1
NORTHBOUND	0	0	0	0	0	0	0
SOUTHBOUND	0	0	0	0	0	1	1

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT Shared	THROUGH	RIGHT	RIGHT	L/T/R
WESTBOUND	N/A	N/A	N/A	N/A	N/A	122
EASTBOUND	N/A	N/A	N/A	N/A	N/A	262
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	N/A
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	89

EAST-WEST CRITICAL VOLUMES	262
NORTH-SOUTH CRITICAL VOLUMES	89
THE SUM OF CRITICAL VOLUMES	351
NUMBER OF CRITICAL CLEARANCE INTERVALS	2
CMA VALUE	0.234
LEVEL OF SERVICE	А

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total (SP), Row: 11
2/28/2006 3:13:56 PM

INTERSECTION:1, VENTURA BLVD. & VAN NUYS BLVD. DATE: 2/28/2006 INITIALS: CT PERIOD: COMMUTER PM PEAK HOUR CASE: EXISTING (2006)

** INPUT VOLUMES **

APPROACH			* *	RIGHT	TURNS	**
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	112	1255	32	29		0
EASTBOUND	389	1229	11	.2		0
NORTHBOUND	82	633	9	4		0
SOUTHBOUND	230	467	32	27		214

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	1	1	0	0	3
EASTBOUND	2	0	1	1	0	0	4
NORTHBOUND	1	0	1	1	0	0	3
SOUTHBOUND	1	0	1	0	1	0	3

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	112	N/A	792	792	N/A	N/A
EASTBOUND	214	N/A	670	670	N/A	N/A
NORTHBOUND	82	N/A	364	364	N/A	N/A
SOUTHBOUND	230	N/A	467	N/A	327	N/A

EAST-WEST CRITICAL VOLUMES	1006
NORTH-SOUTH CRITICAL VOLUMES	594
THE SUM OF CRITICAL VOLUMES	1600
NUMBER OF CRITICAL CLEARANCE INTERVALS	4*
CMA VALUE	1.064
	_
LEVEL OF SERVICE	F

* Includes CMA value decreased due to ATCS Implementation.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 12
2/28/2006 3:13:21 PM

INTERSECTION:2, VENTURA BLVD. & BEVERLY GLEN BLVD./TYRONE AVE. DATE: 2/28/2006 INITIALS: CT PERIOD: COMMUTER PM PEAK HOUR CASE: EXISTING (2006)

** INPUT VOLUMES **

APPROACH			* *	RIGHT	TURNS	* *
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	134	1276		58		0
EASTBOUND	129	1354	1	18		0
NORTHBOUND	209	561	1	51		0
SOUTHBOUND	36	294		1		102

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	1	1	0	0	3
EASTBOUND	1	0	1	1	0	0	3
NORTHBOUND	1	0	1	1	0	0	3
SOUTHBOUND	1	0	1	0	1	0	3

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	134	N/A	667	667	N/A	N/A
EASTBOUND	129	N/A	736	736	N/A	N/A
NORTHBOUND	209	N/A	356	356	N/A	N/A
SOUTHBOUND	36	N/A	294	N/A	1	N/A

EAST-WEST CRITICAL VOLUMES	870
NORTH-SOUTH CRITICAL VOLUMES	503
THE SUM OF CRITICAL VOLUMES	1373
NUMBER OF CRITICAL CLEARANCE INTERVALS	2*
CMA VALUE	0.815
LEVEL OF SERVICE	D

* Includes CMA value decreased due to ATCS Implementation.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 13
2/28/2006 3:13:21 PM
INTERSECTION:3, VENTURA BLVD. & STANSBURY AVE. DATE: 2/28/2006 INITIALS: CT PERIOD: COMMUTER PM PEAK HOUR CASE: EXISTING (2006)

** INPUT VOLUMES **

APPROACH			**	RIGHT	TURNS	* *
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	151	1514		0		0
EASTBOUND	0	1452	5	2		0
NORTHBOUND	10	0	21	5		0
SOUTHBOUND	0	0		0		0

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	2	0	0	0	3
EASTBOUND	0	0	1	1	0	0	2
NORTHBOUND	0	0	0	0	0	1	1
SOUTHBOUND	0	0	0	0	0	0	0

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	151	N/A	757	N/A	N/A	N/A
EASTBOUND	N/A	N/A	752	752	N/A	N/A
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	225
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	N/A

EAST-WEST CRITICAL VOLUMES	903
NORTH-SOUTH CRITICAL VOLUMES	225
THE SUM OF CRITICAL VOLUMES	1128
NUMBER OF CRITICAL CLEARANCE INTERVALS	0
CMA VALUE	0.940
LEVEL OF SERVICE	Е

Capacity used = 1200.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 14
2/28/2006 3:13:21 PM

INTERSECTION:4, VENTURA BLVD. & HAZELTINE AVE. DATE: 2/28/2006 INITIALS: CT PERIOD: COMMUTER PM PEAK HOUR CASE: EXISTING (2006)

** INPUT VOLUMES **

APPROACH			**	RIGHT	TURNS	**
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	0	1350	30	9		0
EASTBOUND	162	1504		0		0
NORTHBOUND	0	0		0		0
SOUTHBOUND	196	0	14	1 2		81

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	1	1	0	0	2
EASTBOUND	1	0	2	0	0	0	3
NORTHBOUND	0	0	0	0	0	0	0
SOUTHBOUND	2	0	0	0	1	0	3

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	N/A	N/A	830	830	N/A	N/A
EASTBOUND	162	N/A	752	N/A	N/A	N/A
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	N/A
SOUTHBOUND	108	N/A	N/A	N/A	142	N/A

EAST-WEST CRITICAL VOLUMES	992
NORTH-SOUTH CRITICAL VOLUMES	142
THE SUM OF CRITICAL VOLUMES	1134
NUMBER OF CRITICAL CLEARANCE INTERVALS	2*
CMA VALUE	0.656
LEVEL OF SERVICE	в

* Includes CMA value decreased due to ATCS Implementation.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 15
2/28/2006 3:13:21 PM

INTERSECTION:5, VENTURA BLVD. & WOODMAN AVE. DATE: 2/28/2006 INITIALS: CT PERIOD: COMMUTER PM PEAK HOUR CASE: EXISTING (2006)

** INPUT VOLUMES **

APPROACH			* *	RIGHT	TURNS	**
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	36	1145	18	88		0
EASTBOUND	188	1324		44		0
NORTHBOUND	57	268	:	36		0
SOUTHBOUND	250	198	2.	36		94

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	1	1	0	0	3
EASTBOUND	1	0	1	1	0	0	3
NORTHBOUND	1	0	0	1	0	0	2
SOUTHBOUND	1	0	1	0	1	0	3

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	36	N/A	666	666	N/A	N/A
EASTBOUND	188	N/A	684	684	N/A	N/A
NORTHBOUND	57	N/A	N/A	304	N/A	N/A
SOUTHBOUND	250	N/A	198	N/A	236	N/A

EAST-WEST CRITICAL VOLUMES	854
NORTH-SOUTH CRITICAL VOLUMES	554
THE SUM OF CRITICAL VOLUMES	1408
	0+
NUMBER OF CRITICAL CLEARANCE INTERVALS	۷^
CMA VALUE	0.839
LEVEL OF SERVICE	D

* Includes CMA value decreased due to ATCS Implementation.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 16
2/28/2006 3:13:21 PM

INTERSECTION:6, VALLEY VISTA BLVD. & VAN NUYS BLVD. DATE: 2/28/2006 INITIALS: CT PERIOD: COMMUTER PM PEAK HOUR CASE: EXISTING (2006)

** INPUT VOLUMES **

APPROACH			* *	RIGHT	TURNS	* *
	LEFT	THROUGH	MIN	ON GREEN	MAX	ON RED
WESTBOUND	0	110		0		551
EASTBOUND	91	110		0		0
NORTHBOUND	0	0		0		0
SOUTHBOUND	419	0		0		82

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	1	0	1	0	2
EASTBOUND	0	1	0	0	0	0	1
NORTHBOUND	0	0	0	0	0	0	0
SOUTHBOUND	1	0	0	0	1	0	2

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	N/A	N/A	110	N/A	0	N/A
EASTBOUND	N/A	201	N/A	N/A	N/A	N/A
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	N/A
SOUTHBOUND	419	N/A	N/A	N/A	0	N/A

EAST-WEST CRITICAL VOLUMES	201
NORTH-SOUTH CRITICAL VOLUMES	419
THE SUM OF CRITICAL VOLUMES	620
NUMBER OF CRITICAL CLEARANCE INTERVALS	0
CMA VALUE	0.517
LEVEL OF SERVICE	А

Capacity used = 1200.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 17
2/28/2006 3:13:21 PM

INTERSECTION:7, VALLEY VISTA BLVD./ROBLAR PL. & BEVERLY GLEN BLVD. DATE: 2/28/2006 INITIALS: CT PERIOD: COMMUTER PM PEAK HOUR CASE: EXISTING (2006)

** INPUT VOLUMES **

APPROACH			**	RIGHT	TURNS	**
	LEFT	THROUGH	MIN	ON GREEN	MAX	ON RED
WESTBOUND	7	3		5		0
EASTBOUND	33	9		0		435
NORTHBOUND	533	875		7		0
SOUTHBOUND	3	368		23		0

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	0	1	0	0	2
EASTBOUND	0	1	0	0	1	0	2
NORTHBOUND	1	0	0	1	0	0	2
SOUTHBOUND	0	0	0	0	0	1	1

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	7	N/A	N/A	8	N/A	N/A
EASTBOUND	N/A	42	N/A	N/A	0	N/A
NORTHBOUND	533	N/A	N/A	882	N/A	N/A
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	394

EAST-WEST CRITICAL VOLUMES	50
NORTH-SOUTH CRITICAL VOLUMES	927
THE SUM OF CRITICAL VOLUMES	977
NUMBER OF CRITICAL CLEARANCE INTERVALS	4*
CMA VALUE	0.641
LEVEL OF SERVICE	в

* Includes CMA value decreased due to ATSAC Implementation.

Eastbound and Westbound approaches have opposed signal phases.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 18
2/28/2006 3:13:21 PM

INTERSECTION:8, VALLEY VISTA BLVD. (SOUTH) & BEVERLY GLEN BLVD. DATE: 2/28/2006 INITIALS: CT PERIOD: COMMUTER PM PEAK HOUR CASE: EXISTING (2006)

** INPUT VOLUMES **

APPROACH			* *	RIGHT TURNS **
	LEFT	THROUGH	MIN ON G	REEN MAX ON RED
WESTBOUND	35	80	C	0
EASTBOUND	0	80	C	757
NORTHBOUND	1309	0	244	L 0
SOUTHBOUND	0	0	C	0

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	1	0	0	0	0	1
EASTBOUND	0	0	1	0	1	0	2
NORTHBOUND	0	0	0	0	0	1	1
SOUTHBOUND	0	0	0	0	0	0	0

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	N/A	115	N/A	N/A	N/A	N/A
EASTBOUND	N/A	N/A	80	N/A	0	N/A
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	1553
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	N/A

EAST-WEST CRITICAL VOLUMES	115
NORTH-SOUTH CRITICAL VOLUMES	1553
THE SUM OF CRITICAL VOLUMES	1668
NUMBER OF CRITICAL CLEARANCE INTERVALS	0
CMA VALUE	1.390
LEVEL OF SERVICE	F

Capacity used = 1200.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 19
2/28/2006 3:13:22 PM

INTERSECTION:9, VALLEY VISTA BLVD. & STANSBURY AVE. DATE: 2/28/2006 INITIALS: CT PERIOD: COMMUTER PM PEAK HOUR CASE: EXISTING (2006)

** INPUT VOLUMES **

APPROACH			* *	RIGHT	TURNS	* *
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	24	58		29		0
EASTBOUND	21	221		24		0
NORTHBOUND	38	77		33		0
SOUTHBOUND	41	50		21		0

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	0	0	0	1	1
EASTBOUND	0	0	0	0	0	1	1
NORTHBOUND	0	0	0	0	0	1	1
SOUTHBOUND	0	0	0	0	0	1	1

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	N/A	N/A	N/A	N/A	N/A	111
EASTBOUND	N/A	N/A	N/A	N/A	N/A	266
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	148
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	112

EAST-WEST CRITICAL VOLUMES	290
NORTH-SOUTH CRITICAL VOLUMES	189
THE SUM OF CRITICAL VOLUMES	479
NUMBER OF CRITICAL CLEARANCE INTERVALS	0
CMA VALUE	0.479
LEVEL OF SERVICE	А

Capacity used = 1000.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 20
2/28/2006 3:13:22 PM

INTERSECTION:10, VALLEY VISTA BLVD. & BENEDICT CANYON DR. DATE: 2/28/2006 INITIALS: CT PERIOD: COMMUTER PM PEAK HOUR CASE: EXISTING (2006)

** INPUT VOLUMES **

APPROACH			**	RIGHT	TURNS	* *
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	0	89	1	L8		0
EASTBOUND	68	250		0		0
NORTHBOUND	0	0		0		0
SOUTHBOUND	26	0	7	77		0

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	0	0	0	1	1
EASTBOUND	0	0	0	0	0	1	1
NORTHBOUND	0	0	0	0	0	0	0
SOUTHBOUND	0	0	0	0	0	1	1

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	N/A	N/A	N/A	N/A	N/A	107
EASTBOUND	N/A	N/A	N/A	N/A	N/A	318
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	N/A
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	103

EAST-WEST CRITICAL VOLUMES	318
NORTH-SOUTH CRITICAL VOLUMES	103
THE SUM OF CRITICAL VOLUMES	421
	•
NUMBER OF CRITICAL CLEARANCE INTERVALS	2
CMA VALUE	0 281
	0.201
LEVEL OF SERVICE	Σ

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 21
2/28/2006 3:13:22 PM

FUTURE (2014) TRAFFIC CONDITIONS WITHOUT PROJECT

INTERSECTION:1, VENTURA BLVD. & VAN NUYS BLVD. DATE: 2/28/2006 INITIALS: CT PERIOD: AM PEAK HOUR CASE: FUTURE (2014) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH			* *	RIGHT	TURNS	**
	LEFT	THROUGH	MIN ON G	REEN	MAX	ON RED
WESTBOUND	170	1818	209)		0
EASTBOUND	320	1536	189)		0
NORTHBOUND	34	450	118	}		0
SOUTHBOUND	345	637	632	2		176

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	1	1	0	0	3
EASTBOUND	2	0	1	1	0	0	4
NORTHBOUND	1	0	1	1	0	0	3
SOUTHBOUND	1	0	1	0	1	0	3

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	170	N/A	1014	1014	N/A	N/A
EASTBOUND	176	N/A	862	862	N/A	N/A
NORTHBOUND	34	N/A	284	284	N/A	N/A
SOUTHBOUND	345	N/A	637	N/A	632	N/A

EAST-WEST CRITICAL VOLUMES	1190
NORTH-SOUTH CRITICAL VOLUMES	671
THE SUM OF CRITICAL VOLUMES	1861
NUMBER OF CRITICAL CLEARANCE INTERVALS	4*
CMA VALUE	1.253
LEVEL OF SERVICE	F

* Includes CMA value decreased due to ATCS Implementation.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 22
2/28/2006 3:13:22 PM

INTERSECTION:2, VENTURA BLVD. & BEVERLY GLEN BLVD./TYRONE AVE. DATE: 2/28/2006 INITIALS: CT PERIOD: AM PEAK HOUR CASE: FUTURE (2014) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH			**	RIGHT	TURNS	* *
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	121	1625	2	24		0
EASTBOUND	120	1707	12	24		0
NORTHBOUND	89	159	10)9		0
SOUTHBOUND	20	227	18	31		106

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	1	1	0	0	3
EASTBOUND	1	0	1	1	0	0	3
NORTHBOUND	1	0	1	1	0	0	3
SOUTHBOUND	1	0	1	0	1	0	3

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	121	N/A	824	824	N/A	N/A
EASTBOUND	120	N/A	916	916	N/A	N/A
NORTHBOUND	89	N/A	134	134	N/A	N/A
SOUTHBOUND	20	N/A	227	N/A	181	N/A

EAST-WEST CRITICAL VOLUMES	1037
NORTH-SOUTH CRITICAL VOLUMES	316
THE SUM OF CRITICAL VOLUMES	1353
NUMBER OF CRITICAL CLEARANCE INTERVALS	2*
CMA VALUE	0.802
LEVEL OF SERVICE	D

* Includes CMA value decreased due to ATCS Implementation.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 23
2/28/2006 3:13:22 PM

INTERSECTION:3, VENTURA BLVD. & STANSBURY AVE. DATE: 2/28/2006 INITIALS: CT PERIOD: AM PEAK HOUR CASE: FUTURE (2014) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH			* *	RIGHT	TURNS	**
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	447	1815		0		0
EASTBOUND	0	1573	2	49		0
NORTHBOUND	9	0	2	06		0
SOUTHBOUND	0	0		0		0

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	2	0	0	0	3
EASTBOUND	0	0	1	1	0	0	2
NORTHBOUND	0	0	0	0	0	1	1
SOUTHBOUND	0	0	0	0	0	0	0

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	447	N/A	908	N/A	N/A	N/A
EASTBOUND	N/A	N/A	911	911	N/A	N/A
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	215
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	N/A

EAST-WEST CRITICAL VOLUMES	1358
NORTH-SOUTH CRITICAL VOLUMES	215
THE SUM OF CRITICAL VOLUMES	1573
NUMBER OF CRITICAL CLEARANCE INTERVALS	0
CMA VALUE	1.311
LEVEL OF SERVICE	F

Capacity used = 1200.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 24
2/28/2006 3:13:22 PM

INTERSECTION:4, VENTURA BLVD. & HAZELTINE AVE. DATE: 2/28/2006 INITIALS: CT PERIOD: AM PEAK HOUR CASE: FUTURE (2014) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH			* *	RIGHT	TURNS	**
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	0	1815	13	32		0
EASTBOUND	140	1630		0		0
NORTHBOUND	0	0		0		0
SOUTHBOUND	296	0	38	35		70

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	1	1	0	0	2
EASTBOUND	1	0	2	0	0	0	3
NORTHBOUND	0	0	0	0	0	0	0
SOUTHBOUND	2	0	0	0	1	0	3

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	N/A	N/A	974	974	N/A	N/A
EASTBOUND	140	N/A	815	N/A	N/A	N/A
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	N/A
SOUTHBOUND	163	N/A	N/A	N/A	385	N/A

EAST-WEST CRITICAL VOLUMES	1114
NORTH-SOUTH CRITICAL VOLUMES	385
THE SUM OF CRITICAL VOLUMES	1499
NUMBER OF CRITICAL CLEARANCE INTERVALS	2*
CMA VALUE	0.899
LEVEL OF SERVICE	D

* Includes CMA value decreased due to ATCS Implementation.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 25
2/28/2006 3:13:22 PM

INTERSECTION:5, VENTURA BLVD. & WOODMAN AVE. DATE: 2/28/2006 INITIALS: CT PERIOD: AM PEAK HOUR CASE: FUTURE (2014) WITHOUT PROJECT

** INPUT VOLUMES **

		* *	RIGHT	TURNS	**
LEFT	THROUGH	MIN C	N GREEN	MAX	ON RED
78	1402		106		0
255	1628		28		0
62	244		35		0
334	340		349		128
	LEFT 78 255 62 334	LEFT THROUGH 78 1402 255 1628 62 244 334 340	** LEFT THROUGH MIN O 78 1402 255 1628 62 244 334 340	** RIGHT LEFT THROUGH MIN ON GREEN 78 1402 106 255 1628 28 62 244 35 334 340 349	** RIGHT TURNS LEFT THROUGH MIN ON GREEN MAX 78 1402 106 106 255 1628 28 28 62 244 35 349

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	1	1	0	0	3
EASTBOUND	1	0	1	1	0	0	3
NORTHBOUND	1	0	0	1	0	0	2
SOUTHBOUND	1	0	1	0	1	0	3

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	78	N/A	754	754	N/A	N/A
EASTBOUND	255	N/A	828	828	N/A	N/A
NORTHBOUND	62	N/A	N/A	279	N/A	N/A
SOUTHBOUND	334	N/A	340	N/A	349	N/A

EAST-WEST CRITICAL VOLUMES	1009
NORTH-SOUTH CRITICAL VOLUMES	613
THE SUM OF CRITICAL VOLUMES	1622
NUMBER OF CRITICAL CLEARANCE INTERVALS	2*
CMA VALUE	0.981
LEVEL OF SERVICE	Е

* Includes CMA value decreased due to ATCS Implementation.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 26
2/28/2006 3:13:22 PM

INTERSECTION:6, VALLEY VISTA BLVD. & VAN NUYS BLVD. DATE: 2/28/2006 INITIALS: CT PERIOD: AM PEAK HOUR CASE: FUTURE (2014) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH			**		RIGHT	TURNS		**
	LEFT	THROUGH	MIN	ON	GREEN	MAX	ON	RED
WESTBOUND	0	125			0		277	
EASTBOUND	139	109			0		0	
NORTHBOUND	0	0			0		0	
SOUTHBOUND	614	0			0		51	

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	1	0	1	0	2
EASTBOUND	0	1	0	0	0	0	1
NORTHBOUND	0	0	0	0	0	0	0
SOUTHBOUND	1	0	0	0	1	0	2

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	N/A	N/A	125	N/A	0	N/A
EASTBOUND	N/A	248	N/A	N/A	N/A	N/A
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	N/A
SOUTHBOUND	614	N/A	N/A	N/A	0	N/A

EAST-WEST CRITICAL VOLUMES	264
NORTH-SOUTH CRITICAL VOLUMES	614
THE SUM OF CRITICAL VOLUMES	878
NUMBER OF CRITICAL CLEARANCE INTERVALS	0
	Ũ
CMA VALUE	0.732
LEVEL OF SERVICE	C

Capacity used = 1200.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 27
2/28/2006 3:13:22 PM

INTERSECTION:7, VALLEY VISTA BLVD./ROBLAR PL. & BEVERLY GLEN BLVD. DATE: 2/28/2006 INITIALS: CT PERIOD: AM PEAK HOUR CASE: FUTURE (2014) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH			**	RIGHT	TURNS	* *
	LEFT	THROUGH	MIN C	N GREEN	MAX	ON RED
WESTBOUND	22	12		1		0
EASTBOUND	3	2		392		359
NORTHBOUND	359	299		11		0
SOUTHBOUND	0	839		5		0

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	0	1	0	0	2
EASTBOUND	0	1	0	0	1	0	2
NORTHBOUND	1	0	0	1	0	0	2
SOUTHBOUND	0	0	0	0	0	1	1

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	22	N/A	N/A	13	N/A	N/A
EASTBOUND	N/A	5	N/A	N/A	392	N/A
NORTHBOUND	359	N/A	N/A	310	N/A	N/A
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	844

EAST-WEST CRITICAL VOLUMES	414
NORTH-SOUTH CRITICAL VOLUMES	1203
THE SUM OF CRITICAL VOLUMES	1617
NUMBER OF CRITICAL CLEARANCE INTERVALS	4*
CMA VALUE	1.106
LEVEL OF SERVICE	F

* Includes CMA value decreased due to ATSAC Implementation.

Eastbound and Westbound approaches have opposed signal phases.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 28
2/28/2006 3:13:22 PM

INTERSECTION:8, VALLEY VISTA BLVD. (SOUTH) & BEVERLY GLEN BLVD. DATE: 2/28/2006 INITIALS: CT PERIOD: AM PEAK HOUR CASE: FUTURE (2014) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH			* *	RIGHT TURNS **
	LEFT	THROUGH	MIN ON G	REEN MAX ON RED
WESTBOUND	455	158	0	0
EASTBOUND	0	38	0	1582
NORTHBOUND	500	0	138	0
SOUTHBOUND	0	0	0	0

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	1	0	0	0	0	1
EASTBOUND	0	0	1	0	1	0	2
NORTHBOUND	0	0	0	0	0	1	1
SOUTHBOUND	0	0	0	0	0	0	0

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	N/A	613	N/A	N/A	N/A	N/A
EASTBOUND	N/A	N/A	38	N/A	0	N/A
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	638
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	N/A

EAST-WEST CRITICAL VOLUMES	613
NORTH-SOUTH CRITICAL VOLUMES	638
THE SUM OF CRITICAL VOLUMES	1251
NUMBER OF CRITICAL CLEARANCE INTERVALS	0
CMA VALUE	1.043
LEVEL OF SERVICE	F

Capacity used = 1200.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 29
2/28/2006 3:13:22 PM

INTERSECTION:9, VALLEY VISTA BLVD. & STANSBURY AVE. DATE: 2/28/2006 INITIALS: CT PERIOD: AM PEAK HOUR CASE: FUTURE (2014) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH			**	RIGHT	TURNS	**
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	106	304	1	L8		0
EASTBOUND	10	70	8	37		0
NORTHBOUND	88	196		79		0
SOUTHBOUND	37	302	20	56		0

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	0	0	0	1	1
EASTBOUND	0	0	0	0	0	1	1
NORTHBOUND	0	0	0	0	0	1	1
SOUTHBOUND	0	0	0	0	0	1	1

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	N/A	N/A	N/A	N/A	N/A	428
EASTBOUND	N/A	N/A	N/A	N/A	N/A	167
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	363
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	605

EAST-WEST CRITICAL VOLUMES	438
NORTH-SOUTH CRITICAL VOLUMES	693
THE SUM OF CRITICAL VOLUMES	1131
NUMBER OF CRITICAL CLEARANCE INTERVALS	0
CMA VALUE	1.131
LEVEL OF SERVICE	F

Capacity used = 1000.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 30
2/28/2006 3:13:22 PM

INTERSECTION:10, VALLEY VISTA BLVD. & BENEDICT CANYON DR. DATE: 2/28/2006 INITIALS: CT PERIOD: AM PEAK HOUR CASE: FUTURE (2014) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH			**	RIGHT	TURNS	**
	LEFT	THROUGH	MIN	ON GREEN	MAX	ON RED
WESTBOUND	0	194		2		0
EASTBOUND	63	225		0		0
NORTHBOUND	0	0		0		0
SOUTHBOUND	13	0		239		0

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	0	0	0	1	1
EASTBOUND	0	0	0	0	0	1	1
NORTHBOUND	0	0	0	0	0	0	0
SOUTHBOUND	0	0	0	0	0	1	1

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	N/A	N/A	N/A	N/A	N/A	196
EASTBOUND	N/A	N/A	N/A	N/A	N/A	288
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	N/A
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	252

EAST-WEST CRITICAL VOLUMES	288
NORTH-SOUTH CRITICAL VOLUMES	252
THE SUM OF CRITICAL VOLUMES	540
NUMBER OF CRITICAL CLEARANCE INTERVALS	2
	_
(MA VALUE	0.360
	0.000
I EVEL OF CEDUICE	7
LEVEL OF BERVILE	A

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 31
2/28/2006 3:13:22 PM

INTERSECTION:1, VENTURA BLVD. & VAN NUYS BLVD. DATE: 2/28/2006 INITIALS: CT PERIOD: SCHOOL PM PEAK HOUR CASE: FUTURE (2014) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH			* *	RIGHT	TURNS	* *
	LEFT	THROUGH	MIN ON (GREEN	MAX	ON RED
WESTBOUND	129	1385	47.	3		0
EASTBOUND	448	1473	154	4		0
NORTHBOUND	88	661	9:	2		0
SOUTHBOUND	376	555	33	9		246

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	1	1	0	0	3
EASTBOUND	2	0	1	1	0	0	4
NORTHBOUND	1	0	1	1	0	0	3
SOUTHBOUND	1	0	1	0	1	0	3

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	129	N/A	929	929	N/A	N/A
EASTBOUND	246	N/A	814	814	N/A	N/A
NORTHBOUND	88	N/A	376	376	N/A	N/A
SOUTHBOUND	376	N/A	555	N/A	339	N/A

EAST-WEST CRITICAL VOLUMES	1175
NORTH-SOUTH CRITICAL VOLUMES	752
THE SUM OF CRITICAL VOLUMES	1927
NUMBER OF CRITICAL CLEARANCE INTERVALS	4*
CMA VALUE	1.301
LEVEL OF SERVICE	F

* Includes CMA value decreased due to ATCS Implementation.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total (SP), Row: 12
2/28/2006 3:13:56 PM

INTERSECTION:2, VENTURA BLVD. & BEVERLY GLEN BLVD./TYRONE AVE. DATE: 2/28/2006 INITIALS: CT PERIOD: SCHOOL PM PEAK HOUR CASE: FUTURE (2014) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH			* *	RIGHT	TURNS	* *
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	153	1608	!	52		0
EASTBOUND	151	1673	14	1 0		0
NORTHBOUND	259	575	19	99		0
SOUTHBOUND	35	316	:	31		114

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	1	1	0	0	3
EASTBOUND	1	0	1	1	0	0	3
NORTHBOUND	1	0	1	1	0	0	3
SOUTHBOUND	1	0	1	0	1	0	3

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	153	N/A	830	830	N/A	N/A
EASTBOUND	151	N/A	906	906	N/A	N/A
NORTHBOUND	259	N/A	387	387	N/A	N/A
SOUTHBOUND	35	N/A	316	N/A	31	N/A

EAST-WEST CRITICAL VOLUMES	1059
NORTH-SOUTH CRITICAL VOLUMES	575
THE SUM OF CRITICAL VOLUMES	1634
NUMBER OF CRITICAL CLEARANCE INTERVALS	2*
	0 000
CMA VALUE	0.989
LEVEL OF SERVICE	F

* Includes CMA value decreased due to ATCS Implementation.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total (SP), Row: 13
2/28/2006 3:13:56 PM

INTERSECTION:3, VENTURA BLVD. & STANSBURY AVE. DATE: 2/28/2006 INITIALS: CT PERIOD: SCHOOL PM PEAK HOUR CASE: FUTURE (2014) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH			**	RIGHT	TURNS	* *
	LEFT	THROUGH	MIN (ON GREEN	MAX	ON RED
WESTBOUND	161	1862		0		0
EASTBOUND	0	1835		63		0
NORTHBOUND	15	0		211		0
SOUTHBOUND	0	0		0		0

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	2	0	0	0	3
EASTBOUND	0	0	1	1	0	0	2
NORTHBOUND	0	0	0	0	0	1	1
SOUTHBOUND	0	0	0	0	0	0	0

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	161	N/A	931	N/A	N/A	N/A
EASTBOUND	N/A	N/A	949	949	N/A	N/A
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	226
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	N/A

EAST-WEST CRITICAL VOLUMES	1110
NORTH-SOUTH CRITICAL VOLUMES	226
THE SUM OF CRITICAL VOLUMES	1336
NUMBER OF CRITICAL CLEARANCE INTERVALS	0
CMA VALUE	1.113
LEVEL OF SERVICE	F

Capacity used = 1200.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total (SP), Row: 14
2/28/2006 3:13:56 PM

INTERSECTION:4, VENTURA BLVD. & HAZELTINE AVE. DATE: 2/28/2006 INITIALS: CT PERIOD: SCHOOL PM PEAK HOUR CASE: FUTURE (2014) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH			* *	RIGHT	TURNS	**
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	0	1694	25	58		0
EASTBOUND	235	1796		0		0
NORTHBOUND	0	0		0		0
SOUTHBOUND	203	0	15	58		118

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	1	1	0	0	2
EASTBOUND	1	0	2	0	0	0	3
NORTHBOUND	0	0	0	0	0	0	0
SOUTHBOUND	2	0	0	0	1	0	3

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	N/A	N/A	976	976	N/A	N/A
EASTBOUND	235	N/A	898	N/A	N/A	N/A
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	N/A
SOUTHBOUND	112	N/A	N/A	N/A	158	N/A

EAST-WEST CRITICAL VOLUMES	1211
NORTH-SOUTH CRITICAL VOLUMES	158
THE SUM OF CRITICAL VOLUMES	1369
NUMBER OF CRITICAL CLEARANCE INTERVALS	2*
CMA VALUE	0.813
LEVEL OF SERVICE	D

* Includes CMA value decreased due to ATCS Implementation.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total (SP), Row: 15
2/28/2006 3:13:56 PM

INTERSECTION:5, VENTURA BLVD. & WOODMAN AVE. DATE: 2/28/2006 INITIALS: CT PERIOD: SCHOOL PM PEAK HOUR CASE: FUTURE (2014) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH			**	RIGHT	TURNS	* *
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	60	1370	20)2		0
EASTBOUND	254	1492	4	18		0
NORTHBOUND	65	230	4	18		0
SOUTHBOUND	245	167	19	99		127

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	1	1	0	0	3
EASTBOUND	1	0	1	1	0	0	3
NORTHBOUND	1	0	0	1	0	0	2
SOUTHBOUND	1	0	1	0	1	0	3

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	60	N/A	786	786	N/A	N/A
EASTBOUND	254	N/A	770	770	N/A	N/A
NORTHBOUND	65	N/A	N/A	278	N/A	N/A
SOUTHBOUND	245	N/A	167	N/A	199	N/A

EAST-WEST CRITICAL VOLUMES	1040
NORTH-SOUTH CRITICAL VOLUMES	523
THE SUM OF CRITICAL VOLUMES	1563
NUMBER OF CRITICAL CLEARANCE INTERVALS	2*
CMA VALUE	0.942
LEVEL OF SERVICE	Е

* Includes CMA value decreased due to ATCS Implementation.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total (SP), Row: 16
2/28/2006 3:13:56 PM

INTERSECTION:6, VALLEY VISTA BLVD. & VAN NUYS BLVD. DATE: 2/28/2006 INITIALS: CT PERIOD: SCHOOL PM PEAK HOUR CASE: FUTURE (2014) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH			**	RIGHT	TURNS	**
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	0	157		0		598
EASTBOUND	102	102		0		0
NORTHBOUND	0	0		0		0
SOUTHBOUND	387	0		0		87

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	1	0	1	0	2
EASTBOUND	0	1	0	0	0	0	1
NORTHBOUND	0	0	0	0	0	0	0
SOUTHBOUND	1	0	0	0	1	0	2

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	N/A	N/A	157	N/A	0	N/A
EASTBOUND	N/A	204	N/A	N/A	N/A	N/A
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	N/A
SOUTHBOUND	387	N/A	N/A	N/A	0	N/A

EAST-WEST CRITICAL VOLUMES	259
NORTH-SOUTH CRITICAL VOLUMES	387
THE SUM OF CRITICAL VOLUMES	646
NUMBER OF CRITICAL CLEARANCE INTERVALS	0
CMA VALUE	0.538
LEVEL OF SERVICE	A

Capacity used = 1200.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total (SP), Row: 17
2/28/2006 3:13:56 PM

INTERSECTION:7, VALLEY VISTA BLVD./ROBLAR PL. & BEVERLY GLEN BLVD. DATE: 2/28/2006 INITIALS: CT PERIOD: SCHOOL PM PEAK HOUR CASE: FUTURE (2014) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH			**	RIGHT	TURNS	**
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	5	4		1		0
EASTBOUND	31	12		0		429
NORTHBOUND	649	960		0		0
SOUTHBOUND	2	428	:	24		0

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	0	1	0	0	2
EASTBOUND	0	1	0	0	1	0	2
NORTHBOUND	1	0	0	1	0	0	2
SOUTHBOUND	0	0	0	0	0	1	1

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	5	N/A	N/A	5	N/A	N/A
EASTBOUND	N/A	43	N/A	N/A	0	N/A
NORTHBOUND	649	N/A	N/A	960	N/A	N/A
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	454

EAST-WEST CRITICAL VOLUMES	48
NORTH-SOUTH CRITICAL VOLUMES	1103
THE SUM OF CRITICAL VOLUMES	1151
NUMBER OF CRITICAL CLEARANCE INTERVALS	4*
CMA VALUE	0.767
LEVEL OF SERVICE	C

* Includes CMA value decreased due to ATSAC Implementation.

Eastbound and Westbound approaches have opposed signal phases.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total (SP), Row: 18
2/28/2006 3:13:56 PM

INTERSECTION:8, VALLEY VISTA BLVD. (SOUTH) & BEVERLY GLEN BLVD. DATE: 2/28/2006 INITIALS: CT PERIOD: SCHOOL PM PEAK HOUR CASE: FUTURE (2014) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH			**	RIGHT TUR	NS **
	LEFT	THROUGH	MIN ON (GREEN	MAX ON RED
WESTBOUND	76	168		0	0
EASTBOUND	0	101		0	776
NORTHBOUND	1457	0	21.	3	0
SOUTHBOUND	0	0		0	0

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	1	0	0	0	0	1
EASTBOUND	0	0	1	0	1	0	2
NORTHBOUND	0	0	0	0	0	1	1
SOUTHBOUND	0	0	0	0	0	0	0

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	N/A	244	N/A	N/A	N/A	N/A
EASTBOUND	N/A	N/A	101	N/A	0	N/A
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	1670
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	N/A

EAST-WEST CRITICAL VOLUMES	244
NORTH-SOUTH CRITICAL VOLUMES	1670
THE SUM OF CRITICAL VOLUMES	1914
NUMBER OF CRITICAL CLEARANCE INTERVALS	0
CMA VALUE	1.595
LEVEL OF SERVICE	F

Capacity used = 1200.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total (SP), Row: 19
2/28/2006 3:13:57 PM

INTERSECTION:9, VALLEY VISTA BLVD. & STANSBURY AVE. DATE: 2/28/2006 INITIALS: CT PERIOD: SCHOOL PM PEAK HOUR CASE: FUTURE (2014) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH			**	RIGHT	TURNS	**
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	37	117	4	1 5		0
EASTBOUND	34	151		76		0
NORTHBOUND	101	105	(50		0
SOUTHBOUND	26	109	:	26		0

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	0	0	0	1	1
EASTBOUND	0	0	0	0	0	1	1
NORTHBOUND	0	0	0	0	0	1	1
SOUTHBOUND	0	0	0	0	0	1	1

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	N/A	N/A	N/A	N/A	N/A	199
EASTBOUND	N/A	N/A	N/A	N/A	N/A	261
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	266
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	161

EAST-WEST CRITICAL VOLUMES	298
NORTH-SOUTH CRITICAL VOLUMES	292
THE SUM OF CRITICAL VOLUMES	590
NUMBER OF CRITICAL CLEARANCE INTERVALS	0
CMA VALUE	0.590
LEVEL OF SERVICE	А

Capacity used = 1000.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total (SP), Row: 20
2/28/2006 3:13:57 PM

INTERSECTION:10, VALLEY VISTA BLVD. & BENEDICT CANYON DR. DATE: 2/28/2006 INITIALS: CT PERIOD: SCHOOL PM PEAK HOUR CASE: FUTURE (2014) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH			**	RIGHT	TURNS	**
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	0	159	1	LO		0
EASTBOUND	74	254		0		0
NORTHBOUND	0	0		0		0
SOUTHBOUND	10	0	9	€5		0

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	0	0	0	1	1
EASTBOUND	0	0	0	0	0	1	1
NORTHBOUND	0	0	0	0	0	0	0
SOUTHBOUND	0	0	0	0	0	1	1

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	N/A	N/A	N/A	N/A	N/A	169
EASTBOUND	N/A	N/A	N/A	N/A	N/A	328
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	N/A
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	105

EAST-WEST CRITICAL VOLUMES	328
NORTH-SOUTH CRITICAL VOLUMES	105
THE SUM OF CRITICAL VOLUMES	433
NUMBER OF CRITICAL CLEARANCE INTERVALS	2
	_
CMA VALUE	0.289
	0.205
LEVEL OF SERVICE	Σ

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total (SP), Row: 21
2/28/2006 3:13:57 PM

INTERSECTION:1, VENTURA BLVD. & VAN NUYS BLVD. DATE: 2/28/2006 INITIALS: CT PERIOD: COMMUTER PM PEAK HOUR CASE: FUTURE (2014) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH			* *	RIGHT	TURNS	**
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	134	1601	45	52		0
EASTBOUND	498	1572	13	35		0
NORTHBOUND	99	757	11	.2		0
SOUTHBOUND	345	562	39	9		274

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	1	1	0	0	3
EASTBOUND	2	0	1	1	0	0	4
NORTHBOUND	1	0	1	1	0	0	3
SOUTHBOUND	1	0	1	0	1	0	3

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	134	N/A	1026	1026	N/A	N/A
EASTBOUND	274	N/A	854	854	N/A	N/A
NORTHBOUND	99	N/A	434	434	N/A	N/A
SOUTHBOUND	345	N/A	562	N/A	399	N/A

EAST-WEST CRITICAL VOLUMES	1300
NORTH-SOUTH CRITICAL VOLUMES	779
THE SUM OF CRITICAL VOLUMES	2079
NUMBER OF CRITICAL CLEARANCE INTERVALS	4*
CMA VALUE	1.412
LEVEL OF SERVICE	F

* Includes CMA value decreased due to ATCS Implementation.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 32
2/28/2006 3:13:22 PM

INTERSECTION:2, VENTURA BLVD. & BEVERLY GLEN BLVD./TYRONE AVE. DATE: 2/28/2006 INITIALS: CT PERIOD: COMMUTER PM PEAK HOUR CASE: FUTURE (2014) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH			* *	RIGHT	TURNS	* *
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	160	1672		69		0
EASTBOUND	161	1780	1	44		0
NORTHBOUND	253	660	1	81		0
SOUTHBOUND	44	346		7		126

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	1	1	0	0	3
EASTBOUND	1	0	1	1	0	0	3
NORTHBOUND	1	0	1	1	0	0	3
SOUTHBOUND	1	0	1	0	1	0	3

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	160	N/A	870	870	N/A	N/A
EASTBOUND	161	N/A	962	962	N/A	N/A
NORTHBOUND	253	N/A	420	420	N/A	N/A
SOUTHBOUND	44	N/A	346	N/A	7	N/A

EAST-WEST CRITICAL VOLUMES	1122
NORTH-SOUTH CRITICAL VOLUMES	599
THE SUM OF CRITICAL VOLUMES	1721
NUMBER OF CRITICAL CLEARANCE INTERVALS	2*
CMA VALUE	1.047
LEVEL OF SERVICE	F

* Includes CMA value decreased due to ATCS Implementation.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 33
2/28/2006 3:13:22 PM

INTERSECTION:3, VENTURA BLVD. & STANSBURY AVE. DATE: 2/28/2006 INITIALS: CT PERIOD: COMMUTER PM PEAK HOUR CASE: FUTURE (2014) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH			**	RIGHT	TURNS	**
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	184	1957		0		0
EASTBOUND	0	1901	6	1		0
NORTHBOUND	12	0	25	9		0
SOUTHBOUND	0	0		0		0

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	2	0	0	0	3
EASTBOUND	0	0	1	1	0	0	2
NORTHBOUND	0	0	0	0	0	1	1
SOUTHBOUND	0	0	0	0	0	0	0

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	184	N/A	978	N/A	N/A	N/A
EASTBOUND	N/A	N/A	981	981	N/A	N/A
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	271
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	N/A

EAST-WEST CRITICAL VOLUMES	1165
NORTH-SOUTH CRITICAL VOLUMES	271
THE SUM OF CRITICAL VOLUMES	1436
NUMBER OF CRITICAL CLEARANCE INTERVALS	0
CMA VALUE	1.197
LEVEL OF SERVICE	F

Capacity used = 1200.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 34
2/28/2006 3:13:22 PM

INTERSECTION:4, VENTURA BLVD. & HAZELTINE AVE. DATE: 2/28/2006 INITIALS: CT PERIOD: COMMUTER PM PEAK HOUR CASE: FUTURE (2014) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH			* *	RIGHT	TURNS		* *
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON R	ED
WESTBOUND	0	1741	36	55		0	
EASTBOUND	213	1899		0		0	
NORTHBOUND	0	0		0		0	
SOUTHBOUND	231	0	18	32		106	

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	1	1	0	0	2
EASTBOUND	1	0	2	0	0	0	3
NORTHBOUND	0	0	0	0	0	0	0
SOUTHBOUND	2	0	0	0	1	0	3

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	N/A	N/A	1053	1053	N/A	N/A
EASTBOUND	213	N/A	950	N/A	N/A	N/A
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	N/A
SOUTHBOUND	127	N/A	N/A	N/A	182	N/A

EAST-WEST CRITICAL VOLUMES	1266
NORTH-SOUTH CRITICAL VOLUMES	182
THE SUM OF CRITICAL VOLUMES	1448
NUMBER OF CRITICAL CLEARANCE INTERVALS	2*
CMA VALUE	0.865
LEVEL OF SERVICE	D

* Includes CMA value decreased due to ATCS Implementation.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 35
2/28/2006 3:13:22 PM

INTERSECTION:5, VENTURA BLVD. & WOODMAN AVE. DATE: 2/28/2006 INITIALS: CT PERIOD: COMMUTER PM PEAK HOUR CASE: FUTURE (2014) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH			* *	RIGHT	TURNS	* *
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	43	1452	22	23		0
EASTBOUND	262	1648	5	53		0
NORTHBOUND	69	315	4	4 3		0
SOUTHBOUND	294	232	30)3		131

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	1	1	0	0	3
EASTBOUND	1	0	1	1	0	0	3
NORTHBOUND	1	0	0	1	0	0	2
SOUTHBOUND	1	0	1	0	1	0	3

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	43	N/A	838	838	N/A	N/A
EASTBOUND	262	N/A	850	850	N/A	N/A
NORTHBOUND	69	N/A	N/A	358	N/A	N/A
SOUTHBOUND	294	N/A	232	N/A	303	N/A

EAST-WEST CRITICAL VOLUMES	1100
NORTH-SOUTH CRITICAL VOLUMES	652
THE SUM OF CRITICAL VOLUMES	1752
NUMBER OF CRITICAL CLEARANCE INTERVALS	2*
CMA VALUE	1.068
LEVEL OF SERVICE	F

* Includes CMA value decreased due to ATCS Implementation.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 36
2/28/2006 3:13:22 PM

INTERSECTION:6, VALLEY VISTA BLVD. & VAN NUYS BLVD. DATE: 2/28/2006 INITIALS: CT PERIOD: COMMUTER PM PEAK HOUR CASE: FUTURE (2014) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH			**		RIGHT	TURNS		**
	LEFT	THROUGH	MIN	ON	GREEN	MAX	ON F	RED
WESTBOUND	0	141		(0		655	
EASTBOUND	117	141		(0		0	
NORTHBOUND	0	0		(0		0	
SOUTHBOUND	500	0		(0		106	

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	1	0	1	0	2
EASTBOUND	0	1	0	0	0	0	1
NORTHBOUND	0	0	0	0	0	0	0
SOUTHBOUND	1	0	0	0	1	0	2

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	N/A	N/A	141	N/A	0	N/A
EASTBOUND	N/A	258	N/A	N/A	N/A	N/A
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	N/A
SOUTHBOUND	500	N/A	N/A	N/A	0	N/A

EAST-WEST CRITICAL VOLUMES	258
NORTH-SOUTH CRITICAL VOLUMES	500
THE SUM OF CRITICAL VOLUMES	758
NUMBER OF CRITICAL CLEARANCE INTERVALS	0
CMA VALUE	0.632
LEVEL OF SERVICE	в

Capacity used = 1200.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 37
2/28/2006 3:13:22 PM

INTERSECTION:7, VALLEY VISTA BLVD./ROBLAR PL. & BEVERLY GLEN BLVD. DATE: 2/28/2006 INITIALS: CT PERIOD: COMMUTER PM PEAK HOUR CASE: FUTURE (2014) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH			**	RIGHT	TURNS	**
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	9	4		6		0
EASTBOUND	41	11		0		529
NORTHBOUND	643	1038		9		0
SOUTHBOUND	4	441		29		0

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	0	1	0	0	2
EASTBOUND	0	1	0	0	1	0	2
NORTHBOUND	1	0	0	1	0	0	2
SOUTHBOUND	0	0	0	0	0	1	1

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	9	N/A	N/A	10	N/A	N/A
EASTBOUND	N/A	52	N/A	N/A	0	N/A
NORTHBOUND	643	N/A	N/A	1047	N/A	N/A
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	474

EAST-WEST CRITICAL VOLUMES	62
NORTH-SOUTH CRITICAL VOLUMES	1117
THE SUM OF CRITICAL VOLUMES	1179
NUMBER OF CRITICAL CLEARANCE INTERVALS	4*
CMA VALUE	0.787
LEVEL OF SERVICE	C

* Includes CMA value decreased due to ATSAC Implementation.

Eastbound and Westbound approaches have opposed signal phases.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 38
2/28/2006 3:13:22 PM
INTERSECTION:8, VALLEY VISTA BLVD. (SOUTH) & BEVERLY GLEN BLVD. DATE: 2/28/2006 INITIALS: CT PERIOD: COMMUTER PM PEAK HOUR CASE: FUTURE (2014) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH			* *	RIGHT	TURNS		**
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON	RED
WESTBOUND	41	115		0		0	
EASTBOUND	0	112		0		897	
NORTHBOUND	1544	0	28	6		0	
SOUTHBOUND	0	0		0		0	

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	1	0	0	0	0	1
EASTBOUND	0	0	1	0	1	0	2
NORTHBOUND	0	0	0	0	0	1	1
SOUTHBOUND	0	0	0	0	0	0	0

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	N/A	156	N/A	N/A	N/A	N/A
EASTBOUND	N/A	N/A	112	N/A	0	N/A
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	1830
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	N/A

EAST-WEST CRITICAL VOLUMES	156
NORTH-SOUTH CRITICAL VOLUMES	1830
THE SUM OF CRITICAL VOLUMES	1986
NUMBER OF CRITICAL CLEARANCE INTERVALS	0
CMA VALUE	1.655
LEVEL OF SERVICE	F

Capacity used = 1200.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 39
2/28/2006 3:13:22 PM

INTERSECTION:9, VALLEY VISTA BLVD. & STANSBURY AVE. DATE: 2/28/2006 INITIALS: CT PERIOD: COMMUTER PM PEAK HOUR CASE: FUTURE (2014) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH			* *	RIGHT	TURNS	* *
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	28	89		38		0
EASTBOUND	24	276		28		0
NORTHBOUND	45	93		39		0
SOUTHBOUND	51	63		24		0

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	0	0	0	1	1
EASTBOUND	0	0	0	0	0	1	1
NORTHBOUND	0	0	0	0	0	1	1
SOUTHBOUND	0	0	0	0	0	1	1

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	N/A	N/A	N/A	N/A	N/A	155
EASTBOUND	N/A	N/A	N/A	N/A	N/A	328
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	177
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	138

EAST-WEST CRITICAL VOLUMES	356
NORTH-SOUTH CRITICAL VOLUMES	228
THE SUM OF CRITICAL VOLUMES	584
NUMBER OF CRITICAL CLEARANCE INTERVALS	0
CMA VALUE	0.584
LEVEL OF SERVICE	А

Capacity used = 1000.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 40
2/28/2006 3:13:22 PM

INTERSECTION:10, VALLEY VISTA BLVD. & BENEDICT CANYON DR. DATE: 2/28/2006 INITIALS: CT PERIOD: COMMUTER PM PEAK HOUR CASE: FUTURE (2014) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH			* *	RIGHT	TURNS	**
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	0	130	2	21		0
EASTBOUND	79	314		0		0
NORTHBOUND	0	0		0		0
SOUTHBOUND	30	0	9	0		0

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	0	0	0	1	1
EASTBOUND	0	0	0	0	0	1	1
NORTHBOUND	0	0	0	0	0	0	0
SOUTHBOUND	0	0	0	0	0	1	1

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	N/A	N/A	N/A	N/A	N/A	151
EASTBOUND	N/A	N/A	N/A	N/A	N/A	393
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	N/A
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	120

EAST-WEST CRITICAL VOLUMES	393
NORTH-SOUTH CRITICAL VOLUMES	120
THE SUM OF CRITICAL VOLUMES	513
NUMBER OF CRITICAL CLEARANCE INTERVALS	2
	_
CMA VALUE	0.342
	0.012
	7
	A

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 41
2/28/2006 3:13:22 PM

FUTURE (2014) TRAFFIC CONDITIONS WITH PROJECT

INTERSECTION:1, VENTURA BLVD. & VAN NUYS BLVD. DATE: 2/28/2006 INITIALS: CT PERIOD: AM PEAK HOUR CASE: FUTURE (2014) WITH PROJECT

** INPUT VOLUMES **

		* *	RIGHT	TURNS	* *
LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
170	1829	20)9		0
320	1550	18	39		0
34	450	11	L8		0
347	638	63	32		176
	LEFT 170 320 34 347	LEFT THROUGH 170 1829 320 1550 34 450 347 638	** LEFT THROUGH MIN ON 170 1829 20 320 1550 18 34 450 11 347 638 63	** RIGHT LEFT THROUGH MIN ON GREEN 170 1829 209 209 320 1550 189 34 450 118 347 638 632	** RIGHT TURNS LEFT THROUGH MIN ON GREEN MAX 170 1829 209 320 1550 189 34 450 118 347 638 632

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	1	1	0	0	3
EASTBOUND	2	0	1	1	0	0	4
NORTHBOUND	1	0	1	1	0	0	3
SOUTHBOUND	1	0	1	0	1	0	3

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	170	N/A	1019	1019	N/A	N/A
EASTBOUND	176	N/A	870	870	N/A	N/A
NORTHBOUND	34	N/A	284	284	N/A	N/A
SOUTHBOUND	347	N/A	638	N/A	632	N/A

EAST-WEST CRITICAL VOLUMES	1195
NORTH-SOUTH CRITICAL VOLUMES	672
THE SUM OF CRITICAL VOLUMES	1867
NUMBER OF CRITICAL CLEARANCE INTERVALS	4*
CMA VALUE	1.258
LEVEL OF SERVICE	F

* Includes CMA value decreased due to ATCS Implementation.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 42
2/28/2006 3:13:22 PM

INTERSECTION:2, VENTURA BLVD. & BEVERLY GLEN BLVD./TYRONE AVE. DATE: 2/28/2006 INITIALS: CT PERIOD: AM PEAK HOUR CASE: FUTURE (2014) WITH PROJECT

** INPUT VOLUMES **

APPROACH			* *	RIGHT	TURNS	**
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	121	1635		24		0
EASTBOUND	120	1722	1	25		0
NORTHBOUND	90	160	1	09		0
SOUTHBOUND	20	228	1	79		108

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	1	1	0	0	3
EASTBOUND	1	0	1	1	0	0	3
NORTHBOUND	1	0	1	1	0	0	3
SOUTHBOUND	1	0	1	0	1	0	3

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	121	N/A	830	830	N/A	N/A
EASTBOUND	120	N/A	924	924	N/A	N/A
NORTHBOUND	90	N/A	134	134	N/A	N/A
SOUTHBOUND	20	N/A	228	N/A	179	N/A

EAST-WEST CRITICAL VOLUMES	1045
NORTH-SOUTH CRITICAL VOLUMES	318
THE SUM OF CRITICAL VOLUMES	1363
NUMBER OF CRITICAL CLEARANCE INTERVALS	2*
CMA VALUE	0.809
LEVEL OF SERVICE	D

* Includes CMA value decreased due to ATCS Implementation.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 43
2/28/2006 3:13:22 PM

INTERSECTION:3, VENTURA BLVD. & STANSBURY AVE. DATE: 2/28/2006 INITIALS: CT PERIOD: AM PEAK HOUR CASE: FUTURE (2014) WITH PROJECT

** INPUT VOLUMES **

APPROACH			**	RIGHT	TURNS	* *
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	453	1815		0		0
EASTBOUND	0	1573	2	64		0
NORTHBOUND	19	0	2	13		0
SOUTHBOUND	0	0		0		0

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	2	0	0	0	3
EASTBOUND	0	0	1	1	0	0	2
NORTHBOUND	0	0	0	0	0	1	1
SOUTHBOUND	0	0	0	0	0	0	0

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	453	N/A	908	N/A	N/A	N/A
EASTBOUND	N/A	N/A	918	918	N/A	N/A
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	232
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	N/A

EAST-WEST CRITICAL VOLUMES	1371
NORTH-SOUTH CRITICAL VOLUMES	232
THE SUM OF CRITICAL VOLUMES	1603
NUMBER OF CRITICAL CLEARANCE INTERVALS	0
CMA VALUE	1.336
LEVEL OF SERVICE	F

Capacity used = 1200.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 44
2/28/2006 3:13:23 PM

INTERSECTION:4, VENTURA BLVD. & HAZELTINE AVE. DATE: 2/28/2006 INITIALS: CT PERIOD: AM PEAK HOUR CASE: FUTURE (2014) WITH PROJECT

** INPUT VOLUMES **

APPROACH			**	RIGHT	TURNS	**
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	0	1821	13	32		0
EASTBOUND	142	1635		0		0
NORTHBOUND	0	0		0		0
SOUTHBOUND	296	0	38	34		71

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	1	1	0	0	2
EASTBOUND	1	0	2	0	0	0	3
NORTHBOUND	0	0	0	0	0	0	0
SOUTHBOUND	2	0	0	0	1	0	3

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	N/A	N/A	976	976	N/A	N/A
EASTBOUND	142	N/A	818	N/A	N/A	N/A
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	N/A
SOUTHBOUND	163	N/A	N/A	N/A	384	N/A

EAST-WEST CRITICAL VOLUMES	1118
NORTH-SOUTH CRITICAL VOLUMES	384
THE SUM OF CRITICAL VOLUMES	1502
NUMBER OF CRITICAL CLEARANCE INTERVALS	2*
CMA VALUE	0.901
LEVEL OF SERVICE	E

* Includes CMA value decreased due to ATCS Implementation.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 45
2/28/2006 3:13:23 PM

INTERSECTION:5, VENTURA BLVD. & WOODMAN AVE. DATE: 2/28/2006 INITIALS: CT PERIOD: AM PEAK HOUR CASE: FUTURE (2014) WITH PROJECT

** INPUT VOLUMES **

APPROACH			**	RIGHT	TURNS	**
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	80	1404	1	06		0
EASTBOUND	258	1630		28		0
NORTHBOUND	62	245		37		0
SOUTHBOUND	334	342	3	52		129

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	1	1	0	0	3
EASTBOUND	1	0	1	1	0	0	3
NORTHBOUND	1	0	0	1	0	0	2
SOUTHBOUND	1	0	1	0	1	0	3

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	80	N/A	755	755	N/A	N/A
EASTBOUND	258	N/A	829	829	N/A	N/A
NORTHBOUND	62	N/A	N/A	282	N/A	N/A
SOUTHBOUND	334	N/A	342	N/A	352	N/A

EAST-WEST CRITICAL VOLUMES	1013
NORTH-SOUTH CRITICAL VOLUMES	616
THE SUM OF CRITICAL VOLUMES	1629
NUMBER OF CRITICAL CLEARANCE INTERVALS	2*
CMA VALUE	0.986
LEVEL OF SERVICE	Е

* Includes CMA value decreased due to ATCS Implementation.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 46
2/28/2006 3:13:23 PM

INTERSECTION:6, VALLEY VISTA BLVD. & VAN NUYS BLVD. DATE: 2/28/2006 INITIALS: CT PERIOD: AM PEAK HOUR CASE: FUTURE (2014) WITH PROJECT

** INPUT VOLUMES **

APPROACH			**	RIGHT	TURNS	* *
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	0	126		0		277
EASTBOUND	139	110		0		0
NORTHBOUND	0	0		0		0
SOUTHBOUND	615	0		0		51

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	1	0	1	0	2
EASTBOUND	0	1	0	0	0	0	1
NORTHBOUND	0	0	0	0	0	0	0
SOUTHBOUND	1	0	0	0	1	0	2

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	N/A	N/A	126	N/A	0	N/A
EASTBOUND	N/A	249	N/A	N/A	N/A	N/A
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	N/A
SOUTHBOUND	615	N/A	N/A	N/A	0	N/A

EAST-WEST CRITICAL VOLUMES	265
NORTH-SOUTH CRITICAL VOLUMES	615
THE SUM OF CRITICAL VOLUMES	880
NUMBER OF CRITICAL CLEARANCE INTERVALS	0
CMA VALUE	0.733
LEVEL OF SERVICE	C

Capacity used = 1200.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 47
2/28/2006 3:13:23 PM

INTERSECTION:7, VALLEY VISTA BLVD./ROBLAR PL. & BEVERLY GLEN BLVD. DATE: 2/28/2006 INITIALS: CT PERIOD: AM PEAK HOUR CASE: FUTURE (2014) WITH PROJECT

** INPUT VOLUMES **

APPROACH			* *	RIGHT	TURNS	**
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	22	12		1		0
EASTBOUND	3	2	3	93		360
NORTHBOUND	360	301		11		0
SOUTHBOUND	0	841		5		0

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	0	1	0	0	2
EASTBOUND	0	1	0	0	1	0	2
NORTHBOUND	1	0	0	1	0	0	2
SOUTHBOUND	0	0	0	0	0	1	1

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	22	N/A	N/A	13	N/A	N/A
EASTBOUND	N/A	5	N/A	N/A	393	N/A
NORTHBOUND	360	N/A	N/A	312	N/A	N/A
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	846

EAST-WEST CRITICAL VOLUMES	415
NORTH-SOUTH CRITICAL VOLUMES	1206
THE SUM OF CRITICAL VOLUMES	1621
NUMBER OF CRITICAL CLEARANCE INTERVALS	4*
CMA VALUE	1.109
LEVEL OF SERVICE	F

* Includes CMA value decreased due to ATSAC Implementation.

Eastbound and Westbound approaches have opposed signal phases.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 48
2/28/2006 3:13:23 PM

INTERSECTION:8, VALLEY VISTA BLVD. (SOUTH) & BEVERLY GLEN BLVD. DATE: 2/28/2006 INITIALS: CT PERIOD: AM PEAK HOUR CASE: FUTURE (2014) WITH PROJECT

** INPUT VOLUMES **

APPROACH			**	RIGHT	TURNS	* *
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	462	161		0		0
EASTBOUND	0	42		0	1	L582
NORTHBOUND	500	0	14	.7		0
SOUTHBOUND	0	0		0		0

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	1	0	0	0	0	1
EASTBOUND	0	0	1	0	1	0	2
NORTHBOUND	0	0	0	0	0	1	1
SOUTHBOUND	0	0	0	0	0	0	0

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLI N/A	SHARED	UNLI N/A	SHARED	ONLI N/A	SHARED
WESTBOUND	N/A	023	N/A	N/A	N/A	N/A
EASTBOUND	N/A	N/A	42	N/A	0	N/A
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	647
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	N/A

EAST-WEST CRITICAL VOLUMES	623
NORTH-SOUTH CRITICAL VOLUMES	647
THE SUM OF CRITICAL VOLUMES	1270
NUMBER OF CRITICAL CLEARANCE INTERVALS	0
CMA VALUE	1.058
LEVEL OF SERVICE	F

Capacity used = 1200.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 49
2/28/2006 3:13:23 PM

INTERSECTION:9, VALLEY VISTA BLVD. & STANSBURY AVE. DATE: 2/28/2006 INITIALS: CT PERIOD: AM PEAK HOUR CASE: FUTURE (2014) WITH PROJECT

** INPUT VOLUMES **

APPROACH			* *	RIGHT	TURNS	* *
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	114	304	:	18		0
EASTBOUND	10	71	9	94		0
NORTHBOUND	96	210	1	84		0
SOUTHBOUND	37	323	20	66		0

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	0	0	0	1	1
EASTBOUND	0	0	0	0	0	1	1
NORTHBOUND	0	0	0	0	0	1	1
SOUTHBOUND	0	0	0	0	0	1	1

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	N/A	N/A	N/A	N/A	N/A	436
EASTBOUND	N/A	N/A	N/A	N/A	N/A	175
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	390
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	626

EAST-WEST CRITICAL VOLUMES	446
NORTH-SOUTH CRITICAL VOLUMES	722
THE SUM OF CRITICAL VOLUMES	1168
	0
NOMBER OF CRITICAL CLEARANCE INTERVALS	U
CMA VALUE	1.168
LEVEL OF SERVICE	F

Capacity used = 1000.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 50
2/28/2006 3:13:23 PM

INTERSECTION:10, VALLEY VISTA BLVD. & BENEDICT CANYON DR. DATE: 2/28/2006 INITIALS: CT PERIOD: AM PEAK HOUR CASE: FUTURE (2014) WITH PROJECT

** INPUT VOLUMES **

APPROACH			* *	RIGHT	TURNS	**
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	0	198		2		0
EASTBOUND	66	228		0		0
NORTHBOUND	0	0		0		0
SOUTHBOUND	13	0	24	43		0

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	0	0	0	1	1
EASTBOUND	0	0	0	0	0	1	1
NORTHBOUND	0	0	0	0	0	0	0
SOUTHBOUND	0	0	0	0	0	1	1

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLI	SHARED	ONLI	SHARED	ONLY	SHARED
WESTBOUND	N/A	N/A	N/A	N/A	N/A	200
EASTBOUND	N/A	N/A	N/A	N/A	N/A	294
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	N/A
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	256

6
-
0
2
7
А

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 51
2/28/2006 3:13:23 PM

INTERSECTION:1, VENTURA BLVD. & VAN NUYS BLVD. DATE: 2/28/2006 INITIALS: CT PERIOD: SCHOOL PM PEAK HOUR CASE: FUTURE (2014) WITH PROJECT

** INPUT VOLUMES **

APPROACH			**	RIGHT	TURNS	* *
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	129	1393	47	3		0
EASTBOUND	448	1480	15	4		0
NORTHBOUND	88	661	9	2		0
SOUTHBOUND	377	555	33	9		246

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	1	1	0	0	3
EASTBOUND	2	0	1	1	0	0	4
NORTHBOUND	1	0	1	1	0	0	3
SOUTHBOUND	1	0	1	0	1	0	3

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	129	N/A	933	933	N/A	N/A
EASTBOUND	246	N/A	817	817	N/A	N/A
NORTHBOUND	88	N/A	376	376	N/A	N/A
SOUTHBOUND	377	N/A	555	N/A	339	N/A

EAST-WEST CRITICAL VOLUMES	1179
NORTH-SOUTH CRITICAL VOLUMES	753
THE SUM OF CRITICAL VOLUMES	1932
NUMBER OF CRITICAL CLEARANCE INTERVALS	4*
CMA VALUE	1.305
LEVEL OF SERVICE	F

* Includes CMA value decreased due to ATCS Implementation.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total (SP), Row: 22
2/28/2006 3:13:57 PM

INTERSECTION:2, VENTURA BLVD. & BEVERLY GLEN BLVD./TYRONE AVE. DATE: 2/28/2006 INITIALS: CT PERIOD: SCHOOL PM PEAK HOUR CASE: FUTURE (2014) WITH PROJECT

** INPUT VOLUMES **

APPROACH			* *	RIGHT	TURNS	* *
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	153	1616	!	52		0
EASTBOUND	151	1681	14	1 0		0
NORTHBOUND	259	576	19	99		0
SOUTHBOUND	35	317	:	31		114

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	1	1	0	0	3
EASTBOUND	1	0	1	1	0	0	3
NORTHBOUND	1	0	1	1	0	0	3
SOUTHBOUND	1	0	1	0	1	0	3

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	153	N/A	834	834	N/A	N/A
EASTBOUND	151	N/A	910	910	N/A	N/A
NORTHBOUND	259	N/A	388	388	N/A	N/A
SOUTHBOUND	35	N/A	317	N/A	31	N/A

EAST-WEST CRITICAL VOLUMES	1063
NORTH-SOUTH CRITICAL VOLUMES	576
THE SUM OF CRITICAL VOLUMES	1639
NUMBER OF CRITICAL CLEARANCE INTERVALS	2*
CMA VALUE	0.993
LEVEL OF SERVICE	Е

* Includes CMA value decreased due to ATCS Implementation.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total (SP), Row: 23
2/28/2006 3:13:57 PM

INTERSECTION:3, VENTURA BLVD. & STANSBURY AVE. DATE: 2/28/2006 INITIALS: CT PERIOD: SCHOOL PM PEAK HOUR CASE: FUTURE (2014) WITH PROJECT

** INPUT VOLUMES **

APPROACH			* *	RIGHT	TURNS	**
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	164	1862		0		0
EASTBOUND	0	1835	7	71		0
NORTHBOUND	23	0	21	6		0
SOUTHBOUND	0	0		0		0

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	2	0	0	0	3
EASTBOUND	0	0	1	1	0	0	2
NORTHBOUND	0	0	0	0	0	1	1
SOUTHBOUND	0	0	0	0	0	0	0

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	164	N/A	931	N/A	N/A	N/A
EASTBOUND	N/A	N/A	953	953	N/A	N/A
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	239
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	N/A

EAST-WEST CRITICAL VOLUMES	1117
NORTH-SOUTH CRITICAL VOLUMES	239
THE SUM OF CRITICAL VOLUMES	1356
NUMBER OF CRITICAL CLEARANCE INTERVALS	0
CMA VALUE	1.130
LEVEL OF SERVICE	F

Capacity used = 1200.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total (SP), Row: 24
2/28/2006 3:13:57 PM

INTERSECTION:4, VENTURA BLVD. & HAZELTINE AVE. DATE: 2/28/2006 INITIALS: CT PERIOD: SCHOOL PM PEAK HOUR CASE: FUTURE (2014) WITH PROJECT

** INPUT VOLUMES **

APPROACH			* *	RIGHT	TURNS	**
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	0	1697	25	58		0
EASTBOUND	236	1800		0		0
NORTHBOUND	0	0		0		0
SOUTHBOUND	203	0	15	58		118

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	1	1	0	0	2
EASTBOUND	1	0	2	0	0	0	3
NORTHBOUND	0	0	0	0	0	0	0
SOUTHBOUND	2	0	0	0	1	0	3

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	N/A	N/A	978	978	N/A	N/A
EASTBOUND	236	N/A	900	N/A	N/A	N/A
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	N/A
SOUTHBOUND	112	N/A	N/A	N/A	158	N/A

EAST-WEST CRITICAL VOLUMES	1214
NORTH-SOUTH CRITICAL VOLUMES	158
THE SUM OF CRITICAL VOLUMES	1372
NUMBER OF CRITICAL CLEARANCE INTERVALS	2*
CMA VALUE	0.815
LEVEL OF SERVICE	D

* Includes CMA value decreased due to ATCS Implementation.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total (SP), Row: 25
2/28/2006 3:13:57 PM

INTERSECTION:5, VENTURA BLVD. & WOODMAN AVE. DATE: 2/28/2006 INITIALS: CT PERIOD: SCHOOL PM PEAK HOUR CASE: FUTURE (2014) WITH PROJECT

** INPUT VOLUMES **

APPROACH			**	RIGHT	TURNS	**
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	61	1371	20)2		0
EASTBOUND	257	1493	4	18		0
NORTHBOUND	65	231	4	19		0
SOUTHBOUND	245	168	20	00		128

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	1	1	0	0	3
EASTBOUND	1	0	1	1	0	0	3
NORTHBOUND	1	0	0	1	0	0	2
SOUTHBOUND	1	0	1	0	1	0	3

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	61	N/A	786	786	N/A	N/A
EASTBOUND	257	N/A	770	770	N/A	N/A
NORTHBOUND	65	N/A	N/A	280	N/A	N/A
SOUTHBOUND	245	N/A	168	N/A	200	N/A

EAST-WEST CRITICAL VOLUMES	1043
NORTH-SOUTH CRITICAL VOLUMES	525
THE SUM OF CRITICAL VOLUMES	1568
NUMBER OF CRITICAL CLEARANCE INTERVALS	2*
CMA VALUE	0.945
LEVEL OF SERVICE	Е

* Includes CMA value decreased due to ATCS Implementation.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total (SP), Row: 26
2/28/2006 3:13:57 PM

INTERSECTION:6, VALLEY VISTA BLVD. & VAN NUYS BLVD. DATE: 2/28/2006 INITIALS: CT PERIOD: SCHOOL PM PEAK HOUR CASE: FUTURE (2014) WITH PROJECT

** INPUT VOLUMES **

APPROACH			**	RIGHT	TURNS **
	LEFT	THROUGH	MIN	ON GREEN	MAX ON RED
WESTBOUND	0	158		0	598
EASTBOUND	102	103		0	0
NORTHBOUND	0	0		0	0
SOUTHBOUND	387	0		0	87

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	1	0	1	0	2
EASTBOUND	0	1	0	0	0	0	1
NORTHBOUND	0	0	0	0	0	0	0
SOUTHBOUND	1	0	0	0	1	0	2

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	N/A	N/A	158	N/A	0	N/A
EASTBOUND	N/A	205	N/A	N/A	N/A	N/A
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	N/A
SOUTHBOUND	387	N/A	N/A	N/A	0	N/A

EAST-WEST CRITICAL VOLUMES	260
NORTH-SOUTH CRITICAL VOLUMES	387
THE SUM OF CRITICAL VOLUMES	647
NUMBER OF CRITICAL CLEARANCE INTERVALS	0
CMA VALUE	0.539
LEVEL OF SERVICE	А

Capacity used = 1200.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total (SP), Row: 27
2/28/2006 3:13:57 PM

INTERSECTION:7, VALLEY VISTA BLVD./ROBLAR PL. & BEVERLY GLEN BLVD. DATE: 2/28/2006 INITIALS: CT PERIOD: SCHOOL PM PEAK HOUR CASE: FUTURE (2014) WITH PROJECT

** INPUT VOLUMES **

APPROACH			* *	RIGHT	TURNS	**
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	5	4		1		0
EASTBOUND	31	12		0		430
NORTHBOUND	650	961		0		0
SOUTHBOUND	2	429	:	24		0

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	0	1	0	0	2
EASTBOUND	0	1	0	0	1	0	2
NORTHBOUND	1	0	0	1	0	0	2
SOUTHBOUND	0	0	0	0	0	1	1

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	5	N/A	N/A	5	N/A	N/A
EASTBOUND	N/A	43	N/A	N/A	0	N/A
NORTHBOUND	650	N/A	N/A	961	N/A	N/A
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	455

EAST-WEST CRITICAL VOLUMES	48
NORTH-SOUTH CRITICAL VOLUMES	1105
THE SUM OF CRITICAL VOLUMES	1153
NUMBER OF CRITICAL CLEARANCE INTERVALS	4*
CMA VALUE	0.769
LEVEL OF SERVICE	C

* Includes CMA value decreased due to ATSAC Implementation.

Eastbound and Westbound approaches have opposed signal phases.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total (SP), Row: 28
2/28/2006 3:13:57 PM

INTERSECTION:8, VALLEY VISTA BLVD. (SOUTH) & BEVERLY GLEN BLVD. DATE: 2/28/2006 INITIALS: CT PERIOD: SCHOOL PM PEAK HOUR CASE: FUTURE (2014) WITH PROJECT

** INPUT VOLUMES **

APPROACH			**	RIGHT TURNS	* *
	LEFT	THROUGH	MIN ON G	BREEN MA	X ON RED
WESTBOUND	81	170	C)	0
EASTBOUND	0	103	C)	776
NORTHBOUND	1457	0	218	3	0
SOUTHBOUND	0	0	C)	0

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	1	0	0	0	0	1
EASTBOUND	0	0	1	0	1	0	2
NORTHBOUND	0	0	0	0	0	1	1
SOUTHBOUND	0	0	0	0	0	0	0

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	N/A	251	N/A	N/A	N/A	N/A
EASTBOUND	N/A	N/A	103	N/A	0	N/A
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	1675
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	N/A

EAST-WEST CRITICAL VOLUMES	251
NORTH-SOUTH CRITICAL VOLUMES	1675
THE SUM OF CRITICAL VOLUMES	1926
NUMBER OF CRITICAL CLEARANCE INTERVALS	0
CMA VALUE	1.605
LEVEL OF SERVICE	F

Capacity used = 1200.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total (SP), Row: 29
2/28/2006 3:13:57 PM

INTERSECTION:9, VALLEY VISTA BLVD. & STANSBURY AVE. DATE: 2/28/2006 INITIALS: CT PERIOD: SCHOOL PM PEAK HOUR CASE: FUTURE (2014) WITH PROJECT

** INPUT VOLUMES **

APPROACH			* *	RIGHT	TURNS	* *
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	41	117		45		0
EASTBOUND	34	153		77		0
NORTHBOUND	106	116		63		0
SOUTHBOUND	26	120	:	26		0

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	0	0	0	1	1
EASTBOUND	0	0	0	0	0	1	1
NORTHBOUND	0	0	0	0	0	1	1
SOUTHBOUND	0	0	0	0	0	1	1

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	N/A	N/A	N/A	N/A	N/A	203
EASTBOUND	N/A	N/A	N/A	N/A	N/A	264
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	285
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	172

EAST-WEST CRITICAL VOLUMES	305
NORTH-SOUTH CRITICAL VOLUMES	311
THE SUM OF CRITICAL VOLUMES	616
NUMBER OF CRITICAL CLEARANCE INTERVALS	0
CMA VALUE	0.616
LEVEL OF SERVICE	в

Capacity used = 1000.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total (SP), Row: 30
2/28/2006 3:13:57 PM

INTERSECTION:10, VALLEY VISTA BLVD. & BENEDICT CANYON DR. DATE: 2/28/2006 INITIALS: CT PERIOD: SCHOOL PM PEAK HOUR CASE: FUTURE (2014) WITH PROJECT

** INPUT VOLUMES **

APPROACH			* *	RIGHT	TURNS	* *
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	0	161	1	.0		0
EASTBOUND	76	257		0		0
NORTHBOUND	0	0		0		0
SOUTHBOUND	10	0	9	7		0

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	0	0	0	1	1
EASTBOUND	0	0	0	0	0	1	1
NORTHBOUND	0	0	0	0	0	0	0
SOUTHBOUND	0	0	0	0	0	1	1

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	N/A	N/A	N/A	N/A	N/A	171
EASTBOUND	N/A	N/A	N/A	N/A	N/A	333
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	N/A
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	107

EAST-WEST CRITICAL VOLUMES	333
NORTH-SOUTH CRITICAL VOLUMES	107
THE SUM OF CRITICAL VOLUMES	440
NUMBER OF CRITICAL CLEARANCE INTERVALS	2
	_
CMA VALUE	0.293
LEVEL OF SERVICE	Δ

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total (SP), Row: 31
2/28/2006 3:13:57 PM

INTERSECTION:1, VENTURA BLVD. & VAN NUYS BLVD. DATE: 2/28/2006 INITIALS: CT PERIOD: COMMUTER PM PEAK HOUR CASE: FUTURE (2014) WITH PROJECT

** INPUT VOLUMES **

APPROACH			* *	RIGHT	TURNS	* *
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	134	1606	45	52		0
EASTBOUND	498	1575	13	35		0
NORTHBOUND	99	757	11	2		0
SOUTHBOUND	345	562	39	99		274

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	1	1	0	0	3
EASTBOUND	2	0	1	1	0	0	4
NORTHBOUND	1	0	1	1	0	0	3
SOUTHBOUND	1	0	1	0	1	0	3

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	134	N/A	1029	1029	N/A	N/A
EASTBOUND	274	N/A	855	855	N/A	N/A
NORTHBOUND	99	N/A	434	434	N/A	N/A
SOUTHBOUND	345	N/A	562	N/A	399	N/A

EAST-WEST CRITICAL VOLUMES	1303
NORTH-SOUTH CRITICAL VOLUMES	779
THE SUM OF CRITICAL VOLUMES	2082
NUMBER OF CRITICAL CLEARANCE INTERVALS	4*
CMA VALUE	1.414
LEVEL OF SERVICE	F

* Includes CMA value decreased due to ATCS Implementation.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 52
2/28/2006 3:13:23 PM

INTERSECTION:2, VENTURA BLVD. & BEVERLY GLEN BLVD./TYRONE AVE. DATE: 2/28/2006 INITIALS: CT PERIOD: COMMUTER PM PEAK HOUR CASE: FUTURE (2014) WITH PROJECT

** INPUT VOLUMES **

APPROACH			* *	RIGHT	TURNS	* *
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	160	1677		69		0
EASTBOUND	161	1783	1	44		0
NORTHBOUND	253	661	1	81		0
SOUTHBOUND	44	346		7		126

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	1	1	0	0	3
EASTBOUND	1	0	1	1	0	0	3
NORTHBOUND	1	0	1	1	0	0	3
SOUTHBOUND	1	0	1	0	1	0	3

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	160	N/A	873	873	N/A	N/A
EASTBOUND	161	N/A	964	964	N/A	N/A
NORTHBOUND	253	N/A	421	421	N/A	N/A
SOUTHBOUND	44	N/A	346	N/A	7	N/A

EAST-WEST CRITICAL VOLUMES	1124
NORTH-SOUTH CRITICAL VOLUMES	599
THE SUM OF CRITICAL VOLUMES	1723
NUMBER OF CRITICAL CLEARANCE INTERVALS	2*
CMA VALUE	1.049
LEVEL OF SERVICE	F

* Includes CMA value decreased due to ATCS Implementation.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 53
2/28/2006 3:13:23 PM

INTERSECTION:3, VENTURA BLVD. & STANSBURY AVE. DATE: 2/28/2006 INITIALS: CT PERIOD: COMMUTER PM PEAK HOUR CASE: FUTURE (2014) WITH PROJECT

** INPUT VOLUMES **

APPROACH			**	RIGHT	TURNS	**
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	185	1957		0		0
EASTBOUND	0	1901	e	54		0
NORTHBOUND	17	0	26	52		0
SOUTHBOUND	0	0		0		0

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	2	0	0	0	3
EASTBOUND	0	0	1	1	0	0	2
NORTHBOUND	0	0	0	0	0	1	1
SOUTHBOUND	0	0	0	0	0	0	0

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	185	N/A	978	N/A	N/A	N/A
EASTBOUND	N/A	N/A	982	982	N/A	N/A
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	279
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	N/A

EAST-WEST CRITICAL VOLUMES	1167
NORTH-SOUTH CRITICAL VOLUMES	279
THE SUM OF CRITICAL VOLUMES	1446
NUMBER OF CRITICAL CLEARANCE INTERVALS	0
CMA VALUE	1.205
LEVEL OF SERVICE	F

Capacity used = 1200.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 54
2/28/2006 3:13:23 PM

INTERSECTION:4, VENTURA BLVD. & HAZELTINE AVE. DATE: 2/28/2006 INITIALS: CT PERIOD: COMMUTER PM PEAK HOUR CASE: FUTURE (2014) WITH PROJECT

** INPUT VOLUMES **

APPROACH			* *	RIGHT	TURNS	**
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	0	1742	30	55		0
EASTBOUND	214	1901		0		0
NORTHBOUND	0	0		0		0
SOUTHBOUND	231	0	18	31		107

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	1	1	0	0	2
EASTBOUND	1	0	2	0	0	0	3
NORTHBOUND	0	0	0	0	0	0	0
SOUTHBOUND	2	0	0	0	1	0	3

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	N/A	N/A	1054	1054	N/A	N/A
EASTBOUND	214	N/A	950	N/A	N/A	N/A
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	N/A
SOUTHBOUND	127	N/A	N/A	N/A	181	N/A

EAST-WEST CRITICAL VOLUMES	1268
NORTH-SOUTH CRITICAL VOLUMES	181
THE SUM OF CRITICAL VOLUMES	1449
NUMBER OF CRITICAL CLEARANCE INTERVALS	2*
CMA VALUE	0.866
LEVEL OF SERVICE	D

* Includes CMA value decreased due to ATCS Implementation.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 55
2/28/2006 3:13:23 PM

INTERSECTION:5, VENTURA BLVD. & WOODMAN AVE. DATE: 2/28/2006 INITIALS: CT PERIOD: COMMUTER PM PEAK HOUR CASE: FUTURE (2014) WITH PROJECT

** INPUT VOLUMES **

APPROACH			**	RIGHT	TURNS	**
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	44	1452	2	23		0
EASTBOUND	263	1649		53		0
NORTHBOUND	69	316		44		0
SOUTHBOUND	294	232	3	03		132

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	1	1	0	0	3
EASTBOUND	1	0	1	1	0	0	3
NORTHBOUND	1	0	0	1	0	0	2
SOUTHBOUND	1	0	1	0	1	0	3

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	44	N/A	838	838	N/A	N/A
EASTBOUND	263	N/A	851	851	N/A	N/A
NORTHBOUND	69	N/A	N/A	360	N/A	N/A
SOUTHBOUND	294	N/A	232	N/A	303	N/A

EAST-WEST CRITICAL VOLUMES	1101
NORTH-SOUTH CRITICAL VOLUMES	654
THE SUM OF CRITICAL VOLUMES	1755
NUMBER OF CRITICAL CLEARANCE INTERVALS	2*
CMA VALUE	1.070
LEVEL OF SERVICE	F

* Includes CMA value decreased due to ATCS Implementation.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 56
2/28/2006 3:13:23 PM

INTERSECTION:6, VALLEY VISTA BLVD. & VAN NUYS BLVD. DATE: 2/28/2006 INITIALS: CT PERIOD: COMMUTER PM PEAK HOUR CASE: FUTURE (2014) WITH PROJECT

** INPUT VOLUMES **

APPROACH			**	RIGHT	TURNS **
	LEFT	THROUGH	MIN	ON GREEN	MAX ON RED
WESTBOUND	0	142		0	655
EASTBOUND	117	142		0	0
NORTHBOUND	0	0		0	0
SOUTHBOUND	500	0		0	106

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	1	0	1	0	2
EASTBOUND	0	1	0	0	0	0	1
NORTHBOUND	0	0	0	0	0	0	0
SOUTHBOUND	1	0	0	0	1	0	2

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	N/A	N/A	142	N/A	0	N/A
EASTBOUND	N/A	259	N/A	N/A	N/A	N/A
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	N/A
SOUTHBOUND	500	N/A	N/A	N/A	0	N/A

EAST-WEST CRITICAL VOLUMES	259
NORTH-SOUTH CRITICAL VOLUMES	500
THE SUM OF CRITICAL VOLUMES	759
NUMBER OF CRITICAL CLEARANCE INTERVALS	0
CMA VALUE	0.632
LEVEL OF SERVICE	в

Capacity used = 1200.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 57
2/28/2006 3:13:23 PM

INTERSECTION:7, VALLEY VISTA BLVD./ROBLAR PL. & BEVERLY GLEN BLVD. DATE: 2/28/2006 INITIALS: CT PERIOD: COMMUTER PM PEAK HOUR CASE: FUTURE (2014) WITH PROJECT

** INPUT VOLUMES **

APPROACH			* *	RIGHT	TURNS	* *
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	9	4		6		0
EASTBOUND	41	12		0		529
NORTHBOUND	644	1039		9		0
SOUTHBOUND	4	441		29		0

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	0	1	0	0	2
EASTBOUND	0	1	0	0	1	0	2
NORTHBOUND	1	0	0	1	0	0	2
SOUTHBOUND	0	0	0	0	0	1	1

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	9	N/A	N/A	10	N/A	N/A
EASTBOUND	N/A	53	N/A	N/A	0	N/A
NORTHBOUND	644	N/A	N/A	1048	N/A	N/A
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	474

EAST-WEST CRITICAL VOLUMES	63
NORTH-SOUTH CRITICAL VOLUMES	1118
THE SUM OF CRITICAL VOLUMES	1181
NUMBER OF CRITICAL CLEARANCE INTERVALS	4*
CMA VALUE	0.789
LEVEL OF SERVICE	C

* Includes CMA value decreased due to ATSAC Implementation.

Eastbound and Westbound approaches have opposed signal phases.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 58
2/28/2006 3:13:23 PM

INTERSECTION:8, VALLEY VISTA BLVD. (SOUTH) & BEVERLY GLEN BLVD. DATE: 2/28/2006 INITIALS: CT PERIOD: COMMUTER PM PEAK HOUR CASE: FUTURE (2014) WITH PROJECT

** INPUT VOLUMES **

APPROACH			* *	RIGHT	TURNS	**
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	44	117		0		0
EASTBOUND	0	113		0		897
NORTHBOUND	1544	0	28	8		0
SOUTHBOUND	0	0		0		0

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	1	0	0	0	0	1
EASTBOUND	0	0	1	0	1	0	2
NORTHBOUND	0	0	0	0	0	1	1
SOUTHBOUND	0	0	0	0	0	0	0

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	N/A	161	N/A	N/A	N/A	N/A
EASTBOUND	N/A	N/A	113	N/A	0	N/A
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	1832
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	N/A

EAST-WEST CRITICAL VOLUMES	161
NORTH-SOUTH CRITICAL VOLUMES	1832
THE SUM OF CRITICAL VOLUMES	1993
NUMBER OF CRITICAL CLEARANCE INTERVALS	0
CMA VALUE	1.661
LEVEL OF SERVICE	F

Capacity used = 1200.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 59
2/28/2006 3:13:23 PM

INTERSECTION:9, VALLEY VISTA BLVD. & STANSBURY AVE. DATE: 2/28/2006 INITIALS: CT PERIOD: COMMUTER PM PEAK HOUR CASE: FUTURE (2014) WITH PROJECT

** INPUT VOLUMES **

APPROACH			* *	RIGHT	TURNS	**
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	30	89		38		0
EASTBOUND	24	277		25		0
NORTHBOUND	48	98		41		0
SOUTHBOUND	51	67		24		0

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	0	0	0	1	1
EASTBOUND	0	0	0	0	0	1	1
NORTHBOUND	0	0	0	0	0	1	1
SOUTHBOUND	0	0	0	0	0	1	1

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	N/A	N/A	N/A	N/A	N/A	157
EASTBOUND	N/A	N/A	N/A	N/A	N/A	326
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	187
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	142

EAST-WEST CRITICAL VOLUMES	356
NORTH-SOUTH CRITICAL VOLUMES	238
THE SUM OF CRITICAL VOLUMES	594
NUMBER OF CRITICAL CLEARANCE INTERVALS	0
CMA VALUE	0.594
LEVEL OF SERVICE	А

Capacity used = 1000.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 60
2/28/2006 3:13:23 PM

INTERSECTION:10, VALLEY VISTA BLVD. & BENEDICT CANYON DR. DATE: 2/28/2006 INITIALS: CT PERIOD: COMMUTER PM PEAK HOUR CASE: FUTURE (2014) WITH PROJECT

** INPUT VOLUMES **

APPROACH			**	RIGHT	TURNS	* *
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	0	131	2	21		0
EASTBOUND	81	315		0		0
NORTHBOUND	0	0		0		0
SOUTHBOUND	30	0	9	91		0

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	0	0	0	1	1
EASTBOUND	0	0	0	0	0	1	1
NORTHBOUND	0	0	0	0	0	0	0
SOUTHBOUND	0	0	0	0	0	1	1

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	N/A	SHARED N/X	N/A	SHARED N/A	N/A	SHARED
WESTBOUND	N/A	N/A	N/A	N/A	N/A	192
NODEUDOUND	N/A	N/A	N/A	N/A	N/A	390
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	N/A
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	121

EAST-WEST CRITICAL VOLUMES	396
NORTH-SOUTH CRITICAL VOLUMES	121
THE SUM OF CRITICAL VOLUMES	517
NUMBER OF CRITICAL CLEARANCE INTERVALS	2
	_
CMA VALUE	0.345
	0.010
	7
	~ ~

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 61
2/28/2006 3:13:23 PM

FUTURE (2014) TRAFFIC CONDITIONS WITH PROJECT PLUS MITIGATION

INTERSECTION:3, VENTURA BLVD. & STANSBURY AVE. DATE: 2/28/2006 INITIALS: CT PERIOD: AM PEAK HOUR CASE: FUTURE (2014) WITH PROJECT PLUS MITIGATION

** INPUT VOLUMES **

APPROACH			**	RIGHT	TURNS	* *
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	451	1815		0		0
EASTBOUND	0	1573	2	57		0
NORTHBOUND	15	0		0		210
SOUTHBOUND	0	0		0		0

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	2	0	0	0	3
EASTBOUND	0	0	1	1	0	0	2
NORTHBOUND	1	0	0	0	1	0	2
SOUTHBOUND	0	0	0	0	0	0	0

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	451	N/A	908	N/A	N/A	N/A
EASTBOUND	N/A	N/A	915	915	N/A	N/A
NORTHBOUND	15	N/A	N/A	N/A	0	N/A
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	N/A

EAST-WEST CRITICAL VOLUMES	1366
NORTH-SOUTH CRITICAL VOLUMES	15
THE SUM OF CRITICAL VOLUMES	1381
NUMBER OF CRITICAL CLEARANCE INTERVALS	0
CMA VALUE	1.151
LEVEL OF SERVICE	F

Capacity used = 1200.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 62
2/28/2006 3:13:23 PM
INTERSECTION:8, VALLEY VISTA BLVD. (SOUTH) & BEVERLY GLEN BLVD. DATE: 2/28/2006 INITIALS: CT PERIOD: AM PEAK HOUR CASE: FUTURE (2014) WITH PROJECT PLUS MITIGATION

** INPUT VOLUMES **

APPROACH			**	RIGHT	TURNS	* *
	LEFT	THROUGH	MIN ON (GREEN	MAX	ON RED
WESTBOUND	459	160		0		0
EASTBOUND	0	41		0	1	L582
NORTHBOUND	500	0	14	3		0
SOUTHBOUND	0	0		0		0

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	1	0	0	0	0	1
EASTBOUND	0	0	1	0	1	0	2
NORTHBOUND	0	0	0	0	0	1	1
SOUTHBOUND	0	0	0	0	0	0	0

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	N/A	619	N/A	N/A	N/A	N/A
EASTBOUND	N/A	N/A	41	N/A	0	N/A
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	643
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	N/A

EAST-WEST CRITICAL VOLUMES	619
NORTH-SOUTH CRITICAL VOLUMES	643
THE SUM OF CRITICAL VOLUMES	1262
NUMBER OF CRITICAL CLEARANCE INTERVALS	0
CMA VALUE	1.052
LEVEL OF SERVICE	F

Capacity used = 1200.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 63
2/28/2006 3:13:23 PM

INTERSECTION:9, VALLEY VISTA BLVD. & STANSBURY AVE. DATE: 2/28/2006 INITIALS: CT PERIOD: AM PEAK HOUR CASE: FUTURE (2014) WITH PROJECT PLUS MITIGATION

** INPUT VOLUMES **

APPROACH			* *	RIGHT	TURNS	* *
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	111	304	1	L8		0
EASTBOUND	10	71	8	39		0
NORTHBOUND	92	203	8	32		0
SOUTHBOUND	37	314	26	56		0

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	0	0	0	1	1
EASTBOUND	0	0	0	0	0	1	1
NORTHBOUND	0	0	0	0	0	1	1
SOUTHBOUND	0	1	0	0	1	0	2

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	N/A	N/A	N/A	N/A	N/A	433
EASTBOUND	N/A	N/A	N/A	N/A	N/A	170
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	377
SOUTHBOUND	N/A	351	N/A	N/A	266	N/A

EAST-WEST CRITICAL VOLUMES	443
NORTH-SOUTH CRITICAL VOLUMES	443
THE SUM OF CRITICAL VOLUMES	886
NUMBER OF CRITICAL CLEARANCE INTERVALS	0
CMA VALUE	0.886
LEVEL OF SERVICE	D

Capacity used = 1000.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 64
2/28/2006 3:13:23 PM

INTERSECTION:3, VENTURA BLVD. & STANSBURY AVE. DATE: 2/28/2006 INITIALS: CT PERIOD: SCHOOL PM PEAK HOUR CASE: FUTURE (2014) WITH PROJECT PLUS MITIGATION

** INPUT VOLUMES **

APPROACH			**		RIGHT	TURNS		**
	LEFT	THROUGH	MIN	ON	GREEN	MAX	ON	RED
WESTBOUND	163	1862			0		(0
EASTBOUND	0	1835		6	8		(0
NORTHBOUND	20	0		13	2		82	2
SOUTHBOUND	0	0			0		(0

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	2	0	0	0	3
EASTBOUND	0	0	1	1	0	0	2
NORTHBOUND	1	0	0	0	1	0	2
SOUTHBOUND	0	0	0	0	0	0	0

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	163	N/A	931	N/A	N/A	N/A
EASTBOUND	N/A	N/A	952	952	N/A	N/A
NORTHBOUND	20	N/A	N/A	N/A	132	N/A
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	N/A

EAST-WEST CRITICAL VOLUMES	1115
NORTH-SOUTH CRITICAL VOLUMES	132
THE SUM OF CRITICAL VOLUMES	1247
NUMBER OF CRITICAL CLEARANCE INTERVALS	0
CMA VALUE	1.039
LEVEL OF SERVICE	F

Capacity used = 1200.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total (SP), Row: 32
2/28/2006 3:13:57 PM

INTERSECTION:8, VALLEY VISTA BLVD. (SOUTH) & BEVERLY GLEN BLVD. DATE: 2/28/2006 INITIALS: CT PERIOD: SCHOOL PM PEAK HOUR CASE: FUTURE (2014) WITH PROJECT PLUS MITIGATION

** INPUT VOLUMES **

APPROACH			**	RIGHT	TURNS		**
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON	RED
WESTBOUND	79	169		0		0	
EASTBOUND	0	102		0		776	
NORTHBOUND	1457	0	21	6		0	
SOUTHBOUND	0	0		0		0	

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	1	0	0	0	0	1
EASTBOUND	0	0	1	0	1	0	2
NORTHBOUND	0	0	0	0	0	1	1
SOUTHBOUND	0	0	0	0	0	0	0

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	N/A	248	N/A	N/A	N/A	N/A
EASTBOUND	N/A	N/A	102	N/A	0	N/A
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	1673
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	N/A

EAST-WEST CRITICAL VOLUMES	248
NORTH-SOUTH CRITICAL VOLUMES	1673
THE SUM OF CRITICAL VOLUMES	1921
NUMBER OF CRITICAL CLEARANCE INTERVALS	0
CMA VALUE	1.601
LEVEL OF SERVICE	F

Capacity used = 1200.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total (SP), Row: 33
2/28/2006 3:13:57 PM

INTERSECTION:9, VALLEY VISTA BLVD. & STANSBURY AVE. DATE: 2/28/2006 INITIALS: CT PERIOD: SCHOOL PM PEAK HOUR CASE: FUTURE (2014) WITH PROJECT PLUS MITIGATION

** INPUT VOLUMES **

APPROACH			**	RIGHT	TURNS	**
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	39	117		45		0
EASTBOUND	34	153	1	74		0
NORTHBOUND	103	111		61		0
SOUTHBOUND	26	116		26		0

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	0	0	0	1	1
EASTBOUND	0	0	0	0	0	1	1
NORTHBOUND	0	0	0	0	0	1	1
SOUTHBOUND	0	1	0	0	1	0	2

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	N/A	N/A	N/A	N/A	N/A	201
EASTBOUND	N/A	N/A	N/A	N/A	N/A	261
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	275
SOUTHBOUND	N/A	142	N/A	N/A	26	N/A

EAST-WEST CRITICAL VOLUMES	300
NORTH-SOUTH CRITICAL VOLUMES	301
THE SUM OF CRITICAL VOLUMES	601
NUMBER OF CRITICAL CLEARANCE INTERVALS	0
CMA VALUE	0.601
LEVEL OF SERVICE	в

Capacity used = 1000.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total (SP), Row: 34
2/28/2006 3:13:57 PM

INTERSECTION:3, VENTURA BLVD. & STANSBURY AVE. DATE: 2/28/2006 INITIALS: CT PERIOD: COMMUTER PM PEAK HOUR CASE: FUTURE (2014) WITH PROJECT PLUS MITIGATION

** INPUT VOLUMES **

APPROACH			* *	RIGHT	TURNS	* *
	LEFT	THROUGH	MIN O	N GREEN	MAX	ON RED
WESTBOUND	185	1957		0		0
EASTBOUND	0	1901		62		0
NORTHBOUND	15	0		169		92
SOUTHBOUND	0	0		0		0

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	2	0	0	0	3
EASTBOUND	0	0	1	1	0	0	2
NORTHBOUND	1	0	0	0	1	0	2
SOUTHBOUND	0	0	0	0	0	0	0

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	185	N/A	978	N/A	N/A	N/A
EASTBOUND	N/A	N/A	982	982	N/A	N/A
NORTHBOUND	15	N/A	N/A	N/A	169	N/A
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	N/A

EAST-WEST CRITICAL VOLUMES	1167
NORTH-SOUTH CRITICAL VOLUMES	169
THE SUM OF CRITICAL VOLUMES	1336
NUMBER OF CRITICAL CLEARANCE INTERVALS	0
CMA VALUE	1.113
LEVEL OF SERVICE	F

Capacity used = 1200.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 65
2/28/2006 3:13:23 PM

INTERSECTION:8, VALLEY VISTA BLVD. (SOUTH) & BEVERLY GLEN BLVD. DATE: 2/28/2006 INITIALS: CT PERIOD: COMMUTER PM PEAK HOUR CASE: FUTURE (2014) WITH PROJECT PLUS MITIGATION

** INPUT VOLUMES **

APPROACH			* *		RIGHT	TURNS		**
	LEFT	THROUGH	MIN	ON	GREEN	MAX	ON	RED
WESTBOUND	43	116			0		(D
EASTBOUND	0	113			0		89'	7
NORTHBOUND	1544	0		28	7		(C
SOUTHBOUND	0	0			0		(D

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	1	0	0	0	0	1
EASTBOUND	0	0	1	0	1	0	2
NORTHBOUND	0	0	0	0	0	1	1
SOUTHBOUND	0	0	0	0	0	0	0

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	N/A	159	N/A	N/A	N/A	N/A
EASTBOUND	N/A	N/A	113	N/A	0	N/A
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	1831
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	N/A

EAST-WEST CRITICAL VOLUMES	159
NORTH-SOUTH CRITICAL VOLUMES	1831
THE SUM OF CRITICAL VOLUMES	1990
NUMBER OF CRITICAL CLEARANCE INTERVALS	0
CMA VALUE	1.658
	F
	<u> </u>

Capacity used = 1200.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 66
2/28/2006 3:13:23 PM

INTERSECTION:9, VALLEY VISTA BLVD. & STANSBURY AVE. DATE: 2/28/2006 INITIALS: CT PERIOD: COMMUTER PM PEAK HOUR CASE: FUTURE (2014) WITH PROJECT PLUS MITIGATION

** INPUT VOLUMES **

APPROACH			**	RIGHT	TURNS	* *
	LEFT	THROUGH	MIN ON	GREEN	MAX	ON RED
WESTBOUND	29	89		38		0
EASTBOUND	24	277		24		0
NORTHBOUND	46	95		40		0
SOUTHBOUND	51	65		24		0

** NUMBER OF LANES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	0	0	0	1	1
EASTBOUND	0	0	0	0	0	1	1
NORTHBOUND	0	0	0	0	0	1	1
SOUTHBOUND	0	1	0	0	1	0	2

** ASSIGNED LANE VOLUMES **

APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	N/A	N/A	N/A	N/A	N/A	156
EASTBOUND	N/A	N/A	N/A	N/A	N/A	325
NORTHBOUND	N/A	N/A	N/A	N/A	N/A	181
SOUTHBOUND	N/A	116	N/A	N/A	24	N/A

EAST-WEST CRITICAL VOLUMES	354
NORTH-SOUTH CRITICAL VOLUMES	232
THE SUM OF CRITICAL VOLUMES	586
NUMBER OF CRITICAL CLEARANCE INTERVALS	0
CMA VALUE	0.586
LEVEL OF SERVICE	А

Capacity used = 1000.

File: I:\Crain Projects\Active Projects\Buckley School\Data\Icap6\03-06\BS
Total.xls, Worksheet: Formula Total, Row: 67
2/28/2006 3:13:23 PM

APPENDIX G

CONSTRUCTION TRAFFIC IMPACT ANALYSIS TABLES

1	Dickens St.,	Daily Traffic Volumes					
	bet. Van Nuys Bl. and Beverly Glen Bl.		Baseline		Baseline +		
		Existing	(2009-	Construction	Construction	Construction	
	Month & Phase	(2006)	2015)	Trips	Trips	Trips Percent	
1.	May 2009 Phase 1	3,806	4,039	1	4,040	0.0%	
2.	June 2009 Phase 1	3,806	4,039	1	4,040	0.0%	
3.	July 2009 Phase 1	3,806	4,039	1	4,040	0.0%	
4.	August 2009 Phase 1	3,806	4,039	1	4,040	0.0%	
5.	September 2009 Phase 1	3,806	4,039	1	4,040	0.0%	
6.	October 2009 Phase 1	3,806	4,039	1	4,040	0.0%	
7.	November 2009 Phase 1	3,806	4,039	1	4,040	0.0%	
8.	December 2009 Phase 1	3,806	4,039	1	4,040	0.0%	
9.	January 2010 Phase 1	3,806	4,120	1	4,121	0.0%	
10.	February 2010 Phase 1	3,806	4,120	1	4,121	0.0%	
11.	March 2010 Phase 1	3,806	4,120	1	4,121	0.0%	
12.	April 2010 Phase 1	3,806	4,120	1	4,121	0.0%	
13.	May 2010 Phase 2	3,806	4,120	1	4,121	0.0%	
14.	June 2010 Phase 2	3,806	4,120	1	4,121	0.0%	
15.	July 2010 Phase 2	3,806	4,120	1	4,121	0.0%	
16.	August 2010 Phase 2	3,806	4,120	1	4,121	0.0%	
17.	September 2010 Phase 2	3,806	4,120	1	4,121	0.0%	
18.	October 2010 Phase 2	3,806	4,120	1	4,121	0.0%	
19.	November 2010 Phase 2	3,806	4,120	1	4,121	0.0%	
20.	December 2010 Phase 2	3,806	4,120	1	4,121	0.0%	
21.	January 2011 Phase 2	3,806	4,202	1	4,203	0.0%	
22.	February 2011 Phase 2	3,806	4,202	1	4,203	0.0%	
23.	March 2011 Phase 2	3,806	4,202	1	4,203	0.0%	
24.	April 2011 Phase 2	3,806	4,202	1	4,203	0.0%	
25.	May 2011 Phase 2	3,806	4,202	1	4,203	0.0%	
26.	June 2011 Phase 2	3,806	4,202	1	4,203	0.0%	
27.	July 2011 Phase 2	3,806	4,202	1	4,203	0.0%	
28.	August 2011 Phase 2	3,806	4,202	1	4,203	0.0%	
29.	September 2011 Phase 2	3,806	4,202	1	4,203	0.0%	
30.	October 2011 Phase 2	3,806	4,202	1	4,203	0.0%	
31.	November 2011						
32.	December 2011						
33.	January 2012						
34.	February 2012						
35.	March 2012						
36.	April 2012						
37.	May 2012						
38.	June 2012						
39.	July 2012						
40.	August 2012						

1	Dickens St.,	Daily Traffic Volumes							
	bet. Van Nuys B	. and Beverly Glen Bl.		Baseline Baseline +					
			Existing	(2009-	Construction	Construction	Construction		
	Month	a & Phase	(2006)	2015)	Trips	Trips	Trips Percent		
41.	September 2012								
42.	October 2012								
43.	November 2012								
44.	December 2012								
45.	January 2013								
46.	February 2013								
47.	March 2013								
48.	April 2013								
49.	May 2013	Phase 3A	3,806	4,372	1	4,373	0.0%		
50.	June 2013	Phase 3A	3,806	4,372	1	4,373	0.0%		
51.	July 2013	Phase 3A	3,806	4,372	1	4,373	0.0%		
52.	August 2013	Phase 3A	3,806	4,372	1	4,373	0.0%		
53.	September 2013	Phase 3A	3,806	4,372	1	4,373	0.0%		
54.	October 2013	Phase 3A	3,806	4,372	1	4,373	0.0%		
55.	November 2013	Phase 3A	3,806	4,372	1	4,373	0.0%		
56.	December 2013	Phase 3A	3,806	4,372	1	4,373	0.0%		
57.	January 2014	Phase 3A	3,806	4,459	1	4,460	0.0%		
58.	February 2014	Phase 3A	3,806	4,459	1	4,460	0.0%		
59.	March 2014	Phase 3A	3,806	4,459	1	4,460	0.0%		
60.	April 2014	Phase 3A	3,806	4,459	1	4,460	0.0%		
61.	May 2014	Phase 3B, 3C-Aqu, 3D	3,806	4,459	1	4,460	0.0%		
62.	June 2014	Phase 3B, 3C-Aqu, 3D	3,806	4,459	1	4,460	0.0%		
63.	July 2014	Phase 3B, 3C-Aqu, 3D	3,806	4,459	1	4,460	0.0%		
64.	August 2014	Phase 3B, 3C-Aqu, 3D	3,806	4,459	1	4,460	0.0%		
65.	September 2014	Phase 3B, 3C-Aqu, 3D	3,806	4,459	1	4,460	0.0%		
66.	October 2014	Phase 3B, 3C-Aqu	3,806	4,459	1	4,460	0.0%		
67.	November 2014	Phase 3B, 3C-Aqu	3,806	4,459	1	4,460	0.0%		
68.	December 2014	Phase 3B, 3C-Aqu	3,806	4,459	1	4,460	0.0%		
69.	January 2015	Phase 3B, 3C-Aqu	3,806	4,549	1	4,550	0.0%		
70.	February 2015	Phase 3B, 3C-Aqu	3,806	4,549	1	4,550	0.0%		
71.	March 2015	Phase 3B, 3C-Aqu, 3C-Dis	3,806	4,549	1	4,550	0.0%		
72.	April 2015	Phase 3B, 3C-Dis	3,806	4,549	1	4,550	0.0%		
73.	May 2015	Phase 3C-Dis	3,806	4,549	1	4,550	0.0%		
74.	June 2015	Phase 3C-Dis	3,806	4,549	1	4,550	0.0%		
75.	July 2015	Phase 3C-Dis	3,806	4,549	1	4,550	0.0%		
76.	August 2015	Phase 3C-Dis	3,806	4,549	1	4,550	0.0%		
77.	September 2015	Phase 3C-Dis	3,806	4,549	1	4,550	0.0%		
78.	October 2015	Phase 3C-Dis	3,806	4,549	1	4,550	0.0%		
79.	November 2015	Phase 3C-Dis	3,806	4,549	1	4,550	0.0%		
80.	December 2015	Phase 3C-Dis	3,806	4,549	1	4,550	0.0%		

2	Greenleaf St.,	Daily Traffic Volumes					
	bet. Van Nuys Bl. and Beverly Glen Bl.		Baseline		Baseline +		
		Existing	(2009-	Construction	Construction	Construction	
	Month & Phase	(2006)	2015)	Trips	Trips	Trips Percent	
1.	May 2009 Phase 1	1,577	1,674	1	1,675	0.1%	
2.	June 2009 Phase 1	1,577	1,674	1	1,675	0.1%	
3.	July 2009 Phase 1	1,577	1,674	1	1,675	0.1%	
4.	August 2009 Phase 1	1,577	1,674	1	1,675	0.1%	
5.	September 2009 Phase 1	1,577	1,674	1	1,675	0.1%	
6.	October 2009 Phase 1	1,577	1,674	1	1,675	0.1%	
7.	November 2009 Phase 1	1,577	1,674	1	1,675	0.1%	
8.	December 2009 Phase 1	1,577	1,674	1	1,675	0.1%	
9.	January 2010 Phase 1	1,577	1,707	1	1,708	0.1%	
10.	February 2010 Phase 1	1,577	1,707	1	1,708	0.1%	
11.	March 2010 Phase 1	1,577	1,707	1	1,708	0.1%	
12.	April 2010 Phase 1	1,577	1,707	1	1,708	0.1%	
13.	May 2010 Phase 2	1,577	1,707	1	1,708	0.1%	
14.	June 2010 Phase 2	1,577	1,707	1	1,708	0.1%	
15.	July 2010 Phase 2	1,577	1,707	1	1,708	0.1%	
16.	August 2010 Phase 2	1,577	1,707	1	1,708	0.1%	
17.	September 2010 Phase 2	1,577	1,707	1	1,708	0.1%	
18.	October 2010 Phase 2	1,577	1,707	1	1,708	0.1%	
19.	November 2010 Phase 2	1,577	1,707	1	1,708	0.1%	
20.	December 2010 Phase 2	1,577	1,707	1	1,708	0.1%	
21.	January 2011 Phase 2	1,577	1,741	1	1,742	0.1%	
22.	February 2011 Phase 2	1,577	1,741	1	1,742	0.1%	
23.	March 2011 Phase 2	1,577	1,741	1	1,742	0.1%	
24.	April 2011 Phase 2	1,577	1,741	1	1,742	0.1%	
25.	May 2011 Phase 2	1,577	1,741	1	1,742	0.1%	
26.	June 2011 Phase 2	1,577	1,741	1	1,742	0.1%	
27.	July 2011 Phase 2	1,577	1,741	1	1,742	0.1%	
28.	August 2011 Phase 2	1,577	1,741	1	1,742	0.1%	
29.	September 2011 Phase 2	1,577	1,741	1	1,742	0.1%	
30.	October 2011 Phase 2	1,577	1,741	1	1,742	0.1%	
31.	November 2011						
32.	December 2011						
33.	January 2012						
34.	February 2012						
35.	March 2012						
36.	April 2012						
37.	May 2012						
38.	June 2012						
39.	July 2012						
40.	August 2012						

2	Greenleaf St.,	Daily Traffic Volumes					
	bet. Van Nuys B	I. and Beverly Glen BI.		Baseline		Baseline +	
			Existing	(2009-	Construction	Construction	Construction
	Month	n & Phase	(2006)	2015)	Trips	Trips	Trips Percent
41.	September 2012						
42.	October 2012						
43.	November 2012						
44.	December 2012						
45.	January 2013						
46.	February 2013						
47.	March 2013						
48.	April 2013						
49.	May 2013	Phase 3A	1,577	1,811	1	1,812	0.1%
50.	June 2013	Phase 3A	1,577	1,811	1	1,812	0.1%
51.	July 2013	Phase 3A	1,577	1,811	1	1,812	0.1%
52.	August 2013	Phase 3A	1,577	1,811	1	1,812	0.1%
53.	September 2013	Phase 3A	1,577	1,811	1	1,812	0.1%
54.	October 2013	Phase 3A	1,577	1,811	1	1,812	0.1%
55.	November 2013	Phase 3A	1,577	1,811	1	1,812	0.1%
56.	December 2013	Phase 3A	1,577	1,811	1	1,812	0.1%
57.	January 2014	Phase 3A	1,577	1,848	1	1,849	0.1%
58.	February 2014	Phase 3A	1,577	1,848	1	1,849	0.1%
59.	March 2014	Phase 3A	1,577	1,848	1	1,849	0.1%
60.	April 2014	Phase 3A	1,577	1,848	1	1,849	0.1%
61.	May 2014	Phase 3B, 3C-Aqu, 3D	1,577	1,848	1	1,849	0.1%
62.	June 2014	Phase 3B, 3C-Aqu, 3D	1,577	1,848	1	1,849	0.1%
63.	July 2014	Phase 3B, 3C-Aqu, 3D	1,577	1,848	1	1,849	0.1%
64.	August 2014	Phase 3B, 3C-Aqu, 3D	1,577	1,848	1	1,849	0.1%
65.	September 2014	Phase 3B, 3C-Aqu, 3D	1,577	1,848	1	1,849	0.1%
66.	October 2014	Phase 3B, 3C-Aqu	1,577	1,848	1	1,849	0.1%
67.	November 2014	Phase 3B, 3C-Aqu	1,577	1,848	1	1,849	0.1%
68.	December 2014	Phase 3B, 3C-Aqu	1,577	1,848	1	1,849	0.1%
69.	January 2015	Phase 3B, 3C-Aqu	1,577	1,885	1	1,886	0.1%
70.	February 2015	Phase 3B, 3C-Aqu	1,577	1,885	1	1,886	0.1%
71.	March 2015	Phase 3B, 3C-Aqu, 3C-Dis	1,577	1,885	1	1,886	0.1%
72.	April 2015	Phase 3B, 3C-Dis	1,577	1,885	1	1,886	0.1%
73.	May 2015	Phase 3C-Dis	1,577	1,885	1	1,886	0.1%
74.	June 2015	Phase 3C-Dis	1,577	1,885	1	1,886	0.1%
75.	July 2015	Phase 3C-Dis	1,577	1,885	1	1,886	0.1%
76.	August 2015	Phase 3C-Dis	1,577	1,885	1	1,886	0.1%
77.	September 2015	Phase 3C-Dis	1,577	1,885	1	1,886	0.1%
78.	October 2015	Phase 3C-Dis	1,577	1,885	1	1,886	0.1%
79.	November 2015	Phase 3C-Dis	1,577	1,885	1	1,886	0.1%
80.	December 2015	Phase 3C-Dis	1,577	1,885	1	1,886	0.1%

3	3 Greenleaf St.,		Daily Traffic Volumes						
	west of Stansburg	ry Av.		Baseline		Baseline +			
			Existing	(2009-	Construction	Construction	Construction		
	Month	& Phase	(2006)	2015)	Trips	Trips	Trips Percent		
1.	May 2009	Phase 1	1,741	1,848	1	1,849	0.1%		
2.	June 2009	Phase 1	1,741	1,848	1	1,849	0.1%		
3.	July 2009	Phase 1	1,741	1,848	1	1,849	0.1%		
4.	August 2009	Phase 1	1,741	1,848	1	1,849	0.1%		
5.	September 2009	Phase 1	1,741	1,848	1	1,849	0.1%		
6.	October 2009	Phase 1	1,741	1,848	1	1,849	0.1%		
7.	November 2009	Phase 1	1,741	1,848	1	1,849	0.1%		
8.	December 2009	Phase 1	1,741	1,848	1	1,849	0.1%		
9.	January 2010	Phase 1	1,741	1,885	1	1,886	0.1%		
10.	February 2010	Phase 1	1,741	1,885	1	1,886	0.1%		
11.	March 2010	Phase 1	1,741	1,885	1	1,886	0.1%		
12.	April 2010	Phase 1	1,741	1,885	1	1,886	0.1%		
13.	May 2010	Phase 2	1,741	1,885	1	1,886	0.1%		
14.	June 2010	Phase 2	1,741	1,885	1	1,886	0.1%		
15.	July 2010	Phase 2	1,741	1,885	2	1,887	0.1%		
16.	August 2010	Phase 2	1,741	1,885	2	1,887	0.1%		
17.	September 2010	Phase 2	1,741	1,885	2	1,887	0.1%		
18.	October 2010	Phase 2	1,741	1,885	2	1,887	0.1%		
19.	November 2010	Phase 2	1,741	1,885	2	1,887	0.1%		
20.	December 2010	Phase 2	1,741	1,885	2	1,887	0.1%		
21.	January 2011	Phase 2	1,741	1,922	2	1,924	0.1%		
22.	February 2011	Phase 2	1,741	1,922	2	1,924	0.1%		
23.	March 2011	Phase 2	1,741	1,922	2	1,924	0.1%		
24.	April 2011	Phase 2	1,741	1,922	2	1,924	0.1%		
25.	May 2011	Phase 2	1,741	1,922	2	1,924	0.1%		
26.	June 2011	Phase 2	1,741	1,922	2	1,924	0.1%		
27.	July 2011	Phase 2	1,741	1,922	2	1,924	0.1%		
28.	August 2011	Phase 2	1,741	1,922	2	1,924	0.1%		
29.	September 2011	Phase 2	1,741	1,922	2	1,924	0.1%		
30.	October 2011	Phase 2	1,741	1,922	2	1,924	0.1%		
31.	November 2011								
32.	December 2011								
33.	January 2012								
34.	February 2012								
35.	March 2012								
36.	April 2012								
37.	May 2012								
38.	June 2012								
39.	July 2012								
40.	August 2012								

3	Greenleaf St.,		Daily Traffic Volumes						
	west of Stansbu	ry Av.		Baseline		Baseline +			
	Month & Phase		Existing	(2009-	Construction	Construction	Construction		
	Month	a & Phase	(2006)	2015)	Trips	Trips	Trips Percent		
41.	September 2012								
42.	October 2012								
43.	November 2012								
44.	December 2012								
45.	January 2013								
46.	February 2013								
47.	March 2013								
48.	April 2013								
49.	May 2013	Phase 3A	1,741	2,000	1	2,001	0.0%		
50.	June 2013	Phase 3A	1,741	2,000	1	2,001	0.0%		
51.	July 2013	Phase 3A	1,741	2,000	1	2,001	0.0%		
52.	August 2013	Phase 3A	1,741	2,000	1	2,001	0.0%		
53.	September 2013	Phase 3A	1,741	2,000	1	2,001	0.0%		
54.	October 2013	Phase 3A	1,741	2,000	1	2,001	0.0%		
55.	November 2013	Phase 3A	1,741	2,000	1	2,001	0.0%		
56.	December 2013	Phase 3A	1,741	2,000	1	2,001	0.0%		
57.	January 2014	Phase 3A	1,741	2,040	1	2,041	0.0%		
58.	February 2014	Phase 3A	1,741	2,040	1	2,041	0.0%		
59.	March 2014	Phase 3A	1,741	2,040	1	2,041	0.0%		
60.	April 2014	Phase 3A	1,741	2,040	1	2,041	0.0%		
61.	May 2014	Phase 3B, 3C-Aqu, 3D	1,741	2,040	2	2,042	0.1%		
62.	June 2014	Phase 3B, 3C-Aqu, 3D	1,741	2,040	2	2,042	0.1%		
63.	July 2014	Phase 3B, 3C-Aqu, 3D	1,741	2,040	3	2,043	0.1%		
64.	August 2014	Phase 3B, 3C-Aqu, 3D	1,741	2,040	3	2,043	0.1%		
65.	September 2014	Phase 3B, 3C-Aqu, 3D	1,741	2,040	2	2,042	0.1%		
66.	October 2014	Phase 3B, 3C-Aqu	1,741	2,040	2	2,042	0.1%		
67.	November 2014	Phase 3B, 3C-Aqu	1,741	2,040	2	2,042	0.1%		
68.	December 2014	Phase 3B, 3C-Aqu	1,741	2,040	2	2,042	0.1%		
69.	January 2015	Phase 3B, 3C-Aqu	1,741	2,081	2	2,083	0.1%		
70.	February 2015	Phase 3B, 3C-Aqu	1,741	2,081	2	2,083	0.1%		
71.	March 2015	Phase 3B, 3C-Aqu, 3C-Dis	1,741	2,081	2	2,083	0.1%		
72.	April 2015	Phase 3B, 3C-Dis	1,741	2,081	2	2,083	0.1%		
73.	May 2015	Phase 3C-Dis	1,741	2,081	1	2,082	0.0%		
74.	June 2015	Phase 3C-Dis	1,741	2,081	1	2,082	0.0%		
75.	July 2015	Phase 3C-Dis	1,741	2,081	1	2,082	0.0%		
76.	August 2015	Phase 3C-Dis	1,741	2,081	1	2,082	0.0%		
77.	September 2015	Phase 3C-Dis	1,741	2,081	1	2,082	0.0%		
78.	October 2015	Phase 3C-Dis	1,741	2,081	1	2,082	0.0%		
79.	November 2015	Phase 3C-Dis	1,741	2,081	1	2,082	0.0%		
80.	December 2015	Phase 3C-Dis	1,741	2,081	1	2,082	0.0%		

4	Valley Vista Bl.,	Daily Traffic Volumes						
	east of Kester Av	Ι.		Baseline		Baseline +		
			Existing	(2009-	Construction	Construction	Construction	
	Month	& Phase	(2006)	2015)	Trips	Trips	Trips Percent	
1.	May 2009	Phase 1	3,769	4,236	8	4,244	0.2%	
2.	June 2009	Phase 1	3,769	4,236	7	4,243	0.2%	
3.	July 2009	Phase 1	3,769	4,236	10	4,246	0.2%	
4.	August 2009	Phase 1	3,769	4,236	10	4,246	0.2%	
5.	September 2009	Phase 1	3,769	4,236	9	4,245	0.2%	
6.	October 2009	Phase 1	3,769	4,236	7	4,243	0.2%	
7.	November 2009	Phase 1	3,769	4,236	8	4,244	0.2%	
8.	December 2009	Phase 1	3,769	4,236	9	4,245	0.2%	
9.	January 2010	Phase 1	3,769	4,316	8	4,324	0.2%	
10.	February 2010	Phase 1	3,769	4,316	10	4,326	0.2%	
11.	March 2010	Phase 1	3,769	4,316	12	4,328	0.3%	
12.	April 2010	Phase 1	3,769	4,316	10	4,326	0.2%	
13.	May 2010	Phase 2	3,769	4,316	15	4,331	0.3%	
14.	June 2010	Phase 2	3,769	4,316	15	4,331	0.3%	
15.	July 2010	Phase 2	3,769	4,316	21	4,337	0.5%	
16.	August 2010	Phase 2	3,769	4,316	21	4,337	0.5%	
17.	September 2010	Phase 2	3,769	4,316	23	4,339	0.5%	
18.	October 2010	Phase 2	3,769	4,316	19	4,335	0.4%	
19.	November 2010	Phase 2	3,769	4,316	17	4,333	0.4%	
20.	December 2010	Phase 2	3,769	4,316	17	4,333	0.4%	
21.	January 2011	Phase 2	3,769	4,397	17	4,414	0.4%	
22.	February 2011	Phase 2	3,769	4,397	21	4,418	0.5%	
23.	March 2011	Phase 2	3,769	4,397	21	4,418	0.5%	
24.	April 2011	Phase 2	3,769	4,397	23	4,420	0.5%	
25.	May 2011	Phase 2	3,769	4,397	22	4,419	0.5%	
26.	June 2011	Phase 2	3,769	4,397	25	4,422	0.6%	
27.	July 2011	Phase 2	3,769	4,397	25	4,422	0.6%	
28.	August 2011	Phase 2	3,769	4,397	25	4,422	0.6%	
29.	September 2011	Phase 2	3,769	4,397	25	4,422	0.6%	
30.	October 2011	Phase 2	3,769	4,397	21	4,418	0.5%	
31.	November 2011							
32.	December 2011							
33.	January 2012							
34.	February 2012							
35.	March 2012							
36.	April 2012							
37.	May 2012							
38.	June 2012							
39.	July 2012							
40.	August 2012							

4	Valley Vista Bl.,		Daily Traffic Volumes						
	east of Kester A	V.		Baseline		Baseline +			
			Existing	(2009-	Construction	Construction	Construction		
	Month	n & Phase	(2006)	2015)	Trips	Trips	Trips Percent		
41.	September 2012								
42.	October 2012								
43.	November 2012								
44.	December 2012								
45.	January 2013								
46.	February 2013								
47.	March 2013								
48.	April 2013								
49.	May 2013	Phase 3A	3,769	4,565	8	4,573	0.2%		
50.	June 2013	Phase 3A	3,769	4,565	8	4,573	0.2%		
51.	July 2013	Phase 3A	3,769	4,565	10	4,575	0.2%		
52.	August 2013	Phase 3A	3,769	4,565	10	4,575	0.2%		
53.	September 2013	Phase 3A	3,769	4,565	9	4,574	0.2%		
54.	October 2013	Phase 3A	3,769	4,565	7	4,572	0.2%		
55.	November 2013	Phase 3A	3,769	4,565	7	4,572	0.2%		
56.	December 2013	Phase 3A	3,769	4,565	8	4,573	0.2%		
57.	January 2014	Phase 3A	3,769	4,652	8	4,660	0.2%		
58.	February 2014	Phase 3A	3,769	4,652	8	4,660	0.2%		
59.	March 2014	Phase 3A	3,769	4,652	10	4,662	0.2%		
60.	April 2014	Phase 3A	3,769	4,652	10	4,662	0.2%		
61.	May 2014	Phase 3B, 3C-Aqu, 3D	3,769	4,652	20	4,672	0.4%		
62.	June 2014	Phase 3B, 3C-Aqu, 3D	3,769	4,652	27	4,679	0.6%		
63.	July 2014	Phase 3B, 3C-Aqu, 3D	3,769	4,652	28	4,680	0.6%		
64.	August 2014	Phase 3B, 3C-Aqu, 3D	3,769	4,652	31	4,683	0.7%		
65.	September 2014	Phase 3B, 3C-Aqu, 3D	3,769	4,652	21	4,673	0.4%		
66.	October 2014	Phase 3B, 3C-Aqu	3,769	4,652	17	4,669	0.4%		
67.	November 2014	Phase 3B, 3C-Aqu	3,769	4,652	19	4,671	0.4%		
68.	December 2014	Phase 3B, 3C-Aqu	3,769	4,652	19	4,671	0.4%		
69.	January 2015	Phase 3B, 3C-Aqu	3,769	4,740	19	4,759	0.4%		
70.	February 2015	Phase 3B, 3C-Aqu	3,769	4,740	19	4,759	0.4%		
71.	March 2015	Phase 3B, 3C-Aqu, 3C-Dis	3,769	4,740	21	4,761	0.4%		
72.	April 2015	Phase 3B, 3C-Dis	3,769	4,740	21	4,761	0.4%		
73.	May 2015	Phase 3C-Dis	3,769	4,740	12	4,752	0.3%		
74.	June 2015	Phase 3C-Dis	3,769	4,740	10	4,750	0.2%		
75.	July 2015	Phase 3C-Dis	3,769	4,740	10	4,750	0.2%		
76.	August 2015	Phase 3C-Dis	3,769	4,740	10	4,750	0.2%		
77.	September 2015	Phase 3C-Dis	3,769	4,740	10	4,750	0.2%		
78.	October 2015	Phase 3C-Dis	3,769	4,740	8	4,748	0.2%		
79.	November 2015	Phase 3C-Dis	3,769	4,740	8	4,748	0.2%		
80.	December 2015	Phase 3C-Dis	3,769	4,740	8	4,748	0.2%		

5	5 Valley Vista Bl.,		Daily Traffic Volumes						
	east of Van Nuys	s Bl.		Baseline		Baseline +			
			Existing	(2009-	Construction	Construction	Construction		
	Month	& Phase	(2006)	2015)	Trips	Trips	Trips Percent		
1.	May 2009	Phase 1	14,141	15,229	42	15,271	0.3%		
2.	June 2009	Phase 1	14,141	15,229	49	15,278	0.3%		
3.	July 2009	Phase 1	14,141	15,229	56	15,285	0.4%		
4.	August 2009	Phase 1	14,141	15,229	34	15,263	0.2%		
5.	September 2009	Phase 1	14,141	15,229	36	15,265	0.2%		
6.	October 2009	Phase 1	14,141	15,229	32	15,261	0.2%		
7.	November 2009	Phase 1	14,141	15,229	34	15,263	0.2%		
8.	December 2009	Phase 1	14,141	15,229	34	15,263	0.2%		
9.	January 2010	Phase 1	14,141	15,529	30	15,559	0.2%		
10.	February 2010	Phase 1	14,141	15,529	33	15,562	0.2%		
11.	March 2010	Phase 1	14,141	15,529	41	15,570	0.3%		
12.	April 2010	Phase 1	14,141	15,529	40	15,569	0.3%		
13.	May 2010	Phase 2	14,141	15,529	64	15,593	0.4%		
14.	June 2010	Phase 2	14,141	15,529	86	15,615	0.6%		
15.	July 2010	Phase 2	14,141	15,529	114	15,643	0.7%		
16.	August 2010	Phase 2	14,141	15,529	77	15,606	0.5%		
17.	September 2010	Phase 2	14,141	15,529	117	15,646	0.7%		
18.	October 2010	Phase 2	14,141	15,529	72	15,601	0.5%		
19.	November 2010	Phase 2	14,141	15,529	76	15,605	0.5%		
20.	December 2010	Phase 2	14,141	15,529	76	15,605	0.5%		
21.	January 2011	Phase 2	14,141	15,835	58	15,893	0.4%		
22.	February 2011	Phase 2	14,141	15,835	64	15,899	0.4%		
23.	March 2011	Phase 2	14,141	15,835	53	15,888	0.3%		
24.	April 2011	Phase 2	14,141	15,835	62	15,897	0.4%		
25.	May 2011	Phase 2	14,141	15,835	62	15,897	0.4%		
26.	June 2011	Phase 2	14,141	15,835	74	15,909	0.5%		
27.	July 2011	Phase 2	14,141	15,835	72	15,907	0.5%		
28.	August 2011	Phase 2	14,141	15,835	70	15,905	0.4%		
29.	September 2011	Phase 2	14,141	15,835	66	15,901	0.4%		
30.	October 2011	Phase 2	14,141	15,835	50	15,885	0.3%		
31.	November 2011								
32.	December 2011								
33.	January 2012								
34.	February 2012								
35.	March 2012								
36.	April 2012								
37.	May 2012								
38.	June 2012								
39.	July 2012								
40.	August 2012								

5	5 Valley Vista Bl.,		Daily Traffic Volumes						
	east of Van Nuys	s Bl.		Baseline		Baseline +			
	Month & Phase		Existing	(2009-	Construction	Construction	Construction		
	Month	h & Phase	(2006)	2015)	Trips	Trips	Trips Percent		
41.	September 2012								
42.	October 2012								
43.	November 2012								
44.	December 2012								
45.	January 2013								
46.	February 2013								
47.	March 2013								
48.	April 2013								
49.	May 2013	Phase 3A	14,141	16,466	42	16,508	0.3%		
50.	June 2013	Phase 3A	14,141	16,466	42	16,508	0.3%		
51.	July 2013	Phase 3A	14,141	16,466	56	16,522	0.3%		
52.	August 2013	Phase 3A	14,141	16,466	36	16,502	0.2%		
53.	September 2013	Phase 3A	14,141	16,466	36	16,502	0.2%		
54.	October 2013	Phase 3A	14,141	16,466	32	16,498	0.2%		
55.	November 2013	Phase 3A	14,141	16,466	32	16,498	0.2%		
56.	December 2013	Phase 3A	14,141	16,466	34	16,500	0.2%		
57.	January 2014	Phase 3A	14,141	16,790	30	16,820	0.2%		
58.	February 2014	Phase 3A	14,141	16,790	30	16,820	0.2%		
59.	March 2014	Phase 3A	14,141	16,790	38	16,828	0.2%		
60.	April 2014	Phase 3A	14,141	16,790	40	16,830	0.2%		
61.	May 2014	Phase 3B, 3C-Aqu, 3D	14,141	16,790	106	16,896	0.6%		
62.	June 2014	Phase 3B, 3C-Aqu, 3D	14,141	16,790	122	16,912	0.7%		
63.	July 2014	Phase 3B, 3C-Aqu, 3D	14,141	16,790	134	16,924	0.8%		
64.	August 2014	Phase 3B, 3C-Aqu, 3D	14,141	16,790	108	16,898	0.6%		
65.	September 2014	Phase 3B, 3C-Aqu, 3D	14,141	16,790	91	16,881	0.5%		
66.	October 2014	Phase 3B, 3C-Aqu	14,141	16,790	62	16,852	0.4%		
67.	November 2014	Phase 3B, 3C-Aqu	14,141	16,790	74	16,864	0.4%		
68.	December 2014	Phase 3B, 3C-Aqu	14,141	16,790	64	16,854	0.4%		
69.	January 2015	Phase 3B, 3C-Aqu	14,141	17,122	66	17,188	0.4%		
70.	February 2015	Phase 3B, 3C-Aqu	14,141	17,122	62	17,184	0.4%		
71.	March 2015	Phase 3B, 3C-Aqu, 3C-Dis	14,141	17,122	87	17,209	0.5%		
72.	April 2015	Phase 3B, 3C-Dis	14,141	17,122	83	17,205	0.5%		
73.	May 2015	Phase 3C-Dis	14,141	17,122	50	17,172	0.3%		
74.	June 2015	Phase 3C-Dis	14,141	17,122	41	17,163	0.2%		
75.	July 2015	Phase 3C-Dis	14,141	17,122	37	17,159	0.2%		
76.	August 2015	Phase 3C-Dis	14,141	17,122	35	17,157	0.2%		
77.	September 2015	Phase 3C-Dis	14,141	17,122	39	17,161	0.2%		
78.	October 2015	Phase 3C-Dis	14,141	17,122	30	17,152	0.2%		
79.	November 2015	Phase 3C-Dis	14,141	17,122	36	17,158	0.2%		
80.	December 2015	Phase 3C-Dis	14,141	17,122	30	17,152	0.2%		

6	o Valley Vista Bl.,		Daily Traffic Volumes						
	west of Camino	de la Cumbre		Baseline		Baseline +			
			Existing	(2009-	Construction	Construction	Construction		
	Month	& Phase	(2006)	2015)	Trips	Trips	Trips Percent		
1.	May 2009	Phase 1	5,636	6,213	44	6,257	0.7%		
2.	June 2009	Phase 1	5,636	6,213	51	6,264	0.8%		
3.	July 2009	Phase 1	5,636	6,213	57	6,270	0.9%		
4.	August 2009	Phase 1	5,636	6,213	37	6,250	0.6%		
5.	September 2009	Phase 1	5,636	6,213	40	6,253	0.6%		
6.	October 2009	Phase 1	5,636	6,213	34	6,247	0.5%		
7.	November 2009	Phase 1	5,636	6,213	36	6,249	0.6%		
8.	December 2009	Phase 1	5,636	6,213	38	6,251	0.6%		
9.	January 2010	Phase 1	5,636	6,333	32	6,365	0.5%		
10.	February 2010	Phase 1	5,636	6,333	37	6,370	0.6%		
11.	March 2010	Phase 1	5,636	6,333	47	6,380	0.7%		
12.	April 2010	Phase 1	5,636	6,333	42	6,375	0.7%		
13.	May 2010	Phase 2	5,636	6,333	68	6,401	1.1%		
14.	June 2010	Phase 2	5,636	6,333	92	6,425	1.4%		
15.	July 2010	Phase 2	5,636	6,333	120	6,453	1.9%		
16.	August 2010	Phase 2	5,636	6,333	83	6,416	1.3%		
17.	September 2010	Phase 2	5,636	6,333	125	6,458	1.9%		
18.	October 2010	Phase 2	5,636	6,333	78	6,411	1.2%		
19.	November 2010	Phase 2	5,636	6,333	80	6,413	1.2%		
20.	December 2010	Phase 2	5,636	6,333	80	6,413	1.2%		
21.	January 2011	Phase 2	5,636	6,455	62	6,517	1.0%		
22.	February 2011	Phase 2	5,636	6,455	71	6,526	1.1%		
23.	March 2011	Phase 2	5,636	6,455	58	6,513	0.9%		
24.	April 2011	Phase 2	5,636	6,455	70	6,525	1.1%		
25.	May 2011	Phase 2	5,636	6,455	69	6,524	1.1%		
26.	June 2011	Phase 2	5,636	6,455	80	6,535	1.2%		
27.	July 2011	Phase 2	5,636	6,455	78	6,533	1.2%		
28.	August 2011	Phase 2	5,636	6,455	76	6,531	1.2%		
29.	September 2011	Phase 2	5,636	6,455	72	6,527	1.1%		
30.	October 2011	Phase 2	5,636	6,455	59	6,514	0.9%		
31.	November 2011								
32.	December 2011								
33.	January 2012								
34.	February 2012								
35.	March 2012								
36.	April 2012								
37.	May 2012								
38.	June 2012								
39.	July 2012								
40.	August 2012								

6 \	6 Valley Vista Bl.,		Daily Traffic Volumes						
١	west of Camino de la Cumbre			Baseline		Baseline +			
_			Existing	(2009-	Construction	Construction	Construction		
	Month	& Phase	(2006)	2015)	Trips	Trips	Trips Percent		
41. 8	September 2012								
42. (October 2012								
43. N	November 2012								
44. [December 2012								
45	January 2013								
46. F	February 2013								
47. N	March 2013								
48. <i>A</i>	April 2013								
49. N	May 2013	Phase 3A	5,636	6,706	44	6,750	0.7%		
50.	June 2013	Phase 3A	5,636	6,706	43	6,749	0.6%		
51.	July 2013	Phase 3A	5,636	6,706	57	6,763	0.8%		
52. A	August 2013	Phase 3A	5,636	6,706	38	6,744	0.6%		
53. 5	September 2013	Phase 3A	5,636	6,706	38	6,744	0.6%		
54. 0	October 2013	Phase 3A	5,636	6,706	34	6,740	0.5%		
55. N	November 2013	Phase 3A	5,636	6,706	34	6,740	0.5%		
56. E	December 2013	Phase 3A	5,636	6,706	36	6,742	0.5%		
57	January 2014	Phase 3A	5,636	6,835	32	6,867	0.5%		
58. F	February 2014	Phase 3A	5,636	6,835	32	6,867	0.5%		
59. N	March 2014	Phase 3A	5,636	6,835	42	6,877	0.6%		
60. A	April 2014	Phase 3A	5,636	6,835	42	6,877	0.6%		
61. N	May 2014	Phase 3B, 3C-Aqu, 3D	5,636	6,835	111	6,946	1.6%		
62.	June 2014	Phase 3B, 3C-Aqu, 3D	5,636	6,835	132	6,967	1.9%		
63	July 2014	Phase 3B, 3C-Aqu, 3D	5,636	6,835	143	6,978	2.0%		
64. <i>A</i>	August 2014	Phase 3B, 3C-Aqu, 3D	5,636	6,835	118	6,953	1.7%		
65. \$	September 2014	Phase 3B, 3C-Aqu, 3D	5,636	6,835	100	6,935	1.4%		
66. C	October 2014	Phase 3B, 3C-Aqu	5,636	6,835	68	6,903	1.0%		
67. N	November 2014	Phase 3B, 3C-Aqu	5,636	6,835	79	6,914	1.1%		
68. E	December 2014	Phase 3B, 3C-Aqu	5,636	6,835	69	6,904	1.0%		
69	January 2015	Phase 3B, 3C-Aqu	5,636	6,968	71	7,039	1.0%		
70. F	February 2015	Phase 3B, 3C-Aqu	5,636	6,968	67	7,035	1.0%		
71. N	March 2015	Phase 3B, 3C-Aqu, 3C-Dis	5,636	6,968	92	7,060	1.3%		
72. A	April 2015	Phase 3B, 3C-Dis	5,636	6,968	90	7,058	1.3%		
73. N	May 2015	Phase 3C-Dis	5,636	6,968	54	7,022	0.8%		
74	June 2015	Phase 3C-Dis	5,636	6,968	45	7,013	0.6%		
75	July 2015	Phase 3C-Dis	5,636	6,968	40	7,008	0.6%		
76. <i>i</i>	August 2015	Phase 3C-Dis	5,636	6,968	39	7,007	0.6%		
77. \$	September 2015	Phase 3C-Dis	5,636	6,968	43	7,011	0.6%		
78. (October 2015	Phase 3C-Dis	5,636	6,968	32	7,000	0.5%		
79. N	November 2015	Phase 3C-Dis	5,636	6,968	38	7,006	0.5%		
80. E	December 2015	Phase 3C-Dis	5,636	6,968	32	7,000	0.5%		

7 Valley Vista Bl.,	Daily Traffic Volumes					
west of Stansbury Av.		Baseline		Baseline +		
	Existing	(2009-	Construction	Construction	Construction	
Month & Phase	(2006)	2015)	Trips	Trips	Trips Percent	
1. May 2009 Phase 1	4,608	5,122	44	5,166	0.9%	
2. June 2009 Phase 1	4,608	5,122	51	5,173	1.0%	
3. July 2009 Phase 1	4,608	5,122	57	5,179	1.1%	
4. August 2009 Phase 1	4,608	5,122	37	5,159	0.7%	
5. September 2009 Phase 1	4,608	5,122	40	5,162	0.8%	
6. October 2009 Phase 1	4,608	5,122	34	5,156	0.7%	
7. November 2009 Phase 1	4,608	5,122	36	5,158	0.7%	
8. December 2009 Phase 1	4,608	5,122	38	5,160	0.7%	
9. January 2010 Phase 1	4,608	5,220	32	5,252	0.6%	
10. February 2010 Phase 1	4,608	5,220	37	5,257	0.7%	
11. March 2010 Phase 1	4,608	5,220	47	5,267	0.9%	
12. April 2010 Phase 1	4,608	5,220	42	5,262	0.8%	
13. May 2010 Phase 2	4,608	5,220	68	5,288	1.3%	
14. June 2010 Phase 2	4,608	5,220	92	5,312	1.7%	
15. July 2010 Phase 2	4,608	5,220	120	5,340	2.2%	
16. August 2010 Phase 2	4,608	5,220	83	5,303	1.6%	
17. September 2010 Phase 2	4,608	5,220	125	5,345	2.3%	
18. October 2010 Phase 2	4,608	5,220	78	5,298	1.5%	
19. November 2010 Phase 2	4,608	5,220	80	5,300	1.5%	
20. December 2010 Phase 2	4,608	5,220	80	5,300	1.5%	
21. January 2011 Phase 2	4,608	5,320	62	5,382	1.2%	
22. February 2011 Phase 2	4,608	5,320	71	5,391	1.3%	
23. March 2011 Phase 2	4,608	5,320	58	5,378	1.1%	
24. April 2011 Phase 2	4,608	5,320	70	5,390	1.3%	
25. May 2011 Phase 2	4,608	5,320	69	5,389	1.3%	
26. June 2011 Phase 2	4,608	5,320	80	5,400	1.5%	
27. July 2011 Phase 2	4,608	5,320	78	5,398	1.4%	
28. August 2011 Phase 2	4,608	5,320	76	5,396	1.4%	
29. September 2011 Phase 2	4,608	5,320	72	5,392	1.3%	
30. October 2011 Phase 2	4,608	5,320	59	5,379	1.1%	
31. November 2011						
32. December 2011						
33. January 2012						
34. February 2012						
35. March 2012						
36. April 2012						
37. May 2012						
38. June 2012						
39. July 2012						
40. August 2012						

7	7 Valley Vista BI.,		Daily Traffic Volumes						
	west of Stansbu	ry Av.		Baseline		Baseline +			
	Month & Phase		Existing	(2009-	Construction	Construction	Construction		
	Month	n & Phase	(2006)	2015)	Trips	Trips	Trips Percent		
41.	September 2012								
42.	October 2012								
43.	November 2012								
44.	December 2012								
45.	January 2013								
46.	February 2013								
47.	March 2013								
48.	April 2013								
49.	May 2013	Phase 3A	4,608	5,525	44	5,569	0.8%		
50.	June 2013	Phase 3A	4,608	5,525	43	5,568	0.8%		
51.	July 2013	Phase 3A	4,608	5,525	57	5,582	1.0%		
52.	August 2013	Phase 3A	4,608	5,525	38	5,563	0.7%		
53.	September 2013	Phase 3A	4,608	5,525	38	5,563	0.7%		
54.	October 2013	Phase 3A	4,608	5,525	34	5,559	0.6%		
55.	November 2013	Phase 3A	4,608	5,525	34	5,559	0.6%		
56.	December 2013	Phase 3A	4,608	5,525	36	5,561	0.6%		
57.	January 2014	Phase 3A	4,608	5,631	32	5,663	0.6%		
58.	February 2014	Phase 3A	4,608	5,631	32	5,663	0.6%		
59.	March 2014	Phase 3A	4,608	5,631	42	5,673	0.7%		
60.	April 2014	Phase 3A	4,608	5,631	42	5,673	0.7%		
61.	May 2014	Phase 3B, 3C-Aqu, 3D	4,608	5,631	111	5,742	1.9%		
62.	June 2014	Phase 3B, 3C-Aqu, 3D	4,608	5,631	132	5,763	2.3%		
63.	July 2014	Phase 3B, 3C-Aqu, 3D	4,608	5,631	143	5,774	2.5%		
64.	August 2014	Phase 3B, 3C-Aqu, 3D	4,608	5,631	118	5,749	2.1%		
65.	September 2014	Phase 3B, 3C-Aqu, 3D	4,608	5,631	100	5,731	1.7%		
66.	October 2014	Phase 3B, 3C-Aqu	4,608	5,631	68	5,699	1.2%		
67.	November 2014	Phase 3B, 3C-Aqu	4,608	5,631	79	5,710	1.4%		
68.	December 2014	Phase 3B, 3C-Aqu	4,608	5,631	69	5,700	1.2%		
69.	January 2015	Phase 3B, 3C-Aqu	4,608	5,739	71	5,810	1.2%		
70.	February 2015	Phase 3B, 3C-Aqu	4,608	5,739	67	5,806	1.2%		
71.	March 2015	Phase 3B, 3C-Aqu, 3C-Dis	4,608	5,739	92	5,831	1.6%		
72.	April 2015	Phase 3B, 3C-Dis	4,608	5,739	90	5,829	1.5%		
73.	May 2015	Phase 3C-Dis	4,608	5,739	54	5,793	0.9%		
74.	June 2015	Phase 3C-Dis	4,608	5,739	45	5,784	0.8%		
75.	July 2015	Phase 3C-Dis	4,608	5,739	40	5,779	0.7%		
76.	August 2015	Phase 3C-Dis	4,608	5,739	39	5,778	0.7%		
77.	September 2015	Phase 3C-Dis	4,608	5,739	43	5,782	0.7%		
78.	October 2015	Phase 3C-Dis	4,608	5,739	32	5,771	0.6%		
79.	November 2015	Phase 3C-Dis	4,608	5,739	38	5,777	0.7%		
80.	December 2015	Phase 3C-Dis	4,608	5,739	32	5,771	0.6%		

8	8 Valley Vista Bl.,		Daily Traffic Volumes						
	east of Stansbur	y Av.		Baseline		Baseline +			
<u> </u>	Month & Phase		Existing	(2009-	Construction	Construction	Construction		
	Month	a & Phase	(2006)	2015)	Trips	Trips	Trips Percent		
1.	May 2009	Phase 1	4,110	4,636	4	4,640	0.1%		
2.	June 2009	Phase 1	4,110	4,636	4	4,640	0.1%		
3.	July 2009	Phase 1	4,110	4,636	6	4,642	0.1%		
4.	August 2009	Phase 1	4,110	4,636	6	4,642	0.1%		
5.	September 2009	Phase 1	4,110	4,636	6	4,642	0.1%		
6.	October 2009	Phase 1	4,110	4,636	6	4,642	0.1%		
7.	November 2009	Phase 1	4,110	4,636	6	4,642	0.1%		
8.	December 2009	Phase 1	4,110	4,636	6	4,642	0.1%		
9.	January 2010	Phase 1	4,110	4,723	6	4,729	0.1%		
10.	February 2010	Phase 1	4,110	4,723	8	4,731	0.2%		
11.	March 2010	Phase 1	4,110	4,723	8	4,731	0.2%		
12.	April 2010	Phase 1	4,110	4,723	6	4,729	0.1%		
13.	May 2010	Phase 2	4,110	4,723	10	4,733	0.2%		
14.	June 2010	Phase 2	4,110	4,723	10	4,733	0.2%		
15.	July 2010	Phase 2	4,110	4,723	14	4,737	0.3%		
16.	August 2010	Phase 2	4,110	4,723	14	4,737	0.3%		
17.	September 2010	Phase 2	4,110	4,723	14	4,737	0.3%		
18.	October 2010	Phase 2	4,110	4,723	14	4,737	0.3%		
19.	November 2010	Phase 2	4,110	4,723	12	4,735	0.3%		
20.	December 2010	Phase 2	4,110	4,723	12	4,735	0.3%		
21.	January 2011	Phase 2	4,110	4,812	12	4,824	0.2%		
22.	February 2011	Phase 2	4,110	4,812	16	4,828	0.3%		
23.	March 2011	Phase 2	4,110	4,812	14	4,826	0.3%		
24.	April 2011	Phase 2	4,110	4,812	18	4,830	0.4%		
25.	May 2011	Phase 2	4,110	4,812	18	4,830	0.4%		
26.	June 2011	Phase 2	4,110	4,812	18	4,830	0.4%		
27.	July 2011	Phase 2	4,110	4,812	18	4,830	0.4%		
28.	August 2011	Phase 2	4,110	4,812	18	4,830	0.4%		
29.	September 2011	Phase 2	4,110	4,812	18	4,830	0.4%		
30.	October 2011	Phase 2	4,110	4,812	16	4,828	0.3%		
31.	November 2011								
32.	December 2011								
33.	January 2012								
34.	February 2012								
35.	March 2012								
36.	April 2012								
37.	May 2012								
38.	June 2012								
39.	July 2012								
40.	August 2012								

8	Valley Vista Bl.,		Daily Traffic Volumes						
	east of Stansbur	y Av.		Baseline		Baseline +			
	Month & Phase		Existing	(2009-	Construction	Construction	Construction		
	Month	n & Phase	(2006)	2015)	Trips	Trips	Trips Percent		
41.	September 2012								
42.	October 2012								
43.	November 2012								
44.	December 2012								
45.	January 2013								
46.	February 2013								
47.	March 2013								
48.	April 2013								
49.	May 2013	Phase 3A	4,110	4,995	4	4,999	0.1%		
50.	June 2013	Phase 3A	4,110	4,995	4	4,999	0.1%		
51.	July 2013	Phase 3A	4,110	4,995	6	5,001	0.1%		
52.	August 2013	Phase 3A	4,110	4,995	6	5,001	0.1%		
53.	September 2013	Phase 3A	4,110	4,995	6	5,001	0.1%		
54.	October 2013	Phase 3A	4,110	4,995	6	5,001	0.1%		
55.	November 2013	Phase 3A	4,110	4,995	6	5,001	0.1%		
56.	December 2013	Phase 3A	4,110	4,995	6	5,001	0.1%		
57.	January 2014	Phase 3A	4,110	5,090	6	5,096	0.1%		
58.	February 2014	Phase 3A	4,110	5,090	6	5,096	0.1%		
59.	March 2014	Phase 3A	4,110	5,090	6	5,096	0.1%		
60.	April 2014	Phase 3A	4,110	5,090	6	5,096	0.1%		
61.	May 2014	Phase 3B, 3C-Aqu, 3D	4,110	5,090	14	5,104	0.3%		
62.	June 2014	Phase 3B, 3C-Aqu, 3D	4,110	5,090	20	5,110	0.4%		
63.	July 2014	Phase 3B, 3C-Aqu, 3D	4,110	5,090	20	5,110	0.4%		
64.	August 2014	Phase 3B, 3C-Aqu, 3D	4,110	5,090	24	5,114	0.5%		
65.	September 2014	Phase 3B, 3C-Aqu, 3D	4,110	5,090	14	5,104	0.3%		
66.	October 2014	Phase 3B, 3C-Aqu	4,110	5,090	12	5,102	0.2%		
67.	November 2014	Phase 3B, 3C-Aqu	4,110	5,090	14	5,104	0.3%		
68.	December 2014	Phase 3B, 3C-Aqu	4,110	5,090	14	5,104	0.3%		
69.	January 2015	Phase 3B, 3C-Aqu	4,110	5,186	14	5,200	0.3%		
70.	February 2015	Phase 3B, 3C-Aqu	4,110	5,186	14	5,200	0.3%		
71.	March 2015	Phase 3B, 3C-Aqu, 3C-Dis	4,110	5,186	16	5,202	0.3%		
72.	April 2015	Phase 3B, 3C-Dis	4,110	5,186	14	5,200	0.3%		
73.	May 2015	Phase 3C-Dis	4,110	5,186	8	5,194	0.2%		
74.	June 2015	Phase 3C-Dis	4,110	5,186	8	5,194	0.2%		
75.	July 2015	Phase 3C-Dis	4,110	5,186	8	5,194	0.2%		
76.	August 2015	Phase 3C-Dis	4,110	5,186	8	5,194	0.2%		
77.	September 2015	Phase 3C-Dis	4,110	5,186	8	5,194	0.2%		
78.	October 2015	Phase 3C-Dis	4,110	5,186	6	5,192	0.1%		
79.	November 2015	Phase 3C-Dis	4,110	5,186	6	5,192	0.1%		
80.	December 2015	Phase 3C-Dis	4,110	5,186	6	5,192	0.1%		

9 Van Nuys BI.,		Daily Traffic Volumes						
	bet. Benefit St. a	nd Greenleaf St.		Baseline		Baseline +		
			Existing	(2009-	Construction	Construction	Construction	
	Month	& Phase	(2006)	2015)	Trips	Trips	Trips Percent	
1.	May 2009	Phase 1	14,475	15,627	33	15,660	0.2%	
2.	June 2009	Phase 1	14,475	15,627	39	15,666	0.2%	
3.	July 2009	Phase 1	14,475	15,627	43	15,670	0.3%	
4.	August 2009	Phase 1	14,475	15,627	23	15,650	0.1%	
5.	September 2009	Phase 1	14,475	15,627	27	15,654	0.2%	
6.	October 2009	Phase 1	14,475	15,627	21	15,648	0.1%	
7.	November 2009	Phase 1	14,475	15,627	21	15,648	0.1%	
8.	December 2009	Phase 1	14,475	15,627	23	15,650	0.1%	
9.	January 2010	Phase 1	14,475	15,934	19	15,953	0.1%	
10.	February 2010	Phase 1	14,475	15,934	20	15,954	0.1%	
11.	March 2010	Phase 1	14,475	15,934	28	15,962	0.2%	
12.	April 2010	Phase 1	14,475	15,934	27	15,961	0.2%	
13.	May 2010	Phase 2	14,475	15,934	44	15,978	0.3%	
14.	June 2010	Phase 2	14,475	15,934	66	16,000	0.4%	
15.	July 2010	Phase 2	14,475	15,934	89	16,023	0.6%	
16.	August 2010	Phase 2	14,475	15,934	51	15,985	0.3%	
17.	September 2010	Phase 2	14,475	15,934	89	16,023	0.6%	
18.	October 2010	Phase 2	14,475	15,934	49	15,983	0.3%	
19.	November 2010	Phase 2	14,475	15,934	53	15,987	0.3%	
20.	December 2010	Phase 2	14,475	15,934	55	15,989	0.3%	
21.	January 2011	Phase 2	14,475	16,248	37	16,285	0.2%	
22.	February 2011	Phase 2	14,475	16,248	36	16,284	0.2%	
23.	March 2011	Phase 2	14,475	16,248	27	16,275	0.2%	
24.	April 2011	Phase 2	14,475	16,248	32	16,280	0.2%	
25.	May 2011	Phase 2	14,475	16,248	32	16,280	0.2%	
26.	June 2011	Phase 2	14,475	16,248	42	16,290	0.3%	
27.	July 2011	Phase 2	14,475	16,248	40	16,288	0.2%	
28.	August 2011	Phase 2	14,475	16,248	38	16,286	0.2%	
29.	September 2011	Phase 2	14,475	16,248	34	16,282	0.2%	
30.	October 2011	Phase 2	14,475	16,248	24	16,272	0.1%	
31.	November 2011							
32.	December 2011							
33.	January 2012							
34.	February 2012							
35.	March 2012							
36.	April 2012							
37.	May 2012							
38.	June 2012							
39.	July 2012							
40.	August 2012							

9	9 Van Nuys BI.,		Daily Traffic Volumes					
	bet. Benefit St. a	Ind Greenleaf St.		Baseline		Baseline +		
			Existing	(2009-	Construction	Construction	Construction	
	Month	n & Phase	(2006)	2015)	Trips	Trips	Trips Percent	
41.	September 2012							
42.	October 2012							
43.	November 2012							
44.	December 2012							
45.	January 2013							
46.	February 2013							
47.	March 2013							
48.	April 2013							
49.	May 2013	Phase 3A	14,475	16,893	35	16,928	0.2%	
50.	June 2013	Phase 3A	14,475	16,893	31	16,924	0.2%	
51.	July 2013	Phase 3A	14,475	16,893	43	16,936	0.3%	
52.	August 2013	Phase 3A	14,475	16,893	23	16,916	0.1%	
53.	September 2013	Phase 3A	14,475	16,893	25	16,918	0.1%	
54.	October 2013	Phase 3A	14,475	16,893	21	16,914	0.1%	
55.	November 2013	Phase 3A	14,475	16,893	21	16,914	0.1%	
56.	December 2013	Phase 3A	14,475	16,893	23	16,916	0.1%	
57.	January 2014	Phase 3A	14,475	17,226	19	17,245	0.1%	
58.	February 2014	Phase 3A	14,475	17,226	19	17,245	0.1%	
59.	March 2014	Phase 3A	14,475	17,226	27	17,253	0.2%	
60.	April 2014	Phase 3A	14,475	17,226	27	17,253	0.2%	
61.	May 2014	Phase 3B, 3C-Aqu, 3D	14,475	17,226	81	17,307	0.5%	
62.	June 2014	Phase 3B, 3C-Aqu, 3D	14,475	17,226	88	17,314	0.5%	
63.	July 2014	Phase 3B, 3C-Aqu, 3D	14,475	17,226	98	17,324	0.6%	
64.	August 2014	Phase 3B, 3C-Aqu, 3D	14,475	17,226	71	17,297	0.4%	
65.	September 2014	Phase 3B, 3C-Aqu, 3D	14,475	17,226	65	17,291	0.4%	
66.	October 2014	Phase 3B, 3C-Aqu	14,475	17,226	41	17,267	0.2%	
67.	November 2014	Phase 3B, 3C-Aqu	14,475	17,226	51	17,277	0.3%	
68.	December 2014	Phase 3B, 3C-Aqu	14,475	17,226	41	17,267	0.2%	
69.	January 2015	Phase 3B, 3C-Aqu	14,475	17,565	43	17,608	0.2%	
70.	February 2015	Phase 3B, 3C-Aqu	14,475	17,565	39	17,604	0.2%	
71.	March 2015	Phase 3B, 3C-Aqu, 3C-Dis	14,475	17,565	60	17,625	0.3%	
72.	April 2015	Phase 3B, 3C-Dis	14,475	17,565	57	17,622	0.3%	
73.	May 2015	Phase 3C-Dis	14,475	17,565	36	17,601	0.2%	
74.	June 2015	Phase 3C-Dis	14,475	17,565	26	17,591	0.1%	
75.	July 2015	Phase 3C-Dis	14,475	17,565	22	17,587	0.1%	
76.	August 2015	Phase 3C-Dis	14,475	17,565	20	17,585	0.1%	
77.	September 2015	Phase 3C-Dis	14,475	17,565	24	17,589	0.1%	
78.	October 2015	Phase 3C-Dis	14,475	17,565	17	17,582	0.1%	
79.	November 2015	Phase 3C-Dis	14,475	17,565	23	17,588	0.1%	
80.	December 2015	Phase 3C-Dis	14,475	17,565	17	17,582	0.1%	

10 Beverly Glen Bl.,	Daily Traffic Volumes					
bet. Benefit St. and Greenleaf St.		Baseline		Baseline +		
	Existing	(2009-	Construction	Construction	Construction	
Month & Phase	(2006)	2015)	Trips	Trips	Trips Percent	
1. May 2009 Phase 1	15,031	16,065	1	16,066	0.0%	
2. June 2009 Phase 1	15,031	16,065	1	16,066	0.0%	
3. July 2009 Phase 1	15,031	16,065	3	16,068	0.0%	
4. August 2009 Phase 1	15,031	16,065	2	16,067	0.0%	
5. September 2009 Phase 1	15,031	16,065	2	16,067	0.0%	
6. October 2009 Phase 1	15,031	16,065	2	16,067	0.0%	
7. November 2009 Phase 1	15,031	16,065	2	16,067	0.0%	
8. December 2009 Phase 1	15,031	16,065	2	16,067	0.0%	
9. January 2010 Phase 1	15,031	16,384	2	16,386	0.0%	
10. February 2010 Phase 1	15,031	16,384	2	16,386	0.0%	
11. March 2010 Phase 1	15,031	16,384	2	16,386	0.0%	
12. April 2010 Phase 1	15,031	16,384	2	16,386	0.0%	
13. May 2010 Phase 2	15,031	16,384	3	16,387	0.0%	
14. June 2010 Phase 2	15,031	16,384	3	16,387	0.0%	
15. July 2010 Phase 2	15,031	16,384	5	16,389	0.0%	
16. August 2010 Phase 2	15,031	16,384	6	16,390	0.0%	
17. September 2010 Phase 2	15,031	16,384	6	16,390	0.0%	
18. October 2010 Phase 2	15,031	16,384	6	16,390	0.0%	
19. November 2010 Phase 2	15,031	16,384	3	16,387	0.0%	
20. December 2010 Phase 2	15,031	16,384	3	16,387	0.0%	
21. January 2011 Phase 2	15,031	16,709	3	16,712	0.0%	
22. February 2011 Phase 2	15,031	16,709	6	16,715	0.0%	
23. March 2011 Phase 2	15,031	16,709	4	16,713	0.0%	
24. April 2011 Phase 2	15,031	16,709	6	16,715	0.0%	
25. May 2011 Phase 2	15,031	16,709	6	16,715	0.0%	
26. June 2011 Phase 2	15,031	16,709	6	16,715	0.0%	
27. July 2011 Phase 2	15,031	16,709	6	16,715	0.0%	
28. August 2011 Phase 2	15,031	16,709	6	16,715	0.0%	
29. September 2011 Phase 2	15,031	16,709	6	16,715	0.0%	
30. October 2011 Phase 2	15,031	16,709	6	16,715	0.0%	
31. November 2011						
32. December 2011						
33. January 2012						
34. February 2012						
35. March 2012						
36. April 2012						
37. May 2012						
38. June 2012						
39. July 2012						
40. August 2012						

10 Beverly Glen Bl.,	Daily Traffic Volumes					
bet. Benefit St. and Greenleaf St.		Baseline		Baseline +		
	Existing	(2009-	Construction	Construction	Construction	
Month & Phase	(2006)	2015)	Trips	Trips	Trips Percent	
41. September 2012						
42. October 2012						
43. November 2012						
44. December 2012						
45. January 2013						
46. February 2013						
47. March 2013						
48. April 2013						
49. May 2013 Phase 3A	15,031	17,380	1	17,381	0.0%	
50. June 2013 Phase 3A	15,031	17,380	1	17,381	0.0%	
51. July 2013 Phase 3A	15,031	17,380	3	17,383	0.0%	
52. August 2013 Phase 3A	15,031	17,380	2	17,382	0.0%	
53. September 2013 Phase 3A	15,031	17,380	2	17,382	0.0%	
54. October 2013 Phase 3A	15,031	17,380	2	17,382	0.0%	
55. November 2013 Phase 3A	15,031	17,380	2	17,382	0.0%	
56. December 2013 Phase 3A	15,031	17,380	2	17,382	0.0%	
57. January 2014 Phase 3A	15,031	17,725	2	17,727	0.0%	
58. February 2014 Phase 3A	15,031	17,725	2	17,727	0.0%	
59. March 2014 Phase 3A	15,031	17,725	2	17,727	0.0%	
60. April 2014 Phase 3A	15,031	17,725	2	17,727	0.0%	
61. May 2014 Phase 3B, 3C-Aqu, 3D	15,031	17,725	6	17,731	0.0%	
62. June 2014 Phase 3B, 3C-Aqu, 3D	15,031	17,725	9	17,734	0.1%	
63. July 2014 Phase 3B, 3C-Aqu, 3D	15,031	17,725	9	17,734	0.1%	
64. August 2014 Phase 3B, 3C-Aqu, 3D	15,031	17,725	9	17,734	0.1%	
65. September 2014 Phase 3B, 3C-Aqu, 3D	15,031	17,725	4	17,729	0.0%	
66. October 2014 Phase 3B, 3C-Aqu	15,031	17,725	4	17,729	0.0%	
67. November 2014 Phase 3B, 3C-Aqu	15,031	17,725	4	17,729	0.0%	
68. December 2014 Phase 3B, 3C-Aqu	15,031	17,725	4	17,729	0.0%	
69. January 2015 Phase 3B, 3C-Aqu	15,031	18,077	4	18,081	0.0%	
70. February 2015 Phase 3B, 3C-Aqu	15,031	18,077	4	18,081	0.0%	
71. March 2015 Phase 3B, 3C-Aqu, 3C-Dis	15,031	18,077	6	18,083	0.0%	
72. April 2015 Phase 3B, 3C-Dis	15,031	18,077	4	18,081	0.0%	
73. May 2015 Phase 3C-Dis	15,031	18,077	2	18,079	0.0%	
74. June 2015 Phase 3C-Dis	15,031	18,077	2	18,079	0.0%	
75. July 2015 Phase 3C-Dis	15,031	18,077	2	18,079	0.0%	
76. August 2015 Phase 3C-Dis	15,031	18,077	2	18,079	0.0%	
77. September 2015 Phase 3C-Dis	15,031	18,077	2	18,079	0.0%	
78. October 2015 Phase 3C-Dis	15,031	18,077	2	18,079	0.0%	
79. November 2015 Phase 3C-Dis	15,031	18,077	2	18,079	0.0%	
80. December 2015 Phase 3C-Dis	15,031	18,077	2	18,079	0.0%	

11 Beverly Glen Bl.,	Daily Traffic Volumes					
south of Millbrook Dr.		Baseline		Baseline +		
	Existing	(2009-	Construction	Construction	Construction	
Month & Phase	(2006)	2015)	Trips	Trips	Trips Percent	
1. May 2009 Phase 1	28,961	30,772	1	30,773	0.0%	
2. June 2009 Phase 1	28,961	30,772	1	30,773	0.0%	
3. July 2009 Phase 1	28,961	30,772	1	30,773	0.0%	
4. August 2009 Phase 1	28,961	30,772	1	30,773	0.0%	
5. September 2009 Phase 1	28,961	30,772	1	30,773	0.0%	
6. October 2009 Phase 1	28,961	30,772	1	30,773	0.0%	
7. November 2009 Phase 1	28,961	30,772	1	30,773	0.0%	
8. December 2009 Phase 1	28,961	30,772	1	30,773	0.0%	
9. January 2010 Phase 1	28,961	31,386	1	31,387	0.0%	
10. February 2010 Phase 1	28,961	31,386	2	31,388	0.0%	
11. March 2010 Phase 1	28,961	31,386	2	31,388	0.0%	
12. April 2010 Phase 1	28,961	31,386	1	31,387	0.0%	
13. May 2010 Phase 2	28,961	31,386	2	31,388	0.0%	
14. June 2010 Phase 2	28,961	31,386	2	31,388	0.0%	
15. July 2010 Phase 2	28,961	31,386	2	31,388	0.0%	
16. August 2010 Phase 2	28,961	31,386	2	31,388	0.0%	
17. September 2010 Phase 2	28,961	31,386	2	31,388	0.0%	
18. October 2010 Phase 2	28,961	31,386	2	31,388	0.0%	
19. November 2010 Phase 2	28,961	31,386	2	31,388	0.0%	
20. December 2010 Phase 2	28,961	31,386	2	31,388	0.0%	
21. January 2011 Phase 2	28,961	32,013	2	32,015	0.0%	
22. February 2011 Phase 2	28,961	32,013	2	32,015	0.0%	
23. March 2011 Phase 2	28,961	32,013	2	32,015	0.0%	
24. April 2011 Phase 2	28,961	32,013	2	32,015	0.0%	
25. May 2011 Phase 2	28,961	32,013	2	32,015	0.0%	
26. June 2011 Phase 2	28,961	32,013	2	32,015	0.0%	
27. July 2011 Phase 2	28,961	32,013	2	32,015	0.0%	
28. August 2011 Phase 2	28,961	32,013	2	32,015	0.0%	
29. September 2011 Phase 2	28,961	32,013	2	32,015	0.0%	
30. October 2011 Phase 2	28,961	32,013	2	32,015	0.0%	
31. November 2011						
32. December 2011						
33. January 2012						
34. February 2012						
35. March 2012						
36. April 2012						
37. May 2012						
38. June 2012						
39. July 2012						
40. August 2012						

11	1 Beverly Glen Bl.,		Daily Traffic Volumes						
	south of Millbroo	ok Dr.		Baseline		Baseline +			
			Existing	(2009-	Construction	Construction	Construction		
	Month	n & Phase	(2006)	2015)	Trips	Trips	Trips Percent		
41.	September 2012								
42.	October 2012								
43.	November 2012								
44.	December 2012								
45.	January 2013								
46.	February 2013								
47.	March 2013								
48.	April 2013								
49.	May 2013	Phase 3A	28,961	33,305	1	33,306	0.0%		
50.	June 2013	Phase 3A	28,961	33,305	1	33,306	0.0%		
51.	July 2013	Phase 3A	28,961	33,305	1	33,306	0.0%		
52.	August 2013	Phase 3A	28,961	33,305	1	33,306	0.0%		
53.	September 2013	Phase 3A	28,961	33,305	1	33,306	0.0%		
54.	October 2013	Phase 3A	28,961	33,305	1	33,306	0.0%		
55.	November 2013	Phase 3A	28,961	33,305	1	33,306	0.0%		
56.	December 2013	Phase 3A	28,961	33,305	1	33,306	0.0%		
57.	January 2014	Phase 3A	28,961	33,970	1	33,971	0.0%		
58.	February 2014	Phase 3A	28,961	33,970	1	33,971	0.0%		
59.	March 2014	Phase 3A	28,961	33,970	1	33,971	0.0%		
60.	April 2014	Phase 3A	28,961	33,970	1	33,971	0.0%		
61.	May 2014	Phase 3B, 3C-Aqu, 3D	28,961	33,970	2	33,972	0.0%		
62.	June 2014	Phase 3B, 3C-Aqu, 3D	28,961	33,970	2	33,972	0.0%		
63.	July 2014	Phase 3B, 3C-Aqu, 3D	28,961	33,970	2	33,972	0.0%		
64.	August 2014	Phase 3B, 3C-Aqu, 3D	28,961	33,970	2	33,972	0.0%		
65.	September 2014	Phase 3B, 3C-Aqu, 3D	28,961	33,970	2	33,972	0.0%		
66.	October 2014	Phase 3B, 3C-Aqu	28,961	33,970	2	33,972	0.0%		
67.	November 2014	Phase 3B, 3C-Aqu	28,961	33,970	2	33,972	0.0%		
68.	December 2014	Phase 3B, 3C-Aqu	28,961	33,970	2	33,972	0.0%		
69.	January 2015	Phase 3B, 3C-Aqu	28,961	34,649	2	34,651	0.0%		
70.	February 2015	Phase 3B, 3C-Aqu	28,961	34,649	2	34,651	0.0%		
71.	March 2015	Phase 3B, 3C-Aqu, 3C-Dis	28,961	34,649	2	34,651	0.0%		
72.	April 2015	Phase 3B, 3C-Dis	28,961	34,649	2	34,651	0.0%		
73.	May 2015	Phase 3C-Dis	28,961	34,649	2	34,651	0.0%		
74.	June 2015	Phase 3C-Dis	28,961	34,649	2	34,651	0.0%		
75.	July 2015	Phase 3C-Dis	28,961	34,649	2	34,651	0.0%		
76.	August 2015	Phase 3C-Dis	28,961	34,649	2	34,651	0.0%		
77.	September 2015	Phase 3C-Dis	28,961	34,649	2	34,651	0.0%		
78.	October 2015	Phase 3C-Dis	28,961	34,649	1	34,650	0.0%		
79.	November 2015	Phase 3C-Dis	28,961	34,649	1	34,650	0.0%		
80.	December 2015	Phase 3C-Dis	28,961	34,649	1	34,650	0.0%		

12 Camino de la Cumbre,	Daily Traffic Volumes					
south of Valley Vista Bl.		Baseline		Baseline +		
	Existing	(2009-	Construction	Construction	Construction	
Month & Phase	(2006)	2015)	Trips	Trips	Trips Percent	
1. May 2009 Phase 1	977	1,037	1	1,038	0.1%	
2. June 2009 Phase 1	977	1,037	1	1,038	0.1%	
3. July 2009 Phase 1	977	1,037	1	1,038	0.1%	
4. August 2009 Phase 1	977	1,037	1	1,038	0.1%	
5. September 2009 Phase 1	977	1,037	1	1,038	0.1%	
6. October 2009 Phase 1	977	1,037	1	1,038	0.1%	
7. November 2009 Phase 1	977	1,037	1	1,038	0.1%	
8. December 2009 Phase 1	977	1,037	1	1,038	0.1%	
9. January 2010 Phase 1	977	1,058	1	1,059	0.1%	
10. February 2010 Phase 1	977	1,058	1	1,059	0.1%	
11. March 2010 Phase 1	977	1,058	1	1,059	0.1%	
12. April 2010 Phase 1	977	1,058	1	1,059	0.1%	
13. May 2010 Phase 2	977	1,058	1	1,059	0.1%	
14. June 2010 Phase 2	977	1,058	1	1,059	0.1%	
15. July 2010 Phase 2	977	1,058	1	1,059	0.1%	
16. August 2010 Phase 2	977	1,058	1	1,059	0.1%	
17. September 2010 Phase 2	977	1,058	1	1,059	0.1%	
18. October 2010 Phase 2	977	1,058	1	1,059	0.1%	
19. November 2010 Phase 2	977	1,058	1	1,059	0.1%	
20. December 2010 Phase 2	977	1,058	1	1,059	0.1%	
21. January 2011 Phase 2	977	1,079	1	1,080	0.1%	
22. February 2011 Phase 2	977	1,079	1	1,080	0.1%	
23. March 2011 Phase 2	977	1,079	1	1,080	0.1%	
24. April 2011 Phase 2	977	1,079	1	1,080	0.1%	
25. May 2011 Phase 2	977	1,079	1	1,080	0.1%	
26. June 2011 Phase 2	977	1,079	1	1,080	0.1%	
27. July 2011 Phase 2	977	1,079	1	1,080	0.1%	
28. August 2011 Phase 2	977	1,079	1	1,080	0.1%	
29. September 2011 Phase 2	977	1,079	1	1,080	0.1%	
30. October 2011 Phase 2	977	1,079	1	1,080	0.1%	
31. November 2011						
32. December 2011						
33. January 2012						
34. February 2012						
35. March 2012						
36. April 2012						
37. May 2012						
38. June 2012						
39. July 2012						
40. August 2012						

12 Camino de la Cumbre,	Daily Traffic Volumes					
south of Valley Vista Bl.		Baseline		Baseline +		
	Existing	(2009-	Construction	Construction	Construction	
Month & Phase	(2006)	2015)	Trips	Trips	Trips Percent	
41. September 2012						
42. October 2012						
43. November 2012						
44. December 2012						
45. January 2013						
46. February 2013						
47. March 2013						
48. April 2013						
49. May 2013 Phase 3A	977	1,122	1	1,123	0.1%	
50. June 2013 Phase 3A	977	1,122	1	1,123	0.1%	
51. July 2013 Phase 3A	977	1,122	1	1,123	0.1%	
52. August 2013 Phase 3A	977	1,122	1	1,123	0.1%	
53. September 2013 Phase 3A	977	1,122	1	1,123	0.1%	
54. October 2013 Phase 3A	977	1,122	1	1,123	0.1%	
55. November 2013 Phase 3A	977	1,122	1	1,123	0.1%	
56. December 2013 Phase 3A	977	1,122	1	1,123	0.1%	
57. January 2014 Phase 3A	977	1,145	1	1,146	0.1%	
58. February 2014 Phase 3A	977	1,145	1	1,146	0.1%	
59. March 2014 Phase 3A	977	1,145	1	1,146	0.1%	
60. April 2014 Phase 3A	977	1,145	1	1,146	0.1%	
61. May 2014 Phase 3B, 3C-Aqu, 3D	977	1,145	1	1,146	0.1%	
62. June 2014 Phase 3B, 3C-Aqu, 3D	977	1,145	1	1,146	0.1%	
63. July 2014 Phase 3B, 3C-Aqu, 3D	977	1,145	1	1,146	0.1%	
64. August 2014 Phase 3B, 3C-Aqu, 3D	977	1,145	1	1,146	0.1%	
65. September 2014 Phase 3B, 3C-Aqu, 3D	977	1,145	1	1,146	0.1%	
66. October 2014 Phase 3B, 3C-Aqu	977	1,145	1	1,146	0.1%	
67. November 2014 Phase 3B, 3C-Aqu	977	1,145	1	1,146	0.1%	
68. December 2014 Phase 3B, 3C-Aqu	977	1,145	1	1,146	0.1%	
69. January 2015 Phase 3B, 3C-Aqu	977	1,168	1	1,169	0.1%	
70. February 2015 Phase 3B, 3C-Aqu	977	1,168	1	1,169	0.1%	
71. March 2015 Phase 3B, 3C-Aqu, 3C-Dis	977	1,168	1	1,169	0.1%	
72. April 2015 Phase 3B, 3C-Dis	977	1,168	1	1,169	0.1%	
73. May 2015 Phase 3C-Dis	977	1,168	1	1,169	0.1%	
74. June 2015 Phase 3C-Dis	977	1,168	1	1,169	0.1%	
75. July 2015 Phase 3C-Dis	977	1,168	1	1,169	0.1%	
76. August 2015 Phase 3C-Dis	977	1,168	1	1,169	0.1%	
77. September 2015 Phase 3C-Dis	977	1,168	1	1,169	0.1%	
78. October 2015 Phase 3C-Dis	977	1,168	1	1,169	0.1%	
79. November 2015 Phase 3C-Dis	977	1,168	1	1,169	0.1%	
80. December 2015 Phase 3C-Dis	977	1,168	1	1,169	0.1%	

13 Stansbury Av.,	Daily Traffic Volumes					
bet. Dickens St. and Greenleaf St.		Baseline		Baseline +		
	Existing	(2009-	Construction	Construction	Construction	
Month & Phase	(2006)	2015)	Trips	Trips	Trips Percent	
1. May 2009 Phase 1	4,664	5,009	91	5,100	1.8%	
2. June 2009 Phase 1	4,664	5,009	87	5,096	1.7%	
3. July 2009 Phase 1	4,664	5,009	101	5,110	2.0%	
4. August 2009 Phase 1	4,664	5,009	54	5,063	1.1%	
5. September 2009 Phase 1	4,664	5,009	66	5,075	1.3%	
6. October 2009 Phase 1	4,664	5,009	58	5,067	1.1%	
7. November 2009 Phase 1	4,664	5,009	60	5,069	1.2%	
8. December 2009 Phase 1	4,664	5,009	61	5,070	1.2%	
9. January 2010 Phase 1	4,664	5,108	50	5,158	1.0%	
10. February 2010 Phase 1	4,664	5,108	54	5,162	1.0%	
11. March 2010 Phase 1	4,664	5,108	72	5,180	1.4%	
12. April 2010 Phase 1	4,664	5,108	74	5,182	1.4%	
13. May 2010 Phase 2	4,664	5,108	129	5,237	2.5%	
14. June 2010 Phase 2	4,664	5,108	179	5,287	3.4%	
15. July 2010 Phase 2	4,664	5,108	201	5,309	3.8%	
16. August 2010 Phase 2	4,664	5,108	129	5,237	2.5%	
17. September 2010 Phase 2	4,664	5,108	201	5,309	3.8%	
18. October 2010 Phase 2	4,664	5,108	122	5,230	2.3%	
19. November 2010 Phase 2	4,664	5,108	143	5,251	2.7%	
20. December 2010 Phase 2	4,664	5,108	137	5,245	2.6%	
21. January 2011 Phase 2	4,664	5,209	99	5,308	1.9%	
22. February 2011 Phase 2	4,664	5,209	107	5,316	2.0%	
23. March 2011 Phase 2	4,664	5,209	79	5,288	1.5%	
24. April 2011 Phase 2	4,664	5,209	96	5,305	1.8%	
25. May 2011 Phase 2	4,664	5,209	96	5,305	1.8%	
26. June 2011 Phase 2	4,664	5,209	116	5,325	2.2%	
27. July 2011 Phase 2	4,664	5,209	112	5,321	2.1%	
28. August 2011 Phase 2	4,664	5,209	108	5,317	2.0%	
29. September 2011 Phase 2	4,664	5,209	98	5,307	1.8%	
30. October 2011 Phase 2	4,664	5,209	75	5,284	1.4%	
31. November 2011						
32. December 2011						
33. January 2012						
34. February 2012						
35. March 2012						
36. April 2012						
37. May 2012						
38. June 2012						
39. July 2012						
40. August 2012						

13 Stansbury Av.,		Daily Traffic Volumes						
bet. Dickens St. ar	nd Greenleaf St.		Baseline		Baseline +			
		Existing	(2009-	Construction	Construction	Construction		
Month &	& Phase	(2006)	2015)	Trips	Trips	Trips Percent		
41. September 2012								
42. October 2012								
43. November 2012								
44. December 2012								
45. January 2013								
46. February 2013								
47. March 2013								
48. April 2013								
49. May 2013	Phase 3A	4,664	5,417	91	5,508	1.7%		
50. June 2013	Phase 3A	4,664	5,417	75	5,492	1.4%		
51. July 2013 F	Phase 3A	4,664	5,417	101	5,518	1.8%		
52. August 2013	Phase 3A	4,664	5,417	56	5,473	1.0%		
53. September 2013	Phase 3A	4,664	5,417	64	5,481	1.2%		
54. October 2013	Phase 3A	4,664	5,417	58	5,475	1.1%		
55. November 2013	Phase 3A	4,664	5,417	58	5,475	1.1%		
56. December 2013	Phase 3A	4,664	5,417	60	5,477	1.1%		
57. January 2014 F	Phase 3A	4,664	5,525	50	5,575	0.9%		
58. February 2014	Phase 3A	4,664	5,525	48	5,573	0.9%		
59. March 2014 F	Phase 3A	4,664	5,525	68	5,593	1.2%		
60. April 2014 F	Phase 3A	4,664	5,525	74	5,599	1.3%		
61. May 2014 F	Phase 3B, 3C-Aqu, 3D	4,664	5,525	208	5,733	3.6%		
62. June 2014 F	Phase 3B, 3C-Aqu, 3D	4,664	5,525	221	5,746	3.8%		
63. July 2014 F	Phase 3B, 3C-Aqu, 3D	4,664	5,525	250	5,775	4.3%		
64. August 2014	Phase 3B, 3C-Aqu, 3D	4,664	5,525	185	5,710	3.2%		
65. September 2014	Phase 3B, 3C-Aqu, 3D	4,664	5,525	166	5,691	2.9%		
66. October 2014	Phase 3B, 3C-Aqu	4,664	5,525	110	5,635	2.0%		
67. November 2014	Phase 3B, 3C-Aqu	4,664	5,525	132	5,657	2.3%		
68. December 2014	Phase 3B, 3C-Aqu	4,664	5,525	106	5,631	1.9%		
69. January 2015 F	Phase 3B, 3C-Aqu	4,664	5,634	118	5,752	2.1%		
70. February 2015 F	Phase 3B, 3C-Aqu	4,664	5,634	102	5,736	1.8%		
71. March 2015	Phase 3B, 3C-Aqu, 3C-Dis	4,664	5,634	156	5,790	2.7%		
72. April 2015	Phase 3B, 3C-Dis	4,664	5,634	152	5,786	2.6%		
73. May 2015	Phase 3C-Dis	4,664	5,634	101	5,735	1.8%		
74. June 2015	Phase 3C-Dis	4,664	5,634	78	5,712	1.4%		
75. July 2015 F	Phase 3C-Dis	4,664	5,634	63	5,697	1.1%		
76. August 2015	Phase 3C-Dis	4,664	5,634	58	5,692	1.0%		
77. September 2015	Phase 3C-Dis	4,664	5,634	70	5,704	1.2%		
78. October 2015	Phase 3C-Dis	4,664	5,634	46	5,680	0.8%		
79. November 2015	Phase 3C-Dis	4,664	5,634	66	5,700	1.2%		
80. December 2015	Phase 3C-Dis	4,664	5,634	46	5,680	0.8%		

¹⁴ Stansbury Av.,	Daily Traffic Volumes					
north of Valley Vista Bl.		Baseline		Baseline +		
	Existing	(2009-	Construction	Construction	Construction	
Month & Phase	(2006)	2015)	Trips	Trips	Trips Percent	
1. May 2009 Phase 1	3,427	3,697	92	3,789	2.4%	
2. June 2009 Phase 1	3,427	3,697	88	3,785	2.3%	
3. July 2009 Phase 1	3,427	3,697	102	3,799	2.7%	
4. August 2009 Phase 1	3,427	3,697	55	3,752	1.5%	
5. September 2009 Phase 1	3,427	3,697	67	3,764	1.8%	
6. October 2009 Phase 1	3,427	3,697	59	3,756	1.6%	
7. November 2009 Phase 1	3,427	3,697	61	3,758	1.6%	
8. December 2009 Phase 1	3,427	3,697	62	3,759	1.6%	
9. January 2010 Phase 1	3,427	3,769	51	3,820	1.3%	
10. February 2010 Phase 1	3,427	3,769	55	3,824	1.4%	
11. March 2010 Phase 1	3,427	3,769	73	3,842	1.9%	
12. April 2010 Phase 1	3,427	3,769	74	3,843	1.9%	
13. May 2010 Phase 2	3,427	3,769	131	3,900	3.4%	
14. June 2010 Phase 2	3,427	3,769	181	3,950	4.6%	
15. July 2010 Phase 2	3,427	3,769	202	3,971	5.1%	
16. August 2010 Phase 2	3,427	3,769	131	3,900	3.4%	
17. September 2010 Phase 2	3,427	3,769	203	3,972	5.1%	
18. October 2010 Phase 2	3,427	3,769	124	3,893	3.2%	
19. November 2010 Phase 2	3,427	3,769	144	3,913	3.7%	
20. December 2010 Phase 2	3,427	3,769	138	3,907	3.5%	
21. January 2011 Phase 2	3,427	3,844	100	3,944	2.5%	
22. February 2011 Phase 2	3,427	3,844	110	3,954	2.8%	
23. March 2011 Phase 2	3,427	3,844	81	3,925	2.1%	
24. April 2011 Phase 2	3,427	3,844	99	3,943	2.5%	
25. May 2011 Phase 2	3,427	3,844	98	3,942	2.5%	
26. June 2011 Phase 2	3,427	3,844	118	3,962	3.0%	
27. July 2011 Phase 2	3,427	3,844	114	3,958	2.9%	
28. August 2011 Phase 2	3,427	3,844	110	3,954	2.8%	
29. September 2011 Phase 2	3,427	3,844	100	3,944	2.5%	
30. October 2011 Phase 2	3,427	3,844	78	3,922	2.0%	
31. November 2011						
32. December 2011						
33. January 2012						
34. February 2012						
35. March 2012						
36. April 2012						
37. May 2012						
38. June 2012						
39. July 2012						
40. August 2012						
¹⁴ Stansbury Av.,	Daily Traffic Volumes					
---	-----------------------	----------	--------------	--------------	---------------	
north of Valley Vista Bl.		Baseline		Baseline +		
	Existing	(2009-	Construction	Construction	Construction	
Month & Phase	(2006)	2015)	Trips	Trips	Trips Percent	
41. September 2012						
42. October 2012						
43. November 2012						
44. December 2012						
45. January 2013						
46. February 2013						
47. March 2013						
48. April 2013						
49. May 2013 Phase 3A	3,427	3,997	92	4,089	2.2%	
50. June 2013 Phase 3A	3,427	3,997	76	4,073	1.9%	
51. July 2013 Phase 3A	3,427	3,997	102	4,099	2.5%	
52. August 2013 Phase 3A	3,427	3,997	57	4,054	1.4%	
53. September 2013 Phase 3A	3,427	3,997	65	4,062	1.6%	
54. October 2013 Phase 3A	3,427	3,997	59	4,056	1.5%	
55. November 2013 Phase 3A	3,427	3,997	59	4,056	1.5%	
56. December 2013 Phase 3A	3,427	3,997	61	4,058	1.5%	
57. January 2014 Phase 3A	3,427	4,075	51	4,126	1.2%	
58. February 2014 Phase 3A	3,427	4,075	49	4,124	1.2%	
59. March 2014 Phase 3A	3,427	4,075	69	4,144	1.7%	
60. April 2014 Phase 3A	3,427	4,075	74	4,149	1.8%	
61. May 2014 Phase 3B, 3C-Aqu, 3D	3,427	4,075	210	4,285	4.9%	
62. June 2014 Phase 3B, 3C-Aqu, 3D	3,427	4,075	224	4,299	5.2%	
63. July 2014 Phase 3B, 3C-Aqu, 3D	3,427	4,075	252	4,327	5.8%	
64. August 2014 Phase 3B, 3C-Aqu, 3D	3,427	4,075	188	4,263	4.4%	
65. September 2014 Phase 3B, 3C-Aqu, 3D	3,427	4,075	168	4,243	4.0%	
66. October 2014 Phase 3B, 3C-Aqu	3,427	4,075	112	4,187	2.7%	
67. November 2014 Phase 3B, 3C-Aqu	3,427	4,075	133	4,208	3.2%	
68. December 2014 Phase 3B, 3C-Aqu	3,427	4,075	107	4,182	2.6%	
69. January 2015 Phase 3B, 3C-Aqu	3,427	4,156	119	4,275	2.8%	
70. February 2015 Phase 3B, 3C-Aqu	3,427	4,156	103	4,259	2.4%	
71. March 2015 Phase 3B, 3C-Aqu, 3C-Dis	3,427	4,156	158	4,314	3.7%	
72. April 2015 Phase 3B, 3C-Dis	3,427	4,156	154	4,310	3.6%	
73. May 2015 Phase 3C-Dis	3,427	4,156	102	4,258	2.4%	
74. June 2015 Phase 3C-Dis	3,427	4,156	79	4,235	1.9%	
75. July 2015 Phase 3C-Dis	3,427	4,156	64	4,220	1.5%	
76. August 2015 Phase 3C-Dis	3,427	4,156	59	4,215	1.4%	
77. September 2015 Phase 3C-Dis	3,427	4,156	71	4,227	1.7%	
78. October 2015 Phase 3C-Dis	3,427	4,156	47	4,203	1.1%	
79. November 2015 Phase 3C-Dis	3,427	4,156	67	4,223	1.6%	
80. December 2015 Phase 3C-Dis	3,427	4,156	47	4,203	1.1%	

15 Stansbury Av.,		Daily Traffic Volumes					
south of Valley Vista Bl.		Baseline		Baseline +			
	Existing	(2009-	Construction	Construction	Construction		
Month & Phase	(2006)	2015)	Trips	Trips	Trips Percent		
1. May 2009 Phase 1	2,413	2,413	140	2,553	5.5%		
2. June 2009 Phase 1	2,413	2,413	144	2,557	5.6%		
3. July 2009 Phase 1	2,413	2,413	166	2,579	6.4%		
4. August 2009 Phase 1	2,413	2,413	98	2,511	3.9%		
5. September 2009 Phase 1	2,413	2,413	112	2,525	4.4%		
6. October 2009 Phase 1	2,413	2,413	98	2,511	3.9%		
7. November 2009 Phase 1	2,413	2,413	104	2,517	4.1%		
8. December 2009 Phase 1	2,413	2,413	108	2,521	4.3%		
9. January 2010 Phase 1	2,413	2,413	90	2,503	3.6%		
10. February 2010 Phase 1	2,413	2,413	100	2,513	4.0%		
11. March 2010 Phase 1	2,413	2,413	128	2,541	5.0%		
12. April 2010 Phase 1	2,413	2,413	122	2,535	4.8%		
13. May 2010 Phase 2	2,413	2,413	210	2,623	8.0%		
14. June 2010 Phase 2	2,413	2,413	284	2,697	10.5% *		
15. July 2010 Phase 2	2,413	2,413	336	2,749	12.2% *		
16. August 2010 Phase 2	2,413	2,413	228	2,641	8.6%		
17. September 2010 Phase 2	2,413	2,413	342	2,755	12.4% *		
18. October 2010 Phase 2	2,413	2,413	214	2,627	8.1%		
19. November 2010 Phase 2	2,413	2,413	236	2,649	8.9%		
20. December 2010 Phase 2	2,413	2,413	230	2,643	8.7%		
21. January 2011 Phase 2	2,413	2,413	172	2,585	6.7%		
22. February 2011 Phase 2	2,413	2,413	196	2,609	7.5%		
23. March 2011 Phase 2	2,413	2,413	154	2,567	6.0%		
24. April 2011 Phase 2	2,413	2,413	186	2,599	7.2%		
25. May 2011 Phase 2	2,413	2,413	184	2,597	7.1%		
26. June 2011 Phase 2	2,413	2,413	216	2,629	8.2%		
27. July 2011 Phase 2	2,413	2,413	212	2,625	8.1%		
28. August 2011 Phase 2	2,413	2,413	206	2,619	7.9%		
29. September 2011 Phase 2	2,413	2,413	190	2,603	7.3%		
30. October 2011 Phase 2	2,413	2,413	152	2,565	5.9%		
31. November 2011							
32. December 2011							
33. January 2012							
34. February 2012							
35. March 2012							
36. April 2012							
37. May 2012							
38. June 2012							
39. July 2012							
40. August 2012							
* Indianta significant traffic impost							

Indicate significant traffic impact.

15	15 Stansbury Av.,			Daily Traffic Volumes					
	south of Valley \	/ista Bl.		Baseline		Baseline +			
-		. . .	Existing	(2009-	Construction	Construction	Construction		
	Month	a & Phase	(2006)	2015)	Trips	Trips	Trips Percent		
41.	September 2012								
42.	October 2012								
43.	November 2012								
44.	December 2012								
45.	January 2013								
46.	February 2013								
47.	March 2013								
48.	April 2013								
49.	May 2013	Phase 3A	2,413	2,413	142	2,555	5.6%		
50.	June 2013	Phase 3A	2,413	2,413	124	2,537	4.9%		
51.	July 2013	Phase 3A	2,413	2,413	166	2,579	6.4%		
52.	August 2013	Phase 3A	2,413	2,413	102	2,515	4.1%		
53.	September 2013	Phase 3A	2,413	2,413	108	2,521	4.3%		
54.	October 2013	Phase 3A	2,413	2,413	98	2,511	3.9%		
55.	November 2013	Phase 3A	2,413	2,413	98	2,511	3.9%		
56.	December 2013	Phase 3A	2,413	2,413	106	2,519	4.2%		
57.	January 2014	Phase 3A	2,413	2,413	90	2,503	3.6%		
58.	February 2014	Phase 3A	2,413	2,413	88	2,501	3.5%		
59.	March 2014	Phase 3A	2,413	2,413	118	2,531	4.7%		
60.	April 2014	Phase 3A	2,413	2,413	122	2,535	4.8%		
61.	May 2014	Phase 3B, 3C-Aqu, 3D	2,413	2,413	334	2,747	12.2% *		
62.	June 2014	Phase 3B, 3C-Aqu, 3D	2,413	2,413	374	2,787	13.4% *		
63.	July 2014	Phase 3B, 3C-Aqu, 3D	2,413	2,413	416	2,829	14.7% *		
64.	August 2014	Phase 3B, 3C-Aqu, 3D	2,413	2,413	328	2,741	12.0% *		
65.	September 2014	Phase 3B, 3C-Aqu, 3D	2,413	2,413	282	2,695	10.5% *		
66.	October 2014	Phase 3B, 3C-Aqu	2,413	2,413	192	2,605	7.4%		
67.	November 2014	Phase 3B, 3C-Aqu	2,413	2,413	226	2,639	8.6%		
68.	December 2014	Phase 3B, 3C-Aqu	2,413	2,413	190	2,603	7.3%		
69.	January 2015	Phase 3B, 3C-Aqu	2,413	2,413	206	2,619	7.9%		
70.	February 2015	Phase 3B, 3C-Aqu	2,413	2,413	186	2,599	7.2%		
71.	March 2015	Phase 3B, 3C-Aqu, 3C-Dis	2,413	2,413	266	2,679	9.9%		
72.	April 2015	Phase 3B, 3C-Dis	2,413	2,413	260	2,673	9.7%		
73.	May 2015	Phase 3C-Dis	2,413	2,413	162	2,575	6.3%		
74.	June 2015	Phase 3C-Dis	2,413	2,413	132	2,545	5.2%		
75.	July 2015	Phase 3C-Dis	2,413	2,413	112	2,525	4.4%		
76.	August 2015	Phase 3C-Dis	2,413	2,413	106	2,519	4.2%		
77.	September 2015	Phase 3C-Dis	2,413	2,413	122	2,535	4.8%		
78.	October 2015	Phase 3C-Dis	2,413	2,413	84	2,497	3.4%		
79.	November 2015	Phase 3C-Dis	2,413	2,413	112	2,525	4.4%		
80.	December 2015	Phase 3C-Dis	2,413	2,413	84	2,497	3.4%		
*	Indicato significant	troffic impost							

Indicate significant traffic impact.

16 Hazeltine Av.,	Daily Traffic Volumes					
bet. Dickens St. and Greenleaf St.		Baseline		Baseline +		
	Existing	(2009-	Construction	Construction	Construction	
Month & Phase	(2006)	2015)	Trips	Trips	Trips Percent	
1. May 2009 Phase 1	1,770	1,878	1	1,879	0.1%	
2. June 2009 Phase 1	1,770	1,878	1	1,879	0.1%	
3. July 2009 Phase 1	1,770	1,878	1	1,879	0.1%	
4. August 2009 Phase 1	1,770	1,878	1	1,879	0.1%	
5. September 2009 Phase 1	1,770	1,878	1	1,879	0.1%	
6. October 2009 Phase 1	1,770	1,878	1	1,879	0.1%	
7. November 2009 Phase 1	1,770	1,878	1	1,879	0.1%	
8. December 2009 Phase 1	1,770	1,878	1	1,879	0.1%	
9. January 2010 Phase 1	1,770	1,916	1	1,917	0.1%	
10. February 2010 Phase 1	1,770	1,916	1	1,917	0.1%	
11. March 2010 Phase 1	1,770	1,916	1	1,917	0.1%	
12. April 2010 Phase 1	1,770	1,916	1	1,917	0.1%	
13. May 2010 Phase 2	1,770	1,916	1	1,917	0.1%	
14. June 2010 Phase 2	1,770	1,916	1	1,917	0.1%	
15. July 2010 Phase 2	1,770	1,916	1	1,917	0.1%	
16. August 2010 Phase 2	1,770	1,916	1	1,917	0.1%	
17. September 2010 Phase 2	1,770	1,916	1	1,917	0.1%	
18. October 2010 Phase 2	1,770	1,916	1	1,917	0.1%	
19. November 2010 Phase 2	1,770	1,916	1	1,917	0.1%	
20. December 2010 Phase 2	1,770	1,916	1	1,917	0.1%	
21. January 2011 Phase 2	1,770	1,954	1	1,955	0.1%	
22. February 2011 Phase 2	1,770	1,954	1	1,955	0.1%	
23. March 2011 Phase 2	1,770	1,954	1	1,955	0.1%	
24. April 2011 Phase 2	1,770	1,954	1	1,955	0.1%	
25. May 2011 Phase 2	1,770	1,954	1	1,955	0.1%	
26. June 2011 Phase 2	1,770	1,954	1	1,955	0.1%	
27. July 2011 Phase 2	1,770	1,954	1	1,955	0.1%	
28. August 2011 Phase 2	1,770	1,954	1	1,955	0.1%	
29. September 2011 Phase 2	1,770	1,954	1	1,955	0.1%	
30. October 2011 Phase 2	1,770	1,954	1	1,955	0.1%	
31. November 2011						
32. December 2011						
33. January 2012						
34. February 2012						
35. March 2012						
36. April 2012						
37. May 2012						
38. June 2012						
39. July 2012						
40. August 2012						

16 Hazeltine Av.,	Daily Traffic Volumes				
bet. Dickens St. and Greenleaf St.		Baseline		Baseline +	
	Existing	(2009-	Construction	Construction	Construction
Month & Phase	(2006)	2015)	Trips	Trips	Trips Percent
41. September 2012					
42. October 2012					
43. November 2012					
44. December 2012					
45. January 2013					
46. February 2013					
47. March 2013					
48. April 2013					
49. May 2013 Phase 3A	1,770	2,033	1	2,034	0.0%
50. June 2013 Phase 3A	1,770	2,033	1	2,034	0.0%
51. July 2013 Phase 3A	1,770	2,033	1	2,034	0.0%
52. August 2013 Phase 3A	1,770	2,033	1	2,034	0.0%
53. September 2013 Phase 3A	1,770	2,033	1	2,034	0.0%
54. October 2013 Phase 3A	1,770	2,033	1	2,034	0.0%
55. November 2013 Phase 3A	1,770	2,033	1	2,034	0.0%
56. December 2013 Phase 3A	1,770	2,033	1	2,034	0.0%
57. January 2014 Phase 3A	1,770	2,074	1	2,075	0.0%
58. February 2014 Phase 3A	1,770	2,074	1	2,075	0.0%
59. March 2014 Phase 3A	1,770	2,074	1	2,075	0.0%
60. April 2014 Phase 3A	1,770	2,074	1	2,075	0.0%
61. May 2014 Phase 3B, 3C-Aqu, 3D	1,770	2,074	1	2,075	0.0%
62. June 2014 Phase 3B, 3C-Aqu, 3D	1,770	2,074	1	2,075	0.0%
63. July 2014 Phase 3B, 3C-Aqu, 3D	1,770	2,074	1	2,075	0.0%
64. August 2014 Phase 3B, 3C-Aqu, 3D	1,770	2,074	1	2,075	0.0%
65. September 2014 Phase 3B, 3C-Aqu, 3D	1,770	2,074	1	2,075	0.0%
66. October 2014 Phase 3B, 3C-Aqu	1,770	2,074	1	2,075	0.0%
67. November 2014 Phase 3B, 3C-Aqu	1,770	2,074	1	2,075	0.0%
68. December 2014 Phase 3B, 3C-Aqu	1,770	2,074	1	2,075	0.0%
69. January 2015 Phase 3B, 3C-Aqu	1,770	2,115	1	2,116	0.0%
70. February 2015 Phase 3B, 3C-Aqu	1,770	2,115	1	2,116	0.0%
71. March 2015 Phase 3B, 3C-Aqu, 3C-Dis	1,770	2,115	1	2,116	0.0%
72. April 2015 Phase 3B, 3C-Dis	1,770	2,115	1	2,116	0.0%
73. May 2015 Phase 3C-Dis	1,770	2,115	1	2,116	0.0%
74. June 2015 Phase 3C-Dis	1,770	2,115	1	2,116	0.0%
75. July 2015 Phase 3C-Dis	1,770	2,115	1	2,116	0.0%
76. August 2015 Phase 3C-Dis	1,770	2,115	1	2,116	0.0%
77. September 2015 Phase 3C-Dis	1,770	2,115	1	2,116	0.0%
78. October 2015 Phase 3C-Dis	1,770	2,115	1	2,116	0.0%
79. November 2015 Phase 3C-Dis	1,770	2,115	1	2,116	0.0%
80. December 2015 Phase 3C-Dis	1,770	2,115	1	2,116	0.0%

17 Benedict Canyon Dr.,			Daily Traffic Volumes			
bet. Ventura BI. and Valley Vista BI.		Baseline		Baseline +		
	Existing	(2009-	Construction	Construction	Construction	
Month & Phase	(2006)	2015)	Trips	Trips	Trips Percent	
1. May 2009 Phase 1	2,144	2,286	4	2,290	0.2%	
2. June 2009 Phase 1	2,144	2,286	4	2,290	0.2%	
3. July 2009 Phase 1	2,144	2,286	6	2,292	0.3%	
4. August 2009 Phase 1	2,144	2,286	6	2,292	0.3%	
5. September 2009 Phase 1	2,144	2,286	6	2,292	0.3%	
6. October 2009 Phase 1	2,144	2,286	6	2,292	0.3%	
7. November 2009 Phase 1	2,144	2,286	6	2,292	0.3%	
8. December 2009 Phase 1	2,144	2,286	6	2,292	0.3%	
9. January 2010 Phase 1	2,144	2,332	6	2,338	0.3%	
10. February 2010 Phase 1	2,144	2,332	8	2,340	0.3%	
11. March 2010 Phase 1	2,144	2,332	8	2,340	0.3%	
12. April 2010 Phase 1	2,144	2,332	6	2,338	0.3%	
13. May 2010 Phase 2	2,144	2,332	10	2,342	0.4%	
14. June 2010 Phase 2	2,144	2,332	10	2,342	0.4%	
15. July 2010 Phase 2	2,144	2,332	14	2,346	0.6%	
16. August 2010 Phase 2	2,144	2,332	14	2,346	0.6%	
17. September 2010 Phase 2	2,144	2,332	14	2,346	0.6%	
18. October 2010 Phase 2	2,144	2,332	14	2,346	0.6%	
19. November 2010 Phase 2	2,144	2,332	12	2,344	0.5%	
20. December 2010 Phase 2	2,144	2,332	12	2,344	0.5%	
21. January 2011 Phase 2	2,144	2,378	12	2,390	0.5%	
22. February 2011 Phase 2	2,144	2,378	16	2,394	0.7%	
23. March 2011 Phase 2	2,144	2,378	14	2,392	0.6%	
24. April 2011 Phase 2	2,144	2,378	18	2,396	0.8%	
25. May 2011 Phase 2	2,144	2,378	18	2,396	0.8%	
26. June 2011 Phase 2	2,144	2,378	18	2,396	0.8%	
27. July 2011 Phase 2	2,144	2,378	18	2,396	0.8%	
28. August 2011 Phase 2	2,144	2,378	18	2,396	0.8%	
29. September 2011 Phase 2	2,144	2,378	18	2,396	0.8%	
30. October 2011 Phase 2	2,144	2,378	16	2,394	0.7%	
31. November 2011						
32. December 2011						
33. January 2012						
34. February 2012						
35. March 2012						
36. April 2012						
37. May 2012						
38. June 2012						
39. July 2012						
40. August 2012						

17 Benedict Canyon Dr., Daily Traffic Volumes					
bet. Ventura BI. and Valley Vista BI.		Baseline		Baseline +	
	Existing	(2009-	Construction	Construction	Construction
Month & Phase	(2006)	2015)	Trips	Trips	Trips Percent
41. September 2012					
42. October 2012					
43. November 2012					
44. December 2012					
45. January 2013					
46. February 2013					
47. March 2013					
48. April 2013					
49. May 2013 Phase 3A	2,144	2,474	4	2,478	0.2%
50. June 2013 Phase 3A	2,144	2,474	4	2,478	0.2%
51. July 2013 Phase 3A	2,144	2,474	6	2,480	0.2%
52. August 2013 Phase 3A	2,144	2,474	6	2,480	0.2%
53. September 2013 Phase 3A	2,144	2,474	6	2,480	0.2%
54. October 2013 Phase 3A	2,144	2,474	6	2,480	0.2%
55. November 2013 Phase 3A	2,144	2,474	6	2,480	0.2%
56. December 2013 Phase 3A	2,144	2,474	6	2,480	0.2%
57. January 2014 Phase 3A	2,144	2,523	6	2,529	0.2%
58. February 2014 Phase 3A	2,144	2,523	6	2,529	0.2%
59. March 2014 Phase 3A	2,144	2,523	6	2,529	0.2%
60. April 2014 Phase 3A	2,144	2,523	6	2,529	0.2%
61. May 2014 Phase 3B, 3C-Aqu, 3D	2,144	2,523	14	2,537	0.6%
62. June 2014 Phase 3B, 3C-Aqu, 3D	2,144	2,523	20	2,543	0.8%
63. July 2014 Phase 3B, 3C-Aqu, 3D	2,144	2,523	20	2,543	0.8%
64. August 2014 Phase 3B, 3C-Aqu, 3D	2,144	2,523	24	2,547	0.9%
65. September 2014 Phase 3B, 3C-Aqu, 3D	2,144	2,523	14	2,537	0.6%
66. October 2014 Phase 3B, 3C-Aqu	2,144	2,523	12	2,535	0.5%
67. November 2014 Phase 3B, 3C-Aqu	2,144	2,523	14	2,537	0.6%
68. December 2014 Phase 3B, 3C-Aqu	2,144	2,523	14	2,537	0.6%
69. January 2015 Phase 3B, 3C-Aqu	2,144	2,573	14	2,587	0.5%
70. February 2015 Phase 3B, 3C-Aqu	2,144	2,573	14	2,587	0.5%
71. March 2015 Phase 3B, 3C-Aqu, 3C-Dis	2,144	2,573	16	2,589	0.6%
72. April 2015 Phase 3B, 3C-Dis	2,144	2,573	14	2,587	0.5%
73. May 2015 Phase 3C-Dis	2,144	2,573	8	2,581	0.3%
74. June 2015 Phase 3C-Dis	2,144	2,573	8	2,581	0.3%
75. July 2015 Phase 3C-Dis	2,144	2,573	8	2,581	0.3%
76. August 2015 Phase 3C-Dis	2,144	2,573	8	2,581	0.3%
77. September 2015 Phase 3C-Dis	2,144	2,573	8	2,581	0.3%
78. October 2015 Phase 3C-Dis	2,144	2,573	6	2,579	0.2%
79. November 2015 Phase 3C-Dis	2,144	2,573	6	2,579	0.2%
80. December 2015 Phase 3C-Dis	2,144	2,573	6	2,579	0.2%

1 Dickens St.,	Daily Traffic Volumes					
bet. Van Nuys Bl. and Beverly Glen Bl.		Baseline		Baseline +		
	Existing	(2009-	Construction	Construction	Construction	
Month & Phase	(2006)	2015)	Trips	Trips	Trips Percent	
1. May 2009 Phase 1	3,500	3,714	1	3,715	0.0%	
2. June 2009 Phase 1	3,500	3,714	1	3,715	0.0%	
3. July 2009 Phase 1	3,500	3,714	1	3,715	0.0%	
4. August 2009 Phase 1	3,500	3,714	1	3,715	0.0%	
5. September 2009 Phase 1	3,500	3,714	1	3,715	0.0%	
6. October 2009 Phase 1	3,500	3,714	1	3,715	0.0%	
7. November 2009 Phase 1	3,500	3,714	1	3,715	0.0%	
8. December 2009 Phase 1	3,500	3,714	1	3,715	0.0%	
9. January 2010 Phase 1	3,500	3,789	1	3,790	0.0%	
10. February 2010 Phase 1	3,500	3,789	1	3,790	0.0%	
11. March 2010 Phase 1	3,500	3,789	1	3,790	0.0%	
12. April 2010 Phase 1	3,500	3,789	1	3,790	0.0%	
13. May 2010 Phase 2	3,500	3,789	1	3,790	0.0%	
14. June 2010 Phase 2	3,500	3,789	1	3,790	0.0%	
15. July 2010 Phase 2	3,500	3,789	1	3,790	0.0%	
16. August 2010 Phase 2	3,500	3,789	1	3,790	0.0%	
17. September 2010 Phase 2	3,500	3,789	1	3,790	0.0%	
18. October 2010 Phase 2	3,500	3,789	1	3,790	0.0%	
19. November 2010 Phase 2	3,500	3,789	1	3,790	0.0%	
20. December 2010 Phase 2	3,500	3,789	1	3,790	0.0%	
21. January 2011 Phase 2	3,500	3,864	1	3,865	0.0%	
22. February 2011 Phase 2	3,500	3,864	1	3,865	0.0%	
23. March 2011 Phase 2	3,500	3,864	1	3,865	0.0%	
24. April 2011 Phase 2	3,500	3,864	1	3,865	0.0%	
25. May 2011 Phase 2	3,500	3,864	1	3,865	0.0%	
26. June 2011 Phase 2	3,500	3,864	1	3,865	0.0%	
27. July 2011 Phase 2	3,500	3,864	1	3,865	0.0%	
28. August 2011 Phase 2	3,500	3,864	1	3,865	0.0%	
29. September 2011 Phase 2	3,500	3,864	1	3,865	0.0%	
30. October 2011 Phase 2	3,500	3,864	1	3,865	0.0%	
31. November 2011						
32. December 2011						
33. January 2012						
34. February 2012						
35. March 2012						
36. April 2012						
37. May 2012						
38. June 2012						
39. July 2012						
40. August 2012						

1 Dickens St.,	Daily Traffic Volumes					
bet. Van Nu	ys BI. and Beverly Glen BI.		Baseline		Baseline +	
		Existing	(2009-	Construction	Construction	Construction
M	Ionth & Phase	(2006)	2015)	Trips	Trips	Trips Percent
41. September 2012	2					
42. October 2012						
43. November 207	12					
44. December 207	12					
45. January 2013						
46. February 2013	3					
47. March 2013						
48. April 2013						
49. May 2013	Phase 3A	3,500	4,020	1	4,021	0.0%
50. June 2013	Phase 3A	3,500	4,020	1	4,021	0.0%
51. July 2013	Phase 3A	3,500	4,020	1	4,021	0.0%
52. August 2013	Phase 3A	3,500	4,020	1	4,021	0.0%
53. September 20	13 Phase 3A	3,500	4,020	1	4,021	0.0%
54. October 2013	Phase 3A	3,500	4,020	1	4,021	0.0%
55. November 207	13 Phase 3A	3,500	4,020	1	4,021	0.0%
56. December 207	13 Phase 3A	3,500	4,020	1	4,021	0.0%
57. January 2014	Phase 3A	3,500	4,101	1	4,102	0.0%
58. February 2014	4 Phase 3A	3,500	4,101	1	4,102	0.0%
59. March 2014	Phase 3A	3,500	4,101	1	4,102	0.0%
60. April 2014	Phase 3A	3,500	4,101	1	4,102	0.0%
61. May 2014	Phase 3B, 3C-Aqu, 3D	3,500	4,101	1	4,102	0.0%
62. June 2014	Phase 3B, 3C-Aqu, 3D	3,500	4,101	1	4,102	0.0%
63. July 2014	Phase 3B, 3C-Aqu, 3D	3,500	4,101	1	4,102	0.0%
64. August 2014	Phase 3B, 3C-Aqu, 3D	3,500	4,101	1	4,102	0.0%
65. September 20	14 Phase 3B, 3C-Aqu, 3D	3,500	4,101	1	4,102	0.0%
66. October 2014	Phase 3B, 3C-Aqu	3,500	4,101	1	4,102	0.0%
67. November 207	14 Phase 3B, 3C-Aqu	3,500	4,101	1	4,102	0.0%
68. December 207	14 Phase 3B, 3C-Aqu	3,500	4,101	1	4,102	0.0%
69. January 2015	Phase 3B, 3C-Aqu	3,500	4,183	1	4,184	0.0%
70. February 2015	5 Phase 3B, 3C-Aqu	3,500	4,183	1	4,184	0.0%
71. March 2015	Phase 3B, 3C-Aqu, 3C-Dis	3,500	4,183	1	4,184	0.0%
72. April 2015	Phase 3B, 3C-Dis	3,500	4,183	1	4,184	0.0%
73. May 2015	Phase 3C-Dis	3,500	4,183	1	4,184	0.0%
74. June 2015	Phase 3C-Dis	3,500	4,183	1	4,184	0.0%
75. July 2015	Phase 3C-Dis	3,500	4,183	1	4,184	0.0%
76. August 2015	Phase 3C-Dis	3,500	4,183	1	4,184	0.0%
77. September 20	15 Phase 3C-Dis	3,500	4,183	1	4,184	0.0%
78. October 2015	Phase 3C-Dis	3,500	4,183	1	4,184	0.0%
79. November 20 ⁴	15 Phase 3C-Dis	3,500	4,183	1	4,184	0.0%
80. December 20 ²	15 Phase 3C-Dis	3,500	4,183	1	4,184	0.0%

2 Greenleaf St.,	Daily Traffic Volumes					
bet. Van Nuys Bl. and Beverly Glen Bl.		Baseline		Baseline +		
	Existing	(2009-	Construction	Construction	Construction	
Month & Phase	(2006)	2015)	Trips	Trips	Trips Percent	
1. May 2009 Phase 1	1,020	1,082	1	1,083	0.1%	
2. June 2009 Phase 1	1,020	1,082	1	1,083	0.1%	
3. July 2009 Phase 1	1,020	1,082	1	1,083	0.1%	
4. August 2009 Phase 1	1,020	1,082	1	1,083	0.1%	
5. September 2009 Phase 1	1,020	1,082	1	1,083	0.1%	
6. October 2009 Phase 1	1,020	1,082	1	1,083	0.1%	
7. November 2009 Phase 1	1,020	1,082	1	1,083	0.1%	
8. December 2009 Phase 1	1,020	1,082	1	1,083	0.1%	
9. January 2010 Phase 1	1,020	1,104	1	1,105	0.1%	
10. February 2010 Phase 1	1,020	1,104	1	1,105	0.1%	
11. March 2010 Phase 1	1,020	1,104	1	1,105	0.1%	
12. April 2010 Phase 1	1,020	1,104	1	1,105	0.1%	
13. May 2010 Phase 2	1,020	1,104	1	1,105	0.1%	
14. June 2010 Phase 2	1,020	1,104	1	1,105	0.1%	
15. July 2010 Phase 2	1,020	1,104	1	1,105	0.1%	
16. August 2010 Phase 2	1,020	1,104	1	1,105	0.1%	
17. September 2010 Phase 2	1,020	1,104	1	1,105	0.1%	
18. October 2010 Phase 2	1,020	1,104	1	1,105	0.1%	
19. November 2010 Phase 2	1,020	1,104	1	1,105	0.1%	
20. December 2010 Phase 2	1,020	1,104	1	1,105	0.1%	
21. January 2011 Phase 2	1,020	1,126	1	1,127	0.1%	
22. February 2011 Phase 2	1,020	1,126	1	1,127	0.1%	
23. March 2011 Phase 2	1,020	1,126	1	1,127	0.1%	
24. April 2011 Phase 2	1,020	1,126	1	1,127	0.1%	
25. May 2011 Phase 2	1,020	1,126	1	1,127	0.1%	
26. June 2011 Phase 2	1,020	1,126	1	1,127	0.1%	
27. July 2011 Phase 2	1,020	1,126	1	1,127	0.1%	
28. August 2011 Phase 2	1,020	1,126	1	1,127	0.1%	
29. September 2011 Phase 2	1,020	1,126	1	1,127	0.1%	
30. October 2011 Phase 2	1,020	1,126	1	1,127	0.1%	
31. November 2011						
32. December 2011						
33. January 2012						
34. February 2012						
35. March 2012						
36. April 2012						
37. May 2012						
38. June 2012						
39. July 2012						
40. August 2012						

2	Greenleaf St.,	Daily Traffic Volumes					
	bet. Van Nuys B	I. and Beverly Glen BI.		Baseline		Baseline +	
			Existing	(2009-	Construction	Construction	Construction
	Month	n & Phase	(2006)	2015)	Trips	Trips	Trips Percent
41.	September 2012						
42.	October 2012						
43.	November 2012						
44.	December 2012						
45.	January 2013						
46.	February 2013						
47.	March 2013						
48.	April 2013						
49.	May 2013	Phase 3A	1,020	1,172	1	1,173	0.1%
50.	June 2013	Phase 3A	1,020	1,172	1	1,173	0.1%
51.	July 2013	Phase 3A	1,020	1,172	1	1,173	0.1%
52.	August 2013	Phase 3A	1,020	1,172	1	1,173	0.1%
53.	September 2013	Phase 3A	1,020	1,172	1	1,173	0.1%
54.	October 2013	Phase 3A	1,020	1,172	1	1,173	0.1%
55.	November 2013	Phase 3A	1,020	1,172	1	1,173	0.1%
56.	December 2013	Phase 3A	1,020	1,172	1	1,173	0.1%
57.	January 2014	Phase 3A	1,020	1,195	1	1,196	0.1%
58.	February 2014	Phase 3A	1,020	1,195	1	1,196	0.1%
59.	March 2014	Phase 3A	1,020	1,195	1	1,196	0.1%
60.	April 2014	Phase 3A	1,020	1,195	1	1,196	0.1%
61.	May 2014	Phase 3B, 3C-Aqu, 3D	1,020	1,195	1	1,196	0.1%
62.	June 2014	Phase 3B, 3C-Aqu, 3D	1,020	1,195	1	1,196	0.1%
63.	July 2014	Phase 3B, 3C-Aqu, 3D	1,020	1,195	1	1,196	0.1%
64.	August 2014	Phase 3B, 3C-Aqu, 3D	1,020	1,195	1	1,196	0.1%
65.	September 2014	Phase 3B, 3C-Aqu, 3D	1,020	1,195	1	1,196	0.1%
66.	October 2014	Phase 3B, 3C-Aqu	1,020	1,195	1	1,196	0.1%
67.	November 2014	Phase 3B, 3C-Aqu	1,020	1,195	1	1,196	0.1%
68.	December 2014	Phase 3B, 3C-Aqu	1,020	1,195	1	1,196	0.1%
69.	January 2015	Phase 3B, 3C-Aqu	1,020	1,219	1	1,220	0.1%
70.	February 2015	Phase 3B, 3C-Aqu	1,020	1,219	1	1,220	0.1%
71.	March 2015	Phase 3B, 3C-Aqu, 3C-Dis	1,020	1,219	1	1,220	0.1%
72.	April 2015	Phase 3B, 3C-Dis	1,020	1,219	1	1,220	0.1%
73.	May 2015	Phase 3C-Dis	1,020	1,219	1	1,220	0.1%
74.	June 2015	Phase 3C-Dis	1,020	1,219	1	1,220	0.1%
75.	July 2015	Phase 3C-Dis	1,020	1,219	1	1,220	0.1%
76.	August 2015	Phase 3C-Dis	1,020	1,219	1	1,220	0.1%
77.	September 2015	Phase 3C-Dis	1,020	1,219	1	1,220	0.1%
78.	October 2015	Phase 3C-Dis	1,020	1,219	1	1,220	0.1%
79.	November 2015	Phase 3C-Dis	1,020	1,219	1	1,220	0.1%
80.	December 2015	Phase 3C-Dis	1,020	1,219	1	1,220	0.1%

3	Greenleaf St.,		Daily Traffic Volumes				
	west of Stansburg	ry Av.		Baseline		Baseline +	
			Existing	(2009-	Construction	Construction	Construction
	Month	& Phase	(2006)	2015)	Trips	Trips	Trips Percent
1.	May 2009	Phase 1	1,057	1,122	1	1,123	0.1%
2.	June 2009	Phase 1	1,057	1,122	1	1,123	0.1%
3.	July 2009	Phase 1	1,057	1,122	1	1,123	0.1%
4.	August 2009	Phase 1	1,057	1,122	1	1,123	0.1%
5.	September 2009	Phase 1	1,057	1,122	1	1,123	0.1%
6.	October 2009	Phase 1	1,057	1,122	1	1,123	0.1%
7.	November 2009	Phase 1	1,057	1,122	1	1,123	0.1%
8.	December 2009	Phase 1	1,057	1,122	1	1,123	0.1%
9.	January 2010	Phase 1	1,057	1,144	1	1,145	0.1%
10.	February 2010	Phase 1	1,057	1,144	1	1,145	0.1%
11.	March 2010	Phase 1	1,057	1,144	1	1,145	0.1%
12.	April 2010	Phase 1	1,057	1,144	1	1,145	0.1%
13.	May 2010	Phase 2	1,057	1,144	1	1,145	0.1%
14.	June 2010	Phase 2	1,057	1,144	1	1,145	0.1%
15.	July 2010	Phase 2	1,057	1,144	2	1,146	0.2%
16.	August 2010	Phase 2	1,057	1,144	2	1,146	0.2%
17.	September 2010	Phase 2	1,057	1,144	2	1,146	0.2%
18.	October 2010	Phase 2	1,057	1,144	2	1,146	0.2%
19.	November 2010	Phase 2	1,057	1,144	2	1,146	0.2%
20.	December 2010	Phase 2	1,057	1,144	2	1,146	0.2%
21.	January 2011	Phase 2	1,057	1,167	2	1,169	0.2%
22.	February 2011	Phase 2	1,057	1,167	2	1,169	0.2%
23.	March 2011	Phase 2	1,057	1,167	2	1,169	0.2%
24.	April 2011	Phase 2	1,057	1,167	2	1,169	0.2%
25.	May 2011	Phase 2	1,057	1,167	2	1,169	0.2%
26.	June 2011	Phase 2	1,057	1,167	2	1,169	0.2%
27.	July 2011	Phase 2	1,057	1,167	2	1,169	0.2%
28.	August 2011	Phase 2	1,057	1,167	2	1,169	0.2%
29.	September 2011	Phase 2	1,057	1,167	2	1,169	0.2%
30.	October 2011	Phase 2	1,057	1,167	2	1,169	0.2%
31.	November 2011						
32.	December 2011						
33.	January 2012						
34.	February 2012						
35.	March 2012						
36.	April 2012						
37.	May 2012						
38.	June 2012						
39.	July 2012						
40.	August 2012						

3	Greenleaf St.,		Daily Traffic Volumes						
	west of Stansbu	ry Av.		Baseline		Baseline +			
			Existing	(2009-	Construction	Construction	Construction		
	Month	n & Phase	(2006)	2015)	Trips	Trips	Trips Percent		
41.	September 2012								
42.	October 2012								
43.	November 2012								
44.	December 2012								
45.	January 2013								
46.	February 2013								
47.	March 2013								
48.	April 2013								
49.	May 2013	Phase 3A	1,057	1,214	1	1,215	0.1%		
50.	June 2013	Phase 3A	1,057	1,214	1	1,215	0.1%		
51.	July 2013	Phase 3A	1,057	1,214	1	1,215	0.1%		
52.	August 2013	Phase 3A	1,057	1,214	1	1,215	0.1%		
53.	September 2013	Phase 3A	1,057	1,214	1	1,215	0.1%		
54.	October 2013	Phase 3A	1,057	1,214	1	1,215	0.1%		
55.	November 2013	Phase 3A	1,057	1,214	1	1,215	0.1%		
56.	December 2013	Phase 3A	1,057	1,214	1	1,215	0.1%		
57.	January 2014	Phase 3A	1,057	1,238	1	1,239	0.1%		
58.	February 2014	Phase 3A	1,057	1,238	1	1,239	0.1%		
59.	March 2014	Phase 3A	1,057	1,238	1	1,239	0.1%		
60.	April 2014	Phase 3A	1,057	1,238	1	1,239	0.1%		
61.	May 2014	Phase 3B, 3C-Aqu, 3D	1,057	1,238	2	1,240	0.2%		
62.	June 2014	Phase 3B, 3C-Aqu, 3D	1,057	1,238	2	1,240	0.2%		
63.	July 2014	Phase 3B, 3C-Aqu, 3D	1,057	1,238	3	1,241	0.2%		
64.	August 2014	Phase 3B, 3C-Aqu, 3D	1,057	1,238	3	1,241	0.2%		
65.	September 2014	Phase 3B, 3C-Aqu, 3D	1,057	1,238	2	1,240	0.2%		
66.	October 2014	Phase 3B, 3C-Aqu	1,057	1,238	2	1,240	0.2%		
67.	November 2014	Phase 3B, 3C-Aqu	1,057	1,238	2	1,240	0.2%		
68.	December 2014	Phase 3B, 3C-Aqu	1,057	1,238	2	1,240	0.2%		
69.	January 2015	Phase 3B, 3C-Aqu	1,057	1,263	2	1,265	0.2%		
70.	February 2015	Phase 3B, 3C-Aqu	1,057	1,263	2	1,265	0.2%		
71.	March 2015	Phase 3B, 3C-Aqu, 3C-Dis	1,057	1,263	2	1,265	0.2%		
72.	April 2015	Phase 3B, 3C-Dis	1,057	1,263	2	1,265	0.2%		
73.	May 2015	Phase 3C-Dis	1,057	1,263	1	1,264	0.1%		
74.	June 2015	Phase 3C-Dis	1,057	1,263	1	1,264	0.1%		
75.	July 2015	Phase 3C-Dis	1,057	1,263	1	1,264	0.1%		
76.	August 2015	Phase 3C-Dis	1,057	1,263	1	1,264	0.1%		
77.	September 2015	Phase 3C-Dis	1,057	1,263	1	1,264	0.1%		
78.	October 2015	Phase 3C-Dis	1,057	1,263	1	1,264	0.1%		
79.	November 2015	Phase 3C-Dis	1,057	1,263	1	1,264	0.1%		
80.	December 2015	Phase 3C-Dis	1,057	1,263	1	1,264	0.1%		

4	Valley Vista Bl.,		Daily Traffic Volumes						
	east of Kester Av	ν.		Baseline		Baseline +			
			Existing	(2009-	Construction	Construction	Construction		
	Month	& Phase	(2006)	2015)	Trips	Trips	Trips Percent		
1.	May 2009	Phase 1	2,947	3,545	8	3,553	0.2%		
2.	June 2009	Phase 1	2,947	3,545	7	3,552	0.2%		
3.	July 2009	Phase 1	2,947	3,545	10	3,555	0.3%		
4.	August 2009	Phase 1	2,947	3,545	10	3,555	0.3%		
5.	September 2009	Phase 1	2,947	3,545	9	3,554	0.3%		
6.	October 2009	Phase 1	2,947	3,545	7	3,552	0.2%		
7.	November 2009	Phase 1	2,947	3,545	8	3,553	0.2%		
8.	December 2009	Phase 1	2,947	3,545	9	3,554	0.3%		
9.	January 2010	Phase 1	2,947	3,608	8	3,616	0.2%		
10.	February 2010	Phase 1	2,947	3,608	10	3,618	0.3%		
11.	March 2010	Phase 1	2,947	3,608	12	3,620	0.3%		
12.	April 2010	Phase 1	2,947	3,608	10	3,618	0.3%		
13.	May 2010	Phase 2	2,947	3,608	15	3,623	0.4%		
14.	June 2010	Phase 2	2,947	3,608	15	3,623	0.4%		
15.	July 2010	Phase 2	2,947	3,608	21	3,629	0.6%		
16.	August 2010	Phase 2	2,947	3,608	21	3,629	0.6%		
17.	September 2010	Phase 2	2,947	3,608	23	3,631	0.6%		
18.	October 2010	Phase 2	2,947	3,608	19	3,627	0.5%		
19.	November 2010	Phase 2	2,947	3,608	17	3,625	0.5%		
20.	December 2010	Phase 2	2,947	3,608	17	3,625	0.5%		
21.	January 2011	Phase 2	2,947	3,672	17	3,689	0.5%		
22.	February 2011	Phase 2	2,947	3,672	21	3,693	0.6%		
23.	March 2011	Phase 2	2,947	3,672	21	3,693	0.6%		
24.	April 2011	Phase 2	2,947	3,672	23	3,695	0.6%		
25.	May 2011	Phase 2	2,947	3,672	22	3,694	0.6%		
26.	June 2011	Phase 2	2,947	3,672	25	3,697	0.7%		
27.	July 2011	Phase 2	2,947	3,672	25	3,697	0.7%		
28.	August 2011	Phase 2	2,947	3,672	25	3,697	0.7%		
29.	September 2011	Phase 2	2,947	3,672	25	3,697	0.7%		
30.	October 2011	Phase 2	2,947	3,672	21	3,693	0.6%		
31.	November 2011								
32.	December 2011								
33.	January 2012								
34.	February 2012								
35.	March 2012								
36.	April 2012								
37.	May 2012								
38.	June 2012								
39.	July 2012								
40.	August 2012								

4	Valley Vista Bl.,		Daily Traffic Volumes						
	east of Kester A	V.		Baseline		Baseline +			
			Existing	(2009-	Construction	Construction	Construction		
	Month	n & Phase	(2006)	2015)	Trips	Trips	Trips Percent		
41.	September 2012								
42.	October 2012								
43.	November 2012								
44.	December 2012								
45.	January 2013								
46.	February 2013								
47.	March 2013								
48.	April 2013								
49.	May 2013	Phase 3A	2,947	3,803	8	3,811	0.2%		
50.	June 2013	Phase 3A	2,947	3,803	8	3,811	0.2%		
51.	July 2013	Phase 3A	2,947	3,803	10	3,813	0.3%		
52.	August 2013	Phase 3A	2,947	3,803	10	3,813	0.3%		
53.	September 2013	Phase 3A	2,947	3,803	9	3,812	0.2%		
54.	October 2013	Phase 3A	2,947	3,803	7	3,810	0.2%		
55.	November 2013	Phase 3A	2,947	3,803	7	3,810	0.2%		
56.	December 2013	Phase 3A	2,947	3,803	8	3,811	0.2%		
57.	January 2014	Phase 3A	2,947	3,871	8	3,879	0.2%		
58.	February 2014	Phase 3A	2,947	3,871	8	3,879	0.2%		
59.	March 2014	Phase 3A	2,947	3,871	10	3,881	0.3%		
60.	April 2014	Phase 3A	2,947	3,871	10	3,881	0.3%		
61.	May 2014	Phase 3B, 3C-Aqu, 3D	2,947	3,871	20	3,891	0.5%		
62.	June 2014	Phase 3B, 3C-Aqu, 3D	2,947	3,871	27	3,898	0.7%		
63.	July 2014	Phase 3B, 3C-Aqu, 3D	2,947	3,871	28	3,899	0.7%		
64.	August 2014	Phase 3B, 3C-Aqu, 3D	2,947	3,871	31	3,902	0.8%		
65.	September 2014	Phase 3B, 3C-Aqu, 3D	2,947	3,871	21	3,892	0.5%		
66.	October 2014	Phase 3B, 3C-Aqu	2,947	3,871	17	3,888	0.4%		
67.	November 2014	Phase 3B, 3C-Aqu	2,947	3,871	19	3,890	0.5%		
68.	December 2014	Phase 3B, 3C-Aqu	2,947	3,871	19	3,890	0.5%		
69.	January 2015	Phase 3B, 3C-Aqu	2,947	3,940	19	3,959	0.5%		
70.	February 2015	Phase 3B, 3C-Aqu	2,947	3,940	19	3,959	0.5%		
71.	March 2015	Phase 3B, 3C-Aqu, 3C-Dis	2,947	3,940	21	3,961	0.5%		
72.	April 2015	Phase 3B, 3C-Dis	2,947	3,940	21	3,961	0.5%		
73.	May 2015	Phase 3C-Dis	2,947	3,940	12	3,952	0.3%		
74.	June 2015	Phase 3C-Dis	2,947	3,940	10	3,950	0.3%		
75.	July 2015	Phase 3C-Dis	2,947	3,940	10	3,950	0.3%		
76.	August 2015	Phase 3C-Dis	2,947	3,940	10	3,950	0.3%		
77.	September 2015	Phase 3C-Dis	2,947	3,940	10	3,950	0.3%		
78.	October 2015	Phase 3C-Dis	2,947	3,940	8	3,948	0.2%		
79.	November 2015	Phase 3C-Dis	2,947	3,940	8	3,948	0.2%		
80.	December 2015	Phase 3C-Dis	2,947	3,940	8	3,948	0.2%		

5	5 Valley Vista Bl.,		Daily Traffic Volumes						
	east of Van Nuys	s Bl.		Baseline		Baseline +			
			Existing	(2009-	Construction	Construction	Construction		
	Month	& Phase	(2006)	2015)	Trips	Trips	Trips Percent		
1.	May 2009	Phase 1	11,698	12,666	42	12,708	0.3%		
2.	June 2009	Phase 1	11,698	12,666	49	12,715	0.4%		
3.	July 2009	Phase 1	11,698	12,666	56	12,722	0.4%		
4.	August 2009	Phase 1	11,698	12,666	34	12,700	0.3%		
5.	September 2009	Phase 1	11,698	12,666	36	12,702	0.3%		
6.	October 2009	Phase 1	11,698	12,666	32	12,698	0.3%		
7.	November 2009	Phase 1	11,698	12,666	34	12,700	0.3%		
8.	December 2009	Phase 1	11,698	12,666	34	12,700	0.3%		
9.	January 2010	Phase 1	11,698	12,914	30	12,944	0.2%		
10.	February 2010	Phase 1	11,698	12,914	33	12,947	0.3%		
11.	March 2010	Phase 1	11,698	12,914	41	12,955	0.3%		
12.	April 2010	Phase 1	11,698	12,914	40	12,954	0.3%		
13.	May 2010	Phase 2	11,698	12,914	64	12,978	0.5%		
14.	June 2010	Phase 2	11,698	12,914	86	13,000	0.7%		
15.	July 2010	Phase 2	11,698	12,914	114	13,028	0.9%		
16.	August 2010	Phase 2	11,698	12,914	77	12,991	0.6%		
17.	September 2010	Phase 2	11,698	12,914	117	13,031	0.9%		
18.	October 2010	Phase 2	11,698	12,914	72	12,986	0.6%		
19.	November 2010	Phase 2	11,698	12,914	76	12,990	0.6%		
20.	December 2010	Phase 2	11,698	12,914	76	12,990	0.6%		
21.	January 2011	Phase 2	11,698	13,168	58	13,226	0.4%		
22.	February 2011	Phase 2	11,698	13,168	64	13,232	0.5%		
23.	March 2011	Phase 2	11,698	13,168	53	13,221	0.4%		
24.	April 2011	Phase 2	11,698	13,168	62	13,230	0.5%		
25.	May 2011	Phase 2	11,698	13,168	62	13,230	0.5%		
26.	June 2011	Phase 2	11,698	13,168	74	13,242	0.6%		
27.	July 2011	Phase 2	11,698	13,168	72	13,240	0.5%		
28.	August 2011	Phase 2	11,698	13,168	70	13,238	0.5%		
29.	September 2011	Phase 2	11,698	13,168	66	13,234	0.5%		
30.	October 2011	Phase 2	11,698	13,168	50	13,218	0.4%		
31.	November 2011								
32.	December 2011								
33.	January 2012								
34.	February 2012								
35.	March 2012								
36.	April 2012								
37.	May 2012								
38.	June 2012								
39.	July 2012								
40.	August 2012								

5	5 Valley Vista Bl.,		Daily Traffic Volumes						
	east of Van Nuys	s Bl.		Baseline		Baseline +			
			Existing	(2009-	Construction	Construction	Construction		
	Month	n & Phase	(2006)	2015)	Trips	Trips	Trips Percent		
41.	September 2012								
42.	October 2012								
43.	November 2012								
44.	December 2012								
45.	January 2013								
46.	February 2013								
47.	March 2013								
48.	April 2013								
49.	May 2013	Phase 3A	11,698	13,689	42	13,731	0.3%		
50.	June 2013	Phase 3A	11,698	13,689	42	13,731	0.3%		
51.	July 2013	Phase 3A	11,698	13,689	56	13,745	0.4%		
52.	August 2013	Phase 3A	11,698	13,689	36	13,725	0.3%		
53.	September 2013	Phase 3A	11,698	13,689	36	13,725	0.3%		
54.	October 2013	Phase 3A	11,698	13,689	32	13,721	0.2%		
55.	November 2013	Phase 3A	11,698	13,689	32	13,721	0.2%		
56.	December 2013	Phase 3A	11,698	13,689	34	13,723	0.2%		
57.	January 2014	Phase 3A	11,698	13,958	30	13,988	0.2%		
58.	February 2014	Phase 3A	11,698	13,958	30	13,988	0.2%		
59.	March 2014	Phase 3A	11,698	13,958	38	13,996	0.3%		
60.	April 2014	Phase 3A	11,698	13,958	40	13,998	0.3%		
61.	May 2014	Phase 3B, 3C-Aqu, 3D	11,698	13,958	106	14,064	0.8%		
62.	June 2014	Phase 3B, 3C-Aqu, 3D	11,698	13,958	122	14,080	0.9%		
63.	July 2014	Phase 3B, 3C-Aqu, 3D	11,698	13,958	134	14,092	1.0%		
64.	August 2014	Phase 3B, 3C-Aqu, 3D	11,698	13,958	108	14,066	0.8%		
65.	September 2014	Phase 3B, 3C-Aqu, 3D	11,698	13,958	91	14,049	0.6%		
66.	October 2014	Phase 3B, 3C-Aqu	11,698	13,958	62	14,020	0.4%		
67.	November 2014	Phase 3B, 3C-Aqu	11,698	13,958	74	14,032	0.5%		
68.	December 2014	Phase 3B, 3C-Aqu	11,698	13,958	64	14,022	0.5%		
69.	January 2015	Phase 3B, 3C-Aqu	11,698	14,232	66	14,298	0.5%		
70.	February 2015	Phase 3B, 3C-Aqu	11,698	14,232	62	14,294	0.4%		
71.	March 2015	Phase 3B, 3C-Aqu, 3C-Dis	11,698	14,232	87	14,319	0.6%		
72.	April 2015	Phase 3B, 3C-Dis	11,698	14,232	83	14,315	0.6%		
73.	May 2015	Phase 3C-Dis	11,698	14,232	50	14,282	0.4%		
74.	June 2015	Phase 3C-Dis	11,698	14,232	41	14,273	0.3%		
75.	July 2015	Phase 3C-Dis	11,698	14,232	37	14,269	0.3%		
76.	August 2015	Phase 3C-Dis	11,698	14,232	35	14,267	0.2%		
77.	September 2015	Phase 3C-Dis	11,698	14,232	39	14,271	0.3%		
78.	October 2015	Phase 3C-Dis	11,698	14,232	30	14,262	0.2%		
79.	November 2015	Phase 3C-Dis	11,698	14,232	36	14,268	0.3%		
80.	December 2015	Phase 3C-Dis	11,698	14,232	30	14,262	0.2%		

6 Valley Vista Bl.,	Daily Traffic Volumes					
west of Camino de la Cumbre		Baseline		Baseline +		
	Existing	(2009-	Construction	Construction	Construction	
Month & Phase	(2006)	2015)	Trips	Trips	Trips Percent	
1. May 2009 Phase 1	2,590	3,005	44	3,049	1.4%	
2. June 2009 Phase 1	2,590	3,005	51	3,056	1.7%	
3. July 2009 Phase 1	2,590	3,005	57	3,062	1.9%	
4. August 2009 Phase 1	2,590	3,005	37	3,042	1.2%	
5. September 2009 Phase 1	2,590	3,005	40	3,045	1.3%	
6. October 2009 Phase 1	2,590	3,005	34	3,039	1.1%	
7. November 2009 Phase 1	2,590	3,005	36	3,041	1.2%	
8. December 2009 Phase 1	2,590	3,005	38	3,043	1.2%	
9. January 2010 Phase 1	2,590	3,059	32	3,091	1.0%	
10. February 2010 Phase 1	2,590	3,059	37	3,096	1.2%	
11. March 2010 Phase 1	2,590	3,059	47	3,106	1.5%	
12. April 2010 Phase 1	2,590	3,059	42	3,101	1.4%	
13. May 2010 Phase 2	2,590	3,059	68	3,127	2.2%	
14. June 2010 Phase 2	2,590	3,059	92	3,151	2.9%	
15. July 2010 Phase 2	2,590	3,059	120	3,179	3.8%	
16. August 2010 Phase 2	2,590	3,059	83	3,142	2.6%	
17. September 2010 Phase 2	2,590	3,059	125	3,184	3.9%	
18. October 2010 Phase 2	2,590	3,059	78	3,137	2.5%	
19. November 2010 Phase 2	2,590	3,059	80	3,139	2.5%	
20. December 2010 Phase 2	2,590	3,059	80	3,139	2.5%	
21. January 2011 Phase 2	2,590	3,116	62	3,178	2.0%	
22. February 2011 Phase 2	2,590	3,116	71	3,187	2.2%	
23. March 2011 Phase 2	2,590	3,116	58	3,174	1.8%	
24. April 2011 Phase 2	2,590	3,116	70	3,186	2.2%	
25. May 2011 Phase 2	2,590	3,116	69	3,185	2.2%	
26. June 2011 Phase 2	2,590	3,116	80	3,196	2.5%	
27. July 2011 Phase 2	2,590	3,116	78	3,194	2.4%	
28. August 2011 Phase 2	2,590	3,116	76	3,192	2.4%	
29. September 2011 Phase 2	2,590	3,116	72	3,188	2.3%	
30. October 2011 Phase 2	2,590	3,116	59	3,175	1.9%	
31. November 2011						
32. December 2011						
33. January 2012						
34. February 2012						
35. March 2012						
36. April 2012						
37. May 2012						
38. June 2012						
39. July 2012						
40. August 2012						

6	o Valley Vista Bl.,		Daily Traffic Volumes						
	west of Camino	de la Cumbre		Baseline		Baseline +			
			Existing	(2009-	Construction	Construction	Construction		
	Month	a & Phase	(2006)	2015)	Trips	Trips	Trips Percent		
41.	September 2012								
42.	October 2012								
43.	November 2012								
44.	December 2012								
45.	January 2013								
46.	February 2013								
47.	March 2013								
48.	April 2013								
49.	May 2013	Phase 3A	2,590	3,231	44	3,275	1.3%		
50.	June 2013	Phase 3A	2,590	3,231	43	3,274	1.3%		
51.	July 2013	Phase 3A	2,590	3,231	57	3,288	1.7%		
52.	August 2013	Phase 3A	2,590	3,231	38	3,269	1.2%		
53.	September 2013	Phase 3A	2,590	3,231	38	3,269	1.2%		
54.	October 2013	Phase 3A	2,590	3,231	34	3,265	1.0%		
55.	November 2013	Phase 3A	2,590	3,231	34	3,265	1.0%		
56.	December 2013	Phase 3A	2,590	3,231	36	3,267	1.1%		
57.	January 2014	Phase 3A	2,590	3,291	32	3,323	1.0%		
58.	February 2014	Phase 3A	2,590	3,291	32	3,323	1.0%		
59.	March 2014	Phase 3A	2,590	3,291	42	3,333	1.3%		
60.	April 2014	Phase 3A	2,590	3,291	42	3,333	1.3%		
61.	May 2014	Phase 3B, 3C-Aqu, 3D	2,590	3,291	111	3,402	3.3%		
62.	June 2014	Phase 3B, 3C-Aqu, 3D	2,590	3,291	132	3,423	3.9%		
63.	July 2014	Phase 3B, 3C-Aqu, 3D	2,590	3,291	143	3,434	4.2%		
64.	August 2014	Phase 3B, 3C-Aqu, 3D	2,590	3,291	118	3,409	3.5%		
65.	September 2014	Phase 3B, 3C-Aqu, 3D	2,590	3,291	100	3,391	2.9%		
66.	October 2014	Phase 3B, 3C-Aqu	2,590	3,291	68	3,359	2.0%		
67.	November 2014	Phase 3B, 3C-Aqu	2,590	3,291	79	3,370	2.3%		
68.	December 2014	Phase 3B, 3C-Aqu	2,590	3,291	69	3,360	2.1%		
69.	January 2015	Phase 3B, 3C-Aqu	2,590	3,351	71	3,422	2.1%		
70.	February 2015	Phase 3B, 3C-Aqu	2,590	3,351	67	3,418	2.0%		
71.	March 2015	Phase 3B, 3C-Aqu, 3C-Dis	2,590	3,351	92	3,443	2.7%		
72.	April 2015	Phase 3B, 3C-Dis	2,590	3,351	90	3,441	2.6%		
73.	May 2015	Phase 3C-Dis	2,590	3,351	54	3,405	1.6%		
74.	June 2015	Phase 3C-Dis	2,590	3,351	45	3,396	1.3%		
75.	July 2015	Phase 3C-Dis	2,590	3,351	40	3,391	1.2%		
76.	August 2015	Phase 3C-Dis	2,590	3,351	39	3,390	1.2%		
77.	September 2015	Phase 3C-Dis	2,590	3,351	43	3,394	1.3%		
78.	October 2015	Phase 3C-Dis	2,590	3,351	32	3,383	0.9%		
79.	November 2015	Phase 3C-Dis	2,590	3,351	38	3,389	1.1%		
80.	December 2015	Phase 3C-Dis	2,590	3,351	32	3,383	0.9%		

7	7 Valley Vista Bl.,		Daily Traffic Volumes					
	west of Stansburg	ry Av.		Baseline		Baseline +		
			Existing	(2009-	Construction	Construction	Construction	
	Month	& Phase	(2006)	2015)	Trips	Trips	Trips Percent	
1.	May 2009	Phase 1	2,357	2,757	44	2,801	1.6%	
2.	June 2009	Phase 1	2,357	2,757	51	2,808	1.8%	
3.	July 2009	Phase 1	2,357	2,757	57	2,814	2.0%	
4.	August 2009	Phase 1	2,357	2,757	37	2,794	1.3%	
5.	September 2009	Phase 1	2,357	2,757	40	2,797	1.4%	
6.	October 2009	Phase 1	2,357	2,757	34	2,791	1.2%	
7.	November 2009	Phase 1	2,357	2,757	36	2,793	1.3%	
8.	December 2009	Phase 1	2,357	2,757	38	2,795	1.4%	
9.	January 2010	Phase 1	2,357	2,807	32	2,839	1.1%	
10.	February 2010	Phase 1	2,357	2,807	37	2,844	1.3%	
11.	March 2010	Phase 1	2,357	2,807	47	2,854	1.6%	
12.	April 2010	Phase 1	2,357	2,807	42	2,849	1.5%	
13.	May 2010	Phase 2	2,357	2,807	68	2,875	2.4%	
14.	June 2010	Phase 2	2,357	2,807	92	2,899	3.2%	
15.	July 2010	Phase 2	2,357	2,807	120	2,927	4.1%	
16.	August 2010	Phase 2	2,357	2,807	83	2,890	2.9%	
17.	September 2010	Phase 2	2,357	2,807	125	2,932	4.3%	
18.	October 2010	Phase 2	2,357	2,807	78	2,885	2.7%	
19.	November 2010	Phase 2	2,357	2,807	80	2,887	2.8%	
20.	December 2010	Phase 2	2,357	2,807	80	2,887	2.8%	
21.	January 2011	Phase 2	2,357	2,858	62	2,920	2.1%	
22.	February 2011	Phase 2	2,357	2,858	71	2,929	2.4%	
23.	March 2011	Phase 2	2,357	2,858	58	2,916	2.0%	
24.	April 2011	Phase 2	2,357	2,858	70	2,928	2.4%	
25.	May 2011	Phase 2	2,357	2,858	69	2,927	2.4%	
26.	June 2011	Phase 2	2,357	2,858	80	2,938	2.7%	
27.	July 2011	Phase 2	2,357	2,858	78	2,936	2.7%	
28.	August 2011	Phase 2	2,357	2,858	76	2,934	2.6%	
29.	September 2011	Phase 2	2,357	2,858	72	2,930	2.5%	
30.	October 2011	Phase 2	2,357	2,858	59	2,917	2.0%	
31.	November 2011							
32.	December 2011							
33.	January 2012							
34.	February 2012							
35.	March 2012							
36.	April 2012							
37.	May 2012							
38.	June 2012							
39.	July 2012							
40.	August 2012							

7	7 Valley Vista Bl.,		Daily Traffic Volumes						
	west of Stansbu	ry Av.		Baseline		Baseline +			
			Existing	(2009-	Construction	Construction	Construction		
	Month	a & Phase	(2006)	2015)	Trips	Trips	Trips Percent		
41.	September 2012								
42.	October 2012								
43.	November 2012								
44.	December 2012								
45.	January 2013								
46.	February 2013								
47.	March 2013								
48.	April 2013								
49.	May 2013	Phase 3A	2,357	2,963	44	3,007	1.5%		
50.	June 2013	Phase 3A	2,357	2,963	43	3,006	1.4%		
51.	July 2013	Phase 3A	2,357	2,963	57	3,020	1.9%		
52.	August 2013	Phase 3A	2,357	2,963	38	3,001	1.3%		
53.	September 2013	Phase 3A	2,357	2,963	38	3,001	1.3%		
54.	October 2013	Phase 3A	2,357	2,963	34	2,997	1.1%		
55.	November 2013	Phase 3A	2,357	2,963	34	2,997	1.1%		
56.	December 2013	Phase 3A	2,357	2,963	36	2,999	1.2%		
57.	January 2014	Phase 3A	2,357	3,018	32	3,050	1.0%		
58.	February 2014	Phase 3A	2,357	3,018	32	3,050	1.0%		
59.	March 2014	Phase 3A	2,357	3,018	42	3,060	1.4%		
60.	April 2014	Phase 3A	2,357	3,018	42	3,060	1.4%		
61.	May 2014	Phase 3B, 3C-Aqu, 3D	2,357	3,018	111	3,129	3.5%		
62.	June 2014	Phase 3B, 3C-Aqu, 3D	2,357	3,018	132	3,150	4.2%		
63.	July 2014	Phase 3B, 3C-Aqu, 3D	2,357	3,018	143	3,161	4.5%		
64.	August 2014	Phase 3B, 3C-Aqu, 3D	2,357	3,018	118	3,136	3.8%		
65.	September 2014	Phase 3B, 3C-Aqu, 3D	2,357	3,018	100	3,118	3.2%		
66.	October 2014	Phase 3B, 3C-Aqu	2,357	3,018	68	3,086	2.2%		
67.	November 2014	Phase 3B, 3C-Aqu	2,357	3,018	79	3,097	2.6%		
68.	December 2014	Phase 3B, 3C-Aqu	2,357	3,018	69	3,087	2.2%		
69.	January 2015	Phase 3B, 3C-Aqu	2,357	3,073	71	3,144	2.3%		
70.	February 2015	Phase 3B, 3C-Aqu	2,357	3,073	67	3,140	2.1%		
71.	March 2015	Phase 3B, 3C-Aqu, 3C-Dis	2,357	3,073	92	3,165	2.9%		
72.	April 2015	Phase 3B, 3C-Dis	2,357	3,073	90	3,163	2.8%		
73.	May 2015	Phase 3C-Dis	2,357	3,073	54	3,127	1.7%		
74.	June 2015	Phase 3C-Dis	2,357	3,073	45	3,118	1.4%		
75.	July 2015	Phase 3C-Dis	2,357	3,073	40	3,113	1.3%		
76.	August 2015	Phase 3C-Dis	2,357	3,073	39	3,112	1.3%		
77.	September 2015	Phase 3C-Dis	2,357	3,073	43	3,116	1.4%		
78.	October 2015	Phase 3C-Dis	2,357	3,073	32	3,105	1.0%		
79.	November 2015	Phase 3C-Dis	2,357	3,073	38	3,111	1.2%		
80.	December 2015	Phase 3C-Dis	2,357	3,073	32	3,105	1.0%		

8	8 Valley Vista Bl.,		Daily Traffic Volumes					
	east of Stansbur	y Av.		Baseline		Baseline +		
			Existing	(2009-	Construction	Construction	Construction	
	Month	& Phase	(2006)	2015)	Trips	Trips	Trips Percent	
1.	May 2009	Phase 1	2,741	3,215	4	3,219	0.1%	
2.	June 2009	Phase 1	2,741	3,215	4	3,219	0.1%	
3.	July 2009	Phase 1	2,741	3,215	6	3,221	0.2%	
4.	August 2009	Phase 1	2,741	3,215	6	3,221	0.2%	
5.	September 2009	Phase 1	2,741	3,215	6	3,221	0.2%	
6.	October 2009	Phase 1	2,741	3,215	6	3,221	0.2%	
7.	November 2009	Phase 1	2,741	3,215	6	3,221	0.2%	
8.	December 2009	Phase 1	2,741	3,215	6	3,221	0.2%	
9.	January 2010	Phase 1	2,741	3,273	6	3,279	0.2%	
10.	February 2010	Phase 1	2,741	3,273	8	3,281	0.2%	
11.	March 2010	Phase 1	2,741	3,273	8	3,281	0.2%	
12.	April 2010	Phase 1	2,741	3,273	6	3,279	0.2%	
13.	May 2010	Phase 2	2,741	3,273	10	3,283	0.3%	
14.	June 2010	Phase 2	2,741	3,273	10	3,283	0.3%	
15.	July 2010	Phase 2	2,741	3,273	14	3,287	0.4%	
16.	August 2010	Phase 2	2,741	3,273	14	3,287	0.4%	
17.	September 2010	Phase 2	2,741	3,273	14	3,287	0.4%	
18.	October 2010	Phase 2	2,741	3,273	14	3,287	0.4%	
19.	November 2010	Phase 2	2,741	3,273	12	3,285	0.4%	
20.	December 2010	Phase 2	2,741	3,273	12	3,285	0.4%	
21.	January 2011	Phase 2	2,741	3,332	12	3,344	0.4%	
22.	February 2011	Phase 2	2,741	3,332	16	3,348	0.5%	
23.	March 2011	Phase 2	2,741	3,332	14	3,346	0.4%	
24.	April 2011	Phase 2	2,741	3,332	18	3,350	0.5%	
25.	May 2011	Phase 2	2,741	3,332	18	3,350	0.5%	
26.	June 2011	Phase 2	2,741	3,332	18	3,350	0.5%	
27.	July 2011	Phase 2	2,741	3,332	18	3,350	0.5%	
28.	August 2011	Phase 2	2,741	3,332	18	3,350	0.5%	
29.	September 2011	Phase 2	2,741	3,332	18	3,350	0.5%	
30.	October 2011	Phase 2	2,741	3,332	16	3,348	0.5%	
31.	November 2011							
32.	December 2011							
33.	January 2012							
34.	February 2012							
35.	March 2012							
36.	April 2012							
37.	May 2012							
38.	June 2012							
39.	July 2012							
40.	August 2012							

8	8 Valley Vista Bl.,		Daily Traffic Volumes						
	east of Stansbur	y Av.		Baseline		Baseline +			
			Existing	(2009-	Construction	Construction	Construction		
	Month	n & Phase	(2006)	2015)	Trips	Trips	Trips Percent		
41.	September 2012								
42.	October 2012								
43.	November 2012								
44.	December 2012								
45.	January 2013								
46.	February 2013								
47.	March 2013								
48.	April 2013								
49.	May 2013	Phase 3A	2,741	3,455	4	3,459	0.1%		
50.	June 2013	Phase 3A	2,741	3,455	4	3,459	0.1%		
51.	July 2013	Phase 3A	2,741	3,455	6	3,461	0.2%		
52.	August 2013	Phase 3A	2,741	3,455	6	3,461	0.2%		
53.	September 2013	Phase 3A	2,741	3,455	6	3,461	0.2%		
54.	October 2013	Phase 3A	2,741	3,455	6	3,461	0.2%		
55.	November 2013	Phase 3A	2,741	3,455	6	3,461	0.2%		
56.	December 2013	Phase 3A	2,741	3,455	6	3,461	0.2%		
57.	January 2014	Phase 3A	2,741	3,518	6	3,524	0.2%		
58.	February 2014	Phase 3A	2,741	3,518	6	3,524	0.2%		
59.	March 2014	Phase 3A	2,741	3,518	6	3,524	0.2%		
60.	April 2014	Phase 3A	2,741	3,518	6	3,524	0.2%		
61.	May 2014	Phase 3B, 3C-Aqu, 3D	2,741	3,518	14	3,532	0.4%		
62.	June 2014	Phase 3B, 3C-Aqu, 3D	2,741	3,518	20	3,538	0.6%		
63.	July 2014	Phase 3B, 3C-Aqu, 3D	2,741	3,518	20	3,538	0.6%		
64.	August 2014	Phase 3B, 3C-Aqu, 3D	2,741	3,518	24	3,542	0.7%		
65.	September 2014	Phase 3B, 3C-Aqu, 3D	2,741	3,518	14	3,532	0.4%		
66.	October 2014	Phase 3B, 3C-Aqu	2,741	3,518	12	3,530	0.3%		
67.	November 2014	Phase 3B, 3C-Aqu	2,741	3,518	14	3,532	0.4%		
68.	December 2014	Phase 3B, 3C-Aqu	2,741	3,518	14	3,532	0.4%		
69.	January 2015	Phase 3B, 3C-Aqu	2,741	3,582	14	3,596	0.4%		
70.	February 2015	Phase 3B, 3C-Aqu	2,741	3,582	14	3,596	0.4%		
71.	March 2015	Phase 3B, 3C-Aqu, 3C-Dis	2,741	3,582	16	3,598	0.4%		
72.	April 2015	Phase 3B, 3C-Dis	2,741	3,582	14	3,596	0.4%		
73.	May 2015	Phase 3C-Dis	2,741	3,582	8	3,590	0.2%		
74.	June 2015	Phase 3C-Dis	2,741	3,582	8	3,590	0.2%		
75.	July 2015	Phase 3C-Dis	2,741	3,582	8	3,590	0.2%		
76.	August 2015	Phase 3C-Dis	2,741	3,582	8	3,590	0.2%		
77.	September 2015	Phase 3C-Dis	2,741	3,582	8	3,590	0.2%		
78.	October 2015	Phase 3C-Dis	2,741	3,582	6	3,588	0.2%		
79.	November 2015	Phase 3C-Dis	2,741	3,582	6	3,588	0.2%		
80.	December 2015	Phase 3C-Dis	2,741	3,582	6	3,588	0.2%		

9	9 Van Nuys Bl.,		Daily Traffic Volumes					
	bet. Benefit St. and Greenleaf St.		Baseline		Baseline +			
		Existing	(2009-	Construction	Construction	Construction		
	Month & Phase	(2006)	2015)	Trips	Trips	Trips Percent		
1.	May 2009 Phase 1	12,292	13,316	33	13,349	0.2%		
2.	June 2009 Phase 1	12,292	13,316	39	13,355	0.3%		
3.	July 2009 Phase 1	12,292	13,316	43	13,359	0.3%		
4.	August 2009 Phase 1	12,292	13,316	23	13,339	0.2%		
5.	September 2009 Phase 1	12,292	13,316	27	13,343	0.2%		
6.	October 2009 Phase 1	12,292	13,316	21	13,337	0.2%		
7.	November 2009 Phase 1	12,292	13,316	21	13,337	0.2%		
8.	December 2009 Phase 1	12,292	13,316	23	13,339	0.2%		
9.	January 2010 Phase 1	12,292	13,577	19	13,596	0.1%		
10.	February 2010 Phase 1	12,292	13,577	20	13,597	0.1%		
11.	March 2010 Phase 1	12,292	13,577	28	13,605	0.2%		
12.	April 2010 Phase 1	12,292	13,577	27	13,604	0.2%		
13.	May 2010 Phase 2	12,292	13,577	44	13,621	0.3%		
14.	June 2010 Phase 2	12,292	13,577	66	13,643	0.5%		
15.	July 2010 Phase 2	12,292	13,577	89	13,666	0.7%		
16.	August 2010 Phase 2	12,292	13,577	51	13,628	0.4%		
17.	September 2010 Phase 2	12,292	13,577	89	13,666	0.7%		
18.	October 2010 Phase 2	12,292	13,577	49	13,626	0.4%		
19.	November 2010 Phase 2	12,292	13,577	53	13,630	0.4%		
20.	December 2010 Phase 2	12,292	13,577	55	13,632	0.4%		
21.	January 2011 Phase 2	12,292	13,843	37	13,880	0.3%		
22.	February 2011 Phase 2	12,292	13,843	36	13,879	0.3%		
23.	March 2011 Phase 2	12,292	13,843	27	13,870	0.2%		
24.	April 2011 Phase 2	12,292	13,843	32	13,875	0.2%		
25.	May 2011 Phase 2	12,292	13,843	32	13,875	0.2%		
26.	June 2011 Phase 2	12,292	13,843	42	13,885	0.3%		
27.	July 2011 Phase 2	12,292	13,843	40	13,883	0.3%		
28.	August 2011 Phase 2	12,292	13,843	38	13,881	0.3%		
29.	September 2011 Phase 2	12,292	13,843	34	13,877	0.2%		
30.	October 2011 Phase 2	12,292	13,843	24	13,867	0.2%		
31.	November 2011							
32.	December 2011							
33.	January 2012							
34.	February 2012							
35.	March 2012							
36	April 2012							
37	May 2012							
38	June 2012							
39	July 2012							
<u>⊿</u> ∩	August 2012							
40.	August 2012							

9 Van Nuys Bl.,		Daily Traffic Volumes					
	bet. Benefit St. a	and Greenleaf St.		Baseline		Baseline +	
			Existing	(2009-	Construction	Construction	Construction
	Month	n & Phase	(2006)	2015)	Trips	Trips	Trips Percent
41.	September 2012						
42.	October 2012						
43.	November 2012						
44.	December 2012						
45.	January 2013						
46.	February 2013						
47.	March 2013						
48.	April 2013						
49.	May 2013	Phase 3A	12,292	14,392	35	14,427	0.2%
50.	June 2013	Phase 3A	12,292	14,392	31	14,423	0.2%
51.	July 2013	Phase 3A	12,292	14,392	43	14,435	0.3%
52.	August 2013	Phase 3A	12,292	14,392	23	14,415	0.2%
53.	September 2013	Phase 3A	12,292	14,392	25	14,417	0.2%
54.	October 2013	Phase 3A	12,292	14,392	21	14,413	0.1%
55.	November 2013	Phase 3A	12,292	14,392	21	14,413	0.1%
56.	December 2013	Phase 3A	12,292	14,392	23	14,415	0.2%
57.	January 2014	Phase 3A	12,292	14,674	19	14,693	0.1%
58.	February 2014	Phase 3A	12,292	14,674	19	14,693	0.1%
59.	March 2014	Phase 3A	12,292	14,674	27	14,701	0.2%
60.	April 2014	Phase 3A	12,292	14,674	27	14,701	0.2%
61.	May 2014	Phase 3B, 3C-Aqu, 3D	12,292	14,674	81	14,755	0.5%
62.	June 2014	Phase 3B, 3C-Aqu, 3D	12,292	14,674	88	14,762	0.6%
63.	July 2014	Phase 3B, 3C-Aqu, 3D	12,292	14,674	98	14,772	0.7%
64.	August 2014	Phase 3B, 3C-Aqu, 3D	12,292	14,674	71	14,745	0.5%
65.	September 2014	Phase 3B, 3C-Aqu, 3D	12,292	14,674	65	14,739	0.4%
66.	October 2014	Phase 3B, 3C-Aqu	12,292	14,674	41	14,715	0.3%
67.	November 2014	Phase 3B, 3C-Aqu	12,292	14,674	51	14,725	0.3%
68.	December 2014	Phase 3B, 3C-Aqu	12,292	14,674	41	14,715	0.3%
69.	January 2015	Phase 3B, 3C-Aqu	12,292	14,962	43	15,005	0.3%
70.	February 2015	Phase 3B, 3C-Aqu	12,292	14,962	39	15,001	0.3%
71.	March 2015	Phase 3B, 3C-Aqu, 3C-Dis	12,292	14,962	60	15,022	0.4%
72.	April 2015	Phase 3B, 3C-Dis	12,292	14,962	57	15,019	0.4%
73.	May 2015	Phase 3C-Dis	12,292	14,962	36	14,998	0.2%
74.	June 2015	Phase 3C-Dis	12,292	14,962	26	14,988	0.2%
75.	July 2015	Phase 3C-Dis	12,292	14,962	22	14,984	0.1%
76.	August 2015	Phase 3C-Dis	12,292	14,962	20	14,982	0.1%
77.	September 2015	Phase 3C-Dis	12,292	14,962	24	14,986	0.2%
78.	October 2015	Phase 3C-Dis	12,292	14,962	17	14,979	0.1%
79.	November 2015	Phase 3C-Dis	12,292	14,962	23	14,985	0.2%
80.	December 2015	Phase 3C-Dis	12,292	14,962	17	14,979	0.1%

10 Beverly Glen Bl.,	Daily Traffic Volumes					
bet. Benefit St. and Greenleaf St.		Baseline		Baseline +		
	Existing	(2009-	Construction	Construction	Construction	
Month & Phase	(2006)	2015)	Trips	Trips	Trips Percent	
1. May 2009 Phase 1	10,913	11,695	1	11,696	0.0%	
2. June 2009 Phase 1	10,913	11,695	1	11,696	0.0%	
3. July 2009 Phase 1	10,913	11,695	3	11,698	0.0%	
4. August 2009 Phase 1	10,913	11,695	2	11,697	0.0%	
5. September 2009 Phase 1	10,913	11,695	2	11,697	0.0%	
6. October 2009 Phase 1	10,913	11,695	2	11,697	0.0%	
7. November 2009 Phase 1	10,913	11,695	2	11,697	0.0%	
8. December 2009 Phase 1	10,913	11,695	2	11,697	0.0%	
9. January 2010 Phase 1	10,913	11,927	2	11,929	0.0%	
10. February 2010 Phase 1	10,913	11,927	2	11,929	0.0%	
11. March 2010 Phase 1	10,913	11,927	2	11,929	0.0%	
12. April 2010 Phase 1	10,913	11,927	2	11,929	0.0%	
13. May 2010 Phase 2	10,913	11,927	3	11,930	0.0%	
14. June 2010 Phase 2	10,913	11,927	3	11,930	0.0%	
15. July 2010 Phase 2	10,913	11,927	5	11,932	0.0%	
16. August 2010 Phase 2	10,913	11,927	6	11,933	0.1%	
17. September 2010 Phase 2	10,913	11,927	6	11,933	0.1%	
18. October 2010 Phase 2	10,913	11,927	6	11,933	0.1%	
19. November 2010 Phase 2	10,913	11,927	3	11,930	0.0%	
20. December 2010 Phase 2	10,913	11,927	3	11,930	0.0%	
21. January 2011 Phase 2	10,913	12,163	3	12,166	0.0%	
22. February 2011 Phase 2	10,913	12,163	6	12,169	0.0%	
23. March 2011 Phase 2	10,913	12,163	4	12,167	0.0%	
24. April 2011 Phase 2	10,913	12,163	6	12,169	0.0%	
25. May 2011 Phase 2	10,913	12,163	6	12,169	0.0%	
26. June 2011 Phase 2	10,913	12,163	6	12,169	0.0%	
27. July 2011 Phase 2	10,913	12,163	6	12,169	0.0%	
28. August 2011 Phase 2	10,913	12,163	6	12,169	0.0%	
29. September 2011 Phase 2	10,913	12,163	6	12,169	0.0%	
30. October 2011 Phase 2	10,913	12,163	6	12,169	0.0%	
31. November 2011						
32. December 2011						
33. January 2012						
34. February 2012						
35. March 2012						
36. April 2012						
37. May 2012						
38. June 2012						
39. July 2012						
40. August 2012						

10 Beverly Glen Bl.,	Daily Traffic Volumes					
bet. Benefit St. and Greenleaf St.		Baseline		Baseline +		
	Existing	(2009-	Construction	Construction	Construction	
Month & Phase	(2006)	2015)	Trips	Trips	Trips Percent	
41. September 2012						
42. October 2012						
43. November 2012						
44. December 2012						
45. January 2013						
46. February 2013						
47. March 2013						
48. April 2013						
49. May 2013 Phase 3A	10,913	12,650	1	12,651	0.0%	
50. June 2013 Phase 3A	10,913	12,650	1	12,651	0.0%	
51. July 2013 Phase 3A	10,913	12,650	3	12,653	0.0%	
52. August 2013 Phase 3A	10,913	12,650	2	12,652	0.0%	
53. September 2013 Phase 3A	10,913	12,650	2	12,652	0.0%	
54. October 2013 Phase 3A	10,913	12,650	2	12,652	0.0%	
55. November 2013 Phase 3A	10,913	12,650	2	12,652	0.0%	
56. December 2013 Phase 3A	10,913	12,650	2	12,652	0.0%	
57. January 2014 Phase 3A	10,913	12,900	2	12,902	0.0%	
58. February 2014 Phase 3A	10,913	12,900	2	12,902	0.0%	
59. March 2014 Phase 3A	10,913	12,900	2	12,902	0.0%	
60. April 2014 Phase 3A	10,913	12,900	2	12,902	0.0%	
61. May 2014 Phase 3B, 3C-Aqu, 3D	10,913	12,900	6	12,906	0.0%	
62. June 2014 Phase 3B, 3C-Aqu, 3D	10,913	12,900	9	12,909	0.1%	
63. July 2014 Phase 3B, 3C-Aqu, 3D	10,913	12,900	9	12,909	0.1%	
64. August 2014 Phase 3B, 3C-Aqu, 3D	10,913	12,900	9	12,909	0.1%	
65. September 2014 Phase 3B, 3C-Aqu, 3D	10,913	12,900	4	12,904	0.0%	
66. October 2014 Phase 3B, 3C-Aqu	10,913	12,900	4	12,904	0.0%	
67. November 2014 Phase 3B, 3C-Aqu	10,913	12,900	4	12,904	0.0%	
68. December 2014 Phase 3B, 3C-Aqu	10,913	12,900	4	12,904	0.0%	
69. January 2015 Phase 3B, 3C-Aqu	10,913	13,156	4	13,160	0.0%	
70. February 2015 Phase 3B, 3C-Aqu	10,913	13,156	4	13,160	0.0%	
71. March 2015 Phase 3B, 3C-Aqu, 3C-Dis	10,913	13,156	6	13,162	0.0%	
72. April 2015 Phase 3B, 3C-Dis	10,913	13,156	4	13,160	0.0%	
73. May 2015 Phase 3C-Dis	10,913	13,156	2	13,158	0.0%	
74. June 2015 Phase 3C-Dis	10,913	13,156	2	13,158	0.0%	
75. July 2015 Phase 3C-Dis	10,913	13,156	2	13,158	0.0%	
76. August 2015 Phase 3C-Dis	10,913	13,156	2	13,158	0.0%	
77. September 2015 Phase 3C-Dis	10,913	13,156	2	13,158	0.0%	
78. October 2015 Phase 3C-Dis	10,913	13,156	2	13,158	0.0%	
79. November 2015 Phase 3C-Dis	10,913	13,156	2	13,158	0.0%	
80. December 2015 Phase 3C-Dis	10,913	13,156	2	13,158	0.0%	

¹¹ Beverly Glen Bl., Daily Traffic Volumes						
south of Millbroo	ok Dr.		Baseline		Baseline +	
		Existing	(2009-	Construction	Construction	Construction
Month	n & Phase	(2006)	2015)	Trips	Trips	Trips Percent
1. May 2009	Phase 1	21,028	22,357	1	22,358	0.0%
2. June 2009	Phase 1	21,028	22,357	1	22,358	0.0%
3. July 2009	Phase 1	21,028	22,357	1	22,358	0.0%
4. August 2009	Phase 1	21,028	22,357	1	22,358	0.0%
5. September 2009	Phase 1	21,028	22,357	1	22,358	0.0%
6. October 2009	Phase 1	21,028	22,357	1	22,358	0.0%
7. November 2009	Phase 1	21,028	22,357	1	22,358	0.0%
8. December 2009	Phase 1	21,028	22,357	1	22,358	0.0%
9. January 2010	Phase 1	21,028	22,803	1	22,804	0.0%
10. February 2010	Phase 1	21,028	22,803	2	22,805	0.0%
11. March 2010	Phase 1	21,028	22,803	2	22,805	0.0%
12. April 2010	Phase 1	21,028	22,803	1	22,804	0.0%
13. May 2010	Phase 2	21,028	22,803	2	22,805	0.0%
14. June 2010	Phase 2	21,028	22,803	2	22,805	0.0%
15. July 2010	Phase 2	21,028	22,803	2	22,805	0.0%
16. August 2010	Phase 2	21,028	22,803	2	22,805	0.0%
17. September 2010	Phase 2	21,028	22,803	2	22,805	0.0%
18. October 2010	Phase 2	21,028	22,803	2	22,805	0.0%
19. November 2010	Phase 2	21,028	22,803	2	22,805	0.0%
20. December 2010	Phase 2	21,028	22,803	2	22,805	0.0%
21. January 2011	Phase 2	21,028	23,259	2	23,261	0.0%
22. February 2011	Phase 2	21,028	23,259	2	23,261	0.0%
23. March 2011	Phase 2	21,028	23,259	2	23,261	0.0%
24. April 2011	Phase 2	21,028	23,259	2	23,261	0.0%
25. May 2011	Phase 2	21,028	23,259	2	23,261	0.0%
26. June 2011	Phase 2	21,028	23,259	2	23,261	0.0%
27. July 2011	Phase 2	21,028	23,259	2	23,261	0.0%
28. August 2011	Phase 2	21,028	23,259	2	23,261	0.0%
29. September 2011	Phase 2	21,028	23,259	2	23,261	0.0%
30. October 2011	Phase 2	21,028	23,259	2	23,261	0.0%
31. November 2011						
32. December 2011						
33. January 2012						
34. February 2012						
35. March 2012						
36. April 2012						
37. May 2012						
38. June 2012						
39. July 2012						
40. August 2012						
11. March 2010 12. April 2010 13. May 2010 14. June 2010 15. July 2010 16. August 2010 17. September 2010 18. October 2010 19. November 2010 20. December 2010 21. January 2011 22. February 2011 23. March 2011 24. April 2011 25. May 2011 26. June 2011 27. July 2011 28. August 2011 29. September 2011 30. October 2011 31. November 2011 32. December 2011 33. January 2012 34. February 2012 35. March 2012 36. April 2012 37. May 2012 38. June 2012 39. July 2012 40. August 2012	Phase 1 Phase 2 Phase 3 Phase 3 Phase 3 Phase 3 Phase 4 Phase	21,028 21,028	22,803 22,803 22,803 22,803 22,803 22,803 22,803 22,803 22,803 22,803 22,803 23,259 23,259 23,259 23,259 23,259 23,259 23,259 23,259 23,259 23,259	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	22,805 22,805 22,805 22,805 22,805 22,805 22,805 22,805 22,805 22,805 23,261 24,261 25,261 25,261 25,261 25,261 25,261 25,261 25,261 25,261	0.0% 0.0%

11 Beverly Glen Bl.,		Daily Traffic Volumes					
	south of Millbroo	ok Dr.		Baseline		Baseline +	
			Existing	(2009-	Construction	Construction	Construction
	Month	a & Phase	(2006)	2015)	Trips	Trips	Trips Percent
41.	September 2012						
42.	October 2012						
43.	November 2012						
44.	December 2012						
45.	January 2013						
46.	February 2013						
47.	March 2013						
48.	April 2013						
49.	May 2013	Phase 3A	21,028	24,197	1	24,198	0.0%
50.	June 2013	Phase 3A	21,028	24,197	1	24,198	0.0%
51.	July 2013	Phase 3A	21,028	24,197	1	24,198	0.0%
52.	August 2013	Phase 3A	21,028	24,197	1	24,198	0.0%
53.	September 2013	Phase 3A	21,028	24,197	1	24,198	0.0%
54.	October 2013	Phase 3A	21,028	24,197	1	24,198	0.0%
55.	November 2013	Phase 3A	21,028	24,197	1	24,198	0.0%
56.	December 2013	Phase 3A	21,028	24,197	1	24,198	0.0%
57.	January 2014	Phase 3A	21,028	24,680	1	24,681	0.0%
58.	February 2014	Phase 3A	21,028	24,680	1	24,681	0.0%
59.	March 2014	Phase 3A	21,028	24,680	1	24,681	0.0%
60.	April 2014	Phase 3A	21,028	24,680	1	24,681	0.0%
61.	May 2014	Phase 3B, 3C-Aqu, 3D	21,028	24,680	2	24,682	0.0%
62.	June 2014	Phase 3B, 3C-Aqu, 3D	21,028	24,680	2	24,682	0.0%
63.	July 2014	Phase 3B, 3C-Aqu, 3D	21,028	24,680	2	24,682	0.0%
64.	August 2014	Phase 3B, 3C-Aqu, 3D	21,028	24,680	2	24,682	0.0%
65.	September 2014	Phase 3B, 3C-Aqu, 3D	21,028	24,680	2	24,682	0.0%
66.	October 2014	Phase 3B, 3C-Aqu	21,028	24,680	2	24,682	0.0%
67.	November 2014	Phase 3B, 3C-Aqu	21,028	24,680	2	24,682	0.0%
68.	December 2014	Phase 3B, 3C-Aqu	21,028	24,680	2	24,682	0.0%
69.	January 2015	Phase 3B, 3C-Aqu	21,028	25,172	2	25,174	0.0%
70.	February 2015	Phase 3B, 3C-Aqu	21,028	25,172	2	25,174	0.0%
71.	March 2015	Phase 3B, 3C-Aqu, 3C-Dis	21,028	25,172	2	25,174	0.0%
72.	April 2015	Phase 3B, 3C-Dis	21,028	25,172	2	25,174	0.0%
73.	May 2015	Phase 3C-Dis	21,028	25,172	2	25,174	0.0%
74.	June 2015	Phase 3C-Dis	21,028	25,172	2	25,174	0.0%
75.	July 2015	Phase 3C-Dis	21,028	25,172	2	25,174	0.0%
76.	August 2015	Phase 3C-Dis	21,028	25,172	2	25,174	0.0%
77.	September 2015	Phase 3C-Dis	21,028	25,172	2	25,174	0.0%
78.	October 2015	Phase 3C-Dis	21,028	25,172	1	25,173	0.0%
79.	November 2015	Phase 3C-Dis	21,028	25,172	1	25,173	0.0%
80.	December 2015	Phase 3C-Dis	21,028	25,172	1	25,173	0.0%

12 Camino de la Cumbre,	Daily Traffic Volumes					
south of Valley Vista Bl.		Baseline		Baseline +		
	Existing	(2009-	Construction	Construction	Construction	
Month & Phase	(2006)	2015)	Trips	Trips	Trips Percent	
1. May 2009 Phase 1	595	631	1	632	0.2%	
2. June 2009 Phase 1	595	631	1	632	0.2%	
3. July 2009 Phase 1	595	631	1	632	0.2%	
4. August 2009 Phase 1	595	631	1	632	0.2%	
5. September 2009 Phase 1	595	631	1	632	0.2%	
6. October 2009 Phase 1	595	631	1	632	0.2%	
7. November 2009 Phase 1	595	631	1	632	0.2%	
8. December 2009 Phase 1	595	631	1	632	0.2%	
9. January 2010 Phase 1	595	644	1	645	0.2%	
10. February 2010 Phase 1	595	644	1	645	0.2%	
11. March 2010 Phase 1	595	644	1	645	0.2%	
12. April 2010 Phase 1	595	644	1	645	0.2%	
13. May 2010 Phase 2	595	644	1	645	0.2%	
14. June 2010 Phase 2	595	644	1	645	0.2%	
15. July 2010 Phase 2	595	644	1	645	0.2%	
16. August 2010 Phase 2	595	644	1	645	0.2%	
17. September 2010 Phase 2	595	644	1	645	0.2%	
18. October 2010 Phase 2	595	644	1	645	0.2%	
19. November 2010 Phase 2	595	644	1	645	0.2%	
20. December 2010 Phase 2	595	644	1	645	0.2%	
21. January 2011 Phase 2	595	657	1	658	0.2%	
22. February 2011 Phase 2	595	657	1	658	0.2%	
23. March 2011 Phase 2	595	657	1	658	0.2%	
24. April 2011 Phase 2	595	657	1	658	0.2%	
25. May 2011 Phase 2	595	657	1	658	0.2%	
26. June 2011 Phase 2	595	657	1	658	0.2%	
27. July 2011 Phase 2	595	657	1	658	0.2%	
28. August 2011 Phase 2	595	657	1	658	0.2%	
29. September 2011 Phase 2	595	657	1	658	0.2%	
30. October 2011 Phase 2	595	657	1	658	0.2%	
31. November 2011						
32. December 2011						
33. January 2012						
34. February 2012						
35. March 2012						
36. April 2012						
37. May 2012						
38. June 2012						
39. July 2012						
40. August 2012						

12 Camino de la Cumbre,	Daily Traffic Volumes					
south of Valley Vista Bl.		Baseline		Baseline +		
-	Existing	(2009-	Construction	Construction	Construction	
Month & Phase	(2006)	2015)	Trips	Trips	Trips Percent	
41. September 2012						
42. October 2012						
43. November 2012						
44. December 2012						
45. January 2013						
46. February 2013						
47. March 2013						
48. April 2013						
49. May 2013 Phase 3A	595	683	1	684	0.1%	
50. June 2013 Phase 3A	595	683	1	684	0.1%	
51. July 2013 Phase 3A	595	683	1	684	0.1%	
52. August 2013 Phase 3A	595	683	1	684	0.1%	
53. September 2013 Phase 3A	595	683	1	684	0.1%	
54. October 2013 Phase 3A	595	683	1	684	0.1%	
55. November 2013 Phase 3A	595	683	1	684	0.1%	
56. December 2013 Phase 3A	595	683	1	684	0.1%	
57. January 2014 Phase 3A	595	697	1	698	0.1%	
58. February 2014 Phase 3A	595	697	1	698	0.1%	
59. March 2014 Phase 3A	595	697	1	698	0.1%	
60. April 2014 Phase 3A	595	697	1	698	0.1%	
61. May 2014 Phase 3B, 3C-Aqu, 3D	595	697	1	698	0.1%	
62. June 2014 Phase 3B, 3C-Aqu, 3D	595	697	1	698	0.1%	
63. July 2014 Phase 3B, 3C-Aqu, 3D	595	697	1	698	0.1%	
64. August 2014 Phase 3B, 3C-Aqu, 3D	595	697	1	698	0.1%	
65. September 2014 Phase 3B, 3C-Aqu, 3D	595	697	1	698	0.1%	
66. October 2014 Phase 3B, 3C-Aqu	595	697	1	698	0.1%	
67. November 2014 Phase 3B, 3C-Aqu	595	697	1	698	0.1%	
68. December 2014 Phase 3B, 3C-Aqu	595	697	1	698	0.1%	
69. January 2015 Phase 3B, 3C-Aqu	595	711	1	712	0.1%	
70. February 2015 Phase 3B, 3C-Aqu	595	711	1	712	0.1%	
71. March 2015 Phase 3B, 3C-Aqu, 3C-Dis	595	711	1	712	0.1%	
72. April 2015 Phase 3B, 3C-Dis	595	711	1	712	0.1%	
73. May 2015 Phase 3C-Dis	595	711	1	712	0.1%	
74. June 2015 Phase 3C-Dis	595	711	1	712	0.1%	
75. July 2015 Phase 3C-Dis	595	711	1	712	0.1%	
76. August 2015 Phase 3C-Dis	595	711	1	712	0.1%	
77. September 2015 Phase 3C-Dis	595	711	1	712	0.1%	
78. October 2015 Phase 3C-Dis	595	711	1	712	0.1%	
79. November 2015 Phase 3C-Dis	595	711	1	712	0.1%	
80. December 2015 Phase 3C-Dis	595	711	1	712	0.1%	

13 Stansbury Av.,	Daily Traffic Volumes					
bet. Dickens St. and Greenleaf St.		Baseline		Baseline +		
	Existing	(2009-	Construction	Construction	Construction	
Month & Phase	(2006)	2015)	Trips	Trips	Trips Percent	
1. May 2009 Phase 1	2,583	2,805	91	2,896	3.1%	
2. June 2009 Phase 1	2,583	2,805	87	2,892	3.0%	
3. July 2009 Phase 1	2,583	2,805	101	2,906	3.5%	
4. August 2009 Phase 1	2,583	2,805	54	2,859	1.9%	
5. September 2009 Phase 1	2,583	2,805	66	2,871	2.3%	
6. October 2009 Phase 1	2,583	2,805	58	2,863	2.0%	
7. November 2009 Phase 1	2,583	2,805	60	2,865	2.1%	
8. December 2009 Phase 1	2,583	2,805	61	2,866	2.1%	
9. January 2010 Phase 1	2,583	2,860	50	2,910	1.7%	
10. February 2010 Phase 1	2,583	2,860	54	2,914	1.9%	
11. March 2010 Phase 1	2,583	2,860	72	2,932	2.5%	
12. April 2010 Phase 1	2,583	2,860	74	2,934	2.5%	
13. May 2010 Phase 2	2,583	2,860	129	2,989	4.3%	
14. June 2010 Phase 2	2,583	2,860	179	3,039	5.9%	
15. July 2010 Phase 2	2,583	2,860	201	3,061	6.6%	
16. August 2010 Phase 2	2,583	2,860	129	2,989	4.3%	
17. September 2010 Phase 2	2,583	2,860	201	3,061	6.6%	
18. October 2010 Phase 2	2,583	2,860	122	2,982	4.1%	
19. November 2010 Phase 2	2,583	2,860	143	3,003	4.8%	
20. December 2010 Phase 2	2,583	2,860	137	2,997	4.6%	
21. January 2011 Phase 2	2,583	2,916	99	3,015	3.3%	
22. February 2011 Phase 2	2,583	2,916	107	3,023	3.5%	
23. March 2011 Phase 2	2,583	2,916	79	2,995	2.6%	
24. April 2011 Phase 2	2,583	2,916	96	3,012	3.2%	
25. May 2011 Phase 2	2,583	2,916	96	3,012	3.2%	
26. June 2011 Phase 2	2,583	2,916	116	3,032	3.8%	
27. July 2011 Phase 2	2,583	2,916	112	3,028	3.7%	
28. August 2011 Phase 2	2,583	2,916	108	3,024	3.6%	
29. September 2011 Phase 2	2,583	2,916	98	3,014	3.3%	
30. October 2011 Phase 2	2,583	2,916	75	2,991	2.5%	
31. November 2011						
32. December 2011						
33. January 2012						
34. February 2012						
35. March 2012						
36. April 2012						
37. May 2012						
38. June 2012						
39. July 2012						
40. August 2012						

13 Stansbury Av.,	Daily Traffic Volumes					
bet. Dickens St. and Greenleaf St.		Baseline		Baseline +		
	Existing	(2009-	Construction	Construction	Construction	
Month & Phase	(2006)	2015)	Trips	Trips	Trips Percent	
41. September 2012						
42. October 2012						
43. November 2012						
44. December 2012						
45. January 2013						
46. February 2013						
47. March 2013						
48. April 2013						
49. May 2013 Phase 3A	2,583	3,031	91	3,122	2.9%	
50. June 2013 Phase 3A	2,583	3,031	75	3,106	2.4%	
51. July 2013 Phase 3A	2,583	3,031	101	3,132	3.2%	
52. August 2013 Phase 3A	2,583	3,031	56	3,087	1.8%	
53. September 2013 Phase 3A	2,583	3,031	64	3,095	2.1%	
54. October 2013 Phase 3A	2,583	3,031	58	3,089	1.9%	
55. November 2013 Phase 3A	2,583	3,031	58	3,089	1.9%	
56. December 2013 Phase 3A	2,583	3,031	60	3,091	1.9%	
57. January 2014 Phase 3A	2,583	3,090	50	3,140	1.6%	
58. February 2014 Phase 3A	2,583	3,090	48	3,138	1.5%	
59. March 2014 Phase 3A	2,583	3,090	68	3,158	2.2%	
60. April 2014 Phase 3A	2,583	3,090	74	3,164	2.3%	
61. May 2014 Phase 3B, 3C-Aqu, 3D	2,583	3,090	208	3,298	6.3%	
62. June 2014 Phase 3B, 3C-Aqu, 3D	2,583	3,090	221	3,311	6.7%	
63. July 2014 Phase 3B, 3C-Aqu, 3D	2,583	3,090	250	3,340	7.5%	
64. August 2014 Phase 3B, 3C-Aqu, 3D	2,583	3,090	185	3,275	5.6%	
65. September 2014 Phase 3B, 3C-Aqu, 3D	2,583	3,090	166	3,256	5.1%	
66. October 2014 Phase 3B, 3C-Aqu	2,583	3,090	110	3,200	3.4%	
67. November 2014 Phase 3B, 3C-Aqu	2,583	3,090	132	3,222	4.1%	
68. December 2014 Phase 3B, 3C-Aqu	2,583	3,090	106	3,196	3.3%	
69. January 2015 Phase 3B, 3C-Aqu	2,583	3,151	118	3,269	3.6%	
70. February 2015 Phase 3B, 3C-Aqu	2,583	3,151	102	3,253	3.1%	
71. March 2015 Phase 3B, 3C-Aqu, 3C-Dis	2,583	3,151	156	3,307	4.7%	
72. April 2015 Phase 3B, 3C-Dis	2,583	3,151	152	3,303	4.6%	
73. May 2015 Phase 3C-Dis	2,583	3,151	101	3,252	3.1%	
74. June 2015 Phase 3C-Dis	2,583	3,151	78	3,229	2.4%	
75. July 2015 Phase 3C-Dis	2,583	3,151	63	3,214	2.0%	
76. August 2015 Phase 3C-Dis	2,583	3,151	58	3,209	1.8%	
77. September 2015 Phase 3C-Dis	2,583	3,151	70	3,221	2.2%	
78. October 2015 Phase 3C-Dis	2,583	3,151	46	3,197	1.4%	
79. November 2015 Phase 3C-Dis	2,583	3,151	66	3,217	2.1%	
80. December 2015 Phase 3C-Dis	2,583	3,151	46	3,197	1.4%	

14 Stansbury Av., Daily Traffic			Daily Traffic	Volumes	
north of Valley Vista Bl.		Baseline		Baseline +	
	Existing	(2009-	Construction	Construction	Construction
Month & Phase	(2006)	2015)	Trips	Trips	Trips Percent
1. May 2009 Phase 1	1,576	1,736	92	1,828	5.0%
2. June 2009 Phase 1	1,576	1,736	88	1,824	4.8%
3. July 2009 Phase 1	1,576	1,736	102	1,838	5.5%
4. August 2009 Phase 1	1,576	1,736	55	1,791	3.1%
5. September 2009 Phase 1	1,576	1,736	67	1,803	3.7%
6. October 2009 Phase 1	1,576	1,736	59	1,795	3.3%
7. November 2009 Phase 1	1,576	1,736	61	1,797	3.4%
8. December 2009 Phase 1	1,576	1,736	62	1,798	3.4%
9. January 2010 Phase 1	1,576	1,770	51	1,821	2.8%
10. February 2010 Phase 1	1,576	1,770	55	1,825	3.0%
11. March 2010 Phase 1	1,576	1,770	73	1,843	4.0%
12. April 2010 Phase 1	1,576	1,770	74	1,844	4.0%
13. May 2010 Phase 2	1,576	1,770	131	1,901	6.9%
14. June 2010 Phase 2	1,576	1,770	181	1,951	9.3%
15. July 2010 Phase 2	1,576	1,770	202	1,972	10.2%
16. August 2010 Phase 2	1,576	1,770	131	1,901	6.9%
17. September 2010 Phase 2	1,576	1,770	203	1,973	10.3%
18. October 2010 Phase 2	1,576	1,770	124	1,894	6.5%
19. November 2010 Phase 2	1,576	1,770	144	1,914	7.5%
20. December 2010 Phase 2	1,576	1,770	138	1,908	7.2%
21. January 2011 Phase 2	1,576	1,804	100	1,904	5.3%
22. February 2011 Phase 2	1,576	1,804	110	1,914	5.7%
23. March 2011 Phase 2	1,576	1,804	81	1,885	4.3%
24. April 2011 Phase 2	1,576	1,804	99	1,903	5.2%
25. May 2011 Phase 2	1,576	1,804	98	1,902	5.2%
26. June 2011 Phase 2	1,576	1,804	118	1,922	6.1%
27. July 2011 Phase 2	1,576	1,804	114	1,918	5.9%
28. August 2011 Phase 2	1,576	1,804	110	1,914	5.7%
29. September 2011 Phase 2	1,576	1,804	100	1,904	5.3%
30. October 2011 Phase 2	1,576	1,804	78	1,882	4.1%
31. November 2011					
32. December 2011					
33. January 2012					
34. February 2012					
35. March 2012					
36. April 2012					
37. May 2012					
38. June 2012					
39. July 2012					
40. August 2012					

14 Stansbury Av.,	Daily Traffic Volumes					
north of Valley Vista B	Ι.		Baseline		Baseline +	
		Existing	(2009-	Construction	Construction	Construction
Month & Pha	ase	(2006)	2015)	Trips	Trips	Trips Percent
41. September 2012						
42. October 2012						
43. November 2012						
44. December 2012						
45. January 2013						
46. February 2013						
47. March 2013						
48. April 2013						
49. May 2013 Phase	3A	1,576	1,874	92	1,966	4.7%
50. June 2013 Phase	3A	1,576	1,874	76	1,950	3.9%
51. July 2013 Phase	3A	1,576	1,874	102	1,976	5.2%
52. August 2013 Phase	3A	1,576	1,874	57	1,931	3.0%
53. September 2013 Phase	9 3A	1,576	1,874	65	1,939	3.4%
54. October 2013 Phase	9 3A	1,576	1,874	59	1,933	3.1%
55. November 2013 Phase	3A	1,576	1,874	59	1,933	3.1%
56. December 2013 Phase	3A	1,576	1,874	61	1,935	3.2%
57. January 2014 Phase	9 3A	1,576	1,911	51	1,962	2.6%
58. February 2014 Phase	9 3A	1,576	1,911	49	1,960	2.5%
59. March 2014 Phase	9 3A	1,576	1,911	69	1,980	3.5%
60. April 2014 Phase	3A	1,576	1,911	74	1,985	3.7%
61. May 2014 Phase	e 3B, 3C-Aqu, 3D	1,576	1,911	210	2,121	9.9%
62. June 2014 Phase	3B, 3C-Aqu, 3D	1,576	1,911	224	2,135	10.5%
63. July 2014 Phase	e 3B, 3C-Aqu, 3D	1,576	1,911	252	2,163	11.7%
64. August 2014 Phase	3B, 3C-Aqu, 3D	1,576	1,911	188	2,099	9.0%
65. September 2014 Phase	3B, 3C-Aqu, 3D	1,576	1,911	168	2,079	8.1%
66. October 2014 Phase	3B, 3C-Aqu	1,576	1,911	112	2,023	5.5%
67. November 2014 Phase	3B, 3C-Aqu	1,576	1,911	133	2,044	6.5%
68. December 2014 Phase	3B, 3C-Aqu	1,576	1,911	107	2,018	5.3%
69. January 2015 Phase	3B, 3C-Aqu	1,576	1,947	119	2,066	5.8%
70. February 2015 Phase	3B, 3C-Aqu	1,576	1,947	103	2,050	5.0%
71. March 2015 Phase	3B, 3C-Aqu, 3C-Dis	1,576	1,947	158	2,105	7.5%
72. April 2015 Phase	3B, 3C-Dis	1,576	1,947	154	2,101	7.3%
73. May 2015 Phase	3C-Dis	1,576	1,947	102	2,049	5.0%
74. June 2015 Phase	3C-Dis	1,576	1,947	79	2,026	3.9%
75. July 2015 Phase	3C-Dis	1,576	1,947	64	2,011	3.2%
76. August 2015 Phase	3C-Dis	1,576	1,947	59	2,006	2.9%
77. September 2015 Phase	3C-Dis	1,576	1,947	71	2,018	3.5%
78. October 2015 Phase	3C-Dis	1,576	1,947	47	1,994	2.4%
79. November 2015 Phase	3C-Dis	1,576	1,947	67	2,014	3.3%
80. December 2015 Phase	3C-Dis	1,576	1,947	47	1,994	2.4%

15 Stansbury Av.,	Daily Traffic Volumes					
south of Valley Vista Bl.		Baseline		Baseline +		
	Existing	(2009-	Construction	Construction	Construction	
Month & Phase	(2006)	2015)	Trips	Trips	Trips Percent	
1. May 2009 Phase 1	249	249	140 *	389	36.0%	
2. June 2009 Phase 1	249	249	144 *	393	36.6%	
3. July 2009 Phase 1	249	249	166 *	415	40.0%	
4. August 2009 Phase 1	249	249	98	347	28.2%	
5. September 2009 Phase 1	249	249	112	361	31.0%	
6. October 2009 Phase 1	249	249	98	347	28.2%	
7. November 2009 Phase 1	249	249	104	353	29.5%	
8. December 2009 Phase 1	249	249	108	357	30.3%	
9. January 2010 Phase 1	249	249	90	339	26.5%	
10. February 2010 Phase 1	249	249	100	349	28.7%	
11. March 2010 Phase 1	249	249	128 *	377	34.0%	
12. April 2010 Phase 1	249	249	122 *	371	32.9%	
13. May 2010 Phase 2	249	249	210 *	459	45.8%	
14. June 2010 Phase 2	249	249	284 *	533	53.3%	
15. July 2010 Phase 2	249	249	336 *	585	57.4%	
16. August 2010 Phase 2	249	249	228 *	477	47.8%	
17. September 2010 Phase 2	249	249	342 *	591	57.9%	
18. October 2010 Phase 2	249	249	214 *	463	46.2%	
19. November 2010 Phase 2	249	249	236 *	485	48.7%	
20. December 2010 Phase 2	249	249	230 *	479	48.0%	
21. January 2011 Phase 2	249	249	172 *	421	40.9%	
22. February 2011 Phase 2	249	249	196 *	445	44.0%	
23. March 2011 Phase 2	249	249	154 *	403	38.2%	
24. April 2011 Phase 2	249	249	186 *	435	42.8%	
25. May 2011 Phase 2	249	249	184 *	433	42.5%	
26. June 2011 Phase 2	249	249	216 *	465	46.5%	
27. July 2011 Phase 2	249	249	212 *	461	46.0%	
28. August 2011 Phase 2	249	249	206 *	455	45.3%	
29. September 2011 Phase 2	249	249	190 *	439	43.3%	
30. October 2011 Phase 2	249	249	152 *	401	37.9%	
31. November 2011						
32. December 2011						
33. January 2012						
34. February 2012						
35. March 2012						
36. April 2012						
37. May 2012						
38. June 2012						
39. July 2012						
40. August 2012						
* Indiante significant troffic immedi						

Indicate significant traffic impact.
15 Stansbury Av.,	Daily Traffic Volumes						
south of Valley Vista Bl.		Baseline		Baseline +			
	Existing	(2009-	Construction	Construction	Construction		
Month & Phase	(2006)	2015)	Trips	Trips	Trips Percent		
41. September 2012							
42. October 2012							
43. November 2012							
44. December 2012							
45. January 2013							
46. February 2013							
47. March 2013							
48. April 2013							
49. May 2013 Phase 3A	249	249	142 *	391	36.3%		
50. June 2013 Phase 3A	249	249	124 *	373	33.2%		
51. July 2013 Phase 3A	249	249	166 *	415	40.0%		
52. August 2013 Phase 3A	249	249	102	351	29.1%		
53. September 2013 Phase 3A	249	249	108	357	30.3%		
54. October 2013 Phase 3A	249	249	98	347	28.2%		
55. November 2013 Phase 3A	249	249	98	347	28.2%		
56. December 2013 Phase 3A	249	249	106	355	29.9%		
57. January 2014 Phase 3A	249	249	90	339	26.5%		
58. February 2014 Phase 3A	249	249	88	337	26.1%		
59. March 2014 Phase 3A	249	249	118	367	32.2%		
60. April 2014 Phase 3A	249	249	122 *	371	32.9%		
61. May 2014 Phase 3B, 3C-Aqu, 3D	249	249	334 *	583	57.3%		
62. June 2014 Phase 3B, 3C-Aqu, 3D	249	249	374 *	623	60.0%		
63. July 2014 Phase 3B, 3C-Aqu, 3D	249	249	416 *	665	62.6%		
64. August 2014 Phase 3B, 3C-Aqu, 3D	249	249	328 *	577	56.8%		
65. September 2014 Phase 3B, 3C-Aqu, 3D	249	249	282 *	531	53.1%		
66. October 2014 Phase 3B, 3C-Aqu	249	249	192 *	441	43.5%		
67. November 2014 Phase 3B, 3C-Aqu	249	249	226 *	475	47.6%		
68. December 2014 Phase 3B, 3C-Aqu	249	249	190 *	439	43.3%		
69. January 2015 Phase 3B, 3C-Aqu	249	249	206 *	455	45.3%		
70. February 2015 Phase 3B, 3C-Aqu	249	249	186 *	435	42.8%		
71. March 2015 Phase 3B, 3C-Aqu, 3C-Dis	249	249	266 *	515	51.7%		
72. April 2015 Phase 3B, 3C-Dis	249	249	260 *	509	51.1%		
73. May 2015 Phase 3C-Dis	249	249	162 *	411	39.4%		
74. June 2015 Phase 3C-Dis	249	249	132 *	381	34.6%		
75. July 2015 Phase 3C-Dis	249	249	112	361	31.0%		
76. August 2015 Phase 3C-Dis	249	249	106	355	29.9%		
77. September 2015 Phase 3C-Dis	249	249	122 *	371	32.9%		
78. October 2015 Phase 3C-Dis	249	249	84	333	25.2%		
79. November 2015 Phase 3C-Dis	249	249	112	361	31.0%		
80. December 2015 Phase 3C-Dis	249	249	84	333	25.2%		
* Indicato significant traffic impact							

Indicate significant traffic impact.

16 Hazeltine Av.,	Daily Traffic Volumes						
bet. Dickens St. and Greenleaf St.		Baseline		Baseline +			
	Existing	(2009-	Construction	Construction	Construction		
Month & Phase	(2006)	2015)	Trips	Trips	Trips Percent		
1. May 2009 Phase 1	1,293	1,372	1	1,373	0.1%		
2. June 2009 Phase 1	1,293	1,372	1	1,373	0.1%		
3. July 2009 Phase 1	1,293	1,372	1	1,373	0.1%		
4. August 2009 Phase 1	1,293	1,372	1	1,373	0.1%		
5. September 2009 Phase 1	1,293	1,372	1	1,373	0.1%		
6. October 2009 Phase 1	1,293	1,372	1	1,373	0.1%		
7. November 2009 Phase 1	1,293	1,372	1	1,373	0.1%		
8. December 2009 Phase 1	1,293	1,372	1	1,373	0.1%		
9. January 2010 Phase 1	1,293	1,400	1	1,401	0.1%		
10. February 2010 Phase 1	1,293	1,400	1	1,401	0.1%		
11. March 2010 Phase 1	1,293	1,400	1	1,401	0.1%		
12. April 2010 Phase 1	1,293	1,400	1	1,401	0.1%		
13. May 2010 Phase 2	1,293	1,400	1	1,401	0.1%		
14. June 2010 Phase 2	1,293	1,400	1	1,401	0.1%		
15. July 2010 Phase 2	1,293	1,400	1	1,401	0.1%		
16. August 2010 Phase 2	1,293	1,400	1	1,401	0.1%		
17. September 2010 Phase 2	1,293	1,400	1	1,401	0.1%		
18. October 2010 Phase 2	1,293	1,400	1	1,401	0.1%		
19. November 2010 Phase 2	1,293	1,400	1	1,401	0.1%		
20. December 2010 Phase 2	1,293	1,400	1	1,401	0.1%		
21. January 2011 Phase 2	1,293	1,428	1	1,429	0.1%		
22. February 2011 Phase 2	1,293	1,428	1	1,429	0.1%		
23. March 2011 Phase 2	1,293	1,428	1	1,429	0.1%		
24. April 2011 Phase 2	1,293	1,428	1	1,429	0.1%		
25. May 2011 Phase 2	1,293	1,428	1	1,429	0.1%		
26. June 2011 Phase 2	1,293	1,428	1	1,429	0.1%		
27. July 2011 Phase 2	1,293	1,428	1	1,429	0.1%		
28. August 2011 Phase 2	1,293	1,428	1	1,429	0.1%		
29. September 2011 Phase 2	1,293	1,428	1	1,429	0.1%		
30. October 2011 Phase 2	1,293	1,428	1	1,429	0.1%		
31. November 2011							
32. December 2011							
33. January 2012							
34. February 2012							
35. March 2012							
36. April 2012							
37. May 2012							
38. June 2012							
39. July 2012							
40. August 2012							

16 Hazeltine Av.,	Daily Traffic Volumes					
bet. Dickens St. and Greenleaf St.		Baseline		Baseline +		
	Existing	(2009-	Construction	Construction	Construction	
Month & Phase	(2006)	2015)	Trips	Trips	Trips Percent	
41. September 2012						
42. October 2012						
43. November 2012						
44. December 2012						
45. January 2013						
46. February 2013						
47. March 2013						
48. April 2013						
49. May 2013 Phase 3A	1,293	1,485	1	1,486	0.1%	
50. June 2013 Phase 3A	1,293	1,485	1	1,486	0.1%	
51. July 2013 Phase 3A	1,293	1,485	1	1,486	0.1%	
52. August 2013 Phase 3A	1,293	1,485	1	1,486	0.1%	
53. September 2013 Phase 3A	1,293	1,485	1	1,486	0.1%	
54. October 2013 Phase 3A	1,293	1,485	1	1,486	0.1%	
55. November 2013 Phase 3A	1,293	1,485	1	1,486	0.1%	
56. December 2013 Phase 3A	1,293	1,485	1	1,486	0.1%	
57. January 2014 Phase 3A	1,293	1,515	1	1,516	0.1%	
58. February 2014 Phase 3A	1,293	1,515	1	1,516	0.1%	
59. March 2014 Phase 3A	1,293	1,515	1	1,516	0.1%	
60. April 2014 Phase 3A	1,293	1,515	1	1,516	0.1%	
61. May 2014 Phase 3B, 3C-Aqu, 3D	1,293	1,515	1	1,516	0.1%	
62. June 2014 Phase 3B, 3C-Aqu, 3D	1,293	1,515	1	1,516	0.1%	
63. July 2014 Phase 3B, 3C-Aqu, 3D	1,293	1,515	1	1,516	0.1%	
64. August 2014 Phase 3B, 3C-Aqu, 3D	1,293	1,515	1	1,516	0.1%	
65. September 2014 Phase 3B, 3C-Aqu, 3D	1,293	1,515	1	1,516	0.1%	
66. October 2014 Phase 3B, 3C-Aqu	1,293	1,515	1	1,516	0.1%	
67. November 2014 Phase 3B, 3C-Aqu	1,293	1,515	1	1,516	0.1%	
68. December 2014 Phase 3B, 3C-Aqu	1,293	1,515	1	1,516	0.1%	
69. January 2015 Phase 3B, 3C-Aqu	1,293	1,545	1	1,546	0.1%	
70. February 2015 Phase 3B, 3C-Aqu	1,293	1,545	1	1,546	0.1%	
71. March 2015 Phase 3B, 3C-Aqu, 3C-Dis	1,293	1,545	1	1,546	0.1%	
72. April 2015 Phase 3B, 3C-Dis	1,293	1,545	1	1,546	0.1%	
73. May 2015 Phase 3C-Dis	1,293	1,545	1	1,546	0.1%	
74. June 2015 Phase 3C-Dis	1,293	1,545	1	1,546	0.1%	
75. July 2015 Phase 3C-Dis	1,293	1,545	1	1,546	0.1%	
76. August 2015 Phase 3C-Dis	1,293	1,545	1	1,546	0.1%	
77. September 2015 Phase 3C-Dis	1,293	1,545	1	1,546	0.1%	
78. October 2015 Phase 3C-Dis	1,293	1,545	1	1,546	0.1%	
79. November 2015 Phase 3C-Dis	1,293	1,545	1	1,546	0.1%	
80. December 2015 Phase 3C-Dis	1,293	1,545	1	1,546	0.1%	

17 Benedict Canyon Dr.,	Daily Traffic Volumes						
bet. Ventura BI. and Valley Vista BI.		Baseline		Baseline +			
	Existing	(2009-	Construction	Construction	Construction		
Month & Phase	(2006)	2015)	Trips	Trips	Trips Percent		
1. May 2009 Phase 1	1,972	2,106	4	2,110	0.2%		
2. June 2009 Phase 1	1,972	2,106	4	2,110	0.2%		
3. July 2009 Phase 1	1,972	2,106	6	2,112	0.3%		
4. August 2009 Phase 1	1,972	2,106	6	2,112	0.3%		
5. September 2009 Phase 1	1,972	2,106	6	2,112	0.3%		
6. October 2009 Phase 1	1,972	2,106	6	2,112	0.3%		
7. November 2009 Phase 1	1,972	2,106	6	2,112	0.3%		
8. December 2009 Phase 1	1,972	2,106	6	2,112	0.3%		
9. January 2010 Phase 1	1,972	2,148	6	2,154	0.3%		
10. February 2010 Phase 1	1,972	2,148	8	2,156	0.4%		
11. March 2010 Phase 1	1,972	2,148	8	2,156	0.4%		
12. April 2010 Phase 1	1,972	2,148	6	2,154	0.3%		
13. May 2010 Phase 2	1,972	2,148	10	2,158	0.5%		
14. June 2010 Phase 2	1,972	2,148	10	2,158	0.5%		
15. July 2010 Phase 2	1,972	2,148	14	2,162	0.6%		
16. August 2010 Phase 2	1,972	2,148	14	2,162	0.6%		
17. September 2010 Phase 2	1,972	2,148	14	2,162	0.6%		
18. October 2010 Phase 2	1,972	2,148	14	2,162	0.6%		
19. November 2010 Phase 2	1,972	2,148	12	2,160	0.6%		
20. December 2010 Phase 2	1,972	2,148	12	2,160	0.6%		
21. January 2011 Phase 2	1,972	2,190	12	2,202	0.5%		
22. February 2011 Phase 2	1,972	2,190	16	2,206	0.7%		
23. March 2011 Phase 2	1,972	2,190	14	2,204	0.6%		
24. April 2011 Phase 2	1,972	2,190	18	2,208	0.8%		
25. May 2011 Phase 2	1,972	2,190	18	2,208	0.8%		
26. June 2011 Phase 2	1,972	2,190	18	2,208	0.8%		
27. July 2011 Phase 2	1,972	2,190	18	2,208	0.8%		
28. August 2011 Phase 2	1,972	2,190	18	2,208	0.8%		
29. September 2011 Phase 2	1,972	2,190	18	2,208	0.8%		
30. October 2011 Phase 2	1,972	2,190	16	2,206	0.7%		
31. November 2011							
32. December 2011							
33. January 2012							
34. February 2012							
35. March 2012							
36. April 2012							
37. May 2012							
38. June 2012							
39. July 2012							
40. August 2012							

17 Benedict Canyon Dr.,	Daily Traffic Volumes						
bet. Ventura BI. and Valley Vista BI.		Baseline		Baseline +			
	Existing	(2009-	Construction	Construction	Construction		
Month & Phase	(2006)	2015)	Trips	Trips	Trips Percent		
41. September 2012							
42. October 2012							
43. November 2012							
44. December 2012							
45. January 2013							
46. February 2013							
47. March 2013							
48. April 2013							
49. May 2013 Phase 3A	1,972	2,278	4	2,282	0.2%		
50. June 2013 Phase 3A	1,972	2,278	4	2,282	0.2%		
51. July 2013 Phase 3A	1,972	2,278	6	2,284	0.3%		
52. August 2013 Phase 3A	1,972	2,278	6	2,284	0.3%		
53. September 2013 Phase 3A	1,972	2,278	6	2,284	0.3%		
54. October 2013 Phase 3A	1,972	2,278	6	2,284	0.3%		
55. November 2013 Phase 3A	1,972	2,278	6	2,284	0.3%		
56. December 2013 Phase 3A	1,972	2,278	6	2,284	0.3%		
57. January 2014 Phase 3A	1,972	2,324	6	2,330	0.3%		
58. February 2014 Phase 3A	1,972	2,324	6	2,330	0.3%		
59. March 2014 Phase 3A	1,972	2,324	6	2,330	0.3%		
60. April 2014 Phase 3A	1,972	2,324	6	2,330	0.3%		
61. May 2014 Phase 3B, 3C-Aqu, 3D	1,972	2,324	14	2,338	0.6%		
62. June 2014 Phase 3B, 3C-Aqu, 3D	1,972	2,324	20	2,344	0.9%		
63. July 2014 Phase 3B, 3C-Aqu, 3D	1,972	2,324	20	2,344	0.9%		
64. August 2014 Phase 3B, 3C-Aqu, 3D	1,972	2,324	24	2,348	1.0%		
65. September 2014 Phase 3B, 3C-Aqu, 3D	1,972	2,324	14	2,338	0.6%		
66. October 2014 Phase 3B, 3C-Aqu	1,972	2,324	12	2,336	0.5%		
67. November 2014 Phase 3B, 3C-Aqu	1,972	2,324	14	2,338	0.6%		
68. December 2014 Phase 3B, 3C-Aqu	1,972	2,324	14	2,338	0.6%		
69. January 2015 Phase 3B, 3C-Aqu	1,972	2,370	14	2,384	0.6%		
70. February 2015 Phase 3B, 3C-Aqu	1,972	2,370	14	2,384	0.6%		
71. March 2015 Phase 3B, 3C-Aqu, 3C-Dis	1,972	2,370	16	2,386	0.7%		
72. April 2015 Phase 3B, 3C-Dis	1,972	2,370	14	2,384	0.6%		
73. May 2015 Phase 3C-Dis	1,972	2,370	8	2,378	0.3%		
74. June 2015 Phase 3C-Dis	1,972	2,370	8	2,378	0.3%		
75. July 2015 Phase 3C-Dis	1,972	2,370	8	2,378	0.3%		
76. August 2015 Phase 3C-Dis	1,972	2,370	8	2,378	0.3%		
77. September 2015 Phase 3C-Dis	1,972	2,370	8	2,378	0.3%		
78. October 2015 Phase 3C-Dis	1,972	2,370	6	2,376	0.3%		
79. November 2015 Phase 3C-Dis	1,972	2,370	6	2,376	0.3%		
80. December 2015 Phase 3C-Dis	1,972	2,370	6	2,376	0.3%		

7

CITY OF LOS ANGELES INTER-DEPARTMENTAL CORRESPONDENCE

3900 Stansbury Avenue DOT Case No. SFV 06-094

Date: October 18, 2006

To: Emily Gabel-Luddy, Associate Zoning Administrator Department of City Planning

From:

Scrgio D. Valdez, Transportation Engineer Department of Transportation

Subject: REVISED TRAFFIC ASSESSMENT FOR THE BUCKLEY SCHOOL EXPANSION AT 3900 STANSBURY AVENUE

The Department of Transportation (DOT) has completed the traffic assessment for the proposed project at 3900 Stansbury Avenue. The proposed project will enlarge existing school building and increase student enrollment from existing 750 students to 830 students by year 2014. This traffic assessment is based on a traffic study prepared by Crain & Associates, dated March 2006. After a careful review of the pertinent data, DOT has determined that the traffic study adequately describes the project-related traffic impacts of the proposed development. This traffic assessment supersedes the previous traffic assessment dated September 27, 2006.

DISCUSSION AND FINDINGS

The proposed project will enlarge existing school building area approximately 69,500 square-feet. DOT has determined that the proposed project will generate 329 daily trips with 75 new trips in the a.m. peak hour, 47 new trips in the p.m., and 25 new trips in the commuter p.m. hour, as shown below. The trip generation estimates are based on formulas published by the Institute of Transportation Engineers (ITE) <u>Trip Generation</u>, 7th Edition, 2003.

Land Use	Size	Daily	AM	l Peak	k Hour P		PM Peak Hour			PM Peak Hour (Commuter)		
		Trips	In	Out	Total	ln	Out	Total	In	Out	·Total	
Proposed: School Expansion	80 Students	329	42	33	75	22	25	47	. 9	16	25	

After a review of the pertinent data, DOT has determined that the proposed project will have significant residential street impact on Stansbury Avenue south of Valley Vista Boulevard, and will have significant traffic impacts at the following intersections:

1. Stansbury Avenue & Ventura Boulevard

Emily Gabel-Luddy

October 18, 2006

- 2. Stansbury Avenue & Valley Vista Boulevard
- 3. Beverly Glen Boulevard & Valley Vista Boulevard

Attachment A summarizes the volume-to-capacity ratios and levels of service at the studied intersections, and Attachment B summarizes residential street segment analysis.

The Department of Transportation recommends that the following project requirements be adopted as conditions of project approval.

PROJECT REQUIREMENTS

A. Mitigation Measure for Stansbury Avenue & Ventura Boulevard

This intersection will be mitigated to a level of insignificance by widening Stansbury Avenue 10 feet along east side of Stansbury Avenue between Ventura Boulevard and the alley south of Ventura Boulevard. Restrip northbound striping on Stansbury Avenue from a shared left-right turn to an exclusive left-turn and exclusive right-turn.

Relocate and modify any existing traffic signal equipment, street lights, power poles, trees, parking meters, signs curb and gutters, utilities, etc. as required.

B. Mitigation Measure for Stansbury Avenue & Valley Vista Boulevard

This intersection will be mitigated to a level of insignificance by restriping the eastbound and southbound approaches from a shared left-thru-right lane to a left-thru lane and an exclusive right-turn lane. The applicant shall modify the existing striping of the intersection for the implementation of eastbound and southbound left-thru lanes and exclusive eastbound right-turn lane and exclusive southbound right-turn lane.

C. Mitigation Measure for Beverly Glen Boulevard & Valley Vista Boulevard

This intersection will be mitigated to a level of insignificance by implementation of Transportation Demand Management Programs (reducing the proposed project's daily trips by 40 percent).

D. Mitigation Measure for Stasbury Avenue south of Valley Vista Boulevard

The residential street impacts on Stansbury Avenue south of Valley Vista Boulevard will be mitigated to a level of insignificance by implementation of Transportation Demand Management Programs (reducing the proposed project's daily trips by 40 percent).

E. Mitigation Measure for Off-Site Vehicular Queuing on Stansbury Avenue

In order to mitigate the residential street impacts all student drop-off and loading shall take place entirely on site, without any on-street student drop-off. The school shall prepare a student drop-off and pick-up plan that will be reviewed by DOT district office. This plan Emily Gabel-Luddy

October 18, 2006

shall include provisions for staggered drop-off and pick-up hours so as to reduce queuing on site. The plan shall also include provisions for penalties for parents who do not follow the drop-off and pick-up rules. The plan shall also include a site plan of the school with the drop-off and pick-up areas clearly designated.

F. Transportation Demand Management (TDM) Programs

- 1. The applicant is required to reduce the trips to their project by a total of 75 trips in the AM peak hours. This will result in a trip ceiling of 702 trips in the AM.
- The applicant shall prepare a Transportation Demand Management (TDM) plan that will encourage the use of rideshare/carpool, public transportation and privately operated bus shuttle scrviccs. This plan shall be submitted to DOT Development Review Section for approval at the beginning of each school year.
- 3. The applicant shall be required to hire a licensed traffic engineer as a consultant to conduct traffic trip counts at the school and submit a Compliance Report to DOT during the fall of each year. The applicant shall be required to submit the fall Compliance Report before the end of November of each year. If the school exceeds its trips ceiling, the school shall conduct new counts and submit a spring Compliance Report before the end of April of each year.
- 4. In the event that the applicant is not in compliance with the trip ceiling in the spring Compliance Report, the applicant shall be required to pay a \$1,000 (one thousand dollars) penalty to the City of Los Angeles for each AM trip that the school generates in excess of its trip ceiling or reduce the student enrollment for the following school year an amount equal to the number of peak hour trips exceeded during the previous year.
- 5. If the project trip generation proves to be in compliance with the established trip ceiling for five consecutive years the applicant shall no longer be required to submit the Compliance Reports to DOT.

G. Highway Dedication and Improvements

Stansbury Avenue is a collector street in the Street and Highways Element of the City's General Plan. Stansbury Avenue at the Ventura Boulevard is a 40-foot half right-of-way with 20-foot half roadway and 20-foot sidewalk. The standard cross section for a collector street is 32-foot half right-of-way with a 22-foot half roadway and a 10-foot sidewalk. The applicant shall widen east side of the Stansbury Avenue 10-feet from Ventura Boulevard to alley south of Ventura Boulevard in order to mitigate the impacted intersection of Stansbury Avenue and Ventura Boulevard.

The above transportation improvements shall be guaranteed through the B-permit process of the Bureau of Engineering, Department of Public Works. Any improvements shall be constructed and completed before the issuance of the final certificate of occupancy, to the satisfaction of DOT and the Bureau of Engineering. Prior to setting the bond amount, the Bureau of Engineering shall require that the developer's engineer or contractor to contact DOT's B-Permit Coordinator at (213) 928-9663 to arrange a pre-design meeting to finalize

Emily Gabel-Luddy

October 18, 2006

the design for the required transportation improvements.

Additional street improvements may be required. The applicant should contact the Bureau of Engineering, Department of Public Works, to determine any other requirements. Any street dedication shall be completed through Edmund Yu in the Department of Public Works, Bureau of Engineering, Land Development Group, (213) 977-8933, <u>before</u> the issuance of any building permit for this project. Since the dedication procedure may be lengthy, the process should be commenced as soon as possible.

H. Site Access and Internal Circulation

All loading and unloading of students must be accomplished on site. The reservoir space for dropping off or picking up students must be large enough so that vehicles do not encroach onto city right-of-way. It needs to be substantially in conformance with the design submitted to DOT on August 4, 2006 as part of the On-Site Queuing Capacity Analysis.

This determination does not include approval of the project's driveways, internal circulation, or parking scheme. Final DOT approval shall be obtained prior to issuance of any building permits. This should be accomplished by submitting detailed site and driveway plans, with a minimum scale of 1"=40', to DOT's Valley Development Review Section at 6262 Van Nuys Boulevard Suite 320, Van Nuys, CA 91401.

If you have any further questions, you may contact Albert Isagulian of my staff at (818) 374-4699.

Attachments SV: AI ^{3900stansbury} c: Fifth Council District Bill Shao, DOT East Valley District Tim Conger, DOT GEO Design John Varghese, DOT Signal Systems Mike Walters, BOE Valley District Edmund YU, BOE Land Development Chin Taing, Crain & Associates

ATTACHMENT A

BUCKLEY HIGH SCHOOL AT 3900 STANSBURY AVENUE DOT Case No: SFV 06-094

Summary of Volume to Capacity Ratios (V/C) and Levels of Service (LOS)

Intersection	Peak	Year Exis	Year 2006 Existing		Year 2014 w/o Project		2014 oject	Projcct Impact	Year w/ Miti	2014 gation	Project Impact
		V/C	LOS	V/C	LOS	V/C	LOS	ΔV/C	V/C	LOS	∆V/C
Van Nuys Blvd. &	AM	1.119	F	1.396	F	1.400	F	0.004			
Ventura Blvd.	PM	1.111	F	1.478	F	1.482	F	0.004			
	PMc	1.221	F	1.606	F	1.608	F	0.002			
Beverly Glon Blvd.,	AM	0.664	В	0.832	D	0.839	D	0.007			
Tyrone Ave. & Ventura	PM	0.795	С	1.019	F	1.022	F	0.003			
Blvd.	PMc	0.845	D	1.077	F	1.078	F	0.001			
Burnels of A. A. B.	AM	0.858	D	1.048	F	1.069	F	0.021*	0.926	E	-0.122
Stansbury Avc. &	PM	0.643	B	0.827	D	0.834	D	0.007			ald an alternative succession of the
y	PMc	0.695	В	0.888	D	0.891	D	0.003			
A Z S. 1 A . D	AM	0.747	С	0.929	E	0.932	E	0.003			n ai
Hazchine Ave. &	PM	0.641	B	0.842	D	0.844	D	0.002			
* GIILLE L919LE	PMc	0.686	В	0.895	D	0.896	D	0.001			
n a market a market and an	AM	0.815	D	1.011	F	1.016	F	0.005			
Ventura Blvd. &	PM	0.764	С	0.973	£	0.977	E	0.004			
W OOQINAN A VO.	PMc	0.869	D	1.096	F	1.098	F	0.002			
7.7. 21	AM	0.489	A	0.585	А	0.586	A	0.001			
Valley Vista Bivd. &	PM	0.495	A	0.596	A	0.596	A	0.000			
Vali Nujs Divu.	PMc	0.568	A	0.681	B	0.681	B	0.000			
Beverly Glen Blvd.,	AM	1.097	F	1.306	F	1.309	F	0.003		-	
Roblar Pl. & Valley	PM	0.925	E	1.108	F	1.110	F	0.002			
Vista Blvd.	PMc	1.056	F	1.261	F	1.262	F	0.001			
Same Class Dhall 6	AM	1.596	F	1.889	F	1.901	F	0.012*	1.896	F	0.007
Beveriy Gien Bivu. &	PM	1.507	F	1.793	F	1.801	F	0.008			na nagarang
Vanoy Vista 19170.	РМс	1.617	F	1.922	F	1.927	F	0.005			
	AM	0.954	E	1.137	F	1.183	F	0.046*	0.932	E	-0.205
Stansbury Ave. & valley	PM	0.516	A	0.644	B	0.670	B	0.026			angangangangan pantan tang sa sa sa sa sa sa sa sa sa sa sa sa sa
P REPERT AFT VAN	PMc	0.463	A	0.581	A	0.595	A	0.014			utha 4.4 Jack BackBits and Standing Proves
Dending Clansson 12- 0-	AM	0.406	A	0.491	A	0.500	A	0.009		agen and procession and a state of the	
Valley Vista Rivil	PM	0.315	A	0.400	A	0.406	A	0.006			erlistörelingungangagangagang
A 1913-0 2 4 10000 V417 4 2040	PMc	0.352	A	0.443	A	0.446	A	0.003			

* Project-Related Significant Impact PMc (PM Commuter)

Significant Transportation Impact Thresholds

Level of Service	Projected Future Volume to Capacity Ratio (V/C), Including Project	Project-Related Impact (A V/C)
С	Between 0.701 and 0.800	≥0.040
D	Between 0.801 and 0.900	≥0.020
E, F	≥0.901	≥0.010

ATTACHMENT B

BUCKLEY HIGH SCHOOL AT 3900 STANSBURY AVENUE DOT Case No: SFV 06-094

Neighborhood Street Segment Analysis

Street Segment	Year 2006 Existing	Year 2014 w/o Project	Project Traffic	Year 2014 w/ Project	% Final ADT	Significance Criteria (%)	W/Project Mitigation	% Project Traffic
Stansbury Ave. & North of Valley Vista Blvd.	3,427	4,253	156	4,409	3.54%	8%		oppoga granina and o gabani song o
Stansbury Ave. & South of Valley Vista Blvd.	2,366	2,506	293	2,799	10.47%	10 %*	2,682	6.56%
Valley Vista Blvd, & East of Stansbury Ave.	4,110	5,301	·66	5,367	1.23%	8%		
Valley Vista Blvd. & West of Stansbury Ave.	4,609	5,787	80	5,867	1.36%	8%		
Greenleaf St. & West of Stansbury Ave.	1,742	2,041	0	2,041	0	12%		
Dickens St. West of Stansbury Ave.	3,527	4,132	0	4,132	0	8%		
Camino De La Cumbre West of Stansbury Ave.	1,189	1,393	9	1,402	0.64%	12%		
Camino De La Cumbre South of Valley Vista Blvd.	977	1,145	36	1,181	3.05%	16%		

* Project-Related Significant Impact

DRAFT

TRANSPORTATION DEMAND MANAGEMENT PLAN FOR THE BUCKLEY SCHOOL SHERMAN OAKS, CITY OF LOS ANGELES

Prepared for:

THE BUCKLEY SCHOOL

Prepared By:

Crain & Associates 2007 Sawtelle Boulevard, Suite 4 Los Angeles, California 90025 (310) 473-6508

May 2006

DRAFT TRANSPORTATION DEMAND MANAGEMENT PLAN FOR THE BUCKLEY SCHOOL

Executive Summary

This Transportation Demand Management (TDM) Plan demonstrates the various means by which the Buckley School (the School) can increase student enrollment by up to 80 students as part of the Campus Enhancement Plan (project), while achieving the "zero net traffic growth" goal of this Plan. While a 40 percent TDM trip reduction would mitigate project traffic impacts to an insignificant level, the ultimate goal of the TDM Plan would be to reduce project trips in order to retain the existing number of vehicular trips to the site. The strategies outlined by this Plan fall within two major approaches: a) a program aimed primarily at increasing student carpooling, and b) a more comprehensive student busing program. The carpool-based program identified includes a combination of an incentive-based program and a requirement-based carpool program. It is estimated that the School ultimately needs to achieve an average vehicle ridership (AVR) of 2.0 among students, faculty and staff arriving at the campus during the AM peak hour through such programs to achieve the zero net traffic growth goal when at the maximum enrollment of 830 students. However, as the student enrollment increase would occur gradually, lower AVR rates would be necessary for the interim years preceding full enrollment.

In addition to the student carpool program, this Plan includes an increased level of participation in the comprehensive student busing program. A daily bus ridership of approximately 26 percent of the total student population would ultimately be needed for this program to meet the zero net traffic growth goal on its own. As with the carpooling program, as the student enrollment increase would occur gradually, lower bus ridership would be necessary for the interim years preceding full enrollment. This 26 percent

therefore, is a realistic goal for the School, since the School would have several years to achieve this level of participation.

All of these strategies and estimated participation rates conservatively assume that both the added student enrollment and the expected proportionate increase in faculty (8 members) and staff (13 members including 5 staff members relocated from an off-site business office) would be addressed strictly by student-based efforts. Neither the carpool program nor the comprehensive busing program would need to reach maximum participation if they are used collectively to reach the overall traffic reduction goal. This document concludes with a section that outlines the procedure the School will follow towards submitting an annual monitoring report to the Los Angeles Department of Transportation (LADOT) on the performance of its TDM Plan.

Introduction

This Draft Transportation Demand Management (TDM) Plan has been developed to address the traffic implications of the increased student enrollment proposed as part of the Campus Enhancement Plan. The School is located in the Sherman Oaks community of the City of Los Angeles at 3900 Stansbury Avenue, and serves 13 grade levels of students, from Kindergarten through Grade 12. Aside from the renovations and modifications being proposed as part of the Campus Enhancement Plan, the School has requested to increase its student enrollment by a maximum of 80 students, to allow for a total future enrollment of up to 830 students on campus. The goal of this TDM Plan is to achieve a zero net traffic growth as part of this enrollment increase. There are a variety of key strategies the School may implement to achieve this goal, which range from an incentive-based carpool program to a more comprehensive School busing program. These programs, whether implemented alone or in combination with one another, are

expected to maintain the number of vehicle trips generated by the daily morning arrival and afternoon departure of the School's population to and from campus at current levels.

TDM Plan Goals

The goal of this TDM Plan is to ensure that the growth in enrollment towards an 830 student maximum enrollment does not cause the School to generate any more vehicle trips than the morning and afternoon commute of the School's existing population of approximately 750 students. The focus or key performance standard of this zero net traffic growth goal will be the AM peak hour of the adjacent street system.

It is the added trip generation to the AM peak hour of the adjacent street system that is of concern in terms of the impacts the added School enrollment could have upon area traffic conditions without a TDM Plan. Street peak hours are the times at which traffic levels are at their highest and the ability of the adjacent street system and intersections to absorb additional traffic are at their lowest. This Plan identifies the AM peak hour as the key performance standard because it is during this peak hour that the School's commute patterns are most coincident. Since the School's start time falls within the typical street peak period of 7:00 to 9:00 AM, the School's own AM peak hour of traffic generation is expected to overlap with that of the adjacent street system absent a TDM Plan. Therefore, it is typically on weekday mornings that the proposed enrollment expansion could have the greatest impact upon the adjacent street system. The peak hour within the morning arrival period will also provide the most consistent measure of the School's trip savings performance, given the day-to-day variations in afternoon campus activities typical of most schools and the School's afternoon normal departure time being slightly earlier than the afternoon peak hour of the adjacent street system.

Though the key performance standard of this Plan is the AM peak hour of the adjacent street system, the School will also monitor and report on vehicle trips generated across

the two hour periods encompassing the daily morning arrival and afternoon departure of most of its population (i.e., 7:00 to 9:00 AM and 2:30 to 4:30 PM), as part of the ongoing monitoring program discussed in the last section of this Plan. The purpose of the broader monitoring period, is to demonstrate that the School's morning commute trips are being measured at their present level through the School trip-reduction program, as opposed to added vehicle trips merely being shifted to outside the street peak hour, and that the TDM derived trip reduction benefits realized and demonstrated in the morning are also reflected in the afternoon departure of the School's population.

Table 1 presents data from traffic counts to demonstrate the percent reduction the School must achieve to its current rate of trip generation to entirely offset the additional vehicle trips it is otherwise expected to generate at higher student enrollment levels.

	Student Enrollment	Vehicle Trips Vehicle Trips (Inbound + per Student R Outbound)		Vehicle Trips per Student		ction	
		w/out	with	w/out	with	w/out	with
		<u>Plan</u>	<u>Plan</u>	<u>Plan</u>	<u>Plan</u>	<u>Plan</u>	<u>Plan</u>
Current (Observed):	750	702		0.936			
Future:							
- At Enrollment of:	770	721	702	0.936	0.912	0 %	3%
- At Enrollment of:	790	739	702	0.936	0.889	0 %	5%
- At Enrollment of:	810	758	702	0.936	0.867	0 %	7%
- At Enrollment of:	830	777	702	0.936	0.846	0 %	10%

Table 1
Estimate of Vehicle Trip Reduction Needs
(As Per AM Peak Hour of School)

As shown above and discussed next, the ultimate reduction needed is ten percent (increase of 75 trips ÷ 777 trips without Plan), although much smaller reductions will be sufficient at earlier stages of the enrollment expansion to meet the zero net traffic growth

goal of this Plan. Data from the School's observed AM peak hour of trip generation (7:45 to 8:45 AM) are used in Table 1, since this hour is a useful measure of the actual vehicle trip volumes the School will need to achieve to meet its goals. This AM peak hour captures most of the trips generated by the School population's commute to the campus, and expectedly overlaps with the AM peak hour of the adjacent street system. The data in Table 1 are a proxy of vehicle trip limit goals, however. Additional traffic counts will be needed upon approval of this Plan to determine the true baselines from which to gauge the success of this Plan.

The traffic counts conducted at the campus gates at Stansbury Avenue and Camino de la Cumbre during the 2004-2005 school year observed the School to generate an average of 702 vehicle trips (393 inbound and 309 outbound) during its AM peak hour. As shown in Table 1 and reported in the project Traffic Analysis¹, this volume translates to an average generation factor of 0.936 (rounded to 0.94) vehicle trips per student. Based on this factor, it is estimated that the full proposed enrollment increase of 80 students (and associated increase in faculty and staff) could add 75 total vehicle trips (42 inbound, 33 outbound) during the School's AM peak hour, prior to implementation of the School's TDM Plan. Therefore, the School's 0.94 AM peak hour trip generation rate will need to be reduced by approximately ten percent to accommodate the maximum enrollment of 830 students while achieving the zero net traffic growth goal. Smaller reductions, however, will be sufficient at earlier points of expansion. An enrollment of 770 students (20 student increase), for example, would require a reduction of approximately three percent, and an enrollment of 790 students (40 student increase) would necessitate a reduction of approximately five percent.

¹ Traffic Impact Study for Proposed Buckley School Revised Campus Enhancement Plan, 3900 Stansbury Avenue, Sherman Oaks, March 2006, prepared by Crain & Associates.

Again, the purpose of Table 1 is to show how the School's vehicle trip limits will be set, and to present data that approximate the baseline trip generation for the key TDM performance standard – the AM peak hour of the adjacent street system.

TDM Plan Strategies

The goals of this TDM Plan can be achieved through several trip-reduction strategies. Discussed below are two major trip-saving approaches, the first of which relies primarily upon increased carpooling among School families, and the second an increased participation in the current School busing program. Outlined within the carpool approach are three general strategies the School can pursue: (1) an entirely incentive-based carpool program; (2) the use of either an incentive-based or more rule-based carpool program; and (3) a program that incorporates some student bus service as part of the incentive-based and/or more rule-oriented program.

At the outset, it should be noted that whichever strategy, or variant thereof, the School ultimately implements, an important component of this Plan will be for the School to designate a staff member as the School's on-site Transportation Coordinator. This person will have responsibility for overseeing the implementation and ongoing operations of the School's TDM Plan, and will be the key contact person for those who have inquiries about transportation options and programs.

A. Carpool Program Strategies

As a prelude to the detailed carpool strategies, outlined below are five measures to disseminate information and facilitate carpool matching that the School would implement in conjunction with any carpool-based program.

1. <u>Mailer Prior to Fall Semester</u> - Prior to the beginning of each Fall semester, the School will mail a letter to parents/guardians that encourages them to bus or

carpool their students to school. For families whose students are incorporated into the mandatory program, the mailer will serve as a reminder of the mandatory pooling policy agreed to in the signed School contract indicating their understanding and acceptance of these conditions. The mailing will introduce the Transportation Coordinator and provide information on School bus routes. It will also include a list prepared by the Transportation Coordinator of families stating a preference to carpool their students to school, which parents can then use to form carpools. The carpool lists will likely be prepared by zip code, and include contact information for each household as well as their closest cross streets and the grade level of their student(s). As the program is developed over time, it may also list continuing carpools with open seats. Parents or students who are interested in registering for bus service or forming carpools will be asked to either call the Transportation Coordinator or return a form that is included within the packet. Parents and students will also be invited to the "meet-your-match" event described next.

- 2. <u>Meet-Your-Match Open House</u> The School will host a meet-your-match event at the annual Open House at the start of each Fall semester to assist students and parents/guardians in forming carpools with one another. The Transportation Coordinator will prepare for the event using information called or mailed in by parents and/or students in the step above. The event may include refreshments and entertainment to make the Open House festive as well as successful.
- <u>Transportation Information Center</u> The School will develop and maintain a "trip-savers" bulletin board(s), to serve as the tangible focal point of the

School's TDM Plan. Such information board(s) will be posted in an area visible to the School population and could include:

- a) <u>Carpool "Meet-Your-Match" Section</u>, to provide a means through which faculty, staff, students, and parents could form carpools on an ongoing basis. This section could list by residential zip code employees, students or parents seeking carpool partners, as well as carpools under formation with open seats. Sign-up sheets for those who wish to be added to the list could also be included, as well as a map that geographically displays approximate points of origin for ease of identifying potential partners. While such a system would be set up to enable people to make and modify their own arrangements, the Transportation Coordinator could also use the posted information to suggest carpool opportunities.
- b) <u>School Transportation Coordinator</u> contact information, including office location, phone/voicemail extension and office hours.
- <u>School Bus Service Section</u> will display existing routes, pick-up points, and arrival and departure times at the stops.
- Availability of Public Transit, specifically the published schedules and numbers of bus routes that can be used to access the School.
- Availability of Site Amenities and Services, such as preferential parking for carpools and on-site transit pass sales, which can be useful to students and/or employees seeking alternative travel options.
- Details of the School Trip-Reduction Program, including applicable incentives and rules.

- g) <u>General Promotional Material</u> on the clean-air benefits of ridesharing, and information on the importance of ridesharing.
- 4. School Web Page The School will add to its website,

http://www.buckleyla.org, a page dedicated to transportation. The page could be informative while taking care not to supply too much information that could jeopardize the security of students, parents and employees of the School. The page could offer general information on the School trip-reduction program, and offer a means by which School families and employees could sign-up for the carpool board and/or request information on potential carpool partners by submitting an electronic request to the School via the web page.

 Handbook Section on Transportation Program - The School will dedicate a section of its Student Handbook to describe the applicable goals, policies, and incentives of the implemented TDM strategy.

A School carpool plan structured around an incentive program could effectively serve as the key trip-reduction strategy in meeting the goals of this TDM Plan, while also adding to the School festivities enjoyed by participants. The incentive program described herein would be designed to be sufficiently rewarding to achieve this level of carpooling among School families. An example of a possible award program is one based on monthly "trip-savers" prize drawings, in which participating students/families would be eligible for prize drawings each month, and participating faculty and staff would likewise have the chance to win prize drawings. The program could be designed such that chances of winning are graded by frequency of carpool (or other acceptable mode) usage. Each of these program components are addressed in greater detail in a later section.

Table 2(a) estimates the expanded student enrollment and faculty and staff population during the AM peak hour and the anticipated inbound vehicle trips expected without the TDM Plan. Based upon empirical surveys conducted at the School, the existing student AVR of 1.84 and faculty/staff AVR of 1.02 was maintained for the purpose of projecting the anticipated future trips without the TDM goal of zero-net traffic growth. These estimates use as a starting point the approximately 1.73 AVR found to be exhibited by the School's total population, through vehicle surveys conducted for the 2004-2005 school year.

Table 2(a)

Current and Projected Students and Faculty/Staff Inbound Vehicle Trips During AM Peak Hour -- Without TDM Plan

	Student Popu	ulation	Faculty/Staff Po	pulation	Without TDM Plan	
Total School Population: Students and Faculty/Staff	Current & Projected Students Arriving During AM Pk. Hr. ^[1]	AM Pk. Hr. I/B Trips (1.84 AVR)	Current & Projected Faculty/Staff Arriving During AM Pk. Hr. ^[2]	AM Pk. Hr. I/B Trips (1.02 AVR)	Current & Projected Students & Faculty/Staff Arriving During AM Pk. Hr.	AM Pk. Hr. I/B Trips (1.73 AVR)
750 student, 162 faculty/staff:	607	330	51	50	658	380
770 student, 171 faculty/staff:	627	341	60	59	687	400
790 student, 175 faculty/staff:	647	352	64	63	711	415
810 student, 179 faculty/staff:	667	363	68	67	735	430
830 student, 183 faculty/staff:	687	373	72	71	759	444

[1] Future projections assume the additional 80 students will all be arriving during the AM peak hour.

[2] Future projections assume the additional 16 faculty/staff members and 5 staff members relocated from an off-site office will all be arriving during the AM peak hour.

Table 2(b) summarizes the current and projected AVR objectives at four different stages of expanded enrollment, to achieve the zero net traffic growth goal of this TDM Plan via a carpool-based program. At maximum full enrollment of 830 students, the School would need to achieve a 2.0 AVR among students, faculty and staff arriving at campus during the School's AM peak hour to meet the zero net traffic goal of this TDM plan. Of course, the presence of larger three-plus student carpools and current busing program, which already occur now and could be encouraged through the incentive program,

would still allow for some students for whom carpooling proves infeasible to be transported alone. Furthermore, this level of ridesharing would not be necessary for perhaps five years. The School, for example, could add up to 40 students, or approximately 50 percent of the proposed enrollment increase, and achieve the goal of this TDM Plan of zero net traffic growth through a lower 1.87 AVR.

Table 2(b) Estimate of Needed Student AVR Inbound Vehicle Trips During AM Peak Hour -- With TDM Plan

	With TDM Plan of Zero-Net Growth Goal			
Total School Population: Students and Faculty/Staff	Current & Projected Students & Faculty/Staff Arriving During AM Pk. Hr.	AM Pk. Hr. Inbound Trips	AVR Needed to Reach TDM Goal	
At 750 student, 162 faculty/staff:	658	380	1.73	
At 770 student, 171 faculty/staff:	687	380	1.81	
At 790 student, 175 faculty/staff:	711	380	1.87	
At 810 student, 178 faculty/staff:	735	380	1.93	
At 830 student, 182 faculty/staff:	759	380	2.00	

Described next are the strategies and participant benefits that could be used to achieve these AVR targets. The School may opt to introduce these incentives gradually, putting forth efforts that are commensurate to the enrollment being added to the current student population.

Strategies Targeted to Students and Parents/Guardians

1. Annual Acknowledgment via School Contract

The School will include a requirement within the School's contract signed annually by parents/guardians, that students must either ride school buses or carpool to campus with at least one other student of the School, on a regular basis with exceptions provided during extenuating circumstances approved by School administration (i.e., illness, medical appointments, etc.). Walking, bicycling and riding public transit will be accepted as alternatives to the mandatory ridesharing clause. Furthermore, the contracts will be underscored that, without exception, student drivers must be Senior or Junior class students and carpool with at least two other Buckley students (i.e., 3-student carpools) to be granted the privilege of driving to School, and that student parking on neighborhood streets is strictly prohibited.² For normal school operations, vehicles that bring students to and from School will load and unload students only within School property and not on any adjoining streets. At the time the contract is signed, parents/guardians will be asked to indicate the travel mode their children will likely use, and to supply relevant address and cross-street information for use by the Transportation Coordinator. Students not yet incorporated into the mandatory program will also be asked to respond to this last question for use in developing transit routes.

2. Student Driver Carpool Requirement

Senior class students are currently granted the privilege of driving to School only if they carpool with at least two other students of the School. This requirement would be extended to included Junior class students (depending on the available space on-site) and the carpool threshold would be at least three Buckley students per student-operated vehicle. Preference will also be given according to carpool size, to benefit larger carpools over smaller ones. The preferred carpool parking program will be monitored through a registration process. Qualifying students are

² These carpool requirements will be strictly applied to morning trips to School. Some flexibility will be allowed for afternoon trips from School, understanding that pooling arrangements will be disrupted by afterschool extracurricular activities. However, on days when students are not engaged in such activities, students and their parents will be expected to uphold their registered travel arrangement.

required to register their vehicles and passengers with School administration to receive a campus parking permit. The student parking permits will be monitored on a regular basis to prevent misuse of the permits. The School will limit the number of student parking permits issued per calendar year based on the availability of remaining parking spaces after accounting for spaces designated to faculty, staff members, and visitors to the School. Under this program, the preferred parking spaces would be made identifiable as warranted by demand, through clearly marked signs and/or striping. As has been the policy in past years, student parking on neighborhood streets is strictly prohibited.

3. Monthly Trip-Savers Prize Drawings

This incentive could serve as the primary benefit offered to participants of the School's trip-reduction program. The School would hold a special prize drawing event each month for students (and their families) who participate in the School "trip-savers" program by carpooling to School with two or more other Buckley students, on at least a part-time basis. Students who live close to the campus and bicycle or walk would also qualify as program participants. Among the prizes that could be offered each month are:

- Computer Equipment / Computer Store Gift Certificates;
- Weekend Get-Away for Four Packages;
- Restaurant Gift Certificates;
- Movie Tickets, Concert Tickets, and/or Amusement Park Tickets;
- School Store Gift Certificates;
- Clothing Gift Certificates;
- Card Packs and/or other Collectibles;
- Television Show Screening Tickets;
- Special Campus Lunch-for-Four brought in from Local Restaurant; etc.

Because the desirability of the prizes may differ by student or grade level, the School may offer a menu list of prizes per drawing or per month from which the winners of the drawings could choose.

This incentive would likely be implemented in a manner that would link the probability of winning with frequency of carpooling. This could be done, for example, by posting monitors near the campus driveway on three randomly selected days per week, to check-off on a log those students who arrive or depart within an eligible carpool. Every three to four checkmarks received by a student that month could then equate to a ticket entry into that month's drawing.

Larger (4+ Student) carpools could be encouraged and rewarded by: a) issuing two checkmarks per monitoring period; and/or b) setting the values of each month's raffled prizes so that a student who typically participates in a larger carpool receives more of the prize won (e.g., a higher gift certificate value) than would a student who typically participates in a three-student carpool.

Strategies Targeted to Faculty and Staff

- <u>Adjustable Work Hours</u> To facilitate carpooling among School employees, the School may allow staff members (and faculty members when possible) to permanently adjust the start and end times of their daily work schedule. Such adjustments would only be allowed upon the approval of the appropriate supervising administrator and/or School Principal, and only if needed to be able to carpool to campus with another School employee on a full time basis (i.e., at least three days per week).
- Emergency Ride Home Program Free taxi service may also be offered to employees in need of a ride home due to a daytime emergency or unexpected

overtime. Again, this service will be extended to only those faculty and staff members who carpool with another person from the School, ride public transit, bicycle or walk to campus at least three days per week. Eligible employees will be limited to six emergency rides per academic year.

- 3. <u>Monthly Trip-Savers Prize Drawing</u> Somewhat mirroring the incentive described previously for students, the School could also hold a special prize drawing each month for faculty and staff who commute to the School via carpool with another School employee, or by other approved trip-saving methods. Employees would receive a ticket entry for each day of trip-saving behavior to increase the probability of winning for employees who use alternative modes frequently yet still encourage and reward part-time participation. As with the student incentive, faculty and staff could also be given extra credit for participating in larger carpools.
- 4. <u>On-Site Public Transit Pass Sales</u> Upon request, the on-site Transportation Coordinator will order MTA bus passes that employees need to purchase for their commute to campus. It should be noted, however, that the viability of public transit as a travel alternative is limited by the fact that the nearest public transit stops to the campus are over a half-mile away on Ventura Boulevard and some of the adjacent streets do not have sidewalks. The stops along Ventura Boulevard are presently served by several Metro bus routes, including Metro Rapid Line 750, and Metro Routes 150-240 and 158.

Finally, it should be noted that the School will continue to utilize buses to transport students, faculty and staff to athletic competitions and other School events, so as to mitigate the vehicle trips that would otherwise be generated.

Strategies Targeted to both Students/Guardians and Faculty/Staff

1. <u>Preferred Parking for Student and Employee Carpools</u>

The School will maintain its ongoing preferred parking program for students and employees who carpool to campus with at least two other School employees or students on a full-time basis. The preferred parking spaces would be clearly marked with signs, and for faculty and staff are offered in a number sufficient to meet demand for them. Employees who do not carpool will generally park further away from project buildings. The preferred parking program will be modified to provide an increased benefit to larger carpools and to improve monitoring and control of this amenity. First, the most preferred of the designated carpool parking spaces will be issued to the largest carpools. Second, numbered permits, which must be displayed while parked in the designated spaces, are issued to carpools that register their vehicles and passengers with School Administration. Each parking permit shall designate the specific parking space that the permit is valid for. In addition, the permit shall be displayed on the front of the vehicle (eg. by dashboard placard or mirror hanger) and clearly discernible from outside the vehicle.

2. Bicycle Facilities

The School currently provides a bicycle rack that is able to hold up to 12 bicycles. This number will be increased should demand ever warrant. Amenities such as onsite clothes lockers and showers are also available at the athletic field house and the boys and girls athletic locker rooms for students and employees who bicycle to campus.

Described next is the second major trip-saving approach – one that focuses on a comprehensive student busing program.

B. Student Busing Program Strategy

A comprehensive student busing program by the School would serve as the other key trip-reduction strategy in meeting the goals of this TDM Plan. The School is highly committed to student busing as a key trip-reduction strategy. To operate such a service, the School would need to continue its contract with a licensed school bus provider, such as Tumbleweed Transportation and find ways to encourage and increase student bus ridership and route reconfiguration based on student population.

For the 2005-2006 academic school year, approximately 115 students enrolled in the School bus service which amounts to approximately 15 percent of the student population. An additional 300 daily bus passes were sold during that school year for one-way trips. As part of this service, the School will continue to offer a "late bus" service provided at 5:30 PM for middle and upper school students participating in after-school activities. A daily ridership of approximately 26 percent of the total student population would ultimately be needed for this program to meet the zero net traffic growth goal on increased student busing alone. However, the School will be able to achieve the goal of this TDM Plan with a lower bus ridership if other trip-saving methods such as carpooling are used in combination with busing. The School will continue to give priority to students contracted to utilize the bus service on a full-time round-trip basis and only sell one-way daily bus passes to students based on the availability of remaining open seats, if any.

The eight routes that may be successfully maintained, given the current distribution of the student population, are:

- Route Option 1: Pacific Palisades/Brentwood/Bel Air Estates/Sherman Oaks
- Route Option 2: Los Angeles/Beverly Hills
- Route Option 3: Coldwater Canyon/Summit/Deep Canyon
- Route Option 4: Westwood/Beverly Glen
- Route Option 5: Los Angeles/Hancock Park
- Route Option 6: Studio City
- Route Option 7: Woodland Hills/Tarzana/Encino
- Route Option 8: Calabasas/Northridge

Calculated in Table 3(a) is the level of student participation in the new service that would be needed at three different stages of expanded enrollment to achieve the zero net traffic growth goal of this Plan.

	Students Added To 750 <u>Enrollment</u>	Expected Increase in <u>Faculty/Staff</u>	Total Increase in <u>Population</u>	Student Population Enrolled in <u>Bus Service</u>	Students Needed on School Bus <u>Service</u>
At Enrollment of 750:	0	0	0	115	15.3 %
At Enrollment of 770:	20	9	29	144	18.7 %
At Enrollment of 790:	40	13	53	168	21.3 %
At Enrollment of 810:	60	17	77	192	23.7 %
At Enrollment of 830:	80	21	101	216	26.0 %

Table 3(a)Estimate of Needed School Bus Ridership

Percent of

As shown in Table 3(a), a daily bus ridership of approximately 26 percent of the student population, or 216 students, would be needed if and when the campus reaches the maximum enrollment of 830 students to meet the zero net traffic growth goal on its own. This total bus participation level of approximately 26 percent would be a realistic goal for the School due to several key reasons.

This goal is one the School will have as much as five years to attain, as lower ridership levels would suffice for the interim years before the full enrollment level is reached. The

School, for example, could add the first one-quarter (20 students) of its proposed enrollment increase and achieve its trip-reduction goals through a total bus ridership of approximately 19 percent (4 percent new riders plus 15 percent existing riders). Recall that these percentages also assume that all of the School's trip-reduction needs will be addressed by the School busing program, alone. The School may ultimately implement a reduced-scale version of this program in conjunction with one of the carpool strategies introduced previously.

Table 3(b) is an example breakdown of the required student participation by grade level necessary to achieve or exceed the 26 percent student bus ridership by the School's future maximum student enrollment of 830 students.

Grade Level	Enrollment	% Student Participation	No. of Student Bus Ridership
Lower School:		•	
Kindergarten	42	20%	8
1st Grade	42	20%	8
2nd Grade	42	20%	8
3rd Grade	44	30%	13
4th Grade	44	30%	13
5th Grade	44	30%	13
Subtotals:	258 (Max.)		63
Middle School:			
6th Grade	52	40%	21
7th Grade	80	40%	32
8th Grade	80	40%	32
Subtotals:	212 (Max.)		85
Upper School:			
9th Grade	90	30%	27
10th Grade	90	30%	27
11th Grade	90	30%	27
12th Grade	90	10%	9
Subtotals:	360 (Max.)		90
Total:	830		238

Table 3(b) Sample School Bus Ridership At Maximum Enrollment of 830 Students

With a student bus ridership participation rate of 20 to 30 percent for lower school students (Kindergarten through 5th grade), 40 percent for all middle school students (6th, 7th and 8th grades), and a combination of 30 percent and 10 percent for the upper school students, the total number of student bus ridership will be approximately 238 students which amounts to approximately 28 percent of the future maximum enrollment of 830 students. The School currently provides two 48-seat buses and six 32-seat buses for a total actual capacity of 288 seats available on the eight routes previously listed. With a 28 percent of the existing capacity with sufficient room for increased busing needs in the future program, while permitting students to purchase one-way daily bus passes for the remaining open seats. More detailed information on the future student population is needed to fully determine whether these existing routes will be sufficient to accommodate the future student population.

Below are several key strategies the School could pursue to further increase the attractiveness and usefulness of the student bus service:

- <u>A Presentation</u> by School administrators and the transportation provider prior to initiation of the increased participation level in the School busing program. The purpose would be to introduce School families to the service provider, their credentials, and the bus vehicles that would be used; to discuss the procedures of the new service; and to answer general questions and concerns School families may have about using the service.
- <u>Locate Parent Volunteers</u> to serve as bus stop chaperones and thereby offer an added safety measure to the program.
- <u>Encourage School Staff to use School Bus Service</u>, provided that there are open seats available on the desired bus route.

- <u>Allow School Staff to Permanently Adjust Their Daily Work Schedule</u> upon the approval of their supervising administrator and the School Principal, if needed to be able to use the School bus service to commute to and from the campus on a full-time basis.
- <u>Add to Buckley School's Website</u>, a page dedicated to transportation that offers general information about the student busing program, while taking care not to supply specifics that could threaten the security of School families. The page could be designed such that School families may submit a direct request for more specific routing information via email or regular mail within a specified timeframe (i.e., within one working day).

C. Busing and Carpooling Combination Strategy

By combining the busing program and carpooling strategies previously described, the School would also be able to successfully achieve the goal of this Plan. Table 4 provides a sample detailed summary of the various categories of travel modes the School would need to achieve in order to achieve a morning peak hour AVR of 2.0 while also generating no more than the existing morning peak hour inbound vehicle trips. Different combinations of student travel modes would still be possible to achieve this TDM goal. For example, if more on-site parking spaces are assigned to Senior or Junior class students, more three-student carpools would be able to arrive on campus and fewer parent-operated vehicles may be necessary.

Table 4Projection of AM Peak Hour Vehicle TripsSchool Year at Maximum Student Enrollment

	With 7	Average Vehicle Ridership	
-	During A		
Projected Assumptions For Students	Students	Inbound Vehicle Trips	
Maintain higher bus ridership for student population.	104	4	
Seniors and/or Juniors drive 3-student carpools.	90	30	
2% of total student population are assumed to walk/bike.	16	0	
Students arrive in 2-student, parent-operated carpools.	428	214	
Remainder of students arrive alone in parent-operated vehicles. Total for Students [a]:	49 687	÷ 297 =	Students: 2.31 AVR

Projected Assumptions for Faculty/Staff	Faculty/Staff		Inbound Vehicle Trips	
Faculty/staff arrive in two-person carpools.	4		<u>venicie mps</u> 2	
Remainder of faculty/staff arrive as drive-alone.	68		68	Faculty/Staff
Total for Faculty/Staff [b]:	72	÷	70	= 1.02 AVR
				TDM Goal:
Projected Total for Entire School Population [a+b]:	759		367	2.06 AVR
			+	
2004-2005 Yr. Traffic Count, or "Current",				
Inbound Vehicle Trips in the AM Peak Hour:			380	
Difference (Projected Savings over Current):		•	-13	

It should be noted that approximately 20 percent of the projected maximum student population (830 x 20% = 166 students) was assumed to participate in bus ridership in Table 4. Of the 166 students projected to utilize the bus, it was assumed that the same proportion (62.7%, or 104 students) as those currently arriving during the peak hour will continue to arrive during the peak hour in the future. As noted previously in Table 2(b), the proposed increase in the School population (maximum of 80 students and 21
faculty/staff) was conservatively estimated to all arrive during the AM peak hour. Since the goal of this Plan is focused on student-based efforts, the faculty and staff travel behavior is maintained at the existing AVR of 1.02 while the student based AVR is projected to increase from 1.84 to 2.31 during the morning peak hour. Collectively, in order for the School to achieve the goal of this Plan, it will need to achieve a morning peak hour AVR of 1.98 and not generate more than 380 morning peak hour inbound vehicle trips as observed during the 2004-2005 School year or a baseline to be determined in conjunction with LADOT, as discussed in the following section.

TDM Plan Monitoring & Enforcement

As a project Condition of Approval, the School will submit annual monitoring reports to the Los Angeles Department of Transportation (LADOT), which detail the results of driveway traffic counts as they relate to the School's vehicle trip limit goals. The trip limit goals will be established through "baseline" counts to be based on either counts conducted for this purpose in Spring (April), if approved by LADOT, or in Fall (October). All counts will be performed and the reports prepared by a professional traffic engineering company; the School and LADOT shall agree in advance on a list of count companies the engineering company may use for this purpose. A penalty in the form of a temporary freeze in enrollment will take effect should any annual monitoring report after the first such report reveal that the School's "baseline" vehicle trip generation observed for the AM peak hour of the adjacent street system, or "performance standard," has been exceeded. A reduction in student enrollment shall be required if three consecutive annual monitoring reports show the School is exceeding its performance standard. The annual reporting will begin the first academic year in which the School increases enrollment beyond the current level of 750 students, with one

23

report prepared either each Fall, if "baseline" counts are conducted in October, or each Spring if the "baseline" is instead established in April of the school year.

The goal of this TDM Plan is to ensure that the addition of up to 80 students to the campus does not cause the School to generate any more vehicle trips associated with the morning arrival and afternoon departure of the School's population than the current enrollment established under the baseline conditions. The primary concern, and hence key "performance standard" of this zero net traffic growth goal, is the AM peak hour of the adjacent street system as explained at the beginning of this document. The volume of inbound and outbound vehicle trips generated by the School during this peak hour will be tracked and reported over time, and compared to the "baseline" trip generation of the School's current 750-student enrollment.

In the unlikely event that any annual monitoring report after the first such report observes that the School's three-day average exceeds its "baseline" vehicle trip average for the AM peak hour of adjacent street system, the School will be required to temporarily freeze its enrollment at its then current level. The School will not be permitted to increase enrollment beyond that level, until a future annual monitoring report or supplemental monitoring report demonstrates that the School is in compliance with the AM peak hour "baseline" average of inbound plus outbound vehicle trips. After the first ever annual monitoring report, however, the School will be given a one year grace period to adjust the TDM program and demonstrate compliance with the "baseline" through the second annual monitoring report, before the penalty of the temporary enrollment freeze shall take effect. In the unlikely event that three consecutive annual monitoring reports find that the School is exceeding its AM peak hour "baseline" vehicle trip average, the School will then be required to reduce its

24

enrollment to the level it can sustain through its TDM program, using count data from its most recent monitoring report and the calculation demonstrated in Table 5.

Table 5Sample Enrollment Penalty Calculation

	Student <u>Enrollment</u>	Vehicle <u>Trips (VTs)</u>	VT Factor (VTs per <u>Student)</u>
Hypothetical Baseline & Trip Limit Goal:	830	702	0.846
Hypothetical Observed VT Generation:	830	738	0.889
Trip Limit Goal / Observed Factor (702/0.889):	790		
Enrollment Penalty (Current – Future Enrollment):	-40		

The sample calculation in Table 5 estimates the enrollment level at which the observed trip generation "factor" is sufficient to keep School vehicle trips at their "baseline" limit. A trip limit goal of 702 vehicle trips for the AM peak hour of the adjacent street system, for example, is the equivalent of a peak hour trip generation factor of 0.846 trips per student if enrollment is at 830 students. If a factor of 0.889 is instead observed at this enrollment level, then a calculation that divides the trip limit goal by that observed factor to determine the student enrollment level needed to ensure the observed factor is sufficient to meet the School's established limit of 702 vehicle trips. This in turn can be used to determine the enrollment penalty for three consecutive years of noncompliance, shown in Table 5 as a hypothetical 40 student reduction for the following school year.

Required annual reporting to LADOT shall end once the School has demonstrated compliance with the AM peak hour baseline trip limit for three consecutive years, at the proposed "full enrollment" of 830 students. If the School elects to maintain a level of enrollment above the current 750 students but below the proposed full enrollment of

830, the School may notify LADOT of its decision to do so. In this case, the School will be released of annual reporting if it demonstrates compliance at this level for three consecutive years. Prior to increasing enrollment above this level, the School shall notify LADOT and the annual monitoring and reporting program shall continue as provided herein.

Additional information on the traffic count methodology, reporting procedures, and related TDM Plan amendment provisions included as part of this annual reporting element is supplied in Appendix A as part of the School's overall Transportation Monitoring Plan.

APPENDIX A

TRANSPORTATION MONITORING PLAN

APPENDIX A TRANSPORTATION MONITORING PLAN

The following outlines the Transportation Monitoring Plan for the proposed Buckley School Traffic Mitigation and Campus Enhancement Plan. This monitoring plan is separated into levels based on the responsible agency and the timing of the monitoring tasks, to give clear monitoring and enforcement responsibilities to the appropriate parties. Full implementation of this plan would be initiated upon City approval of the project, largely as part of the School's TDM Plan.

1. **Agency**: School Administration

Time Period: Prior to Each School Year and Ongoing

- a) Each student will be required to register their travel mode(s) to and from the School. Those students who have not yet made arrangements will be assisted in selecting an Acceptable Mode. No student's registration will be deemed complete until an Acceptable Mode has been selected and an agreement to abide by the TDM Program has been signed by their parent or guardian.
- b) Students will be allowed to change their travel modes only if a) they register a new Acceptable Mode, and b) any other affected students (e.g., other participants in the same carpool) also remain registered in an Acceptable Mode.
- c) A single vehicle identification permit will be issued to all registered carpools. A walk-in permit will be issued to students living within walking distance who register for that mode. Some flexibility to this requirement may be considered on a case-by-case basis by the School, but only if the requirement is deemed

to impose an undue hardship (i.e. disabled students). Students registered to use the School's bus system will not require permits.

- d) School administration shall implement a TDM program designed to eliminate the additional vehicle trips that would otherwise be generated by an increased student enrollment beyond the current 750 students. Such a TDM program shall focus on student carpooling, bus service, and/or other measures that reduce vehicle commute trips to the campus based upon an established baseline developed in conjunction with LADOT.
- 2. Agency: Driveway Traffic Monitors

Time Period: Each School Day, During Student Arrival and Departure Periods

- a) Each motorized vehicle (excluding School vehicles) entering the site and each student walking into the site will be checked for a permit each morning. Any student arriving by vehicle or walking into the site who does not have an appropriate permit will be required to report directly to a designated member of the School's administration. A record shall be kept of all such violations, and students shall be subject to appropriate disciplinary measures as discussed on page A-3 as a responsibility of the School administration.
- b) Students arriving by School vehicle or by bicycle shall be exempted from showing a permit.
- c) The Driveway Traffic Monitors shall also monitor the length of vehicle queues formed during student pick-up and drop-off periods. In the unlikely event that standing queues begin to extend beyond the front gate, the monitors shall direct the queues into appropriate holding areas entirely within the School grounds, i.e., new parking facility.

3. Agency: School Administration

Time Period: Ongoing

- a) The School administration shall maintain a log at all times of each covered student, their travel mode and any violations of the School's TDM policy.
- b) A hotline number shall be made available to the residents within 500 feet of School property to report any violation of the School's TDM Program and related policies. This hotline shall be attended during regular School hours. All reported violations shall be recorded in a log and investigated. Appropriate disciplinary actions shall be taken by the School administration if actual violations are found to have occurred. A record shall be kept of all such violations, and that student shall be subject to strict progressive disciplinary measures, as follows:
 - 1). Warning for the first violation;
 - 2). Detention for the second violation;
 - Suspension and/or suspension of driving privileges for the third violation and thereafter;
 - 4). Expulsion for extreme cases.

Parents/guardian found to be in violation will receive a warning call from the Head or Assistant Head of the School and repeated violations will result in the termination of the student contract for the following academic school year. Employees found to be out of compliance with the School's transportation, traffic and parking rules will also be subject to disciplinary action deemed appropriate by School administration.

 c) The administration will organize a task force of School personnel to conduct "sweeps" once per week of both the campus parking and the adjacent neighborhood streets. The purpose of the parking lot sweeps will be to ensure that only student vehicles that are registered with the Transportation Coordinator as transporting 3-student carpools are parked on campus, and that faculty/staff are properly observing the School's preferential carpool parking program. The purpose of the neighborhood sweeps will be to ensure that none of the School's students, faculty or staff are parking on the adjacent neighborhood streets while at class or at work. The School will maintain a log indicating the dates on which the parking sweeps are conducted and any violations observed to the preferred parking space restrictions and street parking prohibition.

This program will operate in conjunction with those mentioned previously. As part of this program, all School personnel will be required to register their vehicle license plate numbers with School administration and affix general School stickers to their vehicles. Likewise, parents of School students will be asked to register the license plate numbers of vehicles operated by their students at the time annual School contracts are signed. Parents of students and faculty/staff members who acquire a new vehicle during the school year will also be required to register the new vehicle with the School administration prior to driving it to/from campus.

4. **Agency**: School Administration

Time Period: Annually Each Fall

a) Monitoring will be conducted during the two-hour periods encompassing most of the School population's morning and afternoon commute to and from the campus (i.e., 7:00 to 9:00 a.m. and 2:30 to 4:30 p.m.). The purpose of these latter counts will be to demonstrate that the vehicle trips generated by the School population's morning commute are being held to the current "baseline" level, versus being shifted to outside the street peak hour of focus, and that the trip-reduction benefits realized in the morning are likewise reflected in the

afternoon departure of the campus population. All reported volumes, including "baseline" volumes, will be based on one consecutive three-day average (Tuesday through Thursday) of traffic counts conducted at the campus driveway. The counts shall be conducted during a typical school week void of national or other significant school holidays, or scheduled school special events. Over the same three-day period, monitoring shall also be kept to confirm that no vehicles were queued on-street during the morning student drop-off and afternoon student pick-up periods.

b) Submit a traffic monitoring report to LADOT either each fall, if the "baseline" is established in October, or each spring, if the "baseline" is instead established in April, starting the first school year that an increase in enrollment beyond the current 750 students is used. The traffic counts must be conducted and the reports prepared by a professional traffic engineering company contracted by the School and mutually agreed upon by LADOT. Required reporting shall end once the School has demonstrated compliance with the AM peak hour baseline trip limit for three consecutive years at "full enrollment" or other designated enrollment levels, until such time that enrollment is again increased towards the 830 student maximum enrollment.

The Annual Monitoring Report shall contain the following information:

- A summary of the registered modes for the beginning of the Fall term and the student enrollment for that year;
- The average number of vehicles entering and exiting the campus during the single hour between 7:00 AM and 9:00 AM with the highest volume;

- If the average number of vehicles entering campus exceeds the baseline trips, additional TDM measures will be recommended for implementation to reduce AM peak hour inbound trips to less than or equal to the baseline level.
- Observed occasions, if any, of vehicle queue lengths on-street during the morning student drop-off and afternoon student pick-up periods.
- Observed incidents of street parking by School students, faculty and staff, as logged on a weekly basis.

The Annual Monitoring Report shall be submitted to LADOT by either November 30th or May 30th of each academic school year following project approval until the third consecutive year at maximum enrollment. The School may discontinue conducting the vehicle counts and issuing the Annual Monitoring Report if total AM peak hour inbound trips remain at or less than the baseline trips after the third consecutive year at full enrollment. Discontinuation of the annual monitoring counts and report shall not relieve the School of the obligation to implement the then approved TDM program or to keep logs of registered modes and violations, daily gate closure times, and neighborhood parking sweeps.

c) The School will provide notification to LADOT when enrollment will be increased above any established interim level at which the School gained temporary release from the required annual monitoring reports due to three consecutive years at full enrollment of demonstrated compliance with the AM peak hour baseline trip limits.

5. Agency: LADOT

Time Period: Annually

- a) Within 30 days of receiving the Annual Monitoring Report, LADOT shall complete its review and determine whether the School has met its obligations to maintain a trip generation within the baseline trip cap limit. If the School has not met this obligation, then LADOT shall determine whether the additional TDM measures listed in the Annual Monitoring Report are likely to be sufficient to reduce the trip generation to below the baseline trip cap. If LADOT determines that the measures are not likely to be sufficient, then it shall require a redraft of the report to contain additional and/or more effective measures.
- b) Issue "warning of noncompliance" to the School if a report is not received by either November 30th or May 30th of each year, based on whether the "baseline" is established in October or April, allowing the School 30 school days (i.e., exclusive of holiday breaks) to submit a report.
- c) The School may from time to time, within or outside of its Annual Monitoring Reports, request substitutions, modification, or deletions be made to its TDM Program elements. If LADOT, in its reasonable discretion, determines that such substitutions, modifications, or deletions are likely to still maintain vehicle trips at or below the baseline trip cap limit, it shall grant the request. LADOT may make the granting of such a request subject to the Annual Monitoring Report showing up to three successive years of compliance by the School following implementation of the substitution or deletion, even if this requires the extension or reinitiation of the monitoring program.

Definitions

<u>Acceptable Mode</u> -- A mode of transport for students traveling to campus prior to the start of each daily school session which produces less than 0.5 inbound vehicle trips per student. Acceptable Modes shall include, but are not limited to, parent/guardian-driven carpools with two or more students, student-driven carpools with three or more students, public transit, the school student bus system, bicycling and walking. Specifically, modes excluded are parent/guardian-driven vehicles with one student or student-driven vehicles with one or two students. Appropriate allowances may be made by School administration for disabled students, carpools with one or more students temporarily absent, and/or extenuating circumstances where student participation in any Acceptable Mode is deemed infeasible.

<u>AM Peak Hour Trips</u> -- The average over a three-weekday period of all motorized vehicle trips, including School vehicles and automobiles driven by parents/guardians, students and staff but excluding bicycles, which enter and exit the campus during the four consecutive 15-minute periods between 7:00 AM and 9:00 AM with the highest traffic volume.

<u>Annual Monitoring Report</u> -- Reports produced in accordance with Section _____ which are used to determine compliance with the limit of baseline AM Peak Hour Inbound Trips.

<u>LADOT</u> -- The General Manager of the City of Los Angeles Department of Transportation or his/her designee, or his/her successor or their designee.

Project Approval -- Approval of CUP _____.

<u>School</u> -- The educational facilities permitted to operate under CUP _____, whether those facilities are operated by the Buckley School as its Stansbury Campus or under another name or by its successor in interest.

<u>School Vehicle</u> -- Vehicles owned or operated by the School, or operating under contract to the School, for transporting multiple students.

<u>TDM Program</u> -- The set of measures designated to be implemented to maintain vehicle trip generation at existing levels by the Covered Students as approved by LADOT.

APPENDIX M:

SLOPE DENSITY CALCULATION WORKSHEETS FOR ALTERNATIVE B

subdivision surveying planning drainage grading condominium

S.E.C. CIVIL ENGINEERS, INC.

16823 Saticoy Street

Van Nuys, California 91406

Telephone (818) 782-2788 FAX (818) 782-0111 E-Mail admin@spindlereng.com

April 18, 2005

Cindy Starrett Latham & Watkins 633 W. Fifth Street, Suite 4000 Los Angeles, CA 90071

Re: Job No. 7306.00

Dear Cindy:

Enclosed are our slope density calculations for the Buckley School site and the property north of the Buckley School site. The slope density calculations are based on the following:

- Enclosed is a copy of the Sherman Oaks, Studio City, Toluca Lake and Cahuenga Pass general plan. As you will note, a portion of the Buckley School site is in the minimum density category and a portion of the site is in the very low-density category. The parcel to the north is almost entirely in the minimum density category.
- In the footnotes of the general plan, Note No. 8 states that when property is in the minimum or very low category with 15% or greater natural slope the maximum density will be 1 du per acre.
- Under Section 17.05C property within the minimum density category and hillside areas shall be controlled by the slope density formula.
- Under Section 17.02 the slope density may be computed based on the City engineer's topography map. Also, under that section slopes may be computed by either parcel area or by 500-foot grid increments as shown on City engineer's topography map.

Cindy Starrett Latham & Watkins 4-18-05 Page 2 of 2

The slope density analysis, which we performed, is based on 500 x 500 foot grids using the City engineer's topography map. Areas that do not fall within the minimum density category are considered 1 du per acre. The result of this evaluation is 11 units on the northerly parcel where the school is located and 6 units on the southerly parcel near the school.

If you have any questions, please feel free to call.

Sincerely,

Larry G. Gray President

LGG:Imr

Enc: General Plans (2) Slope Density Calculations (4) Footnotes (2) Sec. 17.05. Design Standards (2) Sec. 17.02. Definitions LA Dept of City Planning (2)

cc: Paul Horovitz, Buckley School

7306.00/Buckley School/2-13-08/Cindy Starrett Re Slope Density Calculations 4-18-05

7306.00 SLOPE DENSITY CALCULATIONS 4/14/2005

NORTHERN PROPERTY

Grid 1

Contour	Length	
770	20	
780	5	
Total	25	

Grid 4

Contour	Length
830	100
820	300
810	385
800	205
790	175
780	170
770	130
760	25
Total	1490

Grid 7

Contour	Length
810	650
820	805
830	775
840	690
850	575
860	455
870	305
880	220
890	185
900	230
910	105
920	60
930	10
Total	5065

Contour	Length
820	195
810	485
800	650
790	670
780	700
770	920
760	325
Total	3945

Grid 5

Contour	Length
790	120
800	260
810	405
820	325
830	405
840	235
850	65
Total	1815

Grid 10

Contour	Length
900	10
910	20
920	25
930	30
Total	85

Grid 3

Contour	Length
830	10
Total	10

Grid 6

Contour	Length
880	80
870	200
860	305
850	405
840	530
830	650
820	780
810	850
800	1065
790	905
780	555
770	180
Total	6505

Grid 9

Contour	Length		
800	55		
810	330		
820	380		
830	355		
840	300		
850	280		
860	255		
870	245		
880	185		
890	60		
900	55		
910	50		
920	40		
930	15		
Total	2605		

Minimum Density Area

S = (IL / A) x 100

S = average natural slope in percent

I = contour interval in feet

L = total length of all contours

A = area in square feet

D = (50 - S) / 35

D = max. number of dwelling units per gross acre

S = average natural slope in percent

Grid	1	L	Α	S	D	A(ac)	Allow. Units
1	10	25	1625	15.38	0.99	0.04	0.04
2	10	3945	206600	19.09	0.88	4.74	4.19
3	10	10	1020	9.80	0.00	0.02	0.00
4	10	1490	25988	57.33	0.00	0.60	0.00
5	10	1815	60400	30.05	0.57	1.39	0.79
6	10	6505	187500	34.69	0.44	4.30	1.88
7	10	5065	158200	32.02	0.51	3.63	1.87
9	10	2605	62500	41.68	0.24	1.43	0.34
10	10	85	1925	44.16	0.17	0.04	0.01
				DWELLING	UNITS AL	LOWED =	9.11

Very Low Density Area

Grid	Α	A (ac)
2	12200	0.28
3	9780	0.22
5	46400	1.07
7	27800	0.64
8	1600	0.04
Total Area (ac.) = 2.24		2.24

Allowed: 1 dwelling units per acre

DWELLING UNITS ALLOWED = 2.24 x 1 = 2.24

Total dwelling units allowed = 9.11 + 2.24 = 11.35

TOTAL DWELLING UNITS ALLOWED = 11 UNITS