DRAFT SUPPLEMENTAL Environmental Impact Report

CEDARS-SINAI MEDICAL CENTER WEST TOWER PROJECT ENV 2008-0620-EIR SCH # 2008031040

APPENDICES

LEAD AGENCY:

CITY OF LOS ANGELES DEPARTMENT OF CITY PLANNING ENVIRONMENTAL REVIEW SECTION 200 NORTH SPRING STREET, ROOM 750 LOS ANGELES, CALIFORNIA 90012

APPLICANT:

CEDARS-SINAI MEDICAL CENTER 8720 BEVERLY BOULEVARD LOS ANGELES, CALIFORNIA 90048

September 2008

TABLE OF CONTENTS

APPENDICES

APPENDIX A NOTICE OF PREPARATION, INITIAL STUDY, PUBLIC SCOPING COMMENTS

- A-1 NOTICE OF PREPARATION (NOP)
- A-2 INITIAL STUDY
- A-3 NOP WRITTEN COMMENTS
- A-4 PUBLIC SCOPING MEETING COMMENTS
- APPENDIX B 1993 CSMC MASTER PLAN EIR SUMMARY CHART
- APPENDIX C 1993 CSMC DEVELOPMENT AGREEMENT
- APPENDIX D AIR QUALITY & NOISE IMPACT REPORT
- APPENDIX E TRAFFIC IMPACT STUDY
- APPENDIX F ALTERNATIVES SUPPORTING TECHNICAL ANALYSIS DOCUMENTS
- APPENDIX G MITIGATION MONITORING PROGRAM

APPENDIX A

NOTICE OF PREPARATION INITIAL STUDY PUBLIC SCOPING COMMENTS

APPENDIX A

<u>APPENDIX A-1</u> NOTICE OF PREPARATION (NOP)

DEPARTMENT OF CITY PLANNING 200 N. Spring Street, Room 750 Los Angeles, CA 90012-4801

CITY PLANNING COMMISSION

JANE ELLISON USHER PRESIDENT WILLIAM ROSCHEN VICE-PRESIDENT DIEGO CARDOSO REGINA M. FREER ROBIN R. HUCHES FR. SPENCER T. KEZIOS CINDY MONTANEZ MICHAEL K. WOO GABRIELE WILLIAMS

COMMISSION EXECUTIVE ASSISTANT (213) 978-1300

CITY OF LOS ANGELES

CALIFORNIA

ANTONIO R. VILLARAIGOSA

March 7, 2008

NOTICE OF PREPARATION and PUBLIC SCOPING MEETING ENVIRONMENTAL IMPACT REPORT

EIR NO.: PROJECT NAME: PROJECT ADDRESS: COMMUNITY PLAN: COUNCIL DISTRICT: ENV 2008-0620-EIR Cedars-Sinai Medical Center 8720 Beverly Boulevard, Los Angeles, CA Wilshire 5 (Jack Weiss)

DUE DATE FOR PUBLIC COMMENTS: Monday, April 7, 2008

SCOPING MEETING: An informational scoping meeting and workshop will be held to receive public comments regarding the appropriate scope and content of the environmental information to be included in the Draft Environmental Impact Report (Draft EIR). The meeting will be in an open house format, with various stations and display boards provided for questions, and comment forms provided for input. The public scoping meeting for this project will be held on:

Thursday, March 27, 2008
6:00 p.m. to 8:00 p.m.
Cedars-Sinai Medical Center, Harvey Morse Conference Center
8700 Gracie Allen Drive, Plaza Level
Los Angeles, CA 90048
Validated parking will be available in Parking Structure No. 4 and
Parking Lot No. 7 (see map)

PROJECT DESCRIPTION: The Cedars-Sinai Medical Center (CSMC or the "Applicant") proposes to develop a new inpatient/medical support facility (the "Project") on the CSMC Campus. The Project would be located on approximately two acres at the northwest corner of Gracie Allen Drive and George Burns Road (the "Project Site"), which is currently occupied by an approximately 90,000 square foot, two-story existing building at 8723 Alden Drive (the "Existing Building") and an adjacent surface-level visitor parking lot. The Project consists of the proposed demolition and construction at the Project Site, as well as the "net" operational increase in development to the CSMC Campus, defined as the addition of 200,000 square feet of development rights to the existing CSMC Master Plan and Development Agreement with the City of Los Angeles¹, and all associated entitlements and permits.

EXECUTIVE OFFICES

S. GAIL GOLDBERG, AICP DIRECTOR (213) 978-1271

JOHN M. DUGAN, AICP DEPUTY DIRECTOR (213) 978-1274

EVA YUAN-MCDANIEL DEPUTY DIRECTOR (213) 978-1273 FAX: (213) 978-1275

INFORMATION (213) 978-1270 www.planning.lacity.org

¹ The Project Site is part of the CSMC Master Plan and Development Agreement (Ordinance Nos. 168,847 and 168,848, respectively), which were approved in 1993. These documents provide for a comprehensive modernization and expansion program for the entire CSMC Campus. Authorized development under the Master Plan is approximately 700,000 square feet, of which approximately 512,350 square feet has already been developed or planned for development, leaving approximately 187,650 square feet of available remaining development rights.

The additional 200,000 square feet of expansion entitlement requested for the Project will be accommodated at the CSMC Campus at the current location of and through the demolition of the existing 90,000 square foot Existing Building and an adjacent surface parking lot, and the subsequent construction of an 11-story building (the "West Tower") to consist of approximately 477,650 square feet of net floor area (approximately 549,300 square feet of gross floor area) and associated parking. Of the total floor area, 200,000 square feet would be new net additional floor area under this current Project proposal; the other 277,650 square feet comprise 90,000 net square feet transferred from the demolition of the Existing Building and 187,650 square feet previously approved and vested under the 1993 Master Plan.

Summary of Development Entitlements

Already Developed or	512,350 sq. ft.	Entitlement Transfer from	90,000 sq. ft.
Planned		Demolition of Existing	
		Building	
Remaining Entitlements	187,650 sq. ft.	Remaining Entitlements	187,650 sq. ft.
from Existing Master Plan		from Existing Master Plan	
		Proposed Additional	200,000 sq. ft.
		Entitlements	
Existing Entitlements	700,000 sq. ft.	Proposed New Building	477,650 sq. ft.
under Master Plan			

The West Tower will be used for medical purposes, including inpatient services, medical suites, research, administrative and diagnostic/ER space. The Project will also include an attached seven-level parking structure (three subterranean, one at grade, and three above grade) to provide approximately 700 parking spaces.

With the exception of an amendment to incorporate the additional net 200,000 square feet (or approximately 230,000 gross square feet) of medical service floor area for the West Tower, the Project would be built in conjunction with the ongoing implementation of the 1993 Master Plan. To accommodate construction of the Project as proposed, the following legislative or discretionary approvals are anticipated for the conceptual planning and implementation phases of the Project:

- Zone Change to change the conditions of the current [T][Q]C2-2D-O zoning designation;
- Height District Change to change the permitted floor area ratio (FAR) of 2.46:1 to 2.71:1;
- Amendment to the existing Development Agreement to permit an additional 200,000 square feet of medical center uses and parking;
- Haul Route Permit;
- B-Permit for necessary street, sewer, storm drain, and lighting improvements;
- Grading Permits;
- Demolition Permits;
- Building Permits;
- OSHPD approvals and licenses; and
- Any other necessary discretionary or ministerial permits and approvals required for the construction or operation of the Project.

ENVIRONMENTAL FACTORS POTENTIALLY AFFECTED: The original 1993 Master Plan and Development Agreement approvals were evaluated in an environmental impact report (the "Original EIR") for the Cedars-Sinai Campus Master Plan (EIR No. 90-0643-ZC-HD). The current Project environmental review considers the physical construction effects due to the proposed demolition and construction at the Project Site, and the net change in operational characteristics due to the addition of 200,000 net square feet of medical center uses. Specifically, under the current Project environmental review, 200,000 square feet of the total 477,650 square feet of Project construction would be new floor

area; the other 277,650 square feet are comprise 90,000 square feet from the Existing Building (proposed for demolition) and 187,650 square feet remaining entitlement from the Master Plan. All of the square footage except the new 200,000 square feet was analyzed by the Original EIR. The Project EIR will analyze the net change in land use, as well as the demolition and construction related impacts associated with the West Tower building.

An Initial Study was completed to determine the areas of focus for the Project EIR. The following issues will be included in the Project EIR: Aesthetics, Air Quality, Noise, and Transportation/Traffic. All other environmental issues have been found to be less than significant and will be addressed in summary fashion under the Impacts Found to be Less Than Significant Section of the Project EIR.

You are being notified of the City of Los Angeles' intent, as Lead Agency, to prepare an EIR for the Project as discussed above, because the Project is located in an area of interest to you and/or the organization you represent. The attached materials comprise a map showing the location of the scoping meeting, a site plan of the proposed Project, a radius map showing all properties within 500 feet of the Project site, and a vicinity map showing the location of the Project site.

The Environmental Review Section welcomes your comments regarding environmental impacts of the Project that you believe are relevant for inclusion in the Project EIR. Written comments must be submitted to this office by 5:00 p.m. on Monday, April 7, 2008.

Please direct your comments to:

Adam Villani Environmental Review Section Department of City Planning 200 N. Spring Street, Room 750 Los Angeles, CA 90012 (213) 978-1343 (fax) Adam.Villani@lacity.org

S. Gail Goldberg, AICP Director of Planning

Adam Villani Environmental Review Coordinator

SCOPING MEETING LOCATION AND PARKING

SITE: 8720 BEVERLY BLVD.

PLANNING ASSOCIATES, INC. 4040 VINELAND AVENUE #108 STUDIO CITY CA 91604 (818) 487-6767

APPENDIX A

APPENDIX A-2 INITIAL STUDY

CITY OF LOS ANGELES CALIFORNIA ENVIRONMENTAL QUALITY ACT

INITIAL STUDY

(Article I - City CEQA Guidelines)

Council District:	District 5	Date:	March 7, 2008
Lead City Agency:	City of Los Angeles, Department of P	lanning	
Project Title:	Cedars-Sinai Medical Center: Add Rights	itional D	evelopment

I. <u>PROJECT DESCRIPTION</u>

A. Location

The proposed project (the "Project") is located within the Cedars-Sinai Medical Center ("CSMC") main campus (the "CSMC Campus" or the "Property"), which is comprised of approximately 24.1 net acres and located at 8720 Beverly Boulevard in the Wilshire Community Plan Area of the City of Los Angeles. The CSMC Campus, roughly square in shape, is generally bounded by Beverly Boulevard to the north, San Vicente Boulevard to the east, Third Street to the south, and Robertson Boulevard to the west (see Exhibit 1, Regional Location Map). The CSMC Campus contains an internal network of vacated private streets, including George Burns Road, Sherbourne Drive, and Gracie Allen Drive, which provide access to facilities within the CSMC Campus. Specifically, the Project is proposed on approximately 2.65 net acres at the northwest corner of Gracie Allen Drive and George Burns Road (the "Project Site"), which is currently occupied by a 90,000 square-foot, two-story medical service building (the "Existing Building") and a surface-level, visitor parking lot ("Existing Parking Lot") (see Exhibit 2, Local Vicinity Map).

Uses surrounding the CSMC Campus include medical buildings located to the south and connected to the CSMC Campus by a bridge, containing several CSMC programs but not owned by CSMC (the "Applicant"); commercial and residential uses to the north, east, and west; and the City of West Hollywood border to the north. Several commercial uses are located directly adjacent to the western and southern edges of the CSMC Campus. The Beverly Center shopping complex is directly east of the campus, across San Vicente Boulevard.

B. <u>Background</u>

In August of 1993, the City of Los Angeles (the "City") approved a Master Plan for the CSMC Campus (the "Master Plan"), allowing 700,000 square feet of floor area¹ of additional development

^{1 &}quot;Floor area" (square feet or "sf") is calculated as defined in Los Angeles Municipal Code Section 12.03. Floor area is that area in square feet confined within the exterior walls of a building but not including the area of the following: exterior walls, stairways, shafts, rooms housing building-operating equipment or machinery, parking areas with associated driveways and ramps, space for the landing and storage of helicopters, and basement

to the established CSMC at the Property. The City approved the Master Plan through a Zone Change and Height District Change ordinance (City Council Ordinance 168847, CPC No. 87-759-ZC, CPC No. 87-760-HD) (the "Zone Change"). The City also entered into a Development Agreement with CSMC that vested development of 700,000 square feet of entitlement for 15 years, until August 2008 (City Council Ordinance 168848, CPC No. 92-0530-ZC, CPC No. 92-0533-HD, CPC No. 92-0534-DA), and certified an environmental impact report (the "Original EIR") for the expansion of the CSMC Campus (EIR No. 90-0643-ZC-HD).

On August 10, 2007 the City approved an amendment to the Development Agreement to extend the term of the 700,000 square feet of entitlements under the Development Agreement for an additional 15 years, until August 11, 2023 (City Council Ordinance 178866, CPC No. 1992-534-DA-M1).

As a result of the damage incurred to the Property by the 1994 Northridge earthquake, CSMC focused its development efforts on reconstructing buildings damaged in the earthquake, rather than on implementation of the comprehensive development scheme permitted through the Master Plan. To date, CSMC has completed a number of infill projects (totaling approximately 73,501 square feet) approved under the Master Plan.

In 2008 CSMC anticipates initiating construction of the Advanced Health Sciences Pavilion (the "Pavilion") on a site within the CSMC Campus, just south of Gracie Allen Drive between Sherbourne Drive and San Vicente Boulevard, pursuant to the Master Plan. A total of 187,650 square feet of development rights will remain under the Master Plan after construction of the Pavilion. The 187,650 square feet of residual development rights were fully analyzed in the Original EIR.

C. Purpose

The Applicant proposes a Master Plan Amendment, to address expansion of existing CSMC Campus facilities, through a Zone Change, Height District Change, and amendment to the adopted Development Agreement to add 100 new inpatient beds and ancillary services (equivalent to an additional 200,000 square feet of floor area), to serve the growing demand for medical services as the area's population increases and to accommodate updated medical technologies at the CSMC Campus. The Project is intended to serve the growing demand for medical services as the area's population increases, as well as to accommodate updated medical technologies and increase efficiency within the CSMC Campus. To attain these objectives, the Applicant requests approval of the Project to add 100 new inpatient beds (equivalent to 200,000 square feet of floor area for new medical uses) within a proposed 477,650 square-foot building (the "West Tower") located at the Project Site. The West Tower would be comprised of 200,000 square feet of floor area pursuant to this application, 187,650 square feet of previously approved and vested development remaining (but not yet built) under the previous Master Plan entitlement, and 90,000 square feet of floor area offset from the Existing Building to be demolished and incorporated into the West Tower. The purpose of the Project is to accommodate new inpatient uses at the CSMC Campus. The Project seeks to accomplish the following:

- The continued provision of medical services and research of the existing CSMC;
- The expansion of inpatient services (including a range of inpatient diagnostic and treatment facilities, research facilities, medical suites, and administrative space) within the CSMC Campus, and specifically at the Project Site; and
- The provision of additional parking to accommodate the expanded inpatient services.

storage areas (Added by Ordinance No. 163,617, effective 6/21/1988).

D. Project Description

The Initial Study considers the physical construction effects due to the proposed demolition and construction at the Project Site, as well as the "net" operational change of uses, defined as the addition of 200,000 square feet of development rights to the existing CSMC Master Plan and Development Agreement with the City of Los Angeles, along with all associated entitlements and permits. The proposed demolition at the Project Site will consist of the existing 90,000 square-foot Existing Building and the Existing Parking Lot, which will accommodate development of the new West Tower with associated parking (see Exhibit 3, Site Plan). The West Tower will utilize the 90,000 square feet of floor area transferred from the Existing Building and the 187,650 square feet of development rights remaining under the Master Plan (both of which have already been analyzed for environmental impacts in previous environmental documents), plus the 200,000 square feet (or the equivalent of 100 inpatient beds of new entitlement), thereby accounting for a total building size of 477,650 square feet of new construction.

<u>Project Characteristics</u> - With the additional 100 inpatient beds (200,000 square feet of development entitlement) proposed by the Project, the Applicant plans to build a facility that is 477,650 square feet in floor area (i.e., the West Tower), along with an adjoining 7-level (700 space) parking structure. Specifically, only 200,000 square feet of the total 477,650 square feet of the new construction would be "new" floor area not previously approved under existing entitlements. The remaining floor area comprising the West Tower will come from the residual 187,650 square feet of previously approved and vested development remaining under the Master Plan (after completion of the Pavilion), and 90,000 square feet "credit" from the Existing Building (after it is demolished).

The 100 new inpatient beds will be contained in the West Tower, which is anticipated to be 11 stories and 185 feet high, to be used for medical purposes. The attached 7-level parking structure, to include three subterranean levels, one level at grade and three levels above grade, would provide 700 parking spaces.

Certain components of the West Tower and the 700-space parking structure have already been analyzed in the Original EIR. Although the Existing Parking Lot will be demolished to accommodate the West Tower, that demolition was approved in 1993 as part of the Master Plan and Original EIR, and therefore is not part of the Project. Landscaping and hardscape (i.e., sidewalks, plazas and planter walls), directional and tenant signage, and security, ambient and accent lighting would be installed for the West Tower, but these components were also previously approved in the Original EIR.

In summary, the Project consists of the following elements:

- Addition of 100 new inpatient beds and ancillary services (200,000 square feet of floor area for medical center uses), to be combined with the residual 187,650 square feet previously approved and vested by the Master Plan and Development Agreement and 90,000 square feet from the Existing Building, to construct the new West Tower, with a pedestrian bridge connection to the adjacent North Tower;
- Demolition of the 90,000 square-foot Existing Building and adjacent Existing Parking Lot; and
- Construction of a 7-level (700 space) adjoining parking structure.

<u>Project Approvals</u> - The following approvals are anticipated for the conceptual planning and implementation phases of the Project:

- Zone Change to amend the conditions of the [T][Q]C2-2D-O zoning designation to approve an additional 100 inpatient beds and ancillary services (or the equivalent of 200,000 square feet of floor area) of development entitlement;
- Height District Change to change the permitted floor area ratio (FAR) of 2.46:1 to 2.71:1;
- Amendments to the existing Development Agreement and Master Plan to permit an additional 100 inpatient beds and ancillary services (or the equivalent of 200,000 square feet of floor area for medical uses) and related parking;
- Haul Route Permit;
- B-Permit for necessary street, sewer, storm drain, and lighting improvements;
- Grading Permits;
- Demolition Permits;
- Building Permits;
- OSHPD approvals and licenses; and
- Any other necessary discretionary or ministerial permits and approvals required for the construction or operation of the Project.

<u>Project Schedule</u> - Although an exact construction schedule is not known at this time, pursuant to the existing Development Agreement and proposed Amendment, the new West Tower is anticipated to be operational by year 2023. Demolition and construction of the new building is anticipated to take approximately 36 months.

Project Assumptions - The review in this Initial Study assumes that, unless otherwise stated, the Project will be designed, constructed and operated following all applicable laws, regulations, ordinances and formally adopted City standards (e.g., Los Angeles Municipal Code and Bureau of Engineering Standard Plans). The proposed new building will include inpatient uses, therefore, the Office of Statewide Health Planning and Development (OSHPD), not the City of Los Angeles, has jurisdiction over building permits and related permits. The proposed new building will comply with all applicable statewide regulations. It is also assumed that construction will follow the uniform practices established by the Southern California Chapter of the American Public Works Association (e.g., Standard Specifications for Public Works Construction and the Work Area Traffic Control Handbook) as specifically adapted by the City of Los Angeles (e.g., The City of Los Angeles Department of Public Works Additions and Amendments to the Standard Specifications For Public Works Construction (AKA "The Brown Book," formerly Standard Plan S-610)). As a covered entity under Title II of the Americans with Disabilities Act, the City of Los Angeles does not discriminate on the basis of disability and, upon request, will provide reasonable accommodation to ensure equal access to its programs, services, and activities. Pursuant to state statutes and regulations, the facility will comply with all applicable OSHPD regulations.

II. EXISTING ENVIRONMENT

The Project Site is part of the CSMC Campus, which is surrounded by a mix of CSMC and commercial uses, including CSMC medical-related uses on George Burns Road and Gracie Allen Drive and commercial uses on Beverly Boulevard and Robertson Boulevard. Current uses on the Project Site consist of the Existing Building and the Existing Parking Lot. The Existing Building consists of approximately 90,000 square feet of medical support facilities. The CSMC Campus is

comprised of 24.1 net (or approximately 26 gross) acres and includes approximately 1.8 million square feet of hospital and hospital-related uses. The 11-story Pavilion building, which is currently in the building permit phase, contains 379,000 square feet of floor area and is anticipated to be complete by the end of year 2011 (construction beginning in 2008). Completion of the Pavilion would increase total floor area on the CSMC Campus Property to approximately 2.2 million square feet.

The Project Site and surrounding area is characterized as urbanized, with a mix of moderately dense medical, commercial and residential uses. The Project Site and all surrounding properties have undergone disturbance previously resulting from development of the existing medical and commercial uses.

III. ENVIRONMENTAL EFFECTS

A. Criteria

The two sets of criteria, screening and significance criteria, found in the *L.A. CEQA Thresholds Guide: Your Resource for Preparing CEQA Analyses in Los Angeles (Thresholds Guide)* will be used to evaluate the potential for project impacts in this Initial Study. The screening criteria are used to determine whether a significant impact could potentially occur and/or whether further study is needed. The significance criteria are also used to evaluate the anticipated level of impact, and hence focus the area of issues to be addressed through further study.

An Environmental Impact Report (EIR) was previously prepared to address approval and development of 700,000 square feet of CMSC Campus uses under the Master Plan. The Original EIR was certified (EIR No. 90-0643-ZC-HD) and forms the basis of this Initial Study review for characterizing the "net" impact for the additional 200,000 square feet of medical uses comprising the Project. The Original EIR is hereby incorporated by reference.

Pursuant to CEQA Guidelines Section 15063, the analysis in this Initial Study for the Project will be used to: 1) provide the Lead Agency with information for deciding whether to prepare an EIR; 2) assist in the preparation of an EIR (if required) by focusing the EIR on effects determined to be potentially significant, identifying effects determined not to be significant, and explaining the reasons for those determinations; 3) identify what type of EIR (i.e., Supplemental EIR) process would be appropriate; and 4) determine whether a previously prepared EIR (i.e., the Original EIR) could be used to support the Project.

In accordance with CEQA Guidelines Sections 15162 and 15163, this Initial Study also considers whether the Project's proposed revisions to the approved Master Plan would: 1) require major revisions to the Original EIR, because the Project would create either new significant environmental impacts not previously studies in the Original EIR or a substantial increase in the severity of any significant impact previously identified in the Original EIR; or 2) substantially change the circumstances under which the Master Plan is undertaken so as to require major revisions of the Original EIR due to the involvement of new significant environmental effects or a substantial increase in the severity of previously identified significant effects; or 3) whether new information of substantial importance, which was not known and could not have been known with the exercise of reasonable diligence at the time the Original EIR was certified as complete, meeting the test of CEQA Guidelines section 15162(a)(3) has arisen.

B. <u>References</u>

Sources of information that adequately support findings of no or less than significant impact are referenced by number following each question in Section III. Answers to questions not addressed specifically by an applicable reference are discussed in the comment section.

General Regulatory and Planning Documents

- 1. California Building Standards Commission, 1994. <u>Uniform Building Code</u>, [California Code of Regulations, Title 24, Part 2]. Table 18-1-B.
- 2. <u>California Code of Regulations</u>, Section 15064.5 "Determining the Significance of Impacts to Archeological and Historical Resources."
- 3. California Dept. of Conservation, Div. of Mines and Geology. California Geological Survey. Alquist-Priolo Earthquake Fault Zones.
- 4. California Dept. of Conservation. Farmland Mapping & Monitoring Program.
- 5. City of Los Angeles, Bureau of Sanitation. 1996. Sewer Facilities Charge, Sewage Generation Factors for Residential and Commercial Categories.
- 6. City of Los Angeles, Dept. of Public Works, Bur. Engineering. <u>Historic Resources</u> <u>Inventory</u>. Electronic data base.
- 7. City of Los Angeles, Department of Public Works. May 2002. Development Best Management Practices Handbook.
- 8. City of Los Angeles, Dept. of Public Works. 2007. Hyperion Service Area.
- 9. City of Los Angeles. Municipal Code.
- 10. Flood Map. Federal Emergency Management Agency. <u>Flood Insurance Rate Maps</u>. Community Panel number 0607200005A
- 11. General Plan. City of Los Angeles, Dept. of City Planning. <u>General Plan</u>. Including community plans and technical elements. When identified, the project area Community Plan is the Wilshire Community Plan, update adopted September 19, 2001.
- 12. Geologic Map. California Dept. of Conservation, Div. of Mines and Geology. <u>Geologic</u> <u>Map of California: Los Angeles Sheet</u>.
- 13. Thresholds. City of Los Angeles, Dept. of Environmental Affairs. <u>L.A. CEQA Thresholds</u> <u>Guide: Your Resource for Preparing CEQA Analyses in Los Angeles.</u> 2006.
- 14. U.S. Department of the Interior. National Park Service, National Register of Historic Places

Site-Specific Documents

- 15. City of Los Angeles, Draft Environmental Impact Report (including technical studies). Cedars-Sinai Medical Center Master Plan. EIR No. 90-0643(ZC)(HD). April 1992.
- 16. City of Los Angeles, Final Environmental Impact Report (including technical studies).

Cedars-Sinai Medical Center Master Plan. EIR No. 90-0643(ZC)(HD). September 1992.

- 17. City of Los Angeles. Ordinance No. 168.847. 1993. Zone Change for Cedars-Sinai Medical Center.
- 18. City of Los Angeles. Ordinance No. 168,848. 1993. Development Agreement between Cedars-Sinai Medical Center and the City of Los Angeles.
- 19. City of Los Angeles. Ordinance No. 178,866. 2007. Amendment to the Development Agreement between Cedars-Sinai Medical Center and the City of Los Angeles.

C. Environmental Checklist

	Issues	Potentially Significant Impact	Less Than Significant With	Less Than Significant	No Impact
	1. AESTHETICS Would the project:				
	a) Have a substantial adverse effect on a scenic vista? Reference: 11			×	
	 b) Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway? Reference: 11 			×	
	 c) Substantially degrade the existing visual character or quality of the site and its surroundings? Reference: See Section IV, Environmental Impact Evaluation. 		×		
	 d) Create a new source of substantial light or glare that would adversely affect day or nighttime views in the area? Reference: See Section IV, Environmental Impact Evaluation. 		×		
:	 2. AGRICULTURE RESOURCES – Would the project: a) Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use? Reference: 4, 11 				×
	 b) Conflict with existing zoning for agricultural use, or a Williamson Act contract? Reference: 4, 11 				×
	 c) Involve other changes in the existing environment, which, due to their location or nature, could result in conversion of farmland, to non-agricultural use? Reference: 4, 11 				×

3. AIR QUALITY -- Would the project:

Issues	Potentially Significant Impact	Less Than Significant With	Less Than Significant	No Impact
a) Conflict with or obstruct implementation of the applicable air quality plan? Reference: See Section IV, Environmental Impact Evaluation.	×			
 b) Violate any air quality standard or contribute substantially to an existing or projected air quality violation? Reference: See Section IV, Environmental Impact Evaluation. 	×			
c) Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is in non-attainment under an applicable federal or state ambient air quality standard (including releasing emissions that exceed quantitative thresholds for ozone precursors)? Reference: See Section IV, Environmental Impact Evaluation.	X			
 d) Expose sensitive receptors to substantial pollutant concentrations? Reference: See Section IV, Environmental Impact Evaluation. 	×			
 e) Create objectionable odors affecting a substantial number of people? Reference: See Section IV, Environmental Impact Evaluation. 	×			
 4. BIOLOGICAL RESOURCES – Would the project: a) Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service? Reference: 11, 15 				X
 b) Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations or by the California Department of Fish and Game or US Fish and Wildlife Service? Reference: 11, 15 				×
c) Have a substantial adverse effect on federally protected wetlands as defined by Section 404 of the Clean Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means? Reference: 11, 15				X
 d) Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites? Reference: 11, 15 				×
 e) Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance? Reference: 11, 15 				×

Issues	Potentially Significant Impact	Less Than Significant With	Less Than Significant	No Impact
 f) Conflict with the provisions of an adopted Habitat Conservation Plan or other approved local, regional, or state habitat conservation plan? Reference: 11, 15 				×
 5. CULTURAL RESOURCES – Would the project: a) Cause a substantial adverse change in the significance of a historical resource as defined in California Code of Regulations Section 15064.5? Reference: 2, 6, 14 				×
 b) Cause a substantial adverse change in the significance of an archaeological resource pursuant to California Code of Regulations Section 15064.5? Reference: 2, 14 				X
 c) Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature? Reference: 15 				X
 d) Disturb any human remains, including those interred outside of formal cemeteries? Reference: 15 				×
 6. GEOLOGY AND SOILS – Would the project: a) Expose people or structures to potential substantial adverse effects, including the risk of loss, injury, or death involving: i) Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault? References: 3, 15 			×	
ii) Strong seismic ground shaking? Reference: 3, 15			×	
iii) Seismic-related ground failure, including liquefaction? Reference: 15			×	
iv) Landslides? Reference: 15			×	
 b) Result in substantial soil erosion or the loss of topsoil? Reference: 15 			×	

Issues	Potentially Significant Impact	Less Than Significant With	Less Than Significant	No Impact
c) Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction or collapse? Reference: 15		\ \	X	
 d) Be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code (1994), creating substantial risks to life or property? Reference: 1, 15 			×	
 e) Have soils incapable of adequately supporting the use of septic tanks or alternative wastewater disposal systems where sewers are not available for the disposal of wastewater? Reference: 8 				×
 7. HAZARDS AND HAZARDOUS MATERIALS – Would the project: a) Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials? Reference: 15, 16 			×	
 b) Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment? Reference: 15, 16 			×	
 c) Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school? Reference: 15, 16 			×	
 d) Be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment? Reference: 15, 16 			×	
 e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard for people residing or working in the project area? Reference: 11 				×
 f) For a project within the vicinity of a private airstrip, would the project result in a safety hazard for people residing or working in the project area? Reference: 11 				×
 g) Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan? Reference: 17 			×	

Issues	Potentially Significant Impact	Less Than Significant With	Less Than Significant	No Impact
 h) Expose people or structures to a significant risk of loss, injury or death involving wildland fires, including where wildlands are adjacent to urbanized areas or where residences are intermixed with wildlands? Reference: 11 				X
 8. HYDROLOGY AND WATER QUALITY Would the project: a) Violate any water quality standards or waste discharge requirements? Reference: 7 			X	
 b) Substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to a level which would not support existing land uses or planned uses for which permits have been granted)? Reference: 15 			X	
 c) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, in a manner which would result in substantial erosion or siltation on- or off- site? Reference: 15 			×	
 d) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner that would result in flooding on- or off-site? Reference: 15 				X
 e) Create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff? Reference: 15 				X
f) Otherwise substantially degrade water quality?				×
 g) Place housing within a 100-year flood hazard area as mapped on a federal Flood Hazard Boundary or Flood Insurance Rate Map or other flood hazard delineation map? Reference: 10 				X
 h) Place within a 100-year flood hazard area structures that would impede or redirect flood flows? Reference: 10 				×

Issues	Potentially Significant Impact	Less Than Significant With	Less Than Significant	No Impact
 i) Expose people or structures to a significant risk of loss, injury or death involving flooding, including flooding as a result of the failure of a levee or dam? Reference: 10 				×
j) Inundation by seiche, tsunami, or mudflow? Reference: 15				×
 9. LAND USE AND PLANNING Would the project: a) Physically divide an established community? Reference: 11 				×
 b) Conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project (including, but not limited to the general plan, specific plan, local coastal program, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect? Reference: 11 				X
 c) Conflict with any applicable habitat conservation plan or natural community conservation plan? Reference: 11 				×
 10. MINERAL RESOURCES – Would the project: a) Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state? Reference: 15 				×
 b) Result in the loss of availability of a locally-important mineral resource recovery site delineated on a local general plan, specific plan or other land use plan? Reference: 15 				X
 11. NOISE – Would the project result in: a) Exposure of persons to or generation of noise levels in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies? Reference: See Section IV, Environmental Impact Evaluation. 	×			
 b) Exposure of persons to or generation of excessive groundborne vibration or groundborne noise levels? Reference: See Section IV, Environmental Impact Evaluation. 	×			
 c) A substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project? Reference: See Section IV, Environmental Impact Evaluation. 	X			
d) A substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project?	×			

Issues	Potentially Significant Impact	Less Than Significant With	Less Than Significant	No Impact
Reference: See Section IV, Environmental Impact Evaluation.				
e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels? Reference: 11				×
 f) For a project within the vicinity of a private airstrip, would the project expose people residing or working in the project area to excessive noise levels? Reference: 11 				×
 12. POPULATION AND HOUSING Would the project: a) Induce substantial population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)? Reference: 15 				×
 b) Displace substantial numbers of existing housing, necessitating the construction of replacement housing elsewhere? Reference: 15 				×
 c) Displace substantial numbers of people, necessitating the construction of replacement housing elsewhere? Reference: 15 				×
 13. PUBLIC SERVICES a) Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for any of the public services: 				
i) Fire protection?			×	
Reference: 13, 15, 16				
ii) Police protection?			×	
Reference: 13, 15				
iii) Schools?			×	
Reference: 15				
iv) Parks? Reference: 11				×

Issues	Potentially Significant Impact	Less Than Significant With	Less Than Significant	No Impact
v) Other public facilities?				×
Reference:				
 14. RECREATION a) Would the project increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated? Reference: 				×
 b) Does the project include recreational facilities or require the construction or expansion of recreational facilities that might have an adverse physical effect on the environment? Reference: 				×
 15. TRANSPORTATION/TRAFFIC Would the project: a) Cause an increase in traffic that is substantial in relation to the existing traffic load and capacity of the street system (i.e., result in a substantial increase in either the number of vehicle trips, the volume to capacity ratio on roads, or congestion at intersections)? Reference: See Section IV, Environmental Impact Evaluation. 	×			
 b) Exceed, either individually or cumulatively, a level of service standard established by the county congestion management agency for designated roads or highways? Reference: See Section IV, Environmental Impact Evaluation. 	X			
c) Result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that result in substantial safety risks? Reference: See Section IV, Environmental Impact Evaluation.	×			
 d) Substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)? Reference: See Section IV, Environmental Impact Evaluation. 	×			
e) Result in inadequate emergency access?	X			
Reference: See Section IV, Environmental Impact Evaluation.	لنت			
 f) Result in inadequate parking capacity? Reference: See Section IV. Environmental Impact Evaluation. 	×			
 g) Conflict with adopted policies, plans, or programs supporting alternative transportation (e.g., bus turnouts, bicycle racks)? Reference: See Section IV, Environmental Impact Evaluation. 	×			

16. UTILITIES AND SERVICE SYSTEMS – Would the project:

Issues	Potentially Significant Impact	Less Than Significant With	Less Than Significant	No Impact
a) Exceed wastewater treatment requirements of the applicable Regional Water Quality Control Board? Reference: 5, 8, 15			×	
 b) Require or result in the construction of new water or wastewater treatment facilities, the construction of which could cause significant environmental effects? Reference: 5, 8, 15 			×	
 c) Require or result in the construction of new storm water drainage facilities or expansion of existing facilities, the construction of which could cause significant environmental effects? Reference: 15 			×	
 d) Have sufficient water supplies available to serve the project from existing entitlements and resources, or are new or expanded entitlements needed? Reference: 5, 8, 15 			×	
 e) Result in a determination by the wastewater treatment provider that serves or may serve the project that it has adequate capacity to serve the project's projected demand in addition to the provider's existing commitments? Reference: 5, 8, 15 			X	
 f) Be served by a landfill with sufficient permitted capacity to accommodate the project's solid waste disposal needs? Reference: 15 			×	
 g) Comply with federal, state, and local statutes and regulations related to solid waste? Reference: 15 				×
 17. MANDATORY FINDINGS OF SIGNIFICANCE a) Does the project have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory? Reference: See Section IV, Environmental Impact Evaluation. 				X
 b) Does the project have impacts that are individually limited, but cumulatively considerable? ("cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects)? Reference: See Section IV, Environmental Impact Evaluation. 	×			

Issues	Potentially Significant Impact	Less Than Significant With	Less Than Significant	No Impact
c) Does the project have environmental effects that will cause substantial adverse effects on human beings, either directly or indirectly? Reference: See Section IV, Environmental Impact Evaluation.	×			

IV. ENVIRONMENTAL IMPACT EVALUATION

1. **AESTHETICS.** Would the project:

- a) Have a substantial adverse effect on a scenic vista?
- b) Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic building within a state scenic highway?
- c) Substantially degrade the existing visual character or quality of the site and its surroundings?

Less Than Significant Impact. The Project Site is located in the densely developed Wilshire District of the City of Los Angeles and specifically in the Beverly Center-Cedars Sinai Regional Commercial Center. This area contains a mix of medical, commercial and retail uses with buildings of various sizes and architectural designs. The Project Site is not located near any scenic corridor or scenic highway. According to the Wilshire Community Plan, the Project Site is not located within a scenic view shed.

The visual character of the Project Site and surrounding area is that of a fully developed urban district, developed with a mix of medical, retail, commercial, and residential uses. Development along the major streets in the project vicinity, such as Beverly Boulevard, Third Street, La Cienega Boulevard, and San Vincente Boulevard, is dominated by low-rise (one and two stories) and mid-rise (three to nine stories) retail and commercial uses. Notable structures are the eight-story Beverly Center shopping mall, east of San Vicente Boulevard across from the Project Site; the Pacific Design Center, with a nine-story and a six-story buildings, located one-half mile north of the site; the ten-story Sofitel Hotel, on the north side of Beverly Boulevard across from the Beverly Center; the 10-story CSMC Towers; an 11-story apartment complex at San Vicente Boulevard and Burton Way; the 15-story medical office towers south of the Project Site on Third Street; and the 11-story Pacific Theaters building west of the Project Site.

The Project Site is currently developed with the two-story Existing Building and adjacent Existing Parking Lot. Primary views of the Project Site in the immediate area are internal views from the CSMC Campus at Gracie Allen Drive and George Burns Road. Views of the Project Site from Beverly Boulevard or Robertson Boulevard are fully or partially obstructed by adjacent buildings. Vegetation on the Project Site consists of landscaping associated with existing CSMC Campus. The Project would not result in the removal of a valued aesthetic feature. The Existing Building is not designated as and is not a valued aesthetic feature, and existing views of the Project Site are limited from the main thoroughfares.

The Project Site is currently zoned as [T][Q]C2-2D-O and is restricted to a campus-wide floor area ratio (FAR) of 2.46:1 and a maximum building height of 185 feet. However, the Height District 2 allows a maximum FAR of 6:1. As a result, the proposed 2.71:1 FAR is considered to be consistent with the current zoning.

Using *Thresholds Guide* screening criteria it was determined that:

- The Project would not include a zone change or variance that would increase density, height, and/or bulk.
- The Project would result in a maximum FAR of 2.71:1 which is consistent with the established zoning of [T][Q]C2-2D-O.
- The Project would not involve the development of a natural open space area.
- The Project Site is currently developed with medical and parking uses and does not involve, nor is adjacent to, any natural open space.
- The Project would not result in the removal of a valued aesthetic feature. The existing Spielberg Building is not designated as a valued aesthetic feature and existing views of the site are limited from the main thoroughfares.
- The Project would not introduce features that are inconsistent with the localized area or the applicable design guidelines.
- The Project would not obstruct, interrupt, or diminish a valued focal and/or panoramic view.
- The Project does not occur within or adjacent to a valued focal or panoramic vista or within view of any designated scenic highway, corridor, or parkway.
- The Project does not propose structural elements that would interfere with or inadequately protect existing visual resources and/or views, as significant visual resources are not located in the Project area.

The screening process conclusions identified above are further supported by conclusions of the Original EIR prepared for the 1993 Master Plan. The Original EIR determined that the Master Plan would have less than significant project-level impacts on aesthetic (including visual character, artificial light, and shade/shadow), but that it would have direct and indirect cumulative impacts on views and with respect to illumination and shadows. However, all impacts related to aesthetics were reduced to less than significant through mitigation measures adopted from the Original EIR. The Project would create no new or substantially increased significant impacts beyond those analyzed in the Original EIR with respect to views, scenic vistas or shade/shadows.

Because the Project would not result in a substantial change to conditions previously considered, the potential impacts noted above would remain less than significant and further analysis is not required. However, changes in the intensity and physical appearance of development proposed by the Project may result in a net change in the impacts to the physical environment as discussed below.

Development of the Project may increase the visibility of development at the Project Site due to increased building height and bulk compared to that of existing development and/or implementation of the remaining Master Plan development. However, visibility of the Project Site would remain limited because off-site views of the Project Site are already obstructed by surrounding development. The Project would incorporate many of the architectural elements of the existing buildings on the CSMC Campus and would thereby unify the visual character of the CSMC Campus. It is anticipated that the Project would be

consistent with the existing visual character of the surrounding area; however, further analysis in the EIR is recommended to address this issue.

The Project would introduce light-blocking structures, but (as was demonstrated in the Original EIR) would not affect any shadow-sensitive use(s) that would be located within a distance of three times the height of the West Tower and parking structure to the north, northwest or northeast. A maximum shadow of 545 feet (a length just under the 3:1 height ratio) would be cast from the proposed 185-foot West Tower during the winter solstice at 9:00 AM and 3:00 PM. During the morning hours, the shadow would affect the center of the CSMC Campus, Sherbourne Drive, and Gracie Allen Drive. The shadow would affect the Beverly Center and San Vicente Boulevard during afternoon hours. During the spring and fall equinoxes, a maximum shadow length of 395 feet would be cast from the West Tower between 8:00 AM and 4:00 PM. During morning hours, the shadow would cover portions of the CSMC Campus and Sherbourne Drive. In the afternoon, the shadow would cover a portion of the Beverly Center and San Vicente Boulevard. The shadows cast by the Project would be less than three times its height and would be cast on commercial, CSMC, and/or street uses, not on shadow-sensitive uses. Therefore, the Project is not anticipated to result in significant impacts to shade/shadow conditions and would not require further evaluation.

Revisions to the Master Plan proposed by the Project would not require major revisions to the Original EIR, because there would be no new significant environmental impacts on short-range views, scenic resources or shade/shadow-sensitive uses not previously analyzed in the Original EIR, no substantial increase in the severity of any significant impact previously identified in the Original EIR, no substantial changes with respect to the circumstances under which the Project is undertaken, and no new information of substantial importance meeting the test of CEQA Guidelines section 15162(a)(3) has arisen. Only the potential changes to the visual character are anticipated. The potential significance of the Project's impacts related to visual character, long-range views and lighting should be addressed in the EIR.

d) Create a new source of substantial light or glare, which would adversely affect day or nighttime views in the area?

Less Than Significant Impact. Existing light sources on the Project Site include street lighting, interior building lighting, parking lot and security lighting. Using *Thresholds Guide* screening criteria it was determined that the Project would not include lighting that would routinely spillover onto a light-sensitive land use.

Implementation of the Project would involve similar light sources as those approved by the Master Plan and as already exist on the Project Site. Lighting associated with the Project would be confined to the CSMC Campus boundaries and proposed lighting would be shielded or directed downwards to minimize light spillover. Although the Project is not anticipated to result in significant impacts associated with new sources of substantial light or glare, further evaluation is recommended in the EIR to address this issue.

2. AGRICULTURE RESOURCES. Would the project:

a) Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural
use?

- b) Conflict with existing zoning for agricultural use, or a Williamson Act contract?
- c) Involve other changes in the existing environment which, due to their location or nature, could result in conversion of farmland, to non-agricultural use?

No impact. The Project involves construction within a developed urban area. The Farmland Mapping and Monitoring Program (State Department of Conservation, 2002) does not identify any Prime Farmland, Unique Farmland, or Farmland of Statewide Importance at the Project Site. The Project Site is not protected by a Williamson Act Contract. Therefore, as the project will not convert any Prime Farmland, Unique Farmland, Unique Farmland, or Farmland of Statewide Importance to non-agricultural use or conflict with existing agricultural zoning or protected land, no impacts would be expected. Therefore, the Project is not anticipated to result in significant impacts to agricultural resources and would not require further evaluation.

As such, the revisions to the Master Plan proposed by the Project would not require major revisions to the Original EIR, because there would be no environmental impacts on agricultural resources, no substantial changes with respect to the circumstances under which the Project is undertaken, and no new information of substantial importance meeting the test of CEQA Guidelines section 15162(a)(3) has arisen.

3. AIR QUALITY. Would the project:

- a) Conflict with or obstruct implementation of the applicable air quality plan?
- b) Violate any air quality standard or contribute substantially to an existing or projected air quality violation?
- c) Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is in non-attainment under an applicable federal or state ambient air quality standard (including releasing emissions that exceed quantitative thresholds for ozone precursors)?
- d) Expose sensitive receptors to substantial pollutant concentrations?
- e) Create objectionable odors affecting a substantial number of people?

Potentially Significant Impact. The Project would involve the construction of an additional 100 inpatient beds (or equivalent of 200,000 square feet of floor area of medical services) above the development levels approved per the current Master Plan. The *Thresholds Guide* screening criteria use a size of 61,000 square feet of medical office uses as the criteria for which a project may have the potential to exceed the daily emissions significance thresholds. Further, the Project-related traffic and operational characteristics may be somewhat changed from those conditions addressed in the Original EIR and have the potential to result in a significant impact. For these reasons, it is recommended that the potential impacts to Air Quality be analyzed in the Project EIR.

4. BIOLOGICAL RESOURCES. Would the project:

- a) Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?
- b) Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations or by the California Department of Fish and Game or US Fish and Wildlife Service?
- c) Have a substantial adverse effect on federally protected wetlands as defined by Section 404 of the Clean Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means?
- d) Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?
- e) Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance?
- f) Conflict with the provisions of an adopted Habitat Conservation Plan or other approved local, regional, or state habitat conservation plan?

No impact. The Project Site and the surrounding area is urbanized and developed with a range of moderate intensity commercial, medical services and residential uses. Vegetation at the Project Site is limited to landscaping associated with existing development. Proposed new facilities are associated with the existing urban development. There are no natural habitats on or near the Project Site.

Using *Thresholds Guide* screening criteria, it was determined that the Project would have no impact on biological resources. The Project Site does not include or is near natural open space or a natural water source, and no sensitive species are known to use or inhabit the site.

The screening process conclusions identified above are further collaborated by conclusions of the Original EIR prepared for the 1993 Master Plan. The Original EIR determined that the Master Plan would have less than significant impacts on biological resources (both animal and plant life). Given that the CSMC Campus was and remains in a highly urbanized area, conditions related to biological resources have not changed. The Project would create no new or substantially increased significant impacts beyond those analyzed in the Original EIR with respect to biological resources.

Because the Project would not result in a substantial change to conditions previously considered, the potential impacts to biological resources would remain less than significant and further analysis is not required. As such, the revisions to the Master Plan proposed by the Project would not require major revisions to the Original EIR, because there would be no environmental impacts on biological resources not previously analyzed in the Original EIR, no substantial increase in the severity of any significant impact previously identified in the Original EIR, no substantial changes with respect to the circumstances under which the Project is undertaken, and no new information of substantial importance meeting the test of CEQA Guidelines section 15162(a)(3) has arisen.

5. CULTURAL RESOURCES. Would the project:

- a) Cause a substantial adverse change in the significance of a historical resource as defined in California Code of Regulations Section 15064.5?
- b) Cause a substantial adverse change in the significance of an archaeological resource pursuant to California Code of Regulations Section 15064.5?
- c) Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?
- d) Disturb any human remains, including those interred outside of formal cemeteries?

No impact. The Project Site has been previously disturbed and is currently covered with medical facilities. No historic, archaeological, or paleontological sites or resources were identified in a search of pertinent records, maps, and literature, including the National Register of Historic Places and the California Historical Landmarks.

Using *Thresholds Guide* screening criteria, it was determined that the Project would have no impact on cultural resources, since the Project does not occur in an area with known archaeological resources, archaeological study area, or fossil site.

Further, the City of Los Angeles has adopted standard conditions that require that the grading and excavation activities be monitored for evidence of significant cultural resources. These standard conditions were implemented into Ordinance No. 168,847 for all grading at the CSMC Campus and will apply to the proposed Project.

The screening process conclusions identified above are further supported by conclusions of the Original EIR prepared for the 1993 Master Plan. The Original EIR determined that the Master Plan would have less than significant impacts on cultural resources, including archeological, paleontological and historical resources. Because the potential for cultural resources within the Project Site were anticipated, no mitigation measures were required per the Original EIR. The Project would create no new or substantially increased significant impacts beyond those analyzed in the Original EIR with respect to cultural resources.

Because the Project would not result in a substantial change to conditions previously considered, the potential impacts to cultural resources would remain less than significant and further analysis is not required. As such, the revisions to the Master Plan proposed by the Project would not require major revisions to the Original EIR, because there would be no environmental impacts on cultural (including archeological, paleontological and historical) resources not previously analyzed in the Original EIR, no substantial increase in the severity of any significant impact previously identified in the Original EIR, no substantial changes with respect to the circumstances under which the Project is undertaken, and no new information of substantial importance meeting the test of CEQA Guidelines section 15162(a)(3) has arisen.

6. GEOLOGY AND SOILS. Would the project:

- a) Expose people or structures to potential substantial adverse effects, including the risk of loss, injury, or death involving:
 - i) Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for

the area or based on other substantial evidence of a known fault? ii) Strong seismic ground shaking?

Less Than Significant Impact. Several active fault zones are known to exist in the Los Angeles region, which could produce strong groundshaking in the Project area. The seismically active faults nearest to the Project Site include: 1) the Inglewood branch of the Newport-Inglewood fault zone, approximately 1.3 miles southwest, 2) the Raymond Fault, approximately 10.5 miles east, 3) the Malibu Coast Fault, approximately 13 miles west-southwest, and 4) the San Fernando fault, approximately 14 miles north of the Project Site.

No known faults considered active are found on or adjacent to the Project Site. Although the potentially active Santa Monica fault is believed to traverse the existing CSMC Campus, the fault is not believed to traverse the Project Site. The fault trends east-west to east-northeast across the existing CSMC Campus and has been identified as extending through the intersection of San Vicente Boulevard and Beverly Boulevard.

As in other areas of the Los Angeles region, the Project Site may be subject to potential groundshaking from earthquakes along active and potentially active faults in the Los Angeles area. Project design and construction procedure would involve consideration of seismic design parameters in accordance with standard engineering practice and uniform codes.

Using *Thresholds Guide* screening criteria, it was determined that the Project Site is not designated on official maps and databases or from past episodes as susceptible to unusual geologic hazards, and the Project would not involve the placement of structures on fill or involve the extraction of mineral resources, groundwater, oil or natural gas.

The screening process conclusions identified above are further supported by conclusions of the Original EIR prepared for the 1993 Master Plan. The Original EIR determined that the Master Plan would have less than significant impacts with respect to geology and soils (including grading, geologic hazards, seismicity, soil stability and contaminated soils). However, any impacts that did existall impacts related to geology and soils were further reduced through mitigation measures adopted from the Original EIR. The Project would create no new or substantially increased significant impacts beyond those analyzed in the Original EIR with respect to geology and soils.

Because the Project would not result in a substantial change to conditions previously considered, the potential impacts noted above would remain less than significant and further analysis is not required. Further, adherence to the Building Code and the Los Angeles Seismic Safety Plan would ensure that potential seismic risks would be reduced to a level of less than significant. Therefore, the impacts associated with seismic ground shaking are less than significant and do not require further evaluation.

iii) Seismic-related ground failure, including liquefaction?

Less Than Significant Impact. The potential for liquefaction has been found to be greatest where the groundwater level is shallow and loose and fine sands occur within a depth of approximately 50 feet or less. Liquefaction potential decreases with increasing grain size and clay and gravel content. Groundwater levels in the Project Site area range from approximately seven to 20 feet below grade. Soils existing beneath the site at levels below the groundwater surface consist primarily of clay, and to a lesser extent, sands, silty

sands, and silts. The sands beneath the site are dense and are not considered susceptible to liquefactions. Also, due to the dense nature of the granular soils encountered beneath the Project Site, the potential for seismically-induced differential settlement is considered very low. Project design and construction procedure involves consideration of seismic design parameters in accordance with standard engineering practice and building codes.

Using *Thresholds Guide* screening criteria, it was determined that the Project Site is not susceptible to unusual geologic hazards due to the physical properties of the site. The screening process conclusions identified above are further supported by conclusions of the Original EIR prepared for the 1993 Master Plan. Because the Project would not result in a substantial change to conditions previously considered, the potential impacts noted above would remain less than significant and further analysis is not required. Further, adherence to the Building Code and the Los Angeles Seismic Safety Plan would ensure that potential seismic risks would be reduced to a level of less than significant. Therefore, the impacts associated with seismic-related ground failure are less than significant and do not require further evaluation.

iv) Landslides?

No Impact. The Project Site and surrounding area are essentially flat and are not adjacent to any hillside area. Therefore, the Project is not anticipated to result in significant impacts associated with seismic-induced landslides and would not require further evaluation.

b) Result in substantial soil erosion or the loss of topsoil?

Less Than Significant Impact. The Project Site is currently developed and essentially flat. Implementation of the Project would involve excavations for subterranean parking and basement structures. The facility design for the Project would involve use of registered professionals as appropriate to ensure that facility design and construction results in stable earth conditions. Further, the earthwork and surface condition changes would be evaluated as part of the building permit process. Standard practices incorporate techniques appropriate to the situation as described in the *California Storm Water Best Management Practice Handbook for Construction Activity*, or other techniques of equivalent effectiveness to address erosion potential. Standard procedure includes compliance with South Coast Air Quality Management District guidance related to minimization of wind erosion and incorporation of best management practices for water erosion control in project construction.

Using Thresholds Guide screening criteria it was determined that the Project does not involve grading on a slope of ten percent or more, and does not involve grading, clearing, or excavation activities in an area of known or suspected erosion hazard. The screening process conclusions identified above are further supported by conclusions of the Original EIR prepared for the 1993 Master Plan. Because the Project would not result in a substantial change to conditions previously considered, the potential impacts noted above would remain less than significant and further analysis is not required.

c) Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction or collapse?

Less Than Significant Impact. Based on the conclusions of the Original EIR (and the accompanying Geotechnical Evaluation), unstable soil is not known to be a potential issue

on the Project Site. Standard procedure for facility design involves use of registered professionals as appropriate to ensure that facility design and construction results in stable earth conditions. Therefore, the Project is not anticipated to result in significant impacts associated with substantial soil erosion and would not require further evaluation.

d) Be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code (1994), creating substantial risks to life or property?

Less Than Significant Impact. Based on the conclusions of the Original EIR, expansive soil is not known to be an issue on the CMSC Campus. If expansive soils were encountered during site improvement, the soil and colluvium materials would probably require removal and replacement with engineered fill materials. Standard practice for facility design involves use of registered professionals as appropriate to ensure that facility design and construction results in stable earth conditions. Because of these standard precautions and procedures, the Project is not anticipated to result in significant impacts associated with expansive soil and does not require further evaluation.

e) Have soils incapable of adequately supporting the use of septic tanks or alternative wastewater disposal systems where sewers are not available for the disposal of wastewater?

No Impact. Wastewater from the Project Site is currently treated at the Hyperion Treatment Plant. The Project does not involve the use of septic tanks or alternative wastewater disposal systems. Therefore, the Project is not anticipated to result in significant impacts associated with the use of septic tanks or alternative wastewater disposal systems and would not require further evaluation.

Consistent with the conclusions above for all thresholds for geologic, soils and seismic issues, revisions to the Master Plan proposed by the Project would not require major revisions to the Original EIR, because there would be no new significant environmental impacts with respect to geology, soils nor seismic hazards not previously analyzed in the Original EIR, no substantial increase in the severity of any significant impact previously identified in the Original EIR, no substantial changes with respect to the circumstances under which the Project is undertaken, and no new information of substantial importance meeting the test of CEQA Guidelines section 15162(a)(3) has arisen

7. HAZARDS AND HAZARDOUS MATERIALS. Would the project:

- a) Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?
- b) Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?
- c) Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school?
- d) Be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment?

Less Than Significant Impact. The Applicant currently uses and stores liquids and gases that are flammable or combustible at the CSMC Campus. The 1989 CSMC Business Plan requires biennial reporting of hazardous materials inventory changes and updates to the Los Angles Fire Department prior to the issuance of a Certificate of Occupancy for expansions of existing facilities.

In order to minimize health risks to employees and to the residents of the surrounding area, the CSMC places quarterly announcements in a local newspaper identifying that hazardous materials are used and stored on site, trains staff in the use and proper handling of hazardous materials, posts notices on site identifying the site contains hazardous materials, and disposes of hazardous materials properly. The Fire Department has determined that the CSMC is not required to file a Risk Management Prevention Plan, due to the quantities and concentrations of substances used on site.

Using *Thresholds Guide* screening criteria it was determined that the Project would involve the use and storage of toxic, readily combustible, or otherwise hazardous materials; however, the CSMC would update its Business Plan prior to obtaining a Certificate of Occupancy for the Project. Conformance with all applicable laws and regulations and the implementation of all applicable CSMC safety policies and procedures is considered part of the Project. In addition, the Project would not use or manage hazardous substances in sufficient quantities to cause potential hazard.

The screening process conclusions identified above are further supported by conclusions of the Original EIR prepared for the 1993 Master Plan. The Original EIR determined that the Master Plan would have less than significant impacts with respect to hazards and hazardous materials; however, the Original EIR determined that the Master Plan would have significant and unavoidable project-level and cumulative impacts due to the increase in use of hazardous materials, generation of hazardous wastes, and the increased transport/disposal of hazardous materials. Mitigation measures adopted per the Original EIR would reduce these impacts, but not to less than significant levels. Nonetheless, the Original EIR concluded that continued compliance with applicable federal, state, and local laws would reduce the risk associated with hazardous substances to acceptable levels. These significant unavoidable adverse impacts were accepted through the adoption of a Statement of Overriding Considerations. The Project would create no new or substantially increased significant impacts beyond those analyzed in the Original EIR with respect to hazards, hazardous wastes and hazardous materials.

Because the Project would not result in a substantial change to conditions previously considered, the potential impacts associated with the use of hazardous materials noted above would remain less than significant and further analysis is not required.

- e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard for people residing or working in the project area?
- f) For a project within the vicinity of a private airstrip, would the project result in a safety hazard for people residing or working in the project area?

No Impact. The Project Site is not located within an airport land use plan or is within two miles of a public use airport, or in the vicinity of a private airstrip. Therefore, the Project is not anticipated to result in significant airport safety hazard impacts and would not require

further evaluation.

g) Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan?

Less Than Significant Impact. The CSMC has a Disaster Response Plan on file with the City of Los Angeles. The Disaster Response Plan responds to a variety of emergency conditions, such as fire and seismic events as well as the release of chemical or hazardous materials. In the event of an emergency, the CSMC is required to notify the Fire Department. The Fire Department provides assistance in control of fire or hazardous material spills and determines whether evacuation of off site areas is necessary or appropriate. Any decision to evacuate off site areas is at the discretion of the Fire Department. Any such decision would conform to established evacuation procedures.

Using Thresholds Guide screening criteria it was determined that the Project would require a revised risk management plan. The CSMC would update its Business Plan, which includes its Disaster Response Plan, prior to obtaining a Certificate of Occupancy for the Project. Conformance with all applicable laws and regulations and the implementation of all applicable CSMC safety policies and procedures is considered part of the Project.

Development of the Project may involve temporary lane closures or traffic detours but would not substantially affect area roadways or other significant transportation corridors. The Project would not involve any permanent changes in transportation corridors.

Because the Project would not result in a substantial change to conditions previously considered, the potential impacts associated with the emergency response plans noted above would remain less than significant and further analysis is not required.

h) Expose people or structures to a significant risk of loss, injury or death involving wildland fires, including where wildlands are adjacent to urbanized areas or where residences are intermixed with wildlands?

No Impact. The Project Site is located in a relatively flat, urbanized area. There are thirteen fire hydrants located on or adjacent to the CSMC. The hydrant locations include four hydrants on San Vicente Boulevard, two hydrants on Sherbourne Drive, three hydrants on Gracie Allen Drive, and four hydrants on George Burns Road.

Using *Thresholds Guide* screening criteria it was determined that the Project Site is not located in a brush fire hazard area, hillside, or area with inadequate fire hydrant service or street access. The Project is not anticipated to result in significant impacts associated with wildland fires and would not require further evaluation.

Consistent with the conclusions above for all thresholds for hazards and hazardous materials, revisions to the Master Plan proposed by the Project would not require major revisions to the Original EIR, because there would be no new significant environmental impacts with respect to hazards, hazardous wastes and hazardous materials not previously analyzed in the Original EIR, no substantial increase in the severity of any significant impact previously identified in the Original EIR, no substantial changes with respect to the circumstances under which the Project is undertaken, and no new information of substantial importance meeting the test of CEQA Guidelines section 15162(a)(3) has arisen.

8. HYDROLOGY & WATER QUALITY. Would the project:

a) Violate any water quality standards or waste discharge requirements?

Less Than Significant Impact. The Project Site is within the Los Angeles Region (4) of the Regional Water Quality Control Board (RWQCB). The City of Los Angeles is subject to the water quality regulations of the Los Angeles RWQCB. Under the authority of the Clean Water Act (CWA), which prohibits the discharge of any pollutant to navigable waters from a point source unless a National Pollutant Discharge Elimination System (NPDES) permit authorizes the discharge, the Environmental Protection Agency (EPA) publishes regulations establishing the NPDES permit application requirements for storm water discharges. As an agent of the State Water Resources Control Board (SWRCB), RWQCBs are authorized to implement a municipal storm water permitting program as part of their NPDES authority.

The SWRCB has issued general storm water discharge permits to cover industrial and construction activities, which are required for specific industry types based on standard industrial classification and construction activities on projects greater than 5,000 square feet. The general permits include: the "Statewide General Industrial Storm Water Permit" (addresses waste discharge requirements for discharges of storm water associated with industrial activities excluding construction activities); and, the "Statewide General Construction Storm Water Permit" (addresses waste discharge requirements for discharges of storm water runoff associated with construction activities).

The RWQCBs oversee implementation and enforcement of the general permits. Municipal permits typically require permittees to develop an area-wide storm water management plan, implement best management practices (BMPs) and perform storm water monitoring. BMPs for the County of Los Angeles are identified in the documents supporting the County NPDES permits. On December 13, 2001, the Los Angeles RWQCB issued a municipal storm water NPDES permit (NPDES Permit No. CAS004001) to the County of Los Angeles and its co-permittees, which include the City of Los Angeles. Implementation of the Best Management Practices (BMPs) in accordance with the Development Best Management Practices Handbook (City of Los Angeles Department of Public Works, May 2002) would adequately protect the water quality during construction activities.

Using *Thresholds Guide* screening criteria it was determined that with implementation of BMPs, construction and operation of the Project would not involve point source discharge or nonpoint sources of contamination into a receiving water body.

Therefore, the Project is not anticipated to result in significant impacts associated with surface water quality and would not require further evaluation.

b) Substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to a level which would not support existing land uses or planned uses for which permits have been granted)?

Less Than Significant Impact. Potable water is currently supplied to the Project Site by the Los Angeles Department of Water and Power (LADWP). Groundwater levels in the Project Site area range from approximately seven to 20 feet below grade. The Project Site is currently developed with no permeable area.

Using *Thresholds Guide* screening criteria it was determined that the Project would not include groundwater extraction for potable water supply purposes. Due to the shallow depth to groundwater, dewatering may be involved during excavation activities. Basement walls and floor slabs of the proposed subterranean structures would be either waterproofed and designed to withstand the potential hydrostatic pressure imposed on the structures by groundwater, or would utilize a continuous dewatering or subdrainage system. Such systems would be constructed following recommendations made by a licensed engineer prepared specifically for the subterranean structures. It was further determined that the Project would not reduce any permeable area.

Therefore, the Project is not anticipated to result in significant impacts associated with ground water levels and would not require further evaluation.

c) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, in a manner, which would result in substantial erosion or siltation on- or off-site?

Less Than Significant Impact. Runoff from the Project Site drains into existing city storm drains. Drainage facilities in the vicinity include catch basins in Gracie Allen Drive and George Burns Road. Runoff from George Burns Road connects to a 42-inch drain in Gracie Allen Drive.

Using *Thresholds Guide* screening criteria, it was determined that as the Project Site is currently developed and impervious to runoff, development of the Project would not be expected to change the amount of runoff from the Project Site, and run-off from the Project Site would not drain onto an unimproved street or onto adjacent properties.

Therefore, the Project is not anticipated to result in significant impacts associated with existing drainage patterns and would not require further evaluation.

- d) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner, which would result in flooding on- or off-site?
- e) Create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff?
- f) Otherwise substantially degrade water quality?

- g) Place housing within a 100-year flood hazard area as mapped on a federal Flood Hazard Boundary or Flood Insurance Rate Map or other flood hazard delineation map?
- h) Place within a 100-year flood hazard area structures that would impede or redirect flood flows?
- i) Expose people or structures to a significant risk of loss, injury or death involving flooding, including flooding as a result of the failure of a levee or dam?
- j) Inundation by seiche, tsunami, or mudflow?

No Impact. Using *Thresholds Guide* screening criteria it was determined that the Project Site is not located within a 100-year flood plain, according to the FEMA Flood Insurance Rate Map, and is also not located in a hillside area, near a dam or levee, or near any large bodies of water.

Therefore, the Project is not anticipated to result in significant impacts associated with inundation and would not require further evaluation.

The Original EIR determined that the Master Plan would have less than significant impacts on hydrology and water quality. The Project would create no new or substantially increased significant impacts beyond those analyzed in the Original EIR with respect to hydrology and water quality. As such, the revisions to the Master Plan proposed by the Project would not require major revisions to the Original EIR, because there would be no new significant environmental impacts with respect to hydrology or water quality not previously analyzed in the Original EIR, no substantial increase in the severity of any significant impact previously identified in the Original EIR, no substantial changes with respect to the circumstances under which the Project is undertaken, and no new information of substantial importance meeting the test of CEQA Guidelines section 15162(a)(3) has arisen.

9. LAND USE AND PLANNING. Would the project:

a) Physically divide an established community?

No Impact. The Project Site is located on the CSMC Campus and surrounded by medical, commercial and residential uses.

Using *Thresholds Guide* screening criteria it was determined that the Project would include a land use compatible with adjacent land uses; the Project would not include features that would cause any permanent disruption in the established community; and the Project would not result in a "spot" zone.

The Project would be a 100 new inpatient bed expansion of the existing Master Plan and would assist in supporting the health care needs of the area and the region. The West Tower and attached 7-level parking structure would be similar in scale and character to other buildings on the CSMC Campus and in the surrounding area. The West Tower would not exceed 185 feet, the maximum height permitted in the Master Plan, and would be of the same architectural style as the other buildings on the CSMC Medical Center Campus. The Project would be an extension of the existing CSMC and would assist in supporting health care in the area.

b) Conflict with any applicable land use plan, policy, or regulation of an agency with

jurisdiction over the project (including, but not limited to the general plan, specific plan, local coastal program, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect?

c) Conflict with any applicable habitat conservation plan or natural community conservation plan?

No Impact. The General Plan Land Use map designates the Project Site and CSMC Campus as a Regional Commercial land use with a "Health Center" symbol. The zoning for the CSMC Campus and Project Site is [T][Q]C2-2D-O.

Using *Thresholds Guide* screening criteria it was determined that the Project would be consistent with the General Plan and would not require a General Plan amendment. The zoning designation [T][Q]C2-2D-O would not change.

The proposed Project will not change the type of land use on the Project Site, therefore no General Plan amendment would be required. Moreover, the established zoning of [T][Q]C2-2D-O supports the use, density, and height of the Project. Only the Conditions imposed on the current zoning would be revised to accommodate amendments to the CSMC Master Plan and associated Development Agreement (Ordinance No. 168.847). The Zoning designation of [T][Q]C2-2D-O and the land use designation of Regional Commercial would be retained. The Project Site is not located in or near any natural community conservation area and is not associated with any habitat conservation plan. Therefore, the Project is not anticipated to result in significant impacts due to inconsistencies with adopted plans and would not require further evaluation.

The screening process conclusions identified above are further supported by conclusions of the Original EIR prepared for the 1993 Master Plan. The Original EIR determined that the Master Plan would have less than significant project-level impacts on land use planning and zoning. The Project would create no new or substantially increased significant impacts beyond those analyzed in the Original EIR with respect to land use planning and zoning.

As such, the revisions to the Master Plan proposed by the Project would not require major revisions to the Original EIR, because there would be no new significant environmental impacts on land use planning and zoning not previously analyzed in the Original EIR, no substantial increase in the severity of any significant impact previously identified in the Original EIR, no substantial changes with respect to the circumstances under which the Project is undertaken, and no new information of substantial importance meeting the test of CEQA Guidelines section 15162(a)(3) has arisen. Because the Project would not result in a substantial change to conditions previously considered, the potential impacts associated with land use compatibility would remain less than significant and further analysis is not required.

10. MINERAL RESOURCES. Would the project:

- a) Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state?
- b) Result in the loss of availability of a locally-important mineral resource recovery site delineated on a local general plan, specific plan or other land use plan?

No Impact. The Project Site overlies a portion of the Salt Lake Oil Field. Oil is currently being extracted from a portion of the oil field immediately adjacent to the east of the Project Site, across San Vicente Boulevard. Abandoned oil wells are located throughout the Salt Lake Oil Field, including five known abandoned wells within the boundaries of the CSMC Campus. No known oil wells are located on the Project Site.

Using *Thresholds Guide* screening criteria it was determined that the Project would not block access to any potential mineral resources.

Oil wells, which previously existed near the Project Site, have since been abandoned. The Project Site would be developed with similar uses to those currently found on site. Therefore, it is unlikely that the Project would block any ongoing oil extraction activities. The Project is not anticipated to result in significant impacts on mineral resources, and would not require further evaluation.

The Original EIR determined that the Master Plan would have less than significant impacts on mineral resources. The Project would create no new or substantially increased significant impacts on mineral resources beyond those analyzed in the Original EIR. As such, the revisions to the Master Plan proposed by the Project would not require major revisions to the Original EIR, because there would be no new significant environmental impacts on mineral resources not previously analyzed in the Original EIR, no substantial increase in the severity of any significant impact previously identified in the Original EIR, no substantial changes with respect to the circumstances under which the Project is undertaken, and no new information of substantial importance meeting the test of CEQA Guidelines section 15162(a)(3) has arisen.

11. NOISE. Would the project result in:

- a) Exposure of persons to or generation of noise levels in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?
- b) Exposure of persons to or generation of excessive groundborne vibration or groundborne noise levels?
- c) A substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project?
- d) A substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project?

Potentially Significant Impact. Using *Thresholds Guide* screening criteria it was determined that construction activity would temporarily increase noise levels in the Project Site area and would be within 500 feet of sensitive uses. The Project may introduce stationary noise sources, such as mechanical ventilation equipment, that could be audible beyond the property line of the Project Site. Further, the Project-related traffic and operational characteristics may be somewhat changed from those conditions addressed in the Original EIR and have the potential to result in a significant impact. For these reasons, it is recommended that the potential impacts related to Noise be analyzed in the Project EIR.

e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the

project expose people residing or working in the project area to excessive noise levels?

f) For a project within the vicinity of a private airstrip, would the project expose people residing or working in the project area to excessive noise levels?

No Impact. Using *Thresholds Guide* screening criteria it was determined that the Master Plan area is not located within an airport land use plan, or within two miles of a public airport or public use airport, or within the vicinity of a private airstrip. The Original EIR determined that the Master Plan would have less than significant impacts with respect to airport noise. The Project would create no new or substantially increased significant impacts beyond those analyzed in the Original EIR with respect to airport noise. Therefore, the Project is not anticipated to result in significant impacts associated with airport noises and further evaluation of such is not required.

12. **POPULATION AND HOUSING.** Would the project:

a) Induce substantial population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)?

No Impact. The Project Site is currently developed and located in a fully developed urban area. Using *Thresholds Guide* screening criteria it was determined that the Project would not include a General Plan amendment, which could result in an increase in population over that projected in the General Plan, nor would the Project induce substantial growth around the Project Site as it does not involve the construction of major infrastructure. The proposed medical facilities would replace and are an extension of existing medical facilities.

The screening process conclusions identified above are further supported by conclusions of the Original EIR prepared for the 1993 Master Plan. Because the Project would not result in a substantial change to conditions previously considered, the potential impacts associated with population growth would remain less than significant and further analysis is not required.

- b) Displace substantial numbers of existing housing, necessitating the construction of replacement housing elsewhere?
- c) Displace substantial numbers of people, necessitating the construction of replacement housing elsewhere?

No Impact. The Project Site is currently developed with medical facilities and parking lot uses. The *Thresholds Guide* screening criteria it was determined that the Project would not involve displacement of existing housing and/or residents. Therefore, the Project is not anticipated to result in significant impacts associated with housing and/or resident displacement and would not require further evaluation.

The Original EIR determined that the Master Plan would have less than significant impacts on population and housing. Further, employment impacts in the context of jobs/housing balance were determined to be less than significant. The Project would create no new or substantially increased significant impacts on population and housing beyond those analyzed in the Original EIR. As such, the revisions to the Master Plan proposed by the Project would not require major revisions to the Original EIR, because there would be no new significant environmental impacts on population, housing and employment not previously analyzed in the Original EIR, no substantial increase in the severity of any significant impact previously identified in the Original EIR, no substantial changes with respect to the circumstances under which the Project is undertaken, and no new information of substantial importance meeting the test of CEQA Guidelines section 15162(a)(3) has arisen. Because the Project would not result in a substantial change to conditions previously considered, the potential impacts associated with population and housing would remain less than significant and further analysis is not required.

13. PUBLIC SERVICES. Would the project:

a) Result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for any of the public services:

i) Fire protection?

Less Than Significant Impact. The Los Angeles Fire Department has fire stations at the following locations for initial response into the Project area. Distances shown were calculated to the intersection of Gracie Allen Drive and George Burns Road:

Fire Station No. 58 Task Force Station – Truck and Engine Company Battalion 18 Headquarters 1556 South Robertson Boulevard	1.7 miles
Fire Station No. 61 Task Force Station – Truck and Engine Company 5821 west Third Street	2.0 miles
Fire Station No. 41 Single Engine Company 1439 North Gardner Street	3.2 miles

Using Thresholds Guide screening criteria it was determined that the Project would be located farther from an engine or truck company than the maximum response distance. The maximum response distance for a Truck and Engine company to a Commercial Center is 1 mile and 0.75 miles, respectively. As shown above, the Project Site is at a slightly greater distance. However, per mitigation measures required and implemented from the Original EIR, which address CSMC Campus access and building requirements, fire protection impacts were reduced to less than significant levels. These mitigation measures would still be required as part of any additional development completed in accordance with the 1993 Master Plan, including the Project. Therefore, potential impacts related to fire protection would be adequately mitigated to less than significant levels and further analysis is not required.

The Project Site is not located in a brush fire hazard area, hillside, or area with inadequate fire hydrant service or street access. The Project Site is located in a relatively flat,

urbanized area. There are thirteen fire hydrants located on or adjacent to the CSMC Campus. The hydrant locations include four hydrants on San Vicente Boulevard, two hydrants on Sherbourne Drive, three hydrants on Gracie Allen Drive, and four hydrants on George Burns Road.

The Project does involve the use and storage of toxic, readily combustible, or otherwise hazardous materials. CSMC currently uses and stores liquids and gases that are flammable or combustible. The 1989 CSMC Business Plan requires biennial reporting of hazardous materials inventory changes to the Los Angles Fire Department and updates prior to the issuance of a Certificate of Occupancy for expansions of existing facilities.

In order to minimize health risks to employees and to the residents of the surrounding area, the CSMC places quarterly announcements in a local newspaper identifying that hazardous materials are used and stored on site, trains staff in the use and proper handling of hazardous materials, posts notices on site identifying the site contains hazardous materials, and disposes of hazardous materials properly. The Fire Department has determined that the CSMC is not required to file a Risk Management Prevention Plan, due to the quantities and concentrations of substances used on site. Conformance with all applicable laws and regulations and the implementation of all applicable CSMC safety policies and procedures is considered part of the Project.

The CSMC also has a Disaster Response Plan on file with the City of Los Angeles. The Disaster Response Plan responds to a variety of emergency conditions, such as fire and seismic events as well as the release of chemical or hazardous materials. In the event of an emergency, the CSMC is required to notify the Fire Department. The Fire Department provides assistance in control of fire or hazardous material spills and determines whether evacuation of off-site areas is necessary or appropriate. Any decision to evacuate off-site areas is at the discretion of the Fire Department. Any such decision would conform to established evacuation procedures. The CSMC would be required to update its Business Plan prior to obtaining a Certificate of Occupancy for the Project.

The Project's location would provide for adequate LAFD access. Both George Burns road and Gracie Allen Drive are wider than the minimum 20 feet required for LAFD access, do not have a grade exceeding 15 percent, and are not dead-ends exceeding 700 feet. Per the mitigation measures in the Original EIR, these site planning considerations adequately mitigate potential impacts related to emergency access to a less than significant level, and no further analysis is required.

There are two street intersections near the Project Site that would have a level of service (LOS) of E or F due to implementation of the Project. The intersections of Robertson Boulevard/Alden-Gracie Allen Drives and George Burns Road/Beverly Boulevard would be significantly affected by implementation of the Project unless mitigation measures are implemented. Further analysis of these intersections, to identify appropriate mitigation measures, as well as other area intersections as appropriate, is recommended in the Project EIR. Traffic congestion issues, including those that may affect accessibility of emergency vehicles, would be addressed through the traffic analysis in the Project EIR.

Per the Original EIR, mitigation measures pertaining to Fire Protection services were adopted and would be carried forward to the Project as follows:

• The Project shall comply with all applicable State and local codes and ordinances

and the guidelines found in the Fire Protection and Fire Prevention Plan and the Safety Plan, both of which are elements of the General Plan of the City of Los Angeles.

- Definitive plans and specifications shall be submitted to the Fire Department and requirements for necessary permits satisfied prior to commencement of any portion of this project.
- All first story portions of any building must be within 300 feet of an approved fire hydrant.
- Fire lanes in commercial of industrial areas shall be no more than 300 feet from a fire hydrant.
- Adequate pubic and private fire hydrants shall be required.
- Any person owning or having control of any facility, structure, group of structures, or premises shall proved and maintain Fire Department access.
- If any portion of the first story exterior walls of any building or structure is more than 150 feet from the edge of the roadway of an improved street, an approved fire lane shall be provided so that such portion is within 150 feet of the edge of the fire lane.
- At least two different ingress/egress roads for each area able to accommodate major fire apparatus and provide for an evacuation during emergency situations shall be required.
- Construction of public or private roadways in the proposed development shall not exceed a 15 percent grade.
- Private development shall conform to the standard street dimensions shown on Department of Public Works Standard Plan D-22549.
- Access for Fire Department apparatus and personnel to and into all structures shall be required.
- No fire land shall be less than 20 feet in width. When a fire lane must accommodate the operation of Fire Department aerial ladder apparatus or where fire hydrants are installed, those portions shall not be less than 28 feet in width.
- Sprinkler systems shall be required throughout any structure in accordance with the Los Angeles Municipal Coed, Section 57.09.07.
- To mitigate potential significant impact on access, the Medical Center should covenant and agree that all current public and private streets shall remain open to free travel of emergency vehicles.
- The water delivery system shall be improved to the satisfaction of the Fire Department prior to occupancy of any new development.

Implementation of standard conditions of approval and these mitigation measures, as well as the collection of service fees/taxes associated with the Project, would reduce all fire protection service impacts to a less than significant level and would not require further evaluation.

ii) Police protection?

Less Than Significant Impact. The Project Site is located in the Los Angeles Police Department's Wilshire Area, in Reporting District 7. The Wilshire Area station is located at 4861 West Venice Boulevard. The Project Site is currently developed with 90,000 square feet of medical uses.

The *Thresholds Guide* screening criteria for police protection services asks: Would the Project result in a net increase of 75 residential units, 100,000 square feet of commercial

floor area, or 200,000 square feet of industrial floor area?

The Project would involve the development of 100 new inpatient beds (200,000 net square feet of floor area for medical uses) beyond the 700,000 net square feet of development approved and vested under the Master Plan. Several mitigation measures pertaining to Police Protection services were adopted per the Original EIR and Development Agreement, and would be carried forward under the Project. These mitigations are:

- Elevators, lobbies, and parking areas should be well-illuminated and designed with minimum dead space to eliminate area of concealment.
- Tenant parking areas should be controlled by an electronic card-key gate in conjunction with a closed circuit television system.
- Private security guards are recommended to monitor and patrol the development.
- Upon project completion the applicant should be encouraged to provide the Wilshire Area commanding officer with a diagram of the project. The diagram should include access routes, unit numbers, and any information the might facilitate police response.
- CSMC shall make available up to 1,500 square feet of floor area within the Property for a temporary Los Angeles Police Department sub-station, subject to the acceptance and approval thereof by the Los Angeles Police Department and The Los Angeles City Council.

In addition, the CSMC uses would continue to use a private security network including closed circuit television system and security personnel throughout the CSMC.

Implementation of standard conditions of approval and these mitigation measures, as well as the collection of service fees/taxes associated with the Project would reduce the Project's police protection service impacts to a less than significant level and no further evaluation is required.

iii) Schools?

Less Than Significant Impact. The Project Site is located in the Los Angeles Unified School District, Board of Education District 1. The Project Site is currently developed with 90,000 square feet of medical uses.

Using Thresholds Guide screening criteria it was determined that the Project would result in a net increase of at least 100,000 square feet of commercial floor area. The Project would involve the development of 100 new inpatient beds (200,000 net square feet of floor area for medical uses) beyond the 700,000 net square feet of development approved and vested under the Master Plan. However, these medical uses would be similar to existing land uses at the Project Site and would be an extension of the established CSMC Campus. As the surrounding area is fully developed, the addition of 100 new inpatient beds is not expected to promote residential development in areas surrounding the Project Site. Therefore, the Project is not expected to involve growth-inducing impacts associated with schools and would not require further evaluation.

iv) Parks?

No impact. The Project involves the development of medical and parking uses. Using

Thresholds Guide screening criteria it was determined that the Project would not result in a net increase of any residential units. Therefore, the Project is not anticipated to result in significant impacts to parks and would not require further evaluation.

v) Other public facilities?

No impact. The Project involves the development of medical and parking uses. Using *Thresholds Guide* screening criteria it was determined that the Project would not result in a net increase of any residential units. Therefore, the Project is not anticipated to result in significant impacts to other public facilities and would not require further evaluation.

In summary, the Original EIR determined that the Master Plan would have less than significant impacts on public services, including fire protection, police protection, schools, parks and recreation and libraries, except that the Master Plan would have significant project-level and cumulative impacts on fire protection services and on police protection services. Mitigation measures adopted per the Original EIR would reduce these impacts, but not to less than significant levels. Nonetheless, the Original EIR concluded that continued compliance with applicable state and local codes, and guidelines in City planning/policy documents, would reduce these impacts to the extent reasonably feasible. These significant unavoidable adverse impacts were accepted through the adoption of a Statement of Overriding Considerations. The Project would create no new or substantially increased significant impacts on public services beyond those analyzed in the Original EIR.

As such, the revisions to the Master Plan proposed by the Project would not require major revisions to the Original EIR, because there would be no new significant environmental impacts on public services not previously analyzed in the Original EIR, no substantial increase in the severity of any significant impact previously identified in the Original EIR, no substantial changes with respect to the circumstances under which the Project is undertaken, and no new information of substantial importance meeting the test of CEQA Guidelines section 15162(a)(3) has arisen.

14. **RECREATION.** Would Project:

a) Would the project increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated?

No Impact. The Project would not create additional demand for recreational facilities. Therefore, the Project is not anticipated to result in significant impacts to recreational facilities and would not require further evaluation.

b) Does the project include recreational facilities or require the construction or expansion of recreational facilities which might have an adverse physical effect on the environment?

No Impact. The Project does not include or require the construction of recreational facilities. Therefore, the Project is not anticipated to result in significant impacts from the construction of recreational facilities and would not require further evaluation.

The Original EIR determined that the Master Plan would have less than significant impacts on parks and recreation resources. The Project would create no new or substantially increased significant impacts on park and recreation resources beyond those analyzed in the Original EIR. As such, the revisions to the Master Plan proposed by the Project would not require major revisions to the Original EIR, because there would be no new significant environmental impacts on park and recreation resources not previously analyzed in the Original EIR, no substantial increase in the severity of any significant impact previously identified in the Original EIR, no substantial changes with respect to the circumstances under which the Project is undertaken, and no new information of substantial importance meeting the test of CEQA Guidelines section 15162(a)(3) has arisen.

15. TRANSPORTATION/TRAFFIC. Would the project:

- a) Cause an increase in traffic that is substantial in relation to the existing traffic load and capacity of the street system (i.e., result in a substantial increase in either the number of vehicle trips, the volume to capacity ratio on roads, or congestion at intersections)?
- b) Exceed, either individually or cumulatively, a level of service standard established by the county congestion management agency for designated roads or highways?
- d) Substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?
- e) Result in inadequate emergency access?
- f) Result in inadequate parking capacity?
- g) Conflict with adopted policies, plans, or programs supporting alternative transportation (e.g., bus turnouts, bicycle racks)?

Potentially Significant Impact. The Project would involve the construction of 200,000 square feet of medical facilities above the approved authorized development of the existing Development Agreement for the CSMC Campus and Project Site. The *Thresholds Guide* screening criteria for substantial traffic increase is the diversion or shift of 500 or more daily trips or 43 or more p.m. peak hour vehicle trips on the street system. As the net size of the Project has the potential to exceed the daily and peak trips significance thresholds, potential impacts to Transportation/Traffic are recommended for further study under the Project EIR.

c) Result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks?

No Impact. The Project Site is not located within an airport land use plan or is within two miles of a public use airport, or in the vicinity of a private airstrip. The Project would have no impact on air traffic patterns. As such, the revisions to the Master Plan proposed by the Project would not require major revisions to the Original EIR, because there would be no impacts on air traffic patterns, no substantial changes with respect to the circumstances under which the Project is undertaken, and no new information of substantial importance meeting the test of CEQA Guidelines section 15162(a)(3) has arisen. Therefore, the Project is not anticipated to result in significant impacts to air traffic patterns and would not require further evaluation of this issue.

16. UTILITIES & SERVICE SYSTEMS. Would the project:

- a) Exceed wastewater treatment requirements of the applicable Regional Water Quality Control Board?
- b) Require or result in the construction of new water or wastewater treatment facilities, the construction of which could cause significant environmental effects?
- c) Require or result in the construction of new storm water drainage facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?
- d) Have sufficient water supplies available to serve the project from existing entitlements and resources, or are new or expanded entitlements needed?
- e) Result in a determination by the wastewater treatment provider that serves or may serve the project that it has adequate capacity to serve the project's projected demand in addition to the provider's existing commitments?

Less Than Significant Impact. Water is currently supplied to the Project Site by the Los Angeles Department of Water and Power (LADWP), which also distributes water to most of the City of Los Angeles. The LADWP had indicated that the existing water system could accommodate the anticipated water use demand of the CSMC Master Plan.

Using *Thresholds Guide* screening criteria it was determined that the Project would not cause the Community Plan area to exceed the projected growth in employment for the year of project occupancy/buildout.

Following development of the Project, water service would continue to be provided by the LADWP. The Project would result in a net increase of 55,000 gallons² per day over the CSMC Master Plan. The established zoning of [T][Q]C2-2D-O supports the use and density of the Project.

Wastewater from the Project Site is currently treated at the Hyperion Treatment Plant (HTP). The HTP treats wastewater from almost all of the City of Los Angeles, as well as from the Cities of Beverly Hills, Glendale, Culver City, El Segundo, Burbank, San Fernando, Santa Monica, and portions of Los Angeles County and 29 contract agencies.

Using *Thresholds Guide* screening criteria for it was determined that the Project would not produce wastewater flows in a Sewer Capacity Threshold Area; would not produce an increase of more than 4,000 gallons per day; and would not include a change in the land use limitations which would allow greater average daily flows.

The Project would result in a net increase of 50,000 gallons³ per day over the CSMC Master Plan. The established zoning of [T][Q]C2-2D-O supports the use and density of the Project. The applicant must comply with the provisions of ordinances regarding sewer capacity allotment in the City of Los Angles. The mitigation measures pertaining to water usage would also reduce sewage flows.

² Daily water consumption based on 275 gallons per 1,000 square feet. Worst case analysis assumes water consumption to be 110 percent of sewage flow. Source: Bureau of Sanitation. Sewer Facilities Charge, Sewage Generation Factors for Residential and Commercial Categories. Effective June 6, 1996. 3 Based on 250 gallons per 1,000 square feet. Source: Bureau of Sanitation. Sewer Facilities Charge, Sewage Generation Factors for Residential and Commercial Categories. Effective June 6, 1996.

Several mitigation measures pertaining to water usage were included in the Original EIR and as part of the existing Development Agreement. These mitigation measures are:

Water

- To the maximum extent feasible, reclaimed water shall be used during the grading and construction of the project for dust control, soil compaction, and concrete mixing.
- The project should incorporate water saving design techniques in order to minimize water requirements. The installation of water conserving plumbing fixtures and City approval of a landscape design plan would be required if the City's water conservation program is still in effect at the time of building permit issuance. If the [program is] no longer in effect, the applicant should still consider the incorporation of these measures into the proposed project, where feasible.
- Water in fountains, ponds, and other landscape features within the proposed project must be treated and filtered to meet City and State health standards. Also, recirculating systems should be used to prevent waste.
- A recirculating hot water system should be used, where feasible.
- Automatic irrigation systems should be set to ensure irrigation during early morning or evening hours to minimize water loss through evaporation.
- Drip irrigation systems should be used for any proposed irrigation system.
- Reclaimed water should be investigated as a source of irrigation for large landscaped areas.
- Selection of drought-tolerant, low-water-consuming plant varieties should be used to reduce irrigation water consumption.
- Low-flow and water conserving toilets, faucets, and showerheads must be installed in new construction and when remodeling.
- Plumbing fixtures should be selected which reduce potential water loss from leakage due to excessive wear of washers.
- Promptly detect and repair leaks.

Sanitary Sewer (Wastewater)

- The applicant must comply with the provisions of ordinances regarding sewer capacity allotment in the City of Los Angeles. In addition, the applicant must comply with Ordinance No. 166,080 which restricts water consumption and which will concurrently reduce sewage flows.
- Measures cited in Section IV.Q.4, Water, [of the Original EIR], which restricts water consumption should be implemented to reduce sewage flows.

Since the time of certification of the Original EIR and adoption of the mitigation measures through the Development Agreement, available water supply and

⁴ Based on 250 gallons per 1,000 square feet. Source: Bureau of Sanitation. Sewer Facilities Charge, Sewage Generation Factors for Residential and Commercial Categories. Effective June 6, 1996.

achievement of water conservation continue to be of environmental concern. Legislation enacted since the approval of the Master Plan requires water agencies to prepare and adopt water management plans. The City of Los Angeles Department of Water and Power's (LADWP) Urban Water Management Plan (UWMP), last adopted in 2005, recognizes and accounts for periods of dry conditions and calls for increased water conservation continually through year 2030 to off-set periods of diminished water capacity. LADWP is in the process of adopting updated Water Conservation Devices and Measure for New Development in the City of Los Angeles. It is intended that these requirements would be incorporated into the City's proposed Green Building Ordinance (anticipated for adoption in April 2008), and would therefore become a standard condition requirement for all new development, including the Project. In the interim, the LADWP requests that the proposed water measures be required and incorporated for all discretionary projects under review by Los Angeles Department of City Planning.⁵ Many of these water conservation devices and measures are already addressed through the adopted mitigation measures per the Original EIR. Compliance with this Citv requirement would further reduce the impacts of the Project.

Implementation of standard conditions of approval and the Original EIR's mitigation measures, as well as the collection of service fees/taxes associated with the Project, would reduce the Project's water and wastewater impacts to a less than significant level, and further evaluation is required.

f) Be served by a landfill with sufficient permitted capacity to accommodate the project's solid waste disposal needs?

Less Than Significant Impact. Solid waste from the Project Site is collected by private collection firms contracted directly with the property owner. The private collectors operating in the project area dispose of general refuse at any of four Class III landfills in Los Angels County.

Using *Thresholds Guide* screening criteria for it was determined that the Project would not result in solid waste generation of five tons or more per week above the Master Plan generation rate.

Construction of some of the Master Plan's approved development will involve site preparation (vegetation removal and grading activities) and construction activities, which would generate typical construction debris, including wood, paper, glass, plastic, metals, cardboard, and green wastes. Construction of the Project would result in a net increase in site-generated solid waste of approximately 1,400 pounds⁶ per day or 4.9 tons per week over the CSMC Master Plan. Several mitigation measures pertaining to solid waste were included in the Original EIR and as part of the existing Development Agreement. These mitigation measures are:

- Commercial-size trash compactors shall be installed.
- White paper, glass, and metal recycling programs shall be implemented.

⁵ Letter to Gail Goldberg, Director of Planning, City Planning Department from H. David Nahai, Chief Executive Officer and General Manager, Los Angeles Department of Water and Power, dated March 6, 2008.

⁶ Seven pounds/1000 square feet. Source: City of Los Angeles Bureau of Engineering, April, 1981.

In addition, the Project would comply with all federal, state, and local statutes and regulations related to solid waste. Implementation of standard conditions of approval and the Original EIR's mitigation measures, as well as the collection of service fees/taxes associated with the Project, would reduce the Project's solid waste impacts to a less than significant level, and no further evaluation is required.

g) Comply with federal, state, and local statutes and regulations related to solid waste?

No Impact. The Project would comply with all federal, state, and local statutes and regulations related to solid waste.

In summary, the Original EIR determined that the Master Plan would have less than significant impacts on utilities, including power, natural gas, communication systems, and storm water drainage; however, the Original EIR concluded that the Master Plan would have significant and unavoidable project-level and cumulative impacts on water conservation, sanitary sewers and non-hazardous and hazardous solid waste and disposal. The Project would create no new or substantially increased significant impacts on utilities beyond those analyzed in the Original EIR. As such, the revisions to the Master Plan proposed by the Project would not require major revisions to the Original EIR, because there would be no new significant environmental impacts on utilities not previously analyzed in the Original EIR, no substantial increase in the severity of any significant impact previously identified in the Original EIR, no substantial changes with respect to the circumstances under which the Project is undertaken, and no new information of substantial importance meeting the test of CEQA Guidelines section 15162(a)(3) has arisen.

17. MANDATORY FINDINGS OF SIGNIFICANCE.

- a) Does the project have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory?
- b) Does the project have impacts that are individually limited, but cumulatively considerable? ("cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects)?
- c) Does the project have environmental effects, which will cause substantial adverse effects on human beings, either directly or indirectly?

As identified in Section IV of this Initial Study, the Project has the potential to result in significant impacts to Aesthetics, Air Quality, Noise, and Transportation/Traffic. These issues should be examined in the Project EIR.

V. COMPATIBILITY WITH EXISTING ZONING AND PLANS

According to the Land Use map for the Wilshire Community Plan General Plan Amendment in September 2001, the Project Site is designated for Regional Commercial land uses. The Project would not change the land use at the site or change the character of the area and would be consistent with the applicable land use plan. Additionally, there would be no off-site land use impacts. Therefore, the project would be compatible with existing zoning and plans.

VI. <u>NAMES OF PREPARERS</u>

Planning Associates, Inc.

VII. DETERMINATION - RECOMMENDED ENVIRONMENTAL DOCUMENTATION

A. <u>Summary</u>

The Project would potentially result in significant impacts to Aesthetics, Air Quality, Noise and Transportation/Traffic.

B. <u>Recommended Environmental Documentation</u>

On the basis of this initial evaluation, I find that the Project could have a potentially significant effect on the environment in the areas of Aesthetics, Air Quality, Noise and Transportation/Traffic, and therefore an Environmental Impact Report should be prepared. Further, based on this Initial Study evaluation and consistent with CEQA Guidelines Sections 15162 and 15163, I find that preparation of a Supplemental EIR is appropriate for the Project because the Project's proposed revisions to the approved Master Plan require only major revisions to the Original EIR and the Project would not create either new significant environmental impacts not previously studies in the Original EIR nor a substantial increase in the severity of any significant impact previously identified in the Original EIR. In addition, the circumstances of the Project would not substantially change the circumstances under which the Master Plan was proposed to be undertaken so as to require major revisions of the Original EIR due to the involvement of new significant environmental effects or a substantial increase in the severity of previously identified significant effects. Finally, no new information of substantial importance, which was not known and could not have been known with the exercise of reasonable diligence at the time the Original EIR was certified as complete, meeting the test of CEQA Guidelines section 15162(a)(3) has arisen.

Prepared By:

Approved By:

ATTACHMENTS:

- A. Exhibits

 Regional Location Map
 Local Vicinity Map
 Site Plan
 West Tower Plan

EXHIBIT 1: REGIONAL LOCATION MAP

EXHIBIT 2: LOCAL VICINITY MAP

EXHIBIT 3: SITE PLAN

EXHIBIT 4: WEST TOWER PLAN

				MECHANICAL		ROOF	MEDICAL SUITES		MEDICAL SUITES			INPATIENT		
				*										(
PROPOSED ADDITIONAL DEVELOPMENT					INPATIENT 42,500	INPATIENT 42,500	INPATIENT 36,000	INPATIENT 36,000	INPATIENT 36,000	INPATIENT 7,000			200,000	
PREVIOUSLY AUTHORIZED DEVELOPMENT	SUPPORT 13,622	DIAGNOSTIC/ER 37,261	REHAB 15,000 ADMIN 5,267	REHAB 20,000 MEDICAL SUITES 24,500							MEDICAL SUITES 36,000	MEDICAL SUITES 36,000	187,650	
REPLACEMENT OF EXISTING SPIELBERG BUILDING	RESEARCH 30,000	ADMIN 5,000	ADMIN 25,000							MEDICAL SUITES 30,000			000'06	
PROPOSED FUNCTIONS	RESEARCH SUPPORT	DIAGNOSTIC/ER ADMIN	ADMIN RESEARCH	RESEARCH MEDICAL SUITES	INPATIENT	INPATIENT	INPATIENT	INPATIENT	INPATIENT	MEDICAL SUITES INPATIENT	MEDICAL SUITES	MEDICAL SUITES		
TOTAL SF (LAMCNET)	43,622	42,261	45,267	44,500	42,500	42,500	36,000	36,000	36,000	37,000	36,000	36,000	477,650	
FLOOR LEVEL	8	GROUND FLR	2	ю	4	Q	9	7	ø	o	10	11	TOTAL SF	

ROOF

MEDICAL SUITES

INPATIENT LEVEL 06

182.-0"

PROPOSED WEST TOWER SECTION

ARCHITECTURE, ENGINEERING, 01 30,2008 INTERIORS, BARPHICS, CONSULTING 9530 January Curver Chy, CA 90232 Poiol aefireson Bauleman Culver Chy, CA 90232 Fac. 3101 859-9595

SCALE: 1"=32'-0"

APPENDIX A

<u>APPENDIX A-3</u> NOP WRITTEN COMMENTS

NOTICE OF PREPARATION (NOP) COMMENTS RECEIVED ON THE CEDARS-SINAI MEDICAL CENTER WEST TOWER PROJECT PUBLIC SCOPING PERIOD: MARCH 7, 2008 - APRIL 8, 2008

NOP COMMENT LETTER	NOP COMMENT ISSUE	SEIR RESOLUTION		
FEDERAL AND STATE AGENCIES				
Morgan, Scott, California Office of Planning and Research, State Clearinghouse and Planning Unit (OPR/SCH), letter dated 3/10/08	<i>Public Scoping:</i> A 30-day public scoping period is provided	The CEQA process, including the public scoping process, is discussed in <i>Section I: Introduction</i> of this Draft SEIR.		
Singleton, Dave, California Native American Heritage Commission (NAHC), letter dated 3/11/08	<i>Cultural Resources:</i> Address cultural resources as required by CEQA	Cultural resources were determined to be less than significant, as discussed in <i>Section VI.A: Effects</i> <i>Not Found to Be Significant</i> of this Draft SEIR.		
REGIONAL, COUNTY AND LOCAL AC	GENCIES			
Chapman, Susan, Los Angeles County Metropolitan Transportation Authority (Metro), letter dated 3/18/08	<i>CMP Analysis:</i> Provide transportation impact analysis (TIA) in compliance with the State Congestion Management Program (CMP)	A complete Traffic Impact Analysis (TIA) has been prepared and is attached as <i>Appendix E: Traffic</i> <i>Impact Study</i> of this Draft SEIR. The results of the traffic, parking and transit impact study are presented in <i>Section IV.D:</i> <i>Transportation and Circulation</i> of this Draft SEIR.		
Jones, Laverne, Southern California Association of Governments (SCAG), letter dated 3/20/08	<i>Regional Significance:</i> the project is not regionally significant under SCAG's criteria	The Proposed Project is not regionally significant and no further discussion is required. See also <i>Appendix A-2: Initial Study</i> of this Draft SEIR.		
Nahai, H. David, Los Angeles Department of Water and Power (LADWP), letter dated 3/6/08	Water Conservation: In accordance with LADWP water conservation goals, the Project must comply with "Water Conservation Devices and Measures for New Development in the City of Los Angeles"	Water conservation and cumulative water supply concerns are discussed in <i>Section IV.E: Cumulative Effects</i> of this Draft SEIR. Other water supply issues are discussed in <i>Section VI.A: Effects Not Found to</i> <i>Be Significant</i> of this Draft SEIR.		
Smith, Steve, South Coast Air Quality Management District (SCAQMD), letter dated 3/13/08	<i>Air Quality Analysis:</i> Provide an air quality impact analysis prepared in accordance with SCAQMD guidelines, and provide recommended mitigation measures as appropriate	A complete Air Quality Analysis has been prepared and is attached as <i>Appendix D: Air Quality & Noise</i> <i>Impact Report</i> of this Draft SEIR. The results of the air quality report are presented in <i>Section IV.B: Air</i> <i>Quality</i> of this Draft SEIR.		

NOP COMMENT LETTER	NOP COMMENT ISSUE	SEIR RESOLUTION		
ORGANIZATIONS AND SPECIAL INTE	REST GROUPS			
Huynh, Dinh, Robertson Properties Group , letter dated 4/7/08	Shadows: Address shade/shadow	Shade and shadow issues were determined to be less than significant as discussed in <i>Section</i> <i>VI.A: Effects Not Found to Be</i> <i>Significant</i> of this Draft SEIR.		
	<i>Site Access:</i> Address driveway access and effects to adjacent businesses	Site access is addressed in the Traffic Impact Analysis, attached as <i>Appendix E: Traffic Impact Study</i> of this Draft SEIR. The results of the traffic, parking and transit study, including a discussion of site access, are presented in <i>Section</i> <i>IV.D: Transportation and</i> <i>Circulation</i> of this Draft SEIR.		
	<i>Traffic:</i> Address traffic on Alden Drive	Traffic on local streets is addressed in the Traffic Impact Analysis, attached as <i>Appendix E: Traffic</i> <i>Impact Study</i> of this Draft SEIR. The results of the traffic, parking and transit study, including a discussion of traffic along Alden Drive, are presented in <i>Section</i> <i>IV.D: Transportation and</i> <i>Circulation</i> of this Draft SEIR.		
	<i>Loading Docks</i> : Address placement of truck docks, trash containment areas, and ambulatory access and effect on adjacent businesses	Loading docks and similar facilities are addressed throughout the Draft SEIR relative to aesthetics, noise, access and air quality issues.		
	<i>Construction Activities:</i> Address noise and dust effects on local businesses	Construction activities are addressed throughout this Draft SEIR, including effects on local business relative to aesthetics, noise, access and air quality issues.		
	<i>Toxic Waste:</i> address on-site storage for toxic wastes	Toxic waste issues were determined to be less than significant, as discussed in <i>Section VI.A: Effects</i> <i>Not Found to Be Significant</i> of this Draft SEIR.		

NOP COMMENT LETTER	NOP COMMENT ISSUE	SEIR RESOLUTION		
Lake, Laura, Lake & Lake Consulting, Inc. , letter dated 4/2/08	<i>Parking:</i> Evaluate adequacy of parking for the Project and the CSMC Campus	Parking is addressed in the Traffic Impact Analysis, attached as <i>Appendix E: Traffic Impact Study</i> of this Draft SEIR. The results of the traffic study, including a discussion of parking, are presented in <i>Section IV.D: Transportation</i> <i>and Circulation</i> of this Draft SEIR.		
	<i>Liquefaction:</i> Identify if the Project is in a liquefaction zone	Liquefaction issues were determined to be less than significant, as discussed in <i>Section</i> <i>VI.A: Effects Not Found to Be</i> <i>Significant</i> of this Draft SEIR.		
	<i>General Plan Compliance:</i> Address adequacy determination of public infrastructure per the Los Angeles General Plan	General Plan consistency issues, including consistency with public infrastructure policies, were determined to be less than significant, as discussed in Section VI.A: Effects Not Found to Be Significant of this Draft SEIR. However, cumulative infrastructure issues are discussed in Section IV.E: Cumulative Effects of this Draft SEIR.		
	<i>Community Plan Consistency:</i> Address the level of service policies per the Wilshire Community Plan	Community Plan consistency issues, including consistency with level of service policies, were determined to be less than significant, as discussed in <i>Section</i> <i>VI.A: Effects Not Found to Be</i> <i>Significant</i> of this Draft SEIR. However, Project-related roadway level of service is addressed in the Traffic Impact Analysis and discussed in <i>Section IV.D:</i> <i>Transportation and Circulation</i> of this Draft SEIR.		
	<i>Traffic:</i> Address "cut through" traffic on adjacent residential streets	Traffic on local streets is addressed in the Traffic Impact Analysis, attached as <i>Appendix E: Traffic</i> <i>Impact Study</i> of this Draft SEIR. The results of the traffic, parking and transit study, including a discussion of "cut through" traffic, formally known as residential street segment analysis, is presented in <i>Section IV.D: Transportation and</i> <i>Circulation</i> of this Draft SEIR.		

NOP COMMENT LETTER	NOP COMMENT ISSUE	SEIR RESOLUTION		
Strudler, Martin, West Hollywood West Residents Association (WHWRA), letter dated 4/2/08	<i>Parking:</i> Provide information/evaluation of employee parking	Parking is addressed in the Traffic Impact Analysis, attached as <i>Appendix E: Traffic Impact Study</i> of this Draft SEIR. The results of the traffic study, including a discussion of parking, are presented in <i>Section IV.D: Transportation</i> <i>and Circulation</i> of this Draft SEIR.		
	<i>Street Parking:</i> Address the loss of existing on-street parking	Parking is addressed in the Traffic Impact Analysis, attached as <i>Appendix E: Traffic Impact Study</i> of this Draft SEIR. The results of the traffic study, including a discussion of parking, are presented in <i>Section IV.D: Transportation</i> <i>and Circulation</i> of this Draft SEIR.		
	<i>Traffic:</i> Address cumulative traffic and congestion at local intersections	Cumulative traffic levels and traffic on local streets is addressed in the Traffic Impact Analysis, attached as <i>Appendix E: Traffic Impact Study</i> of this Draft SEIR. The results of the traffic study, including a discussion of cumulative traffic, are presented in <i>Section IV.D:</i> <i>Transportation and Circulation</i> of this Draft SEIR.		
	<i>Groundwater Table:</i> Address effects to the local groundwater table and the uses in the Project vicinity	Groundwater issues were determined to be less than significant, as discussed in Section VI.A: Effects Not Found to Be Significant of this Draft SEIR.		
	<i>Construction:</i> Address truck haul routes and the effect on adjacent residential streets	Construction activities are addressed throughout this Draft SEIR, including effects on local street traffic.		
	<i>Alternatives:</i> Address alternatives that would reduce impacts on surrounding residential uses	Alternatives are addressed in <i>Section V: Alternatives</i> of this Draft SEIR.		

ARNOLD SCHWARZENEGGER GOVERNOR

To:

STATE OF CALIFORNIA GOVERNOR'S OFFICE of PLANNING AND RESEARCH STATE CLEARINGHOUSE AND PLANNING UNIT

CYNTHIA BRYANT DIRECTOR

Notice of Preparation

March 10, 2008

Reviewing Agencies

Re: Cedars-Sinai Medical Center ENV 2008-0620-EIR SCH# 2008031040

Attached for your review and comment is the Notice of Preparation (NOP) for the Cedars-Sinai Medical Center ENV 2008-0620-EIR draft Environmental Impact Report (EIR).

Responsible agencies must transmit their comments on the scope and content of the NOP, focusing on specific information related to their own statutory responsibility, within 30 days of receipt of the NOP from the Lead Agency. This is a courtesy notice provided by the State Clearinghouse with a reminder for you to comment in a timely manner. We encourage other agencies to also respond to this notice and express their concerns early in the environmental review process.

Please direct your comments to:

Adam Villani City of Los Angeles 200 No. Spring Street Room 750 Los Angeles, CA 90012

with a copy to the State Clearinghouse in the Office of Planning and Research. Please refer to the SCH number noted above in all correspondence concerning this project.

If you have any questions about the environmental document review process, please call the State Clearinghouse at (916) 445-0613.

Sincerely,

Scott Morgan Project Analyst, State Clearinghouse

Attachments cc: Lead Agency

Document Details Report State Clearinghouse Data Base

SCH# Project Title Lead Agency	2008031040 Cedars-Sinai Medical Center ENV Los Angeles, City of	2008-0620-EIR	
Туре	NOP Notice of Preparation		
Description	Increasing existing land use entitle square footage will be contained w	ments at the medical center ithin a proposed 477,650 sq	by 200,000 square feet. The new uare foot inpatient facility.
Lead Agency	y Contact		
Name	Adam Villani		
Agency	City of Los Angeles		
Phone	213 978-1472	Fax	
email			
Address	200 No. Spring Street		
	Room 750		
City	Los Angeles	State CA	<i>Zip</i> 90012
Project Loca	ation		
County	Los Angeles		
Citv	Ū		
Region			
Cross Streets	Beverly Boulevard and San Vicent	e	
Parcel No.	•		-
Township	Range	Section	Base
Proximity to			
Highways	-		
Airnorts			
Railwavs			
Waterways			
Schools			
Land Use			
Project Issues	Aesthetic/Visual; Agricultural Lan	d; Air Quality; Noise; Traffic/	Circulation; Cumulative Effects
Reviewing	Resources Agency: Office of Hist	oric Preservation; Departme	nt of Parks and Recreation; Department
Aaencies	of Water Resources: Native Ame	rican Heritage Commission;	Office of Emergency Services;
	Department of Fish and Game, R	egion 5; California Highway	Patrol; Caltrans, District 7; Air Resources
	Board Major Industrial Projects:	Integrated Waste Manageme	ent Board; Department of Toxic
	Substances Control; Regional Wa	ater Quality Control Board, F	Region 4
 Date Received	03/10/2008 Start of Review	v 03/10/2008 End o	f Review 04/08/2008

NATIVE AMERICAN HERITAGE COMMISSION

915 CAPITOL MALL, ROOM 364 SACRAMENTO, CA 95814 (916) 653-6251 Fax (916) 657-5390 www.nahc.ca.gov ds_nahc@pacbell.net

March 11, 2008

Mr. Adam Villani

Los Angeles City Planning Department

200 North Sprig Street, 7th FloLos Angeles, CA 90012, CA 92553

Re: <u>SCH# 2008031040; CEQA Notice of Preparation (NOP) draft Environmental Impact Report (DEIR) for</u> the Cedars-Sinai Medical Center Project, ENV2008-0620-EIR; Los Angeles County, California

Dear Mr. Villani:

Thank you for the opportunity to comment on the above-referenced document. The Native American Heritage Commission is the state agency designated for the protection of California's Native American cultural resources. The California Environmental Quality Act (CEQA) requires that any project that causes a substantial adverse change in the significance of an historical resource, that includes archeological resources, is a 'significant effect' requiring the preparation of an Environmental Impact Report (EIR per the California Code of Regulations § 15064.5(b)(c) (CEQA Guidelines). In order to comply with this provision, the lead agency is required to assess whether the project will have an adverse impact on these resources within the 'area of potential effect (APE),' and if so, to mitigate that effect. To adequately assess the project-related impacts on historical resources, the Commission recommends the following action: $\sqrt{$ Contact the appropriate California Historic Resources Information Center (CHRIS). Contact information for the 'Information Center' nearest you is available from the <u>State Office of Historic Preservation in Sacramento (916/653-7278</u>). The record search will determine:

- If a part or the entire (APE) has been previously surveyed for cultural resources.
- If any known cultural resources have already been recorded in or adjacent to the APE.
- If the probability is low, moderate, or high that cultural resources are located in the APE.
- If a survey is required to determine whether previously unrecorded cultural resources are present.

 $\sqrt{1}$ If an archaeological inventory survey is required, the final stage is the preparation of a professional report detailing the findings and recommendations of the records search and field survey.

- The final report containing site forms, site significance, and mitigation measurers should be submitted immediately to the planning department. All information regarding site locations, Native American human remains, and associated funerary objects should be in a separate confidential addendum, and not be made available for pubic disclosure.
- The final written report should be submitted within 3 months after work has been completed to the appropriate regional archaeological Information Center.
- $\sqrt{}$ Contact the Native American Heritage Commission (NAHC) for:
- * A Sacred Lands File (SLF) search of the project area and information on tribal contacts in the project vicinity who may have information on cultural resources in or near the APE. Please provide us site identification as follows: <u>USGS 7.5-minute quadrangle citation with name, township, range and section</u>. This will assist us with the SLF.
- Also, we recommend that you contact the Native American contacts on the attached list to get their input on the effect of potential project (e.g. APE) impact. In many cases a culturally-affiliated Native American tribe or person will be the only source of information about the existence of a cultural resource.

 $\sqrt{1}$ Lack of surface evidence of archeological resources does not preclude their subsurface existence.

- Lead agencies should include in their mitigation plan provisions for the identification and evaluation of accidentally discovered archeological resources, per California Environmental Quality Act (CEQA) §15064.5 (f)of the California Code of Regulations (CEQA Guidelines). In areas of identified archaeological sensitivity, a certified archaeologist and a culturally affiliated Native American, with knowledge in cultural resources, should monitor all ground-disturbing activities.
- Lead agencies should include in their mitigation plan provisions for the disposition of recovered artifacts, in consultation with culturally affiliated Native Americans.

 $\sqrt{\text{Lead}}$ agencies should include provisions for discovery of Native American human remains or unmarked cemeteries in their mitigations plans.

- CEQA Guidelines §15064.5(d) requires the lead agency to work with the Native Americans identified by this Commission if the Initial Study identifies the presence or likely presence of Native American human remains within the APE. CEQA Guidelines provide for agreements with Native American groups, identified by the NAHE, to ensure the appropriate and dignified treatment of Native American human remains and any associated grave goods.
- Health and Safety Code §7050.5, Public Resources Code §5097.98 and CEQA Guidelines §15064.5(d) mandate procedures to be followed in the event of an accidental discovery of any human remains in a location other than a dedicated cemetery.

 $\sqrt{\text{Lead}}$ agencies should consider avoidance, as defined in CEQA Guidelines §15370 when significant cultural resources are discovered during the course of project planning or execution.

Please feel free to contact me at (916) 653-6251 if you have any questions.

Sincerely. Dave Singleton Program Analyst

Attachment: Native American Contact List.

Cc: State Clearinghouse

Native American Contacts Los Angeles County March 11, 2008

LA City/County Native American Indian Comm Ron Andrade, Director 3175 West 6th Street, Rm. 403 Los Angeles , CA 90020 (213) 351-5324 (213) 386-3995 FAX

Ti'At Society Cindi Alvitre 6515 E. Seaside Walk, #C Long Beach , CA 90803 calvitre@yahoo.com (714) 504-2468 Cell

Gabrielino

Tongva Ancestral Territorial Tribal Nation John Tommy Rosas, Tribal Admin.

tattnlaw@gmail.com 310-570-6567

Gabrielino Tongva

Gabrieleno/Tongva San Gabriel Band of Mission Anthony Morales, Chairperson PO Box 693 Gabrielino Tongva , CA 91778 San Gabriel ChiefRBwife@aol.com (626) 286-1632 (626) 286-1758 - Home (626) 286-1262 Fax

Gabrielino/Tongva Council / Gabrielino Tongva Nation Sam Dunlap, Tribal Secretary 761 Terminal Street; Bldg 1, 2nd floor Gabrielino Tongva Los Angeles , CA 90021 office @tongvatribe.net (213) 489-5001 - Officer (909) 262-9351 - cell (213) 489-5002 Fax

Gabrielino Tongva Indians of California Tribal Council Robert Dorame, Tribal Chair/Cultural Resources 5450 Slauson, Ave, Suite 151 PMB Gabrielino Tongva Culver City , CA 90230 gtongva@verizon.net 562-761-6417 - voice 562-925-7989 - fax

This list is current only as of the date of this document.

Distribution of this list does not relieve any person of statutory responsibility as defined in Section 7050.5 of the Health and Safety Code, Section 5097.94 of the Public Resources Code and Section 5097.98 of the Public Resources Code.

This list is only applicable for contacting local Native American with regard to cultural resources for the proposed sCH#2008031040; CEQA Notice of Preparation (NOP); draft Environmental Impact Report (DEIR) for the Dedars-Sinai Medical Center; ENV2008-0620-EIR; Los Angeles City Planning Department; Los Angeles County, California.

and a second second

March 18, 2008

Mr. Adam Villani Environmental Review Section Department of City Planning 200 N. Spring Street, Room 750 Los Angeles, CA 90012

RECEIVED CITY OF LOS ANGELES

MAR 20 2008

One Gateway Plaza

Los Angeles, CA 90012-2952

environmental. Unit

Dear Mr. Villani:

Thank you for the opportunity to comment on the Notice of Preparation (NOP) for the Cedars-Sinai Medical Center project. This letter conveys recommendations from the Los Angeles County Metropolitan Transportation Authority (Metro) concerning issues that are germane to our agency's statutory responsibilities in relation to the proposed project.

A Traffic Impact Analysis (TIA), with highway, freeway, and transit components, is required under the State of California Congestion Management Program (CMP) statute. The CMP TIA Guidelines are published in the "2004 Congestion Management Program for Los Angeles County", Appendix D. The geographic area examined in the TIA must include the following, at a minimum:

- 1. All CMP arterial monitoring intersections, including monitored freeway on/off-ramp intersections, where the proposed project will add 50 or more trips during either the a.m. or p.m. weekday peak hour (of adjacent street traffic); and
- 2. Mainline freeway-monitoring locations where the project will add 150 or more trips, in either direction, during either the a.m. or p.m. weekday peak hour.

Among the required steps for the analysis of development-related impacts to transit are:

- 3. Evidence that in addition to Metro, all affected Municipal transit operators received the NOP for the Draft EIR;
- 4. A summary of the existing transit services in the area;
- 5. Estimated project trip generation and mode assignment for both morning and evening peak periods;
- 6. Documentation on the assumptions/analyses used to determine the number and percentage of trips assigned to transit;
- 7. Information on facilities and/or programs that will be incorporated into the development plan that will encourage public transit usage and transportation demand management (TDM) policies and programs; and
- 8. An analysis of the expected project impacts on current and future transit services along with proposed project mitigation.

213.922.2000 Tel metro.net Metro looks forward to reviewing the Draft EIR. If you have any questions regarding this response, please call me at 213-922-6908 or by email at chapmans@metro.net. Please send the Draft EIR to the following address:

Metro CEQA Review Coordination One Gateway Plaza MS 99-23-2 Los Angeles, CA 90012-2952 Attn: Susan Chapman

Sincerely,

AunFChym

Susan Chapman Program Manager, Long Range Planning

SOUTHERN CALIFORNIA

ASSOCIATION of GOVERNMENTS

Main Office

818 West Seventh Street 12th Floor Los Angeles, California 90017-3435

t (213) 236-1800 f (213) 236-1825

www.scag.ca.gov

Officers

President Gary Ovitt, San Bernardino County

> First Vice President Richard Dixon, Lake Forest

> Second Vice President Harry Baldwin, San Gabriel

Immediate Past President Yvonne 8. Burke, Los Angeles County

Policy Committee Chairs

Administration Ronald O. Loveridge, Riverside

Community, Economic and Human Development Jon Edney, El Centro

Energy and Environment Debbie Cook, Huntington Beach

Transportation and Communications Alan D. Wapner, Ontario March 20, 2008

Mr. Adam Villani Environmental Review Section Department of Cit Planning 200 N. Spring, Room 750 Los Angeles, CA 90012

RECEIVED CITY OF LOS ANGELES

MAR 25 2008

ENVIRONMENTAL UNIT

RE: SCAG Clearinghouse No. 1 20080141 Cedars-Sinai Medical Center

Dear Mr. Villani:

Thank you for submitting the **Cedars-Sinai Medical Center** for review and comment. As areawide clearinghouse for regionally significant projects, SCAG reviews the consistency of local plans, projects and programs with regional plans. This activity is based on SCAG's responsibilities as a regional planning organization pursuant to state and federal laws and regulations. Guidance provided by these reviews is intended to assist local agencies and project sponsors to take actions that contribute to the attainment of regional goals and policies.

We have reviewed the **Cedars-Sinai Medical Center+**, and have determined that the proposed Project is not regionally significant per SCAG Intergovernmental Réview (IGR) Critéria and California Environmental Quality Act (CEQA) Guidelines (Section 15206). Therefore, the proposed Project does not warrant comments at this time. Should there be a change in the scope of the proposed Project, we would appreciate the opportunity to review and comment at that time.

A description of the proposed Project was published in SCAG's **March 1-15, 2008** Intergovernmental Review Clearinghouse Report for public review and comment.

The project title and SCAG Clearinghouse number should be used in all correspondence with SCAG concerning this Project. Correspondence should be sent to the attention of the Clearinghouse Coordinator. If you have any questions, please contact me at (213) 236-1857. Thank you.

Sincerely,

AVERNE JONES, Planning Technician Program Development and Evaluation Division

Department of Water and Power

the City of Los Angeles

ANTONIO R. VILLARAIGOSA Mayor Commission NICK PATSAOURAS, President EDITH RAMIREZ, Vice President LEE KANON ALPERT WALLY KNOX FORESCEE HOGAN-ROWLES BARBARA E, MOSCHOS, Secretary

H. DAVID NAHAI, Chief Executive Officer and General Manager

> RECEIVED CITY OF LOS ANGELES

March 6, 2008

MAR 25 2008

environmental Unit

Ms. S. Gail Goldberg Director of Planning City Planning Department Room 525, City Hall 200 N. Spring Street Los Angeles, California 90012

Dear Ms. Goldberg:

Subject: Request for Increased Water Conservation Measures in New Construction

As you are aware, water supply issues have been of growing concern. Last year, the City of Los Angeles received the lowest rainfall on record; our own Los Angeles Aqueduct supply from the Eastern Sierra was at near record lows, and snowpack for the rest of California was also well below normal. In addition, a Federal Court ruling last year has resulted in reduced exports from the Delta to the State Water Project, the major source of supply to the Metropolitan Water District of Southern California, who we have increasingly relied upon to meet our water supply needs.

Continued significant development in the City of Los Angeles has generated concern for sufficient water supplies to meet increasing needs. Our Urban Water Management Plan (UWMP), last adopted in 2005, recognizes and accounts for periods of dry conditions and also anticipates both population growth and increased water demands. In light of the recent events, we have been undergoing a closer examination of steps the City must undertake to achieve the water supply goals of the UWMP in order to have a sustainable water supply for the City.

The 2005 UWMP calls for increased water conservation continually through 2030, which is as far as the plan forecasts. Conservation goals are broken down to 5-year increments. By 2010, the plan calls for 5,000 acre-feet per year of additional water conservation savings.

In order to achieve the anticipated water conservation savings identified in the UWMP, we are requesting that all new construction that is subject to discretionary review and approval by your Department require the inclusion of water conserving

Water and Power Conservation ... a way of life

111 North Hope Street, Los Angeles, California 90012-2607 Mailing address: Box 51111, Los Angeles 90051-5700 Telephone: (213) 367-4211 Cable address: DEWAPOLA

Recyclabic and made from recycled va

Ms. S. Gail Goldberg Page 2 March 6, 2008

measures identified in the enclosure to this letter. LADWP has proposed that the same requirements be part of the City's proposed Green Building Ordinance, but we believe we must implement these water-conserving measures immediately, which are necessary to meet our conservation goals.

We are requesting that you require the enclosed list of conservation measures as part of your approval process for all new construction.

Thank you for assisting us to meet the required water conservation goals to ensure adequate water supplies for the future.

If you have any questions, please contact me at (213) 367-1388 or Mr. Thomas M. Erb, Director of Water Resources, at (213) 367-0873.

Sincerely,

H. David Nahai Chief Executive Officer and General Manager

JGY:lsf

Enclosure

c/enc: Ms. Nancy H. Sutley, Mayor's Office

- Mr. Thomas Rothmann, City Planning EIR Unit
- Mr. Jimmy Liao, City Planning EIR Unit
- Mr. Hadar Plafkin, City Planning EIR Unit
- √Mr. David Somers, City Planning EIR Unit
 - Mr. Enrique C. Zaldivar, Director, Bureau of Sanitation
 - Mr. Adel H. Hagekhalil, Bureau of Sanitation
 - Mr. Doug Walters, Bureau of Sanitation
 - Mr. Varouj Abkian, Bureau of Sanitation
 - Mr. Andrew A. Adelman, General Manager, Department of Building and Safety
 - Mr. Amir S.Tabakh, Department of Building and Safety
 - Mr. Michael D. Tharpe, Department of Building and Safety
 - Mr. Thomas M. Erb

WATER CONSERVATION DEVICES AND MEASURES FOR NEW DEVELOPMENT IN THE CITY OF LOS ANGELES

- High efficiency toilets (1.28 gallons per flush or less, includes dual flush)
- High efficiency urinals (0.5 gallons per flush or less, includes waterless)
- Restroom faucet flow rate of 1.5 gallons per minute or less
- Public restroom self-closing faucets
- Showerhead flow rate of 2.0 gallons per minute or less
- Limit of one showerhead per shower stall
- High efficiency clothes washers (water factor of 6.0 or less)
- High efficiency dishwashers (Energy Star rated)
- Domestic water heating system located in close proximity to point(s) of use, as feasible; use of tankless and on-demand water heaters as feasible
- Cooling towers must be operated at a minimum of 5.5 cycles of concentration
- Require onsite water recycling systems for wastewater discharge for commercial laundries, dye houses, food processing, certain manufacturing operations, etc. (subject to a payback threshold of five years or less). Mandate water recycling system for all new car wash facilities.

Note: Recycling often offers thermal (energy saving) benefits in addition to water savings. Recycled water can be reused as process water, and cooling tower or boiler make-up

Strict prohibition of single-pass cooling

Note: Single pass cooling refers to the use of potable water to extract heat from process equipment (e.g. vacuum pump, ice machine)by passing the water through the equipment and discharging the heated water to the sanitary wastewater system.

- Irrigation system requirements
 - o Weather-based irrigation controller with rain shutoff
 - o Flow sensor and master valve shutoff (large landscapes)
 - o Matched precipitation (flow) rates for sprinkler heads
 - o Drip/microspray/subsurface irrigation where appropriate
 - o Minimum irrigation system distribution uniformity of 75 percent
 - o Proper hydro-zoning, turf minimization and use of native/drought tolerant plant materials
 - Use of landscape contouring to minimize precipitation runoff
- Metering
 - All dwelling units/commercial spaces require individual metering and billing for water use
 - All irrigated landscapes of 5,000 square feet or more require separate metering or submetering
- Mandated use of recycled water (where available) for appropriate end uses (irrigation, cooling towers, sanitary)
- Standard Urban Stormwater Mitigation Plan (SUSMP). Compliance with all City of Los Angeles SUSMP requirements, and encouraging implementation of Best Management Practices that have stormwater recharge or reuse benefits. For more information, visit <u>http://www.lastormwater.org/Siteorg/businesses/susmp/susmpintro.htm</u>.

For questions, please contact Lucia Alvelais, LADWP Water Conservation Coordinator, (213) 367-2885, or lucia.alvelais@ladwp.com

2/22/07

March 13, 2008

Mr. Adam Villani Environment Review Section Department of City Planning 200 N. Spring Street, Room 750 Los Angeles, CA 90012

Dear Mr. Villani:

Notice of Preparation of a Draft Environmental Impact Report (Draft EIR) for the <u>Cedars-Sinai Medical Center Project</u>

The South Coast Air Quality Management District (SCAQMD) appreciates the opportunity to comment on the abovementioned document. The SCAQMD's comments are recommendations regarding the analysis of potential air quality impacts from the proposed project that should be included in the draft environmental impact report (EIR). Please send the SCAQMD a copy of the Draft EIR upon its completion. In addition, please send with the draft EIR all appendices or technical documents related to the air quality analysis and electronic versions of all air quality modeling and health risk assessment files. Without all files and supporting air quality documentation, the SCAQMD will be unable to complete its review of the air quality analysis in a timely manner. Any delays in providing all supporting air quality documentation <u>will require</u> additional time for review beyond the end of the comment period.

Air Quality Analysis

The SCAQMD adopted its California Environmental Quality Act (CEQA) Air Quality Handbook in 1993 to assist other public agencies with the preparation of air quality analyses. The SCAQMD recommends that the Lead Agency use this Handbook as guidance when preparing its air quality analysis. Copies of the Handbook are available from the SCAQMD's Subscription Services Department by calling (909) 396-3720. Alternatively, the lead agency may wish to consider using the California Air Resources Board (CARB) approved URBEMIS 2007 Model. This model is available on the SCAQMD Website at: www.urbemis.com.

The Lead Agency should identify any potential adverse air quality impacts that could occur from all phases of the project and all air pollutant sources related to the project. Air quality impacts from both construction (including demolition, if any) and operations should be calculated. Construction-related air quality impacts typically include, but are not limited to, emissions from the use of heavy-duty equipment from grading, earth-loading/unloading, paving, architectural coatings, off-road mobile sources (e.g., heavy-duty construction equipment) and on-road mobile sources (e.g., construction worker vehicle trips, material transport trips). Operation-related air quality impacts may include, but are not limited to, emissions from stationary sources (e.g., boilers), area sources (e.g., solvents and coatings), and vehicular trips (e.g., on- and off-road tailpipe emissions and entrained dust). Air quality impacts from indirect sources, that is, sources that generate or attract vehicular trips should be included in the analysis.

The SCAQMD has developed a methodology for calculating PM2.5 emissions from construction and operational activities and processes. In connection with developing PM2.5 calculation methodologies, the SCAQMD has also developed both regional and localized significance thresholds. The SCAQMD requests that the lead agency quantify PM2.5 emissions and compare the results to the recommended PM2.5 significance thresholds. Guidance for calculating PM2.5 emissions and PM2.5 significance thresholds can be found at the following internet address: http://www.aqmd.gov/ceqa/handbook/PM2_5/PM2_5.html.

In addition to analyzing regional air quality impacts the SCAQMD recommends calculating localized air quality impacts and comparing the results to localized significance thresholds (LSTs). LST's can be used in addition to the recommended regional significance thresholds as a second indication of air quality impacts when preparing a CEQA document. Therefore, when preparing the air quality analysis for the proposed project, it is recommended that the lead agency perform a localized significance analysis by either using the LSTs developed by the SCAQMD or performing dispersion modeling as necessary. Guidance for performing a localized air quality analysis can be found at http://www.aqmd.gov/ceqa/handbook/LST/LST.html.

It is recommended that lead agencies for projects generating or attracting vehicular trips, especially heavy-duty dieselfueled vehicles, perform a mobile source health risk assessment. Guidance for performing a mobile source health risk assessment ("Health Risk Assessment Guidance for Analyzing Cancer Risk from Mobile Source Diesel Idling Emissions for CEQA Air Quality Analysis") can be found on the SCAQMD's CEQA web pages at the following internet address: <u>http://www.aqmd.gov/ceqa/handbook/mobile_toxic/mobile_toxic.html</u>. An analysis of all toxic air contaminant impacts due to the decommissioning or use of equipment potentially generating such air pollutants should also be included.

Mitigation Measures

In the event that the project generates significant adverse air quality impacts, CEQA requires that all feasible mitigation measures that go beyond what is required by law be utilized during project construction and operation to minimize or eliminate significant adverse air quality impacts. To assist the Lead Agency with identifying possible mitigation measures for the project, please refer to Chapter 11 of the SCAQMD CEQA Air Quality Handbook for sample air quality mitigation measures. Additional mitigation measures can be found on the SCAQMD's CEQA web pages at the following internet address: www.aqmd.gov/ceqa/handbook/mitigation/MM_intro.html Additionally, SCAQMD's Rule 403 – Fugitive Dust, and the Implementation Handbook contain numerous measures for controlling construction-related emissions that should be considered for use as CEQA mitigation if not otherwise required. Other measures to reduce air quality impacts from land use projects can be found in the SCAQMD's Guidance Document for Addressing Air Quality Issues in General Plans and Local Planning. This document can be found at the following internet address: http://www.aqmd.gov/prdas/aqguide/aqguide.html. In addition, guidance on sitting incompatible land uses can be found in the California Air Resources Board's Air Quality and Land Use Handbook: A Community Perspective, which can be found at the following internet address: http://www.arb.ca.gov/ch/handbook.pdf. Pursuant to state CEQA Guidelines §15126.4 (a)(1)(D), any impacts resulting from mitigation measures must also be discussed.

Data Sources

SCAQMD rules and relevant air quality reports and data are available by calling the SCAQMD's Public Information Center at (909) 396-2039. Much of the information available through the Public Information Center is also available via the SCAQMD's World Wide Web Homepage (http://www.aqmd.gov).

The SCAQMD is willing to work with the Lead Agency to ensure that project-related emissions are accurately identified, categorized, and evaluated. Please call Charles Blankson, Ph.D., Air Quality Specialist, CEQA Section, at (909) 396-3304 if you have any questions regarding this letter.

Sincerely. Sincerely, Barlen Red son behalf of

Steve Smith, Ph.D. Program Supervisor, CEQA Section Planning, Rule Development and Area Sources

SS:CB:AK LAC080307-08AK Control Number ROBERTSON PROPERTIES GROUP

April 7, 2008

Via Email and U.S. Mail

LOS ANGELES, CA 90048-3102

PHONE: 310.652.3620 Fax: 310.652.8538

Adam Villani Environmental Review Coordinator Environmental Review Section Department of City Planning 200 N. Spring Street, Room 750 Los Angeles, CA 90012 Adam.Villani@lacity.org

Re:

<u>Proposed Development of New Inpatient/Medical Support</u> <u>Facility by Cedars-Sinai Medical Center (DEIR ENV 2008-</u> <u>0620-EIR)</u>

Dear Mr. Villani:

The Decurion Corporation ("Decurion") hereby submits the following comments to the City of Los Angeles Department of City Planning ("City") regarding Cedars-Sinai Medical Center's ("CSMC") proposed development of an inpatient/medical support facility at the northwest corner of Gracie Allen Drive and George Burns Road ("Proposed Project"). The site of the Proposed Project is located due east and adjacent to an office building owned by Decurion.

In addition to the areas identified by the City in its March 7, 2008, Notice of Preparation and Public Scoping Meeting, we would like to request that the City evaluate several additional issues in connection with the Draft Environmental Impact Report ("DEIR") for the Proposed Project. These include:

- Current massing and placement of the Proposed Project's 185 foot high tower may cast shadows onto Decurion's property during the morning hours.
- The Proposed entrance to the parking structure will be on Alden Drive immediately adjacent to Decurion's existing parking entrance and truck dock. We would like the DEIR to study the potential for traffic congestion in this location in relation to Decurion's existing parking entrance and truck dock.

- The Proposed Project's parking structure will accommodate 700 stalls compared to the 285 stalls on the existing lot, which may further increase traffic on Alden Drive. We believe this issue should be studied as part of the DEIR.
- The Proposed Project has not identified the location or scope of any truck dock or any trash/ambulatory facilities. These issues need to be carefully studied to determine appropriate placement of these facilities to minimize impacts to adjacent properties.
- Noise and dust control during construction is of concern. How do you intend to mitigate these issues?
- The City should consider the possibility of a restriction to ensure any storage of toxic waste is located outside the setback area of the Proposed Project in order to minimize impacts to adjacent properties.

We commend CSMC for introducing the Proposed Project, and we look forward to a design that is compatible with and integrates into the surrounding community.

Please feel free to contact me if you have any questions regarding our comments. I can be reached at 310.854.8734.

Sincerely,

Dinh Huynh Robertson Properties Group, Representing Agent of The Decurion Corporation

cc: Elisa L. Paster, Esq. – Paul, Hastings, Janofsky & Walker
 John Manavian, VP of Development – Robertson Properties Group
 David Hokanson, VP of Development – Robertson Properties Group

Strategic Research

Laura Lake, Ph.D. President 1557 Westwood Blvd. #235, LA, CA 90024 laura.lake@gmail.com (310) 470-4522

April 2, 2008

Adam Villani Environmental Review Section Department of City Planning 200 N. Spring St. Room 750 Los Angeles, CA 90012

RE: NOP COMMENTS FOR CEDARS EXPANSION (ENV 2008-0620-EIR)

Dear Mr. Villani:

Thank you for this opportunity to comment on the environmental impacts of the proposed Cedars expansion. I am submitting these comments in behalf of my client, Burton Way Foundation.

Cedars is an important member of our community and we want to assure that they can continue to meet our needs. We do, however, have several specific questions and concerns:

Parking:

In reviewing the proposal, I've pieced together parking from various components and it appears to be significantly underparked, ranging from 105 spaces short to over 1000 spaces. To accurately assess parking on the campus it would be helpful to provide a **parking table for each component** of the built and proposed structures, indicating current code parking requirements and the number of spaces provided. Parking requirements have been increased since the original buildings, so there may be a very large shortfall which would be most unfortunate.

Liquefaction:

The Environmental Assessment states that there is no liquefaction hazard, but the ZIMAS map shows the site to be a liquefaction zone. Please explain.

Compliance with the General Plan:

Please provide analysis of the adequacy of the city's infrastructure to accommodate

Strategic Research

this and cumulative projects. The Planning Department is supposed to provide an analysis of public services at least every ten years. Such a study has not been provided, to my knowledge, and thus it is impossible to know if there is adequate capacity.

Compliance with the Wilshire Community Plan:

The Wilshire Community Plan, requires that the City must make findings for zone changes and height district changes regarding traffic capacity shown in the box below. Specifically, LOS D is defined as adequate traffic capacity. The mandatory findings or a statement of overriding consideration must be provided as discussed below.

Strategic Research

Analyze Cut-Through Traffic

Also, please analyze the impacts of additional project related and cumulative traffic on adjacent residential streets (spillover/cut-through traffic).

Thank you for your consideration in advance.

Sincerely yours,

Laura Lake, Ph.D. President

cc: Lisa Trifiletti, CD5 Jeff Haber, Esq. Harald R. Hahn, Burton Way Foundation

WHWRA PO Box 691427 West Hollywood, CA 90069

April 2, 2008

Mr. Adam Villani Environmental Review Coordinator City of Los Angeles, Department of City Planning Environmental Review Section 200 North Spring Street, Room 750 Los Angeles, CA 90012

RE: CEDARS-SINAI MEDICAL CENTER EIR SCOPING MEETING -- COMMENTS

Dear Mr. Villani,

Thank you very much for inviting West Hollywood West residents to take part in the scoping meeting on March 27, 2008 at Cedars. We appreciate the opportunity to comment.

Given the requests for a zone change, increased FAR and the addition of 200,000 square feet not previously attached to the parcel, we feel it is essential that a comprehensive environmental review of the project with the proposed changes be conducted.

Specifically, we ask that the new EIR address:

- 1. **Parking:** The project proposes 700 spaces for 100 beds, but does not disclose how many employees will be required and where they will park. Will employee parking be allowed on-site? If not, will it be provided off-site with a shuttle, or will employees be left to find street parking? The space-per-thousand formula for this kind of facility does not appear to have been met so we feel it requires further study.
- 2. Removal of public parking spaces: Plans call for the removal of several parking spots on Beverly Boulevard in the City of West Hollywood. This would drastically affect businesses on Beverly Boulevard, which have no off-street parking and rely on street parking for their survival. Is there any plan to replace lost spaces? We assume that the proposed parking structure on the Cedars property is not for "public" use.
- 3. Traffic and circulation: Previously proposed projects in the area (e.g., Chasens-Bristol Farms) did surveys of traffic impacts in a one-mile radius around their proposals, and included mitigations (signals, restriping, dedicated turns, etc.). Since the proposed project is just two blocks away from the second worst intersection in Los Angeles -- Beverly Boulevard and La Cienega (the worst is Westwood/Wilshire), a new traffic and circulation study with mitigations is vital.

- 4 Hydrology (subterranean parking): Plans call for a 7-story structure, with 3 floors below ground utilizing a "bathtub" model for construction. This has been done before in the neighborhood (Sofitel Hotel) and resulted in raising the water table in the adjacent residential neighborhood from 10-feet to 3-feet. Have hydrological studies been done? If ground water is encountered, how will it be removed? Is the sewer system capacity great enough to handle the removal of ground water AND the requirements of a large medical services structure?
- 5. Staging: Truck routes and delivery and storage of materials are of vital concern to the residential area to the north. Staging should be on-site, and trucks routed away from local commercial and residential streets.
- 6. Alternative proposals to the 400,000+ square foot proposal, which would have less impact on the surrounding residential areas.

The new EIR should also study cumulative impacts of the project itself as well as consider surrounding projects, particularly in terms of construction. There are six major projects being proposed, approved and in the pipeline or currently under construction, within a one-mile radius of the proposed Cedars project, including another building on the Ccdars campus fronting San Vicente Boulevard and Sherbourne Drive. The other projects include: (a) the 150 unit residential project on the former Ccdars property known as the Sherbourne Triangle, between Sherbourne and San Vicente just north of the proposed construction; (b) the "Red Building" at the Pacific Design Center, which is 3 blocks north; (c) Beverly Place, a 4-story mixed-use project 2 blocks west; (d) another 150 unit mixed used project on La Cienega at Westmourn Drive; and (e) the "Melrose Triangle" project at Doheny and Santa Monica. All of these have 24-month construction terms.

Lastly, as the existing EIR for the Cedars' campus is from 1993 and the validity of this document today is questionable (particularly considering that the surrounding area has changed so dramatically in recent years), we feel that a new and complete EIR is warranted.

We appreciate your time and, again, thank you for including us in this process.

Sincerely,

Matin Studler

Martin Strudler Cedars Expansion Committee Chair West Hollywood West Residents Association

Cc: Oscar Delgado, Director of Public Works - City of West Hollywood Lauren Meister, President - West Hollywood West Residents Association

APPENDIX A

<u>APPENDIX A-4</u> PUBLIC SCOPING MEETING COMMENTS

ENV No. 2008-0620-EIR

Cedars-Sinai Medical Center EIR Scoping Meeting Comments

Please use this sheet to let us know what environmental issues you would like the Draft Environmental Impact Report (DEIR) to study and also any questions or concerns you may have.

(If necessary, please use the reverse side of the paper.)

If you would like to be on the City of Los Angeles mailing distribution list for correspondence regarding the proposed project, please fill out your contact information below. Otherwise, you may choose to submit the comment anonymously.

commence	
LAPTIN STRUDI	EC.
Name: MARTIN OT -	TETHON LYWOOD WEST RESIDENTS 1350
Organization (if you are representing one)	D DILLE
1603 WEST BOURNE	- DRIVE 900 cft
Address TO FLOWINAD State	e A
City Mast Hours water (A)	AOL-CAM Phone: 310-637-1000
Email Address MSTRUN US	·····
	to in the comment box or send them by April 7, 2008 to.
the second s	ants in the comments
You may drop your of	() Devery Coordinator

Adam Villani, Environmental Review Coordinator City of Los Angeles, Department of City Planning Environmental Review Section 200 North Spring Street, Room 750 Los Angeles, CA 90012 Email: Adam. Villani@lacity.org Ph: (213) 978-1472 Fax: (213) 978-1343

APPENDIX B

1993 CSMC MASTER PLAN EIR SUMMARY CHART

ART
CH
ARY
MM
S O

 RESPONSIBLE IMPLEMENTATION PARTY MONITORING PHASE MONITORING AGENCY ENFORCEMENT AGENCY 		 Applicant Construction Dept. of Building and Safety Dept. of Building and Safety 	 Applicant Construction Dept. of Building and Safety Dept. of Building and Safety 	 Applicant Construction Dept. of Building and Safety Dept. of Building and Safety 	 Applicant Construction Dept. of Building and Safety Dept. of Building and Safety
NET UNMITIGATED ADVERSE IMPACTS		With implementation of mitigation measures, significant short-term noise and dust impacts would occur $c^{i_1 i_1 i_2 i_3}$ the construction phases of the propos, d project. No significant long-term impacts are anticipated with full implementation of code requirements. Implementation of	recommended mitigation measures would further reduce impacts.		
RECOMMENDED MITIGATION MEASURES		•All grading shall be performed under the supervision of a licensed engineering geologist and/or soils engineer in accordance with applicable provisions of the Municipal Code to the satisfaction of the City Engineer and the Superintendent of the Department of Building and Safety.	 During clearing, grading, earth moving, and excavation, soil binders and water trucks or sprinkling systems shall be used to prevent airborne dust, and adjacent public thoroughfares should be swept to remove silt. To the maximum extent feasible, reclaimed water shall be used during the grading and construction phases of the project for dust control, soil compaction, and concrete mixing. 	 Activities requiring gas or diesel powered heavy equipment shall be phased and scheduled to avoid high ozone days. 	•Adherence to the haul route approved by the Superintendent of Building and Safety and the City Engineer, which will minimize traffic congestion in the project area. The applicant will be responsible for disposing of the excavated material in a manner approved by the City. Barriers and warning signs shall be employed, where appropriate, to maintain traffic and pedestrian safety during grading operations.
ADVERSE IMPACT	GRADING	Development of the proposed project could require the grading and excavation of approximately 395,000 cubic yards of soil and could result in temporary noise and dust impacts. However, development of the project would take place in areas which are not directly adjacent to residential	properties, therefore, impacts to those properties would be minimized, although a condominium tower is located across from the project site. Phasing of the project would result in the occurrence of temporary significant noise and dust impacts at various times during the individual construction phases of each building's development.		

ADVERSE IMPACT	RECOMMENDED MITIGATION MEASURES	NET UNMITIGATED ADVERSE IMPACTS	 RESPONSIBLE IMPLEMENTATION PARTY MONITORING PHASE MONITORING AGENCY ENFORCEMENT AGENCY
GRADING (cont'd)			
	 Compliance with the recommendations regarding methane, water quality, and oil well abandonment procedures made by the 		 Applicant Pre-construction; Construction Dent of Building and Sector
	geotechnical consultant in the geotechnical report prepared for this project. For specific methane and oil well abandonment mitigation measures, see Section IV.J, Risk of Upset. For specific measures regarding groundwater, see also Section IV.J, Risk of Upset.		4. Dept. of Building and Safety
	 Compliance with the recommendations made in the foundation reports prepared for each individual structure. 		 Applicant Pre-construction; Construction Dept. of Building and Safety Dept. of Building and Safety
	•Any contaminated soil encountered during excavation shall be treated or removed form the property in a manner satisfactory to the Fire Department, the Department of Health Services, and all other agencies having jurisdiction, including the South Coast Air Quality Management District.		 Applicant Construction Construction Dept. of Building and Safety; Fire Department; Dept. of Health Services Dept. of Building and Safety
GEOL) GIC HAZARDS (SEISMICITY)			
The project and future occupants of the project will be subject to potential ground- shaking from earthquakes along active and potentially active faults in the Los Angeles area. The active fault nearest the site is the Inglewood branch of the Newport- Inglewood fault zone which is located	•The proposed project is required to conform to all applicable provisions of the Municipal Code, including the revised Division 23, Section 2312, of the Building Code, which sets forth regulations concerning proper earthquake design and engineering.	Implementation of the required mitigation measures will reduce to a level of insignificance, but not eliminate, the potential risks from seismic hazards. The site will continue to be subject to potential ground shaking.	 Applicant Pre-construction; Construction Dept. of Building and Safety Dept. of Building and Safety
approximately 1.3 miles southwast of the site. 'The potentially active fault nearest the subject site is the Santa Monica fault of the Santa Monica-Hollywood fault zone, the precise location of which is uncertain because it is buried beneath a thick sequence of alluvial sediments. No significant impacts would result from implementation of the proposed project.	•The proposed project is required to conform to Los Angeles' Seismic Safety Plan.		 Applicant Pre-construction; Post-occupancy Dept. of Building and Safety Dept. of Building and Safety

ADVERSE IMPACT	RECOMMENDED MITIGATION MEASURES	NET UNMITIGATED ADVERSE IMPACTS	 RESPONSIBLE IMPLEMENTATION PARTY MONITORING PHASE MONITORING AGENCY ENFORCEMENT AGENCY
GEOLOGIC HAZARDS (SEISMICITY) (cont'd)			
	•The applicant is required to implement recommendations set forth in a geotechnical report prepared and approved specifically for the foundation design.		 Applicant Pre-construction; Construction Dept. of Building and Safety Dept. of Building and Safety
AIR QUALITY (MOBILE)			
Grading activities would result in the production of approximately 0.46 tons of dust per day during the grading and construction period. These short-term	•Haul trucks shall be staged in non- residential areas and called to the site by a radio dispatcher.	Implementation of the proposed project would incrementally increase emissions when compared to future conditions without the proposed project. During peak	 Construction Contractors Construction South Coast Air Quality Management District South Coast Air Quality Management District
impacts would be significant. In addition, approximately 25.9 pounds of CO, 6.5 pounds of HC, 71.7 pounds of NOx, 7.3	 Diesel-powered equipment shall be located as far as possible from sensitive receptors. 	hours, the increases in the one-hour concentrations would range up to 1.5 ppm and eight-hour concentrations would	 Construction Contractors Construction South Cost Ale Outlify Management District
pounds of SO _x , and 5.4 pounds of particulates are estimated to be generated deity by construction eminement utilized for		decrease a maximum of or poin. A ret decrease in daily CO emissions is projected following full implementation of the	а. South Coast Air Quality Management District 4. South Coast Air Quality Management District
the project. These emissions would not be significant. Long-term vehicular emissions from project-generated traffic would incrementally contribute to regional	•A temporary barrier of sufficient height to reduce windblown dust shall be erected on the perimeter of the construction site.	proposed project in 2005, due to the anticipated improvement in vehicular emissions between 1990 and 2005. However, project implementation is	 Construction Contractors Construction Dept. of Building and Safety Dept. of Building and Safety
emissions, thus decreasing regional air quality. Project-related vehicular emissions would exceed SCAQMD thresholds for CO, NO _x , and total organic gases. These increases would result in significant impact on local eight-hour CO concentrations.	•Ground wetting shall be required during grading and construction, pursuant to SCAQMD Rule 403. This measure can reduce windblown dust a maximum of 50 percent.	andcipated to have a significant impact based on the SCAQMD's established informal criteria.	 Construction Contractors Construction South Coast Air Quality Management District South Coast Air Quality Management District
	 Contractors shall cover stockpiles of soil, sand, and similar materials to reduce wind pick-up. 		 Construction Contractors Construction South Coast Air Quality Management District South Coast Air Quality Management District
	 Construction equipment shall be shut off to reduce idling for extended periods of time when not in use. 		 Construction Contractors Construction South Coast Air Quality Management District South Coast Air Quality Management District
	•Low sulfur fuel shall be used to power construction equipment.		 Construction Contractors Construction South Coast Air Quality Management District South Coast Air Quality Management District

ADVERSE IMPACT	RECOMMENDED MITIGATION MEASURES	NET UNMITIGATED ADVERSE IMPACTS	 RESPONSIBLE IMPLEMENTATION PARTY MONITORING PHASE MONITORING AGENCY ENFORCEMENT AGENCY
AIR QUALITY (MOBILE) (cont'd)			
	 Construction activities shall be discontinued during second stage smog alerts. 		 Construction Contractors Construction South Coast Air Quality Management District South Coast Air Quality Management District
	•The proposed project shall implement a Transportation Demand Management program consistent with the provisions of SCAQMD Regulation XV.		 Applicant Post-occupancy South Coast Air Quality Management District South Coast Air Quality Management District
<u>AIR QUALITY (STATIONARY)</u>			
The proposed project would contribute to stationary emissions through the combustion of natural gas and the consumption of electricity. These emissions would be insignificant. Wastes incinerated on site would not exceed permitted quantities. Increases in air pollutants resulting from implementation of the proposed project would not be considered significant.	•Measures cited in Section IV.P, Energy Conservation, which reduce energy consumption by the proposed project, should be implemented to reduce emissions resulting from the generation of electricity and the combustion of natural gas.	Increases in air pollutants resulting from implementation of the proposed project would not be considered significant.	See recommended mitigation measures under Energy Conservation.
AIR TOXICS			
Compliance with federal, state, and local regulations governing hazardous materials and toxic air contaminants is anticipated to reduce the risk associated with these substances to an accontable level although	•The Medical Center should reduce, to the extent possible, its reliance on hazardous materials.	Compliance with federal, state, and local regulations governing hazardous materials and toxic air contaminants is anticipated to reduce the risk associated with these substances to an eccorteable lowed otherwork	 Applicant Post-occupancy Department of Health Services Department of Health Services
these impacts would remain significant.	•The Medical Center should analyze the effect of stack design and exhaust velocity on the dispersion of air toxics.	these impacts would remain significant.	 Applicant Post-occupancy Department of Health Services Department of Health Services
	 New exhaust systems should be designed to place vents at or above the roof level of nearby buildings. 		 Applicant Pre-construction Dept. of Building and Safety Dept. of Building and Safety

ADVERSE IMPACT	RECOMMENDED MITIGATION MEASURES	NET UNMITIGATED ADVERSE IMPACTS	 RESPONSIBLE IMPLEMENTATION PARTY MONITORING PHASE MONITORING AGENCY ENFORCEMENT AGENCY
METEOROLOGY			
Moderate increases in wind velocities and ground level turbulence could occur along the edges of the buildings non Site 1 on Sherbourne Drive and Third Street. In Addition some wind istriance control from	•The project should incorporate trees along adjoining streets and throughout the complex to reduce turbulence at ground level.	Moderate increases in wind velocities and ground level turbulence could occur along the edges of the buildings on Site 1 on Sherbourne Drive and Third Street. In	 Applicant Construction Dept. of Public Works, Street Tree Division Dept. of Public Works, Street Tree Division
Sherbourne, some mud years in a northerly direction on Sherbourne Drive. These potential increases in wind speed would not produce significant levels of pedestrian discomfort.	•Architectural treatment of structures to minimize long, large, flat, vertical surfaces to reduce wind jetting should be incorporated.	auturon, some wind journer may occur from the southwest in a northerly direction on Sherbourne Drive. These potential increases in wind speed would not produce significant levels of pedestrian discomfort.	 Applicant Construction Dept. of Building and Safety Dept. of Building and Safety
	 Breezeways should be incorporated within the complex to reduce ground level wind jetting. 		 Applicant Construction Dept. of Building and Safety Dept. of Building and Safety
PLANT LIFE			
The proposed project would remove or displace a maximum of 33 trees. Because none of the species are listed federally or statewide as threatened or endangered, no significant impacts are anticipated.	•Before the issuance of building permits, a landscape plan prepared by a licensed landscape architect shall be submitted to the Department of City Planning to provide for preservation of as many trees as possible, and to require replacement of all trees that must be removed, on a one-to-one basis.	The proposed project would remove or displace a maximum of 33 trees. Because none of the species are listed federally or statewide as threatened or endangered, no significant impacts are anticipated. With implementation of the mitigation measures, no significant impacts are anticipated.	 Applicant Pre-construction Dept. of City Planning Dept. of Building and Safety Dept. of Building and Safety
	•The landscaped area along the property borders shall include street trees spaced a minimum of 15 feet apart, measured from the center of each tree. Trees should be no less than 24-inch-box each.		 Applicant Construction Dept. of City Planning Dept. of Building and Safety Dept. of Building and Safety

 RESPONSIBLE IMPLEMENTATION PARTY MONITORING PHASE MONITORING AGENCY ENFORCEMENT AGENCY 	 Applicant Construction Dept. of Building and Safety Dept. of Building and Safety 	 Applicant Construction Dept. of Building and Safety Dept. of Building and Safety 	 Applicant Construction Dept. of Building and Safety Dept. of Building and Safety 	 Applicant Construction Dept. of Building and Safety Police Department 	 Applicant Construction Dept. of Building and Safety Dept. of Building and Safety 	 Applicant Construction Dept. of Building and Safety Dept. of Building and Safety 	 Applicant Construction Dept. of Building and safety Dept. of Building and Safety 	 Applicant Construction Dept. of Building and Safety Dept. of Building and Safety 	 Applicant Construction Dept. of Building and Safety Police Department
NET UNMITIGATED ADVERSE IMPACTS	With implementation of mitigation measures, demolition and construction activities are still anticipated to result in temporary significant increases in noise house which would effect the anortheort	building located on the southwest corner of San Vicente Boulevard and Third Street. Long-term noise increases from stationary sources resulting from project	implementation would be eliminated with full implementation of mitigation measures. Long-term noise increases resulting from project-related traffic would be insignificant.						
RECOMMENDED MITIGATION MEASURES	•Specify the use of auieted equipment in compliance with the applicable provisions of the City of Los Angeles Noise Ordinance No. 156,363.	 Route trucks hauling debris through non- residential areas by approval of the Department of Building and Safety. 	•The use of quieted equipment would reduce noise levels by an additional 3 to 6 dBA.	•Limit demolition activities to between the hours of 7:00 AM and 6:00 PM, Monday through Saturday.	•Construct a temporary noise barrier wall along the property line, where feasible, as determined by the Department of Building and Safety.	 Specify that all sound-reducing devices and restrictions be properly maintained throughout the construction period. 	 Where temporary noise barriers are infeasible, portable noise panels to contain noise from powered tools shall be used. 	•Use rubber-tired equipment rather than track equipment.	•Limit the hours of construction to between 7:00 AM and 6:00 PM, Monday through Saturday.
ADVERSE IMPACT	NOISE (MOBILE) Demolition and construction activities would result in a temporary adverse impact on nearby residences. Increases in traffic noise due to the proposed project would not	be considered significant.							

 RESPONSIBLE IMPLEMENTATION PARTY MONITORING PHASE MONITORING AGENCY ENFORCEMENT AGENCY 	 Applicant Construction Dept. of Building and Safety Police Department 	 Applicant Construction Dept. of Building and Safety Dept. of Building and Safety 	 Applicant Pre-construction; Post-occupancy Dept. of Building and Safety 	4. Dept. of Building and Safety	 Applicant Pre-construction; Post-occupancy Dept. of Building and Safety Dept. of Building and Safety 	 Applicant Pre-construction; Post-occupancy Dept. of Building and Safety Dept. of Building and Safety 	 Applicant Pre-construction; Post-occupancy Dept. of Building and Safety Dept. of Building and Safety 	 Applicant Pre-construction; Post-occupancy Dept. of Building and Safety Dept. of Building and Safety
NET UNMITIGATED ADVERSE IMPACTS			Long-term noise impacts from stationary sources would not be significant with full implementation of mitigation measures.		With the implementation of mitigation measures, no significant impacts are anticipated.			
RECOMMENDED MITIGATION MEASURES	•Keep loading and staging areas on site within the perimeter protected by the recommended temporary noise barrier and away from the noise-sensitive sides of the site.	•Use alternate pile placement methods other than impact pile driving.	 Installation of sound attenuating devices on exhaust fans, enclosing mechanical equipment, and providing sound absorbing 	and shielding provisions into the design.	•All lighting shall be designed and placed in accordance with applicable Bureau of Engineering and Department of Building and Safety requirements.	 Provision shall be made to include exterior parking structure walls to shield direct glare from automobile headlights into residential areas. 	•All outdoor lighting, other than signs, should be limited to that required for safety, security, highlighting, and landscaping.	•Low level security lighting should be used in outdoor areas.
ADVERSE IMPACT	NOISE (MOBILE) (cont'd)		NOISE (STATIONARY) Stationary noise sources, such as mechanical equipment, would result in long-term noise impacts.	LIGHT, ARTIFICIAL	Implementation of the proposed project would result in an increase in nightime lighting that would be visible from nearby residences. Due to the location of these	residences with respect to the project aite, an adverse, but not significant impact, is anticipated.		

 RESPONSIBLE IMPLEMENTATION PARTY MONITORING PHASE MONITORING AGENCY ENFORCEMENT AGENCY 		 Applicant Pre-construction; Post-occupancy Dept. of Building and Safety Dept. of Building and Safety 	 Applicant Pre-construction; Post-occupancy Dept. of Building and Safety Dept. of Building and Safety 	 Applicant Pre-construction; Post-occupancy Dept. of Building and Safety Dept. of Building and Safety 		1. N/A 2. N/A 3. N/A 4. N/A		1. N/A 2. N/A 3. N/A 4. N/A
NET UNMITIGATED ADVERSE IMPACTS						No significant impacts from project shadows would result from implementation of the proposed project.		No significant impact would result from implementation of the proposed project on the Community Plan or Zoning if the project is developed in accordance with zoning and related regulations, as intended.
RECOMMENDED MITIGATION MEASURES		•Security lighting, as well as both outdoor lighting and indoor parking structure lighting should be shielded such that the light source will not be visible from off-site locations.	•Lighting should be directed on site and light sources shall be shielded so as to minimize visibility from surrounding properties.	•Exterior windows should be tinted or contain an interior light-reflective film to reduce visible illumination levels from the building.		• Because no significant or adverse impacts are anticipated, no mitigation measures are required.		No negative impacts to zoning would result from the proposed project with compliance with all zoning related requirements. Therefore, no mitigation measures are necessary.
ADVERSE IMPACT	LIGHT, ARTIFICIAL (cont'd)				LIGHT, NATURAL - SHADE/SHADOW	Several off-site retail and office structures would be fully or partially shaded by the proposed project at various times of the year. The general effect of the project would be to expand and extend the areas that are currently shaded by existing development during most of the year. Additionally, the proposed project would result in some adverse impact on site. The project would shade the Medical Center campus during the morning hours of the fall and spring equinoxes and winter solstice. No significant impacts would result from implementation of the proposed project.	COMMUNITY PLAN AND ZONING	There would be no significant impacts on the Community Plan or Zoning if the project is developed in accordance with zoning and related regulations, as intended.
ADVERSE IMPACT	RECOMMEND 3D MITIGATION MEASURES	NET UNMITIGATED ADVERSE IMPACTS	 RESPONSIBLE IMPLEMENTATION PARTY MONITORING PHASE MONITORING AGENCY ENFORCEMENT AGENCY 					
--	--	--	--					
RISK OF UPSET								
Because the site is in the zone of potential methane risk, potential hazards exist if	Methane:	With implementation of code requirements for methane venting and monitoring and						
improperly abandoned oil wells are encountered during development. However, the reabandonment of these wells and the	 Plastic sheeting shall be placed between the foundation of a building and the earth to act as a gas barrier. 	recommended mitigation measures, potential impacts from methane gas and the associated risks can be reduced to a	 Applicant Pre-construction; Construction Dept. of Building and Safety Dept. of Building and Safety 					
construction of building to prevent the accumulation of any methane in accordance	• Voot evetame shall be installed in huildings	code requirements for the tru-tment of code requirements for the tru-tment of contaminated arroundwater would reduce	4. Dept. of Durung and Datery 1. Applicant					
with current statutes would milligate such potential impacts to a level of insignificance. Additionally, treatment of any contaminated groundwater in	vent by avoin a start of the wide.	potential impacts to a level of insignificance.	 Pre-construction; Construction Dept. of Building and Safety Dept. of Building and Safety 					
mitigate potential impacts to a level of insignificance.	•An adequate ventilation or gas detection system shall be installed in buildings with basements or first floors.		 Applicant Pre-construction; Construction Prept. of Building and Safety Dept. of Building and Safety 					
	• Paved areas in excess of 5,000 square feet within 15 feet of the exterior wall of a building shall be properly vented.		 Applicant Pre-construction; Construction Dept. of Building and Safety Dept. of Building and Safety 					
	• Independent consultation shall be provided by a qualified engineer to mitigate methane problems in buildings with over 50,000 square feet of lot areas or with more than one basement level.		 Applicant Pre-construction; Construction Dept. of Building and Safety Dept. of Building and Safety 					
	Groundwater and Soil Contamination							
·	• Any contaminated soil encountered during excavation shall be treated or removed from the property in a manner satisfactory to the Fire Department, the Department of Health Services, and all other agencies having jurisdiction, including the South Coast Air Quality Management District.		 Applicant Construction Fire Department Dept. of Building and Safety 					

 RESPONSIBLE IMPLEMENTATION PARTY MONITORING PHASE MONITORING AGENCY ENFORCEMENT AGENCY 	 Applicant Pre-construction; Construction Dept. of Building and Safety Dept. of Building and Safety 	 Applicant Pre-construction Five Department Five Department Jept. of Oil and Gas Dept. of Building and Safety Applicant Pre-construction California Regional Water Quality Control Board 	 California Regional Water Quality Control Board Applicant Pre-construction Pre-construction California Regional Water Quality Control Board California Regional Water Quality Control Board 	 Appluant Pre-construction; Construction Fire Department Dept. of Building and Safety
NET UNMITIGATED ADVERSE IMPACTS				
RECOMMENDED MITIGATION MEASURES	•Additional borings shall be drilled prior to issuance of foundation permit for the Organ Transplant Wing and parking structure to delineate the extent of soil contamination based on the findings of this drilling. The Department of Building and Safety shall determine the feasibility of on-site remediation. If found unfeasible, the soil contamination shall be excevated and transported to a proper disposal facility during construction of the proposed project.	 With respect to abandoned oil wells, no grading activity will take place on Site 1 without monitoring by the Fire Department and/or the Department of Oil and Gas, or unless written waivers are issued by both agencies. Groundwater samples from all wells should be analyzed to determine the presence of volatile priority pollutants. 	•It may be necessary to install more wells to determine the extent of groundwater contamination at the site and to determine whether it is the result of an off- or an on- site source.	•Any undocumented and improperly abandoned wells encountered during construction shall be reabandoned according to requirements set forth in Title 14, Chapter 4, Subchapter 1, Article 3, Section 1723, of the California Administrative Code and to the satisfaction of Fire Department and the State Department of Oil and Gas.
ADVERSE IMPACT	RISK OF UPSET (cont'd)			

ADVERSE IMPACT	RECOMMENDED MITTIGATION MEASURES	NET UNMITIGATED ADVERSE IMPACTS	 RESPONSIBLE IMPLEMENTATION PARTY MONITORING PHASE MONITORING AGENCY ENFORCEMENT AGENCY
RISK OF UPSET (cont'd)			
	•To mitigate impacts from hydrostatic pressure, the applicant shall follow recommendations made by a licensed soils engineer outlined in the geotechnical report prepared specifically for each subterranean structure of the proposed project.		 Applicant Pre-construction Dept. of Building and Safety Dept. of Building and Safety
POPULATION			
The area is considered to be job rich by both Los Angeles and SCAG standards. The proposed project would increase the ratio of jobs to housing from 1.32 to 1.33. Although no threshold exists, the minor increase in the ratio between jobs and housing appears to be insignificant.	•The proposed project may be required to pay a housing mitigation fee in accordance with Ordinance Nos. 165,530 and 165,531, if these ordinances are found to be applicable to the proposed project. Alternately, the applicant may elect to construct or rehabilitate low and very low income dwelling units according to the criteria established by Ordinance No. 165,531.	The area is considered to be job rich by both Los Angeles and SCAG standards. The proposed project would increase the ratio of jobs to housing from 1.32 to 1.33, however, this increase would not be significant.	 Applicant Pre-construction Dept. of Building and Safety; Housing Preservation and Planning Dept. Dept. of Building and Safety

ADVERSE IMPACT	RECOMMENDED MITIGATION MEASURES	NET UNMITIGATED ADVERSE IMPACTS	 RESPONSIBLE IMPLEMENTATION PARTY MONITORING PHASE MONITORING AGENCY ENFORCEMENT AGENCY
RIGHT-OF-WAY AND ACCESS			
Construction of the proposed Outpatient Diagnostic Treatment Center would require	Easements	With implementation of all code requirements and recommended mitigation	1 Andiront
the purchase or condemnation of the existing animal hospital/office/warehouse,	•Coordinate relocation of underground utility lines in the event of encroachment	measures, no significant impacts on pedestrian or vehicular access are	 Applusant Pre-construction; Construction Burson of Fordinaction
the elimination of the rail easement adjacent to these structures, and an air	upon same by construction related to proposed project.	anuci bavau.	4. Bureau of Engineering
rights vacation over Sherbourne Drive. Although no adverse impact on utilities are	Vehicular Access		
anticipated, plans to determine the need for	m and driveness		1. Applicant
any utility relocations should be prepared.	• The parking area and university access plans shall conform with the requirements of		2. Pre-construction; Post-occupancy
Construction of the proposed Rehabilitation	the Department of Transportation and/or the		 Dept. of Transportation; Bureau of Engineering Deot. of Transportation: Bureau of Engineering
Center could potentially require the	City Engliteer.		
the street frontage of George Burns Road	 Access for the handicapped shall be located 		1. Applicant
north of Alden Drive. If Sherbourne Drive,	in accordance with the requirements of the		 Pre-construction; Post-occupancy Deat: of Ruilding and Safaty
George Burns Koad, and Alden Drive are varated essements must be granted for	Department of Building and Safety.		4. Dept. of Building and Safety
each of the existing utility lines located in			
these streets to avoid impacts. The	•To mitigate potential significant impact on		 Applicant Pre-construction: Construction
applicant does not intend to close these	access, the Medical Center should be and a series that and a series that all current public and private		3. Dept. of Building and Safety
streets, nowever, a pousturanty sugnition in pact on emergency access would occur if	streets shall remain open to free travel of		4. Dept. of Building and Safety
they were closed.	emergency venicles.		
	•Adequate access to site for police shall be		 Applicant Pre-construction; Post-occupancy
	provided. A magratic of the start structure of the police Department for their review,		3. Police Department; Dept. of Building and Safety
	and their recommendations and requirements shall be incorporated into the		4. Fonce Department, Dept. of Building and Safety
	final design.		
	,		

ADVERSE IMPACT	RECOMMENDED MITIGATION MEASURES	NET UNMITIGATED ADVERSE IMPACTS	 RESPONSIBLE IMPLEMENTATION PARTY MONITORING PHASE MONITORING AGENCY ENFORCEMENT AGENCY
OF-WAY AND ACCESS			
	 Adequate access to site for fire protection service vehicles and personnel shall be provided. A diagram of the site shall be sent to the Fire Department for their review. Emergency access and exit plans shall comply with the recommendation and requirements of the Fire Department. 		 Applicant Pre-construction; Post-occupancy Fire Department; Dept. of Building and Safety Fire Department; Dept. of Building and Safety
	• The applicant should provide pedestrian/auto junctures to the satisfaction of the Department of Transportation and the Bureau of Engineering at key intersections, driveway locations, entry points, and within parking areas of the Medical Center.		 Applicant Pre-construction Dept. of Transportation; Dept. of Building and Safety Dept. of Building and Safety
	Public Transit		
	•Coordinate temporary location for bus stops on Third Street and Alden Drive with SCRTD during project construction.		 Applicant Pre-construction; Construction Dept. of Transportation; Dept. of Building and Safety Dept. of Building and Safety
seed project will generate 28,120 s, 661 in the AM peak hour and he PM peak hour. Ten of the 18 tersections would be significantly during the AM peak hour while ne 18 intersections would be tly impacted during the PM peak	•The applicant shall submit site plans to the Department of Transportation (LADOT) and the Bureau of Engineering for approval prior to the issuance of any foundation permit. The site plans shall include highway easements, access locations, and adjacent street improvements.	With effective implementation of the mitigation measures, project-related traffic impacts during the AM peak hour at all study intersections would be fully mitigated. During the PM peak hour, project-related traffic would have a significant impact on the intersection of Sherbourne Drive and Third Street. The implementation of proposed mitigations at the intersections of Melrose Ave. at San Vicente Blvd., Beverly Blvd. at Robertson Blvd., and San Vicente Blvd at Beverly Blvd., and San Vicente Blvd at Beverly Blvd., and San Vicente Blvd at Beverly dotained from the City of West Hollywood, the impacts identified on Tables 20 and 21 of this EIR without mitigation would occur.	 Applicant Pre-construction Dept. of Transportation; Bureau of Engineering Dept. of Transportation; Bureau of Engineering

ADVERSE IMPACT	RECOMMENDED MITIGATION MEASURES	NET UNMITIGATED ADVERSE IMPACTS	 RESPONSIBLE IMPLEMENTATION PARTY MONITORING PHASE MONITORING AGENCY ENFORCEMENT AGENCY
TRAFFIC (cont'd)			
	•The applicant should design and install street improvements for the following intersections as outlined in Section IV.N.I. Traffic, of this Draft EIR: San Vicente Blvd. and Melrose Ave.; San Vicente Blvd. between Beverly Blvd. and Burton Way; Beverly Blvd. between San Vicente Blvd. and La Cienega Blvd.; Robertson Blvd. between Beverly Blvd. and Burton Way; Third St. between Sherbourne Dr. and La Cienega Blvd.; San Vicente Blvd. and Wilshire Blvd.; and La Cienega Blvd.; and La San Vicente Blvd.	•	 Applicant Pre-construction; Construction - Dept. of Transportation; Bureau of Engineering Dept. of Transportation; Bureau of Engineering
	•The applicant shall contribute to the design and installation of an Automated Traffic Surveillance and Control (ATSAC) system at the intersections of: Robertson Blvd. and Wilshire Blvd.; La Cienega Blvd. and Wilshire Blvd.; and Orlando Ave. and Third St.		 Applicant Pre-construction Dept. of Transportation; Dept. of Building and Safety Dept. of Transportation; Dept. of Building and Safety
	 Implementation of a TDM program that would reduce potential traffic generation by approximately 25 percent. These additional TDM features would include parking fee refund for rideshare vehicles, subsidized transit bus passes, Guaranteed Ride Home (GRH) program for ridesharers, promoting alternative work hours, personal commuter assistance provided by the Transportation Coordinator, rideshare club for rewards and recognition, commuter sign-up board to display information, computerized ride matching, vanpool program, and bicycle commuter incentives. 		 Applicant Post-occupancy Dept. of Transportation; Dept. of City Planning Dept. of Transportation

ADVERSE IMPACT	RECOMMENDED MITIGATION MEASURES	NET UNMITIGATED ADVERSE IMPACTS	 RESPONSIBLE IMPLEMENTATION PARTY MONITORING PHASE MONITORING AGENCY ENFORCEMENT AGENCY
PARKING Development of the proposed project is anticipated to result in the loss of approximately 26 on-street parking spaces along San Vicente Blvd. between Beverly Blvd. and Burton Way. If unmanaged, parking demand for the entire Medical Center, including facilities proposed as part of the Master Plan, would be 7,284 spaces, which would exceed the 7,063 spaces provided under the proposed Master Plan by 231 spaces and create a significant impact.	 The design of the on-site parking shall integrate safety features, such as signs, lights, and striping, pursuant to Section 12.21.A.5 of the Municipal Code. Implementation of a TDM program that would reduce peak hour vehicle trips by approximately 20 percent. These additional allowance, provision of preferential parking for car/vanpools, additional financial incentives, purchase of bicycles and related equipment for employees, increased employees on the Compressed Work Week schedule, increased transportation program staffing, expanded employee benefits, and visitor transit incentives. Off-street parking should be provided for all construction-related employees generated by the proposed project. No employees or sub-contractors should be allowed to park on the surrounding residential streets for the duration of all construction activities. 	Implementation of the recommended mitigation measures would eliminate potential short-term adverse impacts during project construction activities. Development of the proposed project is anticipated to result in the loss of approximately 26 on-street parking spaces along San Vicente Blvd. between Beverly Blvd. and Burton Way. Additionally, a total of 29 - 38 on-street parking spaces would be lost due to implementation of traffic mitigation measures. Six of these spaces would be lost only on Mondays through Fridays, from 7:00 AM to 7:00 PM, due to parking restrictions. The loss of these spaces would be significant. With implementation of the entire medical center, including facilities proposed as part of the Master Plan, would be 6,697 spaces. As a result, no significant impacts are anticipated due to the provision of 7,053 spaces by the Master Plan, an excess of 356 spaces clative to the demand generated by the project.	 Applicant Pre-construction; Post-occupancy Dept. of Building and Safety Dept. of Building and Safety Applicant Dept. of Transportation; Dept. of City Planning Dept. of Transportation Applicant Applicant Applicant Applicant Applicant Applicant Applicant Bept. of Safety
FIRE PROTECTION			
Based on Los Angeles Fire Department hydrant fire flow requirements and first engine company response distance, the proposed project would be considered to be inadequately protected. As a result, the proposed project would have a significant impact on fire protection services and emergency medical services.	•The proposed project shall comply with all applicable State and local codes and ordinances and the guidelines found in the Fire Protection and Fire Prevention Plan and the Safety Plan, both of which are elements of the General Plan of the City of Los Angeles (CPC 19708).	With implementation of mitigation measures, significant impacts would be reduced, but not eliminated.	 Applicant Pre-construction; Post-occupancy Pre-construction; Post-occupancy Dept. of Building and Safety; Bureau of Engineering; Dept. of Suliding and Safety; Bureau of Engineering; Dept. of City Planning

 RESPONSIBLE IMPLEMENTATION PARTY MONITORING PHASE MONITORING AGENCY ENFORCEMENT AGENCY 		 Applicant Pre-construction Fire Department; Dept. of Building and Safety Fire Department; Dept. of Building and Safety 	 Applicant Pre-construction; Post-occupancy Dept. of Building and Safety Dept. of Building and Safety 	 Applicant Pre-construction; Post-occupancy Dept. of Building and Safety Dept. of Building and Safety 	 Applicant Pre-construction; Post-occupancy Fire Department; Dept. of Public Works Fire Department; Dept. of Public Works 	 Applicant Post-occupancy Dept. of Building and Safety Dept. of Building and Safety 	 Applicant Pre-construction; Post-occupancy Prept. of Building and Safety Dept. of Building and Safety 	 Applicant Pre-construction; Post-occupancy Dept. of Building and Safety Dept. of Building and Safety 	 Applicant; Bureau of Engineering Pre-construction; Post-occupancy Dept. of Building and Safety Dept. of Building and Safety
NET UNMITIGATED ADVERSE IMPACTS									
RECOMMENDED MITIGATION MEASURES		• Definitive plans and specifications shall be submitted to the Fire Department and requirements for necessary permits satisfied prior to commencement of any portion of this project.	•All first story portions of any building must be within 300 feet of an approved fire hydrant.	• Fire lanes in commercial or industrial areas shall be no more than 300 feet from a fire hydrant.	•Adequate public and private fire hydrants shall be required.	• Any person owning or having control of any facility, structure, group of structures, or premises shall provide and maintain Fire Department access.	• If any portion of the first story exterior walls of any building or structure is more than 150 feet from the edge of the roadway of an improved street, an approved fire lane shall be provided so that such portion is within 150 feet of the edge of the fire lane.	•At least two different ingress/ egress roads for each area able to accommodate major fire apparatus and provide for an evacuation during emergency situations shall be required.	 Construction of public or private roadways in the proposed development shall not exceed a 15 percent grade.
ADVERSE IMPACT	FIRE PROTECTION (cont'd)								

ADVERSE IMPACT	RECOMMENDRD MITIGATION MEASURES	NET UNMITIGATED ADVERSE IMPACTS	 RESPONSIBLE IMPLEMENTATION PARTY MONITORING PHASE MONITORING AGENCY ENFORCEMENT AGENCY
FIRE PROTECTION (cont'd)			
	•Private development shall conform to the standard street dimensions shown on Department of Public Works Standard Plan D-22549.		 Applicant Pre-construction; Post-occupancy Dept. of Building and Safety Dept. of Building and Safety
	 Access for Fire Department apparatus and personnel to and into all structures shall be required. 		 Applicant Post-occupancy Dept. of Building and Safety Dept. of Building and Safety
	•No fire lane shall be less than 20 feet in width. When a fire lane must accommodate the operation of Fire Department aerial ladder apparatus or where fire hydrants are installed, those portions shall not be less than 28 feet in width.		 Applicant Pre-construction; Post-occupancy Dept. of Building and Safety Dept. of Building and Safety
	•Sprinkler systems shall be required throughout any structure in accordance with the Los Angeles Municipal Code, Section 57.09.07.		 Applicant Pre-construction; Post-occupancy Dept. of Building and Safety Dept. of Building and Safety
	•To mitigate potential significant impact on access, the Medical Center should covenant and agree that all current public and private streets shall remain open to free travel of emergency vehicles.		 Applicant Pre-construction Dept. of Building and Safety Dept. of Building and Safety
	•The water delivery system shall be improved to the satisfaction of the Fire Department prior to cccupancy of any new development.		 Applicant Pre-construction; Construction Dept. of Building and Safety; Fire Department Dept. of Building and Safety
POLICE PROTECTION			
Development of the proposed project would have a significant impact on police protection services in the Wilshire Area.	•Elevators, lobbies, and parking areas should be well illuminated and designed with minimum dead space to eliminate areas of concealment.	With implementation of mitigation measures, significant impacts would be reduced, but not eliminated.	 Applicant Pre-construction; Construction Dept. of Building and Safety; Police Department Dept. of Building and Safety
	•Tenant parking areas should be controlled by an electronic card-key gate in conjunction with a closed circuit television system.		 Applicant Post-occupancy Police Department; Dept. of Building and Safety Dept. of Building and Safety

ADVERSE IMPACT	RECOMMENDED MITIGATION MEASURES	NET UNMITIGATED ADVERSE IMPACTS	 RESPONSIBLE IMPLEMENTATION PARTY MONITORING PHASE MONITORING AGENCY ENFORCEMENT AGENCY
POLICE PROTECTION (cont'd)			
	 Private security guards are recommended to monitor and patrol the development. 		 Applicant Post-occupancy Police Department Police Department
	•Upon project completion, the applicant should provide the Wilshire Area commanding officer with a diagram of the project. The diagram should include access routes, unit numbers, and any information that might facilitate police response.		1. Applicant 2. Post-occupancy 3. Police Department 4. Police Department
	• To mitigate potential significant impact on access, the Medical Center should covenant and agree that all current public and private streets shall remain open to free travel of emergency vehicles.		 Applicant Pre-construction Dept. of Building and Safety Dept. of Building and Safety
ENERGY CONSERVATION			
Development of the proposed project would increase the consumption of local and regional energy sources. Project implementation would result in a net increase of on-site energy consumption by approximately 17.43 million kWh of electricity, 95.85 million cubic feet of natural gas, and 6.84 million gallons of vehicular fuel annually. These increases in energy consumption would not be significant.	•Consultation with the Los Angeles Department of Water and Power and the Southern California Gas Company to determine feasible energy conservation features that could be incorporated into the design of the proposed project.	Project construction and operation will increase the use of local and regional energy resources, however, these increases would not be significant.	 Applicant Pre-construction Dept. of Building and Safety Dept. of Building and Safety
	•Compliance with Title 24, established by the California Energy Commission regarding energy conservation standards. These standards relate to insulation requirements and the use of caulking, double-glazed windows, and weather stripping.		 Applicant Pre-construction; Construction Dept. of Building and Safety Dept. of Building and Safety
	•Thermal insulation which meets or exceeds standards established by the State of California and the Department of Building and Safety should be installed in walls and ceilings.		 Applicant Construction Dept. of Building and Safety Dept. of Building and Safety

Page xxviii

ADVERSE IMPACT	RECOMMENDED MITIGATION MEASURES	NET UNMITIGATED ADVERSE IMPACTS	 RESPONSIBLE IMPLEMENTATION PARTY MONITORING PHASE MONITORING AGENCY ENFORCEMENT AGENCY
ENERGY CONSERVATION (cont'd)			
	 Tinted or solar reflective glass should be used on appropriate exposures. 		 Applicant Construction Dept. of Building and Safety Dept. of Building and Safety
	•Heat-reflecting glass on the exterior-facing, most solar-exposed sides of the building, should be used to reduce cooling loads.		 Applicant Construction Dept. of Building and Safety Dept. of Building and Safety
	 Interior and exterior fluorescent lighting should be used in place of less efficient incandescent lighting. 		 Applicant Construction Dept. of Building and Safety Dept. of Building and Safety
	 A variable air volume system which reduces energy consumption for air cooling and heating for water heating should be used where permitted. 		 Applicant Construction Dept. of Building and Safety Dept. of Building and Safety
	 Air conditioning which will have a 100 percent outdoor air economizer cycle to obtain free cooling during dry outdoor climatic periods should be used. 		 Applicant Construction Dept. of Building and Safety Dept. of Building and Safety
	 Lighting switches should be equipped with multi-switch provisions for control by occupants and building personnel to permit optimum energy use. 		 Applicant Construction Dept. of Building and Safety Dept. of Building and Safety
	 Public area lighting, both interior and exterior, should be used, time controlled, and limited to that necessary for safety. 		 Applicant Pre-construction; Construction Dept. of Building and Safety Dept. of Building and Safety
	 Department of Water and Power recommendations on the energy efficiency ratios of all air conditioning equipment installed should be followed. 		 Applicant Construction Dept. of Building and Safety Dept. of Building and Safety

ADVERSE IMPACT	RECOMMENDED MITIGATION MEASURES	NET UNMITIGATED ADVERSE IMPACTS	 RESPONSIBLE IMPLEMENTATION PARTY MONITORING PHASE MONITORING AGENCY ENFORCEMENT AGENCY
ENERGY CONSERVATION (cont'd)			
	•A carefully established and closely monitored construction schedule should be used to coordinate construction equipment movements, thus minimizing the total number of pieces of equipment and their daily movements. This would reduce fuel consumption to a minimum.		 Applicant Construction Dept. of Building and Safety Dept. of Building and Safety
WATER			
Given current drought conditions, any increase in water consumption could be considered incrementally adverse. The Medical Center would use approximately 814,104 gallons of water per day, resulting in a net increase in previous on-site water	•To the maximum extent feasible, reclaimed water shall be used during the grading and construction phases of the project for dust control, soil compaction, and concrete mixing.	Given current drought conditions, any increase in water consumption could be considered incrementally adverse. The Medical Center would use approximately 814,104 gallons of water per day, resulting in a net increase in previous on-site water	 Applicant Construction Bureau of Engineering Dept. of Building and Safety
consumption of 220,644 gallons per day. Under current drought conditions, this increase would be considered significant.	•The project should incorporate water saving design techniques in order to minimize water requirements. The installation of water conserving plumbing fixtures and City approval of a landscape design plan would be required if the City's water conservation program is still in effect at the time of building permit issuance. If the programs no longer in effect, the approximation program is still consider the	consumption of 220,644 gallons per day. Under current drought conditions, this increase would be considered significant.	 Applicant Pra-construction; Construction Dept. of Building and Safety Dept. of Building and Safety
	approximation of these measures into the proposed project, where feasible.		
	•Water in fountains, ponds, and other landscape features within the proposed project must be treated and filtered to meet City and State health standards. Also, recirculating systems should be used to prevent waste.		 Applicant Construction; Post-occupancy Dept. of Building and Safety Dept. of Building and Safety
	•A recirculating hot water system should be used, where feasible.		 Applicant Construction Dept. of Building and Safety Dept. of Building and Safety

ADVERSE IMPACT	RECOMMENDED MITIGATION MEASURES	NET UNMITIGATED ADVERSE IMPACIS	 RESPONSIBLE IMPLEMENTATION PARTY MONITORING PHASE MONITORING AGENCY ENFORCEMENT AGENCY
WATER (cont'd)			
	 Automatic irrigation systems should be set to insure irrigation during early morning or evening hours to minimize water loss through evaporation. 		 Applicant Post-occupancy Dept. of Building and Safety Dept. of Building and Safety
	• Drip irrigation systems should be used for any proposed irrigation system.		 Applicant Post-occupancy Dept. of Building and Safety Dept. of Building and Safety
	 Reclaimed water should be investigated as a source of irrigation for large landscaped areas. 		1. N/A 2. N/A 3. N/A 4. N/A
	 Selection of drought-tolerant, low-water- consuming plant varieties should be used to reduce irrigation water consumption. 		 Applicant Pre-construction; Post-occupancy Dept. of Building and Safety Dept. of Building and Safety
	 Low-flow and water conserving toilets, faucets, and shower heads must be installed in new construction and when remodeling. 		 Applicant Pre-construction; Post-occupancy Dept. of Building and Safety Dept. of Building and Safety
	 Plumbing fixtures should be selected which reduce potential water loss from leakage due to excessive wear of washers. 		 Applicant Pre-construction; Post-occupancy Dept. of Building and Safety Dept. of Building and Safety
	 Promptly detect and repair leaks. 		 Applicant Post-occupancy Dept. of Building and Safety Dept. of Building and Safety

SPONSIBLE IMPLEMENTATION PARTY DNITORING PHASE DNITORING AGENCY FORCEMENT AGENCY	plicant astruction; Post-occupancy pt. of Building and Safety pt. of Building and Safety commended mitigation measures for Water.		plicant astruction pt. of Building and Safety; Bureau of Engineering pt. of Building and Safety; Bureau of Engineering	plicant astruction pt. of Building and Safety; Bureau of Engineering pt. of Building and Safety; Bureau of Engineering	plicant setruction ot. of Building and Safety; Bureau of Engineering ot. of Building and Safety; Bureau of Engineering	plicant tr-occupancy pt. of Building and Safety; Bureau of Engineering pt. of Building and Safety; Bureau of Engineering
1. RE 2. MC 4. EN	1. App 2. Con 3. Del 4. Del See rec		1. Api 2. Coi 3. Dej 4. Dej	1. Apl 2. Cor 3. Dej 4. Dej	1. Api 2. Cor 3. Der 4. Der	1. Ap 2. Pos 3. De 4. De
NET UNMITIGATED ADVERSE IMPACTS	Under current system constraints, any increase in sewage flow can be considered incrementally adverse and until planned expansions are operational, the increase in sewage resulting from project implementation would be considered significant. The proposed project would result in a net increase in sewage generation of approximately 200,495 gallons per day. This increase represents 0.05 percent of the remaining system capacity. Under current system constraints, this increase would be considered significant.		No significant impacts are anticipated with implementation of mitigation measures.			
RECOMMENDED MITIGATION MEASURES	 The applicant must comply with the provisions of ordinarces regarding sewer capacity allotment in the City of Los Angeles. In addition, the applicant must comply with Ordinance No. 166,080 which restricts water consumption and which will concurrently reduce sewage flows. Measures cited in Section IV.Q.4, Water, which restricts water consumption should be implemented to reduce sewage flows. 		•The proposed project shall conform to the recommendations made by the Department of Building and Safety and the City Engineer concerning storm water drainage.	•A drainage plan shall be submitted to the satisfaction of the City Engineer during the plan check process.	•All development shall be flood-proofed to elevations prescribed by FEMA National Flood Insurance Program regulations. All new construction shall have the lowest floor (including basement) elevated above the highest grade at least as high as the depth number specified in feet on the Flood Insurance Rate Map (at least two feet if no number is specified).	•Any portion of the proposed project built within the 100-year flood hazard designation shall comply with all requirements of the FEMA flood insurance program pertaining to this zone.
ADVERSE IMPACT	SANITARY SEWERS The proposed project would result in a net increase in sewage generation of approximately 200,495 gallons per day. This increase represents 0.05 percent of current sewage flows and 0.50 percent of the remaining system capacity. Under current system constraints, any increase in sewage flow can be considered incrementally adverse and until planned expansions are operational, the increase in sewage resulting from project implementation would be considered significant.	STORM WATER DRAINAGE	Existing facilities would adequately serve the proposed project, therefore, no significant impacts are anticipated.			

ADVERSE IMPACT	RECOMMENDED MITIGATION MEASURES	NET UNMITIGATED ADVERSE IMPACTS	 RESPONSIBLE IMPLEMENTATION PARTY MONITORING PHASE MONITORING AGENCY ENFORCEMENT AGENCY
STORM WATER DRAINAGE (confd)			
	 Nonessential or improper installation of public utilities and public facilities in flood- prone areas should be prohibited. 		 Applicant Pre-construction Dept. of Building and Safety Dept. of Building and Safety
NON-HAZARDOUS WASTE			
Due to the diminishing capacity of the County to dispose of its wastes, any increase in disposal quantities would have an adverse effect on the remaining regional landfill capacity. Implementation of the	•Commercial-size trash compactors shall be installed.	Project implementation would result in an adverse impact, as it would incrementally contribute to the exhaustion of one of several local landfills. Implementation of recommended mitigation measures would	 Applicant Construction Dept. of Building and Safety Dept. of Building and Safety
proposed project would result in a net increase of 5,246 pounds of medical waste per day before incineration, or a net increase of 1,705 pounds of solid waste per day after incineration. Under current remaining capacity constraints, this increase would be considered significant.	 White paper, glass, and metal recycling programs shall be implemented. 	reduce, but not eliminate, significant impacts.	 Applicant Post-occupancy Dept. of Building and Safety Dept. of Building and Safety
HAZARDOUS WASTE			
Implementation of the Master Plan would result in an increase in the quantity of hazardous materials transported to the Medical Center, an increase in the use of hazardous materials, and an increase in the generation of hazardous wastes. These increases would be considered significant.	 To the extent feasible, the Medical Center should reduce its reliance on hazardous materials. Inform employees of hazardous materials minimization strategies applicable to research, patient care, and instructional activities and require the implementation of these strategies. Before each new building proposed under the Master Plan is operational, the Disaster Response Plan and Business Plan documents should be updated as necessary to address any toxic contamination of the new buildings. 	Implementation of the Master Plan will result in an increase in the quantity of hazardous materials transported to the Medical Center, an increase in the use of hazardous materials, and an increase in the generation of hazardous wastes. Implementation of the proposed project will not prevent Cedars from continuing to comply with applicable federal, state, and local laws. Compliance with these regulations and procedures is anticipated to reduce the risk associated with these substances to an acceptable level. Increases in the use or storage of hazardous materials would result in a significant impact, as suggested by Appendix G of the CEQA Guidelines.	 Applicant Post-occupancy Department of Health Services Applicant Post-occupancy Post-occupancy Department of Health Services Department of Health Services Department of Health Services Topplicant Applicant Fire Department

ADVERSE IMPACT	RECOMMENDED MITIGATION MEASURES	NET UNMITIGATED ADVERSE IMPACTS	 RESPONSIBLE IMPLEMENTATION PARTY MONITORING PHASE MONITORING AGENCY ENFORCEMENT AGENCY
AESTHETICS/VIEW			
Development of the project would have an adverse impact by increasing the visibility of the site relative to the surrounding area. No significant adverse impacts on views would be anticipated because the project	•All open areas not used for the building, driveways, walls, or similar features shall be attractively landscaped in accordance with a landscape prepared by a licensed landscape architect and approved by the	No significant adverse impacts on views would be anticipated.	 Applicant Pre-construction; Construction Dept. of Building and Safety Dept. of City Planning Dept. of Building and Safety
wound be located in an auready inginy developed area with existing tall mid-rise buildings. Also, existing low and mid-rise buildings and landscaping in the	appropriate agencies. Au lanoscaped areas shall be maintained in a first class condition at all times.		
neighboring areas of the site would obscure residences' views of the medical center.	•The landscaped area along the property borders shall include trees spaced a		1. Applicant 2. Construction
	minimum of 15 feet apart, measured from the center of each tree. Trees should be no less than 24-inch-box each.		 Dept. of Public Works Dept. of Public Works
	 Roofton structures should be screened from 		1 Annlicant
	view and utilities should be installed		2. Pre-construction; Construction
	underground, where feasible.		 Dept. of Building and Safety Dept. of Building and Safety
	•The project should avoid the inclusion of		1. Applicant
	large, blank walls.		 Pre-construction Dept. of Building and Safety Dept. of Building and Safety
	•Connection between the parking structures		1. Applicant
	and the medical lacings should be physically integrated to provide a non-		2. Pre-construction; Construction 3. Dept. of Building and Safety
	hazardous and aesthetically pleasing pedestrian entry into the main building.		4. Dept. of Building and Safety

ADVERSE IMPACT	RECOMMENDED MITIGATION MEASURES	NET UNMITIGATED ADVERSE IMPACTS	 RESPONSIBLE IMPLEMENTATION PARTY MONITORING PHASE MONITORING AGENCY ENFORCEMENT AGENCY
AESTHETICS/VIEW (cont'd)			
	 After obtaining project permit approval, the applicant shall submit final site plans and elevations to the Department of City Planning prior to the issuance of a Building Permit. The Department of City Planning shall compare the final plans with those approved by the City Planning Commission. If the Department of City Planning determines that uhe final site plans or elevations contain substantial changes, the applicant shall submit the final plans to the Planning Commission for review and approval. 		 Applicant Pre-construction Dept. of City Planning Dept. of City Planning
ARCHAEOLOGICAL			
No significant impacts on archaeological resources are anticipated with implementation of the proposed development.	Because no adverse impacts are anticipated, no mitigation measures are required.	No significant impacts are anticipated.	1. N/A 2. N/A 3. N/A 4. N/A

APPENDIX C

1993 CSMC DEVELOPMENT AGREEMENT

RECORNING REQUESTED BY AND

George J. Mihlsten, Esq. LATHAM & WATKINS 633 West Fifth Street, Suite 4000 Los Angeles, California 90071

93 1590786

DEVELOPMENT AGREEMENT

between

THE CITY OF LOS ANGELES

and

CEDARS-SINAI MEDICAL CENTER

August <u>/2</u>, 1993

TABLE OF CONTENTS

1.	DEFIN	IITIONS
	1.1	"Applicable Rules"
	1.2	"Development Agreement Act"
	1.3	"Discretionary Action" or "Discretionary Approval"
	1.5	"District Plan"
	1.6	"Effective Date"
	1.7	"Floor Area"
	1.8	"General Plan" 2
	1.9	"Master Plan"
	1.10	"Processing Fees"
	1.11	"Project"
	1.12	"Project Approvals"
	1.13	Property
	1.14	
2.	RECIT	ALS OF PREMISES, PURPOSE AND INTENT
	2.1	State Enabling Statute.
	2.2	City Procedures
		2.2.1 Planning Commission Action
		2.2.2 City Council Action
	2.3	Purpose of this Agreement 6
		2.3.1 Cedars-Sinai Medical Center Objectives
		2.3.2 Mutual Objectives
3	AGRE	EMENT AND ASSUBANCES 8
0.	3.1	Agreement and Assurance on the Part of Cedars-Sinai Medical Center.
	•	3.1.1 Project Development.
		3.1.1.a. Dedication of Land for Public Purposes
		3.1.1.b. Description of Transportation Improvements 8
		3.1.1.c. Intensity of the Project
		3.1.1.d. Maximum Height of the Project
		3.1.2 Phasing of Development
	a a	3.1.3 Hold as One Parcel
	3.2	Additional Consideration for this Agreement
	3.3	3 3 1 Entitlement to Develop
		3.3.2 Changes in Applicable Bules
		3.3.2.a. Nonapplication of Changes in Applicable Rules
		3.3.2.b. Changes in Building and Fire Codes
		3.3.2.c. Changes Mandated by Federal or State Law
	3.4	Subsequent Development Review
	3.5	Site Plan Review

<u>Page</u>

	3.6 3.7 3.8	Effective Development Standards.15Consistency with Applicable Rules15Moratoria or Interim Control Ordinances.16
4.	ANNU 4.1 4.2	JAL REVIEW, DEFAULT PROVISIONS16Annual Review.164.1.1 Annual Review164.1.2 Pre-Determination Procedure164.1.3 Evidence for Annual Review164.1.4 Director's Determination174.1.5 Appeal By Cedars-Sinai Medical Center174.1.6 Period To Cure Non-Compliance184.1.7 Failure To Cure Non-Compliance Procedure184.1.8 Termination or Modification of Agreement194.1.9 Reimbursement of Costs19Default Provisions204.2.1 Default by Cedars-Sinai Medical Center204.2.1.6. Notice of Default204.2.1.6. Failure to Cure Default Procedure204.2.1.6. Default by Cedars-Sinai Medical Center204.2.1.6. Default204.2.1.6. Default204.2.1.6. Failure to Cure Default Procedure204.2.1.6. Failure to Cure Default Procedure204.2.1.6. Journation or Modification of Agreement214.2.2.2. Default by the City224.2.2.2. Default by the City224.2.2.2. Application for Modification or Termination22
		4.2.3 Damages and Specific Performance 23
5.	DISPU	JTE RESOLUTION235.1Dispute Resolution Proceedings.235.2Arbitration.235.3Arbitration Procedures.235.4Extension of Agreement Term.24
6.	GENE 6.1 6.2 6.3 6.4 6.5 6.6 6.6 6.7 6.8 6.9	RAL PROVISIONS24Effective Date.24Term24Appeals to the City Council25Enforced Delay; Extension of Time of Performance25Cooperation and Implementation266.5.1 Processing266.5.2 Other Governmental Permits266.5.3 Cooperation in the Event of Legal Challenge276.5.4 Relationship of the Parties27Hold Harmless and Insurance.286.6.1 Hold Harmless.286.6.2 Insurance.28Legal Action29Applicable Law29Amendments29

<u>Page</u>

6.10	Assignment	30
6.11	Statute of Limitation and Laches.	30
6.12	Covenants	31
6.13	Notices	31
6.14	Severability	32
6.15	Waiver	33
6.16	Recording	33
6.17	Constructive Notice and Acceptance.	33
6.18	Successors and Assignees.	33
6.19	No Third Party Beneficiaries.	33
6.20	Entitlement to Written Notice of Default.	34
6.21	Discretion to Encumber	34
6.22	Entire Agreement	34
6.23	Legal Advice; Neutral Interpretation; Headings, Table of Contents, and Index	34
6.24	Counterparts	35

DEVELOPMENT AGREEMENT

This Development Agreement ("Agreement") is executed this 1/2 r_{H} day of <u>August</u>, 1993, by and between the CITY OF LOS ANGELES, a municipal corporation ("City") and CEDARS-SINAI MEDICAL CENTER ("Developer"), pursuant to California Government Code Section 65864, et seq., and the implementing procedures of the City, based upon an initial application dated November 10, 1992, with respect to the following:

1. DEFINITIONS.

For all purposes of this Agreement, except as otherwise expressly provided or unless the context requires otherwise:

1.1 "Applicable Rules" means the rules, regulations, ordinances and policies of the City in force as of the Effective Date of this Agreement. Notwithstanding the language of this Section or any other language in this Agreement, all specifications, standards and policies regarding the design and construction of public works facilities, if any, shall be those that are in effect at the time the Project plans are being processed for approval and/or under construction. Furthermore, the Applicable Rules shall include the City-wide programs enacted after the Effective Date of this Agreement for (1) storm water pollution abatement mandated by the Federal Water Pollution Control Act of 1972, and subsequent amendments thereto, (2) traffic congestion management mandated by a congestion management program pursuant to California Government Code Section 65088, et seq., or any successor statute, and (3) child care facilities mandated by the City of Los Angeles by ordinance to be provided generally by employers located in the City of Los Angeles.

1.2 "Conceptual Building Plans" mean the plans and drawings attached as Exhibit E.

1.3 "Development Agreement Act" means Section 65864, et seq. of the California Government Code.

1.4 "Discretionary Action" or "Discretionary Approval" means an action which requires the exercise of judgment, deliberation or a decision on the part of the City, including any board, commission or department and any officer or employee thereof, in the process of approving or disapproving a particular activity, as distinguished from an activity which merely requires the City, including any board, commission or department, or any officer or employee thereof, to determine whether there has been compliance with statutes, ordinances, regulations or resolutions.

1.5 "District Plan" means the Wilshire District Plan.

1.6 "Effective Date" is the date on which this Agreement is attested by the City Clerk of the City of Los Angeles after execution by Cedars-Sinai Medical Center and the Mayor of the City.

1.7 "Floor Area" means the total square footage of a building as described in Section12.21.1 of the Los Angeles Municipal Code.

1.8 "General Plan" means the General Plan of the City, as amended as of the date of this Agreement.

1.9 "Master Plan" means the Master Plan for the Cedars-Sinai Medical Center, approved under City Plan Case Nos. CPC 92-0530(ZC), CPC 92-0533(HD) and CPC 92-0534(DA) which provide for the expansion of the Cedars-Sinai Medical Center as described in Section 3.1.1 of this Agreement.

1.10 "Processing Fees" means all fees required by the City including, but not limited to, fees for land use applications, project permits, building applications, building permits, grading permits, maps and certificates of occupancy which are necessary to accomplish the intent and purpose of this Agreement. Expressly exempted from Processing Fees are all impact

fees, linkage fees, or exactions which may be imposed by the City on development Projects pursuant to laws enacted after the Effective Date of this Agreement, except as specifically provided for in this Agreement. The amount of the Processing Fees to be applied in connection with the development of the Project shall be the amount which is in effect on a City-wide basis at the time an application for the City action is made. Notwithstanding the language of this Section or any other language in this Agreement, Cedars-Sinai Medical Center shall not be exempt from the payment of a traffic mitigation fee, if any, imposed through the Wilshire West Interim Control Ordinance (Ordinance No. 167,551 or any successor ordinance); or from the payment of affordable housing mitigation fees, if any, imposed on a City-wide basis as part of the City's program for storm water pollution abatement mandated by the Federal Water Pollution Control Act of 1972 and subsequent amendments thereto, or from the payment of City-wide fees, if any, imposed as a result of the congestion management program mandated by California Government Code Section 65088, et seq., or any successor statute.

1.11 "Project" means the design, financing, construction and other development activities for the Master Plan.

1.12 "Project Approvals" means the Zone Change, Height District Change and Development Agreement applications filed as City Plan Case Nos. CPC 92-0530(ZC), CPC 92-0533(HD) and CPC 92-0534(DA), approved concurrently herewith.

1.13 "**Property**" means the 25.8 gross acre Cedars-Sinai Medical Center at 8700 Beverly Boulevard, located generally between Beverly Boulevard, San Vicente Boulevard, Third Street and Robertson Boulevard. The legal description is attached as Exhibit A.

1.14 "Reserved Powers" means the rights and authority excepted from this Agreement's restrictions on the City's police powers and which are instead reserved to the City. The

Reserved Powers include the powers to enact regulations or take future Discretionary Actions after the Effective Date of this Agreement that may be in conflict with the Applicable Rules, but: (1) are necessary to protect the public health and safety, and are generally applicable on a City-wide basis (such can be applicable on a non-City-wide basis in the event of natural disasters as found by the Mayor or City Council such as floods, earthquakes and similar acts of God); (2) are amendments to Chapter V, Article 7 of the Los Angeles Municipal Code Section 57.01.01, et seq. (Los Angeles Fire Code) or Chapter IX, Article 1 of the Los Angeles Municipal Code Section 91.0101, et seq. (Los Angeles Building Code) regarding the construction, engineering and design standards for private and public improvements to be constructed on the Property, provided that such changes are (i) necessary to the health and safety of the residents of the City; and (ii) are generally applicable on a City-wide basis (such can be applicable on a non-citywide basis in the event of natural disasters as found by the Mayor or City Council, such as floods, earthquakes, and similar acts of God); (3) are necessary to comply with state and federal laws and regulations (whether enacted prior or subsequent to the Effective Date of this Agreement); or (4) constitute Processing Fees imposed or required by the City to cover its actual costs in processing applications, permit requests and approvals of the Project, or in monitoring compliance with permits issued or approvals granted for the performance of any conditions imposed on the Project.

2. RECITALS OF PREMISES, PURPOSE AND INTENT.

2.1 State Enabling Statute. To strengthen the public planning process, encourage private participation in comprehensive planning and reduce the economic risk of development, the Legislature of the State of California adopted the Development Agreement Act, which authorizes any city to enter into binding development agreements establishing certain development rights in real property with persons having legal or equitable interest in such property. Section 65864 of the Development Agreement Act expressly provides as follows:

"The Legislature finds and declares that:

(a) The lack of certainty in the approval of development projects can result in a waste of resources, escalate the cost of housing and other development to the consumer, and discourage investment in and a commitment to comprehensive planning which would make maximum efficient utilization of resources at the least economic cost to the public.

(b) Assurance to the applicant for a development project that upon approval of the project, the applicant may proceed with the project in accordance with existing policies, rules and regulations, and subject to conditions of approval, will strengthen the public planning process, encourage private participation in comprehensive planning, and reduce the economic costs of development."

Notwithstanding the foregoing, to ensure that it remains responsive and accountable to its residents while pursuing the benefits of development agreements contemplated by the Legislature, the City: (i) accepts restraints on its police powers contained in development agreements only to the extent and for the duration required to achieve the mutual objectives of the parties; and (ii) to offset such restraints, seeks public benefits which go beyond those obtained by traditional City controls and conditions imposed on development project applications.

2.2 City Procedures.

2.2.1 Planning Commission Action. The Planning Commission conducted a dulynoticed public hearing on March 18, 1993 and approved the Agreement on April 1, 1993.

2.2.2 City Council Action. The City Council conducted a duly-noticed public hearing on June 23, 1993, and adopted Ordinance Nos. 168847 and 168848 on June 23, 1993 to become effective on the thirty-first day after publication, which approved this Agreement and

the Council found that the provisions of the Agreement are consistent with the General Plan, the District Plan, and authorized the execution of this Agreement.

2.3 Purpose of this Agreement.

2.3.1 Cedars-Sinai Medical Center Objectives. In accordance with the legislative findings set forth in the Development Agreement Act, and with full recognition of the City's policy of judicious restraints on its police powers, Cedars-Sinai Medical Center wishes to obtain reasonable assurances that the Project may be developed in accordance with the Applicable Rules and with the terms of this Agreement and subject to the City's Reserved Powers. To the extent of Project development, and as provided by Section 3.1.1, Cedars-Sinai Medical Center anticipates making capital expenditures in reliance upon this Agreement. In the absence of this Agreement, Cedars-Sinai Medical Center would have no assurance that it can complete the Project for the uses and to the density, intensity or height of development set forth in this Agreement. This Agreement, therefore, is necessary to assure Cedars-Sinai Medical Center that the Project will not be (1) reduced or varied in density, intensity, or height, permitted demolition, use or other development entitlements under this Agreement; (2) subjected to new rules, regulations, ordinances or policies which are not related to compliance with State or Federal mandates or health and safety conditions; or (3) subjected to delays for reasons other than City-wide health and safety enactments related to critical situations such as, but not limited to, the lack of water availability or sewer or landfill capacity.

2.3.2 Mutual Objectives. Development of the Project in accordance with this Agreement will provide for the orderly development of the Property in accordance with the objectives set forth in the General Plan and the Wilshire District Plan. Moreover, a development agreement for the Project will eliminate uncertainty in planning for and securing orderly development of the Project, assure installation of necessary improvements, assure

attainment of maximum efficient resource utilization within the City at the least economic cost to its citizens and otherwise achieve the goals and purposes for which the Development Agreement Act was enacted. The parties believe that such orderly development of the Project will provide many public benefits to the City through the imposition of the development standards and requirements under the provisions and conditions of this Agreement, including without limitation, increased tax revenues, installation of on-site and off-site improvements, and retention of a desirable industry and jobs within the City. Additionally, although development of the Project in accordance with this Agreement will restrain the City's land use or other relevant police powers, the Agreement will provide the City with sufficient Reserved Powers during the term hereof to remain responsible and accountable to its residents. In exchange for these and other benefits to the City, Cedars-Sinai Medical Center will receive assurance that the Project may be developed during the term of this Agreement in accordance with the Applicable Rules and Reserved Powers, subject to the terms and conditions of this Agreement.

2.3.3 Applicability of the Agreement. This Agreement does not: (1) grant density, intensity or height, permitted demolition, use or other development entitlements in excess of that otherwise established in the Applicable Rules; (2) eliminate future Discretionary Actions relating to the Project if applications requiring such Discretionary Action are initiated and submitted by the owner of the Property after the Effective Date of this Agreement; (3) guarantee that Cedars-Sinai Medical Center will receive any profits from the Project; (4) prohibit the Project's participation in any benefit assessment district that is generally applicable to surrounding properties; or (5) amend the City's General Plan. This Agreement has a fixed term, as provided in Section 6.2. Furthermore, in any subsequent actions applicable to the Property after expiration of this Agreement, the City may apply such new

rules, regulations and policies as are contained in its Reserved Powers, as legally apply to the Property.

3. AGREEMENT AND ASSURANCES.

3.1 Agreement and Assurance on the Part of Cedars-Sinai Medical Center. In consideration for the City entering into this Agreement, and as an inducement for the City to obligate itself to carry out the covenants and conditions set forth in this Agreement, and in order to effectuate the premises, purposes and intentions set forth in Article 2 of this Agreement, Cedars-Sinai Medical Center hereby agrees as follows:

3.1.1 Project Development. Cedars-Sinai Medical Center agrees that it will use its best efforts, in accordance with its own business judgement and taking into account health care delivery needs and economic consideration, to develop the Project in accordance with the terms and conditions of this Agreement.

3.1.1.a. Dedication of Land for Public Purposes. Provisions for the dedication of land for public purposes are set forth in Exhibit C attached hereto.

3.1.1.b. Description of Transportation Improvements. The Transportation Improvements to be included within the scope of the Project are described in Exhibit C attached hereto.

3.1.1.c. Intensity of the Project. The development intensity of the Project is shown in Exhibit D attached hereto.

3.1.1.d. Maximum Height of the Project. The maximum height of each of the Project's proposed buildings is shown on Exhibit D attached hereto.

3.1.2 Phasing of Development. The parties acknowledge that Cedars-Sinai Medical Center cannot at this time predict when or at the rate at which phases of the Property would be developed. Such decisions depend upon numerous factors which are not all within the control of Cedars-Sinai Medical Center, such as health care delivery needs, financing and

economic consideration. Because the California Supreme Court held in <u>Pardee Construction</u> <u>Co. v. City of Camarillo</u> (1984) 37 Cal.3d 465, that the failure of the parties therein to provide for the timing of development permitted a later adopted initiative restricting the timing of development and controlling the parties' agreement, it is the intent of Cedars-Sinai Medical Center and the City to hereby acknowledge and provide for the right of Cedars-Sinai Medical Center to develop the Project in such order and at such rate and time as Cedars-Sinai Medical Center deems appropriate within the exercise of its sole and subjective business judgment. The City acknowledges that such a right is consistent with the intent, purpose and understanding of the parties to this Agreement. Cedars-Sinai Medical Center will use its best efforts, in accordance with its owned business judgment and taking into consideration health care delivery needs, financing and other economic considerations influencing its business decision, to commence or to continue development, and to develop the Project in accordance with the provisions and conditions of this Agreement and with the Applicable Rules, subject to the Project Approvals.

3.1.3 Hold as One Parcel. The Medical Center and its various components shall be operated as an integrated unit for the purpose of implementing the mitigation measures and conditions of approval of the Project, including without limitation the TDM requirements. This provision does not, however, tie the individual parcels within the Property together as one parcel so as to prohibit obtaining financing or joint development opportunities for the construction of improvements on those individual parcels within the Property.

3.2 Additional Consideration for this Agreement. The development assurance provided by this Agreement, the implementation of the Master Plan and the resulting construction of the planned facilities will allow Cedars-Sinai Medical Center to continue to provide the highest quality health care using its state-of-the-art facilities. The Project will allow the consolidation of interrelated medical functions in discrete areas of the Cedars-Sinai Medical Center,

resulting in increased efficiency in the delivery of medical services. The City's and the community's need to provide for the continuation and expansion of high quality health care services and facilities is an exceptional public benefit.

3.2.a Continued provision of assistance to community programs relating to the mission of Cedars-Sinai Medical Center for the term of the Agreement. Several specific Community Programs currently provided by Cedars-Sinai Medical Center are described in Exhibit F.

3.2.b Unless (1) the Los Angeles County Trauma System is disbanded; or (2) Cedars-Sinai Medical Center determines, in its sole discretion, that the operation of the Level One Trauma Center causes a material adverse economic impact upon Cedars-Sinai Medical Center and Cedars-Sinai provides one year written notice to the City of Los Angeles of its intent to withdraw from the Trauma System, then Cedars-Sinai Medical Center shall continue its participation in the Los Angeles County Trauma System as a Level One Trauma center for the term of this agreement, as documented through the Emergency Medical Services agency of the Los Angeles County Department of Health Services.

3.2.c Continued maintenance of a qualified 24-hour Basic Emergency Department for the Term of this Agreement, as documented through the State of California Department of Health Services.

3.2.d Cedars-Sinai Medical Center shall make available up to 1,500 square feet of floor area at a location to be determined by Cedars-Sinai within the Property for a temporary Los Angeles Police Department sub-station within one year of the Effective Date of this Agreement, subject to the acceptance and approval thereof by the Los Angeles Police Department and The Los Angeles City Council. Cedars-Sinai Medical Center shall make available up to 1,500 square feet of floor area at

a location to be determined by Cedars-Sinai within the Property for a permanent Los Angeles Police Department sub-station within five years of the Effective Date of this Agreement, subject to the acceptance and approval thereof by the Los Angeles Police Department and The Los Angeles City Council. Cedars-Sinai Medical Center shall not be responsible for any costs relating to physical improvements or operating costs with respect to the temporary or permanent substation, including without limitation, shell improvements, furniture, fixtures, equipment, utilities or personnel.

3.2.e Cedars-Sinai Medical Center shall prepare and execute a covenant and agreement to the satisfaction of the City Planning Department and the Metropolitan Transit Authority (MTA) agreeing to provide an easement within the Property for a portal to a Metro Rail station at the southwest corner of San Vicente Boulevard and Beverly Boulevard provided that the easement does not adversely impact the operation of the Medical Center as determined by Cedars-Sinai Medical Center in its sole discretion.

3.2.f Cedars-Sinai Medical Center will contribute to the design and installation of ATSAC or Quicnet systems at the intersections of Wilshire Boulevard and Gale Drive and Wilshire Boulevard and Willaman Drive if the Beverly Hills Department of Transportation and the Los Angeles Department of Transportation determine that these facilities are necessary to operate the ATSAC or Quicnet systems installed at the intersections of Wilshire Boulevard and Robertson Boulevard and Wilshire Boulevard and La Cienega Boulevard, provided, however, the cost shall not exceed \$100,000 per intersection.

3.2.g Cedars-Sinai Medical Center shall contribute up to \$40,000, as provided below, towards an Urban Design Program for the area generally bounded by Robertson Boulevard, Beverly Boulevard, Third Street and San Vicente Boulevard.

Cedars-Sinai will provide matching contributions, dollar for dollar, up to a maximum of \$40,000, with those contributions received from participants in the Urban Design Program. The purpose of the Urban Design Program is to create a more pedestrianoriented environment in the area and should include a program of unifying themes and implementation of the recommended improvements. Cedars-Sinai Medical Center shall not be responsible for the collection of funds or the administration or implementation of the Urban Design Program, although Cedars-Sinai may be a participant in the Urban Design Program.

3.2.h Establishment of a Community Employee Recruitment and Outreach Program designed to benefit the local community as described in Exhibit G for the term of this Agreement.

3.3 Agreement and Assurances on the Part of the City. To effectuate the parties' respective objectives set forth in Article 2 above, and to induce Cedars-Sinai Medical Center to agree to the covenants and conditions set forth in the preceding Section 3.1, the City hereby agrees and assures Cedars-Sinai Medical Center that, subject to its Reserved Powers: (i) only the Applicable Rules and the terms and conditions of this Agreement shall be applied to the Project during the term hereof; and (ii) the Applicable Rules and terms and conditions of this Agreement and conditions of this Agreement are vested contractual rights of Cedars-Sinai Medical Center to develop this Project during the term of this Agreement. In furtherance of such agreement and assurances, and pursuant to the authority and provisions set forth in the Development Agreement Act and the resolution adopted by the City Council on August 18, 1987 under Council File No. 85-2313-S3, City, in entering into this Agreement, hereby agrees and acknowledges that:

3.3.1 Entitlement to Develop. Cedars-Sinai Medical Center has the right to develop the Project, subject to the terms and conditions of this Agreement, the Applicable Rules, and
the Reserved Powers. The City finds that the Project is consistent with the General Plan, the Wilshire District Plan and the zoning regulations applicable to the Property.

3.3.2 Changes in Applicable Rules.

3.3.2.a. Nonapplication of Changes in Applicable Rules. Any change in, or addition to, the Applicable Rules, including, without limitation, any change in any applicable general, district or specific plans, zoning or building regulations, adopted or becoming effective after the Effective Date of this Agreement, including, without limitation, any such change by means of ordinance, City Charter amendment, initiative, referendum, resolution, motion, policy, order or moratorium, initiated or instituted for any reason whatsoever and adopted by the Mayor, City Council, Planning Commission or any other Board, Commission or Department of the City, or any officer or employee thereof, or by the electorate, as the case may be, which would, absent this Agreement, otherwise be applicable to the Project and which would conflict in any way with the Applicable Rules or this Agreement, shall not be applied to the Project unless such change represents an exercise by the City of its Reserved Powers.

3.3.2.b. Changes in Building and Fire Codes. Notwithstanding any provisions of this Agreement to the contrary, development of the Project shall be subject to changes occurring from time to time in the Uniform Building Code and other uniform construction codes. In addition, development of the Project shall be subject to changes occurring from time to time in the Los Angeles Fire and Building Codes, Chapter V, Article 7, Section 57.01.01, et seq. and Chapter IX, Article 1, Section 91.0101, et seq. of the Los Angeles Municipal Code, respectively, regarding the construction, engineering and design standards for both public and private improvements provided that such changes are (1) necessary to the health and safety of the residents of the City; and (2) are generally applicable on a City-wide basis (such can be applicable on a non-citywide basis in the event

of natural disasters as found by the Mayor or City Council, such as floods, earthquakes and similar acts of God).

3.3.2.c. Changes Mandated by Federal or State Law. This Agreement shall not preclude the application to the Project of changes in, or additions to, the Applicable Rules, including rules, regulations, ordinances, fees and official policies, to the extent that such changes or additions are mandated to be applied to developments such as this Project by state or federal regulations. In the event state or federal laws or regulations prevent or preclude compliance with one or more provisions of this Agreement, such provisions shall be modified or suspended as may be necessary to comply with such state or federal laws or regulations.

3.4 Subsequent Development Review. The City shall not require Cedars-Sinai Medical Center to obtain any Discretionary Approvals or permits for the development of the Project in accordance with this Agreement other than those permits or Discretionary Approvals which are required by the Applicable Rules or the Reserved Powers, or the Project Approvals. To the extent that any additional Discretionary Approvals are required for the development of the Project, such Discretionary Approvals shall be determined in accordance with Section 3.6. However, any subsequent Discretionary Action or Discretionary Approval initiated by Cedars-Sinai Medical Center which changes the intensity or height, density, height, permitted demolition, use or other development entitlements permitted by the Project Approvals shall be subject to the rules, regulations, ordinances and official policies of the City then in effect. Unless amended to provide otherwise, this Agreement shall not apply to such subsequent Discretionary Actions.

3.5 Site Plan Review. Pursuant to Section 16.05 I of the Los Angeles Municipal Code, the City agrees that the environmental review conducted in connection with the adoption of the Project Approvals provides a suitable method of complying with the California

Environmental Quality Act ("CEQA") for future development and that the detailed regulations and standards contained in the Master Plan provide siting controls for new buildings within the Property sufficient to satisfy the Site Plan Review Ordinance (Ordinance No. 165,951 as amended by Ordinance No. 166,127; L.A.M.C. § 16.05 and § 12.24 B 1(aa)). Therefore, pursuant to Los Angeles Municipal Code Section 16.05 I, site plan review under Los Angeles Municipal Code Section 16.05 is not applicable to the Project. In addition, notwithstanding Los Angeles Municipal Code Section 12.24 B 1(aa), the City also agrees that site plan review of "major" development projects pursuant to the conditional use procedures of Los Angeles Municipal Code Section 12.24 B 1(aa) is not applicable to the Project.

3.6 Effective Development Standards. The City agrees that it is bound to permit the density, intensity and height, permitted demolitions, uses and other development entitlements which are permitted by this Agreement, insofar as this Agreement and the Project Approvals so provide or as otherwise set forth in the Applicable Rules or the Reserved Powers. The City hereby agrees that it will not unreasonably withhold or unreasonably condition any Discretionary Action or Discretionary Approval which must be issued by the City in order for the Project to proceed, provided that Cedars-Sinai Medical Center reasonably and satisfactorily complies with all preliminary procedures, actions, payments of Processing Fees, and criteria generally required of developers by the City for processing applications for developments and consistent with this Agreement.

3.7 Consistency with Applicable Rules. Based upon all information made available to the City up to or concurrent with the execution of this Agreement, City finds and certifies that no Applicable Rules prohibit or prevent the full completion and occupancy of the Project in accordance with the density, intensity and height, permitted demolition, uses and other development entitlements incorporated and agreed to herein.

3.8 Moratoria or Interim Control Ordinances. In the event an ordinance, resolution or other measure is enacted, whether by action of the City, by initiative, or otherwise, which relates to the rate, timing, sequencing, or phasing of the development or construction on all or any part of the Property, City agrees that such ordinance, resolution or other measure shall not apply to the Property or this Agreement, unless such changes: (1) are found by the City to be necessary to the health and safety of the residents of the City, and (2) are generally applicable on a City-wide basis (except in the event of natural disasters as found by the Mayor or the City Council such as floods, earthquakes and similar acts of God).

4. ANNUAL REVIEW, DEFAULT PROVISIONS

4.1 Annual Review.

4.1.1 Annual Review. During the Term of this Agreement, the City shall review annually Cedars-Sinai Medical Center's compliance with this Agreement. Such periodic review shall be limited in scope to good faith compliance with the provisions of this Agreement as provided in the Development Agreement Act and Cedars-Sinai Medical Center shall have the burden of demonstrating such good faith compliance.

4.1.2 Pre-Determination Procedure. Cedars-Sinai Medical Center's submission of compliance with this Agreement, in a form which the Director of Planning may reasonably establish, shall be made in writing and transmitted to the Director of Planning not later than sixty (60) days prior to the yearly anniversary of the Effective Date. The public shall be afforded an opportunity to submit written comments regarding compliance to the Director of Planning at least sixty (60) days prior to the yearly anniversary of the Effective Date. All such public comments shall, upon receipt by the City, be made available to Cedars-Sinai Medical Center.

4.1.3 Evidence for Annual Review. The City shall deliver to Cedars-Sinai Medical Center a copy of any staff report and any other documents to be used or relied upon in

conducting the annual review concerning Cedars-Sinai Medical Center's performance hereunder prior to commencement of any such annual review by the Director of City Planning, or if any such document is subsequently created or received, within 48 hours of its creation or receipt by the City. Cedars-Sinai Medical Center shall be permitted a reasonable opportunity to respond to the City's evaluation of its performance at each stage of the review process, either orally or in writing, at Cedars-Sinai Medical Center's election. The Director of City Planning, the City Planning Commission, and the City Council shall review and give due consideration to Cedars-Sinai Medical Center's testimony and written submittals in their respective deliberations.

4.1.4 Director's Determination. On or before the yearly anniversary of the Effective Date of the Agreement, the Director of Planning shall make a determination regarding whether or not Cedars-Sinai Medical Center has complied in good faith with the provisions and conditions of this Agreement. This determination shall be made in writing with reasonable specificity, and a copy of the determination shall be provided to Cedars-Sinai Medical Center in the manner prescribed in Section 6.13. Copies of the determination shall also be available to members of the public. If the Director does not find evidence of non-compliance with the Agreement by Cedars-Sinai Medical Center, no further action by the Director, the Planning Commission or the City Council shall be required and the annual review process for such year shall end.

4.1.5 Appeal By Cedars-Sinai Medical Center. In the event the Director of Planning makes a finding and determination of non-compliance, Cedars-Sinai Medical Center shall be entitled to appeal that determination to the Planning Commission. After a public hearing on the appeal, the Planning Commission shall make written findings and determinations, on the basis of substantial evidence, whether or not Cedars-Sinai Medical Center has complied in good faith with the provisions and conditions of this Agreement. Nothing in this Section or

this Agreement shall be construed as modifying or abrogating Los Angeles City Charter Section 32.3 (City Council review of Commission and Board actions).

4.1.6 Period To Cure Non-Compliance. If, as a result of this Annual Review procedure, it is found and determined by the Planning Director or the Planning Commission, on appeal, that Cedars-Sinai Medical Center has not complied in good faith with the provisions and conditions of this Agreement, the City, after denial of any appeal or, where no appeal is taken, after the expiration of the appeal period described in Section 6.3, shall submit to Cedars-Sinai Medical Center, by registered or certified mail, return receipt requested, a written notice of default in the manner prescribed in Section 6.13, stating with specificity those obligations of Cedars-Sinai Medical Center which have not been performed. Upon receipt of the notice of default, Cedars-Sinai Medical Center shall promptly commence to cure the identified default(s) at the earliest reasonable time after receipt of the notice of default, or such longer period as is reasonably necessary to remedy such default(s), provided that Cedars-Sinai Medical Center shall continuously and diligently pursue such remedy at all times until such default(s) is cured.

4.1.7 Failure To Cure Non-Compliance Procedure. If the Director of Planning finds and determines that Cedars-Sinai Medical Center, or its successors, transferees, and/or assignees, as the case may be, has not cured a default pursuant to this Section, and that the City intends to terminate or modify this Agreement or those transferred or assigned rights and obligations, as the case may be, the Director of Planning shall make a report to the Planning Commission. The Director of Planning shall then set a date for a public hearing before the Planning Commission in accordance with the notice and hearing requirements of Government Code Sections 65867 and 65868. If after such public hearing, the Planning Commission finds and determines, on the basis of substantial evidence, that Cedars-Sinai Medical Center,

or its successors, transferees, and/or assignees, as the case may be, has not cured a default pursuant to this Section, and that the City shall terminate or modify this Agreement, or those transferred or assigned rights and obligations, as the case may be, the finding and determination shall be appealable to the City Council in accordance with Section 6.3. In the event of a finding and determination of compliance, there shall be no appeal by any person or entity. Nothing in this Section or this Agreement shall be construed as modifying or abrogating Los Angeles City Charter Section 32.3 (City Council review of Commission and Board actions).

4.1.8 Termination or Modification of Agreement. The City may terminate or modify this Agreement, or those transferred or assigned rights and obligations, as the case may be, after such final determination of the City Council or, where no appeal is taken, after the expiration of the appeal periods described in Section 6.3. There shall be no modifications of this Agreement unless the City Council acts pursuant to Government Code Sections 65867.5 and 65868, irrespective of whether an appeal is taken as provided in Section 6.3.

4.1.9 Reimbursement of Costs. Cedars-Sinai Medical Center shall reimburse the City for its actual costs reasonably and necessarily incurred, to perform the required annual review.

4.2 Default Provisions.

4.2.1 Default by Cedars-Sinai Medical Center.

4.2.1.a. Default. In the event Cedars-Sinai Medical Center does not perform its obligations under the Agreement in a timely manner, the City shall have all rights and remedies provided herein or under applicable law, which shall include, but not be limited to, compelling the specific performance of the obligations of Cedars-Sinai Medical Center under this Agreement, or modification or termination of this Agreement, provided that the City has first complied with the following procedure:

4.2.1.b. Notice of Default. The City through the Director of Planning shall submit to Cedars-Sinai Medical Center, by registered or certified mail, return receipt requested, a written notice of default in the manner prescribed in Section 6.13, identifying with specificity those obligations of Cedars-Sinai Medical Center which have not been performed. Upon receipt of the notice of default, Cedars-Sinai Medical Center shall promptly commence to cure the identified default(s) at the earliest reasonable time after receipt of the notice of default and shall complete the cure of such default(s) not later than sixty (60) days after receipt of the notice of default, or such longer period as is reasonably necessary to remedy such default(s), provided that Cedars-Sinai Medical Center shall continuously and diligently pursue such remedy at all times until such default(s) is cured.

4.2.1.c. Failure to Cure Default Procedure. If after the cure period has elapsed, the Director of Planning finds and determines that Cedars-Sinai Medical Center, or its successors, transferees and/or assignees, as the case may be, remains in default and that the City intends to terminate or modify this Agreement, or those transferred or assigned rights and obligations, as the case may be, the Director shall make a report to the Planning Commission and then set a public hearing before the Commission in accordance with the notice and hearing requirements of Government Code Sections 65867 and 65868. If after

public hearing, the Planning Commission finds and determines, on the basis of substantial evidence, that Cedars-Sinai Medical Center, or its successors, transferees and/or assigns, as the case may be, has not cured default pursuant to this Section, and that the City may in its sole discretion terminate or modify this Agreement, or those transferred or assigned rights and obligations, as the case may be, Cedars-Sinai Medical Center and its successors, transferees and/or assigns, shall be entitled to appeal that finding and determination to the City Council in accordance with Section 6.3. In the event of a finding and determination that all defaults are cured, there shall be no appeal by any person or entity. Nothing in this Section or this Agreement shall be construed as modifying or abrogating Los Angeles City Charter Section 32.3 (City Council review of Commission and Board actions).

4.2.1.d. Termination or Modification of Agreement. The City may terminate or modify this Agreement, or those transferred or assigned rights and obligations, as the case may be, after such final determination of the City Council or, where no appeal is taken, after the expiration of the appeal periods described in Section 6.3. There shall be no modifications of this Agreement unless the City Council acts pursuant to Government Code Sections 65867.5 and 65868, irrespective of whether an appeal is taken as provided in Section 6.3.

4.2.1.e. Damages and Specific Performance. In the event that Cedars-Sinai Medical Center defaults under the material provisions of this Agreement, City shall have all rights and remedies provided herein or by applicable law, which shall include, but not be limited to, compelling the specific performance of Cedars-Sinai Medical Center's obligations under this Agreement. City may, where appropriate, be awarded compensatory damages, but shall not be entitled, in any case, to damages for loss of profits or punitive damages.

4.2.2 Default by the City.

Default and Notice of Default. In the event the City does not 4.2.2.a. accept, process, render a decision on or issue necessary development permits, entitlements, or other land use or building approvals for use as provided in this Agreement upon compliance with the requirements therefor, or as otherwise agreed to by the parties, or the City otherwise defaults under the provisions of this Agreement, Cedars-Sinai Medical Center shall have all rights and remedies provided herein or by applicable law, which shall include, but not be limited to, compelling the specific performance of the City's obligations under this Agreement. No part of this Agreement shall be deemed to abrogate or limit any immunities or defenses the City may otherwise have with respect to claims for monetary damages. Cedars-Sinai Medical Center shall first submit to the City a written notice of default stating with specificity those obligations which have not been performed. Upon receipt of the notice of default, the City shall promptly commence to cure the identified default(s) at the earliest reasonable time after receipt of the notice of default and shall complete the cure of such default(s) not later than one hundred and twenty (120) days after receipt of the notice of default, or such longer period as is reasonably necessary to remedy such default(s), provided that the City shall continuously and diligently pursue such remedy at all times until such default(s) is cured.

4.2.2.b. Application for Modification or Termination. If the City remains in default of this Agreement after the cure period has elapsed, or federal or state law or regulations enacted after the adoption of the Agreement prevent compliance by Cedars-Sinai Medical Center or the City, Cedars-Sinai Medical Center shall be entitled to exercise its other remedies hereunder, including the right to apply to the Planning Commission for termination or modification of this Agreement, or to commence arbitration or litigation. In such event, the matter shall be set for public hearing before the Planning Commission in accordance with the notice and hearing requirements of Section 65867 of the Development Agreement Act.

4.2.3 Damages and Specific Performance. In the event the City defaults under the material provisions of this Agreement, Cedars-Sinai Medical Center shall have all rights and remedies provided herein or by applicable law, which shall include, but not be limited to, compelling the specific performance of obligations under this Agreement. Cedars-Sinai Medical Center may, where appropriate, be awarded compensatory damages, but shall not be entitled, in any case, to damages for loss of profits or punitive damages.

5. DISPUTE RESOLUTION

5.1 Dispute Resolution Proceedings. The parties may agree to dispute resolution proceedings to fairly and expeditiously resolve disputes or questions of interpretation under this Agreement. These dispute resolution proceedings may include: (a) procedures developed by the City for expeditious interpretation of questions arising under development agreements; (b) non-binding arbitration as provided below; of (c) any other manner of dispute resolution that is agreed upon by the parties. Nothing in this Agreement shall require the parties to arbitrate.

5.2 Arbitration. In the event the parties mutually agree to arbitrate a dispute arising under this Agreement, the arbitration proceeding shall be conducted by an arbitrator who must be a former (1) judge of the Los Angeles County Superior Court; (2) Appellate Justice of the Second District Court of Appeals; or (3) Justice of the California Supreme Court. This arbitrator shall be selected by mutual agreement of the parties.

5.3 Arbitration Procedures. In the event the parties mutually agree to arbitrate a dispute arising under this agreement, upon appointment of the arbitrator, the matter shall be set for arbitration at a time not less than thirty (30) nor more than ninety (90) days from the effective date of the appointment of the arbitrator. The arbitration shall be conducted under the procedures set forth in California Code of Civil Procedure Section 638, et. seq., or under such other procedures as are agreeable to both parties, except that provisions of the

California Code of Civil Procedure pertaining to discovery and the provisions of the California Evidence Code shall be applicable to such proceeding.

5.4 Extension of Agreement Term. The Term of this Agreement as set forth in Section 6.2 shall automatically be extended for the period of time in which the parties are engaged in dispute resolution to the degree that such extension of the Term is reasonably required because activities which would have or could have been completed prior to the expiration of the Term are delayed beyond the scheduled expiration of the Term as the result of such dispute resolution.

6. GENERAL PROVISIONS

6.1 Effective Date. This Agreement shall be effective upon the date on which this Agreement is attested by the City Clerk of the City of Los Angeles after execution by Cedars-Sinai Medical Center and the Mayor of the City. As provided in Section 65868.5 of the Development Agreement Act, and as provided in Section 6.16 hereof, a copy of this Agreement shall be recorded with the Los Angeles County Recorder.

6.2 Term. The term of this Agreement ("Term") shall commence on the Effective Date and shall extend until the completion of the Project or 15 years after the Effective Date, whichever is earlier, unless said Term is otherwise terminated, modified or extended by circumstances set forth in this Agreement or by mutual consent of the parties hereto. Following the expiration of this Term, this Agreement shall terminate and be of no further force and effect; provided, however, that this termination shall not affect any right or duty arising from entitlements or approvals, including the Project Approvals on the Property approved concurrently with, or subsequent to, the Effective Date of this Agreement. The Term of this Agreement shall automatically be extended for the period of time of any actual delay resulting from any enactments pursuant to the City's Reserved Powers, and for any period during which the parties are engaged in dispute resolution.

6.3 Appeals to the City Council. Unless otherwise specified in this Agreement, where an appeal by Cedars-Sinai Medical Center to the City Council from a finding and/or determination of the Planning Commission is created by this Agreement, such appeal shall be taken, if at all, within twenty (20) days after the mailing of such finding and/or determination to Cedars-Sinai Medical Center, or its successors, transferees, and/or assignees, as the case may be. The City Council shall act upon the finding and/or determination of the Planning Commission within eighty (80) days after such mailing, or within such additional period as may be agreed upon by Cedars-Sinai Medical Center and the City Council. The failure of the City Council to act shall not be deemed to be a denial or an approval of the appeal, which shall remain pending until final City Council action.

6.4 Enforced Delay; Extension of Time of Performance. In addition to specific provisions of this Agreement, whenever a period of time, including a reasonable period of time, is designated within which either party hereto is required to do or complete any act, matter or thing, the time for the doing or completion thereof shall be extended by a period of time equal to the number of days during which such party is actually prevented from, or is unreasonably interfered with, the doing or completion of such act, matter or thing because of causes beyond the reasonable control of the party to be excused, including: war; insurrection; riots; floods; earthquakes; fires; casualties; acts of God; litigation and administrative proceedings against the Project (not including any administrative proceeds contemplated by this Agreement in the normal course of affairs (e.g., the annual review)); any approval required by the City (not including any period of time normally expected for the processing of such approvals in the ordinary course of affairs); restrictions imposed or mandated by other governmental entities; enactment of conflicting state or federal laws or regulations; judicial decisions; the exercise of the City's Reserved Powers; or similar bases for excused performance which is not within the reasonable control of the party to be excused (financial

inability excepted); and, any unreasonable time required by the City for the approval of this Agreement. This Section shall not be applicable to any proceedings with respect to bankruptcy or receivership initiated by or on behalf of Cedars-Sinai Medical Center, or, if not dismissed within ninety (90) days, by any third parties against Cedars-Sinai Medical Center. If written notice of such delay is given to either party within (30) days of the commencement of such delay, an extension of time for such cause will be granted in writing for the period of the enforced delay, or longer as may be mutually agreed upon.

6.5 Cooperation and Implementation.

6.5.1 Processing. Upon satisfactory completion by Cedars-Sinai Medical Center of all required preliminary actions and payment of appropriate Processing Fees, including the fee for processing this Agreement, the City shall commence and diligently process all required steps necessary for the implementation of this Agreement and development of the Property in accordance with the terms of this Agreement. Cedars-Sinai Medical Center shall, in a timely manner, provide the City with all documents, plans, fees, and other information necessary for the City to carry out its processing obligations. The City shall perform all ministerial acts and issue all permits necessary to effectuate this Agreement.

6.5.2 Other Governmental Permits. Cedars-Sinai Medical Center may apply in a timely manner for such other permits and approvals as may be required from other governmental or quasi-governmental agencies having jurisdiction over the Project as may be required for the development of, or provision of services to, the Project. The City shall cooperate with Cedars-Sinai Medical Center in its endeavors to obtain such permits and approvals and shall, from time to time at the request of Cedars-Sinai Medical Center, attempt with due diligence and in good faith to enter into binding agreements with any such entity to ensure the availability of such permits and approvals, or services, provided such agreements are reasonable and not detrimental to the City. These agreements may include, but are not

limited to, joint powers agreements under the provisions concerning the Joint Exercise of Powers Act (California Government Code Section 6500, et seq.) or the provisions of other laws to create legally binding, enforceable agreements between such parties. To the extent allowed by law, Cedars-Sinai Medical Center shall be a party to any such agreement, or a third party beneficiary thereof, and shall be entitled to enforce for its benefit on behalf of the City, or in its own name, the rights of the City or Cedars-Sinai Medical Center thereunder or the duties and obligations of the parties thereto. Cedars-Sinai Medical Center shall reimburse the City for all costs and expenses incurred in connection with seeking and entering into any such agreement, provided that Cedars-Sinai Medical Center has requested it. Cedars-Sinai Medical Center shall defend the City in any challenge by any person or entity to any such agreement, and shall reimburse the City for any costs and expenses incurred by the City in enforcing any such agreement. Any fees, assessments, or other amounts payable by the City thereunder shall be borne by Cedars-Sinai Medical Center, except where Cedars-Sinai Medical Center has notified the City in writing, prior to the City entering into such agreement, that it does not desire the City to execute such agreement.

6.5.3 Cooperation in the Event of Legal Challenge. In the event of any legal action instituted by a third party or other governmental entity or official challenging the validity of any provision of this Agreement, the parties hereby agree to affirmatively cooperate in defending said action.

6.5.4 Relationship of the Parties. It is understood and agreed by the parties hereto that the contractual relationship created between the parties hereunder is that Cedars-Sinai Medical Center is an independent contractor and not an agent of the City. Further, the City and Cedars-Sinai Medical Center hereby renounce the existence of any form of joint venture or partnership between them and agree that nothing herein or in any document executed in

connection herewith shall be construed as making the City and Cedars-Sinai Medical Center joint venturers or partners.

6.6 Hold Harmless and Insurance.

6.6.1 Hold Harmless. Cedars-Sinai Medical Center hereby agrees to and shall indemnify, save, hold harmless and defend the City, and its elected and appointed representatives, boards, commissions, officers, agents, and employees (collectively, "the City" in this Section), from any and all claims, costs, and liability for any damages, personal injury or death which may arise, directly or indirectly, from Cedars-Sinai Medical Center or Cedars-Sinai Medical Center's contractors, subcontractors, agents, or employees' operations in connection with the construction of the Project, whether such operations be by Cedars-Sinai Medical Center or any of Cedars-Sinai Medical Center's contractors, subcontractors, by any one or more persons directly or indirectly employed by, or acting as agent for Cedars-Sinai Medical Center or any of Cedars-Sinai Medical Center's contractors or subcontractors. Cedars-Sinai Medical Center further agrees to and shall indemnify, save, hold the City harmless and if requested by the City, Cedars-Sinai Medical Center shall defend the City in any action brought by a third party (1) challenging the validity of this Agreement; or (2) seeking damages which may arise directly or indirectly from the negotiation, formation, execution, enforcement or termination of this Agreement. Nothing in this Section shall be construed to mean that Cedars-Sinai Medical Center shall hold the City harmless and/or defend it from any claims arising from, or alleged to arise from, the negligent acts, or negligent failure to act, on the part of the City. The City agrees that it shall fully cooperate with Cedars-Sinai Medical Center in the defense of any matter in which Cedars-Sinai Medical Center is defending and/or holding the City harmless.

6.6.2 Insurance. Without limiting its obligation to hold the City harmless, Cedars-Sinai Medical Center shall provide and maintain at its own expense, during the Term of this

Agreement, the following program of insurance concerning its operations hereunder. The insurance shall be provided by insurer(s) satisfactory to the City on or before the Effective Date of this Agreement. The program of insurance provided shall specifically identify this Agreement and shall contain express conditions that the City is to be given written notice at least thirty (30) days prior to any modification or termination of coverage. Such insurance shall be primary to and not contributing with any other insurance maintained by Cedars-Sinai Medical Center, shall name the City as an additional named insured, and shall include, but not be limited to, either comprehensive liability insurance endorsed for Premises/Project Site Operations, Products/Completed Operations, Contractual, Broad Form Property Damage, and \$1,000,000 per occurrence. From time to time, but not more often than once every two (2) years, Cedars-Sinai Medical Center shall increase the coverage limits of insurance required under this Section if so directed by the City after a determination by the City that such an increase is justified using customary and reasonable risk management methods and principles.

6.7 Legal Action. Either party may, in addition to any other rights or remedies, institute legal action to cure, correct, or remedy any default, enforce any covenant or agreement herein, enjoin any threatened or attempted violation, or enforce by specific performance the obligations and rights of the parties hereto.

6.8 Applicable Law. This Agreement shall be construed and enforced in accordance with the laws of the State of California, and the venue for any legal actions brought by any party with respect to this Agreement shall be the County of Los Angeles, State of California for state actions and the Central District of California for any federal actions.

6.9 Amendments. This Agreement may be amended from time to time by mutual consent in writing of the parties to this Agreement in accordance with Section 65868 of the Development Agreement Act. Any amendment to this Agreement which relates to the Term,

density, intensity or height, permitted demolitions, uses and other development entitlements shall require notice and a public hearing before the parties may execute an amendment thereto. Cedars-Sinai Medical Center shall reimburse the City for its actual costs, reasonably and necessarily incurred, including the cost of any public hearings, to review any amendments requested by Cedars-Sinai Medical Center.

6.10 Assignment. The Property, as well as the rights and obligations of Cedars-Sinai Medical Center under this Agreement, may be transferred or assigned in whole by Cedars-Sinai Medical Center without the consent of the City; provided, however, that because this Agreement is intended to represent an integrated plan, the failure of any successor-in-interest to perform the obligations assigned to it may result, at the City's option, in a declaration that this Agreement has been breached and an election to terminate this Agreement in its entirety as provided for in Section 5. Cedars-Sinai Medical Center, or any successor transferor, shall give prior written notice to the City of its intention to assign or transfer any of its interests, rights or obligations under this Agreement and a complete disclosure of the identify of the assignee or transferee, including copies of the Articles of Incorporation in the case of corporations and the names of individual partners in the case of partnerships. Any failure by Cedars-Sinai Medical Center to provide said notice shall be curable in accordance with the provisions of Section 5.1. Upon assignment or transfer of the rights under this Agreement, the obligations of Cedars-Sinai Medical Center and the assignee or transferee shall be joint and several.

6.11 Statute of Limitation and Laches. The City and Cedars-Sinai Medical Center agree that each party will undergo a change in position in detrimental reliance upon this Agreement from the time of its execution and subsequently. The parties agree that Section 65009(c) of the Government Code, which provides for a 120 day statute of limitations to challenge the enactment or amendment of a zoning ordinance, is applicable to this Agreement, which will

provide for development consistent with the zoning ordinance. In addition, any persons who may challenge the validity of this Agreement are hereby placed on notice that, should the legality or validity of this Agreement be challenged by any third party in litigation which is filed and served more than 120 days after the execution of this Agreement, the City and Cedars-Sinai Medical Center shall each assert the affirmative defense of laches with respect to such challenge, in addition to all other available affirmative defenses.

6.12 Covenants. The provisions of this Agreement shall constitute covenants which shall be effective for the period during which this Agreement is in effect and shall run with the land comprising the Property for the benefit thereof, and the burdens and benefits hereof shall bind and inure to the benefit of all assignees, transferees, and successors to the parties hereto.

6.13 Notices. Any notice or communication required hereunder between the City or Cedars-Sinai Medical Center must be in writing, and may be given either personally or by registered or certified mail, return receipt requested. If given by registered or certified mail, the same shall be deemed to have been given and received on the first to occur of (i) actual receipt by any of the addressees designated below as the party to whom notices are to be sent, or (ii) five (5) days after a registered or certified letter containing such notice, properly addressed, with postage prepaid, is deposited in the United States mail. If personally delivered, a notice shall be deemed to have been given when delivered to the party to whom it is addressed. Any party hereto may at any time, by giving ten (10) days' written notice to the other party hereto, designate any other address in substitution of the address, or any additional address, to which such notice or communication shall be given. Such notices or communications shall be given to the parties at their addresses set forth below:

If to the City:

City of Los Angeles 200 North Spring Street Los Angeles, CA 90012 Attn: Director of Planning Director of Planning City of Los Angeles City Hall Room 561-C 200 North Spring Street Los Angeles, California 90012

With copies to:

General Manager Department of Transportation City of Los Angeles Room 1200, City Hall 200 North Spring Street Los Angeles, California 90012

City Attorney, City of Los Angeles Real Property/Environmental Division 1800 City Hall East, 200 N. Main Street Los Angeles, California 90012

If to Cedars-Sinai Medical Center:

Cedars-Sinai Medical Center, Inc. 8700 Beverly Boulevard Los Angeles, California 90048 Attn: Peter E. Braveman, Esq.

With a Courtesy Copy to:

Latham & Watkins 633 W. Fifth St., Suite 4000 Los Angeles, California 90071 Attn: George J. Mihlsten, Esq.

Either party may change its address by giving notice in writing to the other party.

6.14 Severability. If any provisions, conditions, or covenants of this Agreement, or the application thereof to any circumstances of either party, shall be held invalid or unenforceable, the remainder of this Agreement or the application of such provision, condition, or covenant to persons or circumstances other than those as to whom or which it is held invalid or unenforceable shall not be affected thereby and shall be valid and enforceable to the fullest extent permitted by law.

6.15 Waiver. No waiver of any provision of this Agreement shall be effective unless it is made in writing and signed by a duly authorized representative of the party against whom enforcement of a waiver is sought and refers expressly to this Section. No waiver of any right or remedy with respect to any occurrence or event shall be deemed a waiver of any right or remedy with respect to any other occurrence or event.

6.16 Recording. As provided in Government Code Section 65868.5, the City Clerk of Los Angeles shall record a copy of this Agreement with the Registrar-Recorder of the County of Los Angeles against all portions of the property then owned by Cedars-Sinai Medical Center within ten (10) days following its execution by both parties. Within ten (10) days of the acquisition by Cedars-Sinai Medical Center of each and any parcels within the Property, a copy of this Agreement shall be recorded against each such parcel acquired by Cedars-Sinai Medical Center shall provide the City Clerk with the fees for such recording prior to or at the time of such recording.

6.17 Constructive Notice and Acceptance. Every person who now or hereafter owns or acquires any right, title, interest in or to the Property, is and shall be conclusively deemed to have consented and agreed to every provision contained herein, whether or not any reference to this Agreement is contained in the instrument by which such person acquired an interest in the Property.

6.18 Successors and Assignees. The provisions of this Agreement shall be binding upon and shall inure to the benefit of the parties, any subsequent owner of the Property and their respective successors and assignees.

6.19 No Third Party Beneficiaries. The only parties to this Agreement are the City and Cedar-Sinai Medical Center, and their successors-in-interest. There are no third party beneficiaries and this Agreement is not intended, and shall not be construed, to benefit or be enforceable by any other person whatsoever.

6.20 Entitlement to Written Notice of Default. The mortgagee of a mortgage or beneficiary of a deed of trust encumbering the Property, or any part thereof, and their successors and assigns shall, upon written request to the City, be entitled to receive from the City written notification of any default by Cedars-Sinai Medical Center of the performance of Cedars-Sinai Medical Center's obligations under this Agreement which has not been cured within sixty (60) days following the date of default. Cedars-Sinai Medical Center shall reimburse the City for its actual costs, reasonably and necessarily incurred, to prepare this notice of default.

6.21 Discretion to Encumber. The parties hereto agree that this Agreement shall not prevent or limit Cedars-Sinai Medical Center, or its successor, in any manner, at Cedars-Sinai Medical Center's, or its successor's, sole discretion, from encumbering the Property or any portion thereof or any improvement thereon by any mortgage, deed of trust, or other security device securing financing with respect to the Property or its improvements.

6.22 Entire Agreement. This Agreement sets forth and contains the entire understanding and agreement of the parties and there are no oral or written representations, understanding or ancillary covenants, undertakings or agreements which are not contained or expressly referred to herein and no testimony or evidence of any such representations, understandings, or covenants shall be admissible in any proceedings of any kind or nature to interpret or determine the provisions or conditions of this Agreement.

6.23 Legal Advice; Neutral Interpretation; Headings, Table of Contents, and Index. Each party has received independent legal advice from its attorneys with respect to the advisability of executing this Agreement and the meaning of the provisions hereof. The provisions of this Agreement shall be construed as to their fair meaning, and not for or against any party based upon any attribution to such party as the source of the language in question. The headings,

table of contents, and index used in this Agreement are for the convenience of reference only and shall not be used in construing this Agreement.

6.24 Counterparts. This Agreement is executed in 3 duplicate originals, each of which is deemed to be an original. This Agreement, not counting the Cover Page, Table of Contents or Index, consists of <u>36</u> pages and <u>seven</u> (<u>7</u>) Exhibits which constitute the entire understanding and agreement of the parties. The Exhibits are identified as follows:

- Exhibit "A" Legal Description
- Exhibit "B" Location Map
- Exhibit "C" Dedication of Land for Public Purposes/Description of Transportation Improvements
- Exhibit "D" Development Intensity of Project/Maximum Building Heights
- Exhibit "E" Conceptual Building Plans
- Exhibit "F" Community Programs
- Exhibit "G" Community Employee Recruitment Program

ALIFURNIA ALL-PURPUSE AU	JWLEDGMENI	No. 519	
State of <u>California</u> County of <u>LOS</u> <u>Aigeles</u> On <u>8-13-93</u> before me, <u>Johnanne</u> personally appeared <u>Richard</u> personally known to me - OR - Toro <u>VOKO SAXON</u> <u>Comm #993633</u> <u>Comm #993633</u> <u>Comm Expres May 14, 1997</u> THIS CERTIFICATE MUST BE ATTACHED TO THE DOCUMENT DESCRIBED AT RIGHT: Thus bible determined to be added to be add	NAME, TITLE OF OFFICER - E.G., JANE DOE, NOTARY PUBLIC AMME, TITLE OF OFFICER - E.G., JANE DOE, NOTARY PUBLIC ACCONDICATION NAME(S) OF SIGNER(S) Ved to me on the basis of satisfactory evidence to be the person(s) whose name(s) is/are subscribed to the within instrument and ac- knowledged to me that he/ she/they executed the same in his/her/their signature(s) on the instrument the person(e), or the entity upon behalf of which the person(s) acted, executed the instrument. WITNESS my hand and official seal. MITNESS my hand and official seal. TITLE OR TYPE OF DOCUMENT_Deu'e to process NUMBER OF PAGES DATE OF DOCUMENT	OPTIONAL SECTION CAPACITY CLAIMED BY SIGNER Though statute does not require the Notary to fill in the data below, doing so may prove invaluable to persons relying on the document. INDIVIDUAL CORPORATE OFFICER(S) TITLE(S) DARTNER(S) LIMITED GENERAL ATTORNEY-IN-FACT TRUSTEE(S) GUARDIAN/CONSERVATOR OTHER: SIGNER IS REPRESENTING: NAME OF PERSON(S) OR ENTITY(IES) FAGT M. Codars. SUNG(
it could prevent fraudulent reattachment of this form.		<u>A</u>	
©1993 NATIONAL NOTARY ASSOCIATION • 8236 Remmet Ave., P.O. Box 7184 • Canoga Park, CA 91309-7184 ALIFORNIA ALL-PURPOSE ACKNOWLEDGMENT			
State of <u>California</u> County of <u>Los Angeles</u> On $\frac{B - 16 - 53}{DATE}$ before me, <u>Ch</u> personally appeared <u>Sheldon S</u> N personally known to me - OR - \Box or \Box	arles F. Ruebsamen, Notary Public NAME. TITLE OF OFFICER - E.G., JANE DOE, NOTARY PUBLIC King Chill Paul Paul Poppi NAME(S) OF SIGNER(S) NAME to me on the basis of satisfactory evidence	OPTIONAL SECTION CAPACITY CLAIMED BY SIGNER Though statute does not require the Notary to fill in the data below, doing so may prove invaluable to persons relying on the document. INDIVIDUAL CORPORATE OFFICER(S) ITITLE(S) PARTNER(S) LIMITED	

CHARLES F. RUEBSAMEN COMM. #955602 NNAI Notary Public-California LOS ANGELES COUNTY

comm. expires FEB 09,1996

to be the person(s) whose name(s) is/are subscribed to the within instrument and acknowledged to me that he/she/they executed the same in bis/her/their authorized capacity(ies), and that by his/hypr/their signature(s) on the instrument the person(s), or the entity upon behalf of which the person(s) acted, executed the instrument.

SIGNER IS REPRESENTING: NAME OF PERSON(S) OR ENTITY(IES) my hand and official seal WITNESS SIGNATURE OF NOTARY OPTIONAL SECTION THIS CERTIFICATE MUST BE ATTACHED TO iclopinent Fin TITLE OR TYPE OF DOCUMENT THE DOCUMENT DESCRIBED AT RIGHT: 5 DATE OF DOCUMENT \mathcal{B} NUMBER OF PAGES Though the data requested here is not required by law. L SIGNER(S) OTHER THAN NAMED ABOVE it could prevent fraudulent reattachment of this form. COULOU COLORIDO COLORID

1993 NATIONAL NOTARY ASSOCIATION • 8235 Remmet Ave IP O. Box 7184 • Canoga Park, CA 91309-7184

COULDENCE C

GENERAL

ATTORNEY-IN-FACT

GUARDIAN/CONSERVATOR

TRUSTEE(S)

OTHER:

IN WITNESS WHEREOF, the parties hereto have executed this Agreement as of the date first written above.

CITY OF LOS ANGELES, a municipal corporation of the State of California

Richard Piordan, Mayor

APPROVED AS TO FORM: JAMES K. HAHN, City Attorney

Deputy City Attorney

PATRICIA V. TUBERT

DATE:

ATTEST: NANCY RUSSELL City Clerk

By:

Man WElman Depty Avgust 12, 1993

DATE:

CEDARS-SINAI MEDICAL CENTER

APPROVED AS TO FORM: LATHAM & WATKINS

Bv: Name: Sheldon S. King

President Title:

By:

George J. Mihlsten Counsel to Cedars-Sinai Medical Center

By: Name: Paul Yae Vice Pre Title: aning & Development Facilit/ie

EXHIBIT A

r - -•

,

•

EXHIBIT B

٠,

•

,

.

r EXHIBIT C

.

EXHIBIT C

Dedication of Land For Public Purposes/ Description of Transportation Improvements

Dedication of Land for Public Purposes

A. Dedication of the north side of Third Street and the southwest side of San Vicente Boulevard north of Third Street adjoining the subject property to the satisfaction of the City Engineer.

Description of Transportation Improvements

- A. Installation of Automated Traffic Surveillance and Control (ATSAC) equipment at the intersection of Third Street and Orlando Avenue to the satisfaction of DOT and the City Engineer.
- B. Installation of Automated Traffic Surveillance and Control (ATSAC) equipment at the intersection of Third Street and Robertson Boulevard to the satisfaction of DOT and the City Engineer.
- C. Design and installation of street improvements at the following intersection to the satisfaction of DOT and the City Engineer:
 - 1. San Vicente Boulevard/Wilshire Boulevard
 - 2. San Vicente Boulevard/La Cienega Boulevard
 - 3. San Vicente Boulevard between Beverly Boulevard and Burton Way
 - 4. Beverly Boulevard between San Vicente Boulevard and La Cienega Boulevard
 - 5. Third Street between Sherbourne drive and La Cienega boulevard
 - 6. Robertson Boulevard/Burton Way

EXHIBIT D

-

.

EXHIBIT D

Development Intensity of Project/Maximum Building Heights

Development Intensity

The total gross floor area contained in all buildings on the subject property shall not exceed 2.27 million square feet. In no event shall the overall floor area ratio of development on the subject property exceed 2.46:1. The project shall consist of the following structures and building expansion areas:

L

A. Outpatient Diagnostic and Treatment Center

	Medical Suites Laboratory Space Administrative/Support Space	Maximum 209,000 square feet GFA Maximum 90,000 square feet GFA Maximum 41,000 square feet GFA
В.	Organ Transplant Wing including	Maximum 170,000 square feet GFA Maximum 110 hospital beds
C.	Rehabilitation Center including	Maximum 127,500 square feet GFA Maximum 200 hospital beds
D.	MRI Center	Maximum 21,000 square feet GFA
E.	Additional Administrative Space	Maximum 23,300 square feet GFA
F.	Emergency Room Expansion	Maximum 3,700 square feet GFA
G.	Computer Services Facility Expansion	Maximum 14,500 square feet GFA

Gross floor area (GFA) shall be calculated as defined in Los Angeles Municipal Code Section 12.03.

Building Height

No building or structure located on the subject property shall exceed one hundred eighty five (185) feet in height above grade as defined by Los Angeles Municipal Code Sections 12.21.1-B.3a and b.

EXHIBIT E

ŀ z.,

•

EXHIBIT E

Conceptual Building Plans

CSMC: SITE

CSMC: SOUTH PARKING

CSMC: OUTPATIENT DIAGNOSTIC AND TREATMENT CENTER

CSMC: ORGAN TRANSPLANT WING

CSMC: MRI

CSMC: REHABILITATION CENTER

EXHIBIT B

Location Map

-

CSMC: SITE PLAN

CSMC: PARKING PLAN

NORTH PARKING REHAB PARKING MEZZANINE LINK

CSMC: SITE ONE

CSMC: PEDESTRIAN/PLAZA

exhibit f

-

ł

.

L.

. **.**

EXHIBIT F

CEDARS-SINAI MEDICAL CENTER

COMMUNITY PROGRAMS AND SERVICES

Cedars-Sinai Medical Center will continue its provision of financial and other assistance to specific community programs relating to the mission of Cedars-Sinai Medical Center and designed for the participation and education of the local community, including continuing provisions of free and part-pay health care to community members.

Cedars-Sinai cannot commit to specific programs or health care facilities or agencies to which assistance will be provided over the term of the Development Agreement. The following programs are provided by Cedars-Sinai Medical Center as of April, 1993, and are representative of the type and scale of Community Programs to be provided by Cedars-Sinai Medical Center over the term of the Development Agreement.

School/Youth Programs

Adopt-A-School Program

Cedars-Sinai adopted Fairfax High School in 1985. Each year it conducts career awareness and health care programs, donates supplies, provides speakers and tutors, offers student health fairs and field trips to the Medical Center.

Student Tours

Tours for local elementary and junior high schools are available and include lectures, demonstrations, visits to special departments and health career counseling. Cedars-Sinai conducts seven or eight tours each year.

Teen Line

Telephone helpline, using teen counselors, addresses issues including suicide prevention, drug use, child abuse, pregnancy and depression.

SafeSitter

This two-day course teaches teenagers to be medically responsible, creative and attentive babysitters. The course is taught by a certified professional and is offered at a low-fee.

<u>Kidsafe</u>

Designed for children ages 4-14, this class educates children and their parents about child safety, how to make emergency calls, earthquake preparedness, etc.

Senior Programs

Center Strutters

A walking program for seniors held at the Beverly Center that includes health related lectures.

Senior Resource Center

Provides a telephone and walk-in resource and referral system offering information on medical, social, and legal issues. It also has information on residential facilities, drivers and companions.

Early Bird Dinner Program

Offers low-cost meals in the Medical Center coffee shop to seniors.

Senior Care Program

This membership program offers financial and insurance counseling, special discounts on pharmaceuticals, educational lectures, and a quarterly program newsletter.

Senior Shape Up

this exercise class is offered at a nominal fee three times per week. The class is designed to help improve endurance, strength and flexibility.

Health Programs

Growth Screening

Each year, Cedars-Sinai offers a free growth screening day for children ages 4-14 who are not growing at a normal rate.

Kids Care

Free immunizations and health screening are offered to children up to 12 years of age. Cosponsored with the American Red Cross and the Department of Health Services. The same program, co-sponsored by Cedars-Sinai, is also presented at local churches.

Health Fair Expo

A one-day free health screening and education program which includes blood pressure testing, height and weight, health consultations, etc.

Prostate Cancer Screening

Free prostate cancer screening and education program each year.

Skin Cancer Screening

Free skin examinations are given by board certified dermatologists, and education and referrals are provided by registered nurses.

Student Health Fairs

A one-day health education screening program is presented at a local high school each year. Co-sponsored by Cedars-Sinai, health care providers, health and voluntary agencies. <u>CPR and First Aid</u>

Free CPR classes which are taught once a month. Classes include a lecture, demonstration and skill practice.

Educational Programs

Freedom from Smoking

A seven session program designed to help adults quit smoking, offered at a nominal fee.

Health Lecture Series

Health education classes designed for business and industry and conducted by Cedars-Sinai experts and professionals upon request.

Speakers Bureau

Cedars-Sinai arranges a series of free lectures on medical issues.

Senior Care Lectures

Lectures conducted throughout the year by professionals in a variety of health-related fields.

Prenatal Education Programs

Cedars-Sinai offers more than a dozen courses in prenatal education, infant care, breast-feeding, etc.

Special Counseling

Children and Families of Divorce

Provides assistance and counseling for parents and children of all ages. Also provides education to attorneys, judges, and mental health clinicians in the area of psychological needs of adolescents and parents after divorce.

Psychological Trauma_Center

Helps children, teachers and families cope with traumatic events.

Warmline and Primary Prevention Program

Telephone guidance and counseling is provided to parents who have the potential to abuse their children.

Other Programs

Food, Clothing and Toy Drive

Cedars-Sinai employees, volunteers and medical staff collect food, clothing and toys for needy families and the homeless throughout the year.

Hospice Program

A special team of health care professionals, social workers and volunteers offers inpatient hospice care to terminally ill patients.

In addition, Cedars-Sinai provides community service in collaboration with the following organizations:

American Heart Association American Cancer Society American Red Cross Aviva Center Chabad House Foundation for the Junior Blind Iranian-American Federation Israeli Student Organization Jewish Federation Council Jewish Family Service Jewish Community Center Association Los Angeles Free Clinic National Black Nurses Association National Institutes of Health International Patient Education Council Advisory in Health Promotion & Research City of West Hollywood American Lung Association International Association of Enterostomal Therapists National Cholesterol Education Program Venice Free Clinic Vista Del Mar West Hollywood Senior Center

EXHIBIT G

Community Employee Recruitment and Outreach Program

In order to provide increased employment opportunities for members of the community surrounding the Project site, Cedars-Sinai Medical Center shall establish a Community Employment Recruitment and Outreach Program which may include:

- 1. Posting of notices of available job opportunities in and around residential locations adjacent to the Project site, including notification to community-based job training and development programs including community-based media.
- 2. Publication of advertisements encouraging local residents to apply for job opportunities.
- 3. Development of employment procedures such as a job fair at the Project site or other similar marketing efforts to increase the ability of local residents to become aware of potential job opportunities at the site.
- 4. When reviewing employment applications, after screening for standard job qualifications, give primary emphasis to make offers of employment available to those in the otherwise equally qualified applicant pool who reside in the local labor area.
- 5. When awarding building services contracts, Cedars-Sinai Medical Center shall take reasonable efforts to ensure that primary emphasis is given, as among otherwise qualified businesses, to those entities which are located in or adjacent to the local labor area and whose employees reside closest to the Project site.

· · · · · · ·

APPENDIX D

AIR QUALITY & & NOISE IMPACT REPORT

CEDARS-SINAI MEDICAL CENTER WEST TOWER PROJECT AIR QUALITY AND NOISE IMPACT REPORT

Prepared for

PLANNING ASSOCIATES, INC.

Prepared by

TERRY A. HAYES ASSOCIATES LLC

CEDARS-SINAI MEDICAL CENTER WEST TOWER PROJECT

AIR QUALITY AND NOISE IMPACT REPORT

Prepared for

PLANNING ASSOCIATES, INC. 4040 Vineland Ave, Suite 108 Studio City, CA 91604

Prepared by

TERRY A. HAYES ASSOCIATES LLC 8522 National Boulevard, Suite 102 Culver City, CA 90232

TABLE OF CONTENTS

Page No.

1.0	SUMM	IARY OF FINDINGS 1	
	1.1	Air Quality	
	1.2	Noise	
2.0			
	2.1	Purpose of Study	
	2.2	Project Description	
	2.3	Standard Conditions and Project Design Features 4	
3.0	AIR QUALITY		
	3.1	Pollutants & Effects	
	3.2	Regulatory Setting	
	3.3	Existing Air Quality	
	3.4	Methodology and Significance Criteria	
	3.5	Environmental Impacts	
	3.6	Cumulative Impacts	
4.0	Noise		
	4.1	Noise Characteristics & Effects	
	4.2	Existing Environmental Setting	
	4.3	Significance Criteria	
	4.4	Environmental Impacts	
	4.5	Cumulative Impacts	
	-	•	

APPENDICES

- Appendix B SCAQMD Data
- Appendix C EMFAC2007 & CAL3QHC Output Files
- Appendix D Construction Emission Calculations & Output Files
- Appendix E Operational Emission Calculations & Output Files
- Appendix F Mobile Noise Calculations

LIST OF TABLES

Table 3-1	State and National Ambient Air Quality Standards and Attainment
	Status for the South Coast Air Basin 18
Table 3-2	2004-2006 Ambient Air Quality Data in Project Vicinity
Table 3-3	Exiting Carbon Monoxide Concentrations 24
Table 3-4	SCAQMD Daily Construction Emissions Thresholds
Table 3-5	SCAQMD Daily Operational Emissions Thresholds
Table 3-6	Unmitigated Daily Construction Emissions
Table 3-7	Mitigated Daily Construction Emissions
Table 3-8	Daily Operational Regional Emissions
Table 3-9	2007 and 2023 Carbon Monoxide Concentrations
Table 3-10	Cumulative Air Quality Analysis 42
Table 3-11	Annual Greenhouse Gas Emissions 43

List of Tables (Continued)

Table 4-1ITable 4-2ITable 4-3ITable 4-3ITable 4-4ITable 4-5ITable 4-6ITable 4-7ITable 4-8ITable 4-9I	Existing Noise Levels Existing (2007) Estimated Community Noise Equivalent Level Land Use Compatibility for Community Noise Environments Noise Level of Typical Construction Equipment Outdoor Construction Noise Levels Construction Noise Levels – Unmitigated Construction Noise Levels – Mitigated 2007 and 2023 Estimated Community Noise Equivalent Level Vibration Velocities for Construction Equipment	51 55 56 57 58 61 63 65
--	---	--

LIST OF FIGURES

Figure 3-1	South Coast Air Basin	11
Figure 3-2	Air Monitoring Locations	22
Figure 3-3	Air Quality Sensitive Receptor Locations	26
Figure 4-1	A-Weighted Decibel Scale	46
Figure 4-2	Noise Monitoring Positions	50

1.0 SUMMARY OF FINDINGS

Terry A. Hayes Associates LLC completed an air quality and noise impact analysis for the proposed Cedars-Sinai Medical Center Project. Key findings are listed below.

1.1 AIR QUALITY

- Construction of the Project would result in maximum mitigated daily regional emissions of approximately 71 pounds per day (ppd) of volatile organic compounds (VOC), 206 ppd of nitrogen oxides (NO_X), 154 ppd of carbon monoxide (CO), less than 1 ppd of sulfur oxides (SO_X), 29 ppd of particulate matter 2.5 microns or less in diameter (PM_{2.5}), and 91 ppd of particulate matter ten microns or less in diameter (PM₁₀). Daily NO_X emissions from construction are anticipated to be greater than the South Coast Air Quality Management District's (SCAQMD) regional significance thresholds and, as such, would result in a significant and unavoidable impact. The regional construction analysis assumed the Project would comply with SCAQMD Rule 403 for fugitive dust control. Mitigation Measures AQ1 through AQ9 would ensure proper implementation of Rule 403. Mitigation Measures AQ10 and AQ11 would reduce NO_X and VOC emissions during construction. However, NO_X emissions would exceed the SCAQMD regional significance threshold even with implementation of mitigation measure AQ10 and construction activity would result in a significant and unavoidable impact.
- Demolition activities have the potential to release asbestos-containing materials (ACMs) and lead-based paint. Implementation of Mitigation Measure **AQ12** would reduce toxic air contaminants (TAC) impacts associated with construction activities to less-than-significant levels.
- Operation of the Project would result in total daily emissions of approximately 35 ppd of VOC, 52 ppd of NO_X, 436 ppd of CO, less than one ppd of SO_X, 27 ppd of PM_{2.5}, and 137 ppd of PM₁₀. Daily operational emissions are anticipated to be less than the SCAQMD regional significance thresholds and, as such, would result in a less-than-significant impact.
- One-hour CO concentrations under "Project" conditions would be approximately 2 parts per million (ppm) at worst-case sidewalk receptors. Eight-hour CO concentrations under "Project" conditions would range from approximately 1.2 ppm to 1.7 ppm. The State of California one- and eight-hour standards of 20 ppm and 9.0 ppm, respectively, would not be exceeded. Thus, a less-than-significant impact is anticipated.
- The Project would not expose sensitive receptors to significant emissions of TAC as a result of activities associated with Project operations. Impacts associated with TAC emissions during operations would be less than significant.
- The Project would not expose people to objectionable odors.
- The Project would be consistent with the SCAQMD's 2007 Air Quality Management Plan (AQMP) Consistency Criteria No. 1 and No. 2, and, therefore, a less-than-significant impact is anticipated.

- Based on SCAQMD's methodology, a project would have a significant cumulative air quality impact if the ratio of daily project-related employment vehicle miles traveled to daily countywide vehicle miles traveled exceeds the ratio of project-related employment to countywide employment. The Project to countywide vehicle miles traveled (VMT) ratio of 0.000049 is not greater than the Project to countywide employment ratio of 0.000121. As such, the Project would not significantly contribute to cumulative emissions.
- The Project would result in net carbon equivalent emissions of 5,986 tons per year of carbon dioxide (CO₂), 6 tons per year of methane (CH₄), and 36 tons per year of nitrogen dioxide (NO₂). The Project would be a typical urban infill project, would not generate a disproportionate amount of vehicle miles traveled, and would not have unusually high fuel consumption characteristics. As such, the Project would have a negligible effect on any increase in regional and national greenhouse gas emissions.

1.2 NOISE

- Construction activity would comply with the guidelines set forth in the Noise Ordinance of the Los Angeles Municipal Code. As such, noise and ground-bourne vibration generated by construction activity would result in a less-than-significant impact. However, construction noise and ground-bourne vibration may result in annoyance to nearby sensitive receptors. Implementation of Mitigation Measures N1 through N7 would reduce construction noise and ground-bourne vibration and provide a way for Project-related community noise complaints to be addressed. Construction-related noise would exceed the five-dBA significance threshold at various sensitive receptors even with implementation of Mitigation Measures N1 through N7, and, as such, the Project would result in a significant and unavoidable construction noise impact.
- Regarding mobile noise, the greatest Project-related mobile noise increase would be 0.4 dBA (CNEL) and would occur along George Burns Drive, between Beverly Boulevard and Gracie Allen Drive-Alden Drive. The roadway noise increase attributed to the Project would be less than the 3-dBA CNEL significance threshold at all analyzed segments. As such, there would not be a perceptible change in audible noise as a result of increased traffic.
- Non-vehicular noise generated by Project operation (e.g. mechanical equipment and parking activity) would not increase ambient noise levels by more than the 5-dBA significance threshold. As such, non-vehicular noise would result in a less-thansignificant impact.
- The Project would not include any significant sources of ground-borne vibration. The ground-borne vibration operational impact would be less than significant.
- The Project would not significantly contribute to a cumulative noise or vibration impact.

2.0 INTRODUCTION

2.1 PURPOSE OF STUDY

The purpose of this study is to evaluate the potential air quality and noise impacts of the proposed Cedars-Sinai Medical Center West Tower Project. The construction and operation of the Project are analyzed for potential air quality and noise impacts. Mitigation measures for air quality and noise are recommended, where necessary.

2.2 PROJECT DESCRIPTION

The proposed Cedars-Sinai Medical Center West Tower Project is located within the existing Cedars-Sinai Medical Center (CSMC) campus, which is approximately 24.1 acres in area and is located at 8720 Beverly Boulevard within the Wilshire Community Plan Area of the City of Los Angeles. The CSMC campus occupies an area that is generally bounded by Beverly Boulevard to the north, San Vicente Boulevard to the east, Third Street to the south, and Robertson Boulevard to the west. The CSMC campus contains an internal network of vacated private streets, including George Burns Road, Sherbourne Drive, and Gracie Allen Drive. These private streets provide access to facilities within the campus.

The CSMC campus is governed by a Master Plan adopted by the City Council in 1993. The Master Plan authorized a total of 700,000 square feet of new development on the campus, of which 512,350 square feet of development has been built or is currently planned for construction.

The Project Site is located at the northwest corner of the George Burns Road/Gracie Allen Drive intersection within the CSMC campus and is currently occupied by an existing medical building (Existing Building) and a surface parking lot (Parking Lot No. 2). The Existing Building is located at 8723 Gracie Allen Drive-Alden Drive. The Existing Building contains a total of 90,000 square feet of floor area and provides medical uses including administrative support, medical suites, and research space. Parking Lot No. 2 contains 217 parking spaces. The Project would remove the Existing Building and Parking Lot No. 2 to accommodate an inpatient facility. The existing medical uses and total Existing Building square footage (i.e., 90,000 square feet of floor area) will be integrated into the proposed inpatient facility.

The Project consists of a Zone Change from the current [T][Q]C2-2D-O to [T][Q]C2-2D-O with new and revised Conditions and revisions to the Master Plan to provide an additional 100 inpatient beds, equivalent to 200,000 square feet of floor area of new medical center uses on the campus. The 100 inpatient beds will be located within an 11-story building on the Project Site. The 11-story building will be known as the West Tower. The West Tower will contain 460,650 square feet of medical center uses, comprising the new 200,000 square feet that are subject of this application, 170,650 square feet of residual, un-built entitlement remaining under the Master Plan, and 90,000 square feet currently contained within the Existing Building.

A parking structure with approximately 700 parking spaces would be constructed as part of the Project. The parking structure will be constructed adjacent to the West Tower and would consist of three subterranean parking levels and four above-grade parking levels. The proposed parking structure would replace the 217 existing spaces in Parking Lot No. 2. The build-out year for the Project is 2023.

Based on the size of the Project Site and the type of development that is being proposed, the following conservative assumptions were used in this air quality and noise impact report:

- Use of seven pieces of equipment operating simultaneously for eight hours during each day of construction;
- Generation of 2,000 cubic yards of demolition debris per day over a four to five week period for demolition of the Existing Building;
- A maximum disturbed area of two acres per day during excavation and/or grading;
- Generation of 100 delivery/haul truck trips per day;
- 100 workers per day; and
- Application of architectural coating over a six-month time period.

Although construction of the West Tower may not be initiated until Year 2018 or later, the construction emissions for the Project were analyzed for Year 2010. This year represents a conservative, "worst-case" maximum emissions scenario because harmful equipment and vehicle exhaust emissions will decrease in future years due to improved emissions technology and legislative and regulatory mandates. Construction activity, including demolition, is assumed to occur over an approximate 36-month time period. Per URBEMIS2007, fugitive dust emissions were calculated based on emission rate of 20 pounds per disturbed acre. In addition, no overlap between operation and construction of the Project was assumed. Overlap between construction activities (e.g., demolition and grading activities occurring simultaneously or grading and building construction activities occurring simultaneously) also is not anticipated since each stage must be completed in order to allow for the next stage to begin.

2.3 STANDARD CONDITIONS AND PROJECT DESIGN FEATURES

The Project would implement standard conditions to reduce air quality emissions. Standard conditions include:

- The Project will comply with applicable California Air Resources Board (CARB) regulations and standards. The CARB is responsible for setting emission standards for vehicles sold in California and for other emission sources, such as consumer products and certain off-road equipment. The CARB oversees the functions of local air pollution control districts and air quality management districts, which in turn administer air quality activities at the regional and county levels.
- The Project will comply with applicable SCAQMD regulations and standards. The SCAQMD is responsible for monitoring air quality, as well as planning, implementing, and enforcing programs designed to attain and maintain State and federal ambient air quality standards in the District. Programs that were developed include air quality rules and regulations that regulate stationary sources, area sources, point sources, and certain mobile source emissions. The SCAQMD is also responsible for establishing stationary source permitting requirements and for ensuring that new, modified, or relocated stationary sources do not create net emission increases.

The Los Angeles Green Building Ordinance requires that the Project achieve a Leadership in Energy and Environmental Design (LEED) rating per the United States Green Building Council.¹ The Project would implement a variety of design and operational features (i.e., project design

¹Los Angeles Municipal Code, Chapter I, Article 6.1, Section 16.10, April 22, 2008.

features [PDFs]) to achieve energy efficiency and a LEED rating, which in turn serve to directly and proactively reduce greenhouse gas (GHG) and other air pollutant emissions. For the air quality analysis, these PDFs are assumed to be incorporated into the Project and the effective reduction credit accounted for in the project-level impact assessment. Examples of design features to be implemented for the Project in order to achieve enhanced energy efficiency (and thereby reduced air quality impacts) include, but are not limited to, the following or their equivalent:

- The CMCS Campus, including the Project Site, is conveniently located with respect to public transit opportunities. Given the Project Site's location within an established urban area, access to a number of existing Los Angeles Metro bus lines is available, and a potential Metro Rail station at the northeast corner of the CSMC Campus may be available in the future, thereby reducing traffic, air quality, noise, and energy effects.
- Storm water within the property, including at the Project Site, is collected, filtered and reused for landscaping irrigation within the CSMC campus, thereby reducing water and energy consumption.
- The West Tower design incorporates light-colored roofing and paving materials which serve to reduce unwanted heat absorption and minimize energy consumption.
- Building materials and new equipment associated with the West Tower are selected to avoid materials that might incorporate atmosphere-damaging chemicals.
- The West Tower energy performance is designed to be 14 percent more effective than required by California Title 24 Energy Design Standards, thereby reducing energy use, air pollutant emissions and greenhouse gas emissions.
- The West Tower building will generate 2.5 percent of the building's total energy use through on-site renewable energy sources. On-site renewable energy sources can include a combination of photovoltaic, wind, hydro, wave, tidal and bio-fuel based electrical production systems, as well as solar thermal and geothermal energy systems.
- The West Tower building will use materials with recycled content such that the sum of post-consumer content plus one-half of the pre-consumer content constitutes at least ten percent (based on cost) of the total value of the materials in the Project.
- Lighting systems within the West Tower building will be controllable to achieve maximum efficiency (e.g., uniform general ambient lighting, augmented with individually controlled task lighting that accommodates user-adjustable lighting levels and automatic shutoff switching).
- The West Tower building will be designed to provide occupant thermal comfort dissatisfaction levels above 85 percent.

3.0 AIR QUALITY

This section examines the degree to which the Project may result in significant adverse changes to air quality. Both short-term construction emissions occurring from activities, such as excavation and haul truck trips, and long-term effects related to the ongoing operation of the Project are discussed in this section. The analysis contained herein focuses on air pollution from two perspectives: daily emissions and pollutant concentrations. "Emissions" refer to the quantity of pollutant released into the air, measured in pounds per day (ppd). "Concentrations" refer to the amount of pollutant material per volumetric unit of air, measured in parts per million (ppm) or micrograms per cubic meter ($\mu g/m^3$).

3.1 POLLUTANTS & EFFECTS

There are three sources of air pollutants, including mobile sources (on- and off-road motor vehicles), area sources (e.g., water heaters, natural gas consumption, and consumer products), and stationary sources (e.g., industrial and manufacturing processes, boilers, under-fired broilers used in restaurants, and emergency generators). These sources and their pollutants are discussed below.

Criteria air pollutants are defined as pollutants for which the federal and state governments have established ambient air quality standards, or criteria, for outdoor concentrations to protect public health. The federal criteria pollutants include carbon monoxide (CO), ozone (O_3), nitrogen dioxide (NO_2), sulfur dioxide (SO_2), particulate matter 2.5 microns or less in diameter ($PM_{2.5}$), particulate matter ten microns or less in diameter (PM_{10}), and lead (Pb). The state criteria pollutants include the seven federal criteria pollutants and, in addition, sulfates, hydrogen sulfide, visibility-reducing particles and vinyl chloride. The federal and state standards have been set at levels above which concentrations could be harmful to human health and welfare. These standards are designed to protect the most sensitive persons from illness or discomfort. These pollutants are discussed below. Background information for these pollutants were obtained from the South Coast Air Quality Management District (SCAQMD) *CEQA Air Quality Handbook*.²

Carbon Monoxide. Carbon Monoxide (CO) is a colorless and odorless gas formed by the incomplete combustion of fossil fuels. CO is emitted almost exclusively from motor vehicles, power plants, refineries, industrial boilers, ships, aircraft, and trains. In urban areas such as the project location, motor vehicle exhaust accounts for the majority of CO emissions. CO is a non-reactive air pollutant that dissipates relatively quickly, so ambient CO concentrations generally follow the spatial and temporal distributions of vehicular traffic. CO concentrations are influenced by local meteorological conditions, primarily wind speed, topography, and atmospheric stability. CO from motor vehicle exhaust can become locally concentrated when surface-based temperature inversions are combined with calm atmospheric conditions, a typical situation at dusk in urban areas between November and February.³ The highest levels of CO typically occur during the colder months of the year when inversion conditions are more frequent. In terms of health, CO competes with oxygen, often replacing it in the blood, thus reducing the blood's ability to transport oxygen to vital organs. The results of excess CO exposure can be dizziness, fatigue, and impairment of central nervous system functions.

²SCAQMD, CEQA Air Quality Handbook, 1993.

³Inversion is an atmospheric condition in which a layer of warm air traps cooler air near the surface of the earth, preventing the normal rising of surface air.

Ozone. Ozone (O_3) is a colorless gas that is formed in the atmosphere when reactive organic gases (ROG), also referred to as volatile organic compounds (VOC), and nitrogen oxides (NO_X) react in the presence of ultraviolet sunlight. O_3 is not a primary pollutant; it is a secondary pollutant formed by complex interactions of two pollutants directly emitted into the atmosphere. The primary sources of ROG and NO_X emissions, the components of O_3 , are motor vehicle exhaust and industrial sources. Meteorology and terrain also play major roles in O_3 formation. Ideal conditions for ozone formation occur during summer and early autumn, on days with low wind speeds or stagnant air, warm temperatures, and cloudless skies. Motor Vehicle emissions are the greatest source of O_3 -producing gases.

Exposure to O_3 at levels typically observed in Southern California can result in breathing pattern changes, reduction of breathing capacity, increased susceptibility to infections, inflammation of the lung tissue, and some immunological changes.

Nitrogen Dioxide. Nitrogen Dioxide (NO₂), like O₃, is not directly emitted into the atmosphere but is formed by an atmospheric chemical reaction between nitric oxide (NO) and atmospheric oxygen. The primary source of NO emissions is the combustion of fossil fuel. NO and NO₂ are collectively referred to as NO_x and are major contributors to O₃ formation. NO₂ also contributes to the formation of PM₁₀. High concentrations of NO₂ can cause breathing difficulties and result in a brownish-red cast to the atmosphere with reduced visibility. There is some indication of a relationship between NO₂ and chronic pulmonary fibrosis. Some increase in bronchitis in children (two and three years old) has also been observed at concentrations below 0.3 ppm.

Sulfur Dioxide. SO_2 is a colorless, pungent gas formed primarily by the combustion of sulfurcontaining fossil fuels. Currently, the main sources of SO_2 emissions are coal and oil used in power plants and industries. Generally, the highest levels of SO_2 are found near large industrial complexes such as power plants. In recent years, SO_2 concentrations have been reduced by the increasingly stringent controls placed on stationary source emissions of SO_2 and limits on the sulfur content of fuels. SO_2 is an irritant gas that attacks the throat and lungs causing acute respiratory symptoms and diminished ventilator function. SO_2 can also yellow plant leaves and erode iron and steel.

Particulate Matter. Particulate matter pollution consists of very small liquid and solid particles floating in the air. Naturally occurring particulate matter can include smoke, soot, dust, and salts. Particulate matter also forms when gases emitted from industries and motor vehicles undergo chemical reactions in the atmosphere. $PM_{2.5}$ and PM_{10} represent fractions of particulate matter. Fine particulate matter, or $PM_{2.5}$, is roughly 1/28 the diameter of a human hair. $PM_{2.5}$ result from fuel combustion (e.g. motor vehicles, power generation, and industrial facilities), residential fireplaces, and wood stoves. In addition, $PM_{2.5}$ can be formed in the atmosphere from gases such as SO₂, NO_X, and VOC. "Inhalable" particulate matter, or PM_{10} , is about 1/7 the thickness of a human hair. Major sources of PM_{10} include crushing or grinding operations; dust stirred up by vehicles traveling on roads; wood burning stoves and fireplaces; dust from construction, landfills, and agriculture; wildfires and brush/waste burning, industrial sources, windblown dust from open lands; and atmospheric chemical and photochemical reactions.

 $PM_{2.5}$ and PM_{10} pose a greater health risk than larger-size particles. When inhaled, these tiny particles can penetrate the human respiratory system's natural defenses and damage the respiratory tract. $PM_{2.5}$ and PM_{10} can increase the number and severity of asthma attacks, cause or aggravate bronchitis and other lung diseases, and reduce the body's ability to fight

infections. Very small particles of substances, such as lead, sulfates, and nitrates can cause lung damage directly. These substances can be absorbed into the blood stream and cause damage elsewhere in the body. These substances can transport absorbed gases, such as chlorides or ammonium, into the lungs and cause injury. Whereas PM_{10} tends to collect in the upper portion of the respiratory system, $PM_{2.5}$ is so tiny that it can penetrate deeper into the lungs and damage lung tissues. Suspended particulates also damage and discolor surfaces on which they settle, as well as produce haze and reduce regional visibility.

Lead. Pb in the atmosphere occurs as particulate matter. Current sources of lead include the manufacturers of batteries, paint, ink, ceramics, and ammunition and secondary lead smelters. Prior to 1978, mobile emissions were the primary source of atmospheric lead. However, between 1978 and 1987, the phase-out of leaded gasoline reduced the overall inventory of airborne lead by nearly 95 percent. With the phase-out of leaded gasoline, secondary lead smelters, battery recycling, and manufacturing facilities are becoming lead-emission sources of greater concern.

Prolonged exposure to atmospheric lead poses a serious threat to human health. Health effects associated with exposure to lead include gastrointestinal disturbances, anemia, kidney disease, and in severe cases, neuromuscular and neurological dysfunction. Of particular concern are low-level lead exposures during infancy and childhood. Such exposures are associated with decrements in neurobehavioral performance, including intelligence quotient performance, psychomotor performance, reaction time, and growth.

Sulfates. Sulfates are the fully oxidized ionic form of sulfur. Sulfates occur in combination with metal and/or hydrogen ions. In California, emissions of sulfur compounds occur primarily from the combustion of petroleum-derived fuels (e.g., gasoline and diesel fuel) that contain sulfur. This sulfur is oxidized to SO_2 during the combustion process and subsequently converted to sulfate compounds in the atmosphere. The conversion of SO_2 to sulfates takes place comparatively rapidly and completely in urban areas of California due to regional meteorological features.

The state sulfates standard is designed to prevent aggravation of respiratory symptoms. Effects of sulfate exposure at levels above the standard include a decrease in ventilatory function, aggravation of asthmatic symptoms, and an increased risk of cardio-pulmonary disease. Sulfates are particularly effective in degrading visibility, and, due to fact that they are usually acidic, can harm ecosystems and damage materials and property.

The SCAQMD does not have a standard or emissions threshold for sulfates. Instead, the SCAQMD provides methodology to analyze SO₂, which includes emissions threshold. Accordingly, this analysis provides a quantification of SO₂ emissions and not sulfates.

Hydrogen Sulfides. Hydrogen sulfide (H_2S) is a colorless gas with the odor of rotten eggs. It is formed during bacterial decomposition of sulfur-containing organic substances. Also, it can be present in sewer gas and some natural gas, and can be emitted as the result of geothermal energy exploitation. Breathing H_2S at levels above the standard will result in exposure to a disagreeable odor.

Visibility-Reducing Particles. Visibility-reducing particles consist of suspended particulate matter, which is a complex mixture of tiny particles that consists of dry solid fragments, solid cores with liquid coatings, and small droplets of liquid. These particles vary greatly in shape,

size, and chemical composition, and can be made up of many different materials such as metals, soot, soil, dust, and salt. The statewide standard is intended to limit the frequency and severity of visibility impairment due to regional haze. A separate standard for visibility-reducing particles that is applicable only in the Lake Tahoe Air Basin is based on reduction in scenic quality. The SCAQMD does not have a standard, emissions threshold, or analysis methodology for visibility-reducing particles and, as such, further analysis is not necessary.

Vinyl Chloride. Vinyl chloride (chloroethene), a chlorinated hydrocarbon, is a colorless gas with a mild, sweet odor. Most vinyl chloride is used to make polyvinyl chloride plastic and vinyl products. Vinyl chloride has been detected near landfills, sewage plants, and hazardous waste sites, due to microbial breakdown of chlorinated solvents. Short-term exposure to high levels of vinyl chloride in air causes central nervous system effects, such as dizziness, drowsiness, and headaches. Long-term exposure to vinyl chloride through inhalation and oral exposure causes in liver damage. Cancer is a major concern from exposure to vinyl chloride via inhalation. Vinyl chloride exposure has been shown to increase the risk of angiosarcoma, a rare form of liver cancer in humans.

Toxic Air Contaminants. A substance is considered toxic if it has the potential to cause adverse health effects in humans. A toxic substance released into the air is considered a toxic air contaminant (TAC). Sources of TACs include diesel engines, boilers, charbroilers, and automobile painting. TACs are identified by state and federal agencies based on a review of available scientific evidence. In the State of California, TACs are identified through a two-step process that was established in 1983 under the Toxic Air Contaminant Identification and Control Act, Assembly Bill 1807, Tanner. This two-step process of risk identification and risk management was designed to protect residents from the health effects of toxic substances in the air.

The SCAQMD, the district with jurisdiction over the Project, has a long and successful history of reducing air toxics and criteria emissions in the South Coast Air Basin (Basin). SCAQMD has an extensive control program, including traditional and innovative rules and policies. These policies can be viewed in the SCAQMD's *Air Toxics Control Plan for the Next Ten Years (March 2000)*.

3.2 REGULATORY SETTING

The Federal Clean Air Act (CAA) governs air quality in the United States. In addition to being subject to the requirements of CAA, air quality in California is also governed by more stringent regulations under the California Clean Air Act (CCAA). At the federal level, CAA is administered by the United States Environmental Protection Agency (USEPA). In California, the CCAA is administered by the CARB at the State level and by the air quality management districts and air pollution control districts at the regional and local levels.

United States Environmental Protection Agency. USEPA is responsible for enforcing the federal CAA. USEPA is also responsible for establishing the National Ambient Air Quality Standards (NAAQS). NAAQS are required under the 1977 CAA and subsequent amendments. USEPA regulates emission sources that are under the exclusive authority of the federal government, such as aircraft, ships, and certain types of locomotives. USEPA has jurisdiction over emission sources outside State waters (e.g., beyond the outer continental shelf) and establishes various emission standards, including those for vehicles sold in States other than

California. Automobiles sold in California must meet stricter emission standards established by CARB.

California Air Resources Board. CARB, which became part of the California Environmental Protection Agency (CalEPA) in 1991, is responsible for meeting the State requirements of the federal CAA, administering the CCAA, and establishing the California Ambient Air Quality Standards (CAAQS). The CCAA, as amended in 1992, requires all air districts in the State to endeavor to achieve and maintain the CAAQS. CAAQS are generally more stringent than the corresponding federal standards and incorporate additional standards for sulfates, hydrogen sulfide, vinyl chloride and visibility-reducing particles. CARB regulates mobile air pollution sources, such as motor vehicles. CARB is responsible for setting emission standards for vehicles sold in California and for other emission sources, such as consumer products and certain off-road equipment. CARB established passenger vehicle fuel specifications, which became effective on March 1996. CARB oversees the functions of local air pollution control districts and air quality management districts, which in turn administer air quality activities at the regional and county levels.

South Coast Air Quality Management District. SCAQMD monitors air quality within the Project area. SCAQMD has jurisdiction over an area of approximately 10.743 square miles, consisting of Orange County; the non-desert portions of Los Angeles, Riverside, and Bernardino counties; and the Riverside County portion of the Salton Sea Air Basin and Mojave Desert Air Basin. The 1977 Lewis Air Quality Management Act created SCAQMD to coordinate air quality planning efforts throughout Southern California. This Act merged four county air pollution control agencies into one regional district to better address the issue of improving air quality in Southern California. Under the Act, renamed the Lewis-Presley Air Quality Management Act in 1988, SCAQMD is the agency principally responsible for comprehensive air pollution control in the Basin. Specifically, SCAQMD is responsible for monitoring air quality, as well as planning, implementing, and enforcing programs designed to attain and maintain State and federal ambient air quality standards in the district. Programs that were developed include air quality rules and regulations that regulate stationary sources, area sources, point sources, and certain mobile source emissions. SCAQMD is also responsible for establishing stationary source permitting requirements and for ensuring that new, modified, or relocated stationary sources do not create net emission increases.

The Basin is a subregion of the SCAQMD and covers an area of 6,745 square miles. The Basin includes all of Orange County and the non-desert portions of Los Angeles, Riverside, and San Bernardino counties. The Basin is bounded by the Pacific Ocean to the west; the San Gabriel, San Bernardino and San Jacinto mountains to the north and east; and the San Diego County line to the south (**Figure 3-1**).

LEGEND:

PLANNING ASSOCIATES

Global Climate Change. Global climate change refers to variances in Earth's meteorological conditions, which are measured by wind patterns, storms, precipitation, and temperature. There is general scientific agreement that the Earth's average surface temperature has increased by 0.3 to 0.6 degrees Celsius over the past century.⁴ The reasons behind the increase in temperature are not well understood and are the subject of intense research activity. Many scientific studies have been completed to determine the extent that CHG emissions from human sources (e.g., fossil fuel combustion) affect the Earth's climate. The interrelationships between atmospheric composition, chemistry, and climate change are very complex. For example, historical records indicate a natural variability in surface temperature.⁵ Historical records also indicate that atmospheric concentrations of a number of GHG have increased significantly since the beginning of the industrial revolution.⁶ As such, significant attention is being given to anthropogenic (human) GHG emissions.

GHGs allow sunlight to enter the atmosphere freely. When sunlight strikes the Earth's surface, some of it is reflected back towards space as infrared radiation (heat). GHGs absorb this infrared radiation and trap the heat in the atmosphere. Over time, the amount of energy sent from the sun to the Earth's surface should be approximately equal to the amount of energy radiated from Earth back into space, leaving the temperature of the Earth's surface roughly constant. Some GHGs are emitted naturally (water vapor, CO₂, CH₄, and N₂O), while others are exclusively human-made (e.g., gases used for aerosols). According to the California Energy Commission (CEC), emissions from fossil fuel consumption represent approximately 81 percent of GHG emissions and transportation creates 41 percent of GHG emissions in California.⁷

<u>California Legislation, Orders and Regulations</u>. The State of California has traditionally been a pioneer in efforts to reduce air pollution, dating back to 1963 when the California New Motor Vehicle Pollution Control Board adopted the nation's first motor vehicle emission standards. Likewise, California has a long history of actions undertaken in response to the threat posed by climate change.

Assembly Bill (AB) 1493, signed by California's governor in July 2002, requires passenger vehicles and light duty trucks to achieve maximum feasible reduction of GHG emissions by model year 2009.⁸ AB 1493 was enacted based on recognition that passenger cars are significant contributors to the State's GHG emissions.

Following the passage of the bill, the CARB was tasked to determine the reduction targets based on CARB's analysis of available and near-term technology and cost. After evaluating the options, the CARB established limits that will result in approximately a 22-percent reduction in GHG emissions from new vehicles by 2012, and approximately a 30-percent reduction by 2016.⁹ CARB's regulations were challenged in December 2004 in federal court by the Alliance of Automobile Manufacturers, who claimed that the law attempted to regulate vehicle fuel economy, a matter that lies within the exclusive jurisdiction of the federal government (The Federal Clean Air Act reserves the control of emissions from motor vehicles to the federal

⁴Finlayson-Pitts, Barbara J., and James N. Pitts, Jr., *Chemistry of the Upper and Lower Atmosphere*, 1999. ⁵*Ibid*.

⁶Ibid.

⁷California Energy Commission, Inventory of California Greenhouse Gas Emissions and Sinks: 1990 to

^{2004,} http://www.energy.ca.gov/2006publications/CEC-600-2006-013/CEC-600-2006-013-SF.PDF, December 2006. ⁸State of California, AB 1493, July 22, 2002.

⁹Green Car Congress, EPA Concludes Public Hearings on California Waiver for New Vehicle CO₂

Regulations, http://www.greencarcongress.com/2007/05/epa_concludes_p.html, May 31, 2007.
government, with the exception of California due to its early activity and special conditions (i.e., high density of motor vehicles, topography conducive to pollution formation in heavily populated basins—e.g., Los Angeles and the San Joaquin Valley), and any states that opt for the California regulations.) However, the United States District Court for the Eastern District of California issued a decision in December 2007 that rejected key elements of the Alliance's challenge and concluded that CARB's regulations are neither precluded nor preempted by federal statutes and policies. Even so, for California to implement a modification such as that represented in AB 1493, it must request a waiver pursuant to Section 209 of the Federal Clean Air Act. The United States Environmental Protection Agency (USEPA) has denied California's request for a waiver, and California has challenged that denial in court. As a result, CARB's proposed implementation schedule may be delayed.

Title 24, adopted by the California Energy Commission (CEC) on November 5, 2003, is the 2005 Building Energy Efficiency Standards for Residential and Nonresidential Buildings. Title 24 is considered to be one of the most stringent set of regulations for energy conservation in new buildings in the country. Mandatory measures in Title 24 requirements include, but are not limited to, minimum ceiling, wall, and raised floor insulation, minimum Heating, Ventilating and Air Conditioning (HVAC), and minimum water heating equipment efficiencies. The 2005 Standards (for residential and nonresidential buildings) are expected to reduce electricity use by 478 gigawatt-hours per year (GWh/y) and reduce the growth in natural gas use by 8.8 million therms per year.¹⁰ The savings attributable to new nonresidential buildings are 163.2 GWh/y of electricity savings and 0.5 million therms of natural gas.¹¹ Additional savings result from the application of the Standards on building alterations. In particular, requirements for cool roofs, lighting and air distribution ducts are expected to save about 175 GWh/y of electricity.¹² The State's energy efficiency standards represent an important strategy that can make an important contribution to the reduction of GHG emissions.

On June 1, 2005, the governor signed Executive Order S-3-05, establishing statewide GHG emissions reduction targets. The Order provides that by 2010, emissions must be reduced to 2000 levels; by 2020, emissions must be reduced to 1990 levels; and by 2050, emissions must be reduced to 80 percent below 1990 levels. The Secretary of CalEPA is charged with coordinating oversight of efforts to meet these targets, along with the Secretary of the Business, Transportation, and Housing Agency, Secretary of the Department of Food and Agriculture, Secretary of the Resources Agency, Chairperson of the Air Resources Board, Chairperson of the Energy Commission, and the President of the Public Utilities Commission. The Secretary of CalEPA must report to the governor and the state legislature every six months on progress made toward meeting emissions targets, projected global warming impacts on California, and mitigation and adaptation plans.

The Secretary of CalEPA formed the California's Climate Action Team (CAT) to carry out the Executive Order. The CAT is comprised of representatives of the Business, Transportation, and Housing Agency, Department of Food and Agriculture, Resources Agency, Air Resources Board, Energy Commission, Integrated Waste Management Board, and Public Utilities Commission. The member agencies are collaborating to develop programs and strategies that can be implemented over the next two years to meet the Executive Order's emissions targets.

¹⁰California Energy Commission, 2005 Building Energy Efficiency Standards Nonresidential Compliance Manual, March 2005.

¹¹*Ibid*.

¹²Ibid.

Several of these programs are relevant to new construction, as ways to mitigate air pollutants, including GHG emissions:

- Anti-idling: Construction vehicles will be regulated by CARB's anti-idling measures, which became effective on February 1, 2005. The measures are aimed at unnecessary engine idling within several classes of diesel-fueled commercial vehicles with a gross vehicular weight rating greater than 10,000 pounds. CARB estimates that over 400,000 vehicles will be affected, and GHG emissions will be reduced by 1.2 million tons CO₂ equivalent ("MMtCO₂e") in 2020.
- Recycling: By providing recycling facilities within residential buildings and communities, developers can assist California in achieving its recycling goals. The Integrated Waste Management Board estimates that by achieving the 50 percent statewide recycling goal, established by the Integrated Waste Management Act of 1989, GHG emissions "associated with energy intensive material extraction and production as well as methane emission from landfills" will be reduced by 3 MMtCO₂e in 2020. Exceeding that goal could reduce emissions by as much as 3 additional MMtCO₂e in 2020.
- Building energy efficiency standards: New development will be subject to the CEC building energy efficiency standards, adopted and updated pursuant to Public Resources Code section 25402. The CEC estimates that the standards already in place will reduce GHG emissions by 2 MMtCO₂e in 2020. New standards will go into effect in 2008, and will further reduce emissions.
- Green Buildings initiative: California's Green Buildings initiative, established by Executive Order S-20-04, aims to reduce energy use in commercial buildings by 20 percent from 2003 levels by 2015. Although compliance with the Green Building Action Plan is mandatory only for state-owned and -leased buildings, the initiative encourages the participation of private developers and building owners/operators. The State and Consumer Services Agency estimates that the initiative will reduce GHG emissions by 1.8 MMtCO₂e in 2020.
- Water use efficiency: By implementing water-saving technologies and features, new construction can assist the Department of Water Resources (DWR) in its plan to reduce urban water use by 1.1 to 2.3 million acre feet per year. CAT's report notes that "19 percent of all electricity, 30 percent of all natural gas, and 88 million gallons of diesel are used to convey, treat, distribute and use water and wastewater. The CEC estimates that 44 million tons of CO₂ emissions are expelled annually on average to provide the 44 million acre feet (MAF) of water used statewide." DWR estimates that the plan to increase water-use efficiency will reduce GHG emissions by 1.2 MMtCO₂e in 2020.

CAT notes that the emissions targets set out in the Executive Order "reflect our state's high economic and population growth" and "allow our state to grow at a rapid rate while cutting greenhouse gas emissions." Even assuming rapid population growth, the report concludes that, with continued agency coordination, programs and strategies such as those listed above will achieve those targets.

CAT and others suggest that California, as the fifth largest economy in the world, is "uniquely positioned" to lead national and global environmental reform. The legislation discussed above will make great strides toward that goal. In fact, EO S-3-05 goes beyond the standards set by the Kyoto treaty, which is significant considering the fact that California is the ninth largest GHG emitter in the world.

On August 31, 2006, the California Senate passed Senate Bill (SB) 1368 (signed into law on September 29), requiring the Public Utilities Commission (PUC) to develop and adopt a "greenhouse gases emission performance standard" by February 1, 2007, for the private electric utilities under its regulation. The PUC adopted an interim standard on January 25, 2007. The CEC then adopted a consistent standard for the local publicly owned electric utilities under its regulation. These standards apply to all long-term financial commitments entered into by electric utilities. ("Long-term financial commitment" is defined as "either a new ownership investment in baseload generation or a new or renewed contract with a term of five or more years, which includes procurement of baseload generation." In turn, "baseload generation" is defined as "electricity generation from a powerplant that is designed and intended to provide electricity at an annualized plant capacity factor of at least 60 percent.") The performance standards must set an emissions rate equal to or less than that of combined-cycle natural gas baseload generation.

On September 27, 2006, AB 32, the California Global Warming Solutions Act of 2006, was enacted by the State of California.¹³ In that statute, the Legislature stated that "Global warming" poses a serious threat to the economic well-being, public health, natural resources, and the environment of California." AB 32 seeks to, among other things, cap California's GHG emissions at 1990 levels by 2020. Relevant gases defined by AB 32 as GHG pollutants include CO₂, CH₄, N₂O.¹⁴ While acknowledging that national and international actions will be necessary to fully address the issue of global warming, AB 32 lays out a program to inventory and reduce GHG emissions in California. This bill represents the first enforceable Statewide program in the United States to cap all GHG emissions from major industries and include penalties for noncompliance.

AB 32 charges CARB with the responsibility to monitor and regulate sources of GHG emissions in order to reduce those emissions. On June 1 2007, the CARB adopted three "discrete early action measures" to reduce GHG emissions. These measures involve complying with a low carbon fuel standard, reducing refrigerant loss from motor vehicle air conditioning maintenance and increasing methane capture from landfills.¹⁵ In October of 2007, the CARB tripled the set of previously approved early action measures, as a result of which 44 GHG reduction strategies are now in place: these measures are either currently underway or are to be initiated by CARB in the 2007 to 2012 timeframe.¹⁶ The newly approved measures include Smartway truck efficiency (i.e., reducing aerodynamic drag), port electrification, reducing perfluorocarbons from the semiconductor industry, reducing propellants in consumer products, promoting proper tire inflation in vehicles, and reducing sulfur hexaflouride emissions from the non-electricity sector. AB 32 also required CARB to define the 1990 baseline emissions for California and adopt that baseline as the 2020 statewide emissions cap. CARB has determined that the total statewide aggregated greenhouse gas 1990 emissions level and 2020 emissions limit is 427 million metric tonnes of carbon dioxide equivalent.

¹³State of California, Health and Safety Code, Division 25.5 (California Global Warming Solutions Act of 2006), September 27, 2006.

⁴AB 32 also defines hydrofluorocarbons, perfluorocarbons and sulfur hexaflouride as GHG pollutants but these gases would not be emitted by the proposed Fashion Square expansion project. ¹⁵California Air Resources Board, *Proposed Early Action Measures to Mitigate Climate Change in California*,

April 20, 2007.

⁶California Air Resources Board, Expanded List of Early Action Measures to Reduce Greenhouse Gas Emissions in California for Board Consideration, October 2007.

CARB is mandated by AB 32 to meet additional deadlines. Emission measures that cannot be initiated in the 2007 to 2012 timeframe will be considered in CARB's Scoping Plan, which CARB is now beginning to outline. AB 32 requires CARB to adopt the Scoping Plan prior to January 1, 2009 for achieving reductions in GHG emissions, and regulations by January 1, 2011 for reducing GHG emissions to achieve the emissions cap by 2020.¹⁷ which rules would take effect no later than 2012.¹⁸ In designing emission reduction measures, CARB must aim to minimize costs, maximize benefits, improve and modernize California's energy infrastructure, maintain electric system reliability, maximize additional environmental and economic benefits for California, and complement the State's ongoing efforts to improve air quality. AB 32 also directs CARB to "recommend a de minimis threshold of greenhouse gas emissions below which emissions reduction requirements will not apply" by January 1, 2009. HSC § 38561(e). CARB has suggested a 25,000 metric tonnes emissions level as a possible *de minimis* threshold.

California Senate Bill (SB) 97, passed in August 2007, is designed to work in conjunction with the California Environmental Quality Act (CEQA) and AB 32.¹⁹ CEQA requires the State Office of Planning and Research (OPR) to prepare and develop guidelines for the implementation of CEQA by public agencies. SB 97 requires OPR by July 1, 2009 to prepare, develop, and transmit to the State Resources Agency its proposed guidelines for the feasible mitigation of GHG emissions, as required by CEQA, including, but not limited to, effects associated with transportation or energy consumption. The Resources Agency is required to certify and adopt the guidelines by January 1, 2010, and OPR is required to periodically update the guidelines to incorporate new information or criteria established by the CARB pursuant to AB 32. SB 97 would apply to any proposed or draft environmental impact report, negative declaration, mitigated negative declaration, or other document prepared under CEQA that has not been certified or adopted by the CEQA lead agency as of the effective date of the new guidelines. In addition, SB 97 exempts transportation projects funded under the Highway Safety, Traffic Reduction, Air Quality and Port Security Bond Act of 2006, or projects funded under the Disaster Preparedness and Flood Prevention Bond Act of 2006.

At this time, the USEPA does not regulate GHG emissions. However, in the case of Massachusetts v. USEPA, the United States Supreme Court issued a ruling (April 2007) that reviewed a USEPA decision not to regulate GHG emissions from cars and trucks under the Clean Air Act. The lawsuit focused on Section 202 of the Clean Air Act. The case resolved the following legal issues: (1) the Clean Air Act grants the USEPA authority to regulate GHG emissions, and (2) USEPA did not properly exercise its lawful discretion in deciding not to promulgate regulations concerning GHG emissions.

In addition to the State regulations, the City of Los Angeles has issued guidance promoting green building to reduce GHG emissions. The goal of the Green LA Action Plan (Plan) is to reduce greenhouse gas emissions 35 percent below 1990 levels by 2030.²⁰ The Plan identifies objectives and actions designed to make the City a leader in confronting global climate change. The measures would reduce emissions directly from municipal facilities and operations, and create a framework to address City-wide GHG emissions. The Plan lists various focus areas in which to implement GHG reduction strategies. Focus areas listed in the Plan include energy, water, transportation, land use, waste, port, airport, and ensuring that changes to the local

¹⁷State of California, Health and Safety Code, Division 25.5 (California Global Warming Solutions Act of 2006), September 27, 2006.

¹⁹State of California, SB 97, August 21, 2007.

²⁰City of Los Angeles, Green LA: An Action Plan to Lead the Nation in Fighting Global Warming, May 2007.

climate are incorporated into planning and building decisions. The Plan discusses City goals for each focus area as follows:

Energy

- Increase the generation of renewable energy;
- Develop sustainable construction guidelines;
- Increase City-wide energy efficiency; and
- Promote energy conservation.

Water

• Decrease per capita water use to reduce electricity demand associated with water pumping and treatment.

Transportation

- Power the City vehicle fleet with alternative fuels; and
- Promote alternative transportation (e.g., mass transit and rideshare).

Other Goals

- Create a more livable City through land use regulations;
- Increase recycling, reducing emissions generated by activity associated with the Port of Los Angeles and regional airports;
- Create more city parks, promoting the environmental economic sector; and
- Adapt planning and building policies to incorporate climate change policy.

The City of Los Angeles has also adopted a green building ordinance.

3.2.1 National and California Ambient Air Quality Standards and Attainment Status

As required by the federal CAA, NAAQS have been established for seven major air pollutants: CO, NO₂, O₃, PM_{2.5}, PM₁₀, SO₂, and Pb. The CAA requires USEPA to designate areas as either attainment or nonattainment for each criteria pollutant based on whether the NAAQS have been achieved. The federal standards are summarized in **Table 3-1**. The USEPA has classified the Basin as nonattainment for O₃, PM_{2.5}, and PM₁₀ and attainment for NO₂, SO₂ and Pb. As a result of State and local control strategies, the Basin has not exceeded the federal CO standard since 2002. As such, the Basin is a maintenance area for CO. In March 2005, the SCAQMD adopted a CO Redesignation Request and Maintenance Plan that provides for maintenance of the federal CO air quality standard until at least 2015 and commits to revising the Plan in 2013 to ensure maintenance through 2025. The SCAQMD also adopted a CO emissions budget that covers 2005 through 2015.

The CAAQS are generally more stringent than the corresponding federal standards (NAAQS) and, as such, are used as the comparative standard in the air quality analysis contained in this report. The State standards are also summarized in **Table 3-1**.

TABLE 3-1: STATE AND NATIONAL AMBIENT AIR QUALITY STANDARDS AND ATTAINMENT STATUS FOR THE SOUTH COAST AIR BASIN

		Cal	ifornia	Fe	ederal
Pollutant	Averaging Period	Standards	Attainment Status	Standards	Attainment Status
Ozone (O ₃)	1-hour	0.09 ppm (180 μg/m ³)	Nonattainment		
	8-hour	0.070 ppm (137 μg/m ³)	n/a	0.075 ppm (147 μg/m ³)	Nonattainment
Respirable	24-hour	50 μ g/m ³	Nonattainment	150 μg/m ³	Nonattainment
Particulate Matter (PM ₁₀)	Annual Arithmetic Mean	20 µg/m ³	Nonattainment		
Fine Particulate	24-hour			35 µg/m ³	Nonattainment
Matter (PM _{2.5})	Annual Arithmetic Mean	12 μ g/m ³	Nonattainment	15 μg/m ³	Nonattainment
Carbon Monoxide (CO)	8-hour	9.0 ppm (10 mg/m ³)	Attainment	9 ppm (10 mg/m ³)	Maintenance
	1-hour	20 ppm (23 mg/m ³)	Attainment	35 ppm (40 mg/m ³)	Maintenance
Nitrogen Dioxide (NO ₂)	Annual Arithmetic Mean	0.030 ppm (56 μg/m ³)	Attainment	0.053 ppm (100 μg/m ³)	Attainment
	1-hour	0.18 ppm (338 µg/m ³)	Attainment		
Sulfur Dioxide (SO ₂)	Annual Arithmetic Mean			0.030 ppm (80 µg/m ³)	Attainment
	24-hour	0.04 ppm (105 μg/m ³)	Attainment	0.14 ppm (365 µg/m ³)	Attainment
	3-hour				
	1-hour	0.25 ppm (655 μg/m ³)	Attainment		
Lead (Pb)	30-day average	1.5 μg/m ³	Attainment		
	Calendar Quarter			1.5 μg/m³	Attainment
Sulfates	24-hour	25 μ g/m ³	Attainment		
Hydrogen Sulfide	1-hour	0.03 ppm (42 μg/m ³)	Attainment		
Vinyl Chloride	24-hour	0.01 ppm (26 μg/m ³)	Attainment		
Visibility-Reducing Particles	8-hour	Visibility of ten miles or more	Unclassified		
n/a = not available SOURCE: CARB, Ambient A	ir Quality Standards April 1	2008			

The CCAA requires CARB to designate areas within California as either attainment or nonattainment for each criteria pollutant based on whether the CAAQS have been achieved. Under the CCAA, areas are designated as nonattainment for a pollutant if air quality data shows that a State standard for the pollutant was violated at least once during the previous three calendar years. Exceedances that are affected by highly irregular or infrequent events are not considered violations of a State standard and are not used as a basis for designating areas as nonattainment. Under the CCAA, the Los Angeles County portion of the Basin is designated as a nonattainment area for O₃, PM_{2.5}, and PM₁₀ and attainment for CO, NO₂, SO₂, Pb, sulfates, hydrogen sulfide, and vinyl chloride.²¹

3.2.2 Air Quality Management Plan

All areas designated as nonattainment under the CCAA are required to prepare plans showing how the area will meet the State air quality standards by its attainment dates. The Air Quality Management Plan (AQMP) is the region's plan for improving air quality in the region. It addresses CAA and CCAA requirements and demonstrates attainment with State and federal ambient air quality standards. The AQMP is prepared by SCAQMD and the Southern California Association of Governments (SCAG). The AQMP provides policies and control measures that reduce emissions to attain both State and federal ambient air quality standards by their applicable deadlines. Environmental review of individual projects within the Basin must demonstrate that daily construction and operational emissions thresholds, as established by the SCAQMD, will not be exceeded. The environmental review must also demonstrate that individual projects will not increase the number or severity of existing air quality violations.

The 2007 AQMP was adopted by the SCAQMD on June 1, 2007 and by the CARB on September 27, 2007. The 2007 AQMP proposes attainment demonstration of the federal $PM_{2.5}$ standards through a more focused control of SO_X, directly emitted $PM_{2.5}$, and NO_X supplemented with VOC by 2015. The eight-hour ozone control strategy builds upon the $PM_{2.5}$ strategy, augmented with additional NO_X and VOC reductions to meet the standard by 2024. The 2007 AQMP also addresses several federal planning requirements and incorporates significant new scientific data, primarily in the form of updated emissions inventories, ambient measurements, new meteorological episodes, and new air quality modeling tools. The 2007 AQMP highlights the significant amount of reductions needed and the urgent need to identify additional strategies, especially in the area of mobile sources, to meet all federal criteria pollutant standards within the time frames allowed under the CAA.

3.3 EXISTING AIR QUALITY

3.3.1 Air Pollution Climatology

The Project Site is located within the Los Angeles County portion of the Basin. Ambient pollution concentrations recorded in Los Angeles County are among the highest in the four counties comprising the Basin.

The Basin is in an area of high air pollution potential due to its climate and topography. The general region lies in the semi-permanent high pressure zone of the eastern Pacific, resulting in a mild climate tempered by cool sea breezes with light average wind speeds. This Basin

²¹CARB, <u>http://www.arb.ca.gov/desig/adm/adm.htm</u>, July 31, 2007.

experiences warm summers, mild winters, infrequent rainfalls, light winds, and moderate humidity. This usually mild climatological pattern is interrupted infrequently by periods of extremely hot weather, winter storms, or Santa Ana winds. The Basin is a coastal plain with connecting broad valleys and low hills, bounded by the Pacific Ocean to the west and high mountains around the rest of its perimeter. The mountains and hills within the area contribute to the variation of rainfall, temperature, and winds throughout the region.

The Basin experiences frequent temperature inversions. Temperature typically decreases with height. However, under inversion conditions, temperature increases as altitude increases. thereby preventing air close to the ground from mixing with the air above it. As a result, air pollutants are trapped near the ground. During the summer, air quality problems are created due to the interaction between the ocean surface and the lower layer of the atmosphere. This interaction creates a moist marine layer. An upper layer of warm air mass forms over the cool marine layer, preventing air pollutants from dispersing upward. Additionally, hydrocarbons and NO₂ react under strong sunlight, creating smog. Light, daytime winds, predominantly from the west, further aggravate the condition by driving air pollutants inland, toward the mountains. During the fall and winter, air quality problems are created due to CO and NO₂ emissions. CO concentrations are generally worse in the morning and late evening (around 10:00 p.m.). In the morning, CO levels are relatively high due to cold temperatures and the large number of cars traveling. High CO levels during the late evenings are a result of stagnant atmospheric conditions trapping CO in the area. Since CO is produced almost entirely from automobiles, the highest CO concentrations in the Basin are associated with heavy traffic. Similarly to CO diurnal trends, NO₂ levels are also generally higher during fall and winter days.

3.3.2 Local Climate

The mountains and hills within the Basin contribute to the variation of rainfall, temperature, and winds throughout the region. Within the Project Site and its vicinity, the average wind speed, as recorded at the Downtown Los Angeles Wind Monitoring Station, is approximately 3 miles per hour, with calm winds occurring approximately 55 percent of the time. Wind in the vicinity of the Project Site predominately blows from the southwest.²²

The annual average temperature in the Project area is 65 degrees Fahrenheit (°F). The Project area experiences an average winter temperature of approximately 58°F and an average summer temperature of approximately 72°F. Total precipitation in the Project area averages approximately 15 inches annually. Precipitation occurs mostly during the winter and relatively infrequently during the summer. Precipitation averages approximately 8.9 inches during the winter, approximately 3.7 inches during the spring, approximately 2.0 inches during the fall, and less than 1 inch during the summer.²³

3.3.3 Air Monitoring Data

The SCAQMD monitors air quality conditions at 38 locations throughout the Basin. The Project Site is located in SCAQMD's Northwest Coastal Los Angeles County Air Monitoring Subregion, which is served by the West Los Angeles Monitoring Station. The West Los Angeles Monitoring Station is located approximately 4 miles west of the Project Site. Historical data from the West Los Angeles Monitoring Station were used to characterize existing conditions in the vicinity of

²²SCAQMD, <u>http://www.aqmd.gov/smog/metdata/MeteorologicalData.html</u>, See Appendix A.

²³Western Regional Climate Center, <u>http:// www.wrrc.dri.edu</u>, accessed July 31, 2007. See Appendix A.

the Project area. Criteria pollutants monitored at the West Los Angeles Monitoring Station include O_3 , CO, and NO_2 . However, this monitoring station does not monitor $PM_{2.5}$, PM_{10} , and SO_2 . The nearest, most representative monitoring station that gathers $PM_{2.5}$, PM_{10} , and SO_2 data is located approximately 9 miles east of the Project Site at the Downtown Los Angeles Monitoring Station. The locations of the relevant air monitoring stations are shown in **Figure 3**-2.

Table 3-2 shows pollutant levels, the State standards, and the number of exceedances recorded at the West Los Angeles and Downtown Monitoring Stations from 2004 to 2006.²⁴ The CAAQS for the criteria pollutants are also shown in the table. As **Table 3-2** indicates, criteria pollutants CO, NO₂, and SO₂ did not exceed the CAAQS during the 2004 through 2006 period. However, the one-hour State standard for O₃ was exceeded three to seven times during this period, and the eight-hour State standard for O₃ was exceeded zero to eight times. The annual State standard for PM_{2.5} was exceeded in 2004, 2005, and 2006. The 24-hour State standard for PM₁₀ was exceeded five times in 2004, four times in 2005, and three times in 2006, and the PM_{2.5} annual average was exceeded each year from 2004 to 2006. A summary of the data recorded at the monitoring stations is included in Appendix B.

3.3.4 Background Carbon Monoxide Conditions

For purposes of this assessment, the ambient, or background, CO concentration must first be established. SCAQMD defines the background level as the highest reading over the past three years. A review of data from the West Los Angeles Monitoring Station for the 2004 to 2006 period indicates that the highest one- and eight-hour background concentrations are approximately 4 and 2.3 ppm, respectively. Accordingly, the existing one- and eight-hour background concentrations do not exceed the State CO standard of 20 ppm and 9.0 ppm, respectively, and therefore are in attainment.

3.3.5 Existing Carbon Monoxide Concentrations at Project Area Intersections

There is a direct relationship between traffic/circulation congestion and CO impacts because exhaust fumes from vehicular traffic is the primary source of CO. CO is a localized gas that dissipates very quickly under normal meteorological conditions. Therefore, CO concentrations decrease substantially as distance from the source (intersection) increases. The highest CO concentrations are typically found in areas directly adjacent to congested roadway intersections.

An exceedance of the State CO standards at an intersection is referred to as a CO hotspot. The SCAQMD recommends a CO hotspot evaluation of potential localized CO impacts when the volume to capacity (V/C) ratios are increased by two percent at intersections with a level of service (LOS) of D or worse.²⁵ SCAQMD also recommends a CO hotspot evaluation when an intersection decreases in LOS by one level, beginning when LOS changes from C to D.²⁶

²⁴Year 2007 SCAQMD data were not available at the time this analysis was completed.

²⁵SCAQMD, Comment Letter on Draft Mitigated Negative Declaration for the Proposed Development Review DRC2006-00986 – 81,572 Square Foot Industrial Building on 4.77 Acres, August 22, 2007.
²⁶Ibid.

9. East San Gabriel Valley

12. South Central Los Angeles

10. Pomona/Walnut Valley

13. Santa Clarita Valley

15. San Gabriel Mountains

14. Antelope Valley

Air Monitoring Areas in Los Angeles County:

- 1. Central Los Angeles
- Northwest Coastal (West LA) 2.
- 3. Southwest Coastal (Hawthorne) 11. South San Gabriel Valley
- 4. South Coastal (Long Beach)
- 5. Southeast Los Angeles County
- 6. West San Fernando Valley
- 7. East San Fernando Valley
- 8. West San Gabriel Valley

SOURCE: South Coast Air Quality Management District Air Monitoring Areas Map, 1989

FIGURE 3-2

AIR MONITORING AREAS

taha 2007-083

		Number	of Days Abo Standard	ve State
Pollutant	Pollutant Concentration & Standards	2004	2005	2006
Ozone	Maximum 1-hr Concentration (ppm)	0.11	0.11	0.10
	Days > 0.09 ppm (State 1-hr standard)	5	7	3
	Maximum 8-hr Concentration (ppm)	0.09	0.09	0.07
	Days > 0.07 ppm (State 8-hr standard)	8	5	0
Carbon Monoxide	Maximum 1-hr concentration (ppm)	4	3	3
	Days > 20 ppm (State1-hr standard)	0	0	0
	Maximum 8-hr concentration (ppm)	2.3	2.1	2.0
	Days > 9.0 ppm (State 8-hr standard)	0	0	0
Nitrogen Dioxide	Maximum 1-hr Concentration (ppm)	0.09	0.08	0.05
	Days > 0.18 ppm (State 1-hr standard)	0	0	0
PM ₁₀	Maximum 24-hr concentration (μ g/m ³)	72	70	59
	Estimated Days > 50 μ g/m ³ (State 24-hr standard)	5	4	3
PM _{2.5}	Maximum Annual Arithmetic Mean (μ g/m ³)	20	18	16
	Exceed Standard (12 μ g/m ³ Annual Arithmetic Mean)?	Yes	Yes	Yes
Sulfur Dioxide	Maximum 24-hr Concentration (ppm)	0.01	0.01	0.00
	Days > 0.04 ppm (State 24-hr standard)	0	0	0

From the 22 intersections analyzed in the traffic study, CO concentrations adjacent to 13 intersections were modeled for existing conditions. The study intersections were selected to be representative of the Project area and were based on traffic volume to capacity (V/C) ratio and the traffic level of service (LOS) as indicated in the traffic analysis.^{27,28}

In accordance with SCAQMD's recommendations, the selected intersections are as follows:

- Robertson Boulevard/Beverly Boulevard PM Peak Hour
- Robertson Boulevard/Gracie Allen Drive-Alden Drive PM Peak Hour
- Robertson Boulevard/Third Street AM Peak Hour
- Robertson Boulevard/Burton Way PM Peak Hour
- George Burns Road/Beverly Boulevard PM Peak Hour
- George Burns Road/Gracie Allen Drive AM Peak Hour
- San Vicente Boulevard/Beverly Boulevard PM Peak Hour
- San Vicente Boulevard/Third Street AM Peak Hour
- San Vicente Boulevard/Burton Way PM Peak Hour
- San Vicente Boulevard/Wilshire Boulevard AM Peak Hour
- La Cienega Boulevard/Beverly Boulevard AM Peak Hour
- La Cienega Boulevard/Third Street AM Peak Hour

²⁷Level of service is used to indicate the quality of traffic flow on roadway segments and at intersections. Level of service ranges from LOS A (free flow, little congestion) to LOS F (forced flow, extreme congestion).

²⁸Linscott, Law & Greenspan, Engineers, *Traffic Impact Study: Cedars-Sinai Medical Center Project*, March 6, 2008.

• La Cienega Boulevard/San Vicente Boulevard - PM Peak Hour

At each intersection, traffic-related CO contributions were added to background CO conditions. Traffic CO contributions were estimated using the USEPA CAL3QHC dispersion model, which utilizes traffic volume inputs and CARB EMFAC2007 emissions factors. Consistent with the California Department of Transportation (Caltrans) CO protocol, receptors for the analysis were located three meters (approximately 10 feet) from each intersection corner.²⁹ Existing conditions at the study intersections are shown in **Table 3-3**. One-hour CO concentrations range from approximately 4 ppm to 6 ppm, and eight-hour CO concentrations range from approximately 3.1 ppm to 3.9 ppm. Presently, none of the study intersections exceed the State one- and eight-hour CO standards of 20 ppm and 9.0 ppm, respectively, and therefore are in attainment.

TABLE 3-3: EXISTING CARBON MONOXIDE CONCENTRATIONS /a/					
Intersection	1-hour	8-hour			
Robertson Boulevard/Beverly Boulevard	5	3.5			
Robertson Boulevard/Gracie Allen Drive-Alden Drive	5	3.2			
Robertson Boulevard/Third Street	5	3.4			
Robertson Boulevard/Burton Way	5	3.5			
George Burns Road/Beverly Boulevard	5	3.5			
George Burns Road/Gracie Allen Drive	4	3.1			
San Vicente Boulevard/Beverly Boulevard	5	3.6			
San Vicente Boulevard/Third Street	5	3.6			
San Vicente Boulevard/Burton Way	5	3.6			
San Vicente Boulevard/Wilshire Boulevard	5	3.7			
La Cienega Boulevard/Beverly Boulevard	5	3.7			
La Cienega Boulevard/Third Street	5	3.6			
La Cienega Boulevard/San Vicente Boulevard	6	3.9			
State Standard	20	9.0			
/a/ All concentrations include one- and eight-hour ambient concentrations of 4 ppm and 2.3 ppm, respectively. SOURCE: TAHA, 2008 (Appendix C)					

²⁹Caltrans, Transportation Project-Level Carbon Monoxide Protocol, 1997.

3.3.6 Sensitive Receptors

Some land uses are considered more sensitive to changes in air quality than others, depending on the population groups and the activities involved. CARB has identified the following groups who are most likely to be affected by air pollution: children under 14, the elderly over 65 years of age, athletes, and people with cardiovascular and chronic respiratory diseases. According to the SCAQMD, sensitive receptors include residences, schools, playgrounds, child care centers, athletic facilities, long-term health care facilities, rehabilitation centers, convalescent centers, and retirement homes. As shown in **Figure 3-3**, sensitive receptors near the Project Site include the following:

- Medical office building located adjacent and to the north of the Project Site
- Cedars-Sinai Medical Towers (including the hospital) located approximately 50 feet east and southeast of the Project Site
- Single-family residences located along Bonner Drive approximately 400 feet north of the Project Site
- Multi-family residences located along Clark Drive approximately 475 feet west of the Project Site
- Multi-family residences located along Burton Way approximately 975 feet south of the Project Site

The above sensitive receptors occupy the nearest residential and medical land uses with the potential to be impacted by the Project. Additional single-family residences, multi-family residences, and Cedars-Sinai medical uses (e.g., Thalians Mental Health Center, the North Patient Tower, and the South Patient Tower) are located in the surrounding community within one-quarter mile of the Project Site. Due to their distance from the Project Site, the sensitive receptors occupying these land uses would be impacted to a lesser degree than the identified sensitive receptors.

3.4 METHODOLOGY AND SIGNIFICANCE CRITERIA

3.4.1 Methodology

This air quality analysis is consistent with the methods described in the SCAQMD *CEQA Air Quality Handbook* (1993 edition), as well as the updates to the CEQA Air Quality Handbook, as provided on the SCAQMD website.³⁰ The City of Los Angeles CEQA Thresholds Guide incorporates the SCAQMD criteria; therefore, the SCAQMD criteria presented here are consistent with those criteria established by the City of Los Angeles. Analyzed pollutants were selected based on guidance provided in the SCAQMD Handbook.

³⁰SCAQMD, <u>http://www.aqmd.gov/ceqa/hdbk.html</u>, August 1, 2007.

LEGEND:

Project Site

- **#** Sensitive Receptor Locations
- 1. Single-Family Homes
- Medical Offices 2.
- Multi-Family Homes 3.
- 4. Multi-Family Homes

SOURCE: South Coast Air Quality Management District Air Monitoring Areas Map, 1989

FIGURE 3-3

AIR QUALITY SENSITIVE RECEPTORS

taha 2007-083

Regional and localized construction emissions were analyzed for the Project. The majority of construction emissions (i.e., demolition, site preparation, and building construction) were calculated using CARB's URBEMIS2007 model. Regional emissions were compared to SCAQMD regional thresholds to determine Project impact significance. The localized construction analysis followed guidelines published by the SCAQMD in the Localized Significance Methodology for CEQA Evaluations (SCAQMD Localized Significance Threshold [LST] Guidance Document).³¹ The SCAQMD has supplemented the SCAQMD LST Guidance Document with Sample Construction Scenarios for Projects Less than Five Acres in Size and Methodology to Calculate Particulate Matter (PM) 2.5 and PM 2.5 Significance Thresholds.³² Emissions for the localized construction air quality analysis of PM_{2.5}, PM₁₀, CO, and NO₂ were compiled using LST methodology promulgated by the SCAQMD.³³ Localized on-site emissions were calculated using similar methodology as the regional emission calculations. On-site emissions are generated by the use of heavy equipment and fugitive dust. LSTs were developed based upon the size or total area of the emissions source, the ambient air quality in each source receptor area, and the distance to the sensitive receptor. LSTs for CO and NO₂ were derived by using an air quality dispersion model to back-calculate the emissions per day that would cause or contribute to a violation of any ambient air quality standard for a particular source receptor area. Construction PM_{10} and PM_{25} LSTs were derived using a dispersion model to back-calculate the emissions necessary to exceed a concentration equivalent to 50 $\mu g/m^3$ over five hours, which is the SCAQMD Rule 403 control requirement.

URBEMIS2007 was also used to calculate operational emissions (i.e., mobile and area). Localized CO emissions were calculated utilizing USEPA's CAL3QHC dispersion model and CARB's EMFAC2007 model. EMFAC2007 is the latest emission inventory model that calculates emission inventories and emission rates for motor vehicles operating on roads in California. This model reflects the CARB's current understanding of how vehicles travel and how much they pollute. The EMFAC2007 model can be used to show how California motor vehicle emissions have changed over time and are projected to change in the future. CAL3QHC is a model developed by USEPA to predict CO and other pollutant concentrations from motor vehicles at roadway intersections. The model uses a traffic algorithm for estimating vehicular queue lengths at signalized intersections. The Project would not include significant stationary sources of emissions. Therefore, localized stationary source emissions were not analyzed.

The potential cumulative impact was analyzed based on Table A9-14 in the SCAQMD *CEQA Air Quality Handbook.* The analysis compares the ratio of daily Project-related employment vehicle miles traveled to daily countywide vehicle miles traveled to determine if it exceeds the ratio of Project-related employment to countywide employment.

No one methodology for a project's increase in GHG levels has been adopted. Therefore, for this analysis, GHG emissions were calculated using a combination of computer modeling, SCAQMD guidance, and the California Climate Action Registry's General Reporting Protocol.³⁴ Mobile and area source CO_2 emissions were obtained from the URBEMIS2007 model. Mobile source CH_4 and N_2O emissions were calculated based on the EMFAC2007 model. CH_4 and

³²SCAQMD, Sample Construction Scenarios for Projects Less than Five Acres in Size, January 2005;

SCAQMD, Methodology to Calculate Particulate Matter (PM) 2.5 and PM 2.5 Significance Thresholds, October 2006.. ³³The concentrations of SO₂ are not estimated because construction activities would generate a small

³¹SCAQMD, Localized Significance Methodology, June 2003.

amount of SO_X emissions. No State standard exists for VOC. As such, concentrations for VOC were not estimated. ³⁴California Climate Action Registry, General Reporting Protocol, March 2007.

 N_2O area source emissions were calculated using natural gas and electricity usage rates from the SCAQMD *CEQA Air Quality Handbook* and emission rates from the General Reporting Protocol.

The Project does not contain lead, hydrogen sulfide, and vinyl chloride emissions sources. Therefore, emissions and concentrations related to this pollutant are not analyzed in this report.³⁵

3.4.2 Significance Criteria

The following are the significance criteria SCAQMD has established to determine Project impacts.

Construction Phase Significance Criteria

Localized construction emission thresholds were developed by the SCAQMD to regulate criteria pollutants in the Basin. LSTs were developed based upon the size or total area of the emissions source, the ambient air quality in each source receptor area, and the distance to the sensitive receptor. LSTs for CO and NO₂ were derived by using an air quality dispersion model to back-calculate the emissions per day that would cause or contribute to a violation of any ambient air quality standard for a particular source receptor area. Construction PM_{10} and $PM_{2.5}$ LSTs were derived using a dispersion model to back-calculate the emissions necessary to exceed a concentration equivalent to 50 µg/m³ over five hours, which is the SCAQMD Rule 403 control requirement. Based on this SCAQMD guidance, the Project would have a significant impact if:

- Daily regional and localized construction emissions were to exceed SCAQMD construction emissions thresholds for VOC, NO_X, CO, SO_X, PM_{2.5}, or PM₁₀, as presented in Table 3-4;
- The Project would expose sensitive receptors to a carcinogenic risk that exceeds ten cases in a population of one million people or a noncarcinogenic risk that exceeds a health hazard index vale of 1.0; or
- The Project would create, or be subjected to, an objectionable odor that could impact sensitive receptors and would not comply with SCAQMD Rule 402 (Nuisance).

³⁵Prior to 1978, mobile emissions were the primary source of lead resulting in air concentrations. Between 1978 and 1987, the phase-out of leaded gasoline reduced the overall inventory of airborne lead by nearly 95 percent. Currently, industrial sources are the primary source of lead resulting in air concentrations. Since the proposed project does not contain an industrial component, lead emissions are not analyzed in this report.

TABLE 3-4: SCAQMD DAILY CONSTRUCTION EMISSIONS THRESHOLDS						
Criteria Pollutant	Regional Pounds Per Day /a/	Localized Pounds Per Day /b/				
Volatile Organic Compounds (VOC) /c/	75					
Nitrogen Oxides (NO _X)	100	208				
Carbon Monoxide (CO)	550	658				
Sulfur Oxides (SO _X)	150					
Fine Particulates (PM _{2.5})	55	4				
Particulates (PM ₁₀)	150	19				
/a/ SCAQMD_CEQA Air Quality Handbook_1993	•					

/b/ SCAQMD, Sample Construction Scenarios for Projects Less than Five Acres in Size, February 2005; SCAQMD, Final Methodology to Calculate Particulate Matter (PM) 2.5 and PM 2.5 Significance Thresholds, October 2006.

/c/ VOC is a subset of ROG. For purposes of this analysis, VOC is equivalent to ROG. SOURCE: SCAQMD, 2007

Operations Phase Significance Criteria

Operational emission thresholds were developed by the SCAQMD to regulate criteria pollutants in the Basin. Based on this SCAQMD guidance, the Project would have a significant impact if:

- Daily operational emissions were to exceed SCAQMD operational emissions thresholds for VOC, NO_X, CO, SO_X, PM_{2.5}, or PM₁₀, as presented in Table 3-5;
- Project-related traffic causes CO concentrations at study intersections to violate the CAAQS for either the one- or eight-hour period. The CAAQS for the one- and eight-hour periods are 20 ppm and 9.0 ppm, respectively. If CO concentrations currently exceed the CAAQS, then an incremental increase of 1.0 ppm over "no Project" conditions for the one-hour period would be considered a significant impact. An incremental increase of 0.45 ppm over the "no Project" conditions for the eight-hour period would be considered significant:36
- The Project would expose sensitive receptors to a carcinogenic risk that exceeds ten cases in a population of one million people or a noncarcinogenic risk that exceeds a health hazard index vale of 1.0:
- The Project would create, or be subjected to, an objectionable odor that could impact sensitive receptors and would not comply with SCAQMD Rule 402 (Nuisance); or
- The Project would not be consistent with the AQMP if it would (1) result in an increase in the frequency or severity of existing air quality violations or cause or contribute to new violations, or delay the timely attainment of air quality standards or the interim emissions reductions specified in the AQMP, or (2) exceed the assumptions in the AQMP in 2010 or increments based on the year of Project build-out phase.

³⁶Consistent with the SCAQMD Regulation XIII definition of a significant impact.

TABLE 3-5: SCAQMD DAILY OPERATIONAL EMISSIONS THRESHOLDS					
Criteria Pollutant	Pounds Per Day				
Volatile Organic Compounds (VOC)	55				
Nitrogen Oxides (NO _x)	55				
Carbon Monoxide (CO)	550				
Sulfur Oxides (SO _x)	150				
Fine Particulates (PM _{2.5})	55				
Particulates (PM ₁₀)	150				
SOURCE: SCAQMD, 2007					

Cumulative Significance Criteria

Based on SCAQMD guidance, the Project would have a significant cumulative impact if:

• The ratio of daily Project-related employment vehicle miles traveled to daily countywide vehicle miles traveled would exceed the ratio of Project-related employment to countywide employment.

3.5 ENVIRONMENTAL IMPACTS

3.5.1 Construction Phase

Regional Impacts

Construction of the Project (i.e., demolition of the existing 90,000-square-foot building; replacement of the 90,000 square feet of floor area that will be demolished; construction of the remaining entitlement under the existing 1993 Master Plan, which consists of 170,650 square feet of floor area; and construction of 200,000 square feet of net new additional floor area) has the potential to create air quality impacts through the use of heavy-duty equipment, haul/delivery truck trips, worker commute trips, and fugitive dust from excavation and grading activity. Based on the size of the Project Site and the type of development that is being proposed, the following conservative assumptions were used in this air quality analysis:

- Use of seven pieces of equipment operating simultaneously for eight hours during each day of construction;
- Generation of 2,000 cubic yards of demolition debris per day over a four to five week period for demolition of the Existing Building;
- A maximum disturbed area of two acres per day during excavation and/or grading;
- Generation of 100 delivery/haul truck trips per day;
- 100 workers per day; and
- Application of architectural coating over a six-month time period.

Although construction of the West Tower may not be initiated until Year 2018 or later, the construction emissions for the Project were analyzed for Year 2010. This year represents a conservative, "worst-case" maximum emissions scenario because harmful equipment and vehicle exhaust emissions will decrease in future years due to improved emissions technology

and legislative and regulatory mandates. Construction activity, including demolition, is assumed to occur over an approximate 36-month time period. Per URBEMIS2007, fugitive dust emissions were calculated based on emission rate of 20 pounds per disturbed acre. In addition, no overlap between operation and construction of the Project was assumed. Overlap between construction activities (e.g., demolition and grading activities occurring simultaneously or grading and building construction activities occurring simultaneously) also is not anticipated since each stage must be completed in order to allow for the next stage to begin.

Table 3-6 shows the estimated maximum unmitigated daily construction emissions associated with the demolition of the existing 90,000-square-foot building, replacement of the 90,000 square feet of floor area that will be demolished, the construction of the 170,650 square feet of floor area from a previously approved 1993 Master Plan, and the construction of the 200,000 square feet of net new additional floor area. Daily PM_{10} emissions identified in **Table 3-6** assume compliance with SCAQMD Rule 403 and the mitigation measures that were adopted in connection with the approval of the 1993 Master Plan. It is mandatory for all construction projects in SCAB to comply with SCAQMD Rule 403 for Fugitive Dust.

As shown in **Table 3-6**, daily construction emissions would not exceed the significance thresholds for CO, SO_X , $PM_{2.5}$, and PM_{10} . However, the maximum daily construction emissions would exceed the significance thresholds for VOC and NO_X due primarily to architectural coating and haul truck emissions. As such, the Project would result in a short-term construction air quality impact from VOC and NO_X emissions without implementation of mitigation measures.

Localized Impacts

As explained above, emissions for the localized construction air quality analysis of $PM_{2.5}$, PM_{10} , CO, and NO_2 were compiled using LST methodology promulgated by the SCAQMD. Localized on-site emissions were calculated using similar methodology and assumptions as were used in the regional emission calculations. On-site emissions are generated by the use of heavy-duty construction equipment and fugitive dust, as discussed under "Regional Impacts," above.

Table 3-6 shows the estimated localized emissions associated with construction. As shown, localized construction emissions would not exceed the SCAQMD localized thresholds for NO_X or CO. However, localized construction emissions would exceed the significance thresholds for $PM_{2.5}$ and PM_{10} , and, as such, localized construction emissions would result in a short-term air quality impact without implementation of mitigation measures.

	Pounds Per Day						
	VOC	NOx	со	SOx	PM _{2.5} /a/	PM ₁₀ /a/	
Daily Demolition Emissions	69	234	154	<1	29	91	
Daily Grading/Excavation Emissions	69	234	154	<1	28	84	
Daily Building Construction Emissions	79	70	33	<1	3	3	
Maximum Daily Emissions	79	234	154	<1	29	91	
SCAQMD Regional Significance Threshold	75	100	550	150	55	150	
Exceed Threshold?	Yes	Yes	No	No	No	No	
Maximum On-Site Total	79	70	27	<1	19	80	
Localized Significance Threshold /b/		208	658		4	19	
Exceed Threshold?		No	No		Yes	Yes	

/b/ The localized significance thresholds were developed using a two-acre Project Site and a 25-meter (82-foot) receptor distance.

SOURCE: TAHA, 2008 (see Appendix D)

Toxic Air Contaminant Impacts

Asbestos-containing materials (ACMs) were widely used in structures built between 1945 and 1980. Lead-based paint was primarily used from the 1920s through 1978. According to the Los Angeles County Office of the Assessor, the existing building on the Project Site was built in 1947. Thus, the existing building, which would be demolished as part of the Project, is likely to have ACMs and lead-based paint. Demolition activities have the potential to result in the accidental release of ACMs and lead into the atmosphere. As such, demolition activities may potentially result in significant impacts without implementation of mitigation measures addressing ACMs and lead-based paint.

The greatest potential for TAC emissions during grading/excavation and building construction activities would be diesel particulate emissions associated with heavy equipment operations. According to SCAQMD methodology, health effects from carcinogenic air toxics are usually described in terms of individual cancer risk. "Individual Cancer Risk" is the likelihood that a person continuously exposed to concentrations of TACs over a 70-year lifetime will contract cancer based on the use of standard risk assessment methodology. Assuming a short-term construction schedule of approximately 36 months, the Project would not result in a long-term (i.e., 70 years) source of TAC emissions, or to long-term exposure of TAC emissions. The associated risk would be below the carcinogenic risk of ten chances in a population of one million people and below the noncarcinogenic health hazard index value of 1.0. Thus, less-than-significant impacts associated with carcinogenic air toxics are anticipated.

Odor Impacts

Potential sources that may emit odors during construction activities include equipment exhaust and architectural coatings. Odors from these sources would be localized and generally confined to the Project Site. The Project would utilize typical construction techniques, and the odors would be typical of most construction sites and temporary. In addition, the Project would comply with regulations contained in SCAQMD Rule 402 (Nuisance). As such, construction odors would result in a less-than-significant impact.

Construction Phase Mitigation Measures

Mitigation Measures **AQ1** through **AQ9** would ensure compliance with SCAQMD Rule 403. These mitigation measures shall be implemented for all areas (both on-site and off-site) of construction activity.

- **AQ1** Water or a stabilizing agent shall be applied to exposed surfaces in sufficient quantity to prevent generation of dust plumes.
- **AQ2** Track-out shall not extend 25 feet or more from an active operation, and track-out shall be removed at the conclusion of each workday.
- **AQ3** A wheel washing system shall be installed and used to remove bulk material from tires and vehicle undercarriages before vehicles exit the Project Site.
- AQ4 All haul trucks hauling soil, sand, and other loose materials shall maintain at least six inches of freeboard in accordance with California Vehicle Code Section 23114.
- **AQ5** All haul trucks hauling soil, sand, and other loose materials shall be covered (e.g., with tarps or other enclosures that would reduce fugitive dust emissions).
- **AQ6** Traffic speeds on unpaved roads shall be limited to 15 miles per hour.
- **AQ7** Operations on unpaved surfaces shall be suspended when winds exceed 25 miles per hour.
- **AQ8** Heavy equipment operations shall be suspended during first and second stage smog alerts.
- AQ9 On-site stock piles of debris, dirt, or rusty materials shall be covered or watered at least twice per day.
- AQ10 Contractors shall utilize electricity from power poles rather than temporary diesel or gasoline generators, as feasible.
- **AQ11** Architectural coating shall have a low VOC content, per SCAQMD guidance.
- AQ12 Prior to issuance of demolition permits, an asbestos and lead-based paint survey shall be conducted. If ACMs are detected, these materials shall be removed by a licensed abatement contractor and in accordance with all applicable federal, State, and local regulations, including SCAQMD Rule 1403 prior to demolition. If lead-based paint is

identified, federal and State construction worker health and safety regulations (including applicable CalOSHA and USEPA regulations) shall be followed during demolition activities. Lead-based paint shall be removed by a qualified lead abatement contractor and disposed of in accordance with existing hazardous waste regulations. If lead-based paint is identified on the building structure to be demolished, near-surface soil samples shall be collected around the structure to determine the potential for residual soil lead contamination, and appropriate remediation shall be completed prior to building construction.

The Project would also be required to comply with any applicable mitigation measures adopted in connection with the approval of the 1993 Master Plan, which includes the following:

- Haul trucks shall be staged in a non-residential area and called to the site by radio dispatch.
- Diesel-powered equipment shall be located as far as feasible from existing sensitive receptors on the Master Plan site.
- A temporary wall of sufficient height to reduce windblown dust shall be erected on the perimeter of the construction site.
- Ground wetting shall be required (SCAQMD Rule 403 for dust control) during grading and construction.
- Contractors shall cover any stockpiles of soil, sand, and similar materials.
- Construction equipment shall be shut off to reduce idling when not in direct use for extended periods of time.
- Low sulfur fuel should be used for construction equipment.
- Contractors will discontinue construction activities during second stage smog alerts.

Impacts After Mitigation

Mitigation Measures **AQ1** through **AQ9** would ensure compliance with SCAQMD Rule 403. Implementation of Mitigation Measures **AQ1** through **AQ9** would reduce fugitive dust emissions by approximately 61 percent so that daily $PM_{2.5}$ and PM_{10} emissions would be less than the SCAQMD threshold of 150 pounds per day. Mitigation Measure **AQ11** would reduce VOC from architectural coating by 10 percent. As demonstrated in **Table 3-7**, regional construction emissions of VOC, CO, SO_X, PM_{2.5} and PM₁₀ would be less than the SCAQMD significance thresholds. However, a significant and unavoidable regional NO_X impact would occur during the maximum estimated construction phase of 36 months.

Localized construction emissions of NO_X and CO would be less than the localized significance thresholds. However, a significant and unavoidable localized $PM_{2.5}$ and PM_{10} impact would occur.

Implementation of Mitigation Measure **AQ12** would ensure proper removal of ACMs and leadbased paint. Thus, a less-than-significant impact associated with TACs is anticipated with implementation of Mitigation Measure **AQ12**.

		Pounds Per Day						
	VOC	NOx	СО	SOx	PM _{2.5} /a/	PM ₁₀ /a/		
Daily Demolition Emissions	69	234	154	<1	29	91		
Daily Excavation/Grading Emissions	69	234	154	<1	28	84		
Daily Building Construction Emissions	71	70	33	<1	3	3		
Maximum Daily Emissions	71	234	154	<1	29	91		
SCAQMD Regional Significance Threshold	75	100	550	150	55	150		
Exceed Threshold?	No	Yes	No	No	No	No		
Maximum On-Site Total	71	70	27	<1	19	80		
Localized Significance Threshold /b/		208	658		4	19		
Exceed Threshold?		No	No		Yes	Yes		

/a/ Assumes implementation of SCAQMD Rule 403 and the mitigation measures that were adopted in connection with the Master Plan. Implementation of SCAQMD Rule 403 would reduce PM dust emissions by approximately 61%.

/b/ The localized significance thresholds were developed using a two-acre Project Site and a 25-meter (82-foot) receptor distance.

SOURCE: TAHA, 2008 (see Appendix D)

3.5.2 Operational Phase

Regional Impacts

Long-term Project emissions would be generated by area sources, such as natural gas combustion and consumer products (e.g., aerosol sprays) and mobile sources. Motor vehicles generated by the Project would be the predominate source of long-term Project emissions. According to the traffic report, the 200,000-square-foot new addition, or 100 beds, would generate 1,181 daily vehicle trips per day. Concurrently, the 170,650 square feet remaining under the 1993 Master Plan entitlement would generate 5,324 daily vehicle trips per day.³⁷ These trips were analyzed in the Original EIR. The 90,000 square feet of floor area associated with the Existing Building would result in vehicle trip volumes similar to what is currently generated.

Mobile and area source emissions were estimated using URBEMIS2007, assuming a Year 2023 operational date, by which time the Project would be fully operational and fully occupied. The Project would be required to comply with any applicable mitigation measures adopted in connection with the approval of the 1993 Master Plan, which includes implementing a Transportation Demand Management program consistent with the provisions of SCAQMD Regulation XV.

³⁷Linscott, Law & Greenspan Engineers, *Traffic Impact Study: Cedars-Sinai Medical Center Project*, March 6, 2008.

Daily operational emissions for year 2023 are shown in **Table 3-8**. As shown, regional operational emissions from area sources and from mobile sources would not exceed SCAQMD significance thresholds for the 200,000-square-foot new addition, the remaining 1993 Master Plan, the Existing Building equivalent, or the total West Tower. As such, the Project would result in a less-than-significant impact.

	Pounds per Day							
Emission Source	VOC	NOx	со	SOx	PM _{2.5}	PM 10		
SCAQMD Regional Threshold	55	55	550	150	55	150		
New 200,000-Square-Foot Additi	on							
Mobile Sources	5	7	63	<1	4	20		
Area Sources /a/	<1	<1	2	<1	<1	<1		
Total Emissions	5	7	65	<1	4	20		
Exceed Threshold?	No	No	No	No	No	No		
Remaining 1993 Master Plan Ent	itlement (17	0,650-square	-foot additior	ı)				
Mobile Sources	23	33	282	<1	18	90		
Area Sources /a/	<1	1	3	<1	<1	<1		
Total Emissions	23	34	285	<1	18	90		
Exceed Threshold?	No	No	No	No	No	No		
Existing Building Equivalent (90	,000 square	feet of floor a	area)	-				
Mobile Sources	7	10	84	<1	5	27		
Area Sources /a/	<1	1	2	<1	<1	<1		
Total Emissions	7	11	86	<1	5	27		
Exceed Threshold?	No	No	No	No	No	No		
Total West Tower (477,000-squa Master Plan Entitlement, and Ex	re-foot addit isting Buildi	ion from the ng equivalen	new 200,000- t)	square-foot a	ddition, remai	ining 1993		
Mobile Sources	35	50	429	<1	27	137		
Area Sources /a/	<1	2	7	<1	<1	<1		
Total Emissions	35	52	436	<1	27	137		
Exceed Threshold?	No	No	No	No	No	No		

Localized Impacts

The Project would not include substantial stationary sources of localized emissions. However, the State one- and eight-hour CO standards may potentially be exceeded at congested intersections with high traffic volumes in year 2023. Based on the traffic study, the selected intersections are as follows:

- Robertson Boulevard/Beverly Boulevard PM Peak Hour
- Robertson Boulevard/Gracie Allen Drive-Alden Drive PM Peak Hour
- Robertson Boulevard/Third Street AM Peak Hour
- Robertson Boulevard/Burton Way PM Peak Hour
- George Burns Road/Beverly Boulevard PM Peak Hour
- George Burns Road/Gracie Allen Drive-Alden Drive AM Peak Hour
- San Vicente Boulevard/Beverly Boulevard PM Peak Hour
- San Vicente Boulevard/Third Street AM Peak Hour
- San Vicente Boulevard/Burton Way PM Peak Hour
- San Vicente Boulevard/Wilshire Boulevard AM Peak Hour
- La Cienega Boulevard/Beverly Boulevard AM Peak Hour
- La Cienega Boulevard/Third Street AM Peak Hour
- La Cienega Boulevard/San Vicente Boulevard PM Peak Hour

The USEPA CAL3QHC micro-scale dispersion model was used to calculate CO concentrations for the Year 2023 "no Project" and "Project" conditions. The "no Project" conditions represent Year 2023 cumulative conditions without the implementation of the Project, but it includes the remaining entitlement under the existing 1993 Master Plan (i.e., 170,650-square-foot addition), the existing 90,000 building, Related Projects within the vicinity of the Project Site, and ambient traffic growth through Year 2023. Subsection 3.6.1 provides the cumulative impact analysis for the Project. "Project" conditions include the net addition of 200,000 square feet of medical use, or 100 beds, and Year 2023 "no Project" conditions.

CO concentrations at the 13 study intersections are shown for the peak hours in **Tables 3-9**. As indicated, one-hour CO concentrations under "Project" conditions would be approximately 2 ppm at worst-case sidewalk receptors. Eight-hour CO concentrations under "Project" conditions would range from approximately 1.2 ppm to 1.7 ppm. The State one- and eight-hour standards of 20 ppm and 9.0 ppm, respectively, would not be exceeded at the 13 study intersections. Thus, the CO hotspots analysis demonstrates that the Project would result in a less-than-significant CO hotspot impact.

CO is a gas that disperses quickly and, as a result, CO concentrations at sensitive receptor locations are expected to be much lower than CO concentrations adjacent to the roadway intersections. Additionally, the intersections were selected based on poor LOS and high traffic volumes. Sensitive receptors that are located away from congested intersections or are located near roadway intersections with better LOS would be exposed to lower CO concentrations then the concentrations presented in **Table 3-9**.

The Project would not include significant stationary sources of emissions. Therefore, localized stationary source emissions were not analyzed.

	1-hour (parts per n	nillion)	8-hour	(parts per n	nillion)
Intersection	Existing (2007)	No Project (2023)	Project (2023)	Existing (2007)	No Project (2023)	Project (2023)
Robertson Boulevard/Beverly Boulevard	5	2	2	3.5	1.3	1.3
Robertson Boulevard/Gracie Allen Drive-Alden Drive	5	2	2	3.2	1.5	1.5
Robertson Boulevard/Third Street	5	2	2	3.4	1.4	1.4
Robertson Boulevard/Burton Way	5	2	2	3.5	1.5	1.5
George Burns Road/Beverly Boulevard	5	2	2	3.5	1.4	1.4
George Burns Road/Gracie Allen Drive- Alden Drive	4	2	2	3.1	1.2	1.2
San Vicente Boulevard/Beverly Boulevard	5	2	2	3.6	1.5	1.5
San Vicente Boulevard/Third Street	5	2	2	3.6	1.5	1.5
San Vicente Boulevard/Burton Way	5	2	2	3.6	1.5	1.5
San Vicente Boulevard/Wilshire Boulevard	5	2	2	3.7	1.6	1.6
La Cienega Boulevard/Beverly Boulevard	5	2	2	3.7	1.6	1.6
La Cienega Boulevard/Third Street	5	2	2	3.6	1.5	1.5
La Cienega Boulevard/San Vicente Boulevard	6	2	2	3.9	1.7	1.7
State Standard	20			9.0		
/a/ Existing concentrations include year 2007 one- and eight-hour ambient concentrations of 4.0 ppm and 2.3 ppm, respectively. No Project and Project concentrations include year 2023 one- and eight-hour ambient concentrations of 2 ppm and 1.1 ppm, respectively. SOURCE: TAHA 2008 (Appendix C)						

Toxic Air Contaminant Impacts

The SCAQMD recommends that health risk assessments be conducted for substantial sources of diesel particulate matter emissions (e.g., truck stops and warehouse distribution facilities), which is considered to be a TAC, and has provided guidance for analyzing these mobile source diesel engine emissions.³⁸

³⁸SCAQMD, *Health Risk Assessment Guidance for Analyzing Cancer Risks from Mobile Source Diesel Emissions*, December 2002.

The Project would establish medical uses on the Project Site, including 100 new inpatient beds and associated ancillary services. The primary source of potential TACs associated with Project operations would be diesel particulate emissions from delivery trucks (e.g., truck traffic on local streets and on-site truck idling). The medical uses themselves would not generate a substantial number of new daily truck trips because the Project, like the rest of the campus, would be served by Central Services. Therefore, the number of additional heavy-duty trucks (e.g., delivery trucks) accessing the Project Site on a daily basis as a result of the Project would be minimal, and, consistent with the CARB anti-idling regulation, the trucks that do visit the site would not idle on-site for more than five minutes. Based on the limited additional TAC emissions generated by the Project, activity of the TAC sources, the Project would not be a substantial source of diesel particulate matter emissions so as to warrant the need for a health risk assessment associated with on-site activities. The associated risk would be below the carcinogenic risk of ten chances in a population of one million people and below the noncarcinogenic health hazard index value of 1.0. As such, potential TAC impacts would be less than significant.

Typical sources of acutely and chronically hazardous TACs include industrial manufacturing processes and automotive repair facilities. The Project would include any of these potential sources, although minimal emissions may result from the use of consumer products (e.g., aerosol sprays). The Project may increase the amount of medical waste incinerated on the CSMC campus. The 1993 Master Plan, which included mitigation measures to reduce reliance on hazardous materials, discussed regulations and impacts associated with medical waste incinerator (i.e., dioxin emissions). However, the CSMC has replaced the incinerator with two steam sterilizers. The steam sterilizers dispose of medical waste without generating dioxin emissions.³⁹ The significant impacts related to dioxin emissions previously disclosed in the 1993 Master Plan approval process are no longer relevant as this impact has been eliminated. As such, the Project would not release substantial amounts of TACs, and no significant impacts on human health would occur.

Odor Impacts

According to the SCAQMD *CEQA Air Quality Handbook*, land uses and industrial operations that are associated with odor complaints include agricultural uses, wastewater treatment plants, food processing plants, chemical plants, composting, refineries, landfills, dairies and fiberglass molding. The Project Site would be developed with hospital uses, not land uses that are typically associated with odor complaints. On-site trash receptacles would have the potential to create adverse odors. As trash receptacles would be located and maintained in a manner that promotes odor control, no adverse odor impacts are anticipated from these types of land uses. In addition, the Project would comply with regulations contained in SCAQMD Rule 402 (Nuisance). As such, operational odors would result in a less-than-significant impact.

Operational Phase Mitigation Measures

Operational air quality impacts would be less than significant, and no mitigation measures are required. The Project would be required to comply with any applicable mitigation measures adopted in connection with the approval of the 1993 Master Plan, which includes the following:

³⁹Health Care Without Harm, *How to Shutdown an Incinerator, A Toolkit, Part II, Chapter 7, Alternatives to Medical Waste Incineration: Stopping the Toxic Threat*, 2008.

- The Project shall implement a Transportation Demand Management program consistent with the provisions of SCAQMD Regulation XV.
- The Medical Center should reduce, to the extent possible, its reliance on hazardous materials.

The following mitigation measures were adopted in connection with the approval of the 1993 Master Plan but are not applicable to the Project since the Project would not include a waste incinerator or another component that would release substantial amounts of TACs:

- The Medical Center should analyze the effect stack design and exhaust velocity on the dispersion of air toxics.
- New exhaust systems should be designed to place vents at or above the roof level of nearby buildings.

Impacts After Mitigation

Not applicable. The Project-related operational emissions would result in a less-than-significant impact without mitigation.

3.5.3 Consistency with the Air Quality Management Plan

Criteria for determining consistency with the AQMP are defined in Chapter 12, Section 12.2 and Section 12.3 of the SCAQMD's *CEQA Air Quality Handbook*. There are two key indicators of consistency. These indicators are discussed below.

• **Consistency Criterion No. 1**: The proposed project will not result in an increase in the frequency or severity of existing air quality violations or cause or contribute to new violations, or delay the timely attainment of air quality standards or the interim emissions reductions specified in the AQMP.

Consistency Criterion No. 1 refers to violations of the CAAQS. Operational CO emissions were used for assessing local area air quality impacts because CO is primarily emitted by motor vehicles, and it does not readily react with other pollutants.⁴⁰ Based on methodologies set forth by SCAQMD, one measure to determine whether the Project would cause or contribute to a violation of an air quality standard would be based on the estimated CO concentrations at intersections that would be affected by the Project.⁴¹ The CO hotspot analysis indicates that the Project would not result in an exceedance of the State one- and eight-hour CO concentration standards. In addition, the Project would not result in long-term significant VOC, NO_X, SO_X, PM_{2.5}, or PM₁₀ impact. As such, the Project would not impede attainment of the CAAQS and would comply with Consistency Criterion No. 1.

⁴⁰SCAQMD, *CEQA Air Quality Handbook*, 1993. ⁴¹*Ibid*.

Consistency Criterion No. 2: The proposed project will not exceed the assumptions in the AQMP in 2010 or increments based on the year of project build-out phase.

The second consistency criterion requires an assessment of whether the Project would exceed the assumptions in the AQMP. A project is considered to be consistent with the AQMP if it is consistent with the population, housing, and employment assumptions that were used in the development of the AQMP.⁴²

The 2007 AQMP uses SCAG's forecasts on population and employment. The most recent SCAG Regional Transportation Plan (RTP) published at the time the 2007 AQMP was competed was the 2004 RTP.⁴³ The 2004 RTP is based on growth assumptions through 2030 developed by each of the cities and counties in the SCAG region.

SCAG divided its jurisdiction into subregions and the Project Site is located within the Los Angeles subregion. The Project would not include a residential component and would not increase population or housing in the Los Angeles subregion. However, the Project would result in an employment increase of approximately 606 persons.⁴⁴ This represents less than one percent of the 278.264 new employment growth projected in SCAG's RTP between 2007 and 2023 for the Los Angeles subregion. Housing, population, and employment growth projected for the Project would not exceed the growth forecasts for the Los Angeles subregion as adopted by SCAG. In addition, operations of the Project would not exceed the SCAQMD thresholds or the State oneand eight-hour CO standards. Thus, the Project is considered to be consistent with growth assumptions included in the AQMP, and the Project complies with Consistency Criterion No. 2.

The Project complies with Consistency Criteria No. 1 and No. 2. Therefore, the Project is consistent with the AQMP.

CUMULATIVE IMPACTS 3.6

3.6.1 SCAQMD Methodology

The SCAQMD has set forth both a methodological framework, as well as significance thresholds, for the assessment of a project's cumulative air quality impacts.⁴⁵ SCAQMD's approach is based on the AQMP forecasts of attainment of ambient air quality standards in accordance with the requirements of the federal and State Clean Air Acts. In turn, the 2007 AQMP is based on SCAG's forecasted future regional growth. As such, the analysis of cumulative impacts focuses on determining whether the Project is consistent with forecasted future regional growth.

Based on SCAQMD's methodology, a project would have a significant cumulative air quality impact if the ratio of daily project-related employment vehicle miles traveled to daily countywide vehicle miles traveled exceeds the ratio of project-related employment to countywide

⁴²SCAQMD, CEQA Air Quality Handbook, 1993.

⁴³SCAQMD, Final Socioeconomic Report for the 2007 AQMP, Page C-1, June 2007.

⁴⁴Southern California Association of Governments, *Employment Density Study Summary Report*, October 31, 2001. ⁴⁵SCAQMD, CEQA Air Quality Handbook, 1993.

employment.⁴⁶ As shown in **Table 3-10**, the Project to countywide vehicle miles traveled (VMT) ratio is not greater than the Project to countywide employment ratio. The Project would not significantly contribute to cumulative emissions and would not have a significant impact.

TABLE 3-10: CUMULATIVE AIR QUALITY ANALYSIS	
Daily Vehicle Miles Traveled For Project Employment /a/	11,589
Daily Vehicle Miles Traveled Countywide /b/	239,765,000
Daily Vehicle Miles Traveled Ratio	0.000048
Project Employment /c/	606
Countywide Employment /d/	5,458,829
Employment Ratio	0.000111
Significance Test - Daily Vehicle Miles Traveled Ratio Greater Than Employment Ratio	No
/a/ Data obtained from URBEMIS 2007. /b/ Data obtained from EMFAC2007. /c/ Employment was projected using SCAG's <i>Employment Density Summary Report</i> , 2001. /d/ Data obtained from SCAG's Regional Transportation Plan, Socioeconomic Projections, 2004. SOURCE : TAHA, 2008	

A localized CO impact analysis was also completed for cumulative traffic (i.e., Related Projects and ambient growth through 2023). When calculating future traffic impacts, the traffic consultant took 141 additional projects into consideration.⁴⁷ Thus, the future traffic Project already account for the cumulative impacts from these other projects. As shown in **Table 3-9**, the Project with cumulative traffic would not violate CO standards at local intersections. As such, the Project would not contribute to cumulative air quality impacts.

3.6.2 Global Climate Change

The SCAQMD, State, and federal agencies have not developed methodology to ascertain project-level impacts on global warming and climate change based on a project's net increase in GHGs over existing levels. Additionally, no significance thresholds have as yet been established to determine specific project effects.

Worldwide population growth and the consequent use of energy is the primary reason for GHG emission increases. The market demand for goods and services and the use of land is directly linked to population changes and economic development trends within large geographies (e.g., regional, Statewide, national, worldwide). Individual site-specific projects have a negligible effect on these macro population-driven and growth demand factors. Whether an individual site-specific project is constructed or not has little effect on GHG emissions. This is because the demand for goods and services in question would be provided in some other location to satisfy the demands of a growing population if not provided on the Project Site. The only exception to this basic relationship between population growth, development, energy consumption and GHG emissions would occur if the site-specific project (1) embodied features

⁴⁶Ibid.

⁴⁷Linscott, Law & Greenspan, Engineers, Traffic Impact Study: Cedars-Sinai Medical Center Project, March 6, 2008.

that were not typical of urban environment or developing communities, and (2) generated a disproportionate amount of vehicle miles of travel or had other unique and disproportionately high fuel consumption characteristics. The Project does not fall within these exceptions. It is a typical infill development project located in an urban area. As such, the Project would have a negligible, and less-than-significant effect on any increase in regional and national GHG emissions.

For informational purposes, **Table 3-9** shows the net carbon equivalent values associated with the Project uses. GHG emissions were calculated from mobile sources, natural gas usage, and electricity generation. As shown on **Table 3-11**, the Project would result in carbon equivalent emissions of 5,851 tons per year of CO_2 , 6 tons per year of CH_4 , and 36 tons per year of NO_2 .

	Carbon Equivalent (Tons per Year)					
Scenario	CO ₂ /a/	CH4 /b/	NO2 /b/			
Mobile Emissions	2,187	2	29			
Natural Gas Emissions	14	3	1			
Electricity Emissions	3,650	1	6			
Total Emissions	5,851	6	36			
/a/ Mobile and natural gas emissions were Registry General Reporting Protocol (Marci /b/ Emissions were obtained from <i>California</i> SOURCE: TAHA, 2008	re obtained from URBEMIS2007. Electri h 2007). a Climate Action Registry General Reportin	city emissions were obtained	from California Climate Action			

The Project would be required to comply with any applicable mitigation measures adopted in connection with the approval of the 1993 Master Plan, which includes the following:

- Conservation with the Los Angeles Department of Water and Power and [The Gas Company] to determine feasible energy conservation features that could be incorporated into the design of the Project.
- Compliance with Title 24, established by the California Energy Commission regarding energy conservation standards. Those standards relate to insulation requirements and the use of caulking, double-glazed windows, and weather stripping.
- Thermal insulation that meets or exceeds standards established by the State of California and the Department of Building and Safety should be installed in walls and ceilings.
- Tinted or solar reflected glass would be used on appropriate exposures.
- Heat-reflecting glass on the exterior-facing, most solar-exposed sides of the building, should be used to reduce cooling loads.
- Interior and exterior fluorescent, halogen, or other lighting should be used in place of less efficient incandescent lighting.
- A variable air volume system which reduces energy consumption for air cooling and heating for water heating should be used where permitted.
- Air conditioning which will have a 100 percent outdoor air economizer cycle to obtain free cooling during dry outdoor climatic periods should be used.

- Lighting switches should be equipped with multi-switch provisions for control by occupants and building personnel to permit optimum energy use.
- Public area lighting, both interior and exterior, should be used, time controlled, and limited to that necessary for safety.
- Department of Water and Power recommendations on the energy efficiency ratios of all air conditioning equipment installed should be followed.
- A carefully established and closely monitored construction schedule should be used to coordinate construction equipment movements, thus minimizing the total number of pieces of equipment and their daily movements. This would reduce fuel consumption to a minimum.

CEQA Guidelines Section 15130(b)(5)(c) states that with "some projects, the only feasible mitigation for cumulative impacts may involve the adoption of ordinances or regulations rather than the imposition of conditions on a project-by-project basis." The assessment and mitigation of cumulative impacts as they relate to global climate change fall into this category since the causes and effects are worldwide. Accordingly, the only feasible mitigation to address issues related to global warming will be CARB's adoption of regulations and thresholds pursuant to AB 32, which will be implemented by local air quality management agencies (e.g., SCAQMD), to limit GHG emissions in the State. By law, the Project would be required to comply with all AB 32-related regulations. Based on the above analysis, cumulative impacts related to global warming would be considered less than significant.

4.0 NOISE & VIBRATION

This section evaluates noise and vibration impacts associated with the implementation of the Project. The noise and vibration analysis in this section assesses the following: existing noise and vibration conditions at the Project Site and its vicinity, as well as short-term construction and long-term operational noise and vibration impacts associated with the Project. Mitigation measures for potentially significant impacts are recommended, where appropriate.

4.1 NOISE AND VIBRATION CHARACTERISTICS AND EFFECTS

4.1.1 Noise

Characteristics of Sound

Sound is technically described in terms of the loudness (amplitude) and frequency (pitch) of the sound. The standard unit of measurement for sound is the decibel (dB). The human ear is not equally sensitive to sound at all frequencies. The "A-weighted scale," abbreviated dBA, reflects the normal hearing sensitivity range of the human ear. On this scale, the range of human hearing extends from approximately three to 140 dBA.⁴⁸ **Figure 4-1** provides examples of A-weighted noise levels from common sounds.

In general, there are two types of noise sources: (1) point sources, such as stationary equipment or individual motor vehicles; and (2) line sources, such as a roadway with a large number of point sources (motor vehicles).

Noise Definitions

This noise analysis discusses sound levels in terms of Community Noise Equivalent Level (CNEL) and Equivalent Noise Level (L_{eq}).

Community Noise Equivalent Level. CNEL is an average sound level during a 24-hour period. CNEL is a noise measurement scale, which accounts for noise source, distance, single event duration, single event occurrence, frequency, and time of day. Humans perceive sound between 7:00 p.m. and 10:00 p.m. as if the sound were actually five dBA higher than if it occurred from 7:00 a.m. to 7:00 p.m. From 10:00 p.m. to 7:00 a.m., humans perceive sound as if it were 10 dBA higher due to the lower background level. Hence, the CNEL is obtained by adding an additional five dBA to sound levels in the evening from 7:00 p.m. to 10:00 p.m. and 10 dBA to sound levels in the night before 7:00 a.m. and after 10:00 p.m. Because CNEL accounts for human sensitivity to sound, the CNEL 24-hour figure is always a higher number than the actual 24-hour average.

Equivalent Noise Level. L_{eq} is the average A-weighted sound (i.e., adjusted to sensitivity range of typical human ear) level measured over a given time interval. L_{eq} can be measured over any time period, but is typically measured for 1-minute, 15-minute, or 1-hour periods. L_{eq} Is expressed in dBA.

⁴⁸City of Los Angeles, *LA CEQA Thresholds Guide*, 2006.

SOURCE: Cowan, James P., Handbook of Environmental Acoustics

FIGURE 4-1

A-WEIGHTED DECIBEL SCALE

PLANNING ASSOCIATES

Effects of Noise

Noise is generally defined as unwanted sound. The degree to which noise can impact the human environment ranges from levels that interfere with speech and sleep (annoyance and nuisance) to levels that cause adverse health effects (hearing loss and psychological effects). Human response to noise is subjective and can vary greatly from person to person. Factors that influence individual responses include the intensity, frequency, and pattern of noise, the amount of background noise present before the intruding noise, and the nature of work or human activity that is exposed to the noise source.

Audible Noise Changes

Studies have shown that the smallest perceptible change in sound level for a person with normal hearing sensitivity is approximately three dBA. A change of at least five dBA would be noticeable and would likely evoke a community reaction. A ten-dBA increase is subjectively heard as a doubling in loudness.⁴⁹

Noise levels decrease as the distance from the noise source to the receiver increases. Noise generated by a stationary noise source, or "point source," will decrease by approximately six dBA over hard surfaces and 7.5 dBA over soft surfaces for each doubling of the distance.⁵⁰ For example, if a noise source produces a noise level of 89 dBA at a reference distance of 50 feet, then the noise level would be 83 dBA at a distance of 100 feet from the noise source, 77 dBA at a distance of 200 feet, and so on. Sound generated by a line source typically attenuates (i.e., becomes less) at a rate of 3.0 dBA and 4.5 dBA per doubling of distance from the source to the receptor for hard and soft sites, respectively.⁵¹

Generally, noise is most audible when traveling by direct line-of-sight.⁵² Barriers, such as walls, berms, or buildings, that break the line-of-sight between the source and the receiver, as well as elevation differences, greatly reduces noise levels from the source since sound can only reach the receiver by bending over the top of the barrier (diffraction). Sound barriers can reduce sound levels by up to 20 dBA. However, if a barrier is not high or long enough to break the line-of-sight from the source to the receiver, its effectiveness is greatly reduced. In situations where the source or the receiver is located three meters (approximately 9.84 feet) above the ground, or whenever the line-of-sight averages more than three meters above the ground, sound levels would be reduced by approximately three dBA for each doubling of distance.⁵³

Applicable Regulations

The California Office of Noise Control has developed guidelines showing a range of noise standards for various land use categories. Cities within the state, including the City of Los Angeles, have incorporated this compatibility matrix into their General Plan noise elements.

⁴⁹Caltrans, *Technical Noise Supplement*, 1998.

⁵⁰U.S. Department of Transportation, Federal Highway Administration, *Highway Noise Fundamentals*, (Springfield, Virginia: U.S. Department of Transportation, Federal Highway Administration, September 1980), p. 97. Examples of acoustically "hard" or reflective sites include asphalt, concrete, and hard and sparsely vegetated soils. Examples of acoustically "soft" or absorptive sites include soft sand, plowed farmland, grass, crops, heavy ground cover, etc.

⁵¹U.S. Department of Transportation, Federal Highway Administration, *Highway Noise Fundamentals*, (Springfield, Virginia: U.S. Department of Transportation, Federal Highway Administration, September 1980), p. 97. ⁵²Line-of-sight is an unobstructed visual path between the noise source and the noise receptor.

⁵³Caltrans, *Technical Noise Supplement*, 1998.

This matrix is presented in **Table 4-3** and is meant to maintain acceptable noise levels in a community setting based on the type of land use. Noise compatibility by different types of land uses is ranged from "Normally Acceptable" to "Clearly Unacceptable" levels. The guidelines are used by cities within the state to help determine the appropriate land uses that could be located within an existing or anticipated ambient noise level.

In addition to the noise compatibility guidelines, the City of Los Angeles has established policies and regulations concerning the generation and control of noise that could adversely affect its citizens and noise sensitive land uses. Regarding construction, the Los Angeles Municipal Code (LAMC) indicates that no construction or repair work shall be performed between the hours of 9:00 p.m. and 7:00 a.m. on weekdays, since such activities would generate loud noises and disturb persons occupying sleeping quarters in any adjacent dwelling, hotel, apartment or other place of residence.⁵⁴ No person, other than an individual home owner engaged in the repair or construction of his/her single-family dwelling, shall perform any construction or repair work of any kind or perform such work within 500 feet of land so occupied before 8:00 a.m. or after 6:00 p.m. on any Saturday or on a federal holiday, or at any time on any Sunday. Under certain conditions, the City may grant a waiver to allow limited construction activities to occur outside of the limits described above.

The LAMC also specifies the maximum noise level of powered equipment or powered hand tools.⁵⁵ Any powered equipment or hand tool that produces a maximum noise level exceeding 75 dBA at a distance of 50 feet is prohibited. However, this noise limitation does not apply where compliance is technically infeasible. Technically infeasible means the above noise limitation cannot be met despite the use of mufflers, shields, sound barriers and/or any other noise reduction device or techniques during the operation of equipment.

4.1.2 Vibration

Characteristics of Vibration

Vibration is an oscillatory motion through a solid medium in which the motion's amplitude can be described in terms of displacement, velocity, or acceleration. Vibration can be a serious concern, causing buildings to shake and rumbling sounds to be heard. In contrast to noise, vibration is not a common environmental problem. It is unusual for vibration from sources such as buses and trucks to be perceptible, even in locations close to major roads. Some common sources of vibration are trains, buses on rough roads, and construction activities, such as blasting, pile driving, and heavy earth-moving equipment.

Measurement of Vibration

There are several different methods that are used to quantify vibration. The peak particle velocity (PPV) is defined as the maximum instantaneous peak of the vibration signal. The PPV is most frequently used to describe vibration impacts to buildings.

⁵⁴LAMC, Chapter IV, Article 1, Section 41.40, January 29, 1984 and Chapter XI, Article 2, Section 112.04, August 8, 1996.

⁵⁵LAMC, Chapter XI, Article 2, Section 112.05, August 8, 1996.
Effects of Vibration

High levels of vibration may cause physical personal injury or damage to buildings. However, in general, ground-borne vibration levels rarely affect human health. Instead, most people consider ground-borne vibration to be an annoyance that may affect concentration or disturb sleep. In addition, high levels of ground-borne vibration may damage fragile buildings or interfere with equipment that is highly sensitive to ground-borne vibration (e.g., electron microscopes).

To counter the effects of ground-borne vibration, the Federal Railway Administration (FRA) has published guidance relative to vibration impacts. According to the FRA, fragile buildings can be exposed to ground-borne vibration levels of 0.5 PPV without experiencing structural damage.⁵⁶

Perceptible Vibration Changes

In contrast to noise, ground-borne vibration is not a phenomenon that most people experience every day. Most perceptible indoor vibration is caused by sources within buildings, such as operation of mechanical equipment, movement of people, or slamming of doors. Typical outdoor sources of perceptible ground-borne vibration are construction equipment, steelwheeled trains, and traffic on rough roads. If the roadway is smooth, the vibration from traffic is rarely perceptible.

Applicable Regulations

There are no adopted state or City standards for ground-borne vibration.

4.2 EXISTING ENVIRONMENTAL SETTING

4.2.1 Existing Noise Environment

The existing noise environment of the Project area is characterized by vehicular traffic and noises typical to a dense urban area (e.g., people conversing). Vehicular traffic is the primary source of noise in the Project vicinity.

Sound measurements were taken using a Quest Q-400 Noise Dosimeter between 8:00 a.m. and 12:20 p.m. on August 7, and August 8, 2007, to ascertain existing ambient exterior daytime noise levels in the Project vicinity. These readings were used to establish existing ambient exterior noise conditions and to provide a baseline for evaluating noise impacts. Noise monitoring locations are shown in **Figure 4-2**. As shown in **Table 4-1**, existing ambient exterior sound levels range between 60.2 and 72.4 dBA (L_{eq}). Based on the Noise Element of the City of Los Angeles General Plan (**Table 4-3**),⁵⁷ existing noise levels at nearby residential, commercial, and medical uses are within the "conditionally acceptable" range. The conditionally acceptable noise levels for residential uses range from 55 to 70 dBA for low-density single-family residential uses, which include hospitals and medical offices, the conditionally acceptable

⁵⁶Federal Railway Administration, *High-Speed Ground Transportation Noise and Vibration Impact Assessment*, December 1998.

⁵⁷City of Los Angeles, *Noise Element of the Los Angeles City General Plan*, 1999.

LEGEND:

Project Site

Noise Monitoring Locations (#

- 1. South of Project Site
- Cedar-Sinai Medical Towers 2.
- 3. Medical Offices
- 4. Commercial Uses

5. Commercial Uses

- 6. Multi-Family Residences
- 7. Multi-Family Residences
- 8. Single-family Residences

SOURCE: TAHA, 2007

FIGURE 4-2

NOISE MONITORING POSITIONS

taha 2007-083

noise levels range from 60 to 70 dBA. No existing noise levels fall within the "normally unacceptable" range.

TABLE 4-1: EXISTING NOISE LEVELS										
Key to Figure 4-2	Noise Monitoring Location	Sound Level (dBA, L _{eq})								
1	Gracie Allen Drive-Alden Drive, South of Project Site (Commercial Uses)	65.8								
2	George Burns Road, East of Project Site (Medical Uses)	65.2								
3	Beverly Boulevard, North of Project Site (Commercial Uses)	70.5								
4	Robertson Boulevard, West of Project Site (Commercial Uses)	72.4								
5	Third Street, South of Project Site (Commercial Uses)	71.5								
6	Hamel Road, Southeast of Project Site (Residential)	60.2								
7	Clark Drive/Gracie Allen Drive-Alden Drive, West of Project Site (Residential)	61.1								
8	Bonner Drive, North of Project Site (Residential)	55.4								
SOURCE: TAHA, 2008										

4.2.2 Existing Vibration Environment

Similar to the environmental setting for noise, the vibration environment is dominated by traffic from nearby roadways. Heavy trucks can generate ground-borne vibrations that vary depending on vehicle type, weight, and pavement conditions. Existing ground-borne vibration in the Project vicinity is largely related to heavy truck traffic on the surrounding roadway network. Based on field observations, vibration levels from adjacent roadways are not perceptible at the Project Site.

4.2.3 Sensitive Receptors

Noise- and vibration-sensitive land uses are locations where people reside or where the presence of unwanted sound could adversely affect the use of the land. Residences, schools, hospitals, guest lodging, libraries, and some passive recreation areas would each be considered noise- and vibration-sensitive and may warrant unique measures for protection from intruding noise. As shown in **Figure 3-3**, sensitive receptors near the Project Site include the following:

- Medical office building located adjacent and to the north of the Project Site
- Cedars-Sinai Buildings (including the North and South Patient Towers and medical offices) located approximately 50 feet east and southeast of the Project Site
- Single-family residences located along Bonner Drive approximately 400 feet north of the Project Site
- Multi-family residences located along Clark Drive approximately 475 feet west of the Project Site
- Multi-family residences located along Burton Way approximately 975 feet south of the Project Site

The above sensitive receptors occupy the nearest residential and medical land uses with the potential to be impacted by the Project. Additional single-family residences and multi-family residences are located in the surrounding community within one-quarter mile of the Project Site. These land uses would be impacted to a lesser degree than the identified sensitive receptors, as they are farther away from the Project Site.

4.2.4 Vehicular Traffic

As stated earlier, vehicular traffic is the predominant noise source in the Project vicinity. Using existing traffic volumes provided by the Project traffic consultant and the Federal Highway Administration (FHWA) RD-77-108 noise calculation formulas, CNEL was calculated for roadway segments that would be most affected by the Project. **Table 4-2** presents the existing mobile noise levels at the affected roadway segments, as well as the land uses adjacent to the analyzed roadway segments. As shown in **Table 4-2**, existing mobile noise levels in the Project area range from 64.0 to 72.9 dBA (CNEL). Modeled vehicle noise levels are typically lower than the noise measurements along similar roadway segments as modeled noise levels do not take into account additional noise sources (e.g., pedestrians).

4.3 METHODOLOGY AND SIGNIFICANCE CRITERIA

4.3.1 Methodology

The noise measurements that were used to characterize existing ambient exterior daytime noise levels in the Project vicinity (Subsection 4.2.1) were used to assess construction and operational noise impacts. The noise level during the construction period at each receptor location was calculated by (1) making a distance adjustment to the construction source sound level and (2) logarithmically adding the adjusted construction noise source level to the ambient noise level.

To estimate operational noise impacts, the traffic report prepared by Linscott, Law & Greenspan was used to identify the roadway segments that would be most affected by the Project.⁵⁸ The FHWA RD-77-108 noise calculation formulas were used to calculate the CNEL for the affected roadway segments.

The Federal Transit Authority, *Transit Noise and Vibration Impact Assessment* (April 1995) was used to identify the potential vibration sources that are associated with the Project and to estimate the potential vibration levels at various distances of the Project Site.

⁵⁸Linscott, Law & Greenspan, Engineers, *Traffic Impact Study: Cedars-Sinai Medical Center Project*, March 6, 2008.

TABLE 4-2: EXISTING ESTIMATED COMMONITY NOISE EQUIVALENT	LEVEL/a/
Roadway Segment (Adjacent Uses)	Estimated CNEL dBA /b/
Beverly Boulevard from Robertson Boulevard to George Burns Road (Commercial and Single-family uses)	71.9
Beverly Boulevard from George Burns Road to San Vicente Boulevard (Commercial uses)	71.9
Beverly Boulevard from San Vicente Boulevard to La Cienega Boulevard (Commercial uses)	72.9
Robertson Boulevard from Beverly Boulevard to Gracie Allen Drive-Alden Drive (Commercial uses)	69.8
Robertson Boulevard from Gracie Allen Drive-Alden Drive to Third Street (Commercial uses)	66.7
George Burns Road from Beverly Boulevard to Gracie Allen Drive-Alden Drive (Medical uses)	67.0
George Burns Road from Gracie Allen Drive-Alden Drive to Third Street (Medical uses)	67.6
Gracie Allen Drive-Alden Drive from Robertson Boulevard to George Burns Road (Medical uses)	65.2
Third Street from Robertson Boulevard to George Burns Road (Medical and Commercial uses)	65.7
Third Street from George Burns Road to Sherbourne Drive (Medical and Commercial uses)	70.5
La Cienega Boulevard from Wilshire Boulevard to Third Street (Residential and Commercial uses)	69.0
/a/ The predicted CNEL were calculated as peak hour Leg and converted into CNEL using the California Dep	partment of Transportation Technical

Noise Supplement (October 1998). The conversion involved making a correction for peak hour traffic volumes as a percentage of average daily traffic and a nighttime penalty correction. The peak hour traffic was assumed to be ten percent of the average daily traffic. /b/ CNEL is at 50 feet from the roadway right-of-way.

SOURCE: TAHA, 2008 (Appendix G)

4.3.2 Significance Criteria

Based on the City of Los Angeles Noise Ordinance (LAMC Chapter XI), the City of Los Angeles *LA CEQA Thresholds Guide* (2006) and the State Land Use Compatibility Matrix (**Table 4-3**),⁵⁹ the Project would result in significant noise impacts if it would generate noise levels in excess of the following thresholds.

Construction Phase Significance Criteria

A significant construction noise impact would result if:

• Construction activity would occur outside of the hours permitted by the City's noise ordinance (i.e., between the hours of 9:00 p.m. and 7:00 a.m. on weekdays, before 8:00 a.m. or after 6:00 p.m. on Saturday, or anytime on Sunday);

⁵⁹California Office of Noise Control, Department of Health Services.

- Construction activity would occur within 500 feet of a residential zone on Saturday unless an after-hours construction permit has been issued by the City. An after-hours permit could be issued by the City for low noise level construction activities (e.g., painting and interior improvements); or
- Construction activity would exceed existing ambient exterior noise levels by 5 dBA or more at a noise sensitive use.

Operational Phase Significance Criteria

A significant operational noise impact would result if:

• The Project causes the ambient noise level measured at the property line of the affected uses to increase by three dBA CNEL to or within the "normally unacceptable" or "clearly unacceptable" category (Table 4-3) or any five-dBA or more increase in noise level. As shown in **Table 4-3**, "normally unacceptable" ranges from 70 to 75 dBA CNEL for single-family and multi-family residences, and 70 to 80 dBA CNEL for medical uses, which include hospitals and medical offices. "Clearly unacceptable" ranges from 70 to 85 dBA CNEL or greater for single-family and multi-family residences, and 80 dBA CNEL or greater for single-family and multi-family residences.

Ground-borne Vibration Significance Criteria

There are no adopted State or City of Los Angeles ground-borne vibration standards. Based on federal guidelines, the Project would result in a significant construction or operational vibration impact if:

• The Project would expose buildings to the FRA fragile building damage threshold level of 0.5 PPV.⁶⁰

4.4 ENVIRONMENTAL IMPACTS

4.4.1 Noise Impacts

Construction Phase Noise Impacts

Construction of the Project would result in temporary increases in ambient noise levels in the Project area on an intermittent basis. The increase in noise would likely result in a temporary annoyance to nearby residents during the construction period. Noise levels would fluctuate depending on equipment type and duration of use, distance between the noise source and receptor, and presence or absence of noise attenuation barriers. Construction and operations of the Project is not expected to overlap. As such, occupants of the Project would not be exposed to Project-related construction noise.

Construction activities require the use of numerous noise-generating equipment, such as jack hammers, pneumatic impact equipment, saws, pile drivers, and tractors. Typical noise levels from various types of equipment that may be used during construction are listed in **Table 4-4**. The table shows noise levels at distances of 50 feet from the construction noise source.

⁶⁰Federal Railway Administration, *High-Speed Ground Transportation Noise and Vibration Impact Assessment*, December 1998.

Community Noise Exposure (dBA, CNE											
Land Use Category	55	60	65	70	75	80					
Residential - Low Density Single-Family, Duplex, Mobile Homes	-										
Residential - Multi-Family											
Transient Lodging - Motels Hotels											
Schools, Libraries, Churches, Hospitals, Nursing											
Auditoriums, Concert Halls, Amphitheaters											
Sports Arena, Outdoor Spectator Sports											
Playgrounds, Neighborhood Parks											
Golf Courses, Riding Stables, Water Recreation,											
Office Buildings, Business Commercial and Professional											
Industrial, Manufacturing, Utilities, Agriculture											

Normally Acceptable - Specified land use is satisfactory, based upon the assumption that any buildings involved are of normal conventional construction without any special noise insulation requirements.

Conditionally Acceptable - New construction or development should be undertaken only after a detailed analysis of the noise reduction requirements is made and needed noise insulation features included in the design. Conventional construction, but with closed windows and fresh air supply system or air conditionally will normally suffice.

Normally Unacceptable - New construction or development should generally be discouraged. If new construction or development does proceed, a detailed analysis of the noise reduction requirements must be made and needed noise insulation features included in the design.

Clearly Unacceptable - New construction or development should generally not be undertaken.

SOURCE: California Office of Noise Control, Department of Health Services

TABLE 4-4: NOISE LEVEL OF TYPICAL CO	
Noise Source	Noise Level (dBA) at 50 feet
Front Loader	73-86
Trucks	82-95
Cranes (moveable)	75-88
Cranes (derrick)	86-89
Saws	72-82
Pneumatic Impact Equipment	83-88
Jackhammers	81-98
Concrete Pumps	81-85
Generators	71-83
Compressors	75-87
Concrete Mixers	75-88
Backhoe	73-95
Pile Driving (peaks)	95-107
Tractor	77-98
Scraper/Grader	80-93
Paver	85-88
Caisson Drilling	84
SOURCE: USEPA, Noise from Construction Equipment and Op Transit Administration, Transit Noise and Vibration Impact Assess	erations, Building Equipment and Home Appliances, PB 206717, 1971; Federal ment FTA-VA-90-1003-06 May 2006

Whereas **Table 4-4** shows the noise level of each equipment, the noise levels shown in **Table 4-5** take into account the likelihood that more than one piece of construction equipment would be in operation at the same time and lists the typical overall noise levels that would be expected for each phase of construction. These noise levels are based on surveys conducted by the USEPA in the early 1970s. Since 1970, regulations have been enforced to improve noise generated by certain types of construction equipment to meet worker noise exposure standards. However, many older pieces of equipment are still in use. Thus, the construction phase noise levels indicated in **Table 4-5** represent worst-case conditions. As the table shows, the highest noise levels are expected to occur during the grading/excavation and finishing phases of construction. The noise source is assumed to be generating a noise level of 89 dBA at a reference distance of 50 feet.

TABLE 4-5: OUTDOOR CONSTRUCTION NOISE LEVELS							
Construction Phase	Noise Level At 50 Feet (dBA)						
Ground Clearing	84						
Grading/Excavation	89						
Foundations	78						
Structural	85						
Finishing	89						
SOURCE: Environmental Protection Agency, Noise from Construction Ec 206717, 1971.	quipment and Operations, Building Equipment and Home Appliances, PB						

The noise level during the construction period at each receptor location was calculated by (1) making a distance adjustment to the construction source sound level and (2) logarithmically adding the adjusted construction noise source level to the ambient noise level. The estimated construction noise levels at sensitive receptors are shown in **Table 4-6**. The construction noise levels presented in **Table 4-6** are applicable to the 200,000 square feet of new addition, the demolition and construction of the 90,000-square-foot floor area from the Existing Building, and the 170,650-square-foot addition that is entitled under the 1993 Master Plan. The Project would be required to implement the mitigation measures that were adopted in connection with the approval of the 1993 Master Plan. These mitigation measures include the following:

- Limit activities to the hours of 7:00 a.m. to 6:00 p.m., Monday through Saturday (The LAMC states that Saturday construction activity cannot start before 8:00 a.m. when located with 500 feet of a residential zone. The Project would be located within 500 feet of a residential zone and, as such, construction activity would not start before 8:00 a.m.);
- Specify quiet equipment in compliance with the applicable provisions of the City of Los Angeles Noise Ordinance No. 156,363;
- Construct a temporary noise barrier wall along the property line, where feasible, as determined by the Department of Building and Safety;
- Where temporary noise barriers are infeasible, portable noise panels to contain noise from powered tools shall be used;
- Route trucks hauling debris through non-residential areas by approval of the Department of Building and Safety;
- Specify that all sound-reducing devices and restrictions be properly maintained throughout the construction period;
- Use rubber-tired equipment rather than track equipment;
- Keep loading and staging areas on site within the perimeter protected by the recommended temporary noise barrier and away from the noise-sensitive sides of the site;
- Route trucks through non-residential areas: and
- Use alternate pile placement methods other than impact pile driving.

TABLE 4-6: CONSTRUCTION NOISE LEVELS - UNMITIGATED												
Key To Figure 4-2	Distance (feet) /a/	Maximum Construction Noise Level (dBA) /b/	Existing Ambient (dBA, L _{eq}) /c/	New Ambient (dBA, L _{eq}) /d/	Increase (dBA)							
Medical Office Building, North of Project Site	50	89.0	70.5	89.1	18.7							
Cedars-Sinai Medical Towers, East of Project Site	50	89.0	65.2	89.0	23.8							
Single-Family Residences on Bonner Drive, North of Project Site	400	70.9	55.4	71.1	15.7							
Multi-Family Residences on Clark Drive, West of Project Site	475	64.5/e/	61.1	66.1	5.0							
Multi-Family Residences on Burton Way, South of Project Site	975	58.2/e/	60.2	65.0	4.8							

/a/ Distance of noise source from receptor.

/b/ Construction noise source's sound level at receptor location, with distance and building adjustment.

/c/ Pre-construction activity ambient sound level at receptor location.

/d/ New sound level at receptor location during the construction period, including noise from construction activity.

/e/ Includes a five-dBA reduction for intervening buildings.

SOURCE: TAHA, 2008

As shown in **Table 4-6**, construction activity would potentially increase ambient exterior noise levels at sensitive receptors by 4.8 to 23.8 dBA L_{eq} , respectively. Typical building construction provides a noise reduction of approximately 12 dBA with windows open and a minimum 26 dBA with windows closed.⁶¹ The adjacent medical offices and hospitals do not have operating windows. As such, interior noise levels at the adjacent medical offices and hospital would be approximately 63 dBA. At the nearest residential use to the Project Site (single-family residences on Bonner Drive, north of the Project Site) the interior noise levels would be approximately 59 dBA with windows open and 45 dBA with windows closed. It is important to note that construction activity would occur intermittently during the day and would not occur within noise sensitive hours (9:00 p.m. to 7:00 a.m.).

The Project would include excavation for the proposed parking structure. The excavated area would serve as a noise barrier to street-level sensitive receptors as the depth of excavation increases because noise levels are directly related to the "line-of-sight" or visibility factor of the noise source. For example, depending on the location of the sensitive receptors in relation to the excavated area, when 15 feet of excavation has occurred, construction activities within the excavated area may not be visible to street-level sensitive receptors. In addition, once the structural framing and the exterior building walls have been completed, the majority of construction activity would take place within the structure and would not substantially increase interior noise levels at sensitive receptors.

⁶¹American Society for Testing of Materials, *Standard Classification for Determination of Outdoor-Indoor Transmission Class*, 2003.

An office building is located adjacent and to the west of the Project Site. Office buildings are not typically considered to be sensitive receptors. However, it should be noted that the office building would be exposed to similar construction noise levels as the adjacent medical office building.

The noise limitation of the LAMC does not apply where compliance is technically infeasible.⁶² "Technically infeasible" means that the noise standard cannot be met despite the use of mufflers, shields, sound barriers, and/or other noise reduction devices or techniques during the operation of equipment. For example, it would not be feasible to utilize an 11-story sound blanket to reduce construction noise levels. Freestanding sound blankets and sound walls cannot extend 11 stories. Hanging a sound blanket off the side of the proposed building would interfere with construction activity. In addition, solid sound walls only block a portion of construction noise (typically 5 to 8 dBA, depending on height) from ground-level noise generators.

As shown in **Table 4-6**, noise levels related to construction activity would exceed the five-dBA significance threshold at nearby sensitive receptors, with the exception of the multi-family residences on Burton Way, south of the Project Site. As such, the Project would result in a significant impact without incorporation of mitigation measures. The significant impact would only occur intermittently over approximately 36 months (the length of construction) and would only occur when there is construction activity on the Project Site. This significant impact would occur during construction activities associated with the development of the Project and the remaining development under the 1993 Master Plan.

During construction, it is assumed that 100 delivery/haul trucks and 90 construction worker vehicles⁶³ would be traveling to and from the Project Site daily. For an eight-hour construction workday, it is assumed that approximately 12 to 13 delivery/haul trucks per hour would be traveling on the surrounding streets. It is assumed that construction worker vehicles would be traveling on the roadways during the AM and PM peak hours. The construction worker vehicles would be distributed throughout the roadways within the vicinity of the Project Site. Generally, noise levels increase by three dBA when the number of similar noise sources double.⁶⁴ When compared to the traffic volumes identified in the traffic report, the increase in delivery/haul trucks and construction worker vehicle trips are not anticipated to double the amount of traffic that currently exist in the surrounding area. As such, the increase in delivery/haul trucks and worker vehicles in the surrounding roadways is not anticipated to incrementally increase noise levels in the surrounding area by three dBA or more.

Construction Phase Noise Mitigation Measures

The following feasible mitigation measures would reduce construction noise levels at sensitive receptors.

N1 Construction contracts shall specify that all construction equipment be equipped with mufflers and other suitable noise attenuation devices.

⁶²City of Los Angeles, *LAMC, Chapter IX, Article 2, Section 122.05.*

⁶³Assumes 100 construction workers per day with an average vehicle ridership of 1.1.

⁶⁴Caltrans, *Technical Noise Supplement*, 1998.

- **N2** Grading and construction contractors shall use quieter equipment as opposed to noisier equipment (such as rubber-tired equipment rather than track equipment).
- **N3** Barriers such as plywood structures or flexible sound control curtains extending eight feet in height shall be erected around the perimeter of the Project Site to the extent feasible, to minimize the construction noise.
- **N4** Flexible sound control curtains shall be placed around drilling apparatus and drill rigs used within the Project Site, to the extent feasible.
- **N5** The construction contractor shall establish designated haul truck routes. The haul truck routes shall avoid noises sensitive receptors, including, but are not limited to residential uses and schools.
- **N6** All residential units located within 2,000 feet of the construction site shall be sent a notice regarding the construction schedule of the Project. A sign, legible at a distance of 50 feet shall also be posted at the construction site. All notices and signs shall indicate the dates and duration of construction activities, as well as provide a telephone number where residents can inquire about the construction process and register complaints.
- **N7** The construction contractor shall establish a "noise disturbance coordinator" shall be established. The disturbance coordinator shall be responsible for responding to any local complaints about construction noise. The disturbance coordinator would determine the cause of the noise complaint (e.g., starting too early, bad muffler, etc.) and would be required to implement reasonable measures such that the complaint is resolved. All notices that are sent to residential units within 2,000 feet of the construction site and all signs posted at the construction site shall list the telephone number for the disturbance coordinator.

The Project would be required to comply with any applicable mitigation measures adopted in connection with the approval of the 1993 Master Plan. These mitigation measures were listed above in the construction analysis.

Impacts After Mitigation

Mitigation Measures **N1** and **N3** would each reduce construction noise levels by approximately 5 to 10 dBA.⁶⁵ The other mitigation measures would assist in attenuating construction noise levels. The noise disturbance coordinator (Mitigation Measure **N7**) would endeavor to resolve all noise complaints promptly. As shown in **Table 4-7**, construction activity would potentially increase ambient noise levels at sensitive receptors by 0.3 to 14.0 dBA L_{eq} , respectively. Construction-related noise would exceed the five-dBA significance threshold at various sensitive receptors, and, as such, the Project would result in a temporary significant and unavoidable construction noise impact.

⁶⁵USEPA, Noise from Construction Equipment and Operations, Building Equipment, and Home Appliances, 1971.

TABLE 4-7: CONSTRUCTION NOISE LEVELS - MITIGATED												
Key To Figure 4-2	Distance (feet) /a/	Maximum Construction Noise Level (dBA) /b/	Existing Ambient (dBA, L _{eq}) /c/	New Ambient (dBA, Leq) /d/	Increase (dBA)							
Medical Office Building, North of Project Site	50	79.0	70.5	79.6	9.1							
Cedars-Sinai Medical Towers, East of Project Site	50	79.0	65.2	79.2	14.0							
Single-Family Residences on Bonner Drive, North of Project Site	400	60.9	55.4	62.0	6.6							
Multi-Family Residences on Clark Drive, West of Project Site	475	54.5/e/	61.1	62.0	0.9							
Multi-Family Residences on Burton Way, South of Project Site	975	48.2/e/	60.2	60.5	0.3							

/a/ Distance of noise source from receptor.

/b/ Construction noise source's sound level at receptor location, with distance and building adjustment.

/c/ Pre-construction activity ambient sound level at receptor location.

/d/ New sound level at receptor location during the construction period, including noise from construction activity.

/e/ Includes a five-dBA reduction for intervening buildings.

SOURCE: TAHA, 2008

Operational Phase Noise Impacts

Vehicular Noise. The predominant long-term noise source for the Project is vehicular traffic. According to the traffic report prepared by Linscott, Law & Greenspan, the Project, the 200,000-square-foot new addition, or 100 beds, would generate 1,181 daily vehicle trips.⁶⁶ The remaining square footage allowed under the 1993 Master Plan (i.e., the 170,650-square-foot addition) would generate 5,324 daily vehicle trips per day.⁶⁷ No net change in traffic associated with the 90,000-square-foot Existing Building was assumed.

To ascertain off-site noise impacts, traffic was modeled under future year (2023 or year of the Project build out) "no Project" and "with Project" conditions utilizing FHWA RD-77-108 noise calculation formulas. The "no Project" conditions include the remaining square footage allowed under the 1993 Master Plan (i.e., 170,650-square-foot addition), as well as Related Projects within the vicinity of the Project Site. "Project" conditions include the Project (i.e., addition of an equivalent of 200,000 square feet of medical uses, or 100 beds, the square footage from the 1993 Master Plan, and Related Projects within the vicinity of the Project Site.

⁶⁶Linscott, Law & Greenspan Engineers, *Traffic Impact Study: Cedars-Sinai Medical Center Project*, March 6, 2008.

⁶⁷Linscott, Law & Greenspan Engineers, *Traffic Impact Study: Cedars-Sinai Medical Center Project*, March 6, 2008.

Results of the analysis are summarized in **Table 4-8**. The greatest Project-related noise increase would be 0.4 dBA CNEL and would occur along Gracie Allen Drive-Alden Drive between Robertson Boulevard and George Burns Road. Roadway noise levels attributed to the Project would increase by less than three dBA CNEL at all other analyzed segments.

Mobile noise generated by the Project would not cause the ambient noise level measured at the property line of the noise-sensitive receptor sites to increase by three dBA CNEL to or within the "normally unacceptable" or "clearly unacceptable" category (**Table 4-3**) or any five dBA or more increase in noise level. The Project would result in a less-than-significant mobile source noise impact.

Siren Noise. Siren noise from emergency vehicles leaving from and arriving at the West Tower would constitute a short-term and intermittent noise source. However, the Los Angeles Municipal Code, Chapter XI Noise Regulation, Article I and II, exempts any emergency vehicle noise generated within the City limits.⁶⁸ Siren noise would be short-term and intermittent and would result in a less-than-significant impact.

Stationary Noise. Potential stationary noise sources related to the long-term operations of the Project include mechanical equipment (e.g., parking structure air vents and heating, ventilation and air conditioning [HVAC] equipment) and parking areas. Mechanical equipment may generate noise levels ranging from 48 dBA to 66 dBA. The applicable mitigation measure adopted in connection with the 1993 Master Plan include the installation of sound attenuating devices on exhaust fans, enclosing mechanical equipment, and providing sound absorbing and shielding provisions into the design of these equipment. In addition, mechanical equipment would be designed so as to be located within an enclosure or confined to the rooftop of the proposed structure. In addition, mechanical equipment would be screened from view as necessary to comply with provisions of the LAMC for on-site stationary sources. Enclosing and screening the mechanical equipment from view would reduce mechanical equipment noise levels by at least three dBA. The medical office building north of the Project Site has an existing ambient noise level of approximately 70.5 dBA, and the medical towers east of the Project Site have an existing ambient noise level of approximately 65.2 dBA. Assuming that the mechanical equipment would generate noise levels of approximately 66 dBA, the LAMC requirement to enclose and screen the mechanical equipment from view would reduce the mechanical equipment noise levels to approximately 63 dBA. As a result, the ambient noise level would incrementally increase by less than one dBA at the medical office building and by approximately two dBA at the medical towers east of the Project Site. Operation of mechanical equipment would not be anticipated to incrementally increase ambient noise levels by 5 dBA or more. Therefore, stationary noise would result in a less-than-significant impact.

⁶⁸Los Angeles Municipal Code, Chapter XI Noise Regulation, Article I and II,

http://www.amlegal.com/nxt/gateway.dll?f=templates&fn=default.htm&vid=amlegal:lamc_ca, accessed on November 20, 2007.

1.0 1 10/00	4.0	Noise
-------------	-----	-------

TABLE 4-8: 2007 AND 2023 ESTIMATED C		T NOISE EQ	UIVALEN	I LEVEL /a/					
	Estimated dBA, CNEL /b/								
Roadway Segment (Adjacent Uses)	Existing (2007)	No Project (2023)	Project (2023)	Project Impact	Cumulative Impact				
Beverly Boulevard from Robertson Boulevard to George Burns Road (Commercial and Single-family uses)	71.9	73.4	73.4	0.0	1.5				
Beverly Boulevard from George Burns Road to San Vicente Boulevard (Commercial uses)	71.9	73.6	73.6	0.0	1.7				
Beverly Boulevard from San Vicente Boulevard to La Cienega Boulevard (Commercial uses)	72.9	74.6	74.7	0.1	1.8				
Robertson Boulevard from Beverly Boulevard to Gracie Allen Drive-Alden Drive (Commercial uses)	69.8	72.5	72.5	0.0	2.7				
Robertson Boulevard from Gracie Allen Drive- Alden Drive to Third Street (Commercial uses)	66.7	69.4	69.4	0.0	2.7				
George Burns Road from Beverly Boulevard to Gracie Allen Drive-Alden Drive (Medical uses)	67.0	68.3	68.5	0.2	1.5				
George Burns Road from Gracie Allen Drive- Alden Drive to Third Street (Medical uses)	67.5	68.5	68.7	0.2	1.2				
Gracie Allen Drive-Alden Drive from Robertson Boulevard to George Burns Road (Medical uses)	64.0	66.8	67.2	0.4	3.2				
Third Street from Robertson Boulevard to George Burns Road (Medical and Commercial uses)	65.7	68.0	68.0	0.0	2.3				
Third Street from George Burns Road to Sherbourne Drive (Medical and Commercial uses)	70.5	72.6	72.7	0.1	2.2				
La Cienega Boulevard from Wilshire Boulevard to Third Street (Residential and Commercial uses)	69.0	71.0	71.1	0.1	2.1				
a/ The predicted CNEL were calculated as peak hour L and c	onverted into CN	JEL using the Calif	ornia Departme	ont of Transportat	tion Technical				

Ia/ The predicted CNEL were calculated as peak hour L_{eq} and converted into CNEL using the California Department of Transportation *Technical Noise Supplement* (October 1998). The conversion involved making a correction for peak hour traffic volumes as a percentage of average daily traffic and a nighttime penalty correction. The peak hour traffic was assumed to be ten percent of the average daily traffic. //b/ CNEL is at 50 feet from the roadway right-of-way.

SOURCE: TAHA, 2008 (Appendix G)

Parking Noise. The 1993 Master Plan included a 650-space parking structure; construction of the parking structure is associated with the implementation of the 1993 Master Plan and not considered a new development. Even so, noise monitoring at an existing parking structure south of the Project Site indicated that activity at the existing parking structure results in a noise level of approximately 65.8 dBA L_{eq} at 20 feet. Based on this monitored noise level, the adjacent medical office building to the south of the Project Site would be exposed to 65.9 dBA, or 0.1 dBA over the existing noise level. The other medical buildings (including the hospital) surrounding the Project Site would be further away from the parking structure and, thus,

incremental increases in noise levels at these buildings would be less than the adjacent medical office buildings. Additionally, the 11-story building that would be constructed for the Project would shield sensitive receptors to the east of the proposed parking structure from parking-related noise. As the parking structure activity would not incrementally increase ambient noise levels by 5 dBA or more, parking noise would result in a less-than-significant impact.

Loading Docks and Service Access Areas. The West Tower project would incorporate a loading dock and ambulatory service area. These facilities would be located in the parking structure and accessed primarily from Gracie Allen Drive. The loading dock would continue to operate between the same hours and under similar circumstances as already observed on the CSMA Campus. Because the loading dock and ambulatory service area would be internal to the parking structure, these areas would be shielded from sensitive receptors by Project structures. The structures would act as a noise barrier and would prevent increased ambient noise levels by more than 5 dBA from the proposed loading docks at off-site sensitive receptors. The Project would not result in additional noise sources due to the operation of the loading docks or ambulatory services. The Project would result in a less-than-significant operational noise impact due to loading dock or service access operations.

Land Use Compatibility. The Project would include a medical facility and parking structure and would not include any exterior useable space where a sensitive receptor might be exposed to ambient noise levels. As the Project includes no exterior useable space, the focus of land use compatibility will be an analysis of interior noise levels.

The Noise Element of the General Plan indicates that interior noise for hospitals should be 45 dBA or lower. Typical construction of building walls provides a noise reduction of approximately 26 dBA. The medical facility on the Project Site would be constructed with windows that cannot open and fresh air ventilation systems. As such, interior noise levels would be at least 26 dBA less than exterior noise levels. As shown in **Table 4-1**, the maximum exterior noise level at and adjacent to the Project Site is approximately 65.8 dBA. This would result in interior noise level of approximately 39.8 dBA. Interior noise levels would be less than the 45 dBA CNEL. Residential uses, which have lower ambient noise levels than the Project Site, would be less affected by Project-related noise since these residential uses are located farther away from the Project Site than the adjacent medical uses.

Operational Phase Noise Mitigation Measures

N8 The applicant shall conduct an acoustical analysis to confirm that materials to be used for the Project would reduce interior noise levels to 45 dBA. If the analysis determines that additional noise insulation features are required, the acoustical analysis shall identify the type of noise insulation features that would be required to reduce the interior noise levels to 45 dBA, and the applicant shall incorporate these features into the Project.

The Project would comply with any applicable mitigation measures adopted in connection with the approval of the 1993 Master Plan, which includes the following:

• Installation of sound attenuating devices on exhaust fans, enclosing mechanical equipment, and providing sound absorbing and shielding provisions into the design.

Impacts After Mitigation

The Project-related operational noise would result in a less-than-significant impact with mitigation.

4.4.2 Ground-borne Vibration Impacts

Construction Phase Ground-borne Vibration Impacts

Ground-borne vibration could occur adjacent to the medical office building north of the Project Site. As shown in **Table 4-9**, typical heavy equipment (e.g., a large bulldozer) generates vibration levels of 0.352 PPV at a distance of ten feet. Loaded haul trucks generate vibration levels of 0.300 PPV at the same distance.⁶⁹ These vibration levels would be less than the 0.5 inches per second significance threshold. As such, vibration due to construction would result in a less-than-significant impact, presuming that driven piles are not necessary for new construction. However, there is the potential that vibration levels would exceed the threshold of significance should driven piles be used for the Project. Therefore, mitigation is required to ensure that any potential impacts are reduced to a less-than-significant level.

TABLE 4-9: VIBRATION VELOCITIES FOR CONSTRUCTION EQUIPMENT											
Equipment	PPV at 10 feet (Inches/Second) /a/	PPV at 35 feet (Inches/Second) /a/	PPV at 55 feet (Inches/Second) /a/								
Pile Driver (impact)	6.000	0.916	0.465								
Pile Driver (sonic)	2.901	0.443	0.225								
Large Bulldozer	0.352	0.054	0.027								
Caisson Drilling	0.352	0.054	0.027								
Loaded Trucks	0.300	0.046	0.023								
/a/ Fragile buildings can be exposed to ground-borne vibration levels of 0.5 PPV without experiencing structural damage.											

Construction Phase Ground-borne Vibration Mitigation Measures

N9 Pile driving activity shall be limited based on the distance of vibration sensitive buildings to the Project Site. For buildings within 35 feet of pile driving activity, contractors shall use caisson drilling to drive piles. For buildings 35 to 55 feet from pile driving activity, contractors shall use sonic or vibratory pile drivers to drive piles. For buildings 55 feet and beyond pile driving activity, contractors may use impact pile drivers.

Impacts After Mitigation

Mitigation Measure **N9** would ensure that construction-related vibration would result in a lessthan-significant impact. Mitigation Measure **N9** further ensures that no adjacent building will be impacted by vibration sources during Project Site construction by restricting the distance at which pile driving activities would occur and what type of equipment may be operated at specific

⁶⁹Federal Railway Administration, *High-Speed Ground Transportation Noise and Vibration Impact Assessment*, December 1998.

distances. These restrictions would effectively reduce the potential for adjacent building damage to a less-than-significant impact.

Operational Phase Ground-borne Vibration Impacts

The Project would not include significant stationary sources of ground-borne vibration, such as heavy equipment operations. Operational ground-borne vibration in the Project vicinity would be generated by vehicular travel and delivery trucks on the local roadways. Based on field observations, vibration levels from adjacent roadways are not perceptible at the Project Site. Similar to existing conditions, traffic-related vibration levels would not be perceptible by sensitive receptors. Thus, operational vibration would result in a less-than-significant impact.

Operational Phase Ground-borne Vibration Mitigation Measures

Operational ground-borne vibration impacts would be less than significant, and no mitigation measures are required.

Impacts After Mitigation

The Project-related operational ground-borne vibration would result in a less-than-significant impact.

4.5 Cumulative Impacts

When calculating future traffic impacts, the traffic consultant took 141 additional projects into consideration. Thus, the future traffic results without and with the Project already account for the cumulative impacts from these other projects. Since the operational noise impacts are generated directly from the traffic analysis results, the future without Project and future with Project noise impacts described in this report already reflect cumulative impacts.

Table 4-9 presents the cumulative increase in future traffic noise levels at various intersections (i.e., Year 2023 "no Project "conditions plus Project traffic). The maximum cumulative roadway noise increase would be 3.2 dBA CNEL and would occur along Gracie Allen Drive-Alden Drive between Robertson Boulevard and George Burns Road in a commercial area. The cumulative roadway noise levels would exceed the three-dBA threshold increment. However, the new mobile noise level would not be within the "normally unacceptable" or "clearly unacceptable" category as shown in **Table 4-3**. Therefore, the Project would not result in a cumulatively considerable exterior and interior noise impact with respect to roadway noise.

The predominant vibration source near the Project Site is heavy trucks traveling on the local roadways. Neither the Project nor the related projects would substantially increase heavy-duty vehicle traffic near the Project Site or cause a substantial increase in heavy-duty trucks on local roadways since the Related Projects would develop residential and commercial uses that would not generate substantial amounts of heavy-duty truck trips. Related Projects would not include land uses that are associated with unusually high volumes of heavy-duty truck trips (e.g., shipping or warehouse facilities).⁷⁰ As such, the Project would not add to a cumulative vibration impact. Therefore, no significant impact from long-term noise sources would occur.

⁷⁰Linscott, Law & Greenspan Engineers, *Traffic Impact Study: Cedars-Sinai Medical Center Project*, March 6, 2008.

Appendix A

Wind and Climate Information

LOS ANGELES CIVIC CENTE, CALIFORNIA

Station:(045115) LOS ANGELES CIVIC CENTE															
From Year=1914 To Year=2007															
,	Monthly Averages				Daily E	xtrem	es	Мо	nthly	Extreme	s	Ma Tei	ax. np.	Mi Ter	in. np.
	Max.	Min.	Mean	High	Date	Low	Date	Highest Mean	Year	Lowest Mean	Year	>= 90 F	<= 32 F	<= 32 F	<= 0 F
	F	F	F	F	dd/yyyy or yyyymmdd	F	dd/yyyy or yyyymmdd	F	-	F	-	# Days	# Days	# Days	# Days
January	66.4	48.4	57.4	95	18/1971	28	04/1949	65.9	1986	46.9	1949	0.1	0.0	0.1	0.0
February	67.5	49.7	58.6	95	20/1995	34	14/1949	65.3	1995	52.7	1949	0.1	0.0	0.0	0.0
March	68.9	51.2	60.0	98	26/1988	35	04/1976	66.0	1931	54.6	1945	0.3	0.0	0.0	0.0
April	71.1	53.5	62.3	106	06/1989	39	07/1975	69.6	1992	56.0	1975	0.8	0.0	0.0	0.0
May	73.1	56.6	64.9	102	16/1967	40	12/1933	72.6	1997	58.7	1917	0.8	0.0	0.0	0.0
June	77.1	59.8	68.5	112	26/1990	49	01/1917	77.4	1981	63.4	1944	1.3	0.0	0.0	0.0
July	82.5	63.2	72.8	107	01/1985	54	09/1920	80.2	2006	66.6	1944	3.3	0.0	0.0	0.0
August	83.2	64.0	73.6	105	06/1983	53	26/1943	80.8	1983	68.1	1914	4.1	0.0	0.0	0.0
September	81.8	62.7	72.3	110	01/1955	50	22/1921	81.3	1984	64.6	1933	4.9	0.0	0.0	0.0
October	77.5	58.8	68.2	108	03/1987	41	30/1971	74.2	1983	59.7	1916	3.0	0.0	0.0	0.0
November	72.9	53.4	63.2	100	01/1966	37	28/1919	68.9	1932	58.4	1978	0.8	0.0	0.0	0.0
December	67.6	49.3	58.5	92	08/1938	30	08/1978	64.2	1939	52.6	1916	0.0	0.0	0.0	0.0
Annual	74.1	55.9	65.0	112	19900626	28	19490104	68.9	1981	60.9	1916	19.5	0.0	0.1	0.0
Winter	67.2	49.1	58.2	95	19710118	28	19490104	63.3	1986	51.0	1949	0.2	0.0	0.1	0.0
Spring	71.0	53.8	62.4	106	19890406	35	19760304	67.8	1997	57.8	1917	1.9	0.0	0.0	0.0
Summer	80.9	62.3	71.6	112	19900626	49	19170601	77.6	1981	66.4	1916	8.7	0.0	0.0	0.0
Fall	77.4	58.3	67.9	110	19550901	37	19191128	72.2	1983	61.4	1916	8.8	0.0	0.0	0.0

Period of Record General Climate Summary - Temperature

Table updated on Jul 26, 2007

For monthly and annual means, thresholds, and sums:

Months with 5 or more missing days are not considered

Years with 1 or more missing months are not considered

Seasons are climatological not calendar seasons

Winter = Dec., Jan., and Feb. Spring = Mar., Apr., and May

Summer = Jun., Jul., and Aug. Fall = Sep., Oct., and Nov.

Western Regional Climate Center, <u>wrcc@dri.edu</u>

LOS ANGELES CIVIC CENTE, CALIFORNIA

Station:(045115) LOS ANGELES CIVIC CENTE														
	From Year=1914 To Year=2007													
	Precipitation											Tota	l Snov	vfall
	Mean	High	Year	Low	Year	1 Day Max.		>= 0.01 in.	>= 0.10 in.	>= 0.50 in.	>= 1.00 in.	Mean	High	Year
	in.	in.	-	in.	-	in.	dd/yyyy or yyyymmdd	# Days	# Days	# Days	# Days	in.	in.	-
January	3.15	14.94	1969	0.00	1948	5.71	26/1956	6	4	2	1	0.0	0.3	1949
February	3.41	13.68	1998	0.00	1933	4.26	18/1914	6	5	2	1	0.0	0.0	1949
March	2.43	8.37	1983	0.00	1931	5.88	02/1938	6	4	2	1	0.0	0.0	1949
April	1.05	7.53	1926	0.00	1916	2.74	05/1926	4	2	1	0	0.0	0.2	1950
May	0.26	3.57	1921	0.00	1923	2.02	08/1977	1	1	0	0	0.0	0.0	1949
June	0.06	0.98	1999	0.00	1915	0.76	05/1993	1	0	0	0	0.0	0.0	1949
July	0.01	0.18	1986	0.00	1915	0.13	08/1991	0	0	0	0	0.0	0.0	1948
August	0.06	2.26	1977	0.00	1914	2.06	17/1977	0	0	0	0	0.0	0.0	1948
September	0.27	5.67	1939	0.00	1914	3.96	25/1939	1	0	0	0	0.0	0.0	1948
October	0.44	4.56	2004	0.00	1915	1.72	17/1934	2	1	0	0	0.0	0.0	1948
November	1.29	9.68	1965	0.00	1929	3.85	07/1966	3	2	1	0	0.0	0.0	1948
December	2.36	8.77	2004	0.00	1929	5.55	28/2004	5	4	2	1	0.0	0.0	1948
Annual	14.80	34.04	1983	3.85	1953	5.88	19380302	36	23	10	4	0.0	0.3	1949
Winter	8.92	29.11	2005	1.19	1924	5.71	19560126	18	12	6	3	0.0	0.3	1949
Spring	3.74	13.89	1983	0.00	1997	5.88	19380302	11	7	3	1	0.0	0.2	1950
Summer	0.13	2.26	1977	0.00	1915	2.06	19770817	1	0	0	0	0.0	0.0	1949
Fall	2.01	11.48	1965	0.00	1980	3.96	19390925	6	4	1	0	0.0	0.0	1948

Period of Record General Climate Summary - Precipitation

Table updated on Jul 26, 2007

For monthly and annual means, thresholds, and sums: Months with 5 or more missing days are not considered Years with 1 or more missing months are not considered

Seasons are climatological not calendar seasons

Winter = Dec., Jan., and Feb. Spring = Mar., Apr., and May

Summer = Jun., Jul., and Aug. Fall = Sep., Oct., and Nov.

WRPLOT View - Lakes Environmental Software

Appendix B SCAQMD Data

2004 AIR QUALITY SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT	
---	--

			Carb	on Mono;	<ide< th=""><th></th><th></th><th></th><th></th><th>0</th><th>Jzone</th><th></th><th></th><th></th><th></th><th>Nitro</th><th>gen Dioxi</th><th>de</th><th></th><th>sulfur Diox</th><th>ide</th></ide<>					0	Jzone					Nitro	gen Dioxi	de		sulfur Diox	ide
	<u>I</u>			ž). Days St	andard					No. D	ays Star	idard Exc	eeded							
7007		⊙ ≤ No No	ax. –	Max Conc.	Exceed Federal	ed a) <u>State</u> I	No.	Max. Conc.	Max. Conc.	Fourth High	Health Advisory	Feder	ᆁ	State ^t	ž	žö	ax onc. A	Annual verage ^{c)}	No.	Max. Conc.	Max. Conc.
Source/Receptor Area	Station	Days in of pp	Ĕ	in maa	≥ 9.5 Dpm	> 0.0 <	Days i of p	n mac	i.	Conc. ppm	≥ 0.15 ppm	> 0.12 ppm	> 0.08 ppm	 0.09 mac 	0.07 Da	ays in pp	Ę	<u>AAM</u> Conc.	Days of	n DDM	in pom
No. Location	No.	Data 1-	hour &	8-hour	3-hour	3-hour	Data	1-hour	8-hour	8-hour	1-hour	1-hour	8-hour	1-hour 8-	hour Da	ata 1-h	our c)	bpm	Data	l-hour ^{d)}	24-hour d)
LOS ANGELES COUNTY											,			I							
2 Northwest Constal 1 A County	087	361 260	4 ~	3.2 2 2	00	00	366 366	0.110	0.092	0.079	00	00	. .	► 4	с с Г ч	20	0.16	0.0328	364	0.08	0.015
 NULLINEST COASTAL LA COULTY 3 Southwest Coastal LA County 1 	094	00°	ئ t	4 4 *4	o *o	o *o	00°	0.069*	0.060*	0.056*	o *o	o °c	- *0	n *o	。 。 。	2 [*] 68	0.08*	0.0310*	*68	0.03*	0.004*
3 Southwest Coastal LA County 2	820	260*	* *	3.0*	*0 0	*0 0	262*	0.120*	0.100*	0.086*	• * 0 (0 0 0	**	** (13*	30*	0.09*	0.0136*	261*	0.02*	0.007*
4 South Coastal LA County 1	072	366	4	3.4	0	0	366	0.090	0.075	0.071	0	0	0	0	0	26	0.12	0.0280	361	0.04	0.012
 South Coastal LA County 2 West San Fernando Valley 	074 074	 366	ı ا	 3.5	10	10	 366	 0.131	 0.116	 0.102	10	0	29	54	65 3		 0.08	 0.0214		11	11
7 East San Fernando Valley	690	366	5	3.7	0	0	366	0.137	0.109	0.089	0	2	7	27	37 3	56	0.12	0.0332	348	0.02	0.010
8 West San Gabriel Valley 9 East San Gabriel Valley 1	088	361 366	7 6	9.4 4 C	00	00	365 366	0.130	0.103	0.093	00	- c	о (27 28	31 26	55	0.12	0.0270			
9 East San Gabriel Valley 2	591	361	50	2.0	0	0	366	0.134	0.108	0.095	0	14	16	42	35 35	53	0.12	0.0240	1	1	1
10 Pomona/Walnut Valley	075	366	4	3.1	0	0	366	0.131	0.102	0.097	0	4	13	31	25 3	64	0.11	0.0314	ł	I	I
11 South San Gabriel Valley	085	366	5	3.6	0	0	366	0.104	0.084	0.080	0	0	0	7	2	53	0.12	0.0305	1	1	ł
12 South Central LA County 13 Santa Clarita Valley	084 090	366 363	5 5	6.7 3.7	0 0	0 0	366 360	0.084 0.158	0.072 0.133	0.065 0.108	0 -	0 £	25 O	0 69	0 2 0 6	28 2	0.10 0.09	0.0301 0.0204			
ORANGE COUNTY												,									
16 North Orange County	3177	364		4.0	0	0	364	0.099	0.080	0.078	0	0	0	9	9 9 9 9	4	0.12	0.0252	:	:	1
 Central Orange County North Coastal Orange County 	3176 3195	366 366	ഹവ	4.4 1.1	00	00	366 366	0.120 0.104	0.097 0.087	0.088 0.076	00	00	9 -	4 0	35 35 35	57	0.12 0.10	0.0199 0.0151	 364	 0.03	 0.008
19 Saddleback Valley	3812	366	2	1.6	0	0	366	0.116	0.089	0.086	0	0	2	11	20	-	:	1	1	1	:
RIVERSIDE COUNTY																					
22 Norco/Corona 22 Motronoliton Diversido County 1	41 DC		¬	1 0	1 <	1 0				1 10	1 0	0		1 1	2 7 2 1		- 00	0	1 00	- 00	
23 Metropolitan Riverside County 2	4146 4146	366 366	14	2.1 2.1	00	00	00C	- + 			> I	0	ç ı	р С	2 :	3 1	0.03		- 	20.0	ci n:n
24 Perris Valley	4149	1	1	1	1		365	0.128	0.103	0.097	0	2	19	37	47		1	1	1	1	1
25 Lake Elsinore	4158	353	2	0.9	0	0	353	0.130	0.116	0.103	0	0	21	41	51 3	39	0.06	0.0151	1	1	ł
29 Banning Airport	4164		1 0	1	1 0	1 0	349	0.156	0.116	0.112	. .	~ -	4 6 7	49	60 L	88	0.08	0.0165	I	I	I
30 Coachella Valley 1 ^{***} 30 Coachella Valley 2**	413/ 4157	300	N 1	0.1)	5 I	366 366	0.111	0.108 0.102	0.098	00	- 0	31 18	30 23	5 51	Ωı	C	0.0130 		11	11
SAN BERNARDINO COUNTY																					
32 Northwest San Bernardino Valley	5175	366	с	2.1	0	0	366	0.138	0.105	0.103	0	7	18	31	31 3	65	0.11	0.0305	ł	ł	ł
33 Southwest San Bernardino Valley	5817	+010	÷ د	÷ ا	1 č	: *			1 0		1 0	٢	1 0	1 0	: 1	-	0			100	
34 Central San Bernardino Vallev 2	5203	366	م 0	3.3	0	0	366 366	0.157	0.130	0.113	-	- 6	38	40 55	58 30 30	63	0.12	0.0261			
35 East San Bernardino Valley	5204	1	I	I	1	1	366	0.160	0.137	0.122	-	12	53	75	76		ł	1	ł	ł	:
37 Central San Bernardino Mountains 38 Fast San Bernardino Mountains	5181 5818	1 1		1 1	1 1	1 1	364 	0.163 	0.145 	0.124 	←	ତ	99 	75 	96 		1 1	: :		1 1	1 1
DISTRICT MAXIMUM	200		10	6.7	0	0		0.163	0.145	0.124	-	13	66	75	96		0.16	0.0332		0.08	0.015
SOLITH COAST AID BASIN	l		10	6.7	-	-		0.163	0.148	0 1 2 4	V	28	00	111	148		0.16	0.0332		80.0	0.015
SOUTH COAST AIR BASIN			2	0.1	5	5		0.100	0.140	0.124	t	70	30	_	140		0.10	2000.0		000	CI 0.0
ppm - Parts Per Million parts of air, b) * Less than 12 full months of data. N a) - The federal 1-hour standard (1-hc	/ volume. 1ay not be vur averag	represen te CO > 3	AAN tative. 5 ppm)	<pre>Annu. and state</pre>	al Arithme 1-hour st	tic Mean ** Saltc andard (1	n Sea Ai⊢ I-hour av	Poll r Basin. erage CO	lutant not > 20 ppm	monitored	t exceeded					outh (Coact				
 b) - On April 28, 2005, Air Resources 0.07 ppm. The new 8-hour stanc A) - The state standard is 1-hour avers 	Board ha lard is exp and NO. J	s approve bected to 1	d revisi. take effe The t	ng the Ci ect by De fadaral st	alifornia U cember 2 andard is	zone star 205. מחייומן מו	ithmetic	establish a mean NO.	t new 8-hc - ~ 0 0534	ur averag	e standaru	d of		31		ir Qu	ality N	Aanag e	emen	t Distri	ct
exceeded the standards.					מותמות יה				2 / 0.000		ו היים יייו					iamond	I Bar, C	A 91765	-4182		
 d) - The state standards are 1-hour available arithmetic mean SO₂ > 0.03 ppm 	verage SC , 24-hour	ا 22 0.25 average >	opm and • 0.14 pl	d 24-houi pm, and (∙average 3-hour av∈	SU ₂ > U.()rage > 0	.50 ppm. 1	he tedera No loca	I standarc	ts are ann eded SO ₂ :	ual standards.	-		AG		ww.aqı	md.gov				

The map showing the locations of source/receptor areas can be accessed via the Internet at http://www.aqmd.gov/telemweb/areamap.aspx. Locations of source/receptor areas are shown on the "South Coast Air Quality Management District Air Monitoring Areas" map available free of charge from SCAQMD Public Information.

				Suspend	ed Particu	lates PM10 [€]		Su	spended Pa	articulates PI	M2.5 ^{f)}	Parti	culates TS	SP 9)	Lea	d 9)	Sulf	ate 9)
Note the second secon					No. (%)	Samples 	_		No.	(%) Sample	S						No.	(%) Samples
No. Correst: (a) State (b) Correst: (b) State (b) Anomany (b) No. Correst: (b) State (b) Correst: (b) State (b) Correst: (b) State (b) State (c)			2	∕lax.	Exce Stan	eding dard	Annual		Max.	Exceeding Standard	Annual	-	Лах.	Annual	Мах.	Max.	Max.	Exceeding Standard
		žč		Sonc.	Federal	State	Average ^{h)}	No.	Conc.	<u>Federal</u>	Averages ⁱ⁾	No.	Conc.	Average	Monthly	Quarterly	Conc.	State
SWRELES COUNT SWRELES	rce/Receptor Area	Station of No	ays tr	g/m ³ 4-hour	2 150 ug/m ³ 24-hour	> 30 µg/m ³ 24-hour	Conc.	of Data	ug/m ³ 24-hour	> 03 µg/m ³ 24-hour	Conc.	D ata P	li 1g/m ³ 24-hour	Conc.	Average Conc. j) un/m ³	Conc. j) Lonc. j)	lii µg/m ³ 24-hoiir	∠ ∠5 µg/m ³ 24-h∩ш
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	S ANGELES COUNTY	i i	4		1001	100	5	222	100	50-1-4	200	2002		2001	200	1.00	100111-1-1	501
	Central LA	087 (61	72	0	5(8.2)	32.7	318	75.0	2(0.6)	19.6	62	115	66.4	0.03	0.03	12.7	0
	Northwest Coastal LA County	091	ı	1	1	ļ	I	ł	I	I	I	59	79	46.8	ł	ł	11.4	0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Southwest Coastal LA County 1	094	15* 21	52*	*0 ö	2(13.3)*	30.9*	1	1	:	1	15* i	71*	50.5*	0.01	0.01	13.1	0
Source construction of the constructine constructine construction of the construction of the constructi	Southwest Coastal LA County 2	820	37*	47*	* 0 0	0* 10*	25.1	1 00	د ا ر		1 0	45 45	*77	43.8*	0.01	0.01	14.3	0 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	South Coastal LA County 1	777	60	7.1	0 0	4(6.7)	33.1	323	00.6 50.7	1(0.3)	11.6	29	103	59.1 64.2	20.0	0.01	15.9	00
Test Sin Framerio (algo), test Sin Gabeli (algo), sin Framerio	South Coastal LA County z West San Fernando Vallev	074	ומ	3 1	D	(c.uz)z1 		327 106	09.7 56.2		15.6	۶ ۲	2 1	04.4	0.UZ)
	East San Fernando Vallev	90690	50	74	C	7(11.7)	37.5	109	50.1 60.1		19.2	1	1	1	:	;	1	1
East San Gabriel Valley 000 55 83 0 8(145) 35.4 279 756 1(0,4) 184 55 1 55 55 1 55 55 1 55 55 32 1 315 55 32 315 55 32 32 315 55 32 315 55 32 315 55 32	West San Gabriel Vallev	088	3 1	1	• •		2	113	59.4	00	16.6	58	95	49.5	:	1	11.2	0
Exist Sin Garriel Valiey 591	East San Gabriel Valley 1	090	55	83	0	8(14.5)	35.4	279	75.6	1(0.4)	18.4	59	156	75.2	ı	1	10.6	0
	East San Gabriel Valley 2	591	:	:	1	-	-	:	1	-	1	1	•	1	1	-	-	-
South San Gatriel Valiety 085 - - - - 108 60.7 103 55 14 73 12.4 0 South San Gatrial V Courty 080 60 54 0 23.3 28.1 1 5 2 15 2 28 12.4 0 Santa Clarital V Courty 3175 61 74 0 7(1.5) 3 2	Pomona/Walnut Valley	075	:	ı	ı	1	1	1	ł	ł	ł	ł	ł	I	:	1	1	:
Sand Gertral Acury Sand Gertral Acury Mace County 084	South San Gabriel Valley	085	1	1	1	I	1	108	60.7	0	19.9	55	140	73.0	0.03	0.02	12.4	0
Ansist Currity and Currity Morth Connege County Morth Connege County and State Curry Morth Connege County and State Curry Morth Connege County and State Curry Morth Connege County and State Curry Morth Connege County and State Curry and State Curry Morth Connege County and State Curry and State Curry Morth Connege County and State Curry Ansist Curry Morth Connege County and State Curry Ansist Curry Morth Connege County and State Curry Ansist Curr	South Central LA County	084	1	1	1	1	1	115	55.8	0	18.5	58	128	78.6	0.03	0.03	14.7	0
ANDECOUNTY ANDECOU	Santa Clarita Valley	060	60	54	0	2(3.3)	28.1	:	1	1	1	:	:	1	1	1	1	1
Meth Orange County 317 -	ANGE COUNTY						_											
Addregolian Riverside County 315 61 74 0 7(15) 34.1 319 58.9 0 16.8 <	North Orange County	3177	:	ı	ı	1	1	ł	ł	ł	ł	ł	ł	I	:	1	ł	:
Nontrobasial Constant Control 3135 5 - <	Central Orange County	3176 (61	74	0	7(11.5)	34.1	319	58.9	0	16.8	ı	1	I	1	1	I	1
FERSIDE COUNTY FERSIDE COUNTY FERSIDE COUNTY FERSIDE COUNTY 75 76 11(19.3) 38.0 -	North Coastal Orange County Saddleback Vallev	3195 3812 E		 47	10	10	 23.7	: [49.4	: 0	 12.1		1 1	11			: :	
Nuccondita Viscondita Viscond											а 							
Metropolitan Riverside County 1 4144 119 137 0 72(60.5) 55.5 342 91.7 5(1.5) 22.1 60 199 100.5 0.02 0.01 91 0 Perris Voltidis 4146	Norco/Corona	4155	57	76	0	11(19.3)	38.0	I	ł	1	I	ı	ł	I	1	ı	1	1
Metropolian Riverside County 2 4146	Metropolitan Riverside County 1	4144 1	19	137	0	72(60.5)	55.5	342	91.7	5(1.5)	22.1	60	199	100.5	0.02	0.01	9.8	0
Perris Valley 4149 59 83 0 15(25,4) 414 </td <td>Metropolitan Riverside County 2</td> <td>4146</td> <td>;</td> <td>:</td> <td>1</td> <td>ļ</td> <td>1</td> <td>110</td> <td>93.8</td> <td>2(1.8)</td> <td>20.8</td> <td>59</td> <td>244</td> <td>81.9</td> <td>0.01</td> <td>0.01</td> <td>9.1</td> <td>0</td>	Metropolitan Riverside County 2	4146	;	:	1	ļ	1	110	93.8	2(1.8)	20.8	59	244	81.9	0.01	0.01	9.1	0
Lake Elsione 4158	Perris Valley	4149 (59	83	0	15(25.4)	41.4	:		-	1	1		1	-	-	1	-
Banning Ariport 4164 61 82 0 7(11.5) 29.3	Lake Elsinore	4158	1	1	1	1	1	ł	ł	ł	ł	1	1	ł	1	:	ł	1
Coachella Valley 1** 4137 59 79 0 2(3,4) 26.4 112 27.1 0 9.0	Banning Airport	4164	61	82	0	7(11.5)	29.3	1	1	1	1	ı	:	1	ł	1	ł	ł
N BERNARDINO COUNTY	Coachella Valley 1 ^{**} Coachella Vallev 2**	413/ 11	59 18+	79 83+	o t	2(3.4) 23(19.5)+	26.4 39.3+	112	27.1	o c	9.0		1 1	1 1	1 1	1 1	1 1	
Northwest San Bernardino Valley 5175 92 0 Southwest San Bernardino Valley 5817 58 93 0 17(29.3) 42.8 112 86.1 2(1.8) 20.9 59 235 113.4 10.8 0 Central San Bernardino Valley 5197 61 106 29(47.5) 47.7 104 71.4 1(1.0) 20.0 59 235 113.4 10.8 0 Central San Bernardino Valley 5181 5 0 28(48.3) 48.6 106 93.4 4(3.8) 22.0 58 179 92.7 0.02 0.01 9.6 0 Central San Bernardino Valley 5781 57 0 1(1.8) 26.4 10.8 0 10.8 0 10.8 10.6 0.02 0.01 9.6 <	N BERNARDINO COUNTY																	
Southwest San Bernardino Valley 5817 58 93 0 17(29.3) 42.8 112 86.1 2(1.8) 20.9 59 56 13.4 56 10 97.6 0 108 0 108 0 108 0 108 0 104 71.4 1(1.0) 20.0 59 235 113.4 - - - 108 0 Central San Bernardino Valley 5203 58 118 0 28(48.3) 48.6 106 93.4 4(3.8) 22.0 58 179 92.7 0.02 0.01 96 0 Central San Bernardino Valley 5204 60 88 0 20(33.3) 38.6 - - - - 10.8 0 0.02 0.01 96 0 - - - - - 108 0 0 20.4 0 20.5 0 0.02 0.01 96 0 20.5 0 0.02 0.01 96 0 - - - - - - - <	Northwest San Bernardino Vallev	5175	1	1	1	:	1	1	1	;	;	55	127	63.5	0.02	0.01	9.2	0
Central San Bernardino Valley 1 5197 61 106 0 29(47.5) 47.7 104 71.4 1(1.0) 20.0 59 235 113.4 10.8 0 Central San Bernardino Valley 2 5203 58 118 0 28(48.3) 48.6 106 93.4 4(3.8) 22.0 58 179 92.7 0.02 0.01 9.6 0 Central San Bernardino Valley 5204 60 88 0 20(33.3) 38.6 10.8 0 Central San Bernardino Valley 5204 60 88 0 20(33.3) 38.6 <td>Southwest San Bernardino Valley</td> <td>5817 5</td> <td>58</td> <td>93</td> <td>0</td> <td>17(29.3)</td> <td>42.8</td> <td>112</td> <td>86.1</td> <td>2(1.8)</td> <td>20.9</td> <td>1</td> <td>I</td> <td>1</td> <td>1</td> <td>I</td> <td>1</td> <td>1</td>	Southwest San Bernardino Valley	5817 5	58	93	0	17(29.3)	42.8	112	86.1	2(1.8)	20.9	1	I	1	1	I	1	1
Central San Bernardino Valley 2 5203 58 118 0 28(48.3) 48.6 106 93.4 4(3.8) 22.0 58 179 92.7 0.02 0.01 9.6 0 East San Bernardino Valley 5204 60 88 0 20(33.3) 38.6	Central San Bernardino Valley 1	5197 (61	106	0	29(47.5)	47.7	104	71.4	1(1.0)	20.0	59	235	113.4	1	1	10.8	0
East San Bemardino Valley 5204 60 88 0 20(33.3) 38.6 <	Central San Bernardino Valley 2	5203 {	58	118	0	28(48.3)	48.6	106	93.4	4(3.8)	22.0	58	179	92.7	0.02	0.01	9.6	0
Central San Bernardino Mountains 518 52 0 1(1.8) 26.4 <th< td=""><td>East San Bernardino Valley</td><td>5204</td><td>81</td><td>88</td><td>0 0</td><td>20(33.3)</td><td>38.6</td><td>1</td><td>:</td><td>ł</td><td>I</td><td>I</td><td>:</td><td>I</td><td>:</td><td>1</td><td>ł</td><td>ł</td></th<>	East San Bernardino Valley	5204	81	88	0 0	20(33.3)	38.6	1	:	ł	I	I	:	I	:	1	ł	ł
DISTRICT MAXIMUM 137 0 72 55.5 9.3.8 5 2.2.1 2.44 113.4 0.03 16.4 0 SOUTH COAST AIR BASIN 137 0 81 55.5 93.8 7 22.1 244 113.4 0.03 16.4 0	Central San Bernardino Nountains Fast San Bernardino Mountains	58181	/9	79 1		1(1.8) 	20.4	- 63	 28.6	: c	1 0	11	11	11	1	I		
SOUTH COAST AIR BASIN 137 0 81 55.5 93.8 7 22.1 244 113.4 0.03 16.4 0 3 • </td <td>DISTRICT MAXIMUM</td> <td></td> <td></td> <td>137</td> <td>0</td> <td>72</td> <td>55.5</td> <td></td> <td>93.8</td> <td>2</td> <td>22.1</td> <td></td> <td>244</td> <td>113.4</td> <td>0.03</td> <td>0.03</td> <td>16.4</td> <td>0</td>	DISTRICT MAXIMUM			137	0	72	55.5		93.8	2	22.1		244	113.4	0.03	0.03	16.4	0
	SOUTH COAST AIR BASIN			137	0	81	55.5		93.8	7	22.1		244	113.4	0.03	0.03	16.4	0
	3			.	:		:											
	LESS [d 12 10 1 0 1 S UI Uata. 111ay 1		SUILAUN		d and 1	001101	ייייי		-	-								

e) - PM10 samples were collected every 6 days at all sites except for Station Numbers 4144 and 4157 where samples were collected every 3 days.
 f) - PM2.5 samples were collected every 3 days at all sites except for the following sites: Station Numbers 060, 072, 077, 087, 3176, and 4144 where samples were taken every day,

and Station Number 5818 where samples were taken every 6 days.
9 - Total suspended particulates, lead, and sulfate were determined from samples collected every 6 days by the high volume sampler method, on glass fiber filter media.
9) - Total suspended particulates, lead, and sulfate were determined from samples collected every 6 days by the high volume sampler method, on glass fiber filter media.
a) - Federal PM10 standard is annual average (AAM) > 50 µg/m³. State standard is annual average (AAM) > 12 µg/m³ (state standard was established on July 5, 2003).
a) - Federal lead standard is quarterly average > 15 µg/m³. To location exceeded lead standards.
b) - Maximum monthy and quarterly average > 15 µg/m³, and state standard is monthly average ≥ 15 µg/m³. No location exceeded lead standards.
c) + The data for the sample collected on a high-wind day (161 µg/m³ on 10/9/04) was excluded in accordance with EPA's Natural Events Policy.

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT
SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT

	F		Carbo	YOUOM OF	do Do											Nitro	von Diov	مە		Sulfur Dio	vide
			2000		200						201070							20			200
		Ž	ax. A	/ax No	. Days St Exceede	andard ∍d a)	2	Max.	Max.	Fourth	No. E Health	Jays Star	idard Exc	seeded		2	lax	Annual		Max.	Max.
		No. Davs in	onc. C	Sonc.	Federal 9.5	State > 9.0	No. (Conc.	Conc.	High Conc.	<u>Advisory</u> > 0.15	> 0.12	ral b) > 0.08	State	c) V 0.07 D	o. avs in	onc. A	verage ^{d)} AAM	No. Davs	Conc. in	Conc.
Source/Receptor Area No. Location	Station No.	of pr Data 1-	hour 8	pm Phour 8	pm -hour &	ppm 3-hour l	of F Data 1	opm I-hour	ppm 8-hour	ppm 8-hour	ppm 1-hour	ppm 1-hour	ppm 8-hour	ppm p ₁ 1-hour 8-	pm o -hour D	f pl	pm hour d)	Conc. ppm	of Data	ppm 1-hour ^{e)}	ppm 24-hour ^{e)}
LOS ANGELES COUNTY	780	36F	_	ب د	c	-	365	0 1 0 1	0.008	0.070	c	c	÷	¢	¢	264	0.12	0.0778	367	20.0	0100
2 Northwest Coastal LA County	100 160	365 365	1 თ	- 1- - 1-	00	00	зос 361	0.121 0.114	0.090	270.0 0.077	00	00		1	<u>م</u> ہ	365 365	0.08	0.0178	100	10.0	0.0.0
3 Southwest Coastal LA County	820	365	ი ი	2.1	0	0	365	0.086	0.076	0.068	0	0	0	. 0) ~	365	0.09	0.0134	365	0.04	0.012
4 South Coastal LA County 1 4 South Coastal LA County 2	072 077	365 	4	3.5 	0	0 :	365 	0.091 	0.068	0.059	0	0	0	0 :	0	365 	0.14 	0.0241 	365 	0.04 	0.010
6 West San Fernando Valley	074	350	5	3.5	0	0	365	0.138	0.113	0.098	0	2	12	30	29	365	0.09	0.0202	1	1	1
7 East San Fernando Valley	690	363	4	3.4	0	0	365	0.142	0.108	0.081	0	2	2	13	12	365	0.09	0.0294	361	0.01	0.006
8 West San Gabriel Valley	088	363	4	2.8	0	0	363	0.145	0.114	0.086	, -	0	5	13	12	363	0.10	0.0241	I	I	ł
9 East San Gabriel Valley 1 9 East San Gabriel Valley 2	060 591	365 358	с С	1.7	0 0	00	365 363	0.145 0.160	0.122	0.087	- 0	4 ∝	9 6	20 31	14	365 360	0.09	0.0251		11	11
10 Pomona/Walnut Vallev	075	365	1 4	25	, c	, c	361	0.140	0.112	0.096	1 C	4	15	26	18	365	0.08	0.0312	1	1	1
11 South San Gabriel Valley	085	113*	۰ *	2.4*	o *o	o *o	116*	0.077*	0.065*	0.051*	o *o	۰ [*]	. *o	°,	o*0	116*	0.09*	0.0308*	I	1	1
12 South Central LA County 13 Santa Clarita Valley	084 090	365 365	۲ c	5.9 1 3	0 0	00	365 364	0.173	0.081	0.063 0.118	ОĽ	o 5	0	ት 1	- 09	360 347	0.11	0.0312	: :	: :	
ORANGE COUNTY		200	u	2	,	, ,	50	0	5	0	b	=	F	3	3	t.	0000	0000			
16 North Orange County	3177 2176	365 265	~ ~	3.1 2.2	00	00	365 265	0.094	0.075	0.067	00	00	00	0 7		361 265	0.09	0.0249	1	1	
18 North Coastal Orange County	3195	364 364	ر ہ 4	3.2 3.2	00	00	338 338	0.085	0.073	0.068	00	00	00	- 0	t 0	355 355	0.09	0.0131	359	0.01	0.008
19 Saddleback Valley	3812	365	2	1.6	0	0	365	0.125	0.085	0.078	0	-	-	з	9	I	ı	1	1	ı	1
22 Norco/Corona	1155	1	1	1	ł	1	1	1	1	ł	1	;	1	1		1	1	1	l	1	1
23 Metropolitan Riverside County 1	414 844	363	. ო	2.5	0	0	358	0.144	0.129	0.105	0	ო	33	46	62	365	0.08	0.0222	365	0.02	0.011
23 Metropolitan Riverside County 2	4146	365	4	2.4	0	0	I	1	I	I	ı	I	I	1	I	ı	I	1	I	ı	1
23 Mira Loma 24 Perris Vallev	5212 4149	362 	ო	2.1	0	0	358 365	0.135 0.126	0.116 0.103	0.105 0.082	00	c∩ ←	25 3	34 11	51 18	346 	0.08 	0.0160 		11	11
25 Lake Elsinore	4158	365	2	1.0	0	0	365	0.149	0.119	0.097	, -	4	15	37	46	365	0.07	0.0142	1	-	-
29 Banning Airport	4164		11	2 1			359	0.144	0.132	0.119	0	- 6	30	47	00	329	0.07	0.0148	1	I	ł
30 Coachella Valley 1** 30 Coachella Valley 2**	4137 4157	364 	- 5	0.8	0 :	0	363 365	0.139 0.114	0.116 0.095	0.108	00	4 C	35 18	41 8	63 36	352 	0.10	0.0120	: :	: :	: :
	5						200	5	0000	760.0	5	5	2	2	8	1			1		
32 Northwest San Bernardino Valley	5175	364	e	1.8	0	0	365	0.149	0.121	0.101	-	8	15	34	34	364	0.10	0.0313	I	ı	ł
33 Southwest San Bernardino Valley	5817	1 0	1 0	1 2	1 0	1 0	L				1 0	1 0	1 0	١ţ	11	1 2			100	1 0	1 00
34 Central San Bernardino Valley 2	5203	356 356	04	2.4	0		361 361	0.163	0.129	0.114	4 4	ກດ	31 50	54 54	4/ 58	361	0.0.08	0.0259			0.004
35 East San Bernardino Valley	5204	1	• •	1	. 1	• 1	364	0.146	0.123	0.113	-	9	24	36	45	1	I	1	I	ı	ł
37 Central San Bernardino Mountains 38 East San Bernardino Mountains	5181 5818				1 1	: :	354 	0.182 	0.145 	0.130 		18	69 -	08	102		: :		11	11	: :
DISTRICT MAXIMUM	2		7	5.9	0	0		0.182	0.145	0.130	7	18	69	80	102		0.14	0.0313		0.07	0.012
SOLITH COAST AIR BASIN			. 2	5.9	c	- C		0.182	0.145	0.130	11	30	84	102	120		0.14	0.0313		0.07	0.012
Porte Dorte Dor Million porte of air by			MAA.		1 Arithmo	tio Moon				monitored	:	20						0			
* Less than 12 full months of data. M	ay not be	represen	איראל tative.			** Salto	n Sea Ai	г Basin.	ווומווו ווטי	IIIUIIIU											
a) - The federal 1-hour standard (1-hc	our averaç	je CO > 3.	5 ppm) ¿	and state	1-hour st	andard (-hour av	erage CO	> 20 ppm) were no	t exceede	ъ.		ľ		outh	Coast				
For comparison or gata with the i b) – The federal 1-hour ozone standar	ederai ठ-। 'd was rev	oked and voked	tandaru replace	(9 ppm), d by the ;	8-hour av 8-hour av	/erages v erage ozu	vitn one u one stand	tecimai pii tard effect	ace snouk tive June '	d be round 15, 2004.	and to inte	gers.		U	A C	Vir Q	uality]	Manag	emen	t Distr	ict
c) - Air Resources Board has establis	hed a nev	/ 8-hour a	verage (California	ozone st	andard o	0.07 ppi	n effective	∋ May 17,	2005.				U		1865 C	opley D	rive			
d) - The state standard is 1-hour aver.	age NO ₂ :	> 0.25 ppr.	n. The f	ederal st. 24-bour	andard is	annual a	rithmetic	The foderal	¹ 2 > 0.053 ⁴	4 ppm.	<u>c</u>					Diamon	d Bar, C	A 91765	5-4182		
arithmetic mean SO ₂ > 0.03 ppm,	, 24-hour	average >	0.14 pp	m, and 3	-hour ave	srage > 0.	. түүлт. 50 ррт.		סומו יכמי ל	2000						/ww.aq	md.gov				

The map showing the locations of source/receptor areas can be accessed via the Internet at http://www.aqmd.gov/telemweb/areamap.aspx. Locations of source/receptor areas are shown on the "South Coast Air Quality Management District Air Monitoring Areas" map available free of charge from SCAQMD Public Information.

2005 AIR QUALITY South Coast air out ity management district	SOUTH COART AIL COART I MANAGEMENT DISTINCT
---	---

		Suspe	nded Particu	lates PM10 ^f			Suspend	ed Particula	tes PM2.5 ^g	(Parti	culates TS	h)	Lead	(y	Sulfa	ite h)
			No. (%)	Samples				No.	(%) Sample	Se						No. (%	6) Samples
			EXC	eeding				98th E	Exceeding							ш	Exceeding
))		Max.	Sta	ndard	Annual		Max. I	Percentile	Standard	Annual	2	lax. /	Annual	Мах.	Мах.	Max.	Standard
	Š	Conc.	Federal	State	Average ^{I)}	No.	Conc.	Conc.	Federal A	Averages I)	o. No	onc. A	verage	Monthly	Quarterly	Conc.	State
	totion of	s in ² 3	> 150	> 50 ³	AAM	Days of	in ³	in 	> 65 ³	AAM	Days i	ر مر _{عد} ع	AAM	Average	Average	in ³	≥ 25 ³
Source/Neceptor Area	No. Data	a 24-hou	r 24-hour	рg/тт 24-hour	сопс. µg/m ³	u Data	рулп 24-hour	рg/тт 24-hour	рулп 24-hour	ug/m ³	or p Data 2	g/m 4-hour	ug/m ³	ug/m ³	сопс. м µg/m ³	рулп 24-hour	рулп 24-hour
LOS ANGELES COUNTY	-																
1 Central LA	087 61	70	0	4(6.6)	29.6	334	73.7	53.2	2(0.6)	18.1	66	141	66.7	0.02	0.02	14.2	0
2 Northwest Coastal LA County	160	1	ł	1	:	ł	1	:	1	1	59	89	41.6	ł	1	11.7	0
3 Southwest Coastal LA County 2	820 54	44	0	0	22.9	1	•	1	1	1	1	1		1	1	1	1
4 South Coastal LA County 1	072 55	99	0 0	5(8.5)	29.6	324	53.9	41.4	0 0	16.0	61	112	55.5	0.01	0.01	16.8	0
4 South Coastal LA County Z 6 Wood Son Economic Vicilian	20 110	131	0	18(30.5)	43.4	344	20.0 20.6	31.8 25 0	50	14.7	1			:			1
	+ 10	1 8	1 0			101	0.00	0.00	5 0	0.0	1	1	1	1	I	:	I
/ East San Fernando Valley	000	26	0	(Z.8)c	34.3	106	63.2	9.06	5 0	17.9	1 1	1 8	1 1	:	:	1 1	1 0
0 East San Gabriel Valley			1 0		 26.1	ο 	122.7*	40	1/0 2)*	10.1	0 0	113	0.44	1	I	7 C C	
9 East San Gabriel Valley 2	591	2 1	>			767		4.00	(c-n)-	2 1	S 1	<u>+</u> 1	n			7.1	>
10 Pomona/Walnut Vallev	075	-	-	•	:		-			-						-	-
11 South San Gabriel Valley	085	1	ł	ł	:	76*	58.2*	54.0*	*0	17.0*	39*	104*	66.4*	0.03	0.03	9.9	0
12 South Central LA County	084	1	ł	ł	:	114	54.6	48.5	0	17.5	57	118	67.4	0.03	0.02	17.3	0
13 Santa Clarita Valley	060	55	0	1(1.7)	25.8	ı	1	:	1	1	1	;	1	1	1	1	1
ORANGE COUNTY																	
16 North Orange County	3177	I	ł	I	:	1	1	1	I	I	1	1	1	1	;	:	I
17 Central Orange County	3176 61	65	0	3(4.9)	28.2	333	54.7	41.9	0	14.7	1	1	:	1	1	1	ł
18 North Coastal Orange County	3195	1	ł	ļ	:	:	1	:	1	1	1	:	1	1	I	:	1
19 Saddleback Valley	3812 55	41	0	0	19.0	113	35.4	31.4	0	10.7	1	:	1	1	1	:	:
RIVERSIDE COUNTY																	
22 Norco/Corona	4155 58	19	0	5(8.6)	31.6	I	1	:	ł	1	I	1	ı	I	1	1	ł
23 Metropolitan Riverside County 1	4144 123	123	0	69(56.1)	52.0	334	98.7	58.4	4(1.2)	21.0	59	173	96.7	0.02	0.02	10.3	0
23 Metropolitan Riverside County 2	4146	1	I	I	:	110	95.0	41.0	1(0.9)	18.0	60	125	75.8	0.01	0.01	10.3	0
23 Mira Loma	5212	1	1 (í .	: 0	:	1	:	I	1	1	1	1	1	1	:	I
24 Perris Valley	4149 60	80	0	19(31.7)	39.2	:	•	•		1	:		:	:	1	:	-
25 Lake Elsinore	4158		1 0	1 0,0	- 00	1	I	:	1	I	I	1	1	ı	I	1	I
29 Banning Airport	4164 50 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9/	0 0	Z(3.4)	20.0	: *	* -	*0 L	1 0	; c	1	1	1	I	I	I	I
30 Coachella Valley 2**	4157 1157	00		2(3.4)	20.9 15.7	201	7.02	25.U	5 0	4.0 7.4	1	1	1	1	1	1	1
		001	>	00(04.2)	1.04	1	r.	20.04	5	0.0		1		1	1	1	
32 Northweet San Bernardino Vallev	E17E	1	1	-	1	1	1	-		1	57	6	52 /	0.00	000	۲a	c
33 Southwest San Bernardino Vallev	5817 60	74	C	19(31.7)	40.8	110	87.8	49.6	1(0.9)	18.8	51	ţ,		40.0 1	40.0	5 1	>
34 Central San Bernardino Valley 1	5197 60	108	0 0	29(48.3)	50.0	109	96.8	48.2	1(0.9)	18.9	61	295	100.2	1	1	10.4	0
34 Central San Bernardino Valley 2	5203 60	72	0	23(38.3)	42.3	109	106.3	43.4	1(0.9)	17.4	60	175	87.1	0.02	0.01	10.9	0
35 East San Bernardino Valley	5204 58	61	0	12(20.7)	33.2	I	1	:	I	I	I	1	ı	1	1	1	I
37 Central San Bernardino Mountains	5181 56	49	0	0	25.8	; u	1 00	1 00	1 0	1 5	ł	1	:	I	1	ł	1
	0100	1 101	1 0	1 0		0	10.0	20.0	-	1.21		-		1	- 20		<
UISTRICT MAXIMUM		101	D	60	0.20		1.261	50.4	4	Z I.U		CR7	100.2	0.03	0.03	C.11	0
SOUTH COAST AIR BASIN		131	0	89	52.0		132.7	58.4	9	21.0		295	100.2	0.03	0.03	17.3	0
$\mu g/m^3$ - Micrograms per cubic meter of air.		AM - Annu	al Arithmetic	Mean	AGM	- Annual (Geometric	Mean	Poll	utant not m	onitored.						
* Less than 12 full months of data. May not	t be represe	ntative.	:	** Salto	n Sea Air B	asin.											
f) - PM10 samples were collected every 6 day	/s at all sites	s except for	Station Num	bers 4144 an	d 4157 whe	re sample	S Were CO	llected ever	y 3 days.		00/01 01 01						
g) - PIMZ.5 Samples were collected every 5 ui	ays at all su	Se except in		g sites: Static	n Inumbers	Ubu, urz,	, Ur r, Uor	, 3170, anu	4.144 WUEIE	samples we	еге гакен	every uay				ļ	
and Station Number 5618 where sample:	s were taker	l every b da	ys.													E	

h) - Total suspended particulates, lead, and sulfate were determined from samples collected every 6 days by the high volume sampler method, on glass fiber filter media.
 i) - Federal PM10 standard is annual average (AAM) > 50 µg/m³. State standard is annual average (AAM) > 20 µg/m³ (changed from AGM > 30 µg/m³, effective July 5, 2003).
 j) - Federal PM12.5 standard is annual average (AAM) > 15 µg/m³. State standard is annual average (AAM) > 12 µg/m³ (standard was established on July 5, 2003).
 k) - Federal PM2.5 standard is annual average (AAM) > 15 µg/m³. State standard is annual average (AAM) > 12 µg/m³ (state standard was established on July 5, 2003).
 k) - Federal lead standard is anery average > 1.5 µg/m³. and state standard is monthly average > 1.5 µg/m³. No location exceeded lead standards.
 Maximum monthly and quarterly lead concentrations at special monitoring sites immediately downwind of stationary lead sources were 0.44 µg/m³ and 0.34 µg/m³, respectively, both recorded at Central Los Angeles.

2006 AIR QUALITY	SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT
------------------	---

		Carbo	tonoM n	tide a))zone ^{b)}						Nitroger	Dioxide			Sulfur I	Dioxide ^{d)}	
			Mou	Mov		Mou	Mou	Ecumb	No. Hoolth	Days Sta	ndard Exe	ceeded			More	Mov	A 101101		Mou	Mou	10,000 Å
70007		No. Davs	Max. Conc.	Max Conc. in	No. Davs	Max. Conc.	Max. Conc. in	rouru High Conc.	Advisory > 0.15	> 0.12	<u>> 0.08 > 0.08 </u>	> 0.09	e > 0.07	No. Davs	Max Conc.	Max Conc.	Annual Average AAM	No. Davs	Max. Conc.	Max. Conc. in	Annual Average AAM
Source/Receptor Area No. Location	Station No.	of Data	ppm 1-hour	ppm 8-hour	of Data	ppm 1-hour	ppm 8-hour	ppm 8-hour	ppm 1-hour	ppm 1-hour	ppm 8-hour	ppm 1-hour	ppm 8-hour	of Data	ppm 1-hour	ppm 24-hour	Conc.	of Data	ppm 1-hour	ppm 24-hour	Conc.
LOS ANGELES COUNTY	087	367	"	26	367	0 11	0.079	0.077	c	c	c	×	4	360	0.11	0.06	0.0788	365	0.03	0.006	0.0019
2 Northwest Coastal LA County	091	365	n m	2.0	365	0.10	0.074	0.069	0	0	0	n co	0	365	0.08	0.05	0.0173	8 1	220	-	-
3 Southwest Coastal LA County 4 South Coastal 1 A County 1	820 077	363 360	<i>ω ∠</i>	2.3	360 364	0.08	0.066	0.062	00	0 0	0 0	00	00	351 357	0.10	0.05	0.0155	363 364	0.02	0.006	0.0020
4 South Coastal LA County 1 4 South Coastal LA County 2	210		+	t.	+0C	0	ocn.n	0000	o I	o I		> 1		100		co.n			co:0		
6 West San Fernando Valley	074	365	5	3.4	361	0.16	0.108	0.105	1	9	17	32	39	363	0.07	0.04	0.0174	1	1	1	-
7 East San Fernando Valley	690	365	4	3.5	365	0.17	0.128	0.099	7	9	12	25	23	365	0.10	0.05	0.0274	360	0.01	0.004	0.0006
8 West San Gabriel Valley 9 Fast San Gabriel Valley 1	090	365 365	4 C	2.8	365 364	0.15	0.117 0.120	0.095	- ~	50 F	۲ D	33 33	24 19	365 365	0.12	0.06	0.0245		1 1	1 1	1 1
9 East San Gabriel Valley 2	591	363 363	10	2.0	363	0.18	0.128	0.107	7 F	10	15	37	31	362 362	0.10	0.06	0.0206		1	1	1
10 Pomona/Walnut Valley	075	365	33	2.1	365	0.15	0.128	0.109	5	6	16 2	32	30	365	0.10	0.06	0.0307	1	ŀ	-	-
 South San Gabriel Valley South Central LA County 	085 084	232* 365	* ~ ~	2.7* 6.4	250* 365	0.13^{*}	0.066 0.066	0.080* 0.064	*0 0	*1 0	* 0	*6 0	* • •	204* 363	0.10^{*}	0.06^{*}	0.0283^{*} 0.0306		1 1	: :	
13 Santa Clarita Valley	090	363	2	1.3	359	0.16	0.120	0.112	1	20	, 40	62	64	359	0.08	0.04	0.0184	1		1	1
ORANGE COUNTY																					
16 North Orange County	3177	362	9 4	3.0 2	362	0.15	0.114	0.092	- 0	<i>ლ</i> с	4 -	χ, r	6,	361 247	0.09	0.05	0.0224	I	ł	I	ł
1/ Central Orange County 18 North Coastal Orange County	3195 3195	365 365	0 4	3.0 3.0	365 365	0.07	0.064 0.064	0.062	0 0	0 0	- 0	n O	n 0	361 361	0.10	0.05	0.0197	 353	-0.01	 0.004	0.0013
19 Saddleback Valley	3812	365	2	1.8	356	0.12	0.105	0.092	0	0	6	13	17	1	-	1	-	1	-	-	-
RIVERSIDE COUNTY																					
22 Norco/Corona 23 Moteonoliton Diversido County 1	4155		1 0	1,		- 0		0	I -	0		। र्	- 5						0	000	
23 Metropolitan Riverside County 1 23 Metropolitan Riverside County 2	4146	365	0 4	2.3		CT-0				0	R I	5 1									
23 Mira Loma 24 Derris Valley	5214 4149	364	4	2.7	364 351	0.16	0.119	0.107	- "	4 5	25 53	39 76	84 2	332	0.08	0.05	0.0194	1	1	1	1
25 Lake Elsinore	4158	362	-	1.0	362	0.14	0.109	0.102	n 0	4 C	24 24	40	to 285	352	0.07	0.05	0.0151		: :		
29 Banning Airport	4164	2	. 1	21	357	0.14	0.115	0.104	0) x	14	57	78	355	0.11	0.04	0.0161	I	1	I	I
30 Coachella Valley 1** 30 Coachella Valley 7**	4137	365	5	1.0	361 364	0.13	0.109	0.101	0 0	00	23	37 4	67 29	359	0.09	0.05	0.0103	1 1			1 1
	1014			1	+00	01.0	600.0	0.001	0	0	-	t	67								
SAN BERNARDINO COUNTY 32 Northwest San Bernardino Valley	5175	360	б	1.8	365	0.17	0.130	0.114	7	14	25	50	54	337	0.10	0.07	0.0310	I	I	ł	ł
33 Southwest San Bernardino Valley	5817	1	1.	١,	I .		1	1	1 -	1	1	11	1 :	ı j			1	1	1	1	
34 Central San Bernardino Valley I 34 Central San Bernardino Volley 7	5202	360	n u	2.0	361 367	0.16	0.123	0.116	- 6	10	29 20	47 53	49 57	362 367	0.09	0.06	0.0270	365	0.01	0.003	0.0019
35 East San Bernardino Valley	5204	ţ,	5 I	<u></u>	365	0.16	0.135	0.125	o vo	a II	36	09	5 2	100		0.1		1	1		
37 Central San Bernardino Mountains	5181	1	ł	ł	365	0.16	0.142	0.112	2	6	59	71	96	ł	ł	ł	ł	ł	ł	ł	ł
38 East San Bernardino Mountains	5818		;	1	:	;	:	:	:	;		;	:	;	:	:	:	:	:	:	;
DISTRICT MAXIMUM			8	6.4		0.18	0.142	0.125	5	20	59	76	96		0.14	0.08	0.0310		0.03	0.010	0.0020
SOUTH COAST AIR BASIN			8	6.4		0.18	0.142	0.125	10	35	86	102	121		0.14	0.08	0.0310		0.03	0.010	0.0020
ppm - Parts Per Million parts of air, by vol	ume.			AAM = A	Annual Ari	ithmetic M	ean	1	Pollutant	not monit	ored.										
* Less than 12 full months of data. May 1 a) - The federal 8-bour standard (8-bour av	iot be repre-	sentativ	e. V and stat	e 8-hour e	standard (** A-hour ave	Salton Sea	Air Basin	vere not ev	papaa											
The federal and state 1-hour standards	(35 ppm an	id 20 pp	m) were	not excee	ded, eithe	r.	lage CO /	fundid ore		record.					E	Sol	ith Coa	ast			
b) - The federal 1-hour ozone standard was	s revoked an	nd repla	ced by th	ie 8-hour a	average of	cone stand	ard effectiv	/e June 15,	2005.						Ĩ) Aii	Qualit	ty Ma	anagen	nent Di	strict
The 8-hour average California ozone s c) - The state standard is 1-hour average N	tandard of ($O_{1} > 0.25$ r	Idq /0.0	n was est e federal	ablished e standard	ettective N is annual	Aay 17, 20 arithmetic	06. mean NO ₂	> 0.0534 1	apm. Air I	sources	Board ha	annrove	d to		リ	× 218	65 Cople	y Drive	e 01775 4	01	
D more - or promotion and all - (A	1 / ZO			- morrison o		du summere a	7 ~ · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		~~~~~~~~~		·· › ·· J.Jm or	2.2			12	A DHOM			[×]	

lower the NO₂ 1-hour standard to 0.18 ppm and establish a new annual standard of 0.030 ppm. The revisions are expected to become effective later in 2007. d) - The state standards are 1-hour average SO₂ > 0.25 ppm and 24-hour average SO₂ > 0.04 ppm. The federal standards are annual arithmetic mean SO₂ > 0.03 ppm, 24-hour average > 0.14 ppm, and 3-hour average > 0.50 ppm. The federal and state SO₂ standards were not exceeded.

The map showing the locations of source/receptor areas can be accessed via the Internet at http://www.aqmd_gov/relenweb/areamap.aspx. Locations of source/receptor areas are shown on the "South Coast Air Quality Management District Air Monitoring Areas" map available free of charge from SCAQMD Public Information.

AGMD www.aqmd.gov

			Suspended	d Particulat	es PM10 e)				Fine Particul	lates PM2.5	0		Part	iculates TSI	(g c	Lead	Ig)	Sulfa	tte g)
				No. (%)	Samples					No. (%) S	amples							No. (9	6) Samples
0007		2	1 _{av}	Excee	eding dard	Annıal		Max	98th Percentile	Exceed	ling Standard	Annial		Max	Annual	Max	Max	Max	Exceeding Standard
)) 	ΖĈ	. O .=	onc.	<u>Federal</u> > 150	<u>State</u> > 50	Average A AM h)	No. Davs	Conc.	Conc.	$\frac{\text{Federal i}}{> 35}$	Federal i) >65	Averages A AM i)	No. Davs	Conc.	A verage A A M	Monthly Average	Quarterly A vera oe	Conc.	<u>State</u> > 25
Source/Receptor Area No. Location	Station of Di	ata 2 h	g/m ³ 4-hour	μg/m ³ 24-hour	μg/m ³ 24-hour	Conc. µg/m ³	of Data	μg/m ³ 24-hour	μg/m ³ 24-hour	μg/m ³ 24-hour	μg/m ³ 24-hour	Conc. µg/m ³	of Data	μg/m ³ 24-hour	Conc. µg/m ³	Conc.k) µg/m ³	Conc.k) µg/m ³	μg/m ³ 24-hour	μg/m ³ 24-hour
LOS ANGELES COUNTY	100	ç	ç	d	(F 2)C		000				c	1 1	C L	001	, , ,		Ğ	0	d
1 Central LA 2 Northwest Coastal LA County	/80	<u>ار</u>	ес -	0	3(1.c) -	30.3 	330 -			11(3.3) -	o I	0.CI 	90 26	109 76	63.3 40.2			18.2	0 0
3 Southwest Coastal LA County	820	51	45	0	0	26.5	I	ł	ł	I	I	I	56	2 8	43.1	0.01	0.01	13.6	0
4 South Coastal LA County 1 4 South Coastal LA County 2	072	61 58	78 117	00	6(9.8) 19(32 7)	31.1 45.0	290* 320	58.5* 53.6	34.9* 35.3	5(1.7)* 6(1.9)	*0 0	14.2* 14.5	62 59	157 192	62.9 71 1	0.01	0.01	17.8 18.8	00
6 West San Fernando Valley	074	1	-	-		-	92 92	44.1	32.0	1(1.1)	0	12.9	<u>;</u>	-		-	-	-	-
7 East San Fernando Valley	690	54	71	0	10(18.5)	35.6	104	50.7	43.4	6(5.8)	0	16.6	1	1	1	I	I	1	1
8 West San Gabriel Valley	088	1 0	1 5	1 0			113 770*	45.9 52 0*	32.1 20 5 *	1(0.9)	0 *0	13.4 15 5*	60	123	42.8	I	1	28.7	1(1.7)
9 East San Gabriel Valley 1 9 East San Gabriel Valley 2	591	o 1	10		(1.21)/	7.10 	. 0/7	. 0.7C	. C.OC		5	. c. c1	در ۱	147 	+.00.+		1 1		>
10 Pomona/Walnut Valley	075	-	-	1	-	-	1	-	1	-	1	1		-	-	1	-	1	1
11 South San Gabriel Valley 12 South Central LA County	085 084			1 1		: :	116 107	72.2 55.0	43.1 44.5	7(6) 4(3.7)	1(0.9)	16.7 16.7	28 28	768 147	79.3 68.4	0.03	0.02	28.6 24.1	1(1.7)
13 Santa Clarita Valley	060	58	53	0	1(1.7)	23.4	5 -						S I	-	t.				
ORANGE COUNTY 16 North Orange County	3177	1	ı	1	:	:	1	1	1	1	1	1	1	:	:	1	1	1	;
17 Central Orange County	3176	56	104	0	7(12.5)	33.4	330	56.2	40.5	8(2.4)	0	14.1					1		
18 North Coastal Orange County 19 Saddleback Vallev	3195	- 02	5	0	- 10 01	 27 8	- 106	47.0		100	0	- 11 0			: :	1 1			1 1
RIVERSIDE COUNTY	100	0	5	6	(0.7)1	0.77	100	0.1	1.04	(0.0)1	b	0.11						1	
22 Norco/Corona	4155	57	74	0	10(17.5)	36.5	1 000	l			1 0	1	1	١,	1 2	1 0	1 0	1	1 0
23 Metropolitan Riverside County I 23 Metronolitan Riverside County 2	4144 1 4146	18	- 109	0	71(60.2) 	54.4 	300 105	68.5 55 3	53.7 47.7	32(10.7) 9(8.6)	1(0.3)	19.0 17.0	59 59	169 131	91.2 77 9	0.01	0.01	10.8 9 9	0 0
23 Mira Lona	5214	59	124	0 0	41(69.5)	64.0 15 0	113	63.0	52.5	14(12.4)	0	20.6	5 1		1			i I	
24 Ferris Valley	4149	5	C7 I	0	(7.00)41	40.0		-	-		-			-	-	-	-	-	-
25 Lake Elsinore 29 Banning Airport	4164	- 55	 75	0	 8(14.6)	 31.1			1 1					11		1 1	1 1		1 1
30 Coachella Valley 1**	4137	57	73+	+0	2(3.5)+	24.5+	111	24.8	15.9	0 0	0	7.7	ł	I	1	ł	ł	ł	ł
30 Coachella Valley 2**	4157 1	15	122 +	0+	57(49.6)+	52.7+	107	24.3	19.1	0	0	9.5	ı	1	:	1	1	:	
SAN BERNARDINO COUNTY 32 Northwest San Bernardino Valley	5175	ł	I	I	1	1	I	ł	I	I	ł	I	58	105	54.6	0.01	0.01	9.1	0
33 Southwest San Bernardino Valley	5817	62	78	0	17(27.4)	42.3	107	53.7	41.5	7(6.5)	0 0	18.5	1	1	- 101	I	I	1 2	<
34 Central San Bernardino Valley 2	5203	57	142 92	0	24(42.1)	46.0	102	55.0	43.0	(0.0)/ (8(7.8)	0	17.8	54	174	87.0	0.02	0.01	11.0	0
35 East San Bernardino Valley	5204	60	103	0	12(20.0)	36.2	I	I	ł	ł	ł	ł	I	I	;	ł	I	I	ł
3/ Central San Bernardino Mountains 38 East San Bernardino Mountains	5818	x 1	63 	0	I(1.7) -	26.2	+2*	 40.1*	 40.1*	 1(2.4)*	- *0	 11.2*		1 1	: :	1 1	1 1	1 1	
DISTRICT MAXIMUM			142+	$^{+0}$	71	64.0		72.2	53.7	32	1	20.6		768	101.0	0.03	0.02	28.7	1
SOUTH COAST AIR BASIN			142 +	$^{+0}$	75	64.0		72.2	53.7	32	1	20.6		768	101.0	0.03	0.02	28.7	1
$\mu g/m^3$ - Micrograms per cubic meter of air	-	IAA!	M - Annual	Arithmeti	c Mean		Pollutant	not monit	ored										
* Less than 12 full months of data. May m e) - PM10 samples were collected every 6 da	ot be represe ys at all site:	ntative. s except f	or Station]	Numbers 4	** Sa 144 and 4157	Iton Sea Au where sam	Basın. Des were	collected e	very 3 days.	,									
f) - PM2.5 samples were collected every 3 da and Station Number 5818 where samples	ys at all site s were taken	s except	for the follc lays.	owing sites	: Station Nun	ibers 060, 0	72, 077, 0	87, 3176, 8	and 4144 wh	ere samples	were taken	every day,						K	
g) - Total suspended particulates, lead, and su $h) - Federal annual PM10 standard (AAM > 4$	olfate were d 50 llo/m ³) w	letermine as revoka	d from sam ed effective	ples collec	ted every 6 d	ays by the h tate standard	igh volum	l average (method, on $\frac{1}{20}$	glass fiber fi	lter media.						ĥ	P	
i) - U.S. EPA has revised the federal 24-hour	PM2.5 stan	dard fron 5 uc/m3	165 μg/m ³ State stan	to 35 μg/n dard is any	1 ³ ; effective I	December 12	7, 2006. 2/m3	0	ì	1							Ť	Ş	
y - recent type:) summer is united average k) - Federal lead standard is quarterly average	r < (μυταγι) e > 1.5 μg/m	3; and sta	ate standard	d is monthl	y average ≥ 1	.5 μg/m ³ . Ν	ив/ш Vo locatio	n exceeded	l lead standa	rds.							Ξ.Ϋ́	inted on scycled	
Maximum monthly and quarterly lead co	oncentration	s at speci	al monitori	ing sites im	mediately do	wnwind of s	tationary	lead source	es were 0.24	μg/m ³ and ().22 μg/m ³	, respectivel	ly, both re	corded at				Paper	

+ - The data for the samples collected on a high-wind day (July 16, 2006) at Palm Springs and Indio (226 µg/m³ and 313 µg/m³, respectively) were excluded in accordance with EPA's Natural Events Policy. Central Los Angeles.

are highest. 0 means there was no coverage; 100 means there was complete coverage.

Switch:	8-Hour Ozone	PM10	PM2.5	Carbon Monoxide	Nitrogen Dioxide	Sulfur Dioxide	Hydrogen Sulfide
Go to:	0	Data Statistics H	ome Page		Top 4 Sum	maries Start P	age

Year:	2004		2	005	2006	
	Date	Measurement	Date	Measurement	Date	Measurement
First High:	Sep 6	0.091	May 22	0.098	Jul 15	0.079
Second High:	Aug 29	0.079	Aug 28	0.084	Jul 22	0.077
Third High:	Jun 5	0.078	May 14	0.074	Sep 3	0.076
Fourth High:	Sep 11	0.078	May 15	0.070	Jun 3	0.075
# Days Above Nat'	Standard:	1		1		0
Year Coverage:		94		97		98
	Go Backward One Year		New Top 4 Summary		Go Forward One Year	

Notes: All averages are expressed in parts per million.

National exceedances are shown in orange . An exceedance is not necessarily a violation.

Year Coverage indicates how complete monitoring was during the time of the year when concentrations

are highest. 0 means there was no coverage; 100 means there was complete coverage.

Switch:	Hourly Ozone	PM10	PM2.5	Carbon Monoxide	Nitrogen Dioxide	Sulfur Dioxide	Hydrogen Sulfide
Go to:	0	Data Statistics H	ome Page		Top 4 Sum	maries Start P	age

Year:	2004		2	005	2006	
	Date	Measurement	Date	Measurement	Date	Measurement
First High:	Sep 6	0.091	May 22	0.098	Jul 15	0.079
Second High:	Aug 29	0.079	Aug 28	0.084	Jul 22	0.077
Third High:	Jun 5	0.078	May 14	0.074	Sep 3	0.076
Fourth High:	Sep 11	0.078	May 15	0.070	Jun 3	0.075
# Days Above Nat'	Standard:	1		1		0
Year Coverage:		94		97		98
	Go Backward One Year		New Top 4 Summary		Go Forward One Year	

Notes: All averages are expressed in parts per million.

National exceedances are shown in orange . An exceedance is not necessarily a violation.

Year Coverage indicates how complete monitoring was during the time of the year when concentrations

are highest. 0 means there was no coverage; 100 means there was complete coverage.

Switch:	Hourly Ozone	PM10	PM2.5	Carbon Monoxide	Nitrogen Dioxide	Sulfur Dioxide	Hydrogen Sulfide
Go to:	0	Data Statistics H	ome Page		Top 4 Sum	maries Start P	age

Year Coverage indicates how complete monitoring was during the time of the year when concentrations

are highest. 0 means there was no coverage; 100 means there was complete coverage.

Switch:	Hourly Ozone	8-Hour Ozone	PM10	PM2.5	Carbon Monoxide	Sulfur Dioxide	Hydrogen Sulfide
Go to:	Data Statistics Home Page				Top 4 Sum	maries Start Pa	age

Highest 4 Daily PM10 Measurements

Los Angeles-North Main Street

FAQs

1 1 1

Year:	20	04	2	005	2	006
	Date	Measurement	Date	Measurement	Date	Measurement
National:						
First High:	Oct 6	72.0	Mar 11	70.0	Feb 4	59.0
Second High:	Mar 16	64.0	Jan 22	68.0	May 11	55.0
Third High:	Mar 10	58.0	Nov 6	68.0	May 17	55.0
Fourth High:	Mar 22	54.0	Nov 24	51.0	Feb 10	48.0
California:						
First High:	Oct 6	72.0	Mar 11	69.0	Feb 4	
Second High:	Mar 16	63.0	Jan 22	68.0	May 11	
Third High:	Mar 10		Nov 6	67.0	May 17	54.0
Fourth High:	Mar 22	54.0	Sep 19	50.0	Feb 10	48.0
Measured:						
# Days Above Nat'l	Standard:	0		0		0
# Days Above State	Standard:	5				
Estimated:						
3-Yr Avg # Days Above	e Nat'l Std:	*		0.0		0.0
# Days Above Nat'l	Standard:	0.0		0.0		0.0
# Days Above State	Standard:	30.4		17.8		18.1
National 3-Yea	r Average:	34		32		31
National Annua	Average:	32.7		29.6		30.1
State 3-Yr Maximun	n Average:	34		34		32
State Annua	I Average:	32.5		29.2		29.8
Year	Coverage:	100		100		95
	Go Backwar	d One Year	New Top	4 Summarv	Go Forw	vard One Year

Notes: All concentrations are expressed in micrograms per cubic meter.

State exceedances are shown in yellow . National exceedances are shown in orange .

An exceedance is not necessarily a violation.

State and national statistics may differ for the following reasons:

State statistics are based on California approved samplers, whereas national statistics are based on samplers using federal reference or equivalent methods.

State and national statistics may therefore be based on different samplers.

State statistics for 1998 and later are based on *local* conditions (except for sites in the

South Coast Air Basin, where State statistics for 2002 and later are based on *local* conditions). National statistics are based on *standard* conditions.

State criteria for ensuring that data are sufficiently complete for calculating valid annual averages are more stringent than the national criteria.

Measurements are usually collected every six days. Measured days counts the days that a measurement was greater than the level of the standard; Estimated days mathematically estimates how many days concentrations would have been greater than the level of the standard had each day been monitored.

3-Year statistics represent the listed year and the 2 years before the listed year.

Year Coverage indicates how complete monitoring was during the time of the year when concentrations are highest. 0 means there was no coverage; 100 means there was complete coverage.

* There was insufficient (or no) data available to determine the value.

Switch:	Hourly Ozone	8-Hour Ozone	PM2.5	Carbon Monoxide	Nitrogen Dioxide	Sulfur Dioxide	Hydrogen Sulfide
Go to:	D	ata Statistics Ho	ome Page		Top 4 Sum	maries Start P	age

Appendix C

EMFAC 2007 & CAL3QHC Output Files

Title : Los Angeles County Avg Winter CYr 2007 EMFAC Version : Emfac2007 V2.3 Nov 1 2006 Run Date : 2007/08/01 11:11:07 Scen Year: 2007 -- All model years in the range 1965 to 2007 selected Season : Winter Area : Los Angeles Year: 2007 -- Model Years 1965 to 2007 Inclusive -- Winter Emfac2007 Emission Factors: V2.3 Nov 1 2006 County Average Los Angeles County Average Table 1: Running Exhaust Emissions (grams/mile; grams/idle-hour) Temperature: 60F Relative Humidity: 50% Pollutant Name: Carbon Monoxide Speed MPH LDA LDT MDT HDT UBUS MCY ALL

0	0.000	0.000	22.896	55.968	0.000	0.000	5.522
20	4.204	5.175	6.225	12.062	10.552	27.551	5.247

Title : Los Angeles County Avy Winter CYr 2007 BURDEN Version : Emic/2007 V2.3 Nov 1 2006 Version : Emic/2007 V2.3 Nov 1 2006 Scen Year: 2007 - All model years in the range 1965 to 2007 selected Scen Neur: 2007 - All model years in the range 1965 to 2007 selected Access : Los Angeles County Average TM Stat : Enhanced Interim (2005) -- Using I/M schedule for area 59 Los Angeles (SC) I/M Stat : Enhanced Interim (2005) -- Using I/M schedule for area 59 Los Angeles (SC)

· 4 * * * * * * * * * * * * * * * * * * *	********** Ligh Jon-cat	**************************************	**************************************	**************************************	**************************************	********* Light Dut; Cat	<pre>************************************</pre>	**************************************	**************************************	**************************************	**************************************	**************************************	**************************************	********** e a v y D ine Trucks Cat	**************************************	*********** r u c k s Diesel T Trucks	**************************************	********* Urban Buses	**************************************	******** All ehicles
********* Vehicles VMT/1000 Trips	**************************************	**************************************	**************************************	**************************************	**************************************	**************************************	**************************************	**************************************	**************************************	**************************************	**************************************	**************************************	**************************************	**************************************	**************************************	**************************************	**************************************	**************************************	**************************************	******** 6035690. 217704. 1180100.
Run Exh Idle Exh Start Ex	8.19 0.00 1.64	14.40 0.00 14.19	0.00	22.66 0.00 15.83	6.25 0.00 0.86	10.14 0.00 7.82	0.00	Total 0 16.45 0.00 8.68	rganic Gas 2.05 0.00	Emissions 7.42 0.13 6.84	0.26	9.73 0.13 7.58	0.57 0.01 1.62	1.78 1.78 0.04 1.44	2.35 0.05 3.06		12.78 0.83 3.06	0.02	4.40 0.00 0.81	66.70 0.97 35.98
Total Ex	9.83	28.60	0.07	38.49	7.11	17.96	0.06	25.13	2.78	14.39	0.26	17.44	2.20	3.26	5.45	11.22	16.67	0.71	5.22	103.65
Diurnal Hot Soak Running Resting Total	0.52 1.19 5.72 0.25 17.51	3.61 5.08 15.05 1.49 	0.00 0.00 0.00 0.00 0.00	4.13 6.27 20.77 1.73 71.40	0.27 0.63 1.98 0.13 0.13	1.64 2.28 11.50 0.70 34.09	0.00	1.91 2.91 13.48 0.83 44.27	0.03 0.13 0.39 0.01 0.01	0.60 0.98 6.15 0.26 	0.00 0.00 0.00 0.00 0.00	0.62 1.11 6.54 0.28 	0.01 0.08 0.64 0.00 2.93	0.02 0.03 0.40 0.00 3.71	0.02 0.11 1.04 0.01 0.01	0.00 0.00 0.00 0.00 0.00	0.02 0.11 1.04 0.01 1 17.86	0.00 0.00 0.02 0.02 0.00	0.38 0.24 1.13 0.14 	7.07 10.65 42.98 2.99 167.34
Run Exh Idle Exh Start Ex	90.24	321.64 0.00 147.07	0.00	412.13 0.00 155.82	66.72 0.00 4.64	245.00 0.00 90.27	0.37 0.00 0.00	312.09 94.90 94.90	Monoxide 34.05 0.01 5.12	Emissions 125.29 0.72 76.91	1.18 0.02 0.00	160.52 0.76 82.04	15.62 0.03 14.33	28.97 0.24 22.10	44.59 44.59 0.27 36.43	39.47 3.18 0.00	84.06 3.44 36.43	4.55 0.00 0.28	53.50 0.00 2.80	1026.86 372.26
Run Exh Idle Exh Start Ex	5.62 0.00 0.41	36.27 0.00 9.46	0.44	42.34 0.00 9.87	4.11 0.00 0.21	37.02 0.00 7.64	0.82	0.00 0.00 7.85	of Nitroge 0.00 0.14	n Emissions 24.45 0.01 9.71	9.20	35.39 0.07 9.85	0.00	7.32 0.00 2.75	7.81 0.00 2.99	144.12 4.75 0.00	151.93 4.75 2.99	10.10 0.00 0.03	1.57 0.00 0.09	283.28 4.82 30.68
Total Ex	6.04	45.74	0.44	52.21	4.33	44.66	0.82	49.81	1.87	34.17	9.26	45.31	0.72	10.08	10.80	148.87	159.67	10.13	1.66	318.78
Run Exh Idle Exh Start Ex Total Ex	0.64	49.54 0.00 1.68 51.21	0.10	50.28 0.00 1.73 52.01	0.47 0.00 0.03	34.21 0.00 1.07 35.28	0.18 0.00 0.00	Carbon D 34.86 0.00 1.10 		ssions (000 19.34 0.02 0.61	0.00 0.00 0.00 0.00	20.23 0.03 0.63 20.89	0.05 0.00 0.03	1.05 0.01 0.03 1.08	1.10 0.01 0.05 	14.74 14.74 0.00	15.55 0.30 0.05 15.90	1.21 0.00 0.00 1.22	0.14	122.27 0.32 3.53 126.13
Run Exh Idle Exh Start Ex	0.00	1.38 0.00 0.13	0.05	1.47 0.00 0.13	0.03	1.53 0.00 0.12	0.00	1.60 0.00 0.13	M10 Emissi 0.01 0.00	ons 0.63 0.00 0.06	0.00	0.70 0.00	0.00	0.00	0.00	5.98 0.13 0.00	5.99 0.13 0.00	0.15	0.05	9.96 0.13 0.33
Total Ex	0.05	1.51	0.05	1.60	0.03	1.65	0.04	1.72	0.01	0.69	0.06	0.76	0.00	0.02	0.02	6.11	6.13	0.15	0.06	10.42
TireWear BrakeWr	0.01	1.00	0.00	1.01	0.01	0.56	0.00	0.57	0.00	0.25	0.02 0.02	0.27 0.38	0.00	0.02 0.02	0.02	0.22 0.18	0.24	0.00	0.00	2.10 3.09
Total	0.07	4.08	0.05	4.20	0.05	3.09	0.05	3.19	0.02	1.30	0.10	1.41	0.00	0.06	0.06	6.51	6.58	0.16	0.07	15.61
Lead SOx	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00 0.14	0.00	0.00	0.00	0.00
Gasoline Diesel *********	90.02	5327.09 5327.09 ********	0.00	5417.11 5427.11 *********	64.80 0.00 *******	3670.72 0.00	0.00 16.51	Fuel Con 3735.51 16.51	sumption (28.17 0.00		s) 0.00 64.18	2109.52 64.18 *********	13.39 0.00	120.24 0.00	133.63 0.00 ********		133.63 1326.66 ********		26.34 0.00	11431.51 1518.26 *******

Title : Los Angeles County Avg Winter CYr 2023 EMFAC Version : Emfac2007 V2.3 Nov 1 2006 Run Date : 2008/03/03 17:12:20 Scen Year: 2023 -- All model years in the range 1979 to 2023 selected Season : Winter : Los Angeles Area ***** Year: 2023 -- Model Years 1979 to 2023 Inclusive -- Winter Emfac2007 Emission Factors: V2.3 Nov 1 2006 County Average Los Angeles County Average Table 1: Running Exhaust Emissions (grams/mile; grams/idle-hour) Pollutant Name: Carbon Monoxide Temperature: 60F Relative Humidity: 50% Speed LDA LDT MDT HDT UBUS MCY MPH ALL 0.000 0.000 22.922 49.539 0.000 0.000 5.727 1.053 1.761 2.003 2.290 6.657 16.650 1.556 0

20

Title : Los Angeles County Avg Winter CYr 2023 BURDEN Version : Emfac207, V2.3 Nov 1 2006

Run Date Scen Year Season Area I/M Stat Emissions	2008/03/1 2023 2 Winter Los Angel Enhanced Tons Per	03 17:12:2(All model) les County Interim (2 Day	0 years in th Average 2005) Us	he range 1: sing I/M sc	979 to 202 chedule fo	3 selected r area 59 I	os Angeles	(SC)												
	Liç Non-cat	ght Duty Pa Cat	issenger Ca Diesel	ars Total	 Non-cat	- Light Dut Cat	y Trucks - Diesel	 Total	 Non-cat	Medium Dut Cat	y Trucks - Diesel	 Total	Non-cat	e a v y D ine Trucks Cat	u t Y T Total	r u c k s Diesel T Trucks	 otal HD Trucks	Urban Buses	Motor- cycles V	All
vehicles VMT/1000 Trips	106. 2. 395.	3875770. 123925. 24028800.	1188. 22. 5677.	3877060. 123949. 24034800.	93. 2. 347.	2058860. 70895. 12651900.	4002. 106. 21509.	2062950. 71003. 12673700.	561.	814826. 29119. 7931030.	34585. 1637. 429706.	849560. 30758. 8361290.		70533. 1513. 773206.	70533. 1513. 773206.	99265. 10810. 1773510.	169798. 12323. 2546720.	4972. 542. 19889.	163149. 1189. 326264. 4	7127500. 239765. 7962700.
Run Exh Idle Exh Start Ex	0.00	4.01	0.00	4.02	0.00	4.09	0.00	Total 0 4.11 2.78	rganic Gas 0.01 0.00	s Emissions 2.51 0.14 3.04	0.00	2.73 2.73 0.15 3.04	0.00	0.70	0.70	3.94 3.62 0.00	4.27 0.66	0.03	3.94 0.00 0.81	19.70 0.81 10.63
Total Ex	0.01	7.27	00.00	7.29	0.01		0.01	6.88	0.01	5.70	0.21	5.92	00.0	1.07	1.07	4.56	5.63	0.67	4.75	31.14
Diurnal Hot Soak Running Resting	00.00	1.57 3.51 7.68 1.19	00.00	1.58 3.51 7.68 1.19	00.00	1.20 2.49 10.13 1.00	00.0	1.20 2.50 10.13	00.00	0.46 1.08 5.67 0.38	00.00	0.46 1.08 5.67 0.38	00.00 00.00 00.00	0.01 0.02 0.34 0.00	0.01 0.02 0.34 0.00	00.00 00.00 00.00	0.01 0.02 0.34 0.00	0.00 0.00 0.03	0.39 0.15 0.50 0.14	3.64 7.27 24.35 2.71
Total	0.01	21.23	00.00	21.25	0.01	21.69	0.01	21.71	0.01	13.30	0.21	13.52	0.00	1.44	1.44	4.56	6.00	0.70	5.93	69.11
Run Exh Idle Exh Start Ex	0.06	110.70 0.00 44.18	0.00	110.77 0.00 44.18	0.08	112.55 0.00 38.66	0.00	Carbon 112.71 0.00 38.67	Monoxide 0.16 0.00	Emissions 54.69 0.84 35.55	1.43 0.03 0.00	56.28 0.87 35.56	0.00	6.72 0.24 11.03	6.72 0.24 11.03	19.94 3.63 0.00	26.66 3.87 11.03	3.39 0.00 0.32	31.18 0.00 3.76	340.99 4.74 133.52
Total Ex	0.06	154.87	0.02	154.95	0.08	151.21	0.08	151.37	0.18	91.08	1.46	92.72	0.00	18.00	18.00	23.56	41.56	3.71	34.94	479.25
Run Exh Idle Exh Start Ex	0.01	9.92 0.00 2.42	0.04	9.96 0.00 2.42	0.00	12.72 0.00 2.82	0.18	Oxides 12.91 0.00 2.82	of Nitroge 0.01 0.00 0.00	sn Emissions 8.03 0.01 7.76	4.28 0.10 0.00	12.32 0.11 7.76	0.00	1.61 0.00 1.46	1.61 0.00 1.46	43.85 7.43 0.00	45.46 7.44 1.46	7.53 0.00 0.04	1.63 0.00 0.11	89.82 7.54 14.61
Total Ex	0.01	12.34	0.04	12.38	0.01	15.54	0.18	15.73	0.01	15.80	4.38	20.19	0.00	3.07	3.07	51.28	54.36	7.57	1.74	111.97
Run Exh Idle Exh Start Ex	0.00	53.22 0.00 1.87	0.00	53.23 0.00 1.87	0.00	38.78 0.00 1.25	0.00	Carbon D 38.82 0.00 1.25	ioxide Emi 0.00 0.00	21.93 21.93 0.03 0.76	0.01	22.87 0.04 0.76	0.00	1.15 0.01 0.03	1.15 0.01 0.03	20.80 0.39 0.00	21.96 0.40 0.03	1.20 0.00	0.23	138.31 0.44 3.92
Total Ex	00.00	55.09	0.01	55.10	0.00	40.03	0.04	40.07	0.00	22.72	0.94	23.66	0.00	1.19	1.19	21.20	22.39	1.20	0.24	142.67
Run Exh Idle Exh Start Ex	0.00	1.90 0.00 0.17	0.00	1.90 0.00 0.17	00.00	2.50 0.00 0.20	0.00 0.00	2.51 0.00 0.20	M10 Emissi 0.00 0.00	ons 1.02 0.00 0.09	0.00 0.00 0.00	1.06 0.00 0.09	0.00	0.00 0.00 0.00	10.0 0.00 00.0	2.04 0.03 0.00	2.06 0.03 0.00	0.12 0.00 0.00	0.03	7.68 0.03 0.47
Total Ex	00.00	2.07	00.00	2.07	0.00	2.70	0.01	2.71	0.00	1.11	0.05	1.15	0.00	0.02	0.02	2.08	2.09	0.12	0.03	8.18
TireWear BrakeWr	0.00	1.09	00.00	1.09	0.00	0.63	00.00	0.63	00.00	0.28	0.02	0.30	0.00	0.02	0.02	0.33	0.35	0.01	0.01	2.38 3.43
Total	0.00	4.88	0.00	4.88	0.00	4.31	0.01	4.32	0.00	1.79	0.09	1.88	0.00	0.06	0.06	2.68	2.74	0.13	0.04	13.99
Lead SOx	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Gasoline Diesel *******	0.12	5667.03 0.00	0.00	5667.15 0.78 *********	0.16	4124.55 0.00	0.00	Fuel Con 4124.71 *********	sumption (0.29 ********	000 gallons 2342.33 0.00	() 0.00 84.61	2342.63 84.61 ********	0.00	125.49 0.00	125.49 0.00	0.00 1907.68	125.49 1907.68 *********	16.22 93.85 ********	31.89 0.00	12308.08 2090.58

TAHA AIR QUALITY ASSUMPTIONS & INPUTS

Project:	Cedar Sinai
Project Number:	2007-083
Existing Year:	2007
Analysis Year:	2023
Existing VMT (from EMFAC2007):	217,704
Project VMT (from EMFAC2007):	239,765
EMFAC Model:	EMFAC2007
Existing CO Emissions:	1,403.320
Project Year CO Emissions:	479.250
Persistence Factor:	0.7
Existing 8-Hr Ambient CO Concentration (ppm):	2.30
Existing 1-Hr Ambient CO Concentration (ppm):	4.00

EMFAC As	sumptions
Season/Month:	Winter
Temperature:	60°F
Speed:	20 mph
Source: Transportatio Carbon Monoxide Prot	n Project-Level ocol, 12/1997

CAL3QHC	INPUTS		
		Future Pre-	
Project Scenario:	Existing	Project	Future Project
Project Year:	2007	2023	2023
Average Time (seconds):	60	60	60
Surface Roughness Factor:	100	100	100
Emissions Factor - Free Flow Link (g/veh-mile):	5.381	1.556	1.556
Emissions Factor - Idle (g/veh-hr):	5.020	5.727	5.727
Saturation Flow Rate (veh/hr):	1600	1600	1600
Receptor Height (Z-Coordinate) (feet):	5.4	5.4	5.4
Wind Speed (m/s):	1	1	1
Stability Class:	F	F	F
Ambient 1-Hr CO Concentration (ppm):	4.00	1.50	1.50
Ambient 8-Hr CO Concentration (ppm):	2.30	1.05	1.05

		C	AL3QHC name	S	
Analyzed Intersections:		Existing	No Project	Project	Scenario:
George Burns Road/Beverly Bouleva	ard	GEBEEX	GEBENP	GEBEPA	PM
George Burns Road/Gracie Allen Dr		GEGREX	GEGRNP	GEGRPA	AM
La Cienega Boulevard/Beverly Boule	evard	LABEEX	LABENP	LABEPA	AM
La Cienega Boulevard/San Vicente E	Blvd	LASAEX	LASANP	LASAPA	PM
La Cienega Boulevard/Third St		LATHEX	LATHNP	LATHPA	AM
Robertson Blvd/Beverly Blvd		ROBEEX	ROBENP	ROBEPA	PM
Robertson Boulevard/Alden Drive		ROALEX	ROALNP	ROALPA	PM
Robertson Boulevard/Burton Way		ROBUEX	ROBUNP	ROBUPA	PM
Robertson Boulevard/Third Street		ROTHEX	ROTHNP	ROTHPA	AM
San Vicente Blvd/ Beverly Blvd		SABEEX	SABENP	SABEPA	PM
San Vicente Blvd/Burton Way		SABUEX	SABUNP	SABUPA	PM
San Vicente Blvd/Third ST		SATHEX	SATHNP	SATHPA	AM
San Vicente Blvd/Wilshire Blvd		SAWIEX	SAWINP	SAWIPA	AM

Concentrations of CO for Project

2007 Existing Conditions

		CAL3QHC	Parts Per	Million
Intersection	Peak Time	1-hour	1-hour	8-hour
George Burns Rd/Beverly Blvd	PM	1	5	3.5
George Burns Road/Gracie Allen Dr	AM	0.4	4.4	3.08
La Cienega/Beverly	AM	1.3	5.3	3.71
La Cienega Boulevard/San Vicente Blvd	PM	1.6	5.6	3.92
La Cienega Boulevard/Third St	AM	1.1	5.1	3.57
Robertson Blvd/Beverly Blvd	PM	1	5	3.5
Robertson/Alden	PM	0.6	4.6	3.22
Robertson/Burton	PM	1	5	3.5
Robertson/Third	AM	0.9	4.9	3.43
San Vicente Blvd/ Beverly Blvd	PM	1.1	5.1	3.57
San Vicente Blvd/Burton Way	PM	1.2	5.2	3.64
San Vicente Blvd/Third ST	AM	1.1	5.1	3.57
San Vicente Blvd/Wilshire Blvd	AM	1.3	5.3	3.71

2023 without Project

	-	CAL3QHC	Parts Per	Million
Intersection	Peak Time	1-hour	1-hour	8-hour
George Burns Rd/Beverly Blvd	PM	0.5	2.0	1.4
George Burns Road/Gracie Allen Dr	AM	0.2	1.7	1.2
La Cienega/Beverly	AM	0.8	2.3	1.6
La Cienega Boulevard/San Vicente Blvd	PM	0.9	2.4	1.7
La Cienega Boulevard/Third St	AM	0.7	2.2	1.5
Robertson Blvd/Beverly Blvd	PM	0.3	1.8	1.3
Robertson/Alden	PM	0.6	2.1	1.5
Robertson/Burton	PM	0.6	2.1	1.5
Robertson/Third	AM	0.5	2.0	1.4
San Vicente Blvd/ Beverly Blvd	PM	0.7	2.2	1.5
San Vicente Blvd/Burton Way	PM	0.7	2.2	1.5
San Vicente Blvd/Third ST	AM	0.6	2.1	1.5
San Vicente Blvd/Wilshire Blvd	AM	0.8	2.3	1.6

2023 with Project

	_	CAL3QHC	Parts Per	Million
Intersection	Peak Time	1-hour	1-hour	8-hour
George Burns Rd/Beverly Blvd	PM	0.5	2	1.4
George Burns Road/Gracie Allen Dr	AM	0.2	1.7	1.2
La Cienega/Beverly	AM	0.8	2.3	1.6
La Cienega Boulevard/San Vicente Blvd	PM	0.9	2.4	1.7
La Cienega Boulevard/Third St	AM	0.7	2.2	1.5
Robertson Blvd/Beverly Blvd	PM	0.3	1.8	1.3
Robertson/Alden	PM	0.6	2.1	1.5
Robertson/Burton	PM	0.6	2.1	1.5
Robertson/Third	AM	0.5	2	1.4
San Vicente Blvd/ Beverly Blvd	PM	0.7	2.2	1.5
San Vicente Blvd/Burton Way	PM	0.7	2.2	1.5
San Vicente Blvd/Third ST	AM	0.7	2.2	1.5
San Vicente Blvd/Wilshire Blvd	AM	0.8	2.3	1.6

JOB: C:\Documents and Settings\jstephens\Desk

DATE : 3/3/8 TIME : 17:15:59

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS	=	.0 CM/S	VD =	.0	CM/S	Z0	=	100.	CM				
U	=	1.0 M/S	CLAS =	6	(F)	ATIM	=	60.	MINUTES	MIXH =	1000. №	AMB =	.0 PPM

LINK VARIABLES

LINK DESCRIPTION	*	L	INK COORDIN	ATES (FT)		*	LENGTH	BRG TYPE	VPH	EF	H W	V/C	QUEUE
	*	X1	Y1	X2	Y2	*	(FT)	(DEG)		(G/MI)	(FT) (FI	')	(VEH)
	*					*							
1. nba	*	512.0	.0	512.0	500.0	*	500.	360. AG	465.	5.3	.0 44.0		
2. nbq	*	512.0	464.0	512.0	-133.0	*	597.	180. AG	24.	100.0	.0 24.0	1.25	30.3
3. sbd	*	488.0	500.0	488.0	.0	*	500.	180. AG	172.	5.3	.0 32.0		
4. eba	*	.0	482.0	500.0	482.0	*	500.	90. AG	1306.	5.3	.0 56.0		
5. ebd	*	500.0	482.0	1000.0	482.0	*	500.	90. AG	1551.	5.3	.0 44.0		
6. ebq	*	476.0	482.0	454.6	482.0	*	21.	270. AG	7.	100.0	.0 36.0	.35	1.1
7. wba	*	1000.0	518.0	500.0	518.0	*	500.	270. AG	1112.	5.3	.0 56.0		
8. wbd	*	500.0	518.0	.0	518.0	*	500.	270. AG	1160.	5.3	.0 44.0		
9. wbq	*	524.0	518.0	542.2	518.0	*	18.	90. AG	7.	100.0	.0 36.0	.30	.9
											PAGE	2	

RUN: George Burns & Beverly 2007 Existing CO

JOB: C:\Documents and Settings\jstephens\Desk RUN: George Burns & Beverly 2007 Existing CO

DATE : 3/3/8 TIME : 17:15:59

ADDITIONAL QUEUE LINK PARAMETERS

LINK DESCRIPTION	*	CYCLE	RED	CLEARANCE	APPROACH	SATURATION	IDLE	SIGNAL	ARRIVAL
	*	LENGTH	TIME	LOST TIME	VOL	FLOW RATE	EM FAC	TYPE	RATE
	*	(SEC)	(SEC)	(SEC)	(VPH)	(VPH)	(gm/hr)		
	*								
2. nbq	*	60	48	3.0	465	1600	5.52	3	3
6. ebq	*	60	9	3.0	1306	1600	5.52	3	3
9. wbq	*	60	9	3.0	1112	1600	5.52	3	3

RECEPTOR LOCATIONS

	*	COOF	DINATES (FI	?)	*
RECEPTOR	*	Х	Y	Z	*
	*				*
1. nw	*	466.0	546.0	5.4	*
2. ne	*	534.0	546.0	5.4	*
3. sw	*	466.0	454.0	5.4	*
4. se	*	534.0	454.0	5.4	*

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION ANGLE * (PPM)

(DEGR))*	REC1	REC2	REC3	REC4
0.	-*- *	.0	. 0	. 3	. 4
10.	*	.0	.0	.3	.4
20.	*	.0	.0	.3	.4
30.	*	.0	.0	.4	.5
40.	*	.0	.0	.4	.5
50.	*	.0	.0	.7	.5
60.	*	.0	.0	.8	.6
70.	*	.0	.0	.8	.7
80.	*	.0	.1	1.0	.9
90.	*	.4	.5	.8	.4
100.	*	.7	.8	.2	.0
110.	*	.7	.7	. 2	.0
120.	*	.6	.6	. 2	.0
130.	*	.4	. 4	. 2	.0
140.	*	.5	. 4	. 2	.0
150.	*	.5	. 4	. 2	.0
160.	*	.5	. 4	.3	.0
170.	*	.7	. 4	.3	.0
180.	*	.4	.6	.0	.3
190.	*	.4	.7	.0	.4
200.	*	.4	.5	.0	.3
210.	*	.4	.4	.0	. 2
220.	*	.4	.4	.0	.2
230.	*	.5	.4	.0	.2
240.	*	.5	.5	.0	.2
250.	*	.7	.7	.0	. 2
260.	*	.7	.9	.1	. 3
270.	*	.4	.5	.4	.7
280.	*	.0	.0	. 8	1.0
290.	*	.0	.0	.6	.8
300.	*	.0	.0	.5	.7
310.	*	.0	.0	.5	.6
320.	*	.0	.0	.5	.5
330.	*	.0	.0	.4	.6
34U.	×	.0	.0	.3	.5
350.	×	.0	.0	.3	.5
36U. 	. * .	.0	.0	.3	.4
MAX	*	.7	. 9	1.0	1.0
DEGR.	*	100	260	80	280

The highest concentration of $$1.00\ {\rm PPM}$$ occurred at receptor rec3 .

JOB: D:\00Projects\Cedars Sinai\01_Existing\G RUN: CEGREX

DATE : 4/23/ 8 TIME : 12:12:59

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD = .0 CM/S	Z0 = 100. CM									
U =	1.0 M/S	CLAS = 6 (F)	ATIM = 60. MINUTES	MIXH = 1000. M	AMB = .0 PPM							

LINK VARIABLES

1	JINK DESCRIPTION	*	L	INK COORDIN	ATES (FT)		*	LENGTH	BRG 1	TYPE	VPH	EF	н	W	V/C	QUEUE
		*	X1	Y1	X2	¥2	*	(FT)	(DEG)			(G/MI)	(FT)	(FT)		(VEH)
1.	nba	*	506.0	. 0	506.0	500.0	*	500.	360.	AG	212.	5.3	.0	32.0		
2.	nbd	*	506.0	500.0	506.0	1000.0	*	500.	360.	AG	193.	5.3	.0	32.0		
3.	nbq	*	506.0	464.0	506.0	438.5	*	26.	180.	AG	5.	100.0	.0	12.0	.24	1.3
4.	sba	*	494.0	1000.0	494.0	500.0	*	500.	180.	AG	373.	5.3	.0	32.0		
5.	sbd	*	494.0	500.0	494.0	.0	*	500.	180.	AG	412.	5.3	.0	32.0		
б.	sbq	*	494.0	536.0	494.0	580.9	*	45.	360.	AG	5.	100.0	.0	12.0	.42	2.3
7.	eba	*	.0	482.0	500.0	482.0	*	500.	90.	AG	167.	5.3	.0	56.0		
8.	ebd	*	500.0	482.0	1000.0	482.0	*	500.	90.	AG	201.	5.3	.0	44.0		
9.	ebq	*	488.0	482.0	477.5	482.0	*	11.	270.	AG	26.	100.0	.0	36.0	.10	.5
10.	wba	*	1000.0	518.0	500.0	518.0	*	500.	270.	AG	214.	5.3	.0	56.0		
11.	wbd	*	500.0	518.0	.0	518.0	*	500.	270.	AG	160.	5.3	.0	44.0		
12.	wbq	*	512.0	518.0	525.6	518.0	*	14.	90.	AG	26.	100.0	.0	36.0	.13	.7

RUN: CEGREX

JOB: D:\00Projects\Cedars Sinai\01_Existing\G

PAGE 2

```
DATE : 4/23/ 8
TIME : 12:12:59
```

ADDITIONAL QUEUE LINK PARAMETERS

L	INK DESCRIPTION	* * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIVAL RATE
3.	nbq	*	60	22	3.0	212	1600	5.52	3	3
6.	sbq	*	60	22	3.0	373	1600	5.52	3	3
9.	ebq	*	60	35	3.0	167	1600	5.52	3	3
12.	pdw	*	60	35	3.0	214	1600	5.52	3	3

RECEPTOR LOCATIONS

	*	COOF	DINATES (FT	')	*
RECEPTOR	*	Х	Y	Z	*
	*				-*
1. nw	*	478.0	546.0	5.4	*
2. ne	*	522.0	546.0	5.4	*
3. sw	*	478.0	454.0	5.4	*
4. se	*	522.0	454.0	5.4	*

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION ANGLE * (PPM) (PPM)

(DEGR)	*	REC1	REC2	REC3	REC4
0.	*	.2	. 2	. 2	. 2
10.	*	.3	.0	. 4	.0
20.	*	.2	. 0	.2	. 0
30.	*	.1	. 0	.1	.0
40.	*	.1	. 0	.1	.0
50.	*	.1	.0	.1	.0
60.	*	.1	.0	.1	.1
70.	*	.1	.0	.2	.1
80.	*	.1	.0	.2	.1
90.	*	. 2	.1	.1	.0
100.	*	. 2	.1	.1	.0
110.	*	.2	.1	.1	.0
120.	*	.1	.1	.1	.0
130.	*	.1	.0	.1	.0
140.	*	.1	.0	.1	.0
150.	*	.1	.0	. 2	.0
160.	*	.3	.0	.3	.0
170.	*	.4	.0	.3	.0
180.	*	.2	.3	. 2	.2
190.	*	.0	.4	.0	.3
200.	*	.0	.1	.0	.2
210.	*	.0	.1	.0	.2
220.	*	.0	.1	.0	.2
230.	*	.0	.1	.0	.1
240.	*	.0	.1	.0	.1
250.	*	.1	.1	.0	.1
260.	*	.1	. 2	.0	.1
270.	÷	.0	.1	.1	.2
280.	÷.	.0	.1	.1	.2
290.	÷	.0	.1	.1	.1
300.	Ĵ	.0	.1	.0	.1
310.	Ĵ	.0	.1	.0	.1
320.	Ĵ	.0	.1	.0	. 2
240	÷	.0	. 2	.0	. 2
34U. 2E0	*	.0	. 2	.0	. 1
260	*	.0	. 4	.0	. 4
	.*.	. 4	. 2	. 2	. 2
MAX	*	4	4	4	3
DEGR	*	170	190	10	190
22010.		170	100	10	100

The highest concentration of \$.40 ppm occurred at receptor rec3 .

DATE : 3/ 3/ 8 TIME : 17:28:22

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS	=	.0 CM/S	VD =	.0	CM/S	Z0 =	- 1	100.	CM					
U	=	1.0 M/S	CLAS =	6	(F)	ATIM =		60.	MINUTES	MIXH =	1000.	М	AMB =	.0 PPM

LINK VARIABLES

]	LINK DESCRIPTION	*	L	INK COORDIN	ATES (FT)		*	LENGTH	BRG TYP	E VPH	EF	H W	V/C	QUEUE
		*	X1	Y1	X2	Y2	*	(FT)	(DEG)		(G/MI)	(FT) (FT)		(VEH)
		*					-*							
1.	nba	*	524.0	.0	524.0	500.0	*	500.	360. AG	1019.	5.3	.0 68.0		
2.	nbd	*	524.0	500.0	524.0	1000.0	*	500.	360. AG	900.	5.3	.0 44.0		
3.	nbq	*	524.0	440.0	524.0	402.5	*	37.	180. AG	27.	100.0	.0 48.0	.34	1.9
4.	sba	*	476.0	1000.0	476.0	500.0	*	500.	180. AG	1528.	5.3	.0 68.0		
5.	sbd	*	476.0	500.0	476.0	.0	*	500.	180. AG	1388.	5.3	.0 56.0		
6.	sbq	*	476.0	548.0	476.0	604.4	*	56.	360. AG	27.	100.0	.0 48.0	.51	2.9
7.	eba	*	.0	470.0	500.0	470.0	*	500.	90. AG	779.	5.3	.0 80.0		
8.	ebd	*	500.0	470.0	1000.0	470.0	*	500.	90. AG	877.	5.3	.0 44.0		
9.	ebq	*	452.0	470.0	426.6	470.0	*	25.	270. AG	37.	100.0	.0 60.0	.23	1.3
10.	wba	*	1000.0	524.0	500.0	524.0	*	500.	270. AG	1515.	5.3	.0 68.0		
11.	wbd	*	500.0	524.0	.0	524.0	*	500.	270. AG	1676.	5.3	.0 44.0		
12.	pdw	*	548.0	524.0	610.0	524.0	*	62.	90. AG	30.	100.0	.0 48.0	.57	3.1

JOB: C:\Documents and Settings\jstephens\Desk

RUN: La Cienega & Beverly 2007 Existing CO

RUN: La Cienega & Beverly 2007 Existing CO

DATE : 3/ 3/ 8 TIME : 17:28:22

ADDITIONAL QUEUE LINK PARAMETERS

1	LINK DESCRIPTION	* * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIVAL RATE
3.	nbq	*	60	27	3.0	1019	1600	5.52	3	3
б.	sbq	*	60	27	3.0	1528	1600	5.52	3	3
9.	ebq	*	60	30	3.0	779	1600	5.52	3	3
12.	wbq	*	60	30	3.0	1515	1600	5.52	3	3

RECEPTOR LOCATIONS

	*	COOR	DINATES (FI	')	*
RECEPTOR	*	Х	Y	Z	*
	*				*
1. nw	*	442.0	558.0	5.4	*
2. ne	*	558.0	558.0	5.4	*
3. sw	*	442.0	430.0	5.4	*
4. se	*	558.0	430.0	5.4	*

MODEL RESULTS

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION ANGLE * (PPM) (PPM)

(DEGR)	*	REC1	REC2	REC3	REC4
0	. * . *	4	1	7	6
10	*	. 1	.1	1 1	4
20	*	. /		1 0	4
30	*	. /	.0	1.0	3
40	*	.0	.0	. ,	. 5
50.	*	.5	.0	. 8	. 4
60.	*	.5	.0	.7	. 4
70.	*	. 4	.0	.9	. 5
80.	*	. 4	.1	. 9	. 4
90.	*	. 8	. 4	. 5	.1
100.	*	1.0	.7	. 3	. 0
110.	*	.9	.6	.3	.0
120.	*	.9	.6	.3	.0
130.	*	.9	.5	. 4	.0
140.	*	.8	.5	. 4	.0
150.	*	.9	.5	.5	.0
160.	*	1.1	.4	.6	.0
170.	*	1.3	.4	.6	.1
180.	*	.9	.7	.3	.3
190.	*	.4	.9	.0	.6
200.	*	.4	.9	.0	.5
210.	*	.4	.8	.0	.4
220.	*	.4	.8	.0	.4
230.	*	.4	.8	.0	. 4
240.	*	.5	.7	.0	.5
250.	*	.6	1.0	.0	.5
260.	*	.7	1.2	.0	.5
270.	*	.3	.7	. 2	.7
280.	*	.0	. 4	. 4	.9
290.	*	.0	.4	.5	.9
300.	*	.0	. 4	. 4	.8
310.	Ť	.0	.4	.4	.8
320.	×	.0	.4	. 3	.7
330.	Ĵ	.0	.4	. 3	.8
34U. 250	Ĵ	.0	.6	.4	1.0
350.	Ĵ	.⊥	.5	.4	1.0
	. * .	.4		. /	. 6
MAX	*	1.3	1.2	1.1	1.0
DEGR.	*	170	260	10	340

The highest concentration of $$1.30\ {\rm PPM}$$ occurred at receptor rec1 .

JOB: D:\00Projects\Cedars Sinai\01_Existing\L RUN: LASAEX

DATE : 4/23/ 8 TIME : 14:54: 0

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD =	.0 CM/S	Z0 = 100. CM								
U =	1.0 M/S	CLAS =	6 (F)	ATIM = 60. MINUTES	MIXH = 1000. M	AMB = .0 PPM						

LINK VARIABLES

NK DESCRIPTION	*	L	INK COORDIN	ATES (FT)		*	LENGTH	BRG TYPE	VPH	EF	H W	V/C	QUEUE
	*	X1	Y1	X2	Y2	*	(FT)	(DEG)		(G/MI)	(FT) (FT)		(VEH)
	-*					*							
ba	*	524.0	.0	524.0	500.0	*	500.	360. AG	1626.	5.3	.0 68.0		
bd	*	524.0	500.0	524.0	1000.0	*	500.	360. AG	1772.	5.3	.0 56.0		
pd	*	524.0	440.0	524.0	369.0	*	71.	180. AG	32.	100.0	.0 48.0	.66	3.6
ba	*	482.0	1000.0	482.0	500.0	*	500.	180. AG	1347.	5.3	.0 56.0		
bd	*	482.0	500.0	482.0	.0	*	500.	180. AG	1610.	5.3	.0 56.0		
pd	*	482.0	560.0	482.0	640.7	*	81.	360. AG	24.	100.0	.0 36.0	.73	4.1
ba	*	.0	470.0	500.0	470.0	*	500.	90. AG	2216.	5.3	.0 80.0		
bd	*	500.0	470.0	1000.0	470.0	*	500.	90. AG	1872.	5.3	.0 68.0		
pd	*	464.0	470.0	403.4	470.0	*	61.	270. AG	31.	100.0	.0 60.0	.55	3.1
ba	*	1000.0	530.0	500.0	530.0	*	500.	270. AG	1476.	5.3	.0 80.0		
bd	*	500.0	530.0	.0	530.0	*	500.	270. AG	1411.	5.3	.0 68.0		
þq	*	548.0	530.0	588.3	530.0	*	40.	90. AG	31.	100.0	.0 60.0	.37	2.0
	VK DESCRIPTION	VIX DESCRIPTION * *	VIK DESCRIPTION * I * X1 * 524.0 bd * 500.0 bd * 500.0 bd * 500.0 bd * 500.0 bd * 548.0	K LINK COORDIN * X1 Y1	MK DESCRIPTION * LINK COORDINATES (FT) * X1 Y1 X2	MK DESCRIPTION * LINK COORDINATES (FT) * X1 Y1 X2 Y2	K LINK COORDINATES (FT) * $*$ X1 Y1 X2 Y2 *	MK DESCRIPTION * LINK COORDINATES (FT) * LEMGTH * X1 Y1 X2 Y2 * (FT)	KK DESCRIPTION * LINK COORDINATES (FT) * LEMGTH BRG TYPE * X1 Y1 X2 Y2 * (FT) (DEG) * X1 Y1 X2 Y2 * (FT) (DEG) * 524.0 500.0 524.0 500.0 * 500. 360. AG bq * 524.0 500.0 524.0 369.0 * 71. 180. AG bq * 524.0 1000.0 482.0 500.0 * 500. 180. AG bq * 482.0 500.0 482.0 640.7 * 81. 360. AG bq * .0 470.0 500.0 470.0 * 500.90. AG bd * 500.0 470.0 1000.0 470.0 * 500.90. AG bd * 500.0 470.0 403.4 470.0 * 61.2 270. AG bd * 500.0 530.0	MK DESCRIPTION * LINK COORDINATES (FT) * LENGTH BRG TYPE VPH * X1 Y1 X2 Y2 * (FT) (DEG) * X1 Y1 X2 Y2 * (FT) (DEG) * * 524.0 500.0 500.0 * 500. AG 1626. od * 524.0 500.0 524.0 369.0 * 71. 180. AG 132. od * 524.0 1000.0 482.0 500.0 * 500. 180. AG 1347. od * 482.0 500.0 482.0 640.7 * 81. 360. AG 221.6 od * 60.0 470.0 640.7 * 81. 360. AG 221.6 od * 500.0 470.0 1000.0 * 500.90. AG 1872.0 od * 500.0 470.0 403.4 470.0 61.2 270	MK DESCRIPTION * LINK COORDINATES (FT) * LENGTH BRG TYPE VPH EF * XI YI X2 Y2 * (FT) (DEG) (G/MI) * XI YI X2 Y2 * (FT) (DEG) (G/MI) * 524.0 500.0 524.0 500.0 * 500.360.AG 1626.5.3 bq * 524.0 500.0 524.0 369.0 * 71. 180.AG 32.100.0 bq * 524.0 1000.0 482.0 500.0 \$500.180.AG 124.100.0 bq * 482.0 500.0 482.0 0 * 500.180.AG 24.100.0 bq * .0 470.0 500.0 470.0 * 500.90.0 90.AG 2216.5.3 bq * .0 470.0 470.0 * 500.90.0 90.AG 2216.5.3 bq * .0 470.0 <td< td=""><td>MK DESCRIPTION * LINK COORDINATES (FT) * LEMGTH BRG TYPE VPH EF H W * X1 Y1 X2 Y2 * (FT) (DEG) (G/MI) (G/MI) (FT) (FT) * * 524.0 500.0 500.0 * 500. 360. AG 1626. 5.3 .0 68.0 od * 524.0 500.0 524.0 1000.0 * 500. 360. AG 1772. 5.3 .0 68.0 od * 524.0 440.0 524.0 369.0 * 71. 180. AG 32. 100.0 .0 48.0 od * 482.0 500.0 482.0 0 * 500. 180. AG 1347. 5.3 .0 56.0 od * 482.0 560.0 482.0 640.7 * 81. 360. AG 24.100.0 .0 36.0 0 36.0 36.0 36.0 36.0 36.0 36.</td><td>KK DESCRIPTION * LINK COORDINATES (FT) * LEMGTH BRG TYPE VPH EF H W V/C * X1 Y1 X2 Y2 * (FT) (DEG) (G/MI) (FT) (G/MI) (FT) (FT) (FT) (G/MI) (FT) (FT) (FT) (G/MI) (FT) (FT) (FT) (FT) (G/MI) (FT) (FT) (FT) (G/MI) (FT) (FT) (FT) (G/MI) (FT) (FT) (FT) (G/MI) (FT) (G/MI) (FT) (G/MI) (FT) (FT) (G/MI) (FT) (G/MI)</td></td<>	MK DESCRIPTION * LINK COORDINATES (FT) * LEMGTH BRG TYPE VPH EF H W * X1 Y1 X2 Y2 * (FT) (DEG) (G/MI) (G/MI) (FT) (FT) * * 524.0 500.0 500.0 * 500. 360. AG 1626. 5.3 .0 68.0 od * 524.0 500.0 524.0 1000.0 * 500. 360. AG 1772. 5.3 .0 68.0 od * 524.0 440.0 524.0 369.0 * 71. 180. AG 32. 100.0 .0 48.0 od * 482.0 500.0 482.0 0 * 500. 180. AG 1347. 5.3 .0 56.0 od * 482.0 560.0 482.0 640.7 * 81. 360. AG 24.100.0 .0 36.0 0 36.0 36.0 36.0 36.0 36.0 36.	KK DESCRIPTION * LINK COORDINATES (FT) * LEMGTH BRG TYPE VPH EF H W V/C * X1 Y1 X2 Y2 * (FT) (DEG) (G/MI) (FT) (G/MI) (FT) (FT) (FT) (G/MI) (FT) (FT) (FT) (G/MI) (FT) (FT) (FT) (FT) (G/MI) (FT) (FT) (FT) (G/MI) (FT) (FT) (FT) (G/MI) (FT) (FT) (FT) (G/MI) (FT) (G/MI) (FT) (G/MI) (FT) (FT) (G/MI) (FT) (G/MI)

JOB: D:\00Projects\Cedars Sinai\01_Existing\L RUN: LASAEX

DATE : 4/23/ 8 TIME : 14:54: 0

ADDITIONAL QUEUE LINK PARAMETERS

1	LINK DESCRIPTION	* * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIVAL RATE
3.	nbq	*	60	32	3.0	1626	1600	5.52	3	3
6.	sbq	*	60	32	3.0	1347	1600	5.52	3	3
9.	ebq	*	60	25	3.0	2216	1600	5.52	3	3
12.	wbq	*	60	25	3.0	1476	1600	5.52	3	3

RECEPTOR LOCATIONS

	*	COOR	DINATES (FT	')	*
RECEPTOR	*	Х	Y	Z	*
	*				*
1. nw	*	454.0	570.0	5.4	*
2. ne	*	558.0	570.0	5.4	*
3. sw	*	454.0	430.0	5.4	*
4. se	*	558.0	430.0	5.4	*

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION ANGLE * (PPM) (PPM)

(DEGR)*	REC1	REC2	REC3	REC4
	- * - *	A	 o	1 2	1 0
10	*	.4		1.2	1.0
20.	*	1 0	.0	1.0	. 5
20.	÷	1.0	.0	1.3	.5
30.	Ĵ	.8	.0	1.1	.5
40.	Ĵ	. /	.0	1.1	.5
50.	ĵ.	. 6	.0	1.3	.6
60.	*	.5	.0	1.2	.6
70.	*	.5	.0	1.4	. 8
80.	*	.5	.1	1.5	.8
90.	*	.8	.3	1.0	.3
100.	*	1.3	.6	.6	.0
110.	*	1.1	.7	.6	.0
120.	*	1.0	.6	.6	.0
130.	*	1.1	.5	.5	.0
140.	*	1.0	.5	.6	.0
150.	*	1.0	.5	.7	.0
160.	*	1.3	.5	.9	.0
170.	*	1.4	.5	1.0	.1
180.	*	1.0	1.0	.5	.4
190.	*	.6	1.6	.1	.9
200.	*	.5	1.2	.0	.9
210.	*	.5	1.0	.0	. 8
220.	*	.5	1.1	.0	.6
230.	*	.6	1.1	.0	.6
240.	*	.6	1.2	.0	.6
250.	*	.8	1.4	.0	.6
260.	*	.7	1.3	.1	.7
270.	*	.2	.9	.5	1.0
280.	*	.0	.5	.9	1.6
290.	*	.0	.6	.9	1.3
300.	*	.0	.5	. 8	1.2
310.	*	.0	.5	.7	1.1
320.	*	.0	. 6	.7	1.1
330.	*	.0	.6	.7	1.1
340.	*	.0	. 9	. 6	1.2
350.	*	.1	.9	. 6	1.5
360.	*	.4	.3	1.2	1.0
 мах	-*- *	 1 /	1 6	1 5	1 6
DECE	*	170	190	10	280
DEGK.		1/0	190	10	200

THE HIGHEST CONCENTRATION OF $$1.60\ \mbox{ppm}\ \mbox{occurred}\ \mbox{at receptor}\ \mbox{rec2}$.

DATE : 4/23/ 8 TIME : 15:11:58

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD = .0 CM/S	ZO = 100. CM									
U =	1.0 M/S	CLAS = 6 (F)	ATIM = 60. MINUTES	MIXH = 1000. M	AMB = .0 PPM							

LINK VARIABLES

IN DESCRIPTION	^	L	INK COORDIN	ATES (FT)		*	LENGTH	BRG TYPE	VPH	EF	Н	W	V/C	QUEUE
	*	X1	Y1	X2	Y2	*	(FT)	(DEG)		(G/MI)	(FT)	(FT)		(VEH)
	*					*								
ba	*	530.0	.0	530.0	500.0	*	500.	360. AG	1305.	5.3	.0	80.0		
bd	*	530.0	500.0	530.0	1000.0	*	500.	360. AG	1136.	5.3	.0	56.0		
pq	*	530.0	464.0	530.0	429.7	*	34.	180. AG	30.	100.0	.0	60.0	.32	1.7
Da	*	464.0	1000.0	464.0	500.0	*	500.	180. AG	1438.	5.3	.0	80.0		
bd	*	464.0	500.0	464.0	.0	*	500.	180. AG	1507.	5.3	.0	56.0		
pq	*	464.0	536.0	464.0	573.7	*	38.	360. AG	30.	100.0	.0	60.0	.35	1.9
Da	*	.0	482.0	500.0	482.0	*	500.	90. AG	535.	5.3	.0	56.0		
bd	*	500.0	482.0	1000.0	482.0	*	500.	90. AG	596.	5.3	.0	44.0		
pq	*	428.0	482.0	395.9	482.0	*	32.	270. AG	24.	100.0	.0	36.0	.30	1.6
Da	*	1000.0	518.0	500.0	518.0	*	500.	270. AG	1458.	5.3	.0	56.0		
bd	*	500.0	518.0	.0	518.0	*	500.	270. AG	1497.	5.3	.0	44.0		
pd	*	560.0	518.0	612.5	518.0	*	53.	90. AG	41.	100.0	.0	60.0	.50	2.7
	in Description 	Image: Amage:	* X1 * 530.0 va * 64.0 va * 464.0 va * 500.0 va * 1000.0 va * 500.0 va * 500.0 va * 560.0	x x1 y1 x x1 y1 x x1 y1 x x1 y1 x1 y1 y1 x2 y1 y1 x2 y1 y1 x3 y1 y1 x464.0 536.0 518.0 y2 x428.0 482.0 y2 x428.0 482.0 y2 x428.0 482.0 y2 x500.0 518.0 y2 x500.0 518.0 y2 x560.0 518.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	x x1 y1 x2 y2 *	K DESCRIPTION * X1 Y1 X2 Y2 * (FT) * X1 Y1 X2 Y2 * (FT) * * 530.0 .0 530.0 500.0 * 500. ya * 530.0 500.0 530.0 1000.0 * 500. yg * 530.0 464.0 530.0 429.7 * 34. ya * 464.0 500.0 464.0 500.0 * 500. yg * 464.0 536.0 464.0 573.7 * 38. ya * 0 482.0 500.0 482.0 * 500. yg * 428.0 482.0 395.9 482.0 * 32. ya * 1000.0 518.0 500.0 518.0 * 500. yg * 428.0 482.0 395.9 482.0 * 32. ya * 500.0 518.0 0 518.0 * 500. yg * 560.0 518.0 612.5 518.0 * 53. <td>In the Countries (r1) In the Countries (r1) In the Countries (r1) In the Countries (r1) * X1 Y1 X2 Y2 * * 530.0 .0 530.0 500.0 * 500. 360. AG yq * 530.0 500.0 530.0 1000.0 * 500. 360. AG yq * 530.0 464.0 530.0 429.7 * 34. 180. AG yq * 464.0 500.0 464.0 500.0 * 500. 180. AG yq * 464.0 536.0 464.0 573.7 * 38. 360. AG yq * 464.0 536.0 464.0 573.7 * 38. 360. AG yq * 464.0 536.0 462.0 500.0 90. AG yda * 0 482.0 500.0 482.0 * 500.90. AG yq * 428.0 482.0 395.9 482.0 * 32. 270. AG yq *<td>x Y1 x2 Y2 * (FT) (DEG) </td><td>K DESCRIPTION*X1Y1X2Y2*DENOID INCOMPLIS (F1)FIFEP**X1Y1X2Y2*(FT)(DEG)(G/MI)***530.0$500.0$$500.0$*$500.360.$ AG$1305.5.3$ya*530.0$500.0$$530.0$$1000.0$*$500.360.$ AG$1136.5.3$ya*$530.0$$464.0$$530.0$$429.7$*$34.$$180.$ AG$1438.5.3$ya*$464.0$$500.0$$464.0$$500.0$*$500.$$180.$ AG$1438.5.3$ya*$464.0$$536.0$$464.0$$573.7$*$38.360.$ AG$30.100.0$ya*$464.0$$536.0$$462.0$*$500.90.$$90.$ AG$535.5.3$ya*$0.0$$482.0$$395.9$$482.0$*$500.90.$ AG$596.5.3$ya*$500.0$$518.0$$518.0$*$500.270.$ AG$24.100.0$ya*$500.0$$518.0$$0.0$$518.0$*$500.270.$ AG$1497.5.3$ya*$500.0$$518.0$$0.0$$518.0$*$50.270.$ AG$441.100.0$</td><td>In DESCRIPTION * X1 Y1 X2 Y2 * (FT) (DEG) (G/M1) (FT) * X1 Y1 X2 Y2 * (FT) (DEG) (G/M1) (FT) * 530.0 500.0 500.0 500.0 $360.$ AG $1136.$ 5.3 .0 ya * 530.0 500.0 500.0 500.0 $360.$ AG $1136.$ 5.3 .0 ya * 530.0 464.0 530.0 429.7 $34.$ $180.$ AG $30.100.0$.0 ya * 464.0 500.0 464.0 500.0 500.1 $180.$ AG 100.0 .0 ya * 464.0 536.0 464.0 573.7 $38.$ $360.$ AG $30.100.0$.0 ya * 0.0 482.0 500.0 482.0 $500.$ $90.$ AG $555.$ 3.0 ya * $0.00.0$ 482.0 500.0 $90.$ AG $555.$</td><td>K DESCRIPTION* X1Y1X2Y2* (FT)(DEG)(G/MI)(FT)<!--</td--><td>Intraction $*$ X1 Y1 X2 Y2 $*$ (FT) <t< td=""></t<></td></td></td>	In the Countries (r1) In the Countries (r1) In the Countries (r1) In the Countries (r1) * X1 Y1 X2 Y2 * * 530.0 .0 530.0 500.0 * 500. 360. AG yq * 530.0 500.0 530.0 1000.0 * 500. 360. AG yq * 530.0 464.0 530.0 429.7 * 34. 180. AG yq * 464.0 500.0 464.0 500.0 * 500. 180. AG yq * 464.0 536.0 464.0 573.7 * 38. 360. AG yq * 464.0 536.0 464.0 573.7 * 38. 360. AG yq * 464.0 536.0 462.0 500.0 90. AG yda * 0 482.0 500.0 482.0 * 500.90. AG yq * 428.0 482.0 395.9 482.0 * 32. 270. AG yq * <td>x Y1 x2 Y2 * (FT) (DEG) </td> <td>K DESCRIPTION*X1Y1X2Y2*DENOID INCOMPLIS (F1)FIFEP**X1Y1X2Y2*(FT)(DEG)(G/MI)***530.0$500.0$$500.0$*$500.360.$ AG$1305.5.3$ya*530.0$500.0$$530.0$$1000.0$*$500.360.$ AG$1136.5.3$ya*$530.0$$464.0$$530.0$$429.7$*$34.$$180.$ AG$1438.5.3$ya*$464.0$$500.0$$464.0$$500.0$*$500.$$180.$ AG$1438.5.3$ya*$464.0$$536.0$$464.0$$573.7$*$38.360.$ AG$30.100.0$ya*$464.0$$536.0$$462.0$*$500.90.$$90.$ AG$535.5.3$ya*$0.0$$482.0$$395.9$$482.0$*$500.90.$ AG$596.5.3$ya*$500.0$$518.0$$518.0$*$500.270.$ AG$24.100.0$ya*$500.0$$518.0$$0.0$$518.0$*$500.270.$ AG$1497.5.3$ya*$500.0$$518.0$$0.0$$518.0$*$50.270.$ AG$441.100.0$</td> <td>In DESCRIPTION * X1 Y1 X2 Y2 * (FT) (DEG) (G/M1) (FT) * X1 Y1 X2 Y2 * (FT) (DEG) (G/M1) (FT) * 530.0 500.0 500.0 500.0 $360.$ AG $1136.$ 5.3 .0 ya * 530.0 500.0 500.0 500.0 $360.$ AG $1136.$ 5.3 .0 ya * 530.0 464.0 530.0 429.7 $34.$ $180.$ AG $30.100.0$.0 ya * 464.0 500.0 464.0 500.0 500.1 $180.$ AG 100.0 .0 ya * 464.0 536.0 464.0 573.7 $38.$ $360.$ AG $30.100.0$.0 ya * 0.0 482.0 500.0 482.0 $500.$ $90.$ AG $555.$ 3.0 ya * $0.00.0$ 482.0 500.0 $90.$ AG $555.$</td> <td>K DESCRIPTION* X1Y1X2Y2* (FT)(DEG)(G/MI)(FT)<!--</td--><td>Intraction $*$ X1 Y1 X2 Y2 $*$ (FT) <t< td=""></t<></td></td>	x Y1 x2 Y2 * (FT) (DEG)	K DESCRIPTION*X1Y1X2Y2*DENOID INCOMPLIS (F1)FIFEP**X1Y1X2Y2*(FT)(DEG)(G/MI)***530.0 500.0 500.0 * $500.360.$ AG $1305.5.3$ ya*530.0 500.0 530.0 1000.0 * $500.360.$ AG $1136.5.3$ ya* 530.0 464.0 530.0 429.7 * $34.$ $180.$ AG $1438.5.3$ ya* 464.0 500.0 464.0 500.0 * $500.$ $180.$ AG $1438.5.3$ ya* 464.0 536.0 464.0 573.7 * $38.360.$ AG $30.100.0$ ya* 464.0 536.0 462.0 * $500.90.$ $90.$ AG $535.5.3$ ya* 0.0 482.0 395.9 482.0 * $500.90.$ AG $596.5.3$ ya* 500.0 518.0 518.0 * $500.270.$ AG $24.100.0$ ya* 500.0 518.0 0.0 518.0 * $500.270.$ AG $1497.5.3$ ya* 500.0 518.0 0.0 518.0 * $50.270.$ AG $441.100.0$	In DESCRIPTION * X1 Y1 X2 Y2 * (FT) (DEG) (G/M1) (FT) * X1 Y1 X2 Y2 * (FT) (DEG) (G/M1) (FT) * 530.0 500.0 500.0 500.0 $360.$ AG $1136.$ 5.3 .0 ya * 530.0 500.0 500.0 500.0 $360.$ AG $1136.$ 5.3 .0 ya * 530.0 464.0 530.0 429.7 $34.$ $180.$ AG $30.100.0$.0 ya * 464.0 500.0 464.0 500.0 500.1 $180.$ AG 100.0 .0 ya * 464.0 536.0 464.0 573.7 $38.$ $360.$ AG $30.100.0$.0 ya * 0.0 482.0 500.0 482.0 $500.$ $90.$ AG $555.$ 3.0 ya * $0.00.0$ 482.0 500.0 $90.$ AG $555.$	K DESCRIPTION* X1Y1X2Y2* (FT)(DEG)(G/MI)(FT) </td <td>Intraction $*$ X1 Y1 X2 Y2 $*$ (FT) <t< td=""></t<></td>	Intraction $*$ X1 Y1 X2 Y2 $*$ (FT) (FT) <t< td=""></t<>

JOB: D:\00Projects\Cedars Sinai\03_With Proje RUN: LATHEX

```
DATE : 4/23/ 8
TIME : 15:11:58
```

ADDITIONAL QUEUE LINK PARAMETERS

I	JINK DESCRIPTION	*	CYCLE	RED	CLEARANCE	APPROACH	SATURATION	IDLE	SIGNAL	ARRIVAL
		*	LENGTH	TIME	LOST TIME	VOL	FLOW RATE	EM FAC	TYPE	RATE
		*	(SEC)	(SEC)	(SEC)	(VPH)	(VPH)	(gm/hr)		
		*								
3.	nbq	*	60	24	3.0	1305	1600	5.52	3	3
б.	sbq	*	60	24	3.0	1438	1600	5.52	3	3
9.	ebq	*	60	33	3.0	535	1600	5.52	3	3
12.	wbq	*	60	33	3.0	1458	1600	5.52	3	3

RECEPTOR LOCATIONS

	*	COOR	DINATES (FT)	*
RECEPTOR	*	Х	Y	Z	*
					- *
1. nw	*	418.0	546.0	5.4	*
2. ne	*	570.0	546.0	5.4	*
3. sw	*	418.0	454.0	5.4	*
4. se	*	570.0	454.0	5.4	*

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION

(DEGP)	, *	REC1	(PPM) REC2	REC3	REC4
	. * .				
0.	*	.2	.2	.6	.7
10.	*	.6	.0	.9	.4
20.	*	.6	.0	.8	.4
30.	*	.5	.0	.8	.4
40.	*	.4	.0	.6	.3
50.	*	.3	.0	.7	.3
60.	*	.3	.0	.7	.5
70.	*	.4	.0	.8	.5
80.	*	.4	.1	.9	.6
90.	*	.8	.6	.6	.1
100.	*	1.0	.9	.3	.0
110.	*	1.0	.7	.3	.0
120.	*	.8	.6	.3	.0
130.	*	.8	.5	. 4	.0
140.	*	.9	.5	.5	.0
150.	*	.9	.5	.5	.0
160.	*	1.0	.4	.6	.0
170.	*	1.0	.4	.5	.1
180.	*	.6	.8	.1	.3
190.	*	.3	.9	.0	.6
200.	*	.3	1.0	.0	.6
210.	*	.4	1.0	.0	.5
220.	*	.4	.8	.0	.5
230.	*	.4	.8	.0	.4
240.	*	.5	.8	.0	.5
250.	*	.6	1.1	.0	.5
260.	*	.7	1.1	.0	.4
270.	*	.3	.9	. 2	.6
280.	*	.0	.3	. 4	1.0
290.	*	.0	. 4	.5	.9
300.	*	.0	. 4	. 4	.6
310.	*	.0	. 4	.3	.7
320.	*	.0	. 4	.3	.7
330.	*	.0	.5	. 4	. 8
340.	*	.0	.5	.4	.9
350.	*	.0	.5	.4	.9
360.	*	.2	. 2	.6	.7
MAX	*	1.0	1.1	.9	1.0
DEGR.	*	160	250	10	280

The highest concentration of $$1.10\ {\rm PPM}$$ occurred at receptor rec2 .

DATE : 3/ 3/ 8 TIME : 17:38:37

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS	=	.0 CM/S	VD =	.0	CM/S	Z0 =	- 1	100.	CM					
U	=	1.0 M/S	CLAS =	6	(F)	ATIM =		60.	MINUTES	MIXH =	1000	.Μ	AMB =	.0 PPM

LINK VARIABLES

1	LINK DESCRIPTION	*	L	INK COORDIN	ATES (FT)		*	LENGTH	BRG T	YPE V	PH	EF	Н	W	V/C	QUEUE
		*	X1	Y1	X2	¥2	*	(FT)	(DEG)			(G/MI)	(FT)	(FT)		(VEH)
		*					*									
1.	nba	*	512.0	.0	512.0	500.0	×	500.	360	AG 7	12.	5.3	.0	44.0		
2.	nbd	*	512.0	500.0	512.0	1000.0	*	500.	360.	AG 7	24.	5.3	.0	32.0		
3.	nbq	*	512.0	488.0	512.0	462.7	*	25.	180. 1	AG	б.	100.0	.0	24.0	.32	1.3
4.	sba	*	488.0	1000.0	488.0	500.0	*	500.	180. 1	AG 5	37.	5.3	.0	44.0		
5.	sbd	*	488.0	500.0	488.0	.0	*	500.	180.	AG 5	92.	5.3	.0	32.0		
б.	sbq	*	488.0	512.0	488.0	531.1	*	19.	360.	AG	б.	100.0	.0	24.0	.24	1.0
7.	eba	*	.0	494.0	500.0	494.0	*	500.	90.	AG 1	73.	5.3	.0	32.0		
8.	ebd	*	500.0	494.0	1000.0	494.0	*	500.	90.1	AG 1	95.	5.3	.0	32.0		
9.	ebq	*	476.0	494.0	434.4	494.0	*	42.	270.	AG	11.	100.0	.0	12.0	.59	2.1
10.	wba	*	1000.0	506.0	500.0	506.0	*	500.	270.	AG 1	95.	5.3	.0	32.0		
11.	wbd	*	500.0	506.0	.0	506.0	*	500.	270.	AG 1	.06	5.3	.0	32.0		
12.	pdw	*	524.0	506.0	573.5	506.0	*	49.	90.	AG	11.	100.0	.0	12.0	.67	2.5

JOB: C:\Documents and Settings\jstephens\Desk

RUN: Robertson & Alden 2007 Existing CO

RUN: Robertson & Alden 2007 Existing CO

PAGE 2

```
DATE : 3/ 3/ 8
TIME : 17:38:37
```

ADDITIONAL QUEUE LINK PARAMETERS

1	LINK DESCRIPTION	* * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIVAL RATE
3.	nbq	*	60	13	3.0	712	1600	5.52	3	3
6.	sbq	*	60	13	3.0	537	1600	5.52	3	3
9.	ebq	*	60	44	3.0	173	1600	5.52	3	3
12.	pdw	*	60	44	3.0	195	1600	5.52	3	3

RECEPTOR LOCATIONS

	*	COOR	DINATES (FI	')	*
RECEPTOR	*	Х	Y	Z	*
	*				*
1. nw	*	466.0	522.0	5.4	*
2. ne	*	534.0	522.0	5.4	*
3. sw	*	466.0	478.0	5.4	*
4. se	*	534.0	478.0	5.4	*

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION

ANGLE (DEGR)	*	REC1	(PPM) REC2	REC3	REC4
	* - *	 o	 ^	 o	
10	*	. 3	.2	. 3	. 3
20	*	. 5	.0	.4	.0
30	*	2	.0	2	.0
40.	*	.2	.0	.2	.0
50.	*	.2	.0	.2	.0
60.	*	.2	.0	.2	.1
70.	*	.2	.0	.3	. 2
80.	*	.2	.0	.4	. 2
90.	*	. 3	.1	.3	.1
100.	*	.4	. 2	. 2	.0
110.	*	.3	. 2	.2	.0
120.	*	.2	.1	. 2	.0
130.	*	.2	.0	. 2	.0
140.	*	.3	.0	. 2	.0
150.	*	.3	.0	.3	.0
160.	*	.5	.0	. 4	.0
170.	*	.5	.0	.5	.1
180.	*	.3	.4	.3	.3
190.	*	.0	.5	.0	.5
200.	*	.0	.3	.0	.4
210.	*	.0	.3	.0	.3
220.	*	.0	.3	.0	. 3
230.	*	.0	.3	.0	. 2
240.	*	.0	.2	.0	. 2
250.	*	.1	. 2	.0	. 2
260.	*	.2	.3	.0	.2
270.	*	.1	.2	.1	.3
280.	×	.0	.2	.1	. 3
290.	×	.0	.2	.1	.2
300.	÷	.0	.2	.1	.2
310.	ĵ.	.0	. 2	.0	. 3
320. 220	÷	.0	. 3	.0	. 3
330. 240	*	.0	. 3	.0	. 5
250.	*	.0	. 4	.0	.4
350.	*	.0	.4	.0	.0
	*.		. 2		· ·
MAX	*	.5	.5	.5	.6
DEGR.	*	10	190	170	350

THE HIGHEST CONCENTRATION OF .60 PPM OCCURRED AT RECEPTOR REC4 .

DATE : 4/23/ 8 TIME : 15:54:40

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD = .0 CM/S	Z0 = 100. CM							
U =	1.0 M/S	CLAS = 6 (F)	ATIM = 60. MINUTES	MIXH = 1000. M	AMB = .0 PPM					

LINK VARIABLES

1	LINK DESCRIPTION	*	L	INK COORDIN	ATES (FT)		*	LENGTH	BRG TYPE	VPH	EF	H W	V/C	QUEUE
		*	X1	Y1	X2	¥2	*	(FT)	(DEG)		(G/MI)	(FT) (FT)		(VEH)
·		*					*							
1.	nba	*	518.0	.0	518.0	500.0	*	500.	360. AG	691.	5.3	.0 56.0		
2.	nbd	*	518.0	500.0	518.0	1000.0	*	500.	360. AG	675.	5.3	.0 32.0		
3.	nbq	*	518.0	452.0	518.0	404.2	*	48.	180. AG	28.	100.0	.0 36.0	.51	2.4
4.	sba	*	488.0	1000.0	488.0	500.0	*	500.	180. AG	565.	5.3	.0 44.0		
5.	sbd	*	488.0	500.0	488.0	.0	*	500.	180. AG	531.	5.3	.0 32.0		
6.	sbq	*	488.0	548.0	488.0	606.6	*	59.	360. AG	19.	100.0	.0 24.0	.62	3.0
7.	eba	*	.0	476.0	500.0	476.0	*	500.	90. AG	1330.	5.3	.0 68.0		
8.	ebd	*	500.0	476.0	1000.0	476.0	*	500.	90. AG	1364.	5.3	.0 44.0		
9.	ebq	*	476.0	476.0	441.5	476.0	*	34.	270. AG	19.	100.0	.0 48.0	.35	1.8
10.	wba	*	1000.0	524.0	500.0	524.0	*	500.	270. AG	1121.	5.3	.0 68.0		
11.	wbd	*	500.0	524.0	.0	524.0	*	500.	270. AG	1121.	5.3	.0 44.0		
12.	pdw	*	536.0	524.0	565.1	524.0	*	29.	90. AG	19.	100.0	.0 48.0	.29	1.5

RUN: ROBEEX

JOB: D:\00Projects\Cedars Sinai\01_Existing\R

```
DATE : 4/23/ 8
TIME : 15:54:40
```

ADDITIONAL QUEUE LINK PARAMETERS

1	LINK DESCRIPTION	*	CYCLE	RED	CLEARANCE	APPROACH	SATURATION	IDLE	SIGNAL	ARRIVAL
		*	LENGTH	TIME	LOST TIME	VOL	FLOW RATE	EM FAC	TYPE	RATE
		*	(SEC)	(SEC)	(SEC)	(VPH)	(VPH)	(gm/hr)		
		*								
3.	nbq	*	60	38	3.0	691	1600	5.52	3	3
6.	sbq	*	60	38	3.0	565	1600	5.52	3	3
9.	ebq	*	60	19	3.0	1330	1600	5.52	3	3
12.	wbq	*	60	19	3.0	1121	1600	5.52	3	3

RECEPTOR LOCATIONS

	*	COOR	DINATES (FI)	*
RECEPTOR	*	Х	Y	Z	*
	*				*
1. nw	*	466.0	558.0	5.4	*
2. ne	*	546.0	558.0	5.4	*
3. sw	*	466.0	442.0	5.4	*
4. se	*	546.0	442.0	5.4	*

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION ANGLE * (PPM)

(DEGR))*	REC1	REC2	REC3	REC4
	-*- *		1	 6	5
10	*	. 2	.1	.0	3
20	*	3		.0	
30.	*	. 4	.0	. 5	.3
40.	*	.3	.0	.7	. 4
50.	*	. 3	.0	.7	.5
60.	*	.3	.0	.7	. 5
70.	*	.3	.0	.9	.6
80.	*	.3	.1	1.0	.6
90.	*	.6	.3	.6	.2
100.	*	.9	.7	.3	.0
110.	*	.7	.6	.3	.0
120.	*	.7	.5	.3	.0
130.	*	.6	. 4	.2	.0
140.	*	.6	.4	.2	.0
150.	*	.5	.4	. 2	.0
160.	*	.8	.4	. 4	.0
170.	*	.8	.4	.4	.0
180.	*	.7	.6	.1	.2
190.	*	.3	.6	.0	.4
200.	*	.4	.6	.0	.3
210.	*	.4	.7	.0	.4
220.	*	.4	.5	.0	.4
230.	*	.4	.7	.0	.3
240.	*	.5	.7	.0	.3
250.	Ť	.5	.9	.0	.3
260.	Ť.	.6	.9	.1	.3
270.	÷	.2	.5	.4	.6
280.	÷	.0	. 2	. /	1.0
290.	÷	.0	. 2	. 6	.8
300. 210	*	.0	. 4	.5	. /
320.	*	.0	. 4	. 5	.0
320. 330	*	.0	. 4		.0
340	*	.0		. 5	. /
350	*	.0	. 5	. 1	.0
360	*	.0		.1	. /
	.*.				
MAX	*	.9	.9	1.0	1.0
DEGR.	*	100	250	80	280

The highest concentration of $$1.00\ {\rm PPM}$$ occurred at receptor rec3 .

PAGE 2

DATE : 3/ 3/ 8 TIME : 17:55:22

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS	=	.0 CM/S	VD =	.0	CM/S	Z0 =	- 1	100.	CM					
U	=	1.0 M/S	CLAS =	6	(F)	ATIM =		60.	MINUTES	MIXH =	1000.	М	AMB =	.0 PPM

LINK VARIABLES

1	LINK DESCRIPTION	*	L	INK COORDIN	ATES (FT)		*	LENGTH	BRG TY	PE VPH	EF	H W	V/C	QUEUE
		*	X1	¥1	X2	¥2	*	(FT)	(DEG)		(G/MI)	(FT) (FT)		(VEH)
1		*	519 0		519 0	500 0	-* *	500	360 30	767		0 56 0		
2.	nbd	*	518.0	500.0	518.0	1000.0	*	500.	360. A	3 790.	5.3	.0 32.0		
3.	nbq	*	518.0	452.0	518.0	404.6	*	47.	180. AG	3 25.	100.0	.0 36.0	.46	2.4
4.	sba	*	488.0	1000.0	488.0	500.0	*	500.	180. AG	3 719.	5.3	.0 44.0		
5.	sbd	*	488.0	500.0	488.0	.0	*	500.	180. AG	3 804.	5.3	.0 32.0		
б.	sbq	*	488.0	548.0	488.0	614.7	*	67.	360. AG	3 17.	100.0	.0 24.0	.64	3.4
7.	eba	*	.0	476.0	500.0	476.0	*	500.	90. AG	3 1200.	5.3	.0 68.0		
8.	ebd	*	500.0	476.0	1000.0	476.0	*	500.	90. AG	3 1138.	5.3	.0 44.0		
9.	ebq	*	476.0	476.0	438.3	476.0	*	38.	270. AG	3 23.	100.0	.0 48.0	.35	1.9
10.	wba	*	1000.0	524.0	500.0	524.0	*	500.	270. AG	3 1044.	5.3	.0 68.0		
11.	wbd	*	500.0	524.0	.0	524.0	*	500.	270. AG	3 998.	5.3	.0 44.0		
12.	wbq	*	536.0	524.0	568.8	524.0	*	33.	90. AG	3 23.	100.0	.0 48.0	.31	1.7

JOB: C:\Documents and Settings\jstephens\Desk

RUN: Robertson & Burton 2007 Existing CO

DATE : 3/ 3/ 8 TIME : 17:55:22

ADDITIONAL QUEUE LINK PARAMETERS

]	LINK DESCRIPTION	* * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIVAL RATE
3.	nbq	*	60	34	3.0	767	1600	5.52	3	3
6.	sbq	*	60	34	3.0	719	1600	5.52	3	3
9.	ebq	*	60	23	3.0	1200	1600	5.52	3	3
12.	wbq	*	60	23	3.0	1044	1600	5.52	3	3

RECEPTOR LOCATIONS

	*	COOR	DINATES (FT)	*
RECEPTOR	*	Х	Y	Z	*
	*				- *
1. nw	*	466.0	558.0	5.4	*
2. ne	*	546.0	558.0	5.4	*
3. sw	*	466.0	442.0	5.4	*
4. se	*	546.0	442.0	5.4	*

MODEL RESULTS

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION ANGLE * (PPM)

(DEGR))* +	REC1	REC2	REC3	REC4
0.	*	. 3	.1	.7	.6
10.	*	.6	.0	1.0	.3
20.	*	.5	.0	.8	.3
30.	*	.4	.0	.6	.3
40.	*	.4	.0	.8	.3
50.	*	.4	.0	.6	.3
60.	*	.3	.0	.7	.5
70.	*	.3	.0	.8	.5
80.	*	.3	.1	.9	.5
90.	*	.6	.3	.6	.2
100.	*	.8	.5	.3	.0
110.	*	.7	.5	.3	.0
120.	*	.7	.5	.3	.0
130.	*	.6	.4	.3	.0
140.	*	.7	.3	.3	.0
150.	*	.6	.3	. 4	.0
160.	*	.8	.4	.5	.0
170.	*	.9	.4	.6	.0
180.	*	.7	.6	.3	. 2
190.	*	.3	.9	.0	.5
200.	×	.3	.7	.0	.5
210.	*	.4	.7	.0	.3
220.	*	.4	.6	.0	.4
23U.	*	.4	.7	.0	.4
24U. 250	*	.4	.6	.0	. 3
∠5U. 260	÷	.5	.7	.0	. 3
200. 270		. 6	.9	.1	. 3
∠/U. 200	*	.2	.5	. 3	. 0
20U.	÷	.0	. 2	. 6	.8
290. 200		.0	. 2	. 6	.8
300. 210		.0	. 2	.5	. /
320.	*	.0			.0
320. 330	*	.0		. 3	.0
240	*	.0	. 3	.4	. /
3±0. 350	*	.0	.4	.4	. 8
360.	*	.1	.4	.4	.9
	_ * .				
MAX	*	.9	. 9	1.0	. 9
DEGR .	*	170	190	10	350
		1.0	200		550

The highest concentration of $$1.00\ {\rm PPM}$$ occurred at receptor rec3 .

PAGE 2

DATE : 3/ 3/ 8 TIME : 18: 4:13

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS	=	.0 CM/S	VD =	.0	CM/S	Z0 =	=	100.	CM						
U	=	1.0 M/S	CLAS =	6	(F)	ATIM =	=	60.	MINUTES	MIXH	=	1000.	М	AMB =	.0 PPM

LINK VARIABLES

LJ	INK DESCRIPTION	*	L	INK COORDIN	ATES (FT)		*	LENGTH	BRG TY	PE VPH	EF	H W	V/C	QUEUE
		*	X1	Y1	X2	¥2	*	(FT)	(DEG)		(G/MI)	(FT) (FT)		(VEH)
		*					*							
1. r	nba	*	512.0	.0	512.0	500.0	*	500.	360. A	G 699.	5.3	.0 44.0		
2. r	nbd	*	512.0	500.0	512.0	1000.0	*	500.	360. A	G 619.	5.3	.0 32.0		
3. r	pdr	*	512.0	464.0	512.0	408.7	*	55.	180. A	G 14.	100.0	.0 24.0	.50	2.8
4. 5	sba	*	488.0	1000.0	488.0	500.0	*	500.	180. A	G 594.	5.3	.0 44.0		
5. 5	∋bd	*	488.0	500.0	488.0	.0	*	500.	180. A	G 665.	5.3	.0 32.0		
6. 5	pde	*	488.0	536.0	488.0	583.1	*	47.	360. A	G 14.	100.0	.0 24.0	.43	2.4
7. e	eba	*	.0	482.0	500.0	482.0	*	500.	90. A	G 394.	5.3	.0 56.0		
8. e	ebd	*	500.0	482.0	1000.0	482.0	*	500.	90. A	G 515.	5.3	.0 44.0		
9. e	pde	*	476.0	482.0	455.9	482.0	*	20.	270. A	G 21.	100.0	.0 36.0	.18	1.0
10. v	wba	*	1000.0	518.0	500.0	518.0	*	500.	270. A	G 950.	5.3	.0 56.0		
11. v	vbd	*	500.0	518.0	.0	518.0	*	500.	270. A	G 838.	5.3	.0 44.0		
12. v	pdw	*	524.0	518.0	572.4	518.0	*	48.	90. A	G 21.	100.0	.0 36.0	.44	2.5

JOB: C:\Documents and Settings\jstephens\Desk RUN: Robertson & Third 2007 Existing CO

DATE : 3/ 3/ 8 TIME : 18: 4:13

ADDITIONAL QUEUE LINK PARAMETERS

]	JINK DESCRIPTION	* * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIVAL RATE
3.	nbq	*	60	29	3.0	699	1600	5.52	3	3
6.	sbq	*	60	29	3.0	594	1600	5.52	3	3
9.	ebq	*	60	28	3.0	394	1600	5.52	3	3
12.	pdw	*	60	28	3.0	950	1600	5.52	3	3

RECEPTOR LOCATIONS

	*	COOR	DINATES (FT)	*
RECEPTOR	*	Х	Y	Z	*
	*				*
1. nw	*	466.0	546.0	5.4	*
2. ne	*	534.0	546.0	5.4	*
3. sw	*	466.0	454.0	5.4	*
4. se	*	534.0	454.0	5.4	*

MODEL RESULTS

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION

ANGLE (DEGR)	*	REC1	REC2	REC3	REC4
	. * . *	 o	 o	6	 6
10	*	. 2	. 2	.0	.0
20	*	.5	.0	. ,	2
30	*	.5		5	2
40.	*	.3	.0	.5	.2
50.	*	.3	.0	.5	.2
60.	*	.2	. 0	. 5	.3
70.	*	.2	.0	.5	.4
80.	*	.2	.1	.6	.4
90.	*	.5	.3	.3	.1
100.	*	.7	.5	. 2	.0
110.	*	.6	.4	.2	.0
120.	*	.5	.3	.2	.0
130.	*	.5	.4	.2	.0
140.	*	.5	.4	.3	.0
150.	*	.4	.4	.3	.0
160.	*	.5	.4	.4	.0
170.	*	.7	.4	.5	.1
180.	*	.5	.7	.3	.3
190.	*	.1	.9	.0	.6
200.	*	.2	.7	.0	.5
210.	*	.2	.5	.0	.3
220.	*	.3	.3	.0	.4
230.	*	.3	.5	.0	.3
240.	*	.3	.5	.0	.2
250.	*	.4	.6	.0	. 2
260.	*	.5	.7	.0	. 2
270.	*	.2	.5	.1	.3
280.	*	.0	.2	.4	.6
290.	*	.0	. 2	.3	.5
300.	*	.0	. 2	.2	.5
310.	*	.0	. 2	. 2	.4
320.	*	.0	. 2	.2	.4
330.	*	.0	.3	.2	.6
340.	*	.0	.3	.2	.5
350.	*	.0	.5	.3	.7
360.	*	. 2	. 2	.6	.6
MAX	*	.7	. 9	.7	.7
DEGR.	*	100	190	10	350

The highest concentration of .90 PPM occurred at receptor rec2 .

JOB: D:\00Projects\Cedars Sinai\01_Existing\S RUN: SABEEX

DATE : 4/23/ 8 TIME : 16:50:19

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD = .0 CM/S	Z0 = 100. CM										
U =	1.0 M/S	CLAS = 6 (F)	ATIM = 60. MINUTES	MIXH = 1000. M	AMB = .0 PPM								

LINK VARIABLES

	LINK DESCRIPTION	*	L	INK COORDIN	ATES (FT)		*	LENGTH	BRG 1	FYPE	VPH	EF	Н	W	V/C	QUEUE
		*	X1	Yl	X2	¥2	*	(FT)	(DEG)			(G/MI)	(FT)	(FT)		(VEH)
		*					-*									
1.	nba	*	524.0	.0	524.0	500.0	*	500.	360.	AG	1071.	5.3	.0	68.0		
2.	nbd	*	524.0	500.0	524.0	1000.0	*	500.	360.	AG	986.	5.3	.0	44.0		
3.	nbq	*	524.0	452.0	524.0	406.7	*	45.	180.	AG	31.	100.0	.0	48.0	.42	2.3
4.	sba	*	476.0	1000.0	476.0	500.0	*	500.	180.	AG	941.	5.3	.0	68.0		
5.	sbd	*	476.0	500.0	476.0	.0	*	500.	180.	AG	948.	5.3	.0	44.0		
б.	sbq	*	476.0	548.0	476.0	587.8	*	40.	360.	AG	31.	100.0	.0	48.0	.37	2.0
7.	eba	*	.0	476.0	500.0	476.0	*	500.	90.	AG	1331.	5.3	.0	68.0		
8.	ebd	*	500.0	476.0	1000.0	476.0	*	500.	90.	AG	1434.	5.3	.0	44.0		
9.	ebq	*	452.0	476.0	404.8	476.0	*	47.	270.	AG	26.	100.0	.0	48.0	.43	2.4
10.	wba	*	1000.0	524.0	500.0	524.0	*	500.	270.	AG	1027.	5.3	.0	68.0		
11.	wbd	*	500.0	524.0	.0	524.0	*	500.	270.	AG	1002.	5.3	.0	44.0		
12.	pdw	*	548.0	524.0	584.4	524.0	*	36.	90.	AG	26.	100.0	.0	48.0	.33	1.8

JOB: D:\00Projects\Cedars Sinai\01_Existing\S RUN: SABEEX

DATE : 4/23/8 TIME : 16:50:19

ADDITIONAL QUEUE LINK PARAMETERS

:	LINK DESCRIPTION	* * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIVAL RATE
3.	nbq	*	60	31	3.0	1071	1600	5.52	3	3
6.	sbq	*	60	31	3.0	941	1600	5.52	3	3
9.	ebq	*	60	26	3.0	1331	1600	5.52	3	3
12.	wbq	*	60	26	3.0	1027	1600	5.52	3	3

RECEPTOR LOCATIONS

	*	COOR	DINATES (FI	?)	*
RECEPTOR	*	Х	Y	Z	*
	*				*
1. nw	*	442.0	558.0	5.4	*
2. ne	*	558.0	558.0	5.4	*
3. sw	*	442.0	442.0	5.4	*
4. se	*	558.0	442.0	5.4	*

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION ANGLE * (PPM)

(DEGR))*	REC1	REC2	REC3	REC4
0.	*	.3	. 2	.6	.6
10.	*	.5	.0	.8	.3
20.	*	.5	.0	.8	.3
30.	*	.3	.0	.6	.3
40.	*	.3	.0	.7	.4
50.	*	.4	.0	.8	.4
60.	*	.4	.0	.9	.5
70.	*	.3	.0	.9	.6
80.	*	.3	.1	1.1	.6
90.	*	.6	.3	.7	.2
100.	*	.8	.6	.3	.0
110.	*	. 8	.5	. 2	.0
120.	*	.7	.5	.3	.0
130.	*	.8	.4	.3	.0
140.	*	.7	. 4	. 4	.0
150.	*	.7	.5	. 4	.0
160.	*	.8	.5	.5	.0
170.	*	.9	.5	.4	.1
180.	*	.7	.7	.1	.3
190.	*	.4	.9	.0	.5
200.	<i>*</i>	.4	.9	.0	.5
21U.	*	.4	.6	.0	.4
220.	*	.4	.8	.0	.4
∠3U. 240		.4	.7	.0	.4
24U. 250	*	.4	. /	.0	.4
250.	*	.5	.9	.0	.4
200. 270	*	.5	.8	. 1	.4
280	*	.2	. /	.4	. /
290.	*	.0		. /	. ,
300.	*	.0		.0	.9
310	*	.0	د. د	.5	. /
320.	*	.0	. 3	. 4	. 8
330.	*	.0	. 4	. 4	.0
340.	*	.0	.5	. 4	. 8
350.	*	.0	. 4	.4	.9
360.	*	.3	. 2	.6	.6
 MAX	*	.9	.9	1.1	.9
DEGR.	*	170	190	80	280

The highest concentration of $$1.10\ {\rm PPM}$$ occurred at receptor rec3 .

JOB: D:\00Projects\Cedars Sinai\01_Existing\S RUN: SABUEX

DATE : 4/23/ 8 TIME : 17:12:17

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD = .0 CM/S	Z0 = 100. CM							
U =	1.0 M/S	CLAS = 6 (F)	ATIM = 60. MINUTES	MIXH = 1000. M	AMB = .0 PPM					

LINK VARIABLES

I	INK DESCRIPTION	*	L	INK COORDIN	ATES (FT)		*	LENGTH	BRG I	YPE	VPH	EF	Н	W	V/C	QUEUE
		*	Xl	Y1	X2	¥2	*	(FT)	(DEG)			(G/MI)	(FT)	(FT)		(VEH)
1.	nba	*	512.0	.0	512.0	500.0	*	500.	360.	AG	28.	5.3	.0	44.0		
2.	nbd	*	512.0	500.0	512.0	1000.0	*	500.	360.	AG	536.	5.3	.0	32.0		
3.	nbq	*	512.0	464.0	512.0	460.9	*	3.	180.	AG	20.	100.0	.0	24.0	.04	.2
4.	sba	*	482.0	1000.0	482.0	500.0	*	500.	180.	AG	1070.	5.3	.0	56.0		
5.	sbq	*	482.0	560.0	482.0	673.7	*	114.	360.	AG	30.	100.0	.0	36.0	.89	5.8
6.	eba	*	.0	482.0	500.0	482.0	*	500.	90.	AG	1166.	5.3	.0	56.0		
7.	ebd	*	500.0	482.0	1000.0	482.0	*	500.	90.	AG	2178.	5.3	.0	56.0		
8.	ebq	*	464.0	482.0	427.9	482.0	*	36.	270.	AG	13.	100.0	.0	36.0	.38	1.8
9.	wba	*	1000.0	530.0	500.0	530.0	*	500.	270.	AG	1318.	5.3	.0	80.0		
10.	wbd	*	500.0	530.0	.0	530.0	*	500.	270.	AG	841.	5.3	.0	56.0		
11.	pdw	*	524.0	530.0	548.4	530.0	*	24.	90.	AG	21.	100.0	.0	60.0	.26	1.2

RUN: SABUEX

JOB: D:\00Projects\Cedars Sinai\01_Existing\S

DATE : 4/23/8 TIME : 17:12:17

ADDITIONAL QUEUE LINK PARAMETERS

:	LINK DESCRIPTION	* * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIVAL RATE
3.	nbq	*	60	40	3.0	28	1600	5.52	3	3
5.	sbq	*	60	40	3.0	1070	1600	5.52	3	3
8.	ebq	*	60	17	3.0	1166	1600	5.52	3	3
11.	wbq	*	60	17	3.0	1318	1600	5.52	3	3

RECEPTOR LOCATIONS

	*	COOR	DINATES (FT)	*
RECEPTOR	*	Х	Y	Z	*
	*				*
1. nw	*	454.0	570.0	5.4	*
2. ne	*	534.0	570.0	5.4	*
3. sw	*	454.0	454.0	5.4	*
4. se	*	534.0	454.0	5.4	*

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION ANGLE * (PPM)

(DEGR))*	REC1	REC2	REC3	REC4
0.	*	. 3	. 2	. 6	. 9
10.	*	.7	.0	.9	.6
20.	*	.6	.0	. 6	. 6
30.	*	.5	.0	.6	.6
40.	*	.4	.0	.6	.6
50.	*	.4	.0	.5	.7
60.	*	.4	.0	.7	. 8
70.	*	.4	.0	1.0	1.0
80.	*	.4	.1	1.1	1.2
90.	*	.7	.3	.8	.7
100.	*	1.1	.7	.1	.1
110.	*	1.0	.8	.0	.0
120.	*	.9	.6	.0	.0
130.	*	.8	.6	.0	.0
140.	*	.6	.4	.0	.0
150.	*	.5	.5	.0	.0
160.	*	.4	.5	.0	.0
170.	*	.4	.5	.0	.0
180.	*	.3	.5	.0	.0
190.	*	.2	.5	.0	.0
200.	*	.2	.5	.0	.0
210.	*	.2	.5	.0	.0
220.	*	.2	.5	.0	.0
230.	*	.4	.7	.0	.0
240.	*	.4	. 8	.0	.0
250.	*	.4	.7	.0	.0
260.		.4	.8	.1	.0
270.	Ĵ	.1	.5	.4	.4
280.	Ĵ	.0	. 3	. 6	.8
290.	Ĵ	.0	. 3	. 6	. /
300.	Ĵ	.0	.4	.4	. 6
310.	*	.0	.4	.4	.0
320. 220	*	.0	.4		.0
240	*	.0	. 4		1.0
350.	*	.0	.5		1 0
360.	*	.1	. 2	.5	.9
	. * .				
MAX	*	1.1	.8	1.1	1.2
DEGR.	*	100	110	80	80

The highest concentration of $$1.20\ {\rm PPM}$$ occurred at receptor rec4 .

JOB: D:\00Projects\Cedars Sinai\01_Existing\S RUN: SATHEX

DATE : 4/23/ 8 TIME : 17:27:29

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD = .0	CM/S	Z0 = 100. CM						
U =	1.0 M/S	CLAS = 6	(F)	ATIM = 60. MINUTES	MIXH = 1000.	M AMB =	.0 PPM			

LINK VARIABLES

1	LINK DESCRIPTION	*	L	INK COORDIN	ATES (FT)		*	LENGTH	BRG TYPE	VPH	EF	H W	V/C	QUEUE
		*	X1	Y1	X2	Y2	*	(FT)	(DEG)		(G/MI)	(FT) (FT)		(VEH)
		- *					*							
1.	nba	*	518.0	.0	518.0	500.0	*	500.	360. AG	810.	5.3	.0 56.0		
2.	nbd	*	518.0	500.0	518.0	1000.0	*	500.	360. AG	919.	5.3	.0 44.0		
3.	nbq	*	518.0	464.0	518.0	416.8	*	47.	180. AG	24.	100.0	.0 36.0	.44	2.4
4.	sba	*	476.0	1000.0	476.0	500.0	*	500.	180. AG	755.	5.3	.0 68.0		
5.	sbd	*	476.0	500.0	476.0	.0	*	500.	180. AG	656.	5.3	.0 44.0		
6.	sbq	*	476.0	536.0	476.0	568.9	*	33.	360. AG	32.	100.0	.0 48.0	.31	1.7
7.	eba	*	.0	482.0	500.0	482.0	*	500.	90. AG	552.	5.3	.0 56.0		
8.	ebd	*	500.0	482.0	1000.0	482.0	*	500.	90. AG	529.	5.3	.0 44.0		
9.	ebq	*	452.0	482.0	426.8	482.0	*	25.	270. AG	19.	100.0	.0 36.0	.23	1.3
10.	wba	*	1000.0	518.0	500.0	518.0	*	500.	270. AG	1472.	5.3	.0 56.0		
11.	wbd	*	500.0	518.0	.0	518.0	*	500.	270. AG	1485.	5.3	.0 44.0		
12.	pdw	*	536.0	518.0	603.0	518.0	*	67.	90. AG	19.	100.0	.0 36.0	.61	3.4

JOB: D:\00Projects\Cedars Sinai\01_Existing\S RUN: SATHEX

```
DATE : 4/23/ 8
TIME : 17:27:29
```

ADDITIONAL QUEUE LINK PARAMETERS

:	LINK DESCRIPTION	* * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIVAL RATE
3.	nbq	*	60	32	3.0	810	1600	5.52	3	3
6.	sbq	*	60	32	3.0	755	1600	5.52	3	3
9.	ebq	*	60	25	3.0	552	1600	5.52	3	3
12.	wbq	*	60	25	3.0	1472	1600	5.52	3	3

RECEPTOR LOCATIONS

	*	COOR	DINATES (FI	?)	*
RECEPTOR	*	Х	Y	Z	*
					*
1. nw	*	442.0	546.0	5.4	*
2. ne	*	546.0	546.0	5.4	*
3. sw	*	442.0	454.0	5.4	*
4. se	*	546.0	454.0	5.4	*

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION ANGLE * (PPM)

(DEGR))*	REC1	REC2	REC3	REC4
0.	- * - *	. 2	. 2	.6	.6
10.	*	.4	.0	.7	.3
20.	*	.4	.0	.7	. 3
30.	*	.3	.0	.6	. 3
40.	*	.3	.0	.6	.3
50.	*	. 2	.0	.6	.3
60.	*	.3	.0	.5	.4
70.	*	.3	.0	.7	.5
80.	*	.4	.1	.8	.5
90.	*	.7	.5	.4	. 2
100.	*	1.0	.8	. 2	.0
110.	*	.8	.6	. 2	.0
120.	*	.7	.6	.2	.0
130.	*	.7	.5	.2	.0
140.	*	.6	.5	. 2	.0
150.	*	.7	.5	.3	.0
160.	*	.8	.4	. 4	.0
170.	*	.7	.4	.3	.1
180.	*	.5	.7	.1	.3
190.	*	.3	.8	.0	.5
200.	*	.3	.7	.0	.4
210.	*	.4	.7	.0	.3
220.	*	.4	.7	.0	.4
230.	*	.4	.7	.0	.4
240.	*	.5	.8	.0	. 3
250.	*	.6	.8	.0	. 3
260.	*	.7	1.1	.0	.3
270.	*	.3	.9	. 2	.6
280.	*	.0	.3	.6	.8
290.	*	.0	.3	.5	.7
300.	*	.0	.3	. 4	.7
310.	*	.0	.3	.3	.5
320.	*	.0	.3	.3	.5
330.	*	.0	.3	.3	.5
340.	*	.0	.5	.3	.8
350.	*	.0	.5	.4	.8
36U. 	* _*.	.2	.2	.6	.6
MAX	*	1.0	1.1	.8	. 8
DEGR.	*	100	260	80	280

The highest concentration of $$1.10\ {\rm PPM}$$ occurred at receptor rec2 .

DATE : 4/23/ 8 TIME : 17:44:28

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD = .0 CM/S	ZO = 100. CM		
U =	1.0 M/S	CLAS = 6 (F)	ATIM = 60. MINUTES	MIXH = 1000. M	AMB = .0 PPM

LINK VARIABLES

JINK DESCRIPTION	*	L	INK COORDIN	ATES (FT)		*	LENGTH	BRG TYPE	VPH	EF	H W	V/C	QUEUE
	*	X1	Y1	X2	Y2	*	(FT)	(DEG)		(G/MI)	(FT) (FT)		(VEH)
	-*					*							
nba	*	530.0	.0	530.0	500.0	*	500.	360. AG	1722.	5.3	.0 80.0		
nbd	*	530.0	500.0	530.0	1000.0	*	500.	360. AG	1548.	5.3	.0 56.0		
nbq	*	530.0	452.0	530.0	399.3	*	53.	180. AG	35.	100.0	.0 60.0	.48	2.7
sba	*	470.0	1000.0	470.0	500.0	*	500.	180. AG	1061.	5.3	.0 80.0		
sbd	*	470.0	500.0	470.0	.0	*	500.	180. AG	754.	5.3	.0 56.0		
sbq	*	470.0	548.0	470.0	580.5	*	32.	360. AG	35.	100.0	.0 60.0	.29	1.6
eba	*	.0	476.0	500.0	476.0	*	500.	90. AG	1322.	5.3	.0 68.0		
ebd	*	500.0	476.0	1000.0	476.0	*	500.	90. AG	1345.	5.3	.0 56.0		
ebq	*	440.0	476.0	387.7	476.0	*	52.	270. AG	29.	100.0	.0 48.0	.48	2.7
wba	*	1000.0	524.0	500.0	524.0	*	500.	270. AG	1449.	5.3	.0 68.0		
wbd	*	500.0	524.0	.0	524.0	*	500.	270. AG	1907.	5.3	.0 56.0		
wbq	*	560.0	524.0	617.4	524.0	*	57.	90. AG	29.	100.0	.0 48.0	.52	2.9
	,INK DESCRIPTION nba nbd sba sbd sbd sbd eba eba eba ebd ebq wba wbd wbd wbq	<pre>,INK DESCRIPTION * * * nba nba nbd sba sbd sbd * sbd * sbd * eba * ebd * ebd * ebd * wba * wbd * </pre>	INK DESCRIPTION * L * X1 nba * S30.0 nbd * 530.0 nbd * 530.0 nbq * 530.0 sba * 470.0 sbd * 470.0 sbq * 470.0 eba * 0 ebd * 500.0 wbq * 1000.0 wbd * 500.0 wbq * 560.0	INK DESCRIPTION * LINK COORDIN. * X1 Y1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	INK DESCRIPTION * LINK COORDINATES (FT) * LENGTH BRG TYPE * X1 Y1 X2 Y2 * (FT) (DEG) nba * 530.0 .0 530.0 500.0 * 500. 360. AG nbd * 530.0 500.0 530.0 1000.0 * 500. 360. AG nbq * 530.0 500.0 530.0 309.3 * 53. 180. AG sba * 470.0 1000.0 470.0 500.1 180. AG sbd * 470.0 500.0 470.0 500.5 * 32. 360. AG eba * 470.0 500.0 470.0 500.5 * 32. 360. AG eba * 0 476.0 500.5 * 32. 360. AG ebd * 0 476.0 500.0 476.0 * 500. 90. AG ebd	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	NINK DESCRIPTION * LINK COORDINATES (FT) * LENGTH BRG TYPE VPH EF H W * X1 Y1 X2 Y2 * (FT) (DEG) (G/MI) (FT) (FT)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

JOB: D:\00Projects\Cedars Sinai\01_Existing\S RUN: SAWIEX

DATE : 4/23/8 TIME : 17:44:28

ADDITIONAL QUEUE LINK PARAMETERS

:	LINK DESCRIPTION	* * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIVAL RATE
3.	nba	*	60	28	3.0	1722	1600	5.52	3	3
6.	sbq	*	60	28	3.0	1061	1600	5.52	3	3
9.	ebq	*	60	29	3.0	1322	1600	5.52	3	3
12.	pdw	*	60	29	3.0	1449	1600	5.52	3	3

RECEPTOR LOCATIONS

	*	COOR	DINATES (F1	?)	*
RECEPTOR	*	Х	Y	Z	*
	*				*
1. nw	*	430.0	558.0	5.4	*
2. ne	*	570.0	558.0	5.4	*
3. sw	*	430.0	442.0	5.4	*
4. se	*	570.0	442.0	5.4	*

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION ANGLE * (PPM)

(DEGR)*	REC1	REC2	REC3	REC4
0.	-*. *	. 2	. 2	.7	.7
10.	*	.5	.0	1.0	.5
20.	*	.5	.0	1.0	.5
30.	*	.4	.0	.8	.4
40.	*	.4	.0	.8	.4
50.	*	.4	.0	.7	.5
60.	*	.5	.0	.8	.5
70.	*	.5	.0	1.0	.7
80.	*	.5	.1	1.1	.7
90.	*	.8	.4	.8	.3
100.	*	1.3	.7	.4	.0
110.	*	1.1	.7	.3	.0
120.	*	1.0	.7	.3	.0
130.	*	.9	.6	.3	.0
140.	*	.8	.6	. 3	.0
150.	*	.9	.5	.5	.0
160.	*	1.1	.5	.5	.0
170.	*	.9	. 4	.3	.1
180.	*	.6	.7	.1	.4
190.	*	.5	1.0	.0	.7
200.	*	.6	.9	.0	.6
210.	*	.5	. 8	.0	.5
220.	*	.6	.9	.0	.5
230.	*	.6	.9	.0	.5
∠4U. 2E0	*	.7	.9	.0	.5
250. 260	÷	.8	1.1	.0	.5
200. 270	*	.9	1.3	.1	. >
270. 280	*	.4	.9	.4	.0
200. 200	*	.0		. /	1.5
290.	*	.0		• ',	1.2
210	*	.0	. 3	• / 7	±.0
330	*	.0	.4	. /	. 9
330.	*	.0	+. د	.5	.0
340	*	.0	. 0 6	. S	1 1
350	*	.0	. 0 6	. S	1 2
360	*	.0	.0	.5	1.2
	_ * .				. ,
мах	*	1.3	1.3	1.1	1.3
DEGR.	*	100	260	80	280

The highest concentration of $$1.30\ {\rm PPM}\ {\rm occurred}\ {\rm at}\ {\rm receptor}\ {\rm rec1}$.
JOB: C:\Documents and Settings\jstephens\Desk RUN: George Burns & Beverly 2007 Existing CO

DATE : 3/ 6/ 8 TIME : 15:53: 6

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD =	.0 CM/S	Z0 = 100.	CM								
U =	1.0 M/S	CLAS =	6 (F)	ATIM = 60.	MINUTES MIXH =	1000. M	AMB = .0 P	PM					

LINK VARIABLES

LINK DESCRIPTION	*	I	INK COORDIN	ATES (FT)		*	LENGTH	BRG TYPE	VPH	EF	H W	V/C	C QUEUE
	*	X1	Y1	X2	Y2	*	(FT)	(DEG)		(G/MI)	(FT) (FT)	(VEH)
	*					*							
1. nba	*	512.0	.0	512.0	500.0	*	500.	360. AG	579.	1.6	.0 44.0		
2. nbq	*	512.0	464.0	512.0	-1005.2	*	1469.	180. AG	25.	100.0	.0 24.0	1.82	74.6
3. sbd	*	488.0	500.0	488.0	.0	*	500.	180. AG	219.	1.6	.0 32.0		
4. eba	*	.0	482.0	500.0	482.0	*	500.	90. AG	1828.	1.6	.0 56.0		
5. ebd	*	500.0	482.0	1000.0	482.0	*	500.	90. AG	2154.	1.6	.0 44.0		
6. ebq	*	476.0	482.0	449.4	482.0	*	27.	270. AG	б.	100.0	.0 36.0	.49	1.4
7. wba	*	1000.0	518.0	500.0	518.0	*	500.	270. AG	1622.	1.6	.0 56.0		
8. wbd	*	500.0	518.0	.0	518.0	*	500.	270. AG	1656.	1.6	.0 44.0		
9. wbq	*	524.0	518.0	547.6	518.0	*	24.	90. AG	6.	100.0	.0 36.0	.43	1.2
											PAGE	2	

JOB: C:\Documents and Settings\jstephens\Desk RUN: George Burns & Beverly 2007 Existing CO

DATE : 3/ 6/ 8 TIME : 15:53: 6

ADDITIONAL QUEUE LINK PARAMETERS

LINK DESCRIPTION	*	CYCLE	RED	CLEARANCE	APPROACH	SATURATION	IDLE	SIGNAL	ARRIVAL
	*	LENGTH	TIME	LOST TIME	VOL	FLOW RATE	EM FAC	TYPE	RATE
	*	(SEC)	(SEC)	(SEC)	(VPH)	(VPH)	(gm/hr)		
	*								
2. nbq	*	60	49	3.0	579	1600	5.73	3	3
6. ebq	*	60	8	3.0	1828	1600	5.73	3	3
9. wbq	*	60	8	3.0	1622	1600	5.73	3	3

RECEPTOR LOCATIONS

	*	COOF	DINATES (FT	')	*
RECEPTOR	*	Х	Y	Z	*
					*
1. nw	*	466.0	546.0	5.4	*
2. ne	*	534.0	546.0	5.4	*
3. sw	*	466.0	454.0	5.4	*
4. se	*	534.0	454.0	5.4	*

MODEL RESULTS

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION ANGLE * (PPM)

(DEGR) *	REC1	REC2	REC3	REC4
0.	- * . *	.0	.0	. 2	. 2
10.	*	.0	.0	. 2	. 2
20.	*	.0	.0	.2	. 2
30.	*	.0	.0	.1	. 2
40.	*	.0	.0	.2	. 2
50.	*	.0	.0	.3	. 2
60.	*	.0	.0	.3	.3
70.	*	.0	.0	.4	.3
80.	*	.0	.0	.5	.4
90.	*	.1	. 2	.3	.1
100.	*	.3	.3	.1	.0
110.	*	.2	.3	.1	.0
120.	*	.2	.2	.1	.0
130.	*	.3	. 2	.1	.0
140.	*	.2	.2	.1	.0
150.	*	.1	. 2	.1	.0
160.	*	.3	. 2	.1	.0
170.	*	.3	. 2	.1	.0
180.	*	.3	.5	.1	.3
190.	*	.2	.5	.0	.3
200.	*	.2	. 2	.0	.3
210.	*	.2	.1	.0	.1
220.	*	.2	. 2	.0	.1
230.	*	.2	. 2	.0	.1
240.	*	.2	.3	.0	.1
250.	*	.3	.3	.0	.1
260.	*	.3	.3	.0	.1
270.	*	.1	.1	.2	.3
280.	*	.0	.0	.4	.4
290.	*	.0	.0	. 3	. 3
300.	*	.0	.0	. 2	.3
310.	*	.0	.0	.2	.3
320.	*	.0	.0	.2	.2
330.	*	.0	.0	.2	.1
34U. 250	*	.0	.0	.2	.2
350.	*	.0	.0	.2	.2
360. 	_*.	.0	.0	.2	.2
MAX	*	.3	.5	.5	.4
DEGR.	*	100	180	80	80

The highest concentration of $\$.50 ppm occurred at receptor rec3 .

JOB: D:\00Projects\Cedars Sinai\01_Existing\G RUN: CEGRNP

DATE : 4/23/ 8 TIME : 13:52: 2

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD = .0 CM/S	Z0 = 100. CM									
U =	1.0 M/S	CLAS = 6 (F)	ATIM = 60. MINUTES	MIXH = 1000. M	AMB = .0 PPM							

LINK VARIABLES

	LINK DESCRIPTION	*	L	INK COORDIN	ATES (FT)		*	LENGTH	BRG TYPE	VPH	EF	Н	W	V/C	QUEUE
		*	X1	Y1	X2	¥2	*	(FT)	(DEG)		(G/MI)	(FT)	(FT)		(VEH)
		- *					*								
1.	nba	*	506.0	.0	506.0	500.0	*	500.	360. AG	290.	1.6	.0	32.0		
2.	nbd	*	506.0	500.0	506.0	1000.0	*	500.	360. AG	244.	1.6	.0	32.0		
3.	nbq	*	506.0	464.0	506.0	424.4	*	40.	180. AG	б.	100.0	.0	12.0	.36	2.0
4.	sba	*	494.0	1000.0	494.0	500.0	*	500.	180. AG	473.	1.6	.0	32.0		
5.	sbd	*	494.0	500.0	494.0	.0	*	500.	180. AG	495.	1.6	.0	32.0		
б.	sbq	*	494.0	536.0	494.0	600.7	*	65.	360. AG	б.	100.0	.0	12.0	.59	3.3
7.	eba	*	.0	482.0	500.0	482.0	*	500.	90. AG	297.	1.6	.0	56.0		
8.	ebd	*	500.0	482.0	1000.0	482.0	*	500.	90. AG	293.	1.6	.0	44.0		
9.	ebq	*	488.0	482.0	470.7	482.0	*	17.	270. AG	25.	100.0	.0	36.0	.16	. 9
10.	wba	*	1000.0	518.0	500.0	518.0	*	500.	270. AG	289.	1.6	.0	56.0		
11.	wbd	*	500.0	518.0	.0	518.0	*	500.	270. AG	317.	1.6	.0	44.0		
12.	pdw	*	512.0	518.0	528.8	518.0	*	17.	90. AG	25.	100.0	.0	36.0	.16	.9

RUN: CEGRNP

JOB: D:\00Projects\Cedars Sinai\01_Existing\G

DATE : 4/23/ 8 TIME : 13:52: 2

ADDITIONAL QUEUE LINK PARAMETERS

|--|

	LINK DESCRIPTION	*	CYCLE	RED	CLEARANCE	APPROACH	SATURATION	IDLE	SIGNAL	ARRIVAL	
		*	LENGTH	TIME	LOST TIME	VOL	FLOW RATE	EM FAC	TYPE	RATE	
		*	(SEC)	(SEC)	(SEC)	(VPH)	(VPH)	(gm/hr)			
		*									
3.	nbq	*	60	25	3.0	290	1600	5.73	3	3	
б.	sbq	*	60	25	3.0	473	1600	5.73	3	3	
9.	ebq	*	60	32	3.0	297	1600	5.73	3	3	
12.	wbq	*	60	32	3.0	289	1600	5.73	3	3	

RECEPTOR LOCATIONS

	*	COOR	DINATES (FI	?)	*
RECEPTOR	*	Х	Y	Z	*
	*				- *
1. nw	*	478.0	546.0	5.4	*
2. ne	*	522.0	546.0	5.4	*
3. sw	*	478.0	454.0	5.4	*
4. se	*	522.0	454.0	5.4	*

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION

ANGLE			(PPM)		
(DEGR)) * . * .	REC1	REC2	REC3	REC4
0.	*	.1	.0	. 2	. 0
10.	*	.1	.0	. 2	.0
20.	*	.1	.0	.0	.0
30.	*	.0	.0	.0	.0
40.	*	.0	.0	.0	.0
50.	*	.0	.0	.0	.0
60.	*	.0	.0	.0	.0
70.	*	.0	.0	.0	.0
80.	*	.0	.0	.0	.0
90.	*	.0	.0	.0	.0
100.	*	.0	.0	.0	.0
110.	*	.0	.0	.0	.0
120.	*	.0	.0	.0	.0
130.	*	.0	.0	.0	.0
140.	*	.0	.0	.0	.0
150.	*	.0	.0	.0	.0
160.	*	.0	.0	.1	.0
170.	*	.1	.1	.1	.0
180.	*	.1	.1	.1	.0
190.	*	.0	.2	.0	.2
200.		.0	.0	.0	.0
210.	*	.0	.0	.0	.0
220.		.0	.0	.0	.0
230.	×	.0	.0	.0	.0
240.	Ĵ	.0	.0	.0	.0
250. 260	*	.0	.0	.0	.0
∠00. 270	*	.0	.0	.0	.0
270. 280	*	.0	.0	.0	.0
200.	*	.0	.0	.0	.0
200.	*	.0	.0	.0	.0
310	*	.0	.0	.0	.0
320	*	.0	.0	.0	.0
330	*	.0	.0	.0	.0
340	*	.0	.0	.0	.0
350.	*	.0	.1	.1	.1
360.	*	.1	.0	.2	.0
	.*. +				
DECD	*	.1	100	. 2	100
DEGR.	^	0	190	0	190

The highest concentration of \$.20 ppm occurred at receptor rec3 .

DATE : 3/ 6/ 8 TIME : 16: 8:36

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS	=	.0 CM/S	VD =	.0	CM/S	Z0 =	- 1	100.	CM					
U	=	1.0 M/S	CLAS =	6	(F)	ATIM =		60.	MINUTES	MIXH =	1000.	М	AMB =	.0 PPM

LINK VARIABLES

1	JINK DESCRIPTION	*	* LINK COORDINATES (FT)				*	LENGTH	BRG I	YPE	VPH	EF	Н	W	V/C	QUEUE
		*	X1	¥1	X2	¥2	*	(FT)	(DEG)			(G/MI)	(FT)	(FT)		(VEH)
1.	nba	*	524.0	. 0	524.0	500.0	*	500.	360.	AG	1617.	1.6	. 0	68.0		
2.	nbd	*	524.0	500.0	524.0	1000.0	*	500.	360.	AG	1562.	1.6	.0	44.0		
3.	nbq	*	524.0	440.0	524.0	382.6	*	57.	180.	AG	27.	100.0	.0	48.0	.52	2.9
4.	sba	*	476.0	1000.0	476.0	500.0	*	500.	180.	AG	2209.	1.6	.0	68.0		
5.	sbd	*	476.0	500.0	476.0	.0	*	500.	180.	AG	1999.	1.6	.0	56.0		
б.	sbq	*	476.0	548.0	476.0	626.5	*	78.	360.	AG	27.	100.0	.0	48.0	.71	4.0
7.	eba	*	.0	470.0	500.0	470.0	*	500.	90.	AG	1150.	1.6	.0	80.0		
8.	ebd	*	500.0	470.0	1000.0	470.0	*	500.	90.	AG	1262.	1.6	.0	44.0		
9.	ebq	*	452.0	470.0	413.0	470.0	*	39.	270.	AG	40.	100.0	.0	60.0	.36	2.0
10.	wba	*	1000.0	524.0	500.0	524.0	*	500.	270.	AG	2061.	1.6	.0	68.0		
11.	wbd	*	500.0	524.0	.0	524.0	*	500.	270.	AG	2214.	1.6	.0	44.0		
12.	wbq	*	548.0	524.0	647.3	524.0	*	99.	90.	AG	32.	100.0	.0	48.0	.81	5.0

RUN: La Cienega & Beverly 2022 w/Project CO

RUN: La Cienega & Beverly 2022 w/Project CO

PAGE 2

JOB: C:\Documents and Settings\jstephens\Desk

DATE : 3/ 6/ 8 TIME : 16: 8:36

ADDITIONAL QUEUE LINK PARAMETERS

1	JINK DESCRIPTION	* * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIVAL RATE
3.	nbq	*	60	26	3.0	1617	1600	5.73	3	3
б.	sbq	*	60	26	3.0	2209	1600	5.73	3	3
9.	ebq	*	60	31	3.0	1150	1600	5.73	3	3
12.	wbq	*	60	31	3.0	2061	1600	5.73	3	3

RECEPTOR LOCATIONS

	*	COOR	DINATES (FI	')	*
RECEPTOR	*	Х	Y	Z	*
	*				*
1. nw	*	442.0	558.0	5.4	*
2. ne	*	558.0	558.0	5.4	*
3. sw	*	442.0	430.0	5.4	*
4. se	*	558.0	430.0	5.4	*

MODEL RESULTS

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION ANGLE * (PPM)

(DEGR)*	REC1	REC2	REC3	REC4
0.	-*. *	.2	.1	. 4	. 3
10.	*	.4	.0	.8	.3
20.	*	.4	.0	.5	.3
30.	*	.4	.0	. 4	.3
40.	*	.3	.0	. 4	. 2
50.	*	.3	.0	.2	.2
60.	*	.3	.0	.4	. 2
70.	*	.3	.0	. 4	.2
80.	*	.2	.0	.4	. 2
90.	*	.3	. 2	.3	.0
100.	*	.5	. 4	.3	.0
110.	*	.6	.4	.3	.0
120.	*	.4	.3	.2	.0
130.	*	.2	.2	.2	.0
140.	*	.3	.2	.2	.0
150.	*	.4	.2	.2	.0
160.	*	.4	.2	.3	.0
170.	*	.5	.2	.3	.0
180.	*	.3	.3	.1	.1
190.	*	.2	.5	.0	.3
200.	*	.1	.3	.0	.3
210.	*	.1	.4	.0	.3
220.	*	.1	.3	.0	.3
230.	*	.1	.2	.0	.3
240.	*	.3	.5	.0	.3
250.	Ť	. 3	.5	.0	.3
260.	*	.2	.6	.0	.3
270.	, r	.1	. 3	.1	.4
280.	<i>*</i>	.0	. 3	.2	.5
290. 200	*	.0	.3	.2	.4
3UU. 210	*	.0	.3	.2	.3
310.	*	.0	.2	.2	. 3
32U. 220	÷	.0	.2	. 3	.4
33U. 240		.0	.2	. 3	.3
34U. 250	*	.0	. 2	. 3	.5
260	*	.0	. 3	. 3	.0
	_ * .	. 2	.1	.4	. 3
MAX	*	.6	.6	.8	.6
DEGR.	*	110	260	10	350

The highest concentration of $\$.80 ppm occurred at receptor rec3 .

JOB: D:\00Projects\Cedars Sinai\01_Existing\L RUN: LASANP

DATE : 4/23/ 8 TIME : 14:56:57

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD = .0 CM/S	Z0 = 100. CM										
U =	1.0 M/S	CLAS = 6 (F)	ATIM = 60. MINUTES	MIXH = 1000. M	AMB = .0 PPM								

LINK VARIABLES

	LINK DESCRIPTION	*	 LINK COORDINATES (FT) 				*	LENGTH	BRG TYPE	VPH	EF	Н	W	V/C	QUEUE
		*	X1	Yl	X2	Y2	*	(FT)	(DEG)		(G/MI)	(FT)	(FT)	(VEH)
		*					*								
1.	nba	*	524.0	.0	524.0	500.0	*	500.	360. AG	2640.	1.6	.0	68.0		
2.	nbd	*	524.0	500.0	524.0	1000.0	*	500.	360. AG	2705.	1.6	.0	56.0		
3.	nbq	*	524.0	440.0	524.0	216.8	*	223.	180. AG	31.	100.0	.0	48.0	.99	11.3
4.	sba	*	482.0	1000.0	482.0	500.0	*	500.	180. AG	2326.	1.6	.0	56.0		
5.	sbd	*	482.0	500.0	482.0	.0	*	500.	180. AG	2815.	1.6	.0	56.0		
б.	sbq	*	482.0	560.0	482.0	1906.9	*	1347.	360. AG	23.	100.0	.0	36.0	1.16	68.4
7.	eba	*	.0	470.0	500.0	470.0	*	500.	90. AG	3254.	1.6	.0	80.0		
8.	ebd	*	500.0	470.0	1000.0	470.0	*	500.	90. AG	2672.	1.6	.0	68.0		
9.	ebq	*	464.0	470.0	339.2	470.0	*	125.	270. AG	35.	100.0	.0	60.0	.87	6.3
10.	wba	*	1000.0	530.0	500.0	530.0	*	500.	270. AG	2087.	1.6	.0	80.0		
11.	wbd	*	500.0	530.0	.0	530.0	*	500.	270. AG	2115.	1.6	.0	68.0		
12.	pdw	*	548.0	530.0	609.6	530.0	*	62.	90. AG	35.	100.0	.0	60.0	.56	3.1

JOB: D:\00Projects\Cedars Sinai\01_Existing\L RUN: LASANP

```
DATE : 4/23/ 8
TIME : 14:56:57
```

ADDITIONAL QUEUE LINK PARAMETERS

-

1	LINK DESCRIPTION	*	CYCLE	RED	CLEARANCE	APPROACH	SATURATION	IDLE	SIGNAL	ARRIVAL
		*	LENGTH	TIME	LOST TIME	VOL	FLOW RATE	EM FAC	TYPE	RATE
		*	(SEC)	(SEC)	(SEC)	(VPH)	(VPH)	(gm/hr)		
		*								
3.	nbq	*	60	30	3.0	2640	1600	5.73	3	3
6.	sbq	*	60	30	3.0	2326	1600	5.73	3	3
9.	ebq	*	60	27	3.0	3254	1600	5.73	3	3
12.	wbq	*	60	27	3.0	2087	1600	5.73	3	3

RECEPTOR LOCATIONS

	*	COORDINATES (FT)							
RECEPTOR	*	Х	Y	Z	*				
	*				- *				
1. nw	*	454.0	570.0	5.4	*				
2. ne	*	558.0	570.0	5.4	*				
3. sw	*	454.0	430.0	5.4	*				
4. se	*	558.0	430.0	5.4	*				

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION ANGLE * (PPM)

(DEGR) *	REC1	REC2	REC3	REC4
	- * . +				
10	÷	.4	.1	.8	.0
20	*	.0	.0	. 9	
30.	*	. 5	.0	. /	
40	*	. 1	.0	5	.2
50	*	3	.0	.5	3
60	*				3
70.	*	.3	.0	.6	. 3
80.	*	.3	.0	.7	. 3
90.	*	.4	.1	.5	.1
100.	*	.6	.3	. 3	. 0
110.	*	.5	. 3	. 3	.0
120.	*	.5	. 3	. 3	. 0
130.	*	.5	.3	. 4	.0
140.	*	.4	.3	.4	.0
150.	*	.5	.3	. 4	.0
160.	*	.7	.3	.6	.0
170.	*	.9	.3	.5	.0
180.	*	.6	.6	.3	. 2
190.	*	.3	.8	.1	.5
200.	*	.3	.6	.0	.7
210.	*	.3	.5	.0	. 4
220.	*	.3	.4	.0	. 4
230.	*	.2	.5	.0	.3
240.	*	.2	.6	.0	.3
250.	*	.4	.6	.0	.3
260.	*	.3	.6	.0	.3
270.	*	.1	.3	.2	.5
280.	*	.0	. 2	.5	.9
290.	*	.0	. 2	.5	.7
300.	*	.0	. 2	. 4	. 5
310.	*	.0	.3	. 4	.5
320.	*	.0	. 4	. 4	. 4
330.	*	.0	.4	.4	.4
34U.	*	.0	.5	.3	.6
350.	*	.0	.5	. 3	.8
360. 	_*.	.4	.1	.8	.6
MAX	*	.9	. 8	.9	.9
DEGR.	*	170	190	10	280

The highest concentration of .90 PPM occurred at receptor rec3 .

JOB: D:\00Projects\Cedars Sinai\03_With Proje RUN: LATHNP

DATE : 4/23/ 8 TIME : 15:25:17

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD = .0 CM/S	Z0 = 100. CM										
U =	1.0 M/S	CLAS = 6 (F)	ATIM = 60. MINUTES	MIXH = 1000. M	AMB = .0 PPM								

LINK VARIABLES

]	LINK DESCRIPTION	*	 LINK COORDINATES (FT) 			*	LENGTH	BRG TYPE	VPH	EF	н	W	V/C	QUEUE	
		*	X1	Y1	X2	Y2	*	(FT)	(DEG)		(G/MI)	(FT)	(FT)		(VEH)
		*					*								
1.	nba	*	530.0	.0	530.0	500.0	*	500.	360. AG	2081.	1.6	.0	80.0		
2.	nbd	*	530.0	500.0	530.0	1000.0	*	500.	360. AG	1857.	1.6	.0	56.0		
3.	nbq	*	530.0	464.0	530.0	409.4	*	55.	180. AG	31.	100.0	.0	60.0	.50	2.8
4.	sba	*	464.0	1000.0	464.0	500.0	*	500.	180. AG	2054.	1.6	.0	80.0		
5.	sbd	*	464.0	500.0	464.0	.0	*	500.	180. AG	2181.	1.6	.0	56.0		
б.	sbq	*	464.0	536.0	464.0	589.8	*	54.	360. AG	31.	100.0	.0	60.0	.50	2.7
7.	eba	*	.0	482.0	500.0	482.0	*	500.	90. AG	852.	1.6	.0	56.0		
8.	ebd	*	500.0	482.0	1000.0	482.0	*	500.	90. AG	882.	1.6	.0	44.0		
9.	ebq	*	428.0	482.0	376.8	482.0	*	51.	270. AG	25.	100.0	.0	36.0	.48	2.6
10.	wba	*	1000.0	518.0	500.0	518.0	*	500.	270. AG	2051.	1.6	.0	56.0		
11.	wbd	*	500.0	518.0	.0	518.0	*	500.	270. AG	2118.	1.6	.0	44.0		
12.	pdw	*	560.0	518.0	634.0	518.0	*	74.	90. AG	42.	100.0	.0	60.0	.70	3.8

JOB: D:\00Projects\Cedars Sinai\03_With Proje RUN: LATHNP

```
DATE : 4/23/ 8
TIME : 15:25:17
```

ADDITIONAL QUEUE LINK PARAMETERS

-

1	LINK DESCRIPTION	*	CYCLE	RED	CLEARANCE	APPROACH	SATURATION	IDLE	SIGNAL	ARRIVAL
		*	LENGTH	TIME	LOST TIME	VOL	FLOW RATE	EM FAC	TYPE	RATE
		*	(SEC)	(SEC)	(SEC)	(VPH)	(VPH)	(gm/hr)		
		*								
3.	nbq	*	60	24	3.0	2081	1600	5.73	3	3
6.	sbq	*	60	24	3.0	2054	1600	5.73	3	3
9.	ebq	*	60	33	3.0	852	1600	5.73	3	3
12.	wbq	*	60	33	3.0	2051	1600	5.73	3	3

RECEPTOR LOCATIONS

	*	COOR	DINATES (FT)	*
RECEPTOR	*	Х	Y	Z	*
					- *
1. nw	*	418.0	546.0	5.4	*
2. ne	*	570.0	546.0	5.4	*
3. sw	*	418.0	454.0	5.4	*
4. se	*	570.0	454.0	5.4	*

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION ANGLE * (PPM) (PPM)

(DEGR)*	REC1	REC2	REC3	REC4
0	*	1	1	3	3
10	*	2		4	.2
20	*	. 2	.0	3	2
30.	*	.2	.0	.3	.2
40	*	2	.0	4	
50.	*	. 2	.0	. 4	.3
60.	*	.3	. 0	.3	. 2
70.	*	.3	. 0	. 4	. 2
80.	*	. 3	.0	. 4	. 2
90.	*	.4	.3	.3	.1
100.	*	.8	.4	.3	.0
110.	*	.4	. 4	.2	.0
120.	*	.3	. 4	.2	.0
130.	*	.3	.3	. 2	.0
140.	*	.4	.2	.2	.0
150.	*	.3	. 2	. 2	.0
160.	*	.4	. 2	.3	.0
170.	*	.4	.2	. 2	.0
180.	*	.2	.3	.1	.1
190.	*	.2	.5	.0	. 2
200.	*	.2	. 4	.0	.3
210.	*	.1	. 4	.0	. 2
220.	*	.1	.5	.0	.3
230.	*	.1	.3	.0	.3
240.	*	.2	.2	.0	.3
250.	*	.3	.4	.0	.3
260.	*	.3	.6	.0	.3
270.	*	.1	. 4	.1	.4
280.	*	.0	.3	.2	.5
290.	*	.0	.2	.2	.2
300.	*	.0	. 2	.3	.3
310.	*	.0	. 2	.3	.4
320.	*	.0	. 2	.3	.4
330.	*	.0	.2	.2	.4
340.	*	.0	.3	.2	.4
350.	*	.0	. 2	.2	.5
360.	*	.1	.1	.3	.3
MAX	*	.8	.6	. 4	.5
DEGR.	*	100	260	10	280

THE HIGHEST CONCENTRATION OF .80 PPM OCCURRED AT RECEPTOR REC1 .

DATE : 3/ 6/ 8 TIME : 16:19: 6

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS	=	.0 CM/S	VD =	.0	CM/S	Z0 =	100	. CM				
U	=	1.0 M/S	CLAS =	6	(F)	ATIM =	60	. MINUTES	MIXH =	1000.1	M AMB	= .0 PPM

LINK VARIABLES

LIN	NK DESCRIPTION	*	L	INK COORDIN	ATES (FT)		*	LENGTH	BRG TYPE	VPH	EF	H W	V/C	QUEUE
		*	X1	Y1	X2	¥2	*	(FT)	(DEG)		(G/MI)	(FT) (FT)		(VEH)
		*					-*							
1. nk	Da	*	512.0	.0	512.0	500.0	*	500.	360. AG	1232.	1.6	.0 44.0		
2. nk	bd	*	512.0	500.0	512.0	1000.0	*	500.	360. AG	1251.	1.6	.0 32.0		
3. nh	pq	*	512.0	488.0	512.0	447.6	*	40.	180. AG	6.	100.0	.0 24.0	.54	2.1
4. sł	ba	*	488.0	1000.0	488.0	500.0	*	500.	180. AG	1032.	1.6	.0 44.0		
5. sł	bd	*	488.0	500.0	488.0	.0	*	500.	180. AG	1126.	1.6	.0 32.0		
6. sł	pq	*	488.0	512.0	488.0	545.9	*	34.	360. AG	б.	100.0	.0 24.0	.45	1.7
7. eł	ba	*	.0	494.0	500.0	494.0	*	500.	90. AG	256.	1.6	.0 32.0		
8. eł	bd	*	500.0	494.0	1000.0	494.0	*	500.	90. AG	276.	1.6	.0 32.0		
9. eł	pq	*	476.0	494.0	353.7	494.0	*	122.	270. AG	12.	100.0	.0 12.0	.96	6.2
10. wł	ba	*	1000.0	506.0	500.0	506.0	*	500.	270. AG	338.	1.6	.0 32.0		
11. wł	bd	*	500.0	506.0	.0	506.0	*	500.	270. AG	205.	1.6	.0 32.0		
12. wk	pq	*	524.0	506.0	1417.3	506.0	*	893.	90. AG	12.	100.0	.0 12.0 1	.27	45.4

PAGE 2

JOB: C:\Documents and Settings\jstephens\Desk RUN: Robertson & Alden 2022 w/o Project CO

DATE : 3/ 6/ 8 TIME : 16:19: 6

ADDITIONAL QUEUE LINK PARAMETERS

1	LINK DESCRIPTION	* * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIVAL RATE
3.	nbq	*	60	12	3.0	1232	1600	5.73	3	3
6.	sbq	*	60	12	3.0	1032	1600	5.73	3	3
9.	ebq	*	60	45	3.0	256	1600	5.73	3	3
12.	pdw	*	60	45	3.0	338	1600	5.73	3	3

RECEPTOR LOCATIONS

	*	COOR	DINATES (FI	')	*
RECEPTOR	*	Х	Y	Z	*
	*				- *
1. nw	*	466.0	522.0	5.4	*
2. ne	*	534.0	522.0	5.4	*
3. sw	*	466.0	478.0	5.4	*
4. se	*	534.0	478.0	5.4	*

MODEL RESULTS

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION

ANGLE (DEGR)	*) *	REC1	(PPM) REC2	REC3	REC4
0	-*- *				
10	*	. 1	. 1	2	
20.	*	.2	.0	.2	.0
30.	*	. 2	.0	. 2	.0
40.	*	. 2	.0	.1	.0
50.	*	.2	.0	.0	.0
60.	*	.2	.0	.1	.0
70.	*	.2	.0	.1	.1
80.	*	.1	.0	.2	.1
90.	*	.2	.1	. 2	.0
100.	*	.2	. 2	.1	.0
110.	*	.1	.1	. 2	.0
120.	*	.1	.1	. 2	.0
130.	*	.0	.0	.2	.0
140.	*	.1	.0	. 2	.0
150.	*	.2	.0	.2	.0
160.	*	.2	.0	.2	.0
170.	*	.2	.0	.3	.0
180.	*	.1	.1	.1	.1
190.	*	.0	.3	.0	.3
200.	*	.0	. 2	.0	. 2
210.	*	.0	. 2	.0	.2
220.	*	.0	.1	.0	. 2
230.	*	.0	.0	.0	.1
240.	*	.0	.1	.0	.1
250.	*	.0	.1	.0	.1
260.	*	.0	.1	.0	.1
270.	*	.0	.1	.0	.1
280.	*	.0	.1	.1	. 2
290.	*	.0	.1	.1	.1
300.	*	.0	.1	.1	.1
310.	*	.0	.1	.0	.1
320.	*	.0	.2	.0	.0
330.	*	.0	. 2	.0	. 2
340.	*	.0	. 2	.0	. 2
350.	*	.0	. 3	.0	.3
360.	*	.1	.1	.1	.1
MAX	*	.3	.3	.3	.3
DEGR.	*	10	190	170	190

The highest concentration of \$.30 ppm occurred at receptor rec1 .

JOB: D:\00Projects\Cedars Sinai\01_Existing\R RUN: ROBENP

DATE : 4/23/ 8 TIME : 16:11:43

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD = .0 CM/S	Z0 = 100. CM					
U =	1.0 M/S	CLAS = 6 (F)	ATIM = 60. MINUTES	MIXH = 1000. M	AMB = .0 PPM			

LINK VARIABLES

	LINK DESCRIPTION	*	L	INK COORDIN	ATES (FT)		*	LENGTH	BRG TYPE	VPH	EF	н	W	V/C	QUEUE
		*	X1	Y1	X2	¥2	*	(FT)	(DEG)		(G/MI)	(FT)	(FT)	(VEH)
		*					*								
1.	nba	*	518.0	.0	518.0	500.0	*	500.	360. AG	1214.	1.6	.0	56.0		
2.	nbd	*	518.0	500.0	518.0	1000.0	*	500.	360. AG	1233.	1.6	.0	32.0		
3.	nbq	*	518.0	452.0	518.0	374.7	*	77.	180. AG	26.	100.0	.0	36.0	.72	3.9
4.	sba	*	488.0	1000.0	488.0	500.0	*	500.	180. AG	1126.	1.6	.0	44.0		
5.	sbd	*	488.0	500.0	488.0	.0	*	500.	180. AG	1016.	1.6	.0	32.0		
б.	sbq	*	488.0	548.0	488.0	808.5	*	261.	360. AG	17.	100.0	.0	24.0	1.01	13.2
7.	eba	*	.0	476.0	500.0	476.0	*	500.	90. AG	1831.	1.6	.0	68.0		
8.	ebd	*	500.0	476.0	1000.0	476.0	*	500.	90. AG	1895.	1.6	.0	44.0		
9.	ebq	*	476.0	476.0	418.5	476.0	*	57.	270. AG	24.	100.0	.0	48.0	.54	2.9
10.	wba	*	1000.0	524.0	500.0	524.0	*	500.	270. AG	1610.	1.6	.0	68.0		
11.	wbd	*	500.0	524.0	.0	524.0	*	500.	270. AG	1637.	1.6	.0	44.0		
12.	pdw	*	536.0	524.0	586.6	524.0	*	51.	90. AG	24.	100.0	.0	48.0	.47	2.6

RUN: ROBENP

JOB: D:\00Projects\Cedars Sinai\01_Existing\R

```
DATE : 4/23/ 8
TIME : 16:11:43
```

ADDITIONAL QUEUE LINK PARAMETERS

	LINK DESCRIPTION	*	CYCLE	RED	CLEARANCE	APPROACH	SATURATION	IDLE	SIGNAL	ARRIVAL
		*	LENGTH	TIME	LOST TIME	VOL	FLOW RATE	EM FAC	TYPE	RATE
		*	(SEC)	(SEC)	(SEC)	(VPH)	(VPH)	(gm/hr)		
		*								
3.	nbq	*	60	34	3.0	1214	1600	5.73	3	3
6.	sbq	*	60	34	3.0	1126	1600	5.73	3	3
9.	ebq	*	60	23	3.0	1831	1600	5.73	3	3
12.	pdw	*	60	23	3.0	1610	1600	5.73	3	3

RECEPTOR LOCATIONS

	*	COOR	DINATES (FI	?)	*
RECEPTOR	*	X	Y	Z	*
	*				*
1. nw	*	466.0	558.0	5.4	*
2. ne	*	546.0	558.0	5.4	*
3. sw	*	466.0	442.0	5.4	*
4. se	*	546.0	442.0	5.4	*

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION ANGLE * (PPM) (PPM)

(DEGR)	*	REC1	REC2	REC3	REC4
	.*.				
0.	÷	.1	.1	.5	. 3
10.	÷	.4	.0	.5	.2
20.	Ĵ	. 3	.0	.4	. 2
30.	Ĵ	. 3	.0	. 3	. 2
40.	Ĵ	. 3	.0	. 3	. 2
50.	ĉ	.2	.0	.4	. 2
60.	Ť	.2	.0	.5	.2
70.	Ť	.2	.0	. 3	.3
80.	Ť	.2	.0	.4	.3
90.	Ť	.3	.1	.3	.1
100.	Ť	.5	.3	.2	.0
110.	Ť	.3	. 3	.2	.0
120.	Ť	.3	.2	. 3	.0
130.	Ť	.3	. 3	. 3	.0
140.	*	.3	.3	.2	.0
150.	*	.3	.3	.2	.0
160.	*	.5	.3	.2	.0
170.	*	.5	.3	.2	.0
180.	*	.3	. 4	.1	.1
190.	*	.2	.6	.0	.3
200.	*	.2	.4	.0	.3
210.	*	.2	. 2	.0	.3
220.	*	.2	.3	.0	. 2
230.	*	.2	.3	.0	. 2
240.	*	.2	.4	.0	. 2
250.	*	.2	.4	.0	. 2
260.	*	.3	.4	.0	. 2
270.	*	.1	. 2	.2	.3
280.	*	.0	.1	.3	.5
290.	*	.0	.1	.3	.3
300.	*	.0	.1	.2	.4
310.	*	.0	.1	.3	.3
320.	*	.0	.2	.3	. 2
330.	*	.0	.3	.3	.3
340.	*	.0	.3	.3	.5
350.	*	.0	.2	.3	.5
360.	*	.1	.1	.5	.3
MAX	*	.5	.6	.5	.5
DEGR.	*	100	190	0	280

THE HIGHEST CONCENTRATION OF .60 PPM OCCURRED AT RECEPTOR REC2 .

DATE : 3/ 6/ 8 TIME : 16:27:20

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS :	.0 CM/S	VD =	.0 CM/S	Z0 = 100.	CM									
U	= 1.0 M/S	CLAS =	6 (F)	ATIM = 60.	MINUTES	MIXH =	1000. M	AMB =	.0 PPM					

LINK VARIABLES

	LINK DESCRIPTION	*	L	INK COORDIN	ATES (FT)		*	LENGTH	BRG TYPE	VPH	EF	Н	W	V/C	QUEUE
		*	X1	Y1	X2	¥2	*	(FT)	(DEG)		(G/MI)	(FT)	(FT)		(VEH)
		*					-*								
1.	nba	*	518.0	.0	518.0	500.0	*	500.	360. AG	1313.	1.6	.0	56.0		
2.	nbd	*	518.0	500.0	518.0	1000.0	*	500.	360. AG	1370.	1.6	.0	32.0		
3.	nbq	*	518.0	452.0	518.0	377.9	*	74.	180. AG	24.	100.0	.0	36.0	.68	3.8
4.	sba	*	488.0	1000.0	488.0	500.0	*	500.	180. AG	1346.	1.6	.0	44.0		
5.	sbd	*	488.0	500.0	488.0	.0	*	500.	180. AG	1466.	1.6	.0	32.0		
б.	sbq	*	488.0	548.0	488.0	1127.0	*	579.	360. AG	16.	100.0	.0	24.0	1.05	29.4
7.	eba	*	.0	476.0	500.0	476.0	*	500.	90. AG	1680.	1.6	.0	68.0		
8.	ebd	*	500.0	476.0	1000.0	476.0	*	500.	90. AG	1500.	1.6	.0	44.0		
9.	ebq	*	476.0	476.0	416.3	476.0	*	60.	270. AG	27.	100.0	.0	48.0	.54	3.0
10.	wba	*	1000.0	524.0	500.0	524.0	*	500.	270. AG	1379.	1.6	.0	68.0		
11.	wbd	*	500.0	524.0	.0	524.0	*	500.	270. AG	1382.	1.6	.0	44.0		
12.	pdw	*	536.0	524.0	584.9	524.0	*	49.	90. AG	27.	100.0	.0	48.0	.45	2.5

JOB: C:\Documents and Settings\jstephens\Desk

RUN: Robertson & Burton 2022 w/o Project CO

RUN: Robertson & Burton 2022 w/o Project CO

DATE : 3/6/8 TIME : 16:27:20

ADDITIONAL QUEUE LINK PARAMETERS

1	JINK DESCRIPTION	* * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIVAL RATE
3.	nbq	*	60	31	3.0	1313	1600	5.73	3	3
б.	sbq	*	60	31	3.0	1346	1600	5.73	3	3
9.	ebq	*	60	26	3.0	1680	1600	5.73	3	3
12.	wbq	*	60	26	3.0	1379	1600	5.73	3	3

RECEPTOR LOCATIONS

	*	COORDINATES (FT)							
RECEPTOR	*	Х	Y	Z	*				
	*				- *				
1. nw	*	466.0	558.0	5.4	*				
2. ne	*	546.0	558.0	5.4	*				
3. sw	*	466.0	442.0	5.4	*				
4. se	*	546.0	442.0	5.4	*				

MODEL RESULTS

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. >
290. * .0 .2 .3 300. * .0 .2 .3 310. * .0 .2 .3 320. * .0 .2 .2 330. * .0 .2 .2 340. * .0 .2 .2 340. * .0 .3 .2 350. * .0 .3 .2 360. * .0 .4 .2 360. * .3 .1 .4	6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5
300. * .0 .2 .3 320. * .0 .2 .2 330. * .0 .2 .2 340. * .0 .3 .2 350. * .0 .3 .2 350. * .0 .4 .2 360. * .3 .1 .4	4
320. * .0 .2 .2 330. * .0 .2 .2 340. * .0 .3 .2 350. * .0 .3 .2 360. * .0 .4 .2 360. * .3 .1 .4	.3
330. * .0 .2 .2 340. * .0 .3 .2 350. * .0 .4 .2 360. * .3 .1 .4	.2
340. * .0 .3 .2 350. * .0 .4 .2 360. * .3 .1 .4	.3
350. * .0 .4 .2 360. * .3 .1 .4	.5
360. * .3 .1 .4	.5
	. 2
MAX * .6 .5 .5	.6
DEGR. * 170 190 10 2	280

THE HIGHEST CONCENTRATION OF .60 PPM OCCURRED AT RECEPTOR REC1 .

DATE : 3/ 6/ 8 TIME : 16:32:22

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS	=	.0 CM/S	VD =	.0	CM/S	Z0 =	=	100.	CM						
U	=	1.0 M/S	CLAS =	6	(F)	ATIM =	=	60.	MINUTES	MIXH =	1000.	Μ	AMB =	.0 PPM	

LINK VARIABLES

	LINK DESCRIPTION	*	L	INK COORDIN	ATES (FT)		*	LENGTH	BRG TY	PE VPH	EF	H W	V/C	QUEUE
		*	X1	Y1	X2	¥2	*	(FT)	(DEG)		(G/MI)	(FT) (FT)		(VEH)
		*					-*							
1.	nba	*	512.0	.0	512.0	500.0	*	500.	360. A	J 1223.	1.6	.0 44.0		
2.	nbd	*	512.0	500.0	512.0	1000.0	*	500.	360. A	J 1083.	1.6	.0 32.0		
3.	nbq	*	512.0	464.0	512.0	360.6	*	103.	180. A	3 14.	100.0	.0 24.0	.82	5.3
4.	sba	*	488.0	1000.0	488.0	500.0	*	500.	180. A	3 1036.	1.6	.0 44.0		
5.	sbd	*	488.0	500.0	488.0	.0	*	500.	180. A	3 1123.	1.6	.0 32.0		
б.	sbq	*	488.0	536.0	488.0	612.5	*	76.	360. A	3 14.	100.0	.0 24.0	.69	3.9
7.	eba	*	.0	482.0	500.0	482.0	*	500.	90. A	3 675.	1.6	.0 56.0		
8.	ebd	*	500.0	482.0	1000.0	482.0	*	500.	90. A	3 855.	1.6	.0 44.0		
9.	ebq	*	476.0	482.0	439.1	482.0	*	37.	270. A	3 23.	100.0	.0 36.0	.34	1.9
10.	wba	*	1000.0	518.0	500.0	518.0	*	500.	270. A	3 1370.	1.6	.0 56.0		
11.	wbd	*	500.0	518.0	.0	518.0	*	500.	270. A	J 1243.	1.6	.0 44.0		
12.	wbq	*	524.0	518.0	598.8	518.0	*	75.	90. A	3 23.	100.0	.0 36.0	.68	3.8

JOB: C:\Documents and Settings\jstephens\Desk RUN: Robertson & Third 2007 w/o Project CO

DATE : 3/6/8 TIME : 16:32:22

ADDITIONAL QUEUE LINK PARAMETERS

I	LINK DESCRIPTION	* * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIVAL RATE
3.	nbq	*	60	27	3.0	1223	1600	5.73	3	3
б.	sbq	*	60	27	3.0	1036	1600	5.73	3	3
9.	ebq	*	60	30	3.0	675	1600	5.73	3	3
12.	wbq	*	60	30	3.0	1370	1600	5.73	3	3

RECEPTOR LOCATIONS

	*	COOR	DINATES (FI	?)	*
RECEPTOR	*	Х	Y	Z	*
	*				*
1. nw	*	466.0	546.0	5.4	*
2. ne	*	534.0	546.0	5.4	*
3. sw	*	466.0	454.0	5.4	*
4. se	*	534.0	454.0	5.4	*

MODEL RESULTS

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION ANGLE * (PPM)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	· ⊥ 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	· ⊥ 2
200. * 0 12 $12 2$ $200. * 0$ $12 2$ $300. * 0$ $12 2$ $310. * 0$ $12 2$ $320. * 0$ $21 1$ $330. * 0$ $21 1$ $340. * 0$ $21 1$ $350. * 0$ $21 1$ $360. * 11 1 2$ $21 1 2$. 4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 2
300. * 0 1 1 320. * .0 .2 .1 330. * .0 .2 .1 340. * .0 .2 .1 350. * .0 .2 .1 360. * .0 .2 .1	. 2
320. * .0 .2 .1 330. * .0 .2 .1 340. * .0 .2 .1 350. * .0 .2 .1 360. * .0 .2 .1 360. * .0 .2 .1	2
330. * .0 .2 .1 340. * .0 .2 .1 350. * .0 .2 .1 360. * .1 .1 .2	1
340. * .0 .2 .1 350. * .0 .2 .1 360. * .1 .1 .2	2
350. * .0 .2 .1 360. * .1 .1 .2	.3
360. * .1 .1 .2	.3
+	.2
* MAX * .5 .4 .4	.3
DEGR. * 100 190 70 19	0

The highest concentration of $\$.50 ppm occurred at receptor rec1 .

JOB: D:\00Projects\Cedars Sinai\01_Existing\S RUN: SABENP

DATE : 4/23/ 8 TIME : 16:56:19

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD = .0 CM/S	Z0 = 100. CM												
U =	1.0 M/S	CLAS = 6 (F)	ATIM = 60. MINUTES	MIXH = 1000. M	AMB = .0 PPM										

LINK VARIABLES

1	LINK DESCRIPTION	*	L	INK COORDIN	ATES (FT)		*	LENGTH	BRG TYPE	VPH	EF	Н	W	V/C	QUEUE
		*	X1	Y1	X2	¥2	*	(FT)	(DEG)		(G/MI)	(FT)	(FT)		(VEH)
		-*					*								
1.	nba	*	524.0	.0	524.0	500.0	*	500.	360. AG	1750.	1.6	.0	68.0		
2.	nbd	*	524.0	500.0	524.0	1000.0	*	500.	360. AG	1626.	1.6	.0	44.0		
3.	nbq	*	524.0	452.0	524.0	382.7	*	69.	180. AG	30.	100.0	.0	48.0	.63	3.5
4.	sba	*	476.0	1000.0	476.0	500.0	*	500.	180. AG	1612.	1.6	.0	68.0		
5.	sbd	*	476.0	500.0	476.0	.0	*	500.	180. AG	1589.	1.6	.0	44.0		
б.	sbq	*	476.0	548.0	476.0	611.9	*	64.	360. AG	30.	100.0	.0	48.0	.58	3.2
7.	eba	*	.0	476.0	500.0	476.0	*	500.	90. AG	1903.	1.6	.0	68.0		
8.	ebd	*	500.0	476.0	1000.0	476.0	*	500.	90. AG	2115.	1.6	.0	44.0		
9.	ebq	*	452.0	476.0	379.3	476.0	*	73.	270. AG	29.	100.0	.0	48.0	.66	3.7
10.	wba	*	1000.0	524.0	500.0	524.0	*	500.	270. AG	1559.	1.6	.0	68.0		
11.	wbd	*	500.0	524.0	.0	524.0	*	500.	270. AG	1494.	1.6	.0	44.0		
12.	pdw	*	548.0	524.0	607.6	524.0	*	60.	90. AG	29.	100.0	.0	48.0	.54	3.0

JOB: D:\00Projects\Cedars Sinai\01_Existing\S RUN: SABENP

DATE : 4/23/8 TIME : 16:56:19

ADDITIONAL QUEUE LINK PARAMETERS

	LINK DESCRIPTION	* * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIVAL RATE
3.	nbq	*	60	29	3.0	1750	1600	5.73	3	3
6.	sbq	*	60	29	3.0	1612	1600	5.73	3	3
9.	ebq	*	60	28	3.0	1903	1600	5.73	3	3
12.	wbq	*	60	28	3.0	1559	1600	5.73	3	3

RECEPTOR LOCATIONS

	*	COOR	DINATES (FI	')	*
RECEPTOR	*	Х	Y	Z	*
	*				- *
1. nw	*	442.0	558.0	5.4	*
2. ne	*	558.0	558.0	5.4	*
3. sw	*	442.0	442.0	5.4	*
4. se	*	558.0	442.0	5.4	*

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION ANGLE * (PPM)

(DEGR)	*	REC1	REC2	REC3	REC4
	. * .				
0.	*	.1	.1	.3	.3
10.	*	.3	.0	.5	.3
20.	*	.3	.0	.3	.3
30.	*	.3	.0	.4	.2
40.	*	.3	.0	.3	. 2
50.	*	.3	.0	.3	. 2
60.	*	.3	.0	. 4	.3
70.	*	.3	.0	.5	.3
80.	*	.3	.0	.6	.3
90.	*	.4	.1	.4	.1
100.	*	.6	.3	.3	.0
110.	*	.4	. 2	.3	.0
120.	*	.3	.3	.3	.0
130.	*	.3	.3	. 2	.0
140.	*	.3	.3	.2	.0
150.	*	.5	.3	.2	.0
160.	*	.5	.3	.2	.0
170.	Ť	.6	. 3	.3	.0
180.	×	. 3	.4	.1	.1
190.	Ĵ	. 3	. /	.0	. 3
200.	Ĵ	. 3	.4	.0	.4
210.	×	. 3	.5	.0	.3
220.	÷	.2	. 3	.0	. 3
230.	÷	. 2	. 3	.0	
240.	*	. 2	.4	.0	. 3
250.	*	. 4	. 5	.0	. 3
200.	*	. 5	.0	.0	
280	*		. 1	.2	. 1
200.	*			. 2	
300	*	.0	.5	. 1	4
310.	*	.0	.2	.3	.3
320.	*	.0	.2	.3	. 3
330.	*	.0	.2	.2	.4
340.	*	.0	. 2	. 3	.5
350.	*	.0	.3	. 2	.6
360.	*	.1	.1	.3	.3
 MAX	.*. *	 к		 б	6
DEGR	*	100	190	80	280
		100	220	00	200

The highest concentration of \$.70 ppm occurred at receptor rec2 .

DATE : 4/23/ 8 TIME : 17:17:20

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD = .0 CM/S	Z0 = 100. CM								
U =	1.0 M/S	CLAS = 6 (F)	ATIM = 60. MINUTES	MIXH = 1000. M	AMB = .0 PPM						

LINK VARIABLES

* X1 Y1 X2 Y2 * (FT) (DEG)	(G/MI) (FT) (FT) (VEH)

* 512.0 .0 512.0 500.0 * 500. 360. A	G 75. 1.6 .0 44.0
* 512.0 500.0 512.0 1000.0 * 500. 360. A	3 980. 1.6 .0 32.0
* 512.0 464.0 512.0 456.5 * 7. 180. A	3 19.100.0 .0 24.0 .08 .4
* 482.0 1000.0 482.0 500.0 * 500. 180. A	3 1802. 1.6 .0 56.0
* 482.0 560.0 482.0 2006.5 * 1446. 360. A	G 28. 100.0 .0 36.0 1.25 73.5
* .0 482.0 500.0 482.0 * 500. 90. A	3 1510. 1.6 .0 56.0
* 500.0 482.0 1000.0 482.0 * 500. 90. A	G 3211. 1.6 .0 56.0
* 464.0 482.0 409.0 482.0 * 55. 270. A	3 15.100.0 .036.0.54 2.8
* 1000.0 530.0 500.0 530.0 * 500. 270. A	G 2007. 1.6 .0 80.0
* 500.0 530.0 .0 530.0 * 500. 270. <i>I</i>	G 1172. 1.6 .0 56.0
* 524.0 530.0 567.9 530.0 * 44. 90.F	3 26.100.0 .0 60.0 .43 2.2
* 464.0 482.0 409.0 482.0 * 55. 270. F * 1000.0 530.0 500.0 530.0 * 500. 270. F * 500.0 530.0 .0 530.0 * 500. 270. F * 524.0 530.0 567.9 530.0 * 44. 90. F	3 15. 100. 0 36.0 .54 3 2007. 1.6 .0 80.0 3 1172. 1.6 .0 56.0 G 26. 100.0 .0 60.0 .43

RUN: SABUNP

JOB: D:\00Projects\Cedars Sinai\01_Existing\S

DATE : 4/23/8 TIME : 17:17:20

ADDITIONAL QUEUE LINK PARAMETERS

1	LINK DESCRIPTION	*	CYCLE	RED	CLEARANCE	APPROACH	SATURATION	IDLE	SIGNAL	ARRIVAL
		*	LENGTH	TIME	LOST TIME	VOL	FLOW RATE	EM FAC	TYPE	RATE
		*	(SEC)	(SEC)	(SEC)	(VPH)	(VPH)	(gm/hr)		
		*								
3.	nbq	*	60	37	3.0	75	1600	5.73	3	3
5.	sbq	*	60	37	3.0	1802	1600	5.73	3	3
8.	ebq	*	60	20	3.0	1510	1600	5.73	3	3
11.	wbq	*	60	20	3.0	2007	1600	5.73	3	3

RECEPTOR LOCATIONS

	*	COOR	DINATES (FT)	*
RECEPTOR	*	X	Y	Z	*
	*				*
1. nw	*	454.0	570.0	5.4	*
2. ne	*	534.0	570.0	5.4	*
3. sw	*	454.0	454.0	5.4	*
4. se	*	534.0	454.0	5.4	*

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION

(DEGR)*	REC1	REC2	REC3	REC4
0.	-*- *	. 4	. 2	. 4	. 5
10.	*	.5	.0	.6	.4
20.	*	.5	.0	.3	.3
30.	*	.2	.0	.2	.3
40.	*	.2	.0	.2	.3
50.	*	.2	.0	.3	.3
60.	*	.2	.0	.3	.3
70.	*	.2	.0	.4	.4
80.	*	.2	.0	.6	.5
90.	*	.3	.1	.3	.3
100.	*	.5	.3	.0	.1
110.	*	.4	. 4	.0	.0
120.	*	.3	. 2	.0	.0
130.	*	.3	. 2	.0	.0
140.	*	.2	. 2	.0	.0
150.	*	.3	.3	.0	.0
160.	*	.2	.3	.0	.0
170.	*	.2	.3	.0	.0
180.	*	.2	.3	.0	.0
190.	*	.1	. 2	.0	.0
200.	*	.2	.3	.0	.0
210.	*	.2	.2	.0	.0
220.	*	.2	.3	.0	.0
230.	*	.2	.4	.0	.0
240.	*	.2	.4	.0	.0
250.	*	.2	.3	.0	.0
260.	*	.1	.3	.0	.0
270.	*	.0	. 4	.1	. 2
280.	*	.0	. 2	. 2	.4
290.	*	.0	. 2	.3	. 3
300.	*	.0	.3	. 2	. 3
310.	*	.0	.3	.2	.1
320.	*	.0	.3	. 2	. 2
330.	*	.0	.3	. 2	. 3
340.	*	.0	.3	.1	.5
350.	*	.0	. 4	.1	.7
360.	*	.4	. 2	.4	.5
MAX	*	.5	. 4	.6	.7
DEGR.	*	10	110	10	350

The highest concentration of $\hfill..., 70\hfill \ensuremath{\text{PPM}}$ occurred at receptor rec4 .

JOB: D:\00Projects\Cedars Sinai\01_Existing\S RUN: SATHNP

DATE : 4/23/ 8 TIME : 17:33:41

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD = .0 CM/	5 ZO = 100. CM								
U =	1.0 M/S	CLAS = 6 (F) ATIM = 60. MINUTES	MIXH = 1000. M	AMB = .0 PPM						

LINK VARIABLES

1	LINK DESCRIPTION	*	I	INK COORDIN	ATES (FT)	*	LENGTH	BRG TYPE	VPH	EF	H W	V/C QUEUE
		*	X1	Y1	X2	Y2 *	(FT)	(DEG)		(G/MI)	(FT) (FT)	(VEH)
		*				*						
1.	nba	*	518.0	.0	518.0	500.0 *	500.	360. AG	1363.	1.6	.0 56.0	
2.	nbd	*	518.0	500.0	518.0	1000.0 *	500.	360. AG	1425.	1.6	.0 44.0	
3.	nbq	*	518.0	464.0	518.0	389.5 *	74.	180. AG	23.	100.0	.0 36.0	.68 3.8
4.	sba	*	476.0	1000.0	476.0	500.0 *	500.	180. AG	1191.	1.6	.0 68.0	
5.	sbd	*	476.0	500.0	476.0	.0 *	500.	180. AG	1039.	1.6	.0 44.0	
б.	sbq	*	476.0	536.0	476.0	584.7 *	49.	360. AG	31.	100.0	.0 48.0	.45 2.5
7.	eba	*	.0	482.0	500.0	482.0 *	500.	90. AG	820.	1.6	.0 56.0	
8.	ebd	*	500.0	482.0	1000.0	482.0 *	500.	90. AG	809.	1.6	.0 44.0	
9.	ebq	*	452.0	482.0	411.7	482.0 *	40.	270. AG	21.	100.0	.0 36.0	.37 2.0
10.	wba	*	1000.0	518.0	500.0	518.0 *	500.	270. AG	2034.	1.6	.0 56.0	
11.	wbd	*	500.0	518.0	.0	518.0 *	500.	270. AG	2135.	1.6	.0 44.0	
12.	pdw	*	536.0	518.0	682.6	518.0 *	147.	90. AG	21.	100.0	.0 36.0	.91 7.4

JOB: D:\00Projects\Cedars Sinai\01_Existing\S RUN: SATHNP

```
DATE : 4/23/8
TIME : 17:33:41
```

ADDITIONAL QUEUE LINK PARAMETERS

]	LINK DESCRIPTION	*	CYCLE	RED	CLEARANCE	APPROACH	SATURATION	IDLE	SIGNAL	ARRIVAL
		*	LENGTH	TIME	LOST TIME	VOL	FLOW RATE	EM FAC	TYPE	RATE
		*	(SEC)	(SEC)	(SEC)	(VPH)	(VPH)	(gm/hr)		
		*								
3.	nbq	*	60	30	3.0	1363	1600	5.73	3	3
6.	sbq	*	60	30	3.0	1191	1600	5.73	3	3
9.	ebq	*	60	27	3.0	820	1600	5.73	3	3
12.	wbq	*	60	27	3.0	2034	1600	5.73	3	3

RECEPTOR LOCATIONS

	*	COOR	DINATES (FT	')	*
RECEPTOR	*	Х	Y	Z	*
	*				- *
1. nw	*	442.0	546.0	5.4	*
2. ne	*	546.0	546.0	5.4	*
3. sw	*	442.0	454.0	5.4	*
4. se	*	546.0	454.0	5.4	*

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION ANGLE * (PPM) (PPM)

(DEGR)	*	REC1	REC2	REC3	REC4
0.	*	.1	.1	.3	. 2
10.	*	.2	.0	. 4	.1
20.	*	.2	.0	.4	.1
30.	*	.2	.0	. 2	.1
40.	*	.3	.0	. 2	.1
50.	*	.3	.0	.1	.3
60.	*	.2	.0	. 2	.2
70.	*	.3	.0	. 2	. 2
80.	*	.2	.0	. 2	. 2
90.	*	.4	. 2	.1	.1
100.	*	.6	.4	.0	.0
110.	*	.3	.3	.0	.0
120.	*	.3	.3	. 2	.0
130.	*	.2	.2	.2	.0
140.	*	.2	.2	.2	.0
150.	*	.2	.2	.2	.0
160.	*	.3	. 2	.2	.0
170.	*	.3	. 2	.2	.0
180.	*	.2	.3	.0	.1
190.	*	.1	.5	.0	. 2
200.	*	.1	.3	.0	.3
210.	*	.1	.3	.0	.3
220.	*	.1	. 2	.0	. 2
230.	*	.1	. 2	.0	. 2
240.	*	.2	.3	.0	. 2
250.	*	.3	. 4	.0	.2
260.	*	.3	.5	.0	.2
270.	×	.1	.4	.1	. 3
280.	Ĵ	.0	. 2	. 2	.4
290.	Ĵ	.0	. 2	. 2	. 3
300.	Ĵ	.0	.1	. 2	. 2
310.	÷	.0	. 2	. 2	. 2
320. 320	*	.0	. 2	. 2	. 2
240	*	.0	. 4	. 4	.4
350.	*	.0	. 2	. 2	.4
350.	*	.0	. 5	. 4	. 1
	. * .				. 2
MAX	*	.6	.5	.4	.4
DEGR.	*	100	190	10	280

THE HIGHEST CONCENTRATION OF .60 PPM OCCURRED AT RECEPTOR REC1 .

JOB: D:\00Projects\Cedars Sinai\01_Existing\S RUN: SAWINP

DATE : 4/23/ 8 TIME : 17:46:36

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD =	.0 CM/S	Z0 = 100. CM		
U =	1.0 M/S	CLAS =	6 (F)	ATIM = 60. MINUTES	MIXH = 1000. M	AMB = .0 PPM

LINK VARIABLES

INK DESCRIPTION	*	L	INK COORDIN	ATES (FT)		*	LENGTH	BRG TYPE	VPH	EF	Н	W	V/C	QUEUE
	*	X1	Y1	X2	Y2	*	(FT)	(DEG)		(G/MI)	(FT)	(FT)		(VEH)
	-*					*								
nba	*	530.0	.0	530.0	500.0	*	500.	360. AG	2398.	1.6	.0	80.0		
nbd	*	530.0	500.0	530.0	1000.0	*	500.	360. AG	2353.	1.6	.0	56.0		
pdr	*	530.0	452.0	530.0	378.7	*	73.	180. AG	36.	100.0	.0	60.0	.67	3.7
sba	*	470.0	1000.0	470.0	500.0	*	500.	180. AG	1536.	1.6	.0	80.0		
∋bd	*	470.0	500.0	470.0	.0	*	500.	180. AG	1120.	1.6	.0	56.0		
pde	*	470.0	548.0	470.0	595.0	*	47.	360. AG	36.	100.0	.0	60.0	.43	2.4
eba	*	.0	476.0	500.0	476.0	*	500.	90. AG	1820.	1.6	.0	68.0		
ebd	*	500.0	476.0	1000.0	476.0	*	500.	90. AG	1937.	1.6	.0	56.0		
pde	*	440.0	476.0	367.8	476.0	*	72.	270. AG	30.	100.0	.0	48.0	.66	3.7
wba	*	1000.0	524.0	500.0	524.0	*	500.	270. AG	2304.	1.6	.0	68.0		
vbd	*	500.0	524.0	.0	524.0	*	500.	270. AG	2648.	1.6	.0	56.0		
pdw	*	560.0	524.0	668.1	524.0	*	108.	90. AG	30.	100.0	.0	48.0	.83	5.5
	INK DESCRIPTION 	INK DESCRIPTION * * * hda * hd	INK DESCRIPTION * L * X1	INK DESCRIPTION * LINK COORDINA * X1 Y1 	INK DESCRIPTION * LINK COORDINATES (FT) * X1 Y1 X2 	INK DESCRIPTION * LINK COORDINATES (FT) * X1 Y1 X2 Y2 	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	INK DESCRIPTION * LINK COORDINATES (FT) * LENGTH BRG TYPE * X1 Y1 X2 Y2 * (FT) (DEG) aba * 530.0 .0 530.0 500.0 * 500. 360. AG aba * 530.0 500.0 530.0 1000.0 * 500. 360. AG abd * 530.0 500.0 530.0 1000.0 * 500. 360. AG abd * 530.0 452.0 530.0 378.7 * 73. 180. AG sba * 470.0 1000.0 470.0 500. 180. AG sbd * 470.0 548.0 470.0 595.0 * 47. 360. AG aba * 0 476.0 500.0 476.0 500.0 90. AG ebd * 0.0 476.0 1000.0 476.0 * 500.0 90. AG wba	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

JOB: D:\00Projects\Cedars Sinai\01_Existing\S RUN: SAWINP

DATE : 4/23/ 8 TIME : 17:46:36

ADDITIONAL QUEUE LINK PARAMETERS

:	LINK DESCRIPTION	* * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIVAL RATE
3.	nbq	*	60	28	3.0	2398	1600	5.73	3	3
6.	sbq	*	60	28	3.0	1536	1600	5.73	3	3
9.	ebq	*	60	29	3.0	1820	1600	5.73	3	3
12.	wbq	*	60	29	3.0	2304	1600	5.73	3	3

RECEPTOR LOCATIONS

	*	COOR	DINATES (FI	?)	*
RECEPTOR	*	Х	Y	Z	*
	*				*
1. nw	*	430.0	558.0	5.4	*
2. ne	*	570.0	558.0	5.4	*
3. sw	*	430.0	442.0	5.4	*
4. se	*	570.0	442.0	5.4	*

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION ANGLE * (PPM) (PPM)

(DEGR)	*	REC1	REC2	REC3	REC4
0.	*	. 1	. 1	. 4	. 4
10.	*	.2	.0	.5	. 3
20	*	2	.0	4	
30	*	2	.0	4	
40	*	. 2	.0	3	
50.	*	.3	.0	. 4	.2
60	*	3	0	3	2
70	*	.5	.0	.5	
80	*	.5	.0	.5	
90	*	.5	2	4	.5
100	*	.5	. 2	2	
110	*	.0	4	2	.0
120.	*	. 4	. 4	.2	.0
130.	*	. 4	.3	.2	. 0
140.	*	.3	. 3	.2	. 0
150.	*	. 4	. 3	.2	. 0
160.	*	.5	. 3	. 2	. 0
170.	*	. 4	. 3	. 2	. 0
180.	*	. 4	. 4	.0	. 2
190.	*	.3	.6	.0	.3
200.	*	.3	.6	.0	.4
210.	*	.3	.4	.0	.3
220.	*	.2	.3	.0	. 2
230.	*	.3	.3	.0	. 2
240.	*	.3	. 4	.0	. 2
250.	*	.4	. 4	.0	. 2
260.	*	.4	.6	.0	.2
270.	*	.1	.5	.1	.3
280.	*	.0	. 2	.3	.6
290.	*	.0	.1	. 4	.4
300.	*	.0	. 2	.3	.3
310.	*	.0	. 2	.3	.3
320.	*	.0	. 2	.3	.4
330.	*	.0	.3	.3	.5
340.	*	.0	.3	.3	.6
350.	*	.0	. 2	.3	.6
360.	*	.1	.1	.4	.4
MAX	*	.8	.6	.5	.6
DEGR.	*	100	190	10	280

THE HIGHEST CONCENTRATION OF .80 PPM OCCURRED AT RECEPTOR REC1 .

JOB: C:\Documents and Settings\jstephens\Desk

DATE : 3/ 6/ 8 TIME : 17:33: 2

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD =	.0 CM/S	Z0 = 100. CM		
U =	1.0 M/S	CLAS =	6 (F)	ATIM = 60. MINUTES	MIXH = 1000. M	AMB = .0 PPM

LINK VARIABLES

LINK DESCRIPTION	*	I	LINK COORDIN	ATES (FT)		*	LENGTH	BRG TYPE	VPH	EF	H W	V/C	QUEUE
	*	X1	Y1	X2	¥2	*	(FT)	(DEG)		(G/MI)	(FT) (FT))	(VEH)
	*					*							
1. nba	*	512.0	.0	512.0	500.0	*	500.	360. AG	601.	1.6	.0 44.0		
2. nbq	*	512.0	464.0	512.0	-1120.7	*	1585.	180. AG	25.	100.0	.0 24.0	1.89	80.5
3. sbd	*	488.0	500.0	488.0	.0	*	500.	180. AG	231.	1.6	.0 32.0		
4. eba	*	.0	482.0	500.0	482.0	*	500.	90. AG	1828.	1.6	.0 56.0		
5. ebd	*	500.0	482.0	1000.0	482.0	*	500.	90. AG	2176.	1.6	.0 44.0		
6. ebq	*	476.0	482.0	449.4	482.0	*	27.	270. AG	6.	100.0	.0 36.0	.49	1.4
7. wba	*	1000.0	518.0	500.0	518.0	*	500.	270. AG	1634.	1.6	.0 56.0		
8. wbd	*	500.0	518.0	.0	518.0	*	500.	270. AG	1656.	1.6	.0 44.0		
9. wbq	*	524.0	518.0	548.0	518.0	*	24.	90. AG	6.	100.0	.0 36.0	.44	1.2
											PAGE	2	

RUN: George Burns & Beverly 2022 w/Project CO

JOB: C:\Documents and Settings\jstephens\Desk RUN: George Burns & Beverly 2022 w/Project CO

DATE : 3/ 6/ 8 TIME : 17:33: 2

ADDITIONAL QUEUE LINK PARAMETERS

LINK DESCRIPTION	*	CYCLE	RED	CLEARANCE	APPROACH	SATURATION	IDLE	SIGNAL	ARRIVAL
	*	LENGTH	TIME	LOST TIME	VOL	FLOW RATE	EM FAC	TYPE	RATE
	*	(SEC)	(SEC)	(SEC)	(VPH)	(VPH)	(gm/hr)		
	*								
2. nbq	*	60	49	3.0	601	1600	5.73	3	3
6. ebq	*	60	8	3.0	1828	1600	5.73	3	3
9. wbg	*	60	8	3.0	1644	1600	5.73	3	3

RECEPTOR LOCATIONS

	*	COOF	DINATES (FT	')	*
RECEPTOR	*	Х	Y	Z	*
	*				*
1. nw	*	466.0	546.0	5.4	*
2. ne	*	534.0	546.0	5.4	*
3. sw	*	466.0	454.0	5.4	*
4. se	*	534.0	454.0	5.4	*

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION ANGLE * (PPM)

(DEGR)*	REC1	REC2	REC3	REC4
0.	- * - *	.0	.0	. 2	. 2
10.	*	.0	.0	. 2	. 2
20.	*	.0	.0	. 2	. 2
30.	*	.0	.0	.1	.2
40.	*	.0	.0	.2	.2
50.	*	.0	.0	.3	. 2
60.	*	.0	.0	.3	.3
70.	*	.0	.0	.4	.3
80.	*	.0	.0	.5	. 4
90.	*	.1	. 2	.3	.1
100.	*	.3	.3	.1	.0
110.	*	.2	.3	.1	.0
120.	*	.2	. 2	.1	.0
130.	*	.3	. 2	.1	.0
140.	*	. 2	. 2	.1	.0
150.	*	.1	. 2	.1	.0
160.	*	.3	.2	.1	.0
170.	*	.4	.2	.1	.0
180.	*	.3	.5	.1	.3
190.	*	.2	.5	.0	.3
200.	*	.2	. 2	.0	.3
210.	*	.2	.1	.0	.1
220.	*	.2	. 2	.0	.1
230.	*	.2	.2	.0	.1
240.	Ť	.2	. 3	.0	.1
250.	×	. 3	. 3	.0	.1
∠0U. 270	÷	. 3	. 3	.0	.1
210.	*	.1	.1	. 2	. 3
20U.	-	.0	.0	.4	.4
290.	*	.0	.0	. 3	. 3
210	*	.0	.0	. 4	. 3
320	*	.0	.0	. 4	. 3
220.	*	.0	.0	. 4	. 2
340	*	.0	.0	. 4	.1
350	*	.0	.0	. 4	. 2
360	*	.0	.0	. 2	. 2
	. * .				. 2
MAX	*	.4	.5	.5	.4
DEGR.	*	170	180	80	80

The highest concentration of $\$.50 ppm occurred at receptor rec3 .

JOB: D:\00Projects\Cedars Sinai\01_Existing\G RUN: CEGRNP

DATE : 4/23/ 8 TIME : 13:52: 2

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD = .0 CM/S	Z0 = 100. CM								
U =	1.0 M/S	CLAS = 6 (F)	ATIM = 60. MINUTES	MIXH = 1000. M	AMB = .0 PPM						

LINK VARIABLES

	LINK DESCRIPTION	*	L	INK COORDIN	ATES (FT)		*	LENGTH	BRG TYPE	VPH	EF	Н	W	V/C	QUEUE
		*	X1	Y1	X2	¥2	*	(FT)	(DEG)		(G/MI)	(FT)	(FT)		(VEH)
		- *					*								
1.	nba	*	506.0	.0	506.0	500.0	*	500.	360. AG	290.	1.6	.0	32.0		
2.	nbd	*	506.0	500.0	506.0	1000.0	*	500.	360. AG	244.	1.6	.0	32.0		
3.	nbq	*	506.0	464.0	506.0	424.4	*	40.	180. AG	б.	100.0	.0	12.0	.36	2.0
4.	sba	*	494.0	1000.0	494.0	500.0	*	500.	180. AG	473.	1.6	.0	32.0		
5.	sbd	*	494.0	500.0	494.0	.0	*	500.	180. AG	495.	1.6	.0	32.0		
б.	sbq	*	494.0	536.0	494.0	600.7	*	65.	360. AG	б.	100.0	.0	12.0	.59	3.3
7.	eba	*	.0	482.0	500.0	482.0	*	500.	90. AG	297.	1.6	.0	56.0		
8.	ebd	*	500.0	482.0	1000.0	482.0	*	500.	90. AG	293.	1.6	.0	44.0		
9.	ebq	*	488.0	482.0	470.7	482.0	*	17.	270. AG	25.	100.0	.0	36.0	.16	. 9
10.	wba	*	1000.0	518.0	500.0	518.0	*	500.	270. AG	289.	1.6	.0	56.0		
11.	wbd	*	500.0	518.0	.0	518.0	*	500.	270. AG	317.	1.6	.0	44.0		
12.	pdw	*	512.0	518.0	528.8	518.0	*	17.	90. AG	25.	100.0	.0	36.0	.16	.9

RUN: CEGRNP

JOB: D:\00Projects\Cedars Sinai\01_Existing\G

DATE : 4/23/ 8 TIME : 13:52: 2

ADDITIONAL QUEUE LINK PARAMETERS

|--|

	LINK DESCRIPTION	*	CYCLE	RED	CLEARANCE	APPROACH	SATURATION	IDLE	SIGNAL	ARRIVAL	
		*	LENGTH	TIME	LOST TIME	VOL	FLOW RATE	EM FAC	TYPE	RATE	
		*	(SEC)	(SEC)	(SEC)	(VPH)	(VPH)	(gm/hr)			
		*									
3.	nbq	*	60	25	3.0	290	1600	5.73	3	3	
б.	sbq	*	60	25	3.0	473	1600	5.73	3	3	
9.	ebq	*	60	32	3.0	297	1600	5.73	3	3	
12.	wbq	*	60	32	3.0	289	1600	5.73	3	3	

RECEPTOR LOCATIONS

	*	COOR	DINATES (FI	?)	*
RECEPTOR	*	Х	Y	Z	*
	*				- *
1. nw	*	478.0	546.0	5.4	*
2. ne	*	522.0	546.0	5.4	*
3. sw	*	478.0	454.0	5.4	*
4. se	*	522.0	454.0	5.4	*

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION

ANGLE			(PPM)		
(DEGR)) * . * .	REC1	REC2	REC3	REC4
0.	*	.1	.0	. 2	. 0
10.	*	.1	.0	. 2	.0
20.	*	.1	.0	.0	.0
30.	*	.0	.0	.0	.0
40.	*	.0	.0	.0	.0
50.	*	.0	.0	.0	.0
60.	*	.0	.0	.0	.0
70.	*	.0	.0	.0	.0
80.	*	.0	.0	.0	.0
90.	*	.0	.0	.0	.0
100.	*	.0	.0	.0	.0
110.	*	.0	.0	.0	.0
120.	*	.0	.0	.0	.0
130.	*	.0	.0	.0	.0
140.	*	.0	.0	.0	.0
150.	*	.0	.0	.0	.0
160.	*	.0	.0	.1	.0
170.	*	.1	.1	.1	.0
180.	*	.1	.1	.1	.0
190.	*	.0	.2	.0	.2
200.		.0	.0	.0	.0
210.	*	.0	.0	.0	.0
220.		.0	.0	.0	.0
230.	×	.0	.0	.0	.0
240.	Ĵ	.0	.0	.0	.0
250. 260	*	.0	.0	.0	.0
∠00. 270	*	.0	.0	.0	.0
270. 280	*	.0	.0	.0	.0
200.	*	.0	.0	.0	.0
200.	*	.0	.0	.0	.0
310	*	.0	.0	.0	.0
320	*	.0	.0	.0	.0
330	*	.0	.0	.0	.0
340	*	.0	.0	.0	.0
350.	*	.0	.1	.1	.1
360.	*	.1	.0	.2	.0
	.*. +				
DECD	*	.1	100	. 2	100
DEGR.	^	0	190	0	190

The highest concentration of \$.20 ppm occurred at receptor rec3 .

DATE : 3/ 6/ 8 TIME : 16: 8:36

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS	=	.0 CM/S	VD =	.0	CM/S	Z0 =	- 1	100.	CM					
U	=	1.0 M/S	CLAS =	6	(F)	ATIM =		60.	MINUTES	MIXH =	1000.	М	AMB =	.0 PPM

LINK VARIABLES

1	JINK DESCRIPTION	*	L	INK COORDIN	ATES (FT)		*	LENGTH	BRG I	YPE	VPH	EF	Н	W	V/C	QUEUE
		*	X1	¥1	X2	¥2	*	(FT)	(DEG)			(G/MI)	(FT)	(FT)		(VEH)
1.	nba	*	524.0	. 0	524.0	500.0	*	500.	360.	AG	1617.	1.6	. 0	68.0		
2.	nbd	*	524.0	500.0	524.0	1000.0	*	500.	360.	AG	1562.	1.6	.0	44.0		
3.	nbq	*	524.0	440.0	524.0	382.6	*	57.	180.	AG	27.	100.0	.0	48.0	.52	2.9
4.	sba	*	476.0	1000.0	476.0	500.0	*	500.	180.	AG	2209.	1.6	.0	68.0		
5.	sbd	*	476.0	500.0	476.0	.0	*	500.	180.	AG	1999.	1.6	.0	56.0		
б.	sbq	*	476.0	548.0	476.0	626.5	*	78.	360.	AG	27.	100.0	.0	48.0	.71	4.0
7.	eba	*	.0	470.0	500.0	470.0	*	500.	90.	AG	1150.	1.6	.0	80.0		
8.	ebd	*	500.0	470.0	1000.0	470.0	*	500.	90.	AG	1262.	1.6	.0	44.0		
9.	ebq	*	452.0	470.0	413.0	470.0	*	39.	270.	AG	40.	100.0	.0	60.0	.36	2.0
10.	wba	*	1000.0	524.0	500.0	524.0	*	500.	270.	AG	2061.	1.6	.0	68.0		
11.	wbd	*	500.0	524.0	.0	524.0	*	500.	270.	AG	2214.	1.6	.0	44.0		
12.	wbq	*	548.0	524.0	647.3	524.0	*	99.	90.	AG	32.	100.0	.0	48.0	.81	5.0

RUN: La Cienega & Beverly 2022 w/Project CO

RUN: La Cienega & Beverly 2022 w/Project CO

PAGE 2

JOB: C:\Documents and Settings\jstephens\Desk

DATE : 3/ 6/ 8 TIME : 16: 8:36

ADDITIONAL QUEUE LINK PARAMETERS

1	JINK DESCRIPTION	* * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIVAL RATE
3.	nbq	*	60	26	3.0	1617	1600	5.73	3	3
б.	sbq	*	60	26	3.0	2209	1600	5.73	3	3
9.	ebq	*	60	31	3.0	1150	1600	5.73	3	3
12.	wbq	*	60	31	3.0	2061	1600	5.73	3	3

RECEPTOR LOCATIONS

	*	COOR	DINATES (FI	')	*
RECEPTOR	*	Х	Y	Z	*
	*				*
1. nw	*	442.0	558.0	5.4	*
2. ne	*	558.0	558.0	5.4	*
3. sw	*	442.0	430.0	5.4	*
4. se	*	558.0	430.0	5.4	*

MODEL RESULTS

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION ANGLE * (PPM)

(DEGR)*	REC1	REC2	REC3	REC4
0.	-*. *	.2	.1	. 4	. 3
10.	*	.4	.0	.8	.3
20.	*	.4	.0	.5	.3
30.	*	.4	.0	. 4	.3
40.	*	.3	.0	. 4	. 2
50.	*	.3	.0	.2	.2
60.	*	.3	.0	.4	. 2
70.	*	.3	.0	. 4	.2
80.	*	.2	.0	.4	. 2
90.	*	.3	. 2	.3	.0
100.	*	.5	. 4	.3	.0
110.	*	.6	.4	.3	.0
120.	*	.4	.3	.2	.0
130.	*	.2	.2	.2	.0
140.	*	.3	.2	.2	.0
150.	*	.4	.2	.2	.0
160.	*	.4	.2	.3	.0
170.	*	.5	.2	.3	.0
180.	*	.3	.3	.1	.1
190.	*	.2	.5	.0	.3
200.	*	.1	.3	.0	.3
210.	*	.1	.4	.0	.3
220.	*	.1	.3	.0	.3
230.	*	.1	.2	.0	.3
240.	*	.3	.5	.0	.3
250.	Ť	. 3	.5	.0	.3
260.	*	.2	.6	.0	.3
270.	, r	.1	. 3	.1	.4
280.	<i>*</i>	.0	. 3	.2	.5
290. 200	*	.0	.3	.2	.4
3UU. 210	*	.0	.3	.2	.3
310.	*	.0	.2	.2	. 3
32U. 220	÷	.0	.2	. 3	.4
33U. 240		.0	.2	. 3	.3
34U. 250	*	.0	. 2	. 3	.5
260	*	.0	. 3	. 3	.0
	_ * .	. 2	.1	.4	. 3
MAX	*	.6	.6	.8	.6
DEGR.	*	110	260	10	350

The highest concentration of $\$.80 ppm occurred at receptor rec3 .

JOB: D:\00Projects\Cedars Sinai\01_Existing\L RUN: LASANP

DATE : 4/23/ 8 TIME : 14:56:57

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD = .0 CM/S	Z0 = 100. CM								
U =	1.0 M/S	CLAS = 6 (F)	ATIM = 60. MINUTES	MIXH = 1000. M	AMB = .0 PPM						

LINK VARIABLES

	LINK DESCRIPTION	*	L	INK COORDIN	ATES (FT)		*	LENGTH	BRG TYPE	VPH	EF	н	W	V/C	QUEUE
		*	X1	Y1	X2	¥2	*	(FT)	(DEG)		(G/MI)	(FT)	(FT)	(VEH)
		*					*								
1.	nba	*	524.0	.0	524.0	500.0	*	500.	360. AG	2640.	1.6	.0	68.0		
2.	nbd	*	524.0	500.0	524.0	1000.0	*	500.	360. AG	2705.	1.6	.0	56.0		
3.	nbq	*	524.0	440.0	524.0	216.8	*	223.	180. AG	31.	100.0	.0	48.0	.99	11.3
4.	sba	*	482.0	1000.0	482.0	500.0	*	500.	180. AG	2326.	1.6	.0	56.0		
5.	sbd	*	482.0	500.0	482.0	.0	*	500.	180. AG	2815.	1.6	.0	56.0		
б.	sbq	*	482.0	560.0	482.0	1906.9	*	1347.	360. AG	23.	100.0	.0	36.0	1.16	68.4
7.	eba	*	.0	470.0	500.0	470.0	*	500.	90. AG	3254.	1.6	.0	80.0		
8.	ebd	*	500.0	470.0	1000.0	470.0	*	500.	90. AG	2672.	1.6	.0	68.0		
9.	ebq	*	464.0	470.0	339.2	470.0	*	125.	270. AG	35.	100.0	.0	60.0	.87	6.3
10.	wba	*	1000.0	530.0	500.0	530.0	*	500.	270. AG	2087.	1.6	.0	80.0		
11.	wbd	*	500.0	530.0	.0	530.0	*	500.	270. AG	2115.	1.6	.0	68.0		
12.	pdw	*	548.0	530.0	609.6	530.0	*	62.	90. AG	35.	100.0	.0	60.0	.56	3.1

JOB: D:\00Projects\Cedars Sinai\01_Existing\L RUN: LASANP

```
DATE : 4/23/ 8
TIME : 14:56:57
```

ADDITIONAL QUEUE LINK PARAMETERS

-

1	LINK DESCRIPTION	*	CYCLE	RED	CLEARANCE	APPROACH	SATURATION	IDLE	SIGNAL	ARRIVAL
		*	LENGTH	TIME	LOST TIME	VOL	FLOW RATE	EM FAC	TYPE	RATE
		*	(SEC)	(SEC)	(SEC)	(VPH)	(VPH)	(gm/hr)		
		*								
3.	nbq	*	60	30	3.0	2640	1600	5.73	3	3
6.	sbq	*	60	30	3.0	2326	1600	5.73	3	3
9.	ebq	*	60	27	3.0	3254	1600	5.73	3	3
12.	wbq	*	60	27	3.0	2087	1600	5.73	3	3

RECEPTOR LOCATIONS

	*	COOR	DINATES (FT)	*
RECEPTOR	*	Х	Y	Z	*
	*				- *
1. nw	*	454.0	570.0	5.4	*
2. ne	*	558.0	570.0	5.4	*
3. sw	*	454.0	430.0	5.4	*
4. se	*	558.0	430.0	5.4	*

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION ANGLE * (PPM)

(DEGR) *	REC1	REC2	REC3	REC4
	- * . +				
10	÷	.4	.1	.8	.0
20	*	.0	.0	. 9	. 3
30.	*	. 5	.0	. /	
40	*	. 1	.0	5	.2
50	*	3	.0	.5	3
60	*				3
70.	*	.3	.0	.6	. 3
80.	*	.3	.0	.7	. 3
90.	*	.4	.1	.5	.1
100.	*	.6	.3	.3	. 0
110.	*	.5	. 3	. 3	.0
120.	*	.5	. 3	. 3	. 0
130.	*	.5	.3	.4	.0
140.	*	.4	.3	.4	.0
150.	*	.5	.3	.4	.0
160.	*	.7	.3	.6	.0
170.	*	.9	.3	.5	.0
180.	*	.6	.6	.3	. 2
190.	*	.3	.8	.1	.5
200.	*	.3	.6	.0	.7
210.	*	.3	.5	.0	.4
220.	*	.3	.4	.0	.4
230.	*	.2	.5	.0	.3
240.	*	.2	.6	.0	.3
250.	*	.4	.6	.0	.3
260.	*	.3	.6	.0	.3
270.	*	.1	.3	.2	.5
280.	*	.0	. 2	.5	.9
290.	*	.0	. 2	.5	.7
300.	*	.0	. 2	. 4	.5
310.	*	.0	.3	.4	.5
320. 320.	*	.0	.4	.4	. 4
330.	*	.0	.4	.4	.4
34U. 250	*	.0	.5	. 3	. 6
350.	*	.0	.5	. 3	.8
	_ * .	.4		.8	. b
MAX	*	.9	.8	.9	.9
DEGR.	*	170	190	10	280

The highest concentration of .90 PPM occurred at receptor rec3 .

JOB: D:\00Projects\Cedars Sinai\03_With Proje RUN: LATHNP

DATE : 4/23/ 8 TIME : 15:25:17

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD = .0 CM/S	Z0 = 100. CM							
U =	1.0 M/S	CLAS = 6 (F)	ATIM = 60. MINUTES	MIXH = 1000. M	AMB = .0 PPM					

LINK VARIABLES

]	LINK DESCRIPTION	*	L	INK COORDIN	ATES (FT)		*	LENGTH	BRG TYPE	VPH	EF	н	W	V/C	QUEUE
		*	X1	Y1	X2	Y2	*	(FT)	(DEG)		(G/MI)	(FT)	(FT)		(VEH)
		*					*								
1.	nba	*	530.0	.0	530.0	500.0	*	500.	360. AG	2081.	1.6	.0	80.0		
2.	nbd	*	530.0	500.0	530.0	1000.0	*	500.	360. AG	1857.	1.6	.0	56.0		
3.	nbq	*	530.0	464.0	530.0	409.4	*	55.	180. AG	31.	100.0	.0	60.0	.50	2.8
4.	sba	*	464.0	1000.0	464.0	500.0	*	500.	180. AG	2054.	1.6	.0	80.0		
5.	sbd	*	464.0	500.0	464.0	.0	*	500.	180. AG	2181.	1.6	.0	56.0		
6.	sbq	*	464.0	536.0	464.0	589.8	*	54.	360. AG	31.	100.0	.0	60.0	.50	2.7
7.	eba	*	.0	482.0	500.0	482.0	*	500.	90. AG	852.	1.6	.0	56.0		
8.	ebd	*	500.0	482.0	1000.0	482.0	*	500.	90. AG	882.	1.6	.0	44.0		
9.	ebq	*	428.0	482.0	376.8	482.0	*	51.	270. AG	25.	100.0	.0	36.0	.48	2.6
10.	wba	*	1000.0	518.0	500.0	518.0	*	500.	270. AG	2051.	1.6	.0	56.0		
11.	wbd	*	500.0	518.0	.0	518.0	*	500.	270. AG	2118.	1.6	.0	44.0		
12.	pdw	*	560.0	518.0	634.0	518.0	*	74.	90. AG	42.	100.0	.0	60.0	.70	3.8

JOB: D:\00Projects\Cedars Sinai\03_With Proje RUN: LATHNP

```
DATE : 4/23/ 8
TIME : 15:25:17
```

ADDITIONAL QUEUE LINK PARAMETERS

-

1	LINK DESCRIPTION	*	CYCLE	RED	CLEARANCE	APPROACH	SATURATION	IDLE	SIGNAL	ARRIVAL
		*	LENGTH	TIME	LOST TIME	VOL	FLOW RATE	EM FAC	TYPE	RATE
		*	(SEC)	(SEC)	(SEC)	(VPH)	(VPH)	(gm/hr)		
		*								
3.	nbq	*	60	24	3.0	2081	1600	5.73	3	3
6.	sbq	*	60	24	3.0	2054	1600	5.73	3	3
9.	ebq	*	60	33	3.0	852	1600	5.73	3	3
12.	wbq	*	60	33	3.0	2051	1600	5.73	3	3

RECEPTOR LOCATIONS

	*	COOR	DINATES (FT)	*
RECEPTOR	*	Х	Y	Z	*
					- *
1. nw	*	418.0	546.0	5.4	*
2. ne	*	570.0	546.0	5.4	*
3. sw	*	418.0	454.0	5.4	*
4. se	*	570.0	454.0	5.4	*

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION ANGLE * (PPM) (PPM)

(DEGR)*	REC1	REC2	REC3	REC4
0	*	1	1	3	3
10	*	2		4	.2
20	*	. 2	.0	3	2
30.	*	.2	.0	.3	.2
40	*	2	.0	4	
50.	*	. 2	.0	. 4	.3
60.	*	.3	. 0	.3	. 2
70.	*	.3	. 0	. 4	. 2
80.	*	. 3	.0	. 4	. 2
90.	*	.4	.3	.3	.1
100.	*	.8	.4	.3	.0
110.	*	.4	. 4	.2	.0
120.	*	.3	. 4	.2	.0
130.	*	.3	.3	. 2	.0
140.	*	.4	.2	.2	.0
150.	*	.3	. 2	. 2	.0
160.	*	.4	. 2	.3	.0
170.	*	.4	. 2	. 2	.0
180.	*	.2	.3	.1	.1
190.	*	.2	.5	.0	. 2
200.	*	.2	.4	.0	.3
210.	*	.1	. 4	.0	. 2
220.	*	.1	.5	.0	.3
230.	*	.1	.3	.0	.3
240.	*	.2	.2	.0	.3
250.	*	.3	.4	.0	.3
260.	*	.3	.6	.0	.3
270.	*	.1	. 4	.1	.4
280.	*	.0	.3	. 2	.5
290.	*	.0	.2	.2	.2
300.	*	.0	. 2	.3	.3
310.	*	.0	. 2	.3	.4
320.	*	.0	. 2	.3	.4
330.	*	.0	.2	.2	.4
340.	*	.0	.3	. 2	. 4
350.	Ť	.0	.2	.2	.5
360.	.*.	.1	.1	.3	. 3
MAX	*	.8	.6	. 4	.5
DEGR.	*	100	260	10	280

THE HIGHEST CONCENTRATION OF .80 PPM OCCURRED AT RECEPTOR REC1 .
DATE : 3/ 6/ 8 TIME : 16:19: 6

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS	=	.0 CM/S	VD =	.0	CM/S	Z0 =	100	. CM				
U	=	1.0 M/S	CLAS =	6	(F)	ATIM =	60	. MINUTES	MIXH =	1000.1	M AMB	= .0 PPM

LINK VARIABLES

LIN	NK DESCRIPTION	*	L	INK COORDIN	ATES (FT)		*	LENGTH	BRG TYPE	VPH	EF	H W	V/C	QUEUE
		*	X1	Y1	X2	¥2	*	(FT)	(DEG)		(G/MI)	(FT) (FT)		(VEH)
		*					-*							
1. nk	Da	*	512.0	.0	512.0	500.0	*	500.	360. AG	1232.	1.6	.0 44.0		
2. nk	bd	*	512.0	500.0	512.0	1000.0	*	500.	360. AG	1251.	1.6	.0 32.0		
3. nh	pq	*	512.0	488.0	512.0	447.6	*	40.	180. AG	6.	100.0	.0 24.0	.54	2.1
4. sł	ba	*	488.0	1000.0	488.0	500.0	*	500.	180. AG	1032.	1.6	.0 44.0		
5. sł	bd	*	488.0	500.0	488.0	.0	*	500.	180. AG	1126.	1.6	.0 32.0		
6. sł	pq	*	488.0	512.0	488.0	545.9	*	34.	360. AG	б.	100.0	.0 24.0	.45	1.7
7. eł	ba	*	.0	494.0	500.0	494.0	*	500.	90. AG	256.	1.6	.0 32.0		
8. eł	bd	*	500.0	494.0	1000.0	494.0	*	500.	90. AG	276.	1.6	.0 32.0		
9. eł	pq	*	476.0	494.0	353.7	494.0	*	122.	270. AG	12.	100.0	.0 12.0	.96	6.2
10. wł	ba	*	1000.0	506.0	500.0	506.0	*	500.	270. AG	338.	1.6	.0 32.0		
11. wł	bd	*	500.0	506.0	.0	506.0	*	500.	270. AG	205.	1.6	.0 32.0		
12. wk	pq	*	524.0	506.0	1417.3	506.0	*	893.	90. AG	12.	100.0	.0 12.0 1	.27	45.4

PAGE 2

JOB: C:\Documents and Settings\jstephens\Desk RUN: Robertson & Alden 2022 w/o Project CO

DATE : 3/6/8 TIME : 16:19:6

ADDITIONAL QUEUE LINK PARAMETERS

1	LINK DESCRIPTION	* * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIVAL RATE
3.	nbq	*	60	12	3.0	1232	1600	5.73	3	3
6.	sbq	*	60	12	3.0	1032	1600	5.73	3	3
9.	ebq	*	60	45	3.0	256	1600	5.73	3	3
12.	pdw	*	60	45	3.0	338	1600	5.73	3	3

RECEPTOR LOCATIONS

	*	COOR	DINATES (FI	')	*
RECEPTOR	*	Х	Y	Z	*
	*				- *
1. nw	*	466.0	522.0	5.4	*
2. ne	*	534.0	522.0	5.4	*
3. sw	*	466.0	478.0	5.4	*
4. se	*	534.0	478.0	5.4	*

MODEL RESULTS

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION

ANGLE (DEGR)	*) *	REC1	(PPM) REC2	REC3	REC4
0	-*- *				
10	*	. 1	. 1	2	
20.	*	.2	.0	.2	.0
30.	*	. 2	.0	. 2	.0
40.	*	. 2	.0	.1	.0
50.	*	.2	.0	.0	.0
60.	*	.2	.0	.1	.0
70.	*	.2	.0	.1	.1
80.	*	.1	.0	.2	.1
90.	*	.2	.1	. 2	.0
100.	*	.2	. 2	.1	.0
110.	*	.1	.1	. 2	.0
120.	*	.1	.1	. 2	.0
130.	*	.0	.0	.2	.0
140.	*	.1	.0	. 2	.0
150.	*	.2	.0	.2	.0
160.	*	.2	.0	.2	.0
170.	*	.2	.0	.3	.0
180.	*	.1	.1	.1	.1
190.	*	.0	.3	.0	.3
200.	*	.0	. 2	.0	. 2
210.	*	.0	. 2	.0	.2
220.	*	.0	.1	.0	. 2
230.	*	.0	.0	.0	.1
240.	*	.0	.1	.0	.1
250.	*	.0	.1	.0	.1
260.	*	.0	.1	.0	.1
270.	*	.0	.1	.0	.1
280.	*	.0	.1	.1	. 2
290.	*	.0	.1	.1	.1
300.	*	.0	.1	.1	.1
310.	*	.0	.1	.0	.1
320.	*	.0	.2	.0	.0
330.	*	.0	. 2	.0	. 2
340.	*	.0	. 2	.0	. 2
350.	*	.0	. 3	.0	.3
360.	*	.1	.1	.1	.1
MAX	*	.3	.3	.3	.3
DEGR.	*	10	190	170	190

The highest concentration of \$.30 ppm occurred at receptor rec1 .

JOB: D:\00Projects\Cedars Sinai\01_Existing\R RUN: ROBENP

DATE : 4/23/ 8 TIME : 16:11:43

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD = .0 CM/S	Z0 = 100. CM									
U =	1.0 M/S	CLAS = 6 (F)	ATIM = 60. MINUTES	MIXH = 1000. M	AMB = .0 PPM							

LINK VARIABLES

	LINK DESCRIPTION	*	L	INK COORDIN	ATES (FT)		*	LENGTH	BRG TYPE	VPH	EF	н	W	V/C	QUEUE
		*	X1	Y1	X2	¥2	*	(FT)	(DEG)		(G/MI)	(FT)	(FT)	(VEH)
		*					*								
1.	nba	*	518.0	.0	518.0	500.0	*	500.	360. AG	1214.	1.6	.0	56.0		
2.	nbd	*	518.0	500.0	518.0	1000.0	*	500.	360. AG	1233.	1.6	.0	32.0		
3.	nbq	*	518.0	452.0	518.0	374.7	*	77.	180. AG	26.	100.0	.0	36.0	.72	3.9
4.	sba	*	488.0	1000.0	488.0	500.0	*	500.	180. AG	1126.	1.6	.0	44.0		
5.	sbd	*	488.0	500.0	488.0	.0	*	500.	180. AG	1016.	1.6	.0	32.0		
б.	sbq	*	488.0	548.0	488.0	808.5	*	261.	360. AG	17.	100.0	.0	24.0	1.01	13.2
7.	eba	*	.0	476.0	500.0	476.0	*	500.	90. AG	1831.	1.6	.0	68.0		
8.	ebd	*	500.0	476.0	1000.0	476.0	*	500.	90. AG	1895.	1.6	.0	44.0		
9.	ebq	*	476.0	476.0	418.5	476.0	*	57.	270. AG	24.	100.0	.0	48.0	.54	2.9
10.	wba	*	1000.0	524.0	500.0	524.0	*	500.	270. AG	1610.	1.6	.0	68.0		
11.	wbd	*	500.0	524.0	.0	524.0	*	500.	270. AG	1637.	1.6	.0	44.0		
12.	pdw	*	536.0	524.0	586.6	524.0	*	51.	90. AG	24.	100.0	.0	48.0	.47	2.6

RUN: ROBENP

JOB: D:\00Projects\Cedars Sinai\01_Existing\R

```
DATE : 4/23/ 8
TIME : 16:11:43
```

ADDITIONAL QUEUE LINK PARAMETERS

	LINK DESCRIPTION	*	CYCLE	RED	CLEARANCE	APPROACH	SATURATION	IDLE	SIGNAL	ARRIVAL
		*	LENGTH	TIME	LOST TIME	VOL	FLOW RATE	EM FAC	TYPE	RATE
		*	(SEC)	(SEC)	(SEC)	(VPH)	(VPH)	(gm/hr)		
		*								
3.	nbq	*	60	34	3.0	1214	1600	5.73	3	3
6.	sbq	*	60	34	3.0	1126	1600	5.73	3	3
9.	ebq	*	60	23	3.0	1831	1600	5.73	3	3
12.	pdw	*	60	23	3.0	1610	1600	5.73	3	3

RECEPTOR LOCATIONS

	*	COOR	DINATES (FI	?)	*
RECEPTOR	*	X	Y	Z	*
	*				*
1. nw	*	466.0	558.0	5.4	*
2. ne	*	546.0	558.0	5.4	*
3. sw	*	466.0	442.0	5.4	*
4. se	*	546.0	442.0	5.4	*

MODEL RESULTS

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION ANGLE * (PPM) (PPM)

(DEGR)	*	REC1	REC2	REC3	REC4
	.*.				
0.	÷	.1	.1	.5	. 3
10.	÷	.4	.0	.5	.2
20.	Ĵ	. 3	.0	.4	. 2
30.	Ĵ	. 3	.0	. 3	. 2
40.	Ĵ	. 3	.0	. 3	. 2
50.	ĉ	.2	.0	.4	. 2
60.	Ť	.2	.0	.5	.2
70.	Ť	.2	.0	. 3	.3
80.	Ť	.2	.0	.4	.3
90.	Ť	.3	.1	. 3	.1
100.	Ť	.5	. 3	.2	.0
110.	Ť	.3	. 3	.2	.0
120.	Ť	.3	.2	. 3	.0
130.	Ť	.3	. 3	. 3	.0
140.	*	.3	.3	.2	.0
150.	*	.3	.3	.2	.0
160.	*	.5	.3	.2	.0
170.	*	.5	.3	.2	.0
180.	*	.3	. 4	.1	.1
190.	*	.2	.6	.0	.3
200.	*	.2	.4	.0	.3
210.	*	.2	. 2	.0	.3
220.	*	.2	.3	.0	. 2
230.	*	.2	.3	.0	. 2
240.	*	.2	.4	.0	. 2
250.	*	.2	.4	.0	. 2
260.	*	.3	.4	.0	. 2
270.	*	.1	. 2	.2	.3
280.	*	.0	.1	.3	.5
290.	*	.0	.1	.3	.3
300.	*	.0	.1	.2	.4
310.	*	.0	.1	.3	.3
320.	*	.0	.2	.3	. 2
330.	*	.0	.3	.3	.3
340.	*	.0	.3	.3	.5
350.	*	.0	.2	.3	.5
360.	*	.1	.1	.5	.3
MAX	*	.5	.6	.5	.5
DEGR.	*	100	190	0	280

THE HIGHEST CONCENTRATION OF .60 PPM OCCURRED AT RECEPTOR REC2 .

DATE : 3/ 6/ 8 TIME : 16:27:20

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS :	.0 CM/S	VD =	.0 CM/S	Z0 = 100.	CM						
U	= 1.0 M/S	CLAS =	6 (F)	ATIM = 60.	MINUTES	MIXH =	1000. M	AMB =	.0 PPM		

LINK VARIABLES

	LINK DESCRIPTION	*	L	INK COORDIN	ATES (FT)		*	LENGTH	BRG TYPE	VPH	EF	Н	W	V/C	QUEUE
		*	X1	Y1	X2	¥2	*	(FT)	(DEG)		(G/MI)	(FT)	(FT)		(VEH)
		*					-*								
1.	nba	*	518.0	.0	518.0	500.0	*	500.	360. AG	1313.	1.6	.0	56.0		
2.	nbd	*	518.0	500.0	518.0	1000.0	*	500.	360. AG	1370.	1.6	.0	32.0		
3.	nbq	*	518.0	452.0	518.0	377.9	*	74.	180. AG	24.	100.0	.0	36.0	.68	3.8
4.	sba	*	488.0	1000.0	488.0	500.0	*	500.	180. AG	1346.	1.6	.0	44.0		
5.	sbd	*	488.0	500.0	488.0	.0	*	500.	180. AG	1466.	1.6	.0	32.0		
б.	sbq	*	488.0	548.0	488.0	1127.0	*	579.	360. AG	16.	100.0	.0	24.0	1.05	29.4
7.	eba	*	.0	476.0	500.0	476.0	*	500.	90. AG	1680.	1.6	.0	68.0		
8.	ebd	*	500.0	476.0	1000.0	476.0	*	500.	90. AG	1500.	1.6	.0	44.0		
9.	ebq	*	476.0	476.0	416.3	476.0	*	60.	270. AG	27.	100.0	.0	48.0	.54	3.0
10.	wba	*	1000.0	524.0	500.0	524.0	*	500.	270. AG	1379.	1.6	.0	68.0		
11.	wbd	*	500.0	524.0	.0	524.0	*	500.	270. AG	1382.	1.6	.0	44.0		
12.	pdw	*	536.0	524.0	584.9	524.0	*	49.	90. AG	27.	100.0	.0	48.0	.45	2.5

JOB: C:\Documents and Settings\jstephens\Desk

RUN: Robertson & Burton 2022 w/o Project CO

RUN: Robertson & Burton 2022 w/o Project CO

DATE : 3/6/8 TIME : 16:27:20

ADDITIONAL QUEUE LINK PARAMETERS

1	JINK DESCRIPTION	* * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIVAL RATE
3.	nbq	*	60	31	3.0	1313	1600	5.73	3	3
б.	sbq	*	60	31	3.0	1346	1600	5.73	3	3
9.	ebq	*	60	26	3.0	1680	1600	5.73	3	3
12.	wbq	*	60	26	3.0	1379	1600	5.73	3	3

RECEPTOR LOCATIONS

	*	COOR	DINATES (FT)	*
RECEPTOR	*	Х	Y	Z	*
	*				- *
1. nw	*	466.0	558.0	5.4	*
2. ne	*	546.0	558.0	5.4	*
3. sw	*	466.0	442.0	5.4	*
4. se	*	546.0	442.0	5.4	*

MODEL RESULTS

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. >
290. * .0 .2 .3 300. * .0 .2 .3 310. * .0 .2 .3 320. * .0 .2 .2 330. * .0 .2 .2 340. * .0 .2 .2 340. * .0 .3 .2 350. * .0 .3 .2 360. * .0 .4 .2 360. * .3 .1 .4	6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5
300. * .0 .2 .3 320. * .0 .2 .2 330. * .0 .2 .2 340. * .0 .3 .2 350. * .0 .3 .2 350. * .0 .4 .2 360. * .3 .1 .4	. 5
320. * .0 .2 .2 330. * .0 .2 .2 340. * .0 .3 .2 350. * .0 .3 .2 360. * .0 .4 .2 360. * .3 .1 .4	.3
330. * .0 .2 .2 340. * .0 .3 .2 350. * .0 .4 .2 360. * .3 .1 .4	.2
340. * .0 .3 .2 350. * .0 .4 .2 360. * .3 .1 .4	.3
350. * .0 .4 .2 360. * .3 .1 .4	.5
360. * .3 .1 .4	.5
	. 2
MAX * .6 .5 .5	.6
DEGR. * 170 190 10 2	280

THE HIGHEST CONCENTRATION OF .60 PPM OCCURRED AT RECEPTOR REC1 .

DATE : 3/ 6/ 8 TIME : 16:32:22

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS	=	.0 CM/S	VD =	.0	CM/S	Z0 =	=	100.	CM					
U	=	1.0 M/S	CLAS =	6	(F)	ATIM =	=	60.	MINUTES	MIXH =	1000.	Μ	AMB =	.0 PPM

LINK VARIABLES

	LINK DESCRIPTION	*	L	INK COORDIN	ATES (FT)		*	LENGTH	BRG TY	PE VPH	EF	H W	V/C	QUEUE
		*	X1	Y1	X2	¥2	*	(FT)	(DEG)		(G/MI)	(FT) (FT)		(VEH)
		*					-*							
1.	nba	*	512.0	.0	512.0	500.0	*	500.	360. A	J 1223.	1.6	.0 44.0		
2.	nbd	*	512.0	500.0	512.0	1000.0	*	500.	360. A	J 1083.	1.6	.0 32.0		
3.	nbq	*	512.0	464.0	512.0	360.6	*	103.	180. A	3 14.	100.0	.0 24.0	.82	5.3
4.	sba	*	488.0	1000.0	488.0	500.0	*	500.	180. A	3 1036.	1.6	.0 44.0		
5.	sbd	*	488.0	500.0	488.0	.0	*	500.	180. A	3 1123.	1.6	.0 32.0		
б.	sbq	*	488.0	536.0	488.0	612.5	*	76.	360. A	3 14.	100.0	.0 24.0	.69	3.9
7.	eba	*	.0	482.0	500.0	482.0	*	500.	90. A	3 675.	1.6	.0 56.0		
8.	ebd	*	500.0	482.0	1000.0	482.0	*	500.	90. A	3 855.	1.6	.0 44.0		
9.	ebq	*	476.0	482.0	439.1	482.0	*	37.	270. A	3 23.	100.0	.0 36.0	.34	1.9
10.	wba	*	1000.0	518.0	500.0	518.0	*	500.	270. A	3 1370.	1.6	.0 56.0		
11.	wbd	*	500.0	518.0	.0	518.0	*	500.	270. A	J 1243.	1.6	.0 44.0		
12.	wbq	*	524.0	518.0	598.8	518.0	*	75.	90. A	3 23.	100.0	.0 36.0	.68	3.8

JOB: C:\Documents and Settings\jstephens\Desk RUN: Robertson & Third 2007 w/o Project CO

DATE : 3/6/8 TIME : 16:32:22

ADDITIONAL QUEUE LINK PARAMETERS

I	LINK DESCRIPTION	* * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIVAL RATE
3.	nbq	*	60	27	3.0	1223	1600	5.73	3	3
б.	sbq	*	60	27	3.0	1036	1600	5.73	3	3
9.	ebq	*	60	30	3.0	675	1600	5.73	3	3
12.	wbq	*	60	30	3.0	1370	1600	5.73	3	3

RECEPTOR LOCATIONS

	*	COOR	DINATES (FI	?)	*
RECEPTOR	*	Х	Y	Z	*
	*				*
1. nw	*	466.0	546.0	5.4	*
2. ne	*	534.0	546.0	5.4	*
3. sw	*	466.0	454.0	5.4	*
4. se	*	534.0	454.0	5.4	*

MODEL RESULTS

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION ANGLE * (PPM)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	· ⊥ 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	· ⊥ 2
200. * 0 12 $12 2$ $200. * 0$ $12 2$ $300. * 0$ $12 2$ $310. * 0$ $12 2$ $320. * 0$ $21 1$ $330. * 0$ $21 1$ $340. * 0$ $21 1$ $350. * 0$ $21 1$ $360. * 11 1 2$ $21 1 2$. 4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 2
300. * .0 .1 .1 320. * .0 .2 .1 330. * .0 .2 .1 340. * .0 .2 .1 350. * .0 .2 .1 360. * .0 .2 .1	. 2
320. * .0 .2 .1 330. * .0 .2 .1 340. * .0 .2 .1 350. * .0 .2 .1 360. * .0 .2 .1 360. * .0 .2 .1	2
330. * .0 .2 .1 340. * .0 .2 .1 350. * .0 .2 .1 360. * .1 .1 .2	1
340. * .0 .2 .1 350. * .0 .2 .1 360. * .1 .1 .2	2
350. * .0 .2 .1 360. * .1 .1 .2	.3
360. * .1 .1 .2	.3
+	.2
* MAX * .5 .4 .4	.3
DEGR. * 100 190 70 19	0

The highest concentration of $\$.50 ppm occurred at receptor rec1 .

JOB: D:\00Projects\Cedars Sinai\01_Existing\S RUN: SABENP

DATE : 4/23/ 8 TIME : 16:56:19

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD = .0 CM/S	Z0 = 100. CM								
U =	1.0 M/S	CLAS = 6 (F)	ATIM = 60. MINUTES	MIXH = 1000. M	AMB = .0 PPM						

LINK VARIABLES

1	LINK DESCRIPTION	*	L	INK COORDIN	ATES (FT)		*	LENGTH	BRG TYPE	VPH	EF	Н	W	V/C	QUEUE
		*	X1	Y1	X2	¥2	*	(FT)	(DEG)		(G/MI)	(FT)	(FT)		(VEH)
		-*					*								
1.	nba	*	524.0	.0	524.0	500.0	*	500.	360. AG	1750.	1.6	.0	68.0		
2.	nbd	*	524.0	500.0	524.0	1000.0	*	500.	360. AG	1626.	1.6	.0	44.0		
3.	nbq	*	524.0	452.0	524.0	382.7	*	69.	180. AG	30.	100.0	.0	48.0	.63	3.5
4.	sba	*	476.0	1000.0	476.0	500.0	*	500.	180. AG	1612.	1.6	.0	68.0		
5.	sbd	*	476.0	500.0	476.0	.0	*	500.	180. AG	1589.	1.6	.0	44.0		
б.	sbq	*	476.0	548.0	476.0	611.9	*	64.	360. AG	30.	100.0	.0	48.0	.58	3.2
7.	eba	*	.0	476.0	500.0	476.0	*	500.	90. AG	1903.	1.6	.0	68.0		
8.	ebd	*	500.0	476.0	1000.0	476.0	*	500.	90. AG	2115.	1.6	.0	44.0		
9.	ebq	*	452.0	476.0	379.3	476.0	*	73.	270. AG	29.	100.0	.0	48.0	.66	3.7
10.	wba	*	1000.0	524.0	500.0	524.0	*	500.	270. AG	1559.	1.6	.0	68.0		
11.	wbd	*	500.0	524.0	.0	524.0	*	500.	270. AG	1494.	1.6	.0	44.0		
12.	pdw	*	548.0	524.0	607.6	524.0	*	60.	90. AG	29.	100.0	.0	48.0	.54	3.0

JOB: D:\00Projects\Cedars Sinai\01_Existing\S RUN: SABENP

DATE : 4/23/8 TIME : 16:56:19

ADDITIONAL QUEUE LINK PARAMETERS

	LINK DESCRIPTION	* * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIVAL RATE
3.	nbq	*	60	29	3.0	1750	1600	5.73	3	3
6.	sbq	*	60	29	3.0	1612	1600	5.73	3	3
9.	ebq	*	60	28	3.0	1903	1600	5.73	3	3
12.	wbq	*	60	28	3.0	1559	1600	5.73	3	3

RECEPTOR LOCATIONS

	*	COOR	DINATES (FI	')	*
RECEPTOR	*	Х	Y	Z	*
	*				- *
1. nw	*	442.0	558.0	5.4	*
2. ne	*	558.0	558.0	5.4	*
3. sw	*	442.0	442.0	5.4	*
4. se	*	558.0	442.0	5.4	*

MODEL RESULTS

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION ANGLE * (PPM)

(DEGR)	*	REC1	REC2	REC3	REC4
	. * .				
0.	*	.1	.1	.3	.3
10.	*	.3	.0	.5	.3
20.	*	.3	.0	.3	.3
30.	*	.3	.0	.4	.2
40.	*	.3	.0	.3	. 2
50.	*	.3	.0	.3	. 2
60.	*	.3	.0	. 4	.3
70.	*	.3	.0	.5	.3
80.	*	.3	.0	.6	.3
90.	*	.4	.1	.4	.1
100.	*	.6	.3	.3	.0
110.	*	.4	. 2	.3	.0
120.	*	.3	.3	.3	.0
130.	*	.3	.3	. 2	.0
140.	*	.3	.3	.2	.0
150.	*	.5	.3	.2	.0
160.	*	.5	.3	.2	.0
170.	Ť	.6	. 3	.3	.0
180.	×	. 3	.4	.1	.1
190.	Ĵ	. 3	. /	.0	. 3
200.	Ĵ	. 3	.4	.0	.4
210.	×	. 3	.5	.0	.3
220.	÷	.2	. 3	.0	. 3
230.	÷	. 2	. 3	.0	
240.	*	. 2	.4	.0	. 3
250.	*	. 4	. 5	.0	. 3
200.	*	. 5	.0	.0	
280	*		. 1	.2	. 1
200.	*			. 2	
300	*	.0	.5	. 1	4
310.	*	.0	.2	.3	.3
320.	*	.0	.2	.3	. 3
330.	*	.0	.2	.2	.4
340.	*	.0	. 2	. 3	.5
350.	*	.0	.3	. 2	.6
360.	*	.1	.1	.3	.3
 MAX	.*. *	 к		́ ́	6
DEGR	*	100	190	80	280
		100	220	00	200

The highest concentration of \$.70 ppm occurred at receptor rec2 .

DATE : 4/23/ 8 TIME : 17:17:20

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD = .0 CM/S	Z0 = 100. CM						
U =	1.0 M/S	CLAS = 6 (F)	ATIM = 60. MINUTES	MIXH = 1000. M	AMB = .0 PPM				

LINK VARIABLES

* X1 Y1 X2 Y2 * (FT) (DEG)	(G/MI) (FT) (FT) (VEH)

* 512.0 .0 512.0 500.0 * 500. 360. A	G 75. 1.6 .0 44.0
* 512.0 500.0 512.0 1000.0 * 500. 360. A	3 980. 1.6 .0 32.0
* 512.0 464.0 512.0 456.5 * 7. 180. A	3 19.100.0 .0 24.0 .08 .4
* 482.0 1000.0 482.0 500.0 * 500. 180. A	3 1802. 1.6 .0 56.0
* 482.0 560.0 482.0 2006.5 * 1446. 360. A	G 28. 100.0 .0 36.0 1.25 73.5
* .0 482.0 500.0 482.0 * 500. 90. A	3 1510. 1.6 .0 56.0
* 500.0 482.0 1000.0 482.0 * 500. 90. A	G 3211. 1.6 .0 56.0
* 464.0 482.0 409.0 482.0 * 55. 270. A	3 15.100.0 .036.0.54 2.8
* 1000.0 530.0 500.0 530.0 * 500. 270. A	G 2007. 1.6 .0 80.0
* 500.0 530.0 .0 530.0 * 500. 270. <i>I</i>	G 1172. 1.6 .0 56.0
* 524.0 530.0 567.9 530.0 * 44. 90.F	3 26.100.0 .0 60.0 .43 2.2
* 464.0 482.0 409.0 482.0 * 55. 270. F * 1000.0 530.0 500.0 530.0 * 500. 270. F * 500.0 530.0 .0 530.0 * 500. 270. F * 524.0 530.0 567.9 530.0 * 44. 90. F	3 15. 100. 0 36.0 .54 3 2007. 1.6 .0 80.0 3 1172. 1.6 .0 56.0 G 26. 100.0 .0 60.0 .43

RUN: SABUNP

JOB: D:\00Projects\Cedars Sinai\01_Existing\S

DATE : 4/23/8 TIME : 17:17:20

ADDITIONAL QUEUE LINK PARAMETERS

1	LINK DESCRIPTION	*	CYCLE	RED	CLEARANCE	APPROACH	SATURATION	IDLE	SIGNAL	ARRIVAL
		*	LENGTH	TIME	LOST TIME	VOL	FLOW RATE	EM FAC	TYPE	RATE
		*	(SEC)	(SEC)	(SEC)	(VPH)	(VPH)	(gm/hr)		
		*								
3.	nbq	*	60	37	3.0	75	1600	5.73	3	3
5.	sbq	*	60	37	3.0	1802	1600	5.73	3	3
8.	ebq	*	60	20	3.0	1510	1600	5.73	3	3
11.	wbq	*	60	20	3.0	2007	1600	5.73	3	3

RECEPTOR LOCATIONS

	*	COOR	DINATES (FT)	*
RECEPTOR	*	X	Y	Z	*
	*				*
1. nw	*	454.0	570.0	5.4	*
2. ne	*	534.0	570.0	5.4	*
3. sw	*	454.0	454.0	5.4	*
4. se	*	534.0	454.0	5.4	*

MODEL RESULTS

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION

(DEGR)*	REC1	REC2	REC3	REC4
0.	-*- *	. 4	. 2	. 4	. 5
10.	*	.5	.0	.6	.4
20.	*	.5	.0	.3	.3
30.	*	.2	.0	.2	.3
40.	*	.2	.0	.2	.3
50.	*	.2	.0	.3	.3
60.	*	.2	.0	.3	.3
70.	*	.2	.0	.4	.4
80.	*	.2	.0	.6	.5
90.	*	.3	.1	.3	.3
100.	*	.5	.3	.0	.1
110.	*	.4	. 4	.0	.0
120.	*	.3	. 2	.0	.0
130.	*	.3	. 2	.0	.0
140.	*	.2	. 2	.0	.0
150.	*	.3	.3	.0	.0
160.	*	.2	.3	.0	.0
170.	*	.2	.3	.0	.0
180.	*	.2	.3	.0	.0
190.	*	.1	. 2	.0	.0
200.	*	.2	.3	.0	.0
210.	*	.2	.2	.0	.0
220.	*	.2	.3	.0	.0
230.	*	.2	.4	.0	.0
240.	*	.2	.4	.0	.0
250.	*	.2	.3	.0	.0
260.	*	.1	.3	.0	.0
270.	*	.0	. 4	.1	. 2
280.	*	.0	. 2	. 2	.4
290.	*	.0	. 2	.3	. 3
300.	*	.0	.3	. 2	. 3
310.	*	.0	.3	.2	.1
320.	*	.0	.3	. 2	. 2
330.	*	.0	.3	. 2	. 3
340.	*	.0	.3	.1	.5
350.	*	.0	. 4	.1	.7
360.	*	.4	. 2	.4	.5
MAX	*	.5	. 4	.6	.7
DEGR.	*	10	110	10	350

The highest concentration of $\hfill..., 70\hfill \ensuremath{\text{PPM}}$ occurred at receptor rec4 .

JOB: D:\00Projects\Cedars Sinai\01_Existing\S RUN: SATHNP

DATE : 4/23/ 8 TIME : 17:33:41

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD = .0 CM/	5 ZO = 100. CM						
U =	1.0 M/S	CLAS = 6 (F) ATIM = 60. MINUTES	MIXH = 1000. M	AMB = .0 PPM				

LINK VARIABLES

1	LINK DESCRIPTION	*	I	INK COORDIN	ATES (FT)	*	LENGTH	BRG TYPE	VPH	EF	H W	V/C QUEUE
		*	X1	Y1	X2	Y2 *	(FT)	(DEG)		(G/MI)	(FT) (FT)	(VEH)
		*				*						
1.	nba	*	518.0	.0	518.0	500.0 *	500.	360. AG	1363.	1.6	.0 56.0	
2.	nbd	*	518.0	500.0	518.0	1000.0 *	500.	360. AG	1425.	1.6	.0 44.0	
3.	nbq	*	518.0	464.0	518.0	389.5 *	74.	180. AG	23.	100.0	.0 36.0	.68 3.8
4.	sba	*	476.0	1000.0	476.0	500.0 *	500.	180. AG	1191.	1.6	.0 68.0	
5.	sbd	*	476.0	500.0	476.0	.0 *	500.	180. AG	1039.	1.6	.0 44.0	
б.	sbq	*	476.0	536.0	476.0	584.7 *	49.	360. AG	31.	100.0	.0 48.0	.45 2.5
7.	eba	*	.0	482.0	500.0	482.0 *	500.	90. AG	820.	1.6	.0 56.0	
8.	ebd	*	500.0	482.0	1000.0	482.0 *	500.	90. AG	809.	1.6	.0 44.0	
9.	ebq	*	452.0	482.0	411.7	482.0 *	40.	270. AG	21.	100.0	.0 36.0	.37 2.0
10.	wba	*	1000.0	518.0	500.0	518.0 *	500.	270. AG	2034.	1.6	.0 56.0	
11.	wbd	*	500.0	518.0	.0	518.0 *	500.	270. AG	2135.	1.6	.0 44.0	
12.	pdw	*	536.0	518.0	682.6	518.0 *	147.	90. AG	21.	100.0	.0 36.0	.91 7.4

JOB: D:\00Projects\Cedars Sinai\01_Existing\S RUN: SATHNP

```
DATE : 4/23/8
TIME : 17:33:41
```

ADDITIONAL QUEUE LINK PARAMETERS

]	LINK DESCRIPTION	*	CYCLE	RED	CLEARANCE	APPROACH	SATURATION	IDLE	SIGNAL	ARRIVAL
		*	LENGTH	TIME	LOST TIME	VOL	FLOW RATE	EM FAC	TYPE	RATE
		*	(SEC)	(SEC)	(SEC)	(VPH)	(VPH)	(gm/hr)		
		*								
3.	nbq	*	60	30	3.0	1363	1600	5.73	3	3
6.	sbq	*	60	30	3.0	1191	1600	5.73	3	3
9.	ebq	*	60	27	3.0	820	1600	5.73	3	3
12.	wbq	*	60	27	3.0	2034	1600	5.73	3	3

RECEPTOR LOCATIONS

	*	COOR	DINATES (FT	')	*
RECEPTOR	*	Х	Y	Z	*
	*				- *
1. nw	*	442.0	546.0	5.4	*
2. ne	*	546.0	546.0	5.4	*
3. sw	*	442.0	454.0	5.4	*
4. se	*	546.0	454.0	5.4	*

MODEL RESULTS

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION ANGLE * (PPM) (PPM)

(DEGR)	*	REC1	REC2	REC3	REC4
0.	*	.1	.1	.3	. 2
10.	*	.2	.0	. 4	.1
20.	*	.2	.0	.4	.1
30.	*	.2	.0	. 2	.1
40.	*	.3	.0	. 2	.1
50.	*	.3	.0	.1	.3
60.	*	.2	.0	. 2	.2
70.	*	.3	.0	. 2	. 2
80.	*	.2	.0	. 2	. 2
90.	*	.4	. 2	.1	.1
100.	*	.6	.4	.0	.0
110.	*	.3	.3	.0	.0
120.	*	.3	.3	. 2	.0
130.	*	.2	.2	.2	.0
140.	*	.2	.2	.2	.0
150.	*	.2	.2	.2	.0
160.	*	.3	. 2	.2	.0
170.	*	.3	. 2	.2	.0
180.	*	.2	.3	.0	.1
190.	*	.1	.5	.0	. 2
200.	*	.1	.3	.0	.3
210.	*	.1	.3	.0	.3
220.	*	.1	. 2	.0	. 2
230.	*	.1	. 2	.0	. 2
240.	*	.2	.3	.0	. 2
250.	*	.3	. 4	.0	.2
260.	*	.3	.5	.0	.2
270.	×	.1	.4	.1	. 3
280.	Ĵ	.0	. 2	. 2	.4
290.	Ĵ	.0	. 2	. 2	. 3
300.	Ĵ	.0	.1	. 2	. 2
310.	÷	.0	. 2	. 2	. 2
320. 320	*	.0	. 2	. 2	. 2
240	*	.0	. 4	. 4	.4
350.	*	.0	. 2	. 2	.4
350.	*	.0	. 5	. 4	. 1
	. * .				. 2
MAX	*	.6	.5	.4	.4
DEGR.	*	100	190	10	280

THE HIGHEST CONCENTRATION OF .60 PPM OCCURRED AT RECEPTOR REC1 .

JOB: D:\00Projects\Cedars Sinai\01_Existing\S RUN: SAWINP

DATE : 4/23/ 8 TIME : 17:46:36

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD =	.0 CM/S	Z0 = 100. CM		
U =	1.0 M/S	CLAS =	6 (F)	ATIM = 60. MINUTES	MIXH = 1000. M	AMB = .0 PPM

LINK VARIABLES

INK DESCRIPTION	*	L	INK COORDIN	ATES (FT)		*	LENGTH	BRG TYPE	VPH	EF	Н	W	V/C	QUEUE
	*	X1	Y1	X2	Y2	*	(FT)	(DEG)		(G/MI)	(FT)	(FT)		(VEH)
	-*					*								
nba	*	530.0	.0	530.0	500.0	*	500.	360. AG	2398.	1.6	.0	80.0		
nbd	*	530.0	500.0	530.0	1000.0	*	500.	360. AG	2353.	1.6	.0	56.0		
pdr	*	530.0	452.0	530.0	378.7	*	73.	180. AG	36.	100.0	.0	60.0	.67	3.7
sba	*	470.0	1000.0	470.0	500.0	*	500.	180. AG	1536.	1.6	.0	80.0		
∋bd	*	470.0	500.0	470.0	.0	*	500.	180. AG	1120.	1.6	.0	56.0		
pde	*	470.0	548.0	470.0	595.0	*	47.	360. AG	36.	100.0	.0	60.0	.43	2.4
eba	*	.0	476.0	500.0	476.0	*	500.	90. AG	1820.	1.6	.0	68.0		
ebd	*	500.0	476.0	1000.0	476.0	*	500.	90. AG	1937.	1.6	.0	56.0		
pde	*	440.0	476.0	367.8	476.0	*	72.	270. AG	30.	100.0	.0	48.0	.66	3.7
wba	*	1000.0	524.0	500.0	524.0	*	500.	270. AG	2304.	1.6	.0	68.0		
vbd	*	500.0	524.0	.0	524.0	*	500.	270. AG	2648.	1.6	.0	56.0		
pdw	*	560.0	524.0	668.1	524.0	*	108.	90. AG	30.	100.0	.0	48.0	.83	5.5
	INK DESCRIPTION 	INK DESCRIPTION * * * hda * hd	INK DESCRIPTION * L * X1	INK DESCRIPTION * LINK COORDINA * X1 Y1 	INK DESCRIPTION * LINK COORDINATES (FT) * X1 Y1 X2 	INK DESCRIPTION * LINK COORDINATES (FT) * X1 Y1 X2 Y2 	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	INK DESCRIPTION * LINK COORDINATES (FT) * LENGTH BRG TYPE * X1 Y1 X2 Y2 * (FT) (DEG) aba * 530.0 .0 530.0 500.0 * 500. 360. AG aba * 530.0 500.0 530.0 1000.0 * 500. 360. AG abd * 530.0 500.0 530.0 1000.0 * 500. 360. AG abd * 530.0 452.0 530.0 378.7 * 73. 180. AG sba * 470.0 1000.0 470.0 500. 180. AG sbd * 470.0 548.0 470.0 595.0 * 47. 360. AG aba * 0 476.0 500.0 476.0 500.0 90. AG ebd * 0.0 476.0 1000.0 476.0 * 500.0 90. AG wba	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

JOB: D:\00Projects\Cedars Sinai\01_Existing\S RUN: SAWINP

DATE : 4/23/ 8 TIME : 17:46:36

ADDITIONAL QUEUE LINK PARAMETERS

:	LINK DESCRIPTION	* * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIVAL RATE
3.	nbq	*	60	28	3.0	2398	1600	5.73	3	3
6.	sbq	*	60	28	3.0	1536	1600	5.73	3	3
9.	ebq	*	60	29	3.0	1820	1600	5.73	3	3
12.	wbq	*	60	29	3.0	2304	1600	5.73	3	3

RECEPTOR LOCATIONS

	*	COOR	DINATES (FI	?)	*
RECEPTOR	*	Х	Y	Z	*
	*				*
1. nw	*	430.0	558.0	5.4	*
2. ne	*	570.0	558.0	5.4	*
3. sw	*	430.0	442.0	5.4	*
4. se	*	570.0	442.0	5.4	*

MODEL RESULTS

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION ANGLE * (PPM) (PPM)

(DEGR)	*	REC1	REC2	REC3	REC4
0.	*	. 1	. 1	. 4	. 4
10.	*	.2	.0	.5	. 3
20	*	2	.0	4	
30	*	2	.0	4	
40	*	. 2	.0	3	
50.	*	.3	.0	. 4	.2
60	*	3	0	3	2
70	*	.5		.5	
80	*	.5		.5	
90	*	.5	2	4	
100	*	.5	. 2	2	
110	*	.0	4	2	.0
120.	*	. 4	. 4	.2	.0
130.	*	. 4	.3	.2	. 0
140.	*	.3	. 3	.2	. 0
150.	*	. 4	. 3	.2	. 0
160.	*	.5	. 3	. 2	. 0
170.	*	. 4	. 3	. 2	. 0
180.	*	. 4	. 4	.0	. 2
190.	*	.3	.6	.0	.3
200.	*	.3	.6	.0	.4
210.	*	.3	.4	.0	.3
220.	*	.2	.3	.0	. 2
230.	*	.3	.3	.0	. 2
240.	*	.3	. 4	.0	. 2
250.	*	.4	. 4	.0	. 2
260.	*	.4	.6	.0	.2
270.	*	.1	.5	.1	.3
280.	*	.0	. 2	.3	.6
290.	*	.0	.1	. 4	.4
300.	*	.0	. 2	.3	.3
310.	*	.0	. 2	.3	.3
320.	*	.0	. 2	.3	.4
330.	*	.0	.3	.3	.5
340.	*	.0	.3	.3	.6
350.	*	.0	. 2	.3	.6
360.	*	.1	.1	.4	.4
MAX	*	.8	.6	.5	.6
DEGR.	*	100	190	10	280

THE HIGHEST CONCENTRATION OF .80 PPM OCCURRED AT RECEPTOR REC1 .

Appendix D

Construction Emission Calculations and Output Files

Page: 1 10/15/2007 12:08:44 PM Urbemis 2007 Version 9.2.2

Combined Summer Emissions Reports (Pounds/Day)

File Name: J:\Projects\Cedar Sinai Project 2007-083\Air Quality\Construction\arch coating phase.urb9

Project Name: Cedar-Sinai Construction

Project Location: South Coast AQMD

On-Road Vehicle Emissions Based on: Version : Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

Summary Report:

CONSTRUCTION EMISSION ESTIMATES

	ROG	NOX	8	S02	PM10 Dust PM10 E	<u>xhaust</u>	<u>PM10</u>	M2.5 Dust	<u>PM2.5</u> Exhaust	<u>PM2.5</u>	<u>C02</u>
2012 TOTALS (lbs/day unmitigated)	78.73	0.05	0.83	0.00	0.01	00.0	0.01	00.0	0.00	0.00	114.22
2012 TOTALS (lbs/day mitigated)	70.86	0.05	0.83	0.00	0.01	0.00	0.01	00.0	0.00	0.00	114.22

10/15/2007 12:08:44 PM

Construction Unmitigated Detail Report:

CONSTRUCTION EMISSION ESTIMATES Summer Pounds Per Day, Unmitigated

	ROG	NOX	00	<u>SO2</u>	PM10 Dust	PM10 Exhaust	PM10	PM2.5 Dust	PM2.5 Exhaust	<u>PM2.5</u>	<u>CO2</u>
Time Slice 1/2/2012-6/29/2012 Active Days: 130	78.73	0.05	0.83	<u>0.00</u>	0.01	<u>0.00</u>	<u>0.01</u>	0.00	<u>0.00</u>	0.00	114.22
Coating 01/02/2012-06/30/2012	78.73	0.05	0.83	0.00	0.01	0.00	0.01	0.00	0.00	0.00	114.22
Architectural Coating	78.71	00.0	00.0	0.00	0.00	00.0	0.00	0.00	0.00	00.00	0.00
Coating Worker Trips	0.03	0.05	0.83	0.00	0.01	00.00	0.01	0.00	0.00	0.00	114.22

Phase Assumptions

Phase: Architectural Coating 1/2/2012 - 6/30/2012 - Default Architectural Coating Description Rule: Residential Interior Coatings begins 1/1/2005 ends 6/30/2008 specifies a VOC of 100 Rule: Residential Interior Coatings begins 7/1/2008 ends 12/31/2040 specifies a VOC of 50 Rule: Residential Exterior Coatings begins 1/1/2005 ends 6/30/2008 specifies a VOC of 250 Rule: Residential Exterior Coatings begins 7/1/2008 ends 12/31/2040 specifies a VOC of 250 Rule: Residential Exterior Coatings begins 1/1/2005 ends 1/3/2040 specifies a VOC of 250 Rule: Nonresidential Interior Coatings begins 1/1/2005 ends 12/31/2040 specifies a VOC of 250 Rule: Nonresidential Interior Coatings begins 1/1/2005 ends 1/3/2040 specifies a VOC of 250

ო	
je:	
ğ	
Ω_	

10/15/2007 12:08:44 PM

Construction Mitigated Detail Report:

CONSTRUCTION EMISSION ESTIMATES Summer Pounds Per Day, Mitigated

<u>CO2</u>	114.22	114.22	0.00	114.22	
PM2.5	0.00	0.00	0.00	0.00	
PM2.5 Exhaust	<u>0.00</u>	0.00	0.00	0.00	
PM2.5 Dust	<u>0.00</u>	00.0	0.00	0.00	
PM10	<u>0.01</u>	0.01	0.00	0.01	
PM10 Exhaust	<u>0.00</u>	0.00	0.00	00.0	
PM10 Dust	0.01	0.01	0.00	0.01	
<u>S02</u>	<u>0.00</u>	0.00	0.00	0.00	
00	0.83	0.83	0.00	0.83	
XON	0.05	0.05	0.00	0.05	
ROG	70.86	70.86	70.84	0.03	
	Time Slice 1/2/2012-6/29/2012 Active Days: 130	Coating 01/02/2012-06/30/2012	Architectural Coating	Coating Worker Trips	

Construction Related Mitigation Measures

For Nonresidential Architectural Coating Measures, the Nonresidential Exterior: Use Low VOC Coatings mitigation reduces emissions by: The following mitigation measures apply to Phase: Architectural Coating 1/2/2012 - 6/30/2012 - Default Architectural Coating Description

ROG: 10%

For Nonresidential Architectural Coating Measures, the Nonresidential Interior: Use Low VOC Coatings mitigation reduces emissions by: ROG: 10%

2010 EMFAC2007 RATES	S (grams per m	nile)			
Vehicle Type	CO	ROG	NO ₂	SO ₂	PM ₁₀
Haul Truck @ 5 MPH	27.455	13.884	37.237	0.036	2.548
Haul Truck @ 30 MPH	7.363	1.364	14.882	0.018	0.567
Worker Vehicle @30 MPH	2.468	0.101	0.213	0.003	0.01
Assumptions:					
Construction Year	2010				
Season	Winter				
Temperature	63°F				

EQUIPMENT EMISSION F	FACTORS (po	unds per hou	ır)		
	CO	ROG	NO _X	SOx	PM ₁₀
Miscellaneous Equipment	0.4749	0.1311	1.2411	0.0013	0.0539
Source: CARB Off-Road Emissi	on Factors				

PAVED ROAD PM10 EMISSIONS (per VMT)		
	PM ¹⁰	/ VMT
	Worker	
Road Type	Vehicle	Haul Truck
Local Street	0.018000	0.213958299
Major Street/Highway	0.006400	0.149095835
Freeway	0.000650	0.062170612
Composite Factor**	0.004110	0.094734426
Source: Tables A9-9-B-1 and A9-9-C, SCAQMD CEQA Hand based on travel characteristics	dbook ** Note: Weig	ghted average

HAUL TRUCK ON UNPAVED SURFACE EMISSIONS
FORMULA:
E = V x F
WHERE:
E = Emissions
V = Vehicle Miles of Travel
F = Emissions Factor (2.1)(G/12)(H/30)((J/3)^0.7)((I/4)^0.5)((365-K)/365)
VARIABLES
G = Surface silt loading in percent
H = Mean vehicle speed in miles per hour
I = Mean number of wheels on vehicles
J = Mean vehicle weight in tons
K = Mean number of days per year with at least 0.01 inches of precipitation
EMISSIONS FACTOR = 9.57 pounds per vehicle miles traveled
Source: Table A9-9-D, SCAQMD CEQA Handbook

Unmitigated Construction Emisisons

EQUIPMENT					Ű	quipment Emi	issions (ppd)			
Construction Phase	Hours in Work Dav	# Fauinment	Total	8	BOR	XUN	XUS	PM10	PM2.5	
General Construction Activity	8			26.59	7.34	69.50	0.07	3.02	2.78	
WORKER VEHICLES						3	orker Vehicle	Emissions (pp	(p	
		Round Trip	# Worker Vehicle @ 1.1							
Construction Phase	# of Workers	Length	AVR	Total VMT/Day	8	ROG	XON	sox	PM10	PM2.5
General Construction Activity	100	12.7	90.91	1,154.55	6.28	0.26	0.54	0.008	0.025	0.025
					llaat.	alana Tanah	Turi se i se i se i	1		
		Round Trip			неаи	/y-auty I ruck	Emissions (pl	(pd		
Construction Phase	Trips per Day	Length	VMT/day	8	ROG	XON	sox	PM10	PM2.5	
General Construction Activity	100	20	2,000	120.95	61.16	164.04	0.16	11.22	10.33	
	IJ	trading Fugitive	Dust Emission	s						
		Emission								
:		Rate	Pounds of	Pounds of						
Construction Phase	Acres per Day	(lbs/acre)	PM10/day	PM2.5/day						
General Construction Activity	2	20.0	16	e						
	Demolition Dust E	missions								
	Building									
	Debris Handled									
	per day		PM10	PM2.5						
Construction Phase	(cy/day)	cf/day	Emissions	Emissions						
Demolition Activity	2,000	54,000.0	22.68	4.72						
		Truck	Loading/Unload	ling				Trucks on Unp	aved Surfaces	
		Daily Volume	Daily Volume	PM10	PM2.5		Length of Unpaved	VMT on	PM10	PM2.5
Construction Phase		(cy/day)	(tons/day)	Emissions	Emissions		Site (miles)	Unpaved Site	Emissions	Emissions
General Construction Activity		2,000.00	3,240.00	27.86	5.80		0.1	7.00	26.13	5.54
		TOTAL EMISSIC	SNC							
Construction Phase	8	ROG	XON	sox	PM10	PM2.5				
Demolition Activity	154	69	234	0	91	29				
General Construction Activity	154	69	234	0	84	28				
Building Construction	33	80	02	0	e	e				

Appendix E

Operational Emission Calculations and Output Files

3/4/2008 2:34:45 PM

Urbemis 2007 Version 9.2.2

Combined Winter Emissions Reports (Pounds/Day)

File Name: J:\Projects\Cedar Sinai Project 2007-083\Air Quality\Operations\Operations.urb9

Project Name: Cedars-Sinai OPERATIONS

Project Location: South Coast AQMD

On-Road Vehicle Emissions Based on: Version : Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

Summary Report:

AREA SOURCE EMISSION ESTIMATES

	ROG	XON	잉	<u> SO2</u>	PM10	PM2.5	<u>c02</u>
TOTALS (lbs/day, unmitigated)	0.00	0.06	0.05	00.0	0.00	0.00	77.66
OPERATIONAL (VEHICLE) EMISSION ESTIMATES							
	ROG	NOX	잉	<u> SO2</u>	PM10	<u>PM2.5</u>	<u>CO2</u>
TOTALS (lbs/day, unmitigated)	5.12	7.26	55.07	0.10	20.01	3.89	10,861.40
SUM OF AREA SOURCE AND OPERATIONAL EMISSION I	ESTIMATES						
	ROG	NOX	00	<u> SO2</u>	<u>PM10</u>	<u>PM2.5</u>	<u>C02</u>
TOTALS (lbs/day, unmitigated)	5.12	7.32	55.12	0.10	20.01	3.89	10,939.06

3/4/2008 2:34:45 PM

Area Source Unmitigated Detail Report:

. į ۵ ۵ Ĺ AREA

AREA SOURCE EMISSION ESTIMATES Win	ter Pounds Per Day,	, Unmitigated					
Source	ROG	NOX	8	<u>S02</u>	PM10	<u>PM2.5</u>	<u>C02</u>
Natural Gas	0.00	0.06	0.05	0.00	0.00	0.00	77.66
Hearth							
Landscaping - No Winter Emissions							
Consumer Products	0.0						
Architectural Coatings							
TOTALS (lbs/day, unmitigated)	0.00	0.06	0.05	0.00	0.00	0.00	77.66

Area Source Changes to Defaults

Report:
Detail
Unmitigated
Operational

OPERATIONAL EMISSION ESTIMATES Winter Pounds Per Day, Unmitigated

Source	ROG	XON	C C	S02	PM10	PM25	C02
lospital	5.12	7.26	55.07	0.10	20.01	3.89	10,861.40
⁻ OTALS (lbs/day, unmitigated)	5.12	7.26	55.07	0.10	20.01	3.89	10,861.40

Operational Settings:

Does not include correction for passby trips

Does not include double counting adjustment for internal trips

Analysis Year: 2020 Temperature (F): 60 Season: Winter

Emfac: Version : Emfac2007 V2.3 Nov 1 2006

age: 3	
Page	

3/4/2008 2:34:45 PM

		<u>Summary of Lan</u>	<u>d Uses</u>			
Land Use Type	Acr	eage Trip Rat	e Unit Type	No. Units	Total Trips	Total VMT
Hospital		100.0	0 beds	11.81	1,181.00	11,588.56
					1,181.00	11,588.56
		<u>Vehicle Fle</u>	<u>et Mix</u>			
Vehicle Type	ш	ercent Type	Non-Catalys		Catalyst	Diesel
Light Auto		50.6	0.0	-	100.0	0.0
Light Truck < 3750 lbs		7.2	0.0	-	98.6	1.4
Light Truck 3751-5750 lbs		23.3	0.0	-	100.0	0.0
Med Truck 5751-8500 lbs		11.0	0.0	-	100.0	0.0
Lite-Heavy Truck 8501-10,000 lbs		1.7	0.0	-	82.4	17.6
Lite-Heavy Truck 10,001-14,000 lbs		0.5	0.0	-	0.09	40.0
Med-Heavy Truck 14,001-33,000 lbs		1.0	0.0	-	20.0	80.0
Heavy-Heavy Truck 33,001-60,000 lbs		0.6	0.0	-	0.0	100.0
Other Bus		0.1	0.0	-	0.0	100.0
Urban Bus		0.1	0.0	-	0.0	100.0
Motorcycle		2.9	41.4		58.6	0.0
School Bus		0.1	0.0		0.0	100.0
Motor Home		0.9	0.0		88.9	11.1
		<u>Travel Con</u>	ditions			
		Residential			Commercial	
	Home-Work	Home-Shop	Home-Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	12.7	7.0	9.5	13.3	7.4	8.9

3/4/2008 2:34:45 PM

		<u>Travel Cond</u>	itions			
		Residential			Commercial	
	Home-Work	Home-Shop	Home-Other	Commute	Non-Work	Customer
Rural Trip Length (miles)	17.6	12.1	14.9	15.4	9.6	12.6
Trip speeds (mph)	30.0	30.0	30.0	30.0	30.0	30.0
% of Trips - Residential	32.9	18.0	49.1			

% of Trips - Commercial (by land use) Hospital

62.5

12.5

25.0

3/4/2008 2:29:45 PM

Urbemis 2007 Version 9.2.2

Combined Summer Emissions Reports (Pounds/Day)

File Name: J:\Projects\Cedar Sinai Project 2007-083\Air Quality\Operations\Operations.urb9

Project Name: Cedars-Sinai OPERATIONS

Project Location: South Coast AQMD

On-Road Vehicle Emissions Based on: Version : Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

Summary Report:

AREA SOURCE EMISSION ESTIMATES

	ROG	NOX	8	<u> SO2</u>	PM10	PM2.5	<u>C02</u>
TOTALS (lbs/day, unmitigated)	0.13	0.08	1.65	00.0	0.00	0.00	80.41
OPERATIONAL (VEHICLE) EMISSION ESTIMATES							
	ROG	NOX	00	<u>S02</u>	PM10	PM2.5	<u>C02</u>
TOTALS (lbs/day, unmitigated)	4.70	5.80	62.69	0.12	20.01	3.89	12,542.43
SUM OF AREA SOURCE AND OPERATIONAL EMISSION I	ESTIMATES						
	ROG	NOX	00	<u>S02</u>	<u>PM10</u>	<u>PM2.5</u>	<u>C02</u>
TOTALS (lbs/day, unmitigated)	4.83	5.88	64.34	0.12	20.01	3.89	12,622.84

3/4/2008 2:29:45 PM

Area Source Unmitigated Detail Report:

AREA SOURCE EMISSION ESTIMATES Summer Pounds Per Day, Unmitigated

Source	ROG	NOX	00	<u>S02</u>	PM10	<u>PM2.5</u>	<u>C02</u>
Natural Gas	0.00	0.06	0.05	0.00	0.00	0.00	77.66
Hearth							
Landscape	0.13	0.02	1.60	0.00	0.00	0.00	2.75
Consumer Products	0.00						
Architectural Coatings							
TOTALS (lbs/day, unmitigated)	0.13	0.08	1.65	0.00	0.00	0.00	80.41

Area Source Changes to Defaults

Report:
Detail
nitigated
nal Unn
peration
U.

OPERATIONAL EMISSION ESTIMATES Summer Pounds Per Day, Unmitigated

Source	ROG	XON	00	S02	PM10	PM25	C02
łospital	4.70	5.80	62.69	0.12	20.01	3.89	12,542.43
OTALS (lbs/day, unmitigated)	4.70	5.80	62.69	0.12	20.01	3.89	12,542.43

Operational Settings:

Does not include correction for passby trips

Does not include double counting adjustment for internal trips

Analysis Year: 2020 Temperature (F): 85 Season: Summer

Emfac: Version : Emfac2007 V2.3 Nov 1 2006

	2:29:45 PM
Page: 3	3/4/2008

	<u>Summary of Lan</u>	id Uses
Land Use Type	Acreage Trip Ra	te L
Hospital	100.0	0
	<u>Vehicle Fle</u>	eet Mix
Vehicle Type	Percent Type	
Light Auto	50.6	

Total VMT

Total Trips

No. Units

Unit Type

Hospital		100.00	beds	11.81	1,181.00	11,588.56
					1,181.00	11,588.56
		<u>Vehicle Fleet</u>	Mix			
Vehicle Type		Percent Type	Non-Catalyst		Catalyst	Diesel
Light Auto		50.6	0.0		100.0	0.0
Light Truck < 3750 lbs		7.2	0.0		98.6	1.4
Light Truck 3751-5750 lbs		23.3	0.0		100.0	0.0
Med Truck 5751-8500 lbs		11.0	0.0		100.0	0.0
Lite-Heavy Truck 8501-10,000 lbs		1.7	0.0		82.4	17.6
Lite-Heavy Truck 10,001-14,000 lbs		0.5	0.0		60.0	40.0
Med-Heavy Truck 14,001-33,000 lbs		1.0	0.0		20.0	80.0
Heavy-Heavy Truck 33,001-60,000 lbs		0.6	0.0		0.0	100.0
Other Bus		0.1	0.0		0.0	100.0
Urban Bus		0.1	0.0		0.0	100.0
Motorcycle		2.9	41.4		58.6	0.0
School Bus		0.1	0.0		0.0	100.0
Motor Home		6.0	0.0		88.9	11.1
		<u>Travel Condi</u>	tions			
		Residential			Commercial	
	Home-Work	Home-Shop	Home-Other	Commute	Non-Work	Customer

8.9

7.4

13.3

9.5

7.0

12.7

Urban Trip Length (miles)

3/4/2008 2:29:45 PM

		<u>Travel Cond</u>	itions			
		Residential			Commercial	
	Home-Work	Home-Shop	Home-Other	Commute	Non-Work	Customer
Rural Trip Length (miles)	17.6	12.1	14.9	15.4	9.6	12.6
Trip speeds (mph)	30.0	30.0	30.0	30.0	30.0	30.0
% of Trips - Residential	32.9	18.0	49.1			

% of Trips - Commercial (by land use)

Hospital

62.5

12.5

25.0

4/17/2008 7:43:04 PM

Urbemis 2007 Version 9.2.4

Combined Winter Emissions Reports (Pounds/Day)

File Name: J:\Projects\Cedar Sinai Project 2007-083\Air Quality\Operations\90_000sf existing.urb924

Project Name: Cedars-Sinai OPERATIONS - 90,000sf existing building

Project Location: South Coast AQMD

On-Road Vehicle Emissions Based on: Version : Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

Summary Report:

AREA SOURCE EMISSION ESTIMATES

	ROG	XON	잉	<u> SO2</u>	PM10	<u>PM2.5</u>	<u>C02</u>
TOTALS (lbs/day, unmitigated)	0.04	0.60	0.50	00.0	00.0	00.0	720.00
OPERATIONAL (VEHICLE) EMISSION ESTIMATES							
	ROG	XON	잉	<u> SO2</u>	PM10	<u>PM2.5</u>	<u>CO2</u>
TOTALS (lbs/day, unmitigated)	7.03	9.72	73.73	0.14	26.79	5.20	14,542.87
SUM OF AREA SOURCE AND OPERATIONAL EMISSION I	ESTIMATES						
	ROG	XON	00	<u>S02</u>	PM10	<u>PM2.5</u>	<u>CO2</u>
TOTALS (lbs/day, unmitigated)	7.07	10.32	74.23	0.14	26.79	5.20	15,262.87

4/17/2008 7:43:04 PM

Area Source Unmitigated Detail Report:

AREA SOURCE EMISSION ESTIMATES Winter Pounds Per Day, Unmitidated

	lei rouilas rei Day,	ommed					
Source	ROG	NOX	0	<u>S02</u>	PM10	<u>PM2.5</u>	<u>C02</u>
Natural Gas	0.04	0.60	0.50	0.00	0.00	0.00	720.00
Hearth							
Landscaping - No Winter Emissions							
Consumer Products	0.00						
Architectural Coatings							
TOTALS (lbs/day, unmitigated)	0.04	0.60	0.50	0.00	0.00	0.00	720.00

Area Source Changes to Defaults

Report:
Ē
fa
പ്
5
ĕ
at
<u>:</u>
J.
E
\supset
a
S
:≓
g
e
õ
-

OPERATIONAL EMISSION ESTIMATES Winter Pounds Per Day, Unmitigated

Source	ROG	XON	S	S02	PM10	PM25	C02
łospital	7.03	9.72	73.73	0.14	26.79	5.20	14,542.87
OTALS (lbs/day, unmitigated)	7.03	9.72	73.73	0.14	26.79	5.20	14,542.87

Operational Settings:

Does not include correction for passby trips

Does not include double counting adjustment for internal trips

Analysis Year: 2020 Temperature (F): 60 Season: Winter

Emfac: Version : Emfac2007 V2.3 Nov 1 2006
ge: 3	
Ра	

Σ
<u> </u>
_
Z.
က္
<u>.</u>
~
ŝ
õ
Ō
2
N
÷
+
N

		<u>Summar</u>	<u>y of Land Us</u>	SI			
Land Use Type	Ac	reage	Trip Rate	Unit Type	No. Units	Total Trips	Total VMT
Hospital			17.57	1000 sq ft	90.00	1,581.30	15,516.51
						1,581.30	15,516.51
		Ve	hicle Fleet M	×			
Vehicle Type		Percent Ty	be	Non-Catalys	st	Catalyst	Diesel
Light Auto		50	9.6	Ö	0	100.0	0.0
Light Truck < 3750 lbs		7	, 2	Ö	0	98.6	1.4
Light Truck 3751-5750 lbs		53	3.3	Ö	0	100.0	0.0
Med Truck 5751-8500 lbs		1	0.1	Ö	0	100.0	0.0
Lite-Heavy Truck 8501-10,000 lbs		£	.7	Ö	0	82.4	17.6
Lite-Heavy Truck 10,001-14,000 lbs		0	.5	Ö	0	0.09	40.0
Med-Heavy Truck 14,001-33,000 lbs		-	0.	Ö	0	20.0	80.0
Heavy-Heavy Truck 33,001-60,000 lbs		0	9.6	Ö	0	0.0	100.0
Other Bus		0	0.1	Ö	0	0.0	100.0
Urban Bus		0	0.1	Ö	0	0.0	100.0
Motorcycle			6.9	41.	4	58.6	0.0
School Bus		0	0.1	Ö	0	0.0	100.0
Motor Home		0	9.0	Ö	0	88.9	11.1
			avel Conditio	<u>S</u>			
		Residenti	al			Commercial	
	Home-Work	Home	-Shop	Home-Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	12.7		7.0	9.5	13.3	7.4	8.9

4/17/2008 7:43:04 PM

		Travel Cond	itions			
		Residential			Commercial	
	Home-Work	Home-Shop	Home-Other	Commute	Non-Work	Customer
Rural Trip Length (miles)	17.6	12.1	14.9	15.4	9.6	12.6
Trip speeds (mph)	30.0	30.0	30.0	30.0	30.0	30.0
% of Trips - Residential	32.9	18.0	49.1			

% of Trips - Commercial (by land use) Hospital

62.5

12.5

4/17/2008 7:42:06 PM

Urbemis 2007 Version 9.2.4

Combined Summer Emissions Reports (Pounds/Day)

File Name: J:\Projects\Cedar Sinai Project 2007-083\Air Quality\Operations\90_000sf existing.urb924

Project Name: Cedars-Sinai OPERATIONS - 90,000sf existing building

Project Location: South Coast AQMD

On-Road Vehicle Emissions Based on: Version : Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

Summary Report:

AREA SOURCE EMISSION ESTIMATES

	UC4	>CN	Ċ	505	DM10	DMO 5	
	2	Š	3	200			3
TOTALS (lbs/day, unmitigated)	0.17	0.62	2.10	00.0	0.00	0.00	722.75
UPERATIONAL (VEHICLE) EMISSION ESTIMATES							
	ROG	NOX	<u> </u>	<u>S02</u>	<u>PM10</u>	<u>PM2.5</u>	<u>C02</u>
TOTALS (lbs/day, unmitigated)	6.76	7.76	83.94	0.17	26.79	5.20	16,793.69
SUM OF AREA SOURCE AND OPERATIONAL EMISSION F	ESTIMATES						
	ROG	NOX	0	<u>S02</u>	<u>PM10</u>	<u>PM2.5</u>	<u>C02</u>
TOTALS (lbs/day, unmitigated)	6.93	8.38	86.04	0.17	26.79	5.20	17,516.44

4/17/2008 7:42:06 PM

Area Source Unmitigated Detail Report:

AREA SOURCE EMISSION ESTIMATES Summer Pounds Per Day, Unmitigated

Source	ROG	NOX	00	<u>S02</u>	PM10	PM2.5	<u>C02</u>
latural Gas	0.04	0.60	0.50	0.00	0.00	0.00	720.00
learth							
andscape	0.13	0.02	1.60	0.00	0.00	0.00	2.75
consumer Products	0.00						
rchitectural Coatings							
OTALS (lbs/day, unmitigated)	0.17	0.62	2.10	0.00	0.00	0.00	722.75

Area Source Changes to Defaults

port:
Re
Detail
igated
Unmit
ational
Opera

OPERATIONAL EMISSION ESTIMATES Summer Pounds Per Day, Unmitigated

Source	ROG	XON	CO CO	S02	PM10	PM25	C02
Hospital	6.76	7.76	83.94	0.17	26.79	5.20	16,793.69
FOTALS (lbs/day, unmitigated)	6.76	7.76	83.94	0.17	26.79	5.20	16,793.69

Operational Settings:

Does not include correction for passby trips

Does not include double counting adjustment for internal trips

Analysis Year: 2020 Temperature (F): 85 Season: Summer

Emfac: Version : Emfac2007 V2.3 Nov 1 2006

e: 3	
Pag	

	Ы
	7:42:06
)	4/17/2008

		<u>Summary of Land U</u>	ses			
Land Use Type	Acre	age Trip Rate	Unit Type	No. Units	Total Trips	Total VMT
Hospital		17.57	1000 sq ft	90.00	1,581.30	15,516.51
					1,581.30	15,516.51
		Vehicle Fleet I	<u>Mix</u>			
Vehicle Type	Å	srcent Type	Non-Catalyst		Catalyst	Diesel
Light Auto		50.6	0.0		100.0	0.0
Light Truck < 3750 lbs		7.2	0.0		98.6	1.4
Light Truck 3751-5750 lbs		23.3	0.0		100.0	0.0
Med Truck 5751-8500 lbs		11.0	0.0		100.0	0.0
Lite-Heavy Truck 8501-10,000 lbs		1.7	0.0		82.4	17.6
Lite-Heavy Truck 10,001-14,000 lbs		0.5	0.0		0.09	40.0
Med-Heavy Truck 14,001-33,000 lbs		1.0	0.0		20.0	80.0
Heavy-Heavy Truck 33,001-60,000 lbs		0.6	0.0		0.0	100.0
Other Bus		0.1	0.0		0.0	100.0
Urban Bus		0.1	0.0		0.0	100.0
Motorcycle		2.9	41.4		58.6	0.0
School Bus		0.1	0.0		0.0	100.0
Motor Home		0.0	0.0		88.9	11.1
		Travel Conditi	ons			
	H	desidential			Commercial	
	Home-Work	Home-Shop	Home-Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	12.7	7.0	9.5	13.3	7.4	8.9

4/17/2008 7:42:06 PM

		<u>Travel Cond</u>	itions			
		Residential			Commercial	
	Home-Work	Home-Shop	Home-Other	Commute	Non-Work	Customer
Rural Trip Length (miles)	17.6	12.1	14.9	15.4	9.6	12.6
Trip speeds (mph)	30.0	30.0	30.0	30.0	30.0	30.0
% of Trips - Residential	32.9	18.0	49.1			

% of Trips - Commercial (by land use) Hospital

62.5

12.5

Page: 1 8/4/2008 2:23:32 PM

Urbemis 2007 Version 9.2.4

Combined Summer Emissions Reports (Pounds/Day)

File Name: J:\Projects\Cedar Sinai Project 2007-083\Air Quality\Operations\Revised_170650sf addition.urb924

Project Name: Cedars-Sinai OPERATIONS - 170,650sf addition from existing entitlements

Project Location: South Coast AQMD

On-Road Vehicle Emissions Based on: Version : Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

Summary Report:

AREA SOURCE EMISSION ESTIMATES

	ROG	NOX	8	<u>S02</u>	PM10	PM2.5	<u>CO2</u>
TOTALS (lbs/day, unmitigated)	0.21	1.16	2.56	00.00	0.00	0.00	1,367.95
OPERATIONAL (VEHICLE) EMISSION ESTIMATES							
	ROG	NOX	<u>8</u>	<u>S02</u>	PM10	PM2.5	<u>CO2</u>
TOTALS (lbs/day, unmitigated)	21.93	26.13	282.62	0.56	90.20	17.52	56,544.81
SUM OF AREA SOURCE AND OPERATIONAL EMISSION	ESTIMATES						
	ROG	NOX	<u>8</u>	<u>S02</u>	PM10	PM2.5	<u>CO2</u>
TOTALS (lbs/day, unmitigated)	22.14	27.29	285.18	0.56	90.20	17.52	57,912.76

8/4/2008 2:23:32 PM

Area Source Unmitigated Detail Report:

AREA SOURCE EMISSION ESTIMATES Summer Pounds Per Day, Unmitigated

Source	ROG	NOX	8	<u>SO2</u>	<u>PM10</u>	PM2.5	C02
Natural Gas	0.08	1.14	0.96	0.00	0.00	0.00	,365.20
Hearth							
Landscape	0.13	0.02	1.60	0.00	0.00	0.00	2.75
Consumer Products	0.00						
Architectural Coatings							
TOTALS (lbs/day, unmitigated)	0.21	1.16	2.56	0.00	0.00	0.00	,367.95

Area Source Changes to Defaults

Report:
ted Detail
l Unmitiga
Operational

OPERATIONAL EMISSION ESTIMATES Summer Pounds Per Day, Unmitigated

Source	ROG	XON	00	S02	PM10	PM25	CO2
Hospital	21.93	26.13	282.62	0.56	90.20	17.52	56,544.81
TOTALS (lbs/day, unmitigated)	21.93	26.13	282.62	0.56	90.20	17.52	56,544.81

Operational Settings:

Does not include correction for passby trips

Does not include double counting adjustment for internal trips

Analysis Year: 2020 Temperature (F): 85 Season: Summer

Emfac: Version : Emfac2007 V2.3 Nov 1 2006

	8
	8
	(
Page: 3	0000110

8/4/2008 2:23:32 PM

		Summa	ry of Land Use	Se			
Land Use Type	Ac	creage	Trip Rate	Unit Type	No. Units	Total Trips	Total VMT
Hospital			31.20	1000 sq ft	170.65	5,324.28	52,244.50
						5,324.28	52,244.50
		3	ehicle Fleet Mi	×			
Vehicle Type		Percent Ty	/pe	Non-Cataly	st	Catalyst	Diesel
Light Auto		5	0.6	.0	0	100.0	0.0
Light Truck < 3750 lbs			7.2	Ö	0	98.6	1.4
Light Truck 3751-5750 lbs		2	3.3	Ö	0	100.0	0.0
Med Truck 5751-8500 lbs		-	1.0	.0	0	100.0	0.0
Lite-Heavy Truck 8501-10,000 lbs			1.7	Ö	0	82.4	17.6
Lite-Heavy Truck 10,001-14,000 lbs			0.5	.0	0	60.0	40.0
Med-Heavy Truck 14,001-33,000 lbs			1.0	Ö	0	20.0	80.0
Heavy-Heavy Truck 33,001-60,000 lbs			0.6	Ö	0	0.0	100.0
Other Bus			0.1	.0	0	0.0	100.0
Urban Bus			0.1	.0	0	0.0	100.0
Motorcycle			2.9	41.	4	58.6	0.0
School Bus			0.1	0	0	0.0	100.0
Motor Home			0.9	0	0	88.9	11.1
		F	avel Conditior	S			
		Resident	ial			Commercial	
	Home-Work	Home	-Shop	Home-Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	12.7		7.0	9.5	13.3	7.4	8.9

8/4/2008 2:23:32 PM

		Travel Conc	litions			
		Residential			Commercial	
	Home-Work	Home-Shop	Home-Other	Commute	Non-Work	Customer
Rural Trip Length (miles)	17.6	12.1	14.9	15.4	9.6	12.6
Trip speeds (mph)	30.0	30.0	30.0	30.0	30.0	30.0
% of Trips - Residential	32.9	18.0	49.1			
% of Trine - Commercial (hv land use)						

% of Trips - Commercial (by land use)

Hospital

62.5

12.5

Page: 1 8/4/2008 2:23:40 PM

Urbemis 2007 Version 9.2.4

Combined Winter Emissions Reports (Pounds/Day)

File Name: J:\Projects\Cedar Sinai Project 2007-083\Air Quality\Operations\Revised_170650sf addition.urb924

Project Name: Cedars-Sinai OPERATIONS - 170,650sf addition from existing entitlements

Project Location: South Coast AQMD

On-Road Vehicle Emissions Based on: Version : Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

Summary Report:

AREA SOURCE EMISSION ESTIMATES

	ROG	NOX	8	<u>S02</u>	<u>PM10</u>	PM2.5	<u>CO2</u>
TOTALS (lbs/day, unmitigated)	0.08	1.14	0.96	0.00	0.00	0.00	1,365.20
OPERATIONAL (VEHICLE) EMISSION ESTIMATES							
	ROG	NOX	8	<u>S02</u>	PM10	PM2.5	<u>CO2</u>
TOTALS (lbs/day, unmitigated)	23.35	32.72	248.25	0.46	90.20	17.52	48,966.24
SUM OF AREA SOURCE AND OPERATIONAL EMISSION	N ESTIMATES						
	ROG	NOX	8	<u>S02</u>	<u>PM10</u>	PM2.5	<u>CO2</u>
TOTALS (lbs/day, unmitigated)	23.43	33.86	249.21	0.46	90.20	17.52	50,331.44

8/4/2008 2:23:40 PM

Area Source Unmitigated Detail Report:

AREA SOURCE EMISSION ESTIMATES Winter	er Pounds Per Day,	Unmitigated					
Source	ROG	NOX	8	<u>S02</u>	PM10	PM2.5	<u>C02</u>
Natural Gas	0.08	1.14	0.96	0.00	0.00	0.00	1,365.20
Hearth							
Landscaping - No Winter Emissions							
Consumer Products	0.00						
Architectural Coatings							
TOTALS (lbs/day, unmitigated)	0.08	1.14	0.96	0.00	0.00	0.00	1,365.20

Area Source Changes to Defaults

ort:	
ail Rep	
ed Deta	
nitigate	
nal Unr	
peration	
Ō	

OPERATIONAL EMISSION ESTIMATES Winter Pounds Per Day, Unmitigated

Source	ROG	NON	8	S02	PM10	PM25	C02
Hospital	23.35	32.72	248.25	0.46	90.20	17.52	48,966.24
TOTALS (lbs/day, unmitigated)	23.35	32.72	248.25	0.46	90.20	17.52	48,966.24

Operational Settings:

Does not include correction for passby trips

Does not include double counting adjustment for internal trips

Analysis Year: 2020 Temperature (F): 60 Season: Winter

Emfac: Version : Emfac2007 V2.3 Nov 1 2006

	1
3	
۵.	
õ	
ตั	
Ô.	Ľ,

Non-Work Commercial 5,324.28 Total Trips 5,324.28 100.0 20.0 0.0 0.0 88.9 Catalyst 98.6 100.0 100.0 82.4 60.0 0.0 0.0 58.6 Commute 170.65 No. Units 0.0 0.0 41.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Non-Catalyst Home-Other Unit Type 1000 sq ft Summary of Land Uses Travel Conditions Vehicle Fleet Mix Trip Rate 31.20 Home-Shop 0.6 50.6 0.9 11.0 1.0 2.9 Percent Type 7.2 23.3 1.7 0.5 0.1 0.1 0.1 Residential Acreage Home-Work Heavy-Heavy Truck 33,001-60,000 lbs Med-Heavy Truck 14,001-33,000 lbs Lite-Heavy Truck 10,001-14,000 lbs Lite-Heavy Truck 8501-10,000 lbs Light Truck 3751-5750 lbs Med Truck 5751-8500 lbs 8/4/2008 2:23:40 PM Light Truck < 3750 lbs Land Use Type Vehicle Type Motor Home School Bus Motorcycle Light Auto Urban Bus Other Bus Hospital

0.0

1.4 0.0

Diesel

Total VMT 52,244.50 52,244.50 0.0 17.6 40.0 80.0 100.0 100.0 0.0 0.0 8.9

7.4

13.3

9.5

7.0

12.7

Urban Trip Length (miles)

Customer

8/4/2008 2:23:40 PM Travel Conditions Residential Home-Work Home-Shop Horr Rural Trip Length (miles) 17.6 12.1

Commercial

12.6 30.0 Customer 9.6 30.0 Non-Work 15.4 30.0 Commute 14.9 30.0 49.1 Home-Other 30.0 18.0 32.9 30.0 % of Trips - Residential Trip speeds (mph)

% of Trips - Commercial (by land use)

Hospital

62.5

12.5

3/4/2008 2:35:40 PM

Urbemis 2007 Version 9.2.2

Combined Annual Emissions Reports (Tons/Year)

File Name: J:\Projects\Cedar Sinai Project 2007-083\Air Quality\Operations\Operations.urb9

Project Name: Cedars-Sinai OPERATIONS

Project Location: South Coast AQMD

On-Road Vehicle Emissions Based on: Version : Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

Summary Report:

AREA SOURCE EMISSION ESTIMATES

	ROG	XON	8	<u> SO2</u>	<u>PM10</u>	<u>PM2.5</u>	<u>C02</u>
TOTALS (tons/year, unmitigated)	0.02	0.01	0.30	00.0	0.00	0.00	14.67
OPERATIONAL (VEHICLE) EMISSION ESTIMATES							
	ROG	NOX	00	<u>S02</u>	PM10	<u>PM2.5</u>	<u>C02</u>
TOTALS (tons/year, unmitigated)	0.88	1.15	10.98	0.02	3.65	0.71	2,186.73
SUM OF AREA SOURCE AND OPERATIONAL EMISSION I	ESTIMATES						
	ROG	NOX	00	<u>S02</u>	PM10	<u>PM2.5</u>	<u>C02</u>
TOTALS (tons/year, unmitigated)	0.90	1.16	11.28	0.02	3.65	0.71	2,201.40

3/4/2008 2:35:40 PM

Area Source Unmitigated Detail Report:

AREA SOURCE EMISSION ESTIMATES Annual Tons Per Year, Unmitigated

Source	ROG	NOX	0	<u>S02</u>	PM10	PM2.5	<u>C02</u>
Natural Gas	0.00	0.01	0.01	0.00	0.00	0.00	14.17
Hearth							
Landscape	0.02	0.00	0.29	0.00	0.00	0.00	0.50
Consumer Products	0.00						
Architectural Coatings							
TOTALS (tons/year, unmitigated)	0.02	0.01	0.30	0.00	0.00	0.00	14.67

Area Source Changes to Defaults

÷	
Rep	
Detail	
ımitigated	
rational Ur	
Ope	

OPERATIONAL EMISSION ESTIMATES Annual Tons Per Year, Unmitigated

Source	ROG	XON	00	S02	PM10	PM25	C02
Hospital	0.88	1.15	10.98	0.02	3.65	0.71	2,186.73
TOTALS (tons/year, unmitigated)	0.88	1.15	10.98	0.02	3.65	0.71	2,186.73

Operational Settings:

Does not include correction for passby trips

Does not include double counting adjustment for internal trips

Analysis Year: 2020 Season: Annual

Emfac: Version : Emfac2007 V2.3 Nov 1 2006

	V
	٦
	9
	2:
	3
m	8
	õ
g	2
a a	34

9
ন্
ιö
3
ŝ
ω
0
0
2
4
-
ന

		Summary of Land	Uses			
Land Use Type	Acres	tge Trip Rate	Unit Type	No. Units	Total Trips	Total VMT
Hospital		100.00) beds	11.81	1,181.00	11,588.56
					1,181.00	11,588.56
		Vehicle Flee	<u>t Mix</u>			
Vehicle Type	Ре	rcent Type	Non-Catalys	t	Catalyst	Diesel
Light Auto		50.6	0.0	0	100.0	0.0
Light Truck < 3750 lbs		7.2	0.0	0	98.6	1.4
Light Truck 3751-5750 lbs		23.3	0.0	0	100.0	0.0
Med Truck 5751-8500 lbs		11.0	0.0	0	100.0	0.0
Lite-Heavy Truck 8501-10,000 lbs		1.7	0.0	0	82.4	17.6
Lite-Heavy Truck 10,001-14,000 lbs		0.5	0.0	0	60.0	40.0
Med-Heavy Truck 14,001-33,000 lbs		1.0	0.0	0	20.0	80.0
Heavy-Heavy Truck 33,001-60,000 lbs		0.6	0.0	0	0.0	100.0
Other Bus		0.1	0.0	0	0.0	100.0
Urban Bus		0.1	0.0	0	0.0	100.0
Motorcycle		2.9	41.	4	58.6	0.0
School Bus		0.1	0.0	0	0.0	100.0
Motor Home		0.9	0.0	0	88.9	11.1
		Travel Cond	itions			
	LL.	tesidential			Commercial	
	Home-Work	Home-Shop	Home-Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	12.7	7.0	9.5	13.3	7.4	8.9

3/4/2008 2:35:40 PM

Customer 12.6 30.0	Commercial Non-Work 9.6 30.0	Commute 15.4 30.0	itions Home-Other 14.9 30.0	<u>Travel Cono</u> Residential Home-Shop 12.1 30.0 18.0	Home-Work 17.6 30.0	ural Trip Length (miles) ip speeds (mph) of Trips - Residential
			49.1	18.0	32.9	of Trips - Residential
30.0	30.0	30.0	30.0	30.0	30.0	ip speeds (mph)
12.6	9.6	15.4	14.9	12.1	17.6	ral Trip Length (miles)
Customer	Non-Work	Commute	Home-Other	Home-Shop	Home-Work	
	Commercial			Residential		
			itions	<u>Travel Cond</u>		

% of Trips - Commercial (by land use) Hospital

62.5

12.5

GREENHOUSE GAS EMISSIONS CALCULATION - Mobile Source

N_2O to NO_X Ratio 0.048	;
------------------------------	---

Emissions Factors from EMFAC 2007	
Daily VMT	239,765,000
NO _X (tons/mi)	0.000000467
N ₂ O (tons/mi)	0.00000022
CH ₄ (tons/mi)	0.00000020

Estimated VMT for Proposed Project	11,5′	77 ^a
Estimated Greenhouse Gas Emissions (mobile	e sources)	
Land Use	N_2O	CH_4
	tons	tons
Project	0	0.1 0.1
Estimated Carbon Equivalent (mobile source	s)	
Land Use	N ₂ O	CH ₄
Carbon Equivalent	310	21
_	tons	tons
Project	2	9 1.8

a) URBEMIS2007

GREENHOUSE GAS EMISSIONS CALCULATION - Area Source

Natural Gas Usage Rate

	Natural Gas Use (cubic ft./month) ^a	Natural Gas Use (mmBTU/year)
Project	2,211,120	26,533
Emission Facto	r (kg/mmBTU) ^c	

N₂O CH₄ 0.0001 0.01

Estimated Greenhouse Gas Emissions (Natural Gas)					
Land Use	N ₂ O	CH ₄			
	tons	tons			
Project	0.003	0.16			

Estimated Carbon Equivalent (Natural Gas)				
Land Use	N ₂ O	CH_4		
Carbon Equivalent	310	21		
	tons	tons		
Project	0.8	3.3		

a) Natural gas usage rates from Table A9-12-A of the SCAQMD CEQA Air Quality Handbook.

b) California Climate Action Registry, General Reporting Protocol , March, 2007.

GREENHOUSE GAS EMISSIONS CALCULATION - Electricity

Electrical Usage Rate

	Electrical Use			
	(Kwh/Year) ^a			
Project	9,996,105			
Emission Factor (pour	nds/Kwh) ^b			
	N_2O	CH_4	CO_2	
	0.0000037	0.0000067		0.805
Estimated Greenhous	e Gas Emissions (Elec	tricity)		
Land Use	N ₂ O	CH_4	CO2	
	tons	tons	tons	
Project	0.018	0.033		3,650.00
Estimated Carbon Eq	uivalent (Electricity)			
Land Use	N_2O	CH_4	CO2	
Carbon Equivalent	310	21	1	
	tons	tons	tons	
Project	5.7	0.70		3,650

a) Electricity usage rates obtained from Table A9-11-A of the SCAQMD CEQA Air Quality Handbook.

b) California Climate Action Registry, General Reporting Protocol, March 2007.

Appendix F SCAQMD Rule 403

(Adopted May 7, 1976) (Amended November 6, 1992) (Amended July 9, 1993) (Amended February 14, 1997) (Amended December 11, 1998)(Amended April 2, 2004) (Amended June 3, 2005)

RULE 403. FUGITIVE DUST

(a) Purpose

The purpose of this Rule is to reduce the amount of particulate matter entrained in the ambient air as a result of anthropogenic (man-made) fugitive dust sources by requiring actions to prevent, reduce or mitigate fugitive dust emissions.

(b) Applicability

The provisions of this Rule shall apply to any activity or man-made condition capable of generating fugitive dust.

- (c) Definitions
 - (1) ACTIVE OPERATIONS means any source capable of generating fugitive dust, including, but not limited to, earth-moving activities, construction/demolition activities, disturbed surface area, or heavy- and light-duty vehicular movement.
 - (2) AGGREGATE-RELATED PLANTS are defined as facilities that produce and / or mix sand and gravel and crushed stone.
 - (3) AGRICULTURAL HANDBOOK means the region-specific guidance document that has been approved by the Governing Board or hereafter approved by the Executive Officer and the U.S. EPA. For the South Coast Air Basin, the Board-approved region-specific guidance document is the Rule 403 Agricultural Handbook dated December 1998. For the Coachella Valley, the Board-approved region-specific guidance document is the Rule 403 Coachella Valley Agricultural Handbook dated April 2, 2004.
 - (4) ANEMOMETERS are devices used to measure wind speed and direction in accordance with the performance standards, and maintenance and calibration criteria as contained in the most recent Rule 403 Implementation Handbook.
 - (5) BEST AVAILABLE CONTROL MEASURES means fugitive dust control actions that are set forth in Table 1 of this Rule.

- (6) BULK MATERIAL is sand, gravel, soil, aggregate material less than two inches in length or diameter, and other organic or inorganic particulate matter.
- (7) CEMENT MANUFACTURING FACILITY is any facility that has a cement kiln at the facility.
- (8) CHEMICAL STABILIZERS are any non-toxic chemical dust suppressant which must not be used if prohibited for use by the Regional Water Quality Control Boards, the California Air Resources Board, the U.S. Environmental Protection Agency (U.S. EPA), or any applicable law, rule or regulation. The chemical stabilizers shall meet any specifications, criteria, or tests required by any federal, state, or local water agency. Unless otherwise indicated, the use of a non-toxic chemical stabilizer shall be of sufficient concentration and application frequency to maintain a stabilized surface.
- (9) COMMERCIAL POULTRY RANCH means any building, structure, enclosure, or premises where more than 100 fowl are kept or maintained for the primary purpose of producing eggs or meat for sale or other distribution.
- (10) CONFINED ANIMAL FACILITY means a source or group of sources of air pollution at an agricultural source for the raising of 3,360 or more fowl or 50 or more animals, including but not limited to, any structure, building, installation, farm, corral, coop, feed storage area, milking parlor, or system for the collection, storage, or distribution of solid and liquid manure; if domesticated animals, including horses, sheep, goats, swine, beef cattle, rabbits, chickens, turkeys, or ducks are corralled, penned, or otherwise caused to remain in restricted areas for commercial agricultural purposes and feeding is by means other than grazing.
- (11) CONSTRUCTION/DEMOLITION ACTIVITIES means any on-site mechanical activities conducted in preparation of, or related to, the building, alteration, rehabilitation, demolition or improvement of property, including, but not limited to the following activities: grading, excavation, loading, crushing, cutting, planing, shaping or ground breaking.
- (12) CONTRACTOR means any person who has a contractual arrangement to conduct an active operation for another person.
- (13) DAIRY FARM is an operation on a property, or set of properties that are contiguous or separated only by a public right-of-way, that raises cows or

produces milk from cows for the purpose of making a profit or for a livelihood. Heifer and calf farms are dairy farms.

- (14) DISTURBED SURFACE AREA means a portion of the earth's surface which has been physically moved, uncovered, destabilized, or otherwise modified from its undisturbed natural soil condition, thereby increasing the potential for emission of fugitive dust. This definition excludes those areas which have:
 - (A) been restored to a natural state, such that the vegetative ground cover and soil characteristics are similar to adjacent or nearby natural conditions;
 - (B) been paved or otherwise covered by a permanent structure; or
 - (C) sustained a vegetative ground cover of at least 70 percent of the native cover for a particular area for at least 30 days.
- (15) DUST SUPPRESSANTS are water, hygroscopic materials, or non-toxic chemical stabilizers used as a treatment material to reduce fugitive dust emissions.
- (16) EARTH-MOVING ACTIVITIES means the use of any equipment for any activity where soil is being moved or uncovered, and shall include, but not be limited to the following: grading, earth cutting and filling operations, loading or unloading of dirt or bulk materials, adding to or removing from open storage piles of bulk materials, landfill operations, weed abatement through disking, and soil mulching.
- (17) DUST CONTROL SUPERVISOR means a person with the authority to expeditiously employ sufficient dust mitigation measures to ensure compliance with all Rule 403 requirements at an active operation.
- (18) FUGITIVE DUST means any solid particulate matter that becomes airborne, other than that emitted from an exhaust stack, directly or indirectly as a result of the activities of any person.
- (19) HIGH WIND CONDITIONS means that instantaneous wind speeds exceed 25 miles per hour.
- (20) INACTIVE DISTURBED SURFACE AREA means any disturbed surface area upon which active operations have not occurred or are not expected to occur for a period of 20 consecutive days.
- (21) LARGE OPERATIONS means any active operations on property which contains 50 or more acres of disturbed surface area; or any earth-moving operation with a daily earth-moving or throughput volume of 3,850 cubic

meters (5,000 cubic yards) or more three times during the most recent 365-day period.

- (22) OPEN STORAGE PILE is any accumulation of bulk material, which is not fully enclosed, covered or chemically stabilized, and which attains a height of three feet or more and a total surface area of 150 or more square feet.
- (23) PARTICULATE MATTER means any material, except uncombined water, which exists in a finely divided form as a liquid or solid at standard conditions.
- (24) PAVED ROAD means a public or private improved street, highway, alley, public way, or easement that is covered by typical roadway materials, but excluding access roadways that connect a facility with a public paved roadway and are not open to through traffic. Public paved roads are those open to public access and that are owned by any federal, state, county, municipal or any other governmental or quasi-governmental agencies. Private paved roads are any paved roads not defined as public.
- (25) PM_{10} means particulate matter with an aerodynamic diameter smaller than or equal to 10 microns as measured by the applicable State and Federal reference test methods.
- (26) PROPERTY LINE means the boundaries of an area in which either a person causing the emission or a person allowing the emission has the legal use or possession of the property. Where such property is divided into one or more sub-tenancies, the property line(s) shall refer to the boundaries dividing the areas of all sub-tenancies.
- (27) RULE 403 IMPLEMENTATION HANDBOOK means a guidance document that has been approved by the Governing Board on April 2, 2004 or hereafter approved by the Executive Officer and the U.S. EPA.
- (28) SERVICE ROADS are paved or unpaved roads that are used by one or more public agencies for inspection or maintenance of infrastructure and which are not typically used for construction-related activity.
- (29) SIMULTANEOUS SAMPLING means the operation of two PM_{10} samplers in such a manner that one sampler is started within five minutes of the other, and each sampler is operated for a consecutive period which must be not less than 290 minutes and not more than 310 minutes.
- (30) SOUTH COAST AIR BASIN means the non-desert portions of Los Angeles, Riverside, and San Bernardino counties and all of Orange

County as defined in California Code of Regulations, Title 17, Section 60104. The area is bounded on the west by the Pacific Ocean, on the north and east by the San Gabriel, San Bernardino, and San Jacinto Mountains, and on the south by the San Diego county line.

- (31) STABILIZED SURFACE means any previously disturbed surface area or open storage pile which, through the application of dust suppressants, shows visual or other evidence of surface crusting and is resistant to winddriven fugitive dust and is demonstrated to be stabilized. Stabilization can be demonstrated by one or more of the applicable test methods contained in the Rule 403 Implementation Handbook.
- (32) TRACK-OUT means any bulk material that adheres to and agglomerates on the exterior surface of motor vehicles, haul trucks, and equipment (including tires) that have been released onto a paved road and can be removed by a vacuum sweeper or a broom sweeper under normal operating conditions.
- (33) TYPICAL ROADWAY MATERIALS means concrete, asphaltic concrete, recycled asphalt, asphalt, or any other material of equivalent performance as determined by the Executive Officer, and the U.S. EPA.
- (34) UNPAVED ROADS means any unsealed or unpaved roads, equipment paths, or travel ways that are not covered by typical roadway materials. Public unpaved roads are any unpaved roadway owned by federal, state, county, municipal or other governmental or quasi-governmental agencies. Private unpaved roads are all other unpaved roadways not defined as public.
- (35) VISIBLE ROADWAY DUST means any sand, soil, dirt, or other solid particulate matter which is visible upon paved road surfaces and which can be removed by a vacuum sweeper or a broom sweeper under normal operating conditions.
- (36) WIND-DRIVEN FUGITIVE DUST means visible emissions from any disturbed surface area which is generated by wind action alone.
- (37) WIND GUST is the maximum instantaneous wind speed as measured by an anemometer.
- (d) Requirements
 - (1) No person shall cause or allow the emissions of fugitive dust from any active operation, open storage pile, or disturbed surface area such that:

- (A) the dust remains visible in the atmosphere beyond the property line of the emission source; or
- (B) the dust emission exceeds 20 percent opacity (as determined by the appropriate test method included in the Rule 403 Implementation Handbook), if the dust emission is the result of movement of a motorized vehicle.
- (2) No person shall conduct active operations without utilizing the applicable best available control measures included in Table 1 of this Rule to minimize fugitive dust emissions from each fugitive dust source type within the active operation.
- (3) No person shall cause or allow PM_{10} levels to exceed 50 micrograms per cubic meter when determined, by simultaneous sampling, as the difference between upwind and downwind samples collected on high-volume particulate matter samplers or other U.S. EPA-approved equivalent method for PM_{10} monitoring. If sampling is conducted, samplers shall be:
 - (A) Operated, maintained, and calibrated in accordance with 40 Code of Federal Regulations (CFR), Part 50, Appendix J, or appropriate U.S. EPA-published documents for U.S. EPA-approved equivalent method(s) for PM₁₀.
 - (B) Reasonably placed upwind and downwind of key activity areas and as close to the property line as feasible, such that other sources of fugitive dust between the sampler and the property line are minimized.
- (4) No person shall allow track-out to extend 25 feet or more in cumulative length from the point of origin from an active operation. Notwithstanding the preceding, all track-out from an active operation shall be removed at the conclusion of each workday or evening shift.
- (5) No person shall conduct an active operation with a disturbed surface area of five or more acres, or with a daily import or export of 100 cubic yards or more of bulk material without utilizing at least one of the measures listed in subparagraphs (d)(5)(A) through (d)(5)(E) at each vehicle egress from the site to a paved public road.
 - (A) Install a pad consisting of washed gravel (minimum-size: one inch) maintained in a clean condition to a depth of at least six inches and extending at least 30 feet wide and at least 50 feet long.

- (B) Pave the surface extending at least 100 feet and at least 20 feet wide.
- (C) Utilize a wheel shaker/wheel spreading device consisting of raised dividers (rails, pipe, or grates) at least 24 feet long and 10 feet wide to remove bulk material from tires and vehicle undercarriages before vehicles exit the site.
- (D) Install and utilize a wheel washing system to remove bulk material from tires and vehicle undercarriages before vehicles exit the site.
- (E) Any other control measures approved by the Executive Officer and the U.S. EPA as equivalent to the actions specified in subparagraphs (d)(5)(A) through (d)(5)(D).
- (6) Beginning January 1, 2006, any person who operates or authorizes the operation of a confined animal facility subject to this Rule shall implement the applicable conservation management practices specified in Table 4 of this Rule.
- (e) Additional Requirements for Large Operations
 - (1) Any person who conducts or authorizes the conducting of a large operation subject to this Rule shall implement the applicable actions specified in Table 2 of this Rule at all times and shall implement the applicable actions specified in Table 3 of this Rule when the applicable performance standards can not be met through use of Table 2 actions; and shall:
 - (A) submit a fully executed Large Operation Notification (Form 403 N) to the Executive Officer within 7 days of qualifying as a large operation;
 - (B) include, as part of the notification, the name(s), address(es), and phone number(s) of the person(s) responsible for the submittal, and a description of the operation(s), including a map depicting the location of the site;
 - (C) maintain daily records to document the specific dust control actions taken, maintain such records for a period of not less than three years; and make such records available to the Executive Officer upon request;

- (D) install and maintain project signage with project contact signage that meets the minimum standards of the Rule 403 Implementation Handbook, prior to initiating any earthmoving activities;
- (E) identify a dust control supervisor that:
 - (i) is employed by or contracted with the property owner or developer;
 - (ii) is on the site or available on-site within 30 minutes during working hours;
 - (iii) has the authority to expeditiously employ sufficient dust mitigation measures to ensure compliance with all Rule requirements;
 - (iv) has completed the AQMD Fugitive Dust Control Class and has been issued a valid Certificate of Completion for the class; and
- (F) notify the Executive Officer in writing within 30 days after the site no longer qualifies as a large operation as defined by paragraph (c)(18).
- (2) Any Large Operation Notification submitted to the Executive Officer or AQMD-approved dust control plan shall be valid for a period of one year from the date of written acceptance by the Executive Officer. Any Large Operation Notification accepted pursuant to paragraph (e)(1), excluding those submitted by aggregate-related plants and cement manufacturing facilities must be resubmitted annually by the person who conducts or authorizes the conducting of a large operation, at least 30 days prior to the expiration date, or the submittal shall no longer be valid as of the expiration date. If all fugitive dust sources and corresponding control measures or special circumstances remain identical to those identified in the previously accepted submittal or in an AQMD-approved dust control plan, the resubmittal may be a simple statement of no-change (Form 403NC).
- (f) Compliance Schedule

The newly amended provisions of this Rule shall become effective upon adoption. Pursuant to subdivision (e), any existing site that qualifies as a large operation will have 60 days from the date of Rule adoption to comply with the notification and recordkeeping requirements for large operations. Any Large Operation Notification or AQMD-approved dust control plan which has been accepted prior to the date of adoption of these amendments shall remain in effect and the Large Operation Notification or AQMD-approved dust control plan annual resubmittal date shall be one year from adoption of this Rule amendment.

- (g) Exemptions
 - (1) The provisions of this Rule shall not apply to:
 - (A) Dairy farms.
 - (B) Confined animal facilities provided that the combined disturbed surface area within one continuous property line is one acre or less.
 - (C) Agricultural vegetative crop operations provided that the combined disturbed surface area within one continuous property line and not separated by a paved public road is 10 acres or less.
 - (D) Agricultural vegetative crop operations within the South Coast Air Basin, whose combined disturbed surface area includes more than 10 acres provided that the person responsible for such operations:
 - (i) voluntarily implements the conservation management practices contained in the Rule 403 Agricultural Handbook;
 - (ii) completes and maintains the self-monitoring form documenting sufficient conservation management practices, as described in the Rule 403 Agricultural Handbook; and
 - (iii) makes the completed self-monitoring form available to the Executive Officer upon request.
 - (E) Agricultural vegetative crop operations outside the South Coast Air Basin whose combined disturbed surface area includes more than 10 acres provided that the person responsible for such operations:
 - voluntarily implements the conservation management practices contained in the Rule 403 Coachella Valley Agricultural Handbook; and
 - (ii) completes and maintains the self-monitoring form documenting sufficient conservation management practices, as described in the Rule 403 Coachella Valley Agricultural Handbook; and
 - (iii) makes the completed self-monitoring form available to the Executive Officer upon request.

- (F) Active operations conducted during emergency life-threatening situations, or in conjunction with any officially declared disaster or state of emergency.
- (G) Active operations conducted by essential service utilities to provide electricity, natural gas, telephone, water and sewer during periods of service outages and emergency disruptions.
- (H) Any contractor subsequent to the time the contract ends, provided that such contractor implemented the required control measures during the contractual period.
- (I) Any grading contractor, for a phase of active operations, subsequent to the contractual completion of that phase of earthmoving activities, provided that the required control measures have been implemented during the entire phase of earth-moving activities, through and including five days after the final grading inspection.
- (J) Weed abatement operations ordered by a county agricultural commissioner or any state, county, or municipal fire department, provided that:
 - mowing, cutting or other similar process is used which maintains weed stubble at least three inches above the soil; and
 - (ii) any discing or similar operation which cuts into and disturbs the soil, where watering is used prior to initiation of these activities, and a determination is made by the agency issuing the weed abatement order that, due to fire hazard conditions, rocks, or other physical obstructions, it is not practical to meet the conditions specified in clause (g)(1)(H)(i). The provisions this clause shall not exempt the owner of any property from stabilizing, in accordance with paragraph (d)(2), disturbed surface areas which have been created as a result of the weed abatement actions.
- (K) sandblasting operations.
- (2) The provisions of paragraphs (d)(1) and (d)(3) shall not apply:
 - (A) When wind gusts exceed 25 miles per hour, provided that:

- (i) The required Table 3 contingency measures in this Rule are implemented for each applicable fugitive dust source type, and;
- (ii) records are maintained in accordance with subparagraph (e)(1)(C).
- (B) To unpaved roads, provided such roads:
 - (i) are used solely for the maintenance of wind-generating equipment; or
 - (ii) are unpaved public alleys as defined in Rule 1186; or
 - (iii) are service roads that meet all of the following criteria:
 - (a) are less than 50 feet in width at all points along the road;
 - (b) are within 25 feet of the property line; and
 - (c) have a traffic volume less than 20 vehicle-trips per day.
- (C) To any active operation, open storage pile, or disturbed surface area for which necessary fugitive dust preventive or mitigative actions are in conflict with the federal Endangered Species Act, as determined in writing by the State or federal agency responsible for making such determinations.
- (3) The provisions of (d)(2) shall not apply to any aggregate-related plant or cement manufacturing facility that implements the applicable actions specified in Table 2 of this Rule at all times and shall implement the applicable actions specified in Table 3 of this Rule when the applicable performance standards of paragraphs (d)(1) and (d)(3) can not be met through use of Table 2 actions.
- (4) The provisions of paragraphs (d)(1), (d)(2), and (d)(3) shall not apply to:
 - (A) Blasting operations which have been permitted by the California Division of Industrial Safety; and
 - (B) Motion picture, television, and video production activities when dust emissions are required for visual effects. In order to obtain this exemption, the Executive Officer must receive notification in writing at least 72 hours in advance of any such activity and no nuisance results from such activity.
- (5) The provisions of paragraph (d)(3) shall not apply if the dust control actions, as specified in Table 2, are implemented on a routine basis for

each applicable fugitive dust source type. To qualify for this exemption, a person must maintain records in accordance with subparagraph (e)(1)(C).

- (6) The provisions of paragraph (d)(4) shall not apply to earth coverings of public paved roadways where such coverings are approved by a local government agency for the protection of the roadway, and where such coverings are used as roadway crossings for haul vehicles provided that such roadway is closed to through traffic and visible roadway dust is removed within one day following the cessation of activities.
- (7) The provisions of subdivision (e) shall not apply to:
 - (A) officially-designated public parks and recreational areas, including national parks, national monuments, national forests, state parks, state recreational areas, and county regional parks.
 - (B) any large operation which is required to submit a dust control plan to any city or county government which has adopted a Districtapproved dust control ordinance.
 - (C) any large operation subject to Rule 1158, which has an approved dust control plan pursuant to Rule 1158, provided that all sources of fugitive dust are included in the Rule 1158 plan.
- (8) The provisions of subparagraph (e)(1)(A) through (e)(1)(C) shall not apply to any large operation with an AQMD-approved fugitive dust control plan provided that there is no change to the sources and controls as identified in the AQMD-approved fugitive dust control plan.

(h) Fees

Any person conducting active operations for which the Executive Officer conducts upwind/downwind monitoring for PM_{10} pursuant to paragraph (d)(3) shall be assessed applicable Ambient Air Analysis Fees pursuant to Rule 304.1. Applicable fees shall be waived for any facility which is exempted from paragraph (d)(3) or meets the requirements of paragraph (d)(3).
Rule 403 (cont.)

Source Category		Control Measure		Guidance
Backfilling	01-1	Stabilize backfill material when not actively handling; and	>>	Mix backfill soil with water prior to moving Dedicate water truck or high capacity hose to
	01-2	Stabilize backfull material during handling; and Stabilize soil at completion of activity.	>	backrilling equipment Empty loader bucket slowly so that no dust plumes are generated
Clearing and	02-1	Maintain stability of soil through pre-watering of		Maintain live perennial vegetation where
gruoomg	02-2	Sue prior to crearing and grupoing, and Stabilize soil during clearing and grubbing activities: and	>	possible Apply water in sufficient quantity to prevent
	02-3	Stabilize soil immediately after clearing and grubbing activities.	-	generation of dust plumes
Clearing forms	03-1 03-2 03-3	Use water spray to clear forms; or Use sweeping and water spray to clear forms; or Use vacuum system to clear forms.	>	Use of high pressure air to clear forms may cause exceedance of Rule requirements
Crushing	04-1	Stabilize surface soils prior to operation of support equipment; and	>>	Follow permit conditions for crushing equipment Pre-water material prior to loading into crusher
	04-2	Stabilize material after crushing.	>>	Monitor crusher emissions opacity Apply water to crushed material to prevent dust plumes

· ·
•
-
· · ·
-
_
_
~ .
-
 - /
~
_
· ·
-
-
_
– –)
~
_
_
_
_
_
~ ~
~

(Amended June 3, 2005)

Source Category		Control Measure		Guidance
Cut and fill	05-1	Pre-water soils prior to cut and fill activities; and	>	For large sites, pre-water with sprinklers or water trucks and allow time for penetration
	05-2	Stabilize soil during and after cut and fill activities.	>	Use water trucks/pulls to water soils to depth of cut prior to subsequent cuts
Demolition – mechanical/manual	06-1	Stabilize wind erodible surfaces to reduce dust; and	>	Apply water in sufficient quantities to mervent the generation of visible dust alumes
	06-2	Stabilize surface soil where support equipment and		provent the generation of vision dust plutter
	06-3 06-4	Stabilize loose soil and demolition debris; and Comply with AQMD Rule 1403.		
Disturbed soil	07-1	Stabilize disturbed soil throughout the construction	>	Limit vehicular traffic and disturbances on
	07-2	sıte; and Stabilize disturbed soil between structures	>	soils where possible If interior block walls are planned, install as
			>	early as possible Apply water or a stabilizing agent in sufficient quantities to prevent the
				generation of visible dust plumes
Earth-moving	08-1 08-2	Pre-apply water to depth of proposed cuts; and Re-apply water as necessary to maintain soils in a	>	Grade each project phase separately, timed
acuvines		damp condition and to ensure that visible emissions do not exceed 100 feet in any direction; and	>	Upwind fencing can prevent material
	08-3	Stabilize soils once earth-moving activities are complete.	>	movement on suce Apply water or a stabilizing agent in sufficient quantities to prevent the
				generation of visible dust plumes

· . • '
+
. ບ
\sim
3
<u> </u>
_
A)
_
~
_

Guidance	 duce fugitive Use tarps or other suitable enclosures on haul trucks don haul Check belly-dump truck seals regularly i remove any trapped rocks to prevent spil remove any trapped rocks to prevent spil reduce fugitive Comply with track-out prevent spil track-out prevention/mitigation requirements 3114. 	 Apply water to materials to stabilize Maintain materials in a crusted condition Maintain effective cover over materials Stabilize sloping surfaces using soil bind until vegetation or ground cover can effectively stabilize the slopes Hydroseed prior to rain season 	or to clearing; V Installation of curbing and/or paving of shoulders can reduce recurring maintena (/or washed Use of chemical dust suppressants can inhibit variation growth and reduce fun-
Control Measure	Stabilize material while loading to rec dust emissions; and Maintain at least six inches of freeboa vehicles; and Stabilize material while transporting t fugitive dust emissions; and Stabilize material while unloading to 1 dust emissions; and Comply with Vehicle Code Section 23	Stabilize soils, materials, slopes	Apply water to unpaved shoulders pri- and Apply chemical dust suppressants and gravel to maintain a stabilized surface
	09-1 09-2 09-3 09-4 09-5	10-1	11-1 11-2
Source Category	Importing/exporting of bulk materials	Landscaping	Road shoulder maintenance

· • `
-
-
_
_
_
_
-
•
· • /
\sim
_
-
TT
_
-
_
<u> </u>
N
_
_
~

Guidance	 Dedicate water truck or high capacity hos to screening operation Drop material through the screen slowly iminimize drop height Install wind barrier with a porosity of no more than 50% upwind of screen to the height of the drop point 	 Limit size of staging area Limit vehicle speeds to 15 miles per hour Limit number and size of staging area entrances/exists 	pied Maintain storage pile Maintain storage piles to avoid steep side or faces al water stockpile
Control Measure	Pre-water material prior to screening; and Limit fugitive dust emissions to opacity and length standards; and Stabilize material immediately after screenin	Stabilize staging areas during use; and Stabilize staging area soils at project comple	Stabilize stockpiled materials. Stockpiles within 100 yards of off-site occup buildings must not be greater than eight feet height; or must have a road bladed to the top water truck access or must have an operation irrigation system that is capable of complete coverage.
	12-1 12-2 12-3	13-1 13-2	14-1 14-2
Source Category	Screening	Staging areas	Stockpiles/ Bulk Material Handling

~	`
+	5
F	
- C	•
ē	5
J	-
~	2
	5
-	
_	
)
-	
E	2
~	
<u> </u>	

urce Category affic areas for astruction	15-1 15-2	Control Measure Stabilize all off-road traffic and parking areas; and Stabilize all haul routes; and	Guidance Apply gravel/paving to all haul routes as soon as possible to all future roadway areas
ies	15-3	Direct construction traffic over established haul routes.	 Barriers can be used to ensure vehicles are only used on established parking areas/haul routes
g	16-1 16-2	Stabilize surface soils where trencher or excavator and support equipment will operate; and Stabilize soils at the completion of trenching activities.	 Pre-watering of soils prior to trenching is an effective preventive measure. For deep trenching activities, pre-trench to 18 inches soak soils via the pre-trench and resuming trenching Washing mud and soils from equipment at the conclusion of trenching activities can prevent crusting and drying of soil on equipment
loading	17-1 17-2	Pre-water material prior to loading; and Ensure that freeboard exceeds six inches (CVC 23114)	 ✓ Empty loader bucket such that no visible dust plumes are created ✓ Ensure that the loader bucket is close to the truck to minimize drop height while loading
Overseeding	18-1	Apply sufficient water immediately prior to conducting turf vacuuming activities to meet opacity and plume length standards; and	 Haul waste material immediately off-site
	18-2	Cover haul vehicles prior to exiting the site.	

-
+
_
Ξ
_
<u> </u>
_
-
\mathbf{n}
-
<u> </u>
—
- C)
_
~

Guidance	 Restricting vehicular access to established unpaved travel paths and parking lots can 	reduce stabilization requirements	
Control Measure	Stabilize soils to meet the applicable performance standards; and	Limit vehicular travel to established unpaved roads (haul routes) and unpaved parking lots.	In instances where vacant lots are 0.10 acre or larger and have a cumulative area of 500 square feet or more that are driven over and/or used by motor vehicles and/or off-road vehicles, prevent motor vehicle and/or off-road vehicle trespassing, parking and/or access by installing barriers, curbs, fences, gates, posts, signs, shrubs, trees or other effective control measures.
	19-1	19-2	20-1
Source Category	Unpaved roads/parking lots		Vacant land

Table 2
DUST CONTROL MEASURES FOR LARGE OPERATIONS

FUGITIVE DUST		
SOURCE CATEGORY		CONTROL ACTIONS
Earth-moving (except construction cutting and filling areas, and mining operations)	(1a)	Maintain soil moisture content at a minimum of 12 percent, as determined by ASTM method D- 2216, or other equivalent method approved by the Executive Officer, the California Air Resources Board, and the U.S. EPA. Two soil moisture evaluations must be conducted during the first three hours of active operations during a calendar day, and two such evaluations each subsequent four-hour period of active operations; OR
	(1a-1)	For any earth-moving which is more than 100 feet from all property lines, conduct watering as necessary to prevent visible dust emissions from exceeding 100 feet in length in any direction.
Earth-moving:	(1b)	Maintain soil moisture content at a minimum of
Construction fill areas:		12 percent, as determined by ASTM method D- 2216, or other equivalent method approved by the Executive Officer, the California Air Resources Board, and the U.S. EPA. For areas which have an optimum moisture content for compaction of less than 12 percent, as determined by ASTM Method 1557 or other equivalent method approved by the Executive Officer and the California Air Resources Board and the U.S. EPA, complete the compaction process as expeditiously as possible after achieving at least 70 percent of the optimum soil moisture content. Two soil moisture evaluations must be conducted during the first three hours of active operations during a calendar day, and two such evaluations during each subsequent four- hour period of active operations.

FUGITIVE DUST SOURCE CATEGORY		CONTROL ACTIONS
Earth-moving: Construction cut areas and mining operations:	(1c)	Conduct watering as necessary to prevent visible emissions from extending more than 100 feet beyond the active cut or mining area unless the area is inaccessible to watering vehicles due to slope conditions or other safety factors.
Disturbed surface areas (except completed grading areas)	(2a/b)	Apply dust suppression in sufficient quantity and frequency to maintain a stabilized surface. Any areas which cannot be stabilized, as evidenced by wind driven fugitive dust must have an application of water at least twice per day to at least 80 percent of the unstabilized area.
Disturbed surface areas: Completed grading areas	(2c) (2d)	Apply chemical stabilizers within five working days of grading completion; OR Take actions (3a) or (3c) specified for inactive
	(20)	disturbed surface areas.
Inactive disturbed surface areas	(3a)	Apply water to at least 80 percent of all inactive disturbed surface areas on a daily basis when there is evidence of wind driven fugitive dust, excluding any areas which are inaccessible to watering vehicles due to excessive slope or other safety conditions; OR
	(3b)	Apply dust suppressants in sufficient quantity and frequency to maintain a stabilized surface: OR
	(3c)	Establish a vegetative ground cover within 21 days after active operations have ceased. Ground cover must be of sufficient density to expose less than 30 percent of unstabilized ground within 90 days of planting, and at all times thereafter; OR
	(3d)	Utilize any combination of control actions (3a), (3b), and (3c) such that, in total, these actions apply to all inactive disturbed surface areas.

Table 2 (Continued)

FUGITIVE DUST SOURCE CATEGORY		CONTROL ACTIONS
Unpaved Roads	(4a)	Water all roads used for any vehicular traffic at least once per every two hours of active operations [3 times per normal 8 hour work day]; OR
	(4b)	Water all roads used for any vehicular traffic once daily and restrict vehicle speeds to 15 miles per hour; OR
	(4c)	Apply a chemical stabilizer to all unpaved road surfaces in sufficient quantity and frequency to maintain a stabilized surface.
Open storage piles	(5a) (5b)	Apply chemical stabilizers; OR Apply water to at least 80 percent of the surface area of all open storage piles on a daily basis when there is evidence of wind driven fugitive dust; OR
	(5c)	Install temporary coverings; OR
	(5d)	Install a three-sided enclosure with walls with no more than 50 percent porosity which extend, at a minimum, to the top of the pile. This option may only be used at aggregate-related plants or at cement manufacturing facilities.
All Categories	(6a)	Any other control measures approved by the Executive Officer and the U.S. EPA as equivalent to the methods specified in Table 2 may be used.

Table 2 (Continued)

FUGITIVE DUST SOURCE CATEGORY		CONTROL MEASURES
Earth-moving	(1A)	Cease all active operations; OR
	(2A)	Apply water to soil not more than 15 minutes prior to moving such soil.
Disturbed surface areas	(0B)	On the last day of active operations prior to a weekend, holiday, or any other period when active operations will not occur for not more than four consecutive days: apply water with a mixture of chemical stabilizer diluted to not less than 1/20 of the concentration required to maintain a stabilized surface for a period of six months; OR
	(1B)	Apply chemical stabilizers prior to wind event; OR
	(2B)	Apply water to all unstabilized disturbed areas 3 times per day. If there is any evidence of wind driven fugitive dust, watering frequency is increased to a minimum of four times per day; OR
	(3B)	Take the actions specified in Table 2, Item (3c); OR
	(4B)	Utilize any combination of control actions (1B), (2B), and (3B) such that, in total, these actions apply to all disturbed surface areas.
Unpaved roads	(1C)	Apply chemical stabilizers prior to wind event; OR
	(2C)	Apply water twice per hour during active operation; OR
	(3C)	Stop all vehicular traffic.
Open storage piles	(1D)	Apply water twice per hour; OR
	(2D)	Install temporary coverings.
Paved road track-out	(1E)	Cover all haul vehicles; OR
	(2E)	Comply with the vehicle freeboard requirements of Section 23114 of the California Vehicle Code for both public and private roads.
All Categories	(1F)	Any other control measures approved by the Executive Officer and the U.S. EPA as equivalent to the methods specified in Table 3 may be used.

TABLE 3 CONTINGENCY CONTROL MEASURES FOR LARGE OPERATIONS

		8
SOURCE CATEGORY		CONSERVATION MANAGEMENT PRACTICES
Manure	(1a)	Cover manure prior to removing material off-site; AND
Handling	(1b)	Spread the manure before 11:00 AM and when wind conditions
		are less than 25 miles per hour: AND
(Only	(1c)	Utilize coning and drving manure management by removing
applicable to		manure at laving hen houses at least twice per year and maintain
Commercial		a base of no less than 6 inches of dry manure after clean out; or
Poultry		in lieu of complying with conservation management practice
Ranches)		(1c) comply with conservation management practice (1d)
Runenesy	(1d)	Utilize frequent manure removal by removing the manure from
	()	laving hen houses at least every seven days and immediately
		thin hed dry the material
Feedstock	(2a)	Utilize a sock or boot on the feed truck auger when filling feed
Handling	(24)	storage hins
Disturbed	(3a)	Maintain at least 70 percent vegetative cover on vacant portions
Surfaces	(34)	of the facility: OR
Surfaces	(3h)	Utilize conservation tillage practices to manage the amount
		orientation and distribution of crop and other plant residues on
		the soil surface year round, while growing groups (if applicable)
		in parrow slots or tilled strips: OP
	(2a)	Apply dust suppresents in sufficient concentrations and
	(30)	frequencies to maintain a stabilized surface
Unnavad	(1a)	Destrict access to minute unreved reads either through signage
Dooda	(4a)	r physical access to private unpaved roads ethici unough signage
Roaus		of physical access festiletions and control venicular speeds to
		no more than 15 miles per nour through worker nourications,
	(11-)	Signage, of any other necessary means, OK
	(40)	Cover frequently traveled unpaved roads with low sitt content
		material (i.e., asphalt, concrete, recycled road base, or graver to
	(A_{α})	a minimum deput of four mones); OK
		unpresente er ether eever te meintein e stehilized surface
Equipment	(50)	A paly dust suppressants in sufficient supprises and frequences to
Equipment Derlying Areas	(<i>Sa</i>)	Apply dust suppressants in sufficient quantity and frequency to
rarking Areas	(51-)	maintain a stabilized surface; OK
	(30)	Apply material with low slit content (i.e., asphalt, concrete,
	1	recycled road base, or gravel to a depth of four inches).

 Table 4

 (Conservation Management Practices for Confined Animal Facilities)

Appendix G

Mobile Noise

EXISUNG CONC	(/ 007) SUOID									0 0		
ROAD SEGMENT			TOT. # VEH.	EQUIVALENT	LANE DISTANCE	VEHICLE TYPE % Auto MT HT	VEHICLE SPEED Auto k/h MT k/h HT k/h	NOISE LEVEL Auto MT	(dBA) HT	ROW CNEL	ROW CNEL	ROW CNEL
	from:	to:		D1 D2	Eq. Dis.	% Auto % MT % HT				(dBA)	(dBA)	(dBA)
Beverly Blvd	Robertson Blvd	George Burns Rd	2564	6 42 6 42	16	91 2333 6 154 3 76.9	40 64 40 64 40 64 40 64 40 64 40 64 40 64 64	69.7 66.8	68.6 68.6	72.1	70.7	9.69 2.02
Beverly Blvd	San Vicente	Ja Cienega	2366	0 4 4 7	16	7.C/ C 1C1 0 0622 16 7.C/ C 1C1 0 0622 16 7.C/ C 161 0 0622 16	40 04 40 04 40 04 40 04 40 04 41 66	69.7 67.3	0.00 69.6	72.6	71.2	0.60 70.1
Robertson Blvd	Beverly Blvd	Alden Dr.	1192	6 18	10	91 1085 6 71.5 3 35.8	40 64 40 64 40 64	66.3 63.5	66.8	69.7	68.2	67.1
Robertson Blvd	Alden Dr	Third St	1230	6 18	10	91 1119 6 73.8 3 36.9	25 40 25 40 25 40	60.6 60.4	65.1	66.5	65.0	63.9
George Burns Dr	Beverly Blvd	Alden Dr.	550	6 18	10	91 500.5 6 33 3 16.5	40 64 40 64 40 64	63.0 60.1	63.5	66.4	64.8	63.7
George Burns Dr	Alden Dr	Third St	725	6 18	10	91 659.3 6 43.5 3 21.7	40 64 40 64 40 64	64.2 61.3	64.6	67.5	66.0	64.9
Alden Dr	Robertson Blvd	George Burns Rd	323	6 18	10	91 293.9 6 19.4 3 9.69	40 64 40 64 40 64	60.7 57.8	61.1	64.0	62.5	61.4
Third St	Robertson Blvd	George Burns Rd	1560	6 42	16	91 1419 6 93.6 3 46.8	25 40 25 40 25 40	61.6 61.5	64.6	66.4	65.0	63.9
Third St	George Burns Rd	Sherbourne Dr	1832	6 42	16	91 1667 6 110 3 55	40 64 40 64 40 64 40 64 54 54	68.2 65.3	67.2	70.6	69.2	68.2
La Ciellega Divu			1//7	00 0	70	1.00 C 001 0 2202 16	04 27 40 27 40	04.1 04.0	1./0	0.00	C.10	C.00
Future No Pro	viect Conditions	s (2023)										
										50 Ĥ	75 Ĥ	100 ft
			TOT.	EOUIVALENT	, LANE DISTANCE	VEHICLE TYPE %	VEHICLE SPEED	NOISE LEVEL	(dBA)	ROW	ROW	ROW
ROAD SEGMENT			# VEH.			Auto MT HT	Auto k/h MT k/h HT k/h	Auto MT	HT	CNEL	CNEL	CNEL
	from:	to:		D1 D2	Eq. Dis.	% Auto % MT % HT				(dBA)	(dBA)	(dBA)
Beverly Blvd	Robertson Blvd	George Burns Rd	3426	6 42	16	91 3118 6 206 3 103	40 64 40 64 40 64	70.9 68.1	69.9	73.3	71.9	70.9
Beverly Blvd	George Burns Rd	San Vincente Blvd	3475	6 42	16	91 3162 6 209 3 104	40 64 40 64 40 64	71.0 68.1	70.0	73.4	72.0	71.0
Beverly Blvd	San Vicente	La Cienega	3349	6 42	16	92 3081 7 234 4 134	41 66 41 66 41 66	71.2 68.8	71.1	74.1	72.7	71.6
Robertson Blvd	Beverly Blvd	Alden Dr.	2125	6 18	10	91 1933 6 127 3 63.7	40 64 40 64 40 64	68.8 66.0	69.3	72.2	70.7	69.69
Robertson Blvd	Alden Dr	Third St	2157	6 18	10	91 1962 6 129 3 64.7	25 40 25 40 25 40 25 40	63.0 62.9	67.5	69.0	67.5	66.4
George Burns Dr	Beverly Blvd	Alden Dr.	727	6 18	10	91 661.1 6 43.6 3 21.8	40 64 40 64 40 64	64.2 61.3	64.7	67.6	66.1	64.9
George Burns Dr	Alden Dr	Third St	922	6 18	10	91 839 6 55.3 3 27.7	40 64 40 64 40 64	65.2 62.4	65.7	68.6	67.1	66.0
Alden Dr	Robertson Blvd	George Burns Rd	623	6 18	10	91 566.9 6 37.4 3 18.7	40 64 40 64 40 64	63.5 60.7	64.0	66.9	65.4	64.3
Third St	Robertson Blvd	George Burns Rd	2339	6 42	16	91 2128 6 140 3 70.2	25 40 25 40 25 40	63.4 63.2	66.4	68.1	66.7	65.7
Third St	George Burns Rd	Sherbourne Dr	2773	6 42	16	91 2523 6 166 3 83.2	40 64 40 64 40 64	70.0 67.1	69.0	72.4	71.0	70.0
La Cienega Blvd	Wilshire Blvd	Third St	3953	6 66	20	91 3597 6 237 3 119	25 40 25 40 25 40	65.7 65.5	68.6	70.2	68.8	67.8
Future With I	Project Conditio	une (2023)										
TIME ATMM T	mmino notor									40 6	75 Ĥ	100 f
			TOT	FOUNT AT ENT	I ANE DISTANCE	VEHICI E TVDE 00	VEHICI E SBEED	NOISE LEVEL	(ABA)	MOG	MOd	DOW
ROAD SEGMENT			# VEH.	NITE ALLONG		Auto MT HT	Auto k/h MT k/h HT k/h	Auto MT	HT	CNEL.	CNEL.	CNEL
	from:	to:		D1 D2	Eq. Dis.	% Auto % MT % HT			1	(dBA)	(dBA)	(dBA)
Beverly Blvd	Robertson Blvd	George Burns Rd	3426	6 42	16	91 3118 6 206 3 103	40 64 40 64 40 64 40 64	70.9 68.1	69.9	73.3	71.9	70.9
Beverly Blvd	George Burns Rd	San Vincente Blvd	3504	6 42	16	91 3189 6 210 3 105	40 64 40 64 40 64	71.0 68.2	70.0	73.4	72.0	71.0
Beverly Blvd	San Vicente	La Cienega	3374	6 42	16	<u>92</u> 3104 7 236 4 135	41 66 41 66 41 66	71.2 68.8	71.2	74.1	72.7	71.7
Robertson Blvd	Beverly Blvd	Alden Dr.	2142	6 18	10	91 1949 6 128 3 64.2	40 64 40 64 40 64	68.9 66.0	69.4	72.3	70.8	69.69
Robertson Blvd	Alden Dr	Third St	2127	6 18	10	91 1935 6 128 3 63.8	25 40 25 40 25 40	63.0 62.8	67.4	68.9	67.4	66.3
George Burns Dr	Beverly Blvd	Alden Dr.	757	6 18	10	91 688.4 6 45.4 3 22.7	40 64 40 64 40 64	64.4 61.5	64.8	67.7	66.2	65.1
George Burns Dr	Alden Dr	Third St	949	6 18	10	91 863.6 6 56.9 3 28.5	40 64 40 64 40 64	65.3 62.5	65.8	68.7	67.2	66.1
Alden Dr	Robertson Blvd	George Burns Rd	679	6 18	10	91 617.4 6 40.7 3 20.4	40 64 40 64 40 64	63.9 61.0	64.4	67.3	65.8	64.6
Third St	Robertson Blvd	George Burns Rd	2339	6 42	16	91 2128 6 140 3 70.2	25 40 25 40 25 40	63.4 63.2	66.4	68.1	66.7	65.7
Third St	George Burns Rd	Sherbourne Dr	2800	6 42	16	91 2548 6 168 3 84	40 64 40 64 40 64	70.0 67.2	69.0	72.5	71.1	70.0
La Cienega Blvd	Wilshire Blvd	Third St	3965	6 66	20	91 3608 6 238 3 119	25 40 25 40 25 40	65.7 65.5	68.7	70.2	68.8	67.8

Cedar-Sinai Project CNEL Noise Estimates - Based on AM Peak Hour

Existing Conditions (2007)

										50 û	15 64	100 8
			TOT.	EQUIVALENT	ULANE DISTANCE	VEHICLE TYPE %	VEHICLE SPEED	NOISE LEVE	(dBA)	ROW	ROW	ROW
ROAD SEGMENT	from:	to:	# VEH.	DI D2	Eq. Dis.	<u>Auto MT HT</u> % Auto % MT % HT	<u>Auto k/h MT k/h HT</u> k/h	Auto MT	HT	(dBA)	CNEL (dBA)	CNEL (dBA)
Beverly Blvd	Robertson Blvd	George Burns Rd	2476	6 42	16	91 2253 6 149 3 74.3	40 64 40 64 40 64 40 64	69.5 66.7	68.5	71.9	70.5	69.5
Beverly Blvd	George Burns Rd	San Vincente Blvd	2498	6 42	16	91 2273 6 150 3 74.9	40 64 40 64 40 64	69.5 66.7	68.5	72.0	70.6	69.5
Beverly Blvd	San Vicente	La Cienega	2579	6 42	16	92 2373 7 181 4 103	41 66 41 66 41 66	70.0 67.7	70.0	72.9	71.5	70.5
Robertson Blvd	Beverly Blvd	Alden Dr.	1242	6 18	10	91 1130 6 74.5 3 37.2	40 64 40 64 40 64	66.5 63.7	67.0	6.69	68.4	67.3
Robertson Blvd	Alden Dr	Third St	1287	6 18	10	91 1171 6 77.2 3 38.6	25 40 25 40 25 40	60.8 60.6	65.3	66.7	65.2	64.1
George Burns Dr	Beverly Blvd	Alden Dr.	647	6 18	10	91 588.8 6 38.8 3 19.4	40 64 40 64 40 64	63.7 60.8	64.2	67.1	65.6	64.4
George Burns Dr	Alden Dr	Third St	748	6 18	10	91 680.7 6 44.9 3 22.4	40 64 40 64 40 64	64.3 61.5	64.8	67.7	66.2	65.1
Alden Dr	Robertson Blvd	George Burns Rd	425	6 18	10	91 386.8 6 25.5 3 12.8	40 64 40 64 40 64	61.9 59.0	62.3	65.2	63.7	62.6
Third St	Robertson Blvd	George Burns Rd	1362	6 42	16	91 1239 6 81.7 3 40.9	25 40 25 40 25 40	61.0 60.9	64.0	65.8	64.4	63.3
Third St	George Burns Rd	Sherbourne Dr	1797	6 42	16	91 1635 6 108 3 53.9	40 64 40 64 40 64	68.1 65.3	67.1	70.5	69.1	68.1
La Cienega Blvd	Wilshire Blvd	Third St	3094	6 66	20	91 2816 6 186 3 92.8	25 40 25 40 25 40	64.6 64.4	67.6	69.1	67.8	66.8
Enterno No Du	Conditions											
Future No FF	<u>oject conditions</u>	(0707)								c C	1	
										50 ft	75 ft	100 ft
			TOT.	EQUIVALEN	<u>T LANE DISTANCE</u>	VEHICLE TYPE %	VEHICLE SPEED	NOISE LEVEL	(dBA)	ROW	ROW	ROW
ROAD SEGMENT		1	# VEH.		i i	Auto MI HI	Auto k/h MT k/h HT k/h	Auto MT	HI	CNEL	CNEL	CNEL
	trom:	to:		70 10	Eq. DIS.	% Auto % MI % HI				(dBA)	(dBA)	(dbA)
Beverly Blvd	Robertson Blvd	George Burns Rd	3498	6 42	16	91 3183 6 210 3 105	40 64 40 64 40 64	71.0 68.2	70.0	73.4	72.0	71.0
Beverly Blvd	George Burns Rd	San Vincente Blvd	3651	6 42	16	91 3322 6 219 3 110	40 64 40 64 40 64	71.2 68.3	70.2	73.6	72.2	71.2
Beverly Blvd	San Vicente	La Cienega	3844	6 42	16	92 3536 7 269 4 154	41 66 41 66 41 66	71.8 69.4	71.7	74.7	73.3	72.2
Robertson Blvd	Beverly Blvd	Alden Dr.	2294	6 18	10	91 2088 6 138 3 68.8	40 64 40 64 40 64	69.2 66.3	69.7	72.6	71.1	6.69
Robertson Blvd	Alden Dr	Third St	2378	6 18	10	91 2164 6 143 3 71.3	25 40 25 40 25 40	63.5 63.3	67.9	69.4	67.9	66.8
George Burns Dr	Beverly Blvd	Alden Dr.	871	6 18	10	91 792.2 6 52.2 3 26.1	40 64 40 64 40 64	65.0 62.1	65.4	68.3	66.8	65.7
George Burns Dr	Alden Dr	Third St	978	6 18	10	91 889.5 6 58.7 3 29.3	40 64 40 64 40 64	65.5 62.6	66.0	68.9	67.3	66.2
Alden Dr	Robertson Blvd	George Burns Rd	816	6 18	10	91 742.6 6 49 3 24.5	40 64 40 64 40 64	64.7 61.8	65.2	68.1	66.6	65.4
Third St	Robertson Blvd	George Burns Rd	2313	6 42	16	91 2105 6 139 3 69.4	25 40 25 40 25 40 25 40	63.3 63.2	66.3	68.1	66.7	65.6
Third St	George Burns Rd	Sherbourne Dr	2952	6 42	16	91 2686 6 177 3 88.5	40 64 40 64 40 64	70.3 67.4	69.2	72.7	71.3	70.2
La Cienega Blvd	Wilshire Blvd	Third St	4902	6 66	20	91 4461 6 294 3 147	25 40 25 40 25 40 25 40	66.6 66.4	69.69	71.1	69.8	68.8
Future With]	Project Conditio	<u>nns (2023)</u>										
										50 ft	75 ft	100 ft
			TOT.	EQUIVALEN	T LANE DISTANCE	VEHICLE TYPE %	VEHICLE SPEED	NOISE LEVEI	(dBA)	ROW	ROW	ROW
ROAD SEGMENT		1	# VEH.			Auto MT HT	Auto k/h MT k/h HT k/h	Auto MT	HT	CNEL	CNEL	CNEL
	from:	to:		D1 D2	Eq. Dis.	% Auto % MT % HT				(dBA)	(dBA)	(dBA)
Beverly Blvd	Robertson Blvd	George Burns Rd	3498	6 42	16	91 3183 6 210 3 105	40 64 40 64 40 64	71.0 68.2	70.0	73.4	72.0	71.0
Beverly Blvd	George Burns Rd	San Vincente Blvd	3685	6 42	16	91 3353 6 221 3 111	40 64 40 64 40 64	71.2 68.4	70.2	73.7	72.3	71.2
Beverly Blvd	San Vicente	La Cienega	3872	6 42	16	92 3562 7 271 4 155	41 66 41 66 41 66	71.8 69.4	71.8	74.7	73.3	72.2
Robertson Blvd	Beverly Blvd	Alden Dr.	2314	6 18	10	91 2106 6 139 3 69.4	40 64 40 64 40 64	69.2 66.4	69.7	72.6	71.1	70.0
Robertson Blvd	Alden Dr	Third St	2402	6 18	10	91 2185 6 144 3 72	25 40 25 40 25 40	63.5 63.3	68.0	69.5	67.9	66.8
George Burns Dr	Beverly Blvd	Alden Dr.	905	6 18	10	91 823.1 6 54.3 3 27.1	40 64 40 64 40 64	65.1 62.3	65.6	68.5	67.0	65.9
George Burns Dr	Alden Dr	Third St	1009	6 18	10	91 917.7 6 60.5 3 30.3	40 64 40 64 40 64	65.6 62.8	66.1	0.69	67.5	66.4
Alden Dr	Robertson Blvd	George Burns Rd	880	6 18	10	91 800.8 6 52.8 3 26.4	40 64 40 64 40 64	65.0 62.2	65.5	68.4	66.9	65.8
Third St	Robertson Blvd	George Burns Rd	2313	6 42	16	91 2105 6 139 3 69.4	25 40 25 40 25 40	63.3 63.2	66.3	68.1	66.7	65.6
Third St	George Burns Rd	Sherbourne Dr	2983	6 42	16	91 2714 6 179 3 89.5	40 64 40 64 40 64	70.3 67.5	69.3	72.7	71.3	70.3
La Cienega Blvd	Wilshire Blvd	Third St	4916	6 66	20	91 4474 6 295 3 147	25 40 25 40 25 40	66.6 66.5	69.69	71.1	69.8	68.8

Cedar-Sinai Project CNEL Noise Estimates - Based on PM Peak Hour

Existing Conditions (2007)

APPENDIX E

TRAFFIC IMPACT STUDY

TRAFFIC IMPACT STUDY

CEDARS-SINAI MEDICAL CENTER PROJECT

City of Los Angeles, California June 23, 2008

Prepared for:

Planning Associates, Inc. 4040 Vineland Avenue, Suite 108 Studio City, California 91604

LLG Ref. 1-99-2843-1

Under the Supervision of:

David S. Shender, P.E. Principal

Linscott, Law & Greenspan, Engineers

234 E. Colorado Blvd.

236 N. Chester Ave., Suite 200 Pasadena, CA 91106 626.792.0941 F www.llgengineers.com

TABLE OF CONTENTS

SECT	ION	Pag	GE
1.0	Intr	oduction	1
2	1.1	Study Area	1
2.0	Proj	ect Description	4
	2.1	Existing CSMC Campus	4
	2.2	Development Site Location	4
	2.3	Proposed Project Description	5
3.0	Site	Access and Circulation	7
	3.1	CSMC Campus Access	7
	3.2	Proposed Project Site Access	9
4.0	Exis	ting Street System	10
	4.1	Roadway Classifications1	11
	4.2	Roadway Descriptions 1	13
	4.3	Existing Public Bus Transit Service	15
5.0	Traf	fic Counts 1	19
6.0	Traf	fic Forecasting Methodology	25
	6.1	Project Traffic Generation	25
	6.2	Project Traffic Distribution and Assignment	26
7.0	Cun	ulative Development Projects	32
	7.1	Related Projects	32
		7.1.1 Area Related Projects	32
		7.1.2 CSMC Build-out Current Development Agreement	51
	7.2	Ambient Traffic Growth Factor	51
8.0	Tra	ffic Impact Analysis Methodology	52
	8.1	Impact Criteria and Thresholds	52
	8.2	Traffic Impact Analysis Scenarios	53
9.0	Trat	ffic Analysis	57
	9.1	Existing Conditions	57
	9.2	Existing With Ambient Growth Conditions	57
	9.3	Future Pre-Project Conditions	58
	9.4	Future With Project Conditions	64
		9.4.1 Future With Project Access	64

≽

i

TABLE OF CONTENTS (continued)

SECT	ION PA	١GE
10.0	Transportation Mitigation Measures	68
	10.1 Recommended Mitigation Measures	68
11.0	Congestion Management Program Traffic Impact Assessment	70
	11.1 Intersections	70
	11.2 Freeways	70
	11.3 Transit Impact Review	71
12.0	Project Parking	72
	12.1 CSMC Existing Parking Analysis	73
	12.1.1 CSMC Existing Parking Supply	73
	12.1.2 City of Los Angeles Existing Required Parking	73
	12.1.3 Existing Supply-Required Parking Summary	73
	12.2 CSMC Future Parking Analysis	73
	12.2.1 CSMC Future Parking Supply	75
	12.2.2 City of Los Angeles Future Required Parking	75
	12.2.3 Future Supply-Required Parking Summary	77
13.0	Transportation Demand Management	78
	13.1 Current AVR/TDM Reduction Requirements	78
	13.2 Exiting Trip Generation and Trip Reduction Verification	79
	13.3 Recommendations	82
14.0	Conclusions	84

≫

TABLE OF CONTENTS (continued)

SECTIO	DN—FIGURE#	PAGE
1–1	Vicinity Map	2
2–1	Proposed Project Concept Site Plan	6
3–1	CSMC Campus Access	
4-1	Existing Lane Configurations	12
4–2	Existing Public Transit Routes	
5–1	Existing Traffic Volumes – AM Peak Hour	23
5–2	Existing Traffic Volumes – PM Peak Hour	24
6–1	Project Trip Distribution	29
6–2	Project Traffic Volumes – AM Peak Hour	30
6–3	Project Traffic Volumes – PM Peak Hour	
7–1	Location of Related Projects	40
7–2	Related Projects Traffic Volumes – AM Peak Hour	49
7–3	Related Projects Traffic Volumes – PM Peak Hour	50
9–1	Existing With Ambient Growth Traffic Volumes – AM Peak Hour	59
9–2	Existing With Ambient Growth Traffic Volumes – PM Peak Hour	60
9–3	Future Pre-Project Traffic Volumes – AM Peak Hour	62
9–4	Future Pre-Project Traffic Volumes – PM Peak Hour	63
9–5	Future With Project Traffic Volumes – AM Peak Hour	65
9–6	Future With Project Traffic Volumes – PM Peak Hour	66
13–1	Summary of Existing CSMC Driveway Counts	80

TABLE OF CONTENTS (continued) LIST OF TABLES

SECTIO	N-TABLE #	PAGE
4–1	Existing Transit Routes	16
5-1	Existing Traffic Volumes	20
6–1	Project Trip Generation	27
7–1	List of Related Projects	33
7–2	Related Projects Trip Generation	41
8-1	City of Los Angeles Intersection Impact Threshold Criteria	52
8–2	Level of Service Summary	54
12–1	Existing CSMC Campus Parking Summary	
12–2	Future CSMC Campus Parking Summary	
13–1	Summary of Existing CSMC Campus PM Peak Hour Driveway Counts	81
13–2	Trip Generation Forecast of Existing CSMC Campus	83

APPENDICES

Appendix

A.	Manual Traffic Counts
B.	CMA and Levels of Service Explanation
	Proposed Project Scenario CMA Data Worksheets - AM and PM Peak Hours
C.	Concept Improvement Plans

D. Summaries of Existing CSMC Campus Driveway Counts

TRAFFIC IMPACT STUDY

CEDARS-SINAI MEDICAL CENTER PROJECT

City of Los Angeles, California June 23, 2008

1.0 INTRODUCTION

This traffic analysis has been prepared to identify and evaluate the potential traffic impacts of the proposed Cedars-Sinai Medical Center project. The Cedars-Sinai Medical Center (CSMC) campus is situated within the Wilshire Community Plan area of the City of Los Angeles, California. The proposed Cedars-Sinai Medical Center project site is located within the existing CSMC campus which is bounded by Beverly Boulevard to the north, Third Street to the south, San Vicente Avenue to the east and Robertson Boulevard to the west. The project site is situated at the northwest corner of the George Burns Road/Gracie Allen Drive intersection within the CSMC campus. The CSMC campus location and general vicinity are shown in *Figure 1-1*.

The traffic analysis follows the City of Los Angeles traffic study guidelines¹ and is consistent with traffic impact assessment guidelines set forth in the Los Angeles County Congestion Management Program². This traffic analysis evaluates potential project-related impacts at 22 study intersections in the vicinity of the project site. The study intersections were determined in consultation with City of Los Angeles Department of Transportation staff. The Critical Movement Analysis method was used to determine Volume-to-Capacity ratios and Levels of Service for the study intersections. In addition, a review was conducted of Los Angeles County Metropolitan Transportation Authority intersection and freeway monitoring stations to determine if a Congestion Management Program transportation impact assessment analysis is required for the proposed project.

This study (i) presents existing traffic volumes, (ii) forecasts future traffic volumes with the related projects and the growth in ambient traffic, (iii) forecasts future traffic volumes with the proposed project, (iv) determines project-related impacts, and (v) recommends mitigation measures, where necessary.

1.1 Study Area

Twenty-two study intersections have been identified for evaluation during the weekday morning and afternoon peak hours based upon coordination with City of Los Angeles staff. The 22 study intersections provide local access to the study area and define the extent of the boundaries for this traffic impact analysis. Further discussion of the existing street system and study area is provided in Section 4.0.

¹ Traffic Study Policies and Procedures, City of Los Angeles Department of Transportation, March 2002.

² 2004 Congestion Management Program for Los Angeles County, Los Angeles County Metropolitan Transportation Authority, July 2004.

o:\job_file\2843\csmcproj\dwg\fi-1.dwg LDP 07:56:22 06/23/2008 rodriquez

The general location of the project in relation to the study locations and surrounding street system is presented in *Figure 1-1*. The traffic analysis study area is generally comprised of those locations which have the greatest potential to experience significant traffic impacts due to the proposed project as defined by the Lead Agency. In the traffic engineering practice, the study area generally includes those intersections that are:

- a. Immediately adjacent or in close proximity to the project site;
- b. In the vicinity of the project site that are documented to have current or projected future adverse operational issues; and
- c. In the vicinity of the project site that are forecast to experience a relatively greater percentage of project-related vehicular turning movements (e.g., at freeway ramp intersections).

The locations selected for analysis were based on the above criteria, the proposed Cedars-Sinai Medical Center project peak hour vehicle trip generation, the anticipated distribution of project vehicular trips and existing intersection/corridor operations.

2.0 PROJECT DESCRIPTION

2.1 Existing CSMC Campus

The CSMC campus comprises approximately 24.1 acres in area and is situated within the Wilshire Community Plan area of the City of Los Angeles, California. The proposed Cedars-Sinai Medical Center project site is located within the existing CSMC campus which is bounded by Beverly Boulevard to the north, Third Street to the south, San Vicente Avenue to the east and Robertson Boulevard to the west. The proposed project will be located at the northwest corner of the George Burns Road/Gracie Allen Drive intersection within the CSMC campus.

Surrounding uses to CSMC include medical buildings associated with, but not owned by Cedars-Sinai, to the south; commercial and residential uses to the north, south, east, and west; and the City of West Hollywood border to the north. Several commercial uses are located directly adjacent to the western and southern portions of the campus. The Beverly Center shopping complex is situated directly east of the campus, across San Vicente Boulevard.

The CSMC campus is well-located to facilitate pedestrian activity, bicycle usage and use of public transit services, particularly due to the proximity of nearby commercial corridors. The project site is situated within easy walking distance to retail, restaurant, and other commercial businesses located along the Robertson Boulevard, San Vicente Boulevard, Beverly Boulevard and Third Street corridors. Further, regional and local public bus transit stops are provided on the periphery of the campus as well as within the campus along George Burns Road and Gracie Allen Drive.

The entire property is governed by a Master Plan and Development Agreement adopted by the City Council in 1993. The Master Plan and Development Agreement authorized an additional 700,000 square feet of new development, with a maximum allowable total gross floor area for the CSMC campus of 2.27 million square feet and a maximum overall floor area ratio of 2.46:1. Since 1993, a number of infill projects that were approved under the Master Plan were constructed, totaling 73,501 square feet. CSMC is in the process of developing the Advanced Health Sciences Pavilion (the "Pavilion"), the first significant building to be constructed under the Master Plan. After construction of the Pavilion is completed, 187,560 square feet of development rights will remain from the 1993 approval.

2.2 Development Site Location

The specific existing development site location that is subject to the proposed project is situated at the northwest corner of the George Burns Road/Gracie Allen Drive intersection within the CSMC campus. The development site is located at 8723 Alden Drive and is currently occupied by an existing medical building (the Existing Building) and surface Parking Lot No.2. The Existing Building contains a total of 90,000 square feet of floor area³ (or approximately 103,500 square feet of gross floor area) and provides medical uses including administrative support,

³ Except where noted otherwise, all floor area is as defined by Section 12.21 of the Los Angeles Municipal Code.

medical suites and research space. Parking Lot No. 2 currently contains a total of 217 parking spaces. Both the Existing Building and Parking Lot No. 2 will be removed in order to accommodate the proposed Cedars-Sinai Medical Center inpatient facility. The medical uses and total existing building square footage (i.e., 90,000 square feet of floor area) in the Existing Building will be integrated into the proposed inpatient facility. Additionally, the existing parking spaces in Parking Lot No. 2 will be integrated into the parking structure planned to be constructed as part of the proposed project.

2.3 Proposed Project Description⁴

The proposed project consists of a Zone Change from the current [T][Q]C2-2D-O to [T][Q]C2-2D-O with new and revised Conditions and a Master Plan and Development Agreement Amendment to allow 100 new inpatient beds (200,000 square feet) of additional authorized development on the CSMC campus. The new 100 inpatient beds (200,000 square feet) will be located within the proposed West Tower at the northwest corner of the George Burns/Gracie Allen Drive intersection. The building will contain 477,650 square feet, comprising the new 200,000 square feet that are the subject of this application, 187,650 square feet of residual authorized development remaining under the Master Plan, and 90,000 square feet currently contained in the Existing Building (which will be demolished). The new building will be used for medical purposes, including inpatient services, medical suites, research, administrative and diagnostic space. To reflect demolition of the Existing Building and construction of the proposed project, the new and revised Conditions of the Zone Change will authorize 100 new inpatient beds (200,000 square feet or approximately 230,000 gross square feet) of additional authorized inpatient development on the medical campus beyond the current authorized development previously approved by the City of Los Angeles in year 1993 (per Ordinance No. 168.847)⁵. This will increase the maximum allowable gross floor area for CSMC to 2.62 million square feet from the approved 2.27 million square feet. Other approvals or permits required to implement the proposed project include, but are not limited to, grading and building permits, haul route approval, street improvements, drainage improvements, and other minor permits from the City of Los Angeles Department of Building and Safety and Public Works.

Approximately 700 parking spaces are planned to be provided in an adjoining parking structure to be constructed as part of the proposed project. This new parking structure will include the replacement of the 217 existing spaces currently provided in Parking Lot No. 2. A 15-year extension (i.e., to year 2023) to the existing Development Agreement is proposed as part of the project. The site plan for the proposed Cedars-Sinai Medical Center project is illustrated in *Figure 2-1*.

⁴ Source: Planning Associates, Inc.

⁵ A total of 133,350 square feet of the approved 700,000 square feet authorized by Ordinance No. 168,847 has been constructed. Of the remaining 566,650 square feet of entitled but not yet built construction, 379,000 square feet is proposed to be developed as the Advanced Health Sciences Pavilion at CSMC (refer to Related Project No. LA39A in *Table 7-1*). The remaining entitled floor area (i.e., 187,650 square feet), which will be incorporated into the overall proposed project building square footage, is also accounted for in this traffic analysis (refer to Related Project No. LA39B in *Table 7-1*).

sengino_162/25/20 06:80:80 40P 09:0-1-1.dwg/12/2008 rodriguez

3.0 SITE ACCESS AND CIRCULATION

Descriptions of the CSMC campus and project site access and circulation schemes are provided in the following subsections.

3.1 CSMC Campus Access

Vehicular access to the CSMC campus is provided via five key intersections located on the periphery of the campus. The five key Campus access intersections are highlighted in *Figure 3-1*. Listed below are the five key Campus access intersections:

- Robertson Boulevard/Alden Drive-Gracie Allen Drive (Study Intersection No. 2)
- George Burns Road/Beverly Boulevard (Study Intersection No. 6)
- George Burns Road-Hamel Road/Third Street (Study Intersection No. 8)
- Sherbourne Drive/Third Street (Study Intersection No. 11)
- San Vicente Boulevard/Gracie Allen Drive-Beverly Center (Study Intersection No. 14)

All five of the CSMC campus key access intersections are presently traffic signal controlled. Left-turn lanes are provided at all of the subject intersections to facilitate access into the CSMC campus.

Internal circulation within the CSMC campus is primarily provided via three roadways: George Burns Road, Gracie Allen Drive and Sherbourne Drive. George Burns Road is a private, north-south oriented roadway that bisects the CSMC campus, extending between Beverly Drive and Third Street. Gracie Allen Drive is a private, east-west oriented roadway that bisects the CSMC campus, extending between Robertson Boulevard and San Vicente Boulevard. Sherbourne Drive is a private, north-south oriented roadway that extends between Gracie Allen Drive and Third Street. Portions of George Burns Road, Gracie Allen Drive and Sherbourne Drive adjacent to CSMC and within the City of Los Angeles are owned and maintained by CSMC, and provide access to the campus parking facilities and medical buildings.

As noted in *Figure 3-1*, external campus driveways (i.e., CSMC driveways on bordering roadways) are provided on Beverly Boulevard and San Vicente Boulevard. Two external campus driveways are provided on the south side of Beverly Drive between George Burns Road and San Vicente Boulevard. Two external campus driveways are provided on the west side of San Vicente Boulevard between Gracie Allen Drive and Third Street. All of the remaining campus driveways providing access to parking facilities and medical buildings are situated within the CSMC campus.

There are no changes to the CSMC campus key access intersections and external campus driveways planned as part of the proposed Cedars-Sinai Medical Center project. Minor modifications are planned for the internal campus driveway access at the proposed project site located at the northwest corner of the George Burns Road/Gracie Allen Drive intersection. A description of these internal campus access modifications is provided in the following subsection.

3.2 **Proposed Project Site Access**

Access to the existing project site located at the northwest corner of the George Burns Road/Gracie Allen Drive intersection is provided via two driveways. Both existing driveways are located on the west side of George Burns Road between Beverly Drive and Gracie Allen Drive. The northerly driveway currently accommodates left-turn ingress and egress turning movements. The southerly driveway presently is limited to left-turn and right-turn egress turning movements. These existing project site driveways will be removed as part of the proposed project.

As indicated in *Figure 2-1*, access to the adjoining parking structure planned to be constructed as part of the proposed project will be provided via a single driveway on Gracie Allen Drive. This driveway will be located along the north side of Gracie Allen Drive, approximately 260 feet west of George Burns Road. It is anticipated that this driveway will accommodate left-turn and right-turn ingress and egress turning movements. The proposed project site driveway will be constructed to City of Los Angeles design standards.

4.0 EXISTING STREET SYSTEM

Immediate access to the project site is accommodated via Robertson Boulevard, San Vicente Boulevard, Beverly Boulevard and Third Street. The following 22 study intersections were selected for analysis in consultation with LADOT staff in order to determine potential impacts related to the proposed project:

- 1. Robertson Boulevard/Beverly Boulevard.⁶
- 2. Robertson Boulevard/Alden Drive-Gracie Allen Drive.⁷
- 3. Robertson Boulevard/Third Street.⁷
- 4. Robertson Boulevard/Burton Way.⁸
- 5. Robertson Boulevard/Wilshire Boulevard.⁹
- 6. George Burns Road/Beverly Boulevard.⁶
- 7. George Burns Road/Gracie Allen Drive.¹⁰
- 8. George Burns Road-Hamel Road/Third Street.⁷
- 9. Willaman Drive/Third Street.⁷
- 10. Willaman Drive/Wilshire Boulevard.⁹
- 11. Sherbourne Drive/Third Street.⁷
- 12. San Vicente Boulevard/Melrose Avenue.⁶
- 13. San Vicente Boulevard/Beverly Boulevard.⁶
- 14. San Vicente Boulevard/Gracie Allen Drive-Beverly Center.⁷
- 15. San Vicente Boulevard/Third Street.⁷
- 16. San Vicente Boulevard-Le Doux Road/Burton Way.⁷
- 17. San Vicente Boulevard/Wilshire Boulevard.⁸
- 18. La Cienega Boulevard/Beverly Boulevard.⁷

⁶ City of West Hollywood study intersection.

⁷ City of Los Angeles study intersection.

⁸ Shared City of Los Angeles/City of Beverly Hills study intersection.

⁹ City of Beverly Hills study intersection.

¹⁰ CSMC privately controlled study intersection.

19. La Cienega Boulevard/Third Street.⁷

20. La Cienega Boulevard/San Vicente Boulevard.⁷

21. La Cienega Boulevard/Wilshire Boulevard.⁹

22. Orlando Avenue/Third Street.⁷

A total of 21 of the study intersections selected for analysis are presently controlled by traffic signals. The remaining study intersection (Intersection No. 7, George Burns Road/Gracie Allen Drive) is currently all-way stop sign controlled. The existing lane configurations at the 22 study intersections are displayed in *Figure 4-1*.

4.1 Roadway Classifications

The City of Los Angeles utilizes the roadway categories recognized by regional, state and federal transportation agencies. There are four categories in the roadway hierarchy, ranging from freeways with the highest capacity to two-lane undivided roadways with the lowest capacity. The roadway categories are summarized as follows:

- *Freeways* are limited-access and high speed travel ways included in the state and federal highway systems. Their purpose is to carry regional through-traffic. Access is provided by interchanges with typical spacing of one mile or greater. No local access is provided to adjacent land uses.
- *Arterial* roadways are major streets that primarily serve through-traffic and provide access to abutting properties as a secondary function. Arterials are generally designed with two to six travel lanes and their major intersections are signalized. This roadway type is divided into two categories: principal and minor arterials. Principal arterials are typically four-or-more lane roadways and serve both local and regional through-traffic. Minor arterials are typically two-to-four lane streets that service local and commute traffic.
- *Collector* roadways are streets that provide access and traffic circulation within residential and non-residential (e.g., commercial and industrial) areas. Collector roadways connect local streets to arterials and are typically designed with two through travel lanes (i.e., one through travel lane in each direction) that may accommodate on-street parking. They may also provide access to abutting properties.
- *Local* roadways distribute traffic within a neighborhood, or similar adjacent neighborhoods, and are not intended for use as a through-street or a link between higher capacity facilities such as collector or arterial roadways. Local streets are fronted by residential uses and do not typically serve commercial uses.

4.2 Roadway Descriptions

A brief description of the important roadways in the project site vicinity is provided in the following paragraphs.

Robertson Boulevard is a north-south oriented roadway that is located immediately adjacent to the west of the CSMC campus. Robertson Boulevard is designated as a Secondary Highway in the City of Los Angeles General Plan Transportation Element. One through travel lane is provided in each direction on Robertson Boulevard north of Burton Way and two lanes are provided in each direction on the roadway south of Burton Way. Two hour parking between the hours of 8:00 AM and 6:00 PM is generally provided along both sides of Robertson Boulevard near the CSMC campus. Robertson Boulevard is posted for a 35 miles per hour speed limit within the project study area.

George Burns Road is a north-south oriented roadway that bisects the CSMC campus, extending between Beverly Drive and Third Street. Within the CSMC campus and within the City of Los Angeles, George Burns Road is a private roadway. George Burns Road serves as a primary access point to the existing CSMC campus, including access to the emergency room entrance. One through travel lane is provided in each direction on George Burns Road in the project vicinity. Speed humps are provided on the roadway between Beverly Boulevard and Gracie Allen Drive. The George Burns Road/Gracie Allen Drive intersection is currently all-way stop sign controlled. Parking is prohibited along both sides of George Burns Road within the CSMC campus.

Willaman Drive is a north-south oriented roadway that extends between Third Street and Gregory Way. Willaman Drive is designated as a Local roadway in the City of Los Angeles General Plan Transportation Element. One through travel lane is provided in each direction on Willaman Drive in the project vicinity. Two hour parking between the hours of 8:00 AM and 6:00 PM is generally provided along both sides of Willaman Drive near the CSMC campus. There is no posted speed limit on this segment of Willaman Drive in the project vicinity, thus it is assumed to be a prima facie speed limit of 25 miles per hour.

Sherbourne Drive is a north-south oriented roadway that extends southerly from Gracie Allen Drive. Within the CSMC campus (i.e., between Gracie Allen Drive and Third Street), Sherbourne Drive is a private CSMC roadway. South of Third Street, Sherourne Drive is designated as a Collector roadway in the City of Los Angeles General Plan Transportation Element. One through travel lane is provided in each direction on Sherbourne Drive in the project vicinity. Parking is prohibited along both sides of Sherbourne Drive north of Third Street within the CSMC campus. South of Third Street, two hour parking between the hours of 8:00 AM and 6:00 PM is generally provided along both sides of Sherbourne Drive.

San Vicente Boulevard is a northwest-to-southeast oriented roadway that borders the CSMC to the east. San Vicente Boulevard is designated as a Major Highway Class II in the City of Los Angeles General Plan Transportation Element. Two through travel lanes are provided in each direction on San Vicente Boulevard in the project vicinity. Parking is prohibited along both

sides of San Vicente Boulevard south of Beverly Boulevard. North of Beverly Boulevard, two hour parking between the hours of 7:00 AM and 7:00 PM is generally provided along both sides of San Vicente Boulevard. San Vicente Boulevard is posted for a 35 miles per hour speed limit within the project study area.

La Cienega Boulevard is a north-south oriented roadway that is located east of the CSMC campus. La Cienega Boulevard is designated as a Major Highway Class II in the City of Los Angeles General Plan Transportation Element. Two through travel lanes are provided in each direction on La Cienega Boulevard in the project vicinity. Parking is prohibited along both sides of La Cienega Boulevard in the vicinity of the CSMC campus. La Cienega Boulevard is posted for a 35 miles per hour speed limit within the project study area.

Beverly Boulevard is an east-west oriented roadway that borders the CSMC campus to the north. Beverly Boulevard is designated as a Major Highway Class II in the City of Los Angeles General Plan Transportation Element. Two through travel lanes are provided in each direction on Beverly Boulevard in the project vicinity. Two hour parking between the hours of 8:00 AM and 6:00 PM is generally provided along both sides of Beverly Boulevard near the CSMC campus. Beverly Boulevard is posted for a 35 miles per hour speed limit within the project study area.

Gracie Allen Drive is an east-west oriented roadway that bisects the CSMC campus, extending between Robertson Boulevard and San Vicente Boulevard. Within the CSMC campus and within the City of Los Angeles, Gracie Allen Drive is a private roadway. Gracie Allen Drive serves as a primary access point to the existing CSMC campus, including access to the emergency room entrance. One to two through travel lanes are provided in each direction on Gracie Allen Drive in the project vicinity. The George Burns Road/Gracie Allen Drive intersection is currently all-way stop sign controlled. Parking is prohibited along both sides of Gracie Allen Drive within the CSMC campus.

Third Street is an east-west oriented roadway that borders the CSMC campus to the south. Third Street is designated as a Secondary Highway in the City of Los Angeles General Plan Transportation Element. One through travel lane is provided in each direction on Third Street near the CSMC campus, although two through travel lanes are provided in each direction on the roadway as a result of weekday peak commuter period curbside parking restrictions. Parking is prohibited along the north side of Third Street adjacent to the CSMC campus. However, two hour parking between the hours of 9:00 AM and 4:00 PM is generally provided along the south side of Third Street is posted for a 30 miles per hour speed limit within the project study area.

Burton Way is an east-west oriented roadway that is located south of the CSMC campus. Burton Way is designated as a Secondary Highway in the City of Los Angeles General Plan Transportation Element. A raised median island is provided on Burton Way within the project study area. Three through travel lanes are provided in each direction on Burton Way in the vicinity of the CSMC campus. Two hour parking between the hours of 8:00 AM and 6:00 PM is generally provided along both sides of Burton Way within the project study area. Burton Way is posted for a 35 miles per hour speed limit within the project study area.

Wilshire Boulevard is an east-west oriented roadway that is located south of the CSMC campus. Wilshire Boulevard is designated as a Major Highway Class II in the City of Los Angeles General Plan Transportation Element. Three through travel lanes are provided in each direction on Wilshire Boulevard within the project study area. One hour parking between the hours of 10:00 AM and 3:00 PM is generally provided along both sides of Wilshire Boulevard within the project study area. Wilshire Boulevard is posted for a 35 miles per hour speed limit within the project study area.

4.3 Existing Public Bus Transit Service

Public bus transit service within the CSMC campus study area is currently provided by the Los Angeles County Metropolitan Transportation Authority (Metro), City of Los Angeles Department of Transportation and City of West Hollywood. A summary of the existing transit service, including the transit route, destinations and peak hour headways is presented in *Table 4-1*. The existing public transit routes in the CSMC campus vicinity are illustrated in *Figure 4-2*.

O JOB FILE/2846/CSMCPreductor/2843-Rpt4 date

Table 4-1 EXISTING PUBLIC TRANSIT ROUTES [1]

23-Jun-2008

				NO OF BU	SES
		ROADWAY	ING	XING PEAK	(HOUR
ROUTE	DESTINATIONS	NEAR SITE	DIR	AM	PM
Metro 14	Beverly Hills to Downtown Los Angeles	Beverly Boulevard	EB	Q	6
			WB	7	5
Metro 16	Century City to Downtown Los Angeles	Third Street	EB	10	Ξ
	(via Hancock Park, Westlake)		WB	12	15
Metro 218	Cedar Sinai Medical Center to Studio City	Third Street	NB	4	m
	(via Beverly Hills, Park La Brea, West Hollywood)		SB	4	т
Metro 220	Culver City to West Hollywood	Robertson Boulevard	NB	7	5
	(via Beverly Hills)		SB	2	2
Metro 316	Century City to Downtown Los Angeles	Third Street	EB	7	9
	(via Hancock Park, Westlake)		WB	9	4
Metro 305	Willowbrook to Westwood	San Vicente Boulevard	NB	7	2
	(via Watts, South LA, Crenshaw District, Mid-City, Miracle Mile, West Hollywood, Beverly Hills)		SB	7	7
Merto 550	San Pedro to West Hollywood	San Vicente Boulevard	NB	5	m
	(via Harbor City, Harbor Gateway, Los Angeles Exposition Park. Mid-City. Beverly Hills)		SB	m	2
Metro 714	Reverty Hills to Downtown Los Angeles	Beverly Boulevard	ц	P	
			WB	4	4

Table 4-1 (Continued) EXISTING PUBLIC TRANSIT ROUTES [1]

23-Jun-2008

				VO. OF BUS	ES
UTE	DESTINATIONS	NEAR SITE	DIR	AM	PM
ax [2]	Wilshire Boulevard to Robertson Boulevard (Fairfax Ave., Melrose Ave, La Cienega Blvd.)	Third Street	EB WB	4 4	4 4
ywood/West I [2]	Hollywood to West Hollywood	Gracie Allen Drive	EB WB	4 4	4 4
ywood City e A/B [3]	Hollywood to Beverly Hills (via West Hollywood)	San Vicente Boulevard	EB WB	0 0	2

Source: Los Angeles County Metropolitan Transportation Authority (LACMTA) Website.
Source: City of Los Angeles Department of Transportation (LADOT) Website.
Source: City of West Hollywood Website.

5.0 TRAFFIC COUNTS

Manual counts of vehicular turning movements were conducted at each of the 22 study intersections during the weekday morning (AM) and afternoon (PM) commuter periods to determine the peak hour traffic volumes. The manual counts were conducted by a traffic count subconsultant, Accutek Traffic Data, at the 22 study intersections from 7:00 to 10:00 AM to determine the AM peak commuter hour, and from 3:00 to 6:00 PM to determine the PM peak commuter hour. Traffic volumes at the 22 study intersections show the morning and afternoon peak periods typically associated with peak commuter hours in the metropolitan area. Additionally, the existing traffic volumes for the above referenced 22 study intersections were increased at an annual rate of one and one-half percent (1.5%) per year to reflect year 2008 existing conditions.

The existing weekday AM and PM peak commuter period manual counts of turning vehicles at the study intersections are summarized in **Table 5-1**. The existing traffic volumes at the study intersections during the weekday AM and PM peak commuter hours are shown in **Figures 5-1** and **5-2**, respectively. Summary data worksheets of the manual traffic counts of the study intersections are contained in **Appendix A**.

Table 5-1 EXISTING TRAFFIC VOLUMES [1]

	23-3011-2000	1		AM PEA	K HOUR	PM PEA	K HOUR
NO.	INTERSECTION	DATE	DIR	BEGAN	VOLUME	BEGAN	VOLUME
1	Robertson Boulevard/ Beverly Boulevard	10/09/07	NB SB EB WB	8:00	507 750 1,029 1,542	4:30	690 565 1,330 1,121
2	Robertson Boulevard/ Alden Drive-Gracie Allen Drive	10/09/07	NB SB EB WB	8:15	593 654 145 128	4:45	712 537 174 194
3	Robertson Boulevard/ Third Street	10/09/07	NB SB EB WB	8:15	699 595 395 949	4:45	694 592 533 633
4	Robertson Boulevard/ Burton Way	10/17/07	NB SB EB WB	8:30	758 732 779 1,540	5:00	768 719 1,201 1,043
5	Robertson Boulevard/ Wilshire Boulevard	10/17/07	NB SB EB WB	8:30	982 852 1,251 2,177	5:00	888 862 1,978 1,511
6	George Burns Road/ Beverly Boulevard	10/10/07	NB SB EB WB	8:00	115 9 1,018 1,790	4:30	469 73 1,314 1,129
7	George Burns Road/ Gracie Allen Drive	10/10/07	NB SB EB WB	7:45	212 373 167 213	4:30	415 227 307 216
8	George Burns Road-Hamel Road/ Third Street	10/10/07	NB SB EB WB	8:00	169 212 644 1,207	4:30	54 640 705 718
9	Willaman Drive/ Third Street	10/10/07	NB SB EB WB	8:30	269 0 527 1,237	4:45	359 0 943 738
10	Willaman Drive/ Wilshire Boulevard	10/17/07	NB SB EB WB	8:30	340 218 1,267 2,036	5:00	265 336 1,758 1,452

[1] Counts conducted by Accutek.

Note: Year 2007 manual traffic counts were adjusted by a 1.0 percent (1.0%) ambient growth factor to reflect year 2008 existing conditions.

Table 5-1 (Continued) EXISTING TRAFFIC VOLUMES [1]

	23-Jun-2008						
				AM PEA	K HOUR	PM PEA	KHOUR
NO.	INTERSECTION	DATE	DIR	BEGAN	VOLUME	BEGAN	VOLUME
11	Sherbourne Drive/ Third Street	10/10/07	NB SB EB WB	8:15	75 55 682 1,444	4:45	61 354 1,178 715
12	San Vicente Boulevard/ Melrose Avenue	10/17/07	NB SB EB WB	8:15	813 635 547 1,082	5:00	1,095 908 972 872
13	San Vicente Boulevard/ Beverly Boulevard	10/11/07	NB SB EB WB	8:30	891 1,076 728 1,552	4:15	1,072 940 1,331 1,026
14	San Vicente Boulevard/ Gracie Allen Drive-Beverly Center	10/11/07	NB SB EB WB	8:30	931 955 192 16	5:00	930 969 494 375
15	San Vicente Boulevard/ Third Street	10/11/07	NB SB EB WB	8:15	810 755 551 1,472	5:00	802 1,162 1,321 738
16	San Vicente Boulevard-Le Doux Road/ Burton Way	10/16/07	NB SB EB WB	8:30	20 712 537 2,056	4:45	65 1,070 1,198 1,336
17	San Vicente Boulevard/ Wilshire Boulevard	10/18/07	NB SB EB WB	8:15	1,722 1,061 1,322 1,448	5:00	969 1,448 1,519 1,446
18	La Cienega Boulevard/ Beverly Boulevard	10/18/07	NB SB EB WB	8:45	1,019 1,528 779 1,515	5:00	1,719 1,276 1,649 1,104
19	La Cienega Boulevard/ Third Street	10/16/07	NB SB EB WB	8:00	1,305 1,437 535 1,457	5:00	1,687 1,318 1,323 856
20	La Cienega Boulevard/ San Vicente Boulevard	10/16/07	NB SB EB WB	8:00	1,389 1,570 1,183 2,040	5:00	1,626 1,346 2,216 1,476

[1] Counts conducted by Accutek.

Note: Year 2007 manual traffic counts were adjusted by a 1.0 percent (1.0%) ambient growth factor to reflect year 2008 existing conditions.

Table 5-1 (Continued) EXISTING TRAFFIC VOLUMES [1]

23-Jun-2008							
				AM PEAK HOUR		PM PEA	K HOUR
NO.	INTERSECTION	DATE	DIR	BEGAN	VOLUME	BEGAN	VOLUME
21	La Cienega Boulevard/ Wilshire Boulevard	10/18/07	NB SB EB WB	8:15	1,723 1,334 1,275 1,841	5:00	1,585 1,545 1,653 1,509
22	Orlando Avenue/ Third Street	10/10/07	NB SB EB WB	8:15	185 480 600 1,373	5:00	485 245 1,291 798

[1] Counts conducted by Accutek.

Note: Year 2007 manual traffic counts were adjusted by a 1.0 percent (1.0%) ambient growth factor to reflect year 2008 existing conditions.

o:\job_file\2843\csmcproj\dwg\f5-1.dwg_LDP_08:11:08_06/23/2008_rodriquez

6.0 TRAFFIC FORECASTING METHODOLOGY

In order to estimate the traffic impact characteristics of the Cedars-Sinai Medical Center project, a multi-step process has been utilized. The first step is trip generation, which estimates the total arriving and departing traffic volumes on a peak hour and daily basis. The traffic generation potential is forecast by applying the appropriate vehicle trip generation equations or rates to the project development tabulation.

The second step of the forecasting process is trip distribution, which identifies the origins and destinations of inbound and outbound project traffic volumes. These origins and destinations are typically based on demographics and existing/anticipated travel patterns in the study area.

The third step is traffic assignment, which involves the allocation of project traffic to study area streets and intersections. Traffic assignment is typically based on minimization of travel time, which may or may not involve the shortest route, depending on prevailing operating conditions and travel speeds. Traffic distribution patterns are indicated by general percentage orientation, while traffic assignment allocates specific volume forecasts to individual roadway links and intersection turning movements throughout the study area.

With the forecasting process complete and project traffic assignments developed, the impact of the proposed project is isolated by comparing operational (i.e., Levels of Service) conditions at the selected key intersections using expected future traffic volumes with and without forecast project traffic. The need for site-specific and/or cumulative local area traffic improvements can then be evaluated and the significance of the project's impacts identified.

6.1 Project Traffic Generation

As previously discussed in Subsection 2.3 (Proposed Project Description) herein, the proposed project will be 11-stories high and contain 100 hospital beds, and will be used for medical purposes, including inpatient services, medical suites, research, administrative and diagnostic space. The proposed project will include 100 inpatient beds (200,000 square feet or approximately 230,000 gross square feet) of additional authorized inpatient development on the medical campus beyond the current authorized development previously approved by the City of Los Angeles. Authorization for development of the new facility will consist of three components:

- 1. The proposal to develop 100 new inpatient beds (200,000 square feet);
- 2. Replacement of the existing 90,000 square feet of building floor area and uses contained within the Existing Building; and
- 3. Development of the anticipated 187,650 square feet of remaining floor area entitled in 1993 (pursuant to Ordinance No. 168,847).

Of these three components, only the 100 new inpatient beds (200,000 square feet) is considered "new" as the 90,000 square feet of building floor area associated with the Existing Building is existing space and the 187,650 square feet of building floor area associated with the existing Development Agreement is entitled and considered in the traffic analysis as a related project (i.e., Related Project No. LA39B as shown in *Table 7-1*). Therefore, for purposes of this traffic impact assessment, only the 100 new inpatient beds (200,000 square feet) within the proposed facility is considered as "new" traffic.

Traffic generation is expressed in vehicle trip ends, defined as one-way vehicular movements, either entering or exiting the generating land use. Generation equations and/or rates used in the traffic forecasting procedure are found in the Seventh Edition of *Trip Generation*, published by the Institute of Transportation Engineers (ITE) [Washington D.C., 2003]. Traffic volumes expected to be generated by the proposed project were based upon rates per number of hospital beds. ITE Land Use Code 610 (Hospital) trip generation average rates were used to forecast the traffic volumes expected to be generated by the 100 new inpatient hospital beds planned for the proposed project.

The trip generation rates and forecast of the vehicular trips anticipated to be generated by the proposed project are presented in *Table 6-1*. The project trip generation forecast was submitted for review and approval by LADOT staff.

As presented in *Table 6-1*, the proposed project is expected to generate 113 net new vehicle trips (79 inbound trips and 34 outbound trips) during the AM peak hour. During the PM peak hour, the proposed project is expected to generate 130 net new vehicle trips (47 inbound trips and 83 outbound trips). Over a 24-hour period, the proposed project is forecast to generate 1,181 net new daily trip ends during a typical weekday (approximately 592 inbound trips and 592 outbound trips).

6.2 Project Traffic Distribution and Assignment

Project traffic volumes both entering and exiting the site have been distributed and assigned to the adjacent street system based on the following considerations:

- The site's proximity to major traffic corridors (i.e., Robertson Boulevard, San Vicente Boulevard, Beverly Boulevard, Third Street, Burton Way, etc.);
- Expected localized traffic flow patterns based on adjacent roadway channelization and presence of traffic signals;
- Existing intersection traffic volumes;
- Ingress/egress availability at the CSMC campus;
- The location of existing and proposed parking areas; and
- Input from LADOT staff.

Table 6-1 PROJECT TRIP GENERATION [1]

23-JUN-2008		DAILY TRIP ENDS [2]	AM V	PEAK I OLUME	HOUR S [2]	PM V	PEAK H OLUME	HOUR S [2]
LAND USE	SIZE	VOLUMES	IN	OUT	TOTAL	IN	OUT	TOTAL
Hospital [3]	100 Beds	1,181	79	34	113	47	83	130
TOTAL		1,181	79	34	113	47	83	130

[1] Source: ITE "Trip Generation", 7th Edition, 2003.

[2] Trips are one-way traffic movements, entering or leaving.

[3] ITE Land Use Code 610 (Hospital) trip generation average rates. The number of inpatient hospital beds is based on a total of 200,000 square feet of development with an estimate of 2,000 square feet for each hospital bed (i.e., 200,000 SF / 2,000 SF = 100 beds).

- Daily Trip Rate: 11.81 trips/Bed; 50% inbound/50% outbound

- AM Peak Hour Trip Rate: 1.13 trips/Bed; 70% inbound; 30% outbound

- PM Peak Hour Trip Rate: 1.30 trips/Bed; 36% inbound; 64% outbound

The general, directional traffic distribution pattern for the proposed Cedars-Sinai Medical Center project is presented in *Figures 6-1*. The forecast AM and PM peak hour project traffic volumes associated with the proposed project are presented in *Figures 6-2* and *6-3*, respectively. The traffic volume assignments presented in *Figures 6-2* and *6-3* reflect the traffic distribution characteristics shown in *Figure 6-1* and the project traffic generation forecast presented in *Table 6-1*.

o:\job_file\2843\csmcproj\dwg\f6-2.dwg LDP 08:11:56 06/23/2008 rodriquez

7.0 CUMULATIVE DEVELOPMENT PROJECTS

The forecast of future pre-project conditions was prepared in accordance to procedures outlined in Section 15130 of the CEQA Guidelines. Specifically, the CEQA Guidelines provides two options for developing the future traffic volume forecast:

"(A) A list of past, present, and probable future projects producing related or cumulative impacts, including, if necessary, those projects outside the control of the [lead] agency, or

(B) A summary of projections contained in an adopted general plan or related planning document, or in a prior environmental document which has been adopted or certified, which described or evaluated regional or areawide conditions contributing to the cumulative impact. Any such planning document shall be referenced and made available to the public at a location specified by the lead agency."

Accordingly, the traffic analysis provides a highly conservative estimate of future pre-project traffic volumes as it incorporates both the "A" and "B" options outlined in CEQA Guidelines for purposes of developing the forecast.

7.1 Related Projects

7.1.1 Area Related Projects

A forecast of on-street traffic conditions prior to occupancy of the proposed project was prepared by incorporating the potential trips associated with other known development projects (related projects) in the area. With this information, the potential impact of the proposed project can be evaluated within the context of the cumulative impact of all ongoing development. The list of related projects was based on information on file at the City of Los Angeles Department of Transportation, City of West Hollywood and City of Beverly Hills, as well as recently accepted traffic impact analysis reports prepared for projects in the vicinity of the CSMC campus. The list of related projects in the project site area is presented in *Table 7-1*. The location of the related projects is shown in *Figure 7-1*. The list of related projects was submitted to LADOT staff for review and approval.

Traffic volumes expected to be generated by the related projects were calculated using rates provided in the ITE *Trip Generation* manual. The related projects respective traffic generation for the AM and PM peak hours, as well as on a daily basis for a typical weekday, is summarized in **Table 7-2**. The anticipated distribution of the related projects traffic volumes to the study intersections during the AM and PM peak hours is displayed in **Figures 7-2** and **7-3**, respectively.

Table 7-1 LIST OF RELATED PROJECTS [1]

MAD	DDO JECT NAME/				23-Jun-2008
NO.	PROJECT NUMBER	LOCATION	LAND USE	SIZE	STATUS
		CITY OF LOS AND	GELES [1]		
LAI	EAF 2000-3349	9051 W Pico Bl	Private School (Pre- K to 5th grade)	42,000 SF	Proposed
LA2	EAF 2001-4993	1016 S La Cienega Bl	Auto Body Shop	17,036 SF	Proposed
LA3	EAF 2004-1143	801 N Fairfax Av	Apartments Retail	93 DU 15,826 SF	Proposed
LA4	EAF 2004-1804	329 S La Cienega Bl	Private School	140 Students	Proposed
LA5	EAF 2004-5880	100 N La Cienega Bl	Condominiums Apartments High Turn-over Restaurant Retail	62 DU 177 DU 38,739 SF 316,279 SF	Proposed
LA6	Park La Brea Apartment Addition EAF 2004-7359	6298 W 3rd Sı	Apartments	300 DU	Proposed
LA7	Wilshire Skyline 2003-CEN-463	6411 W Wilshire Bl	Retail Fast-Food Restaurant Apartments	29,060 SF 2,500 SF 130 DU	Proposed
LA8	Sunset Legacy Lofts	7950 W Sunset Bl	Condominiums Retail	183 DU 12,891 SF	Proposed
LA9	ENV2005-6605MN	8525 W Pico Bl	Apartments Retail	39 DU 11,327 SF	Proposed
LA10	TT-61512	1518 S Shenandoah St	Condominiums	16 DU	Proposed
LAII	ENV 2004-6237-MND	357 N Haywonh Ave	Condominiums	16 DU	Proposed
LA12	ZA-2005-749-ZAA	820 S Bedford St	Condominiums	12 DU	Proposed
LA13	ZA-2005-922-CU	603 N Fairfax Av	Hotel	17 Rooms	Proposed
LA14	ENV 2005-6481-EAF	428 S Willaman Dr	Condominiums	14 DU	Proposed
LA15	ENV 2005-4869-MND	600 S Ridgeley Dr	Condominiums	22 DU	Proposed
LA16	ZA 2005-6576-CUB	8108 W 3rd St	Restaurant	42 Seats	Proposed
LA17	VTT 64813	746 S Masselin Ave	Condominiums	60 DU	Proposed
LA18	VTT 63482	842 N Hayworth Ave	Condominiums	28 DU	Proposed
LA19	TT 64919	418 S Hamel Rd	Condominiums	8 DU	Proposed
LA20	TT 63481	111 S Croft Ave	Condominiums	10 DU	Proposed
LA21	TT 66142	751 S Curson Ave	Condominiums	10 DU	Proposed
LA22	EAF 1998-0305	6120 W Pico Bl	Retail	7,929 SF	Proposed

					23-Jun-2008
MAP NO.	PROJECT NAME/ PROJECT NUMBER	LOCATION	LAND USE	SIZE	STATUS
LA23	EAF 1995-0059	1461 S La Cienega Bl	Fast Food Restaurant W/ Drive-Thru	1,600 SF	Proposed
LA24	EAF 1995-0063	1742 S La Cienega Bl	Fast Food Restaurant W/ Drive-Thru	3,160 SF	Proposed
LA25	EAF 1995-0123	431 S Fairfax Av	Food Court	11,023 SF	Proposed
LA26		8305 W Sunset Bl	Retail Restaurant	2,972 SF 10,300 SF	Proposed
LA27	CPC 2004-1906-2C-GPA-CU	111 S The Grove Dr	Self-storage facility	139,200 SF	Proposed
LA28	ZA 2005-9141-CUB	189 S The Grove Dr	Restaurant	150 Seats	Proposed
LA29	EAF 2003-1206	145 N La Brea Avenue	Shopping Center	18, 610 SF	Proposed
LA30		9760 W Pico Boulevard	Private School Addition	22,000 SF	Proposed
LA31		5500 W Wilshire Boulevard	Apartments	175 DU	Proposed
LA32		7600 W Beverly Boulevard	Museum	8,400 SF	Proposed
LA33		101 S La Brea Avenue	Condominiums Retail Restaurant	118 DU 26,400 SF 3,000 SF	Proposed
LA34	ENV2006-6209EA	725 S Curson Avenue	Office Restaurant	28,800 SF 800 SF	Proposed
LA35		5863 W 3rd Street	Apartments	60 DU	Proposed
LA36		5900 W Wilshire Boulevard	Office High Turnover Restaurant Restaurant	7,000 SF 3,500 SF 15,613 SF	Proposed
LA37		300 S Wetherly Drive	Condominiums	140 DU	Proposed
LA38		1042-1062 S Robertson Boulevard	School Expansion	38,240 SF	Proposed
LA39A		Cedars-Sinai Medical Center Advanced Health Sciences Pavilion	Medical Suites Hospital	114,800 SF 264,200 SF	Proposed
LA39B		Cedars-Sinai Medical Center (Remaining Entitled Development under Ordinance No. 168,847)	Hospital	187,650 SF	Proposed
LA40	2004-CEN-1000	5600 W Wilshire Boulevard	Apartments Restaurant Retail	288 DU 4,000 GSF 8,500 GLSF	Proposed
LA41	2007-CEN-4579	375 N La Cienega Boulevard	Apartments Retail Retail	125 DU 22,300 GLSF (19,200 GLSF)	Proposed

MAP	PROJECT NAME/		r	1	23-Jun-2008
<u>N</u> O.	PROJECT NUMBER	LOCATION	LAND USE	SIZE	STATUS
		CITY OF BEVERL	Y HILLS [2]		1
BHI		8800 Burton Way	Office Retail Existing Office	11,700 SF 2,870 SF (1,260 SF)	Proposed
BH2		8800 W Wilshire Bl	Retail Office Existing Office	2,870 SF 11,700 SF (1,260 SF)	Proposed
внз		9590 W Wilshire Bl	Condominiums Retail	60 DU 12,000 SF	Proposed
BH4		9200 W Wilshire Bl	Condominiums Retail/Restaurant	53 DU 14,000 SF	Proposed
BH5		8600 W Wilshire Bl	Condominiums Medical Office	21 DU 4,800 SF	Proposed
BH6		231 N Beverly Dr	Office/Entertainment	201,000 SF	Proposed
BH7		317-325 S Elm Dr	Condominiums Existing Condominiums	25 DU (8 DV)	Proposed
BH8		447 N Doheny Dr	Condominiums Existing Apartments	23 DU (16 DU)	Proposed
BH9		313-317 S Reeves Dr	Condominiums Existing Apartments	10 DU (4 DU)	Proposed
BH10		154-168 N La Peer Dr	Condominiums Existing Condominiums	16 DU (6 DU)	Proposed
BH11	Young Israel Synagogue	9261 Alden Dr	Sanctuary Multi-Purpose Room	14,811 SF 1,254 SF	Proposed
BH12	Beverly Hills Public Gardens/ Montage Hotel	202-240 N Beverly Dr	Hotel Condominiums Retail/Restaurants Public Garden	214 Rooms 25 DU 27,000 SF 33,279 SF	Proposed
BH13		265 N Beverly Dr	Office	41,500 SF	Proposed
BH14	Gagossian Gallery	456 N Carnden Dr	Retail Expansion	1,750 SF	Proposed
BH15		257 N Canon Dr	Medical Office Surgery Center Retail	23,139 SF 13,609 SF 8,148 SF	Proposed
BH16		338 N Canon Dr	Retail	11,900 SF	Proposed
BH17		131-191 N Crescent Dr	Apartments Retail/Office	88 DU 40,000 SF	Proposed
BH18	Beverly Hills Cultural Center	469 N Crescent Dr	Cultural Center	34,000 SF	Proposed
BH19	Mercedes-Benz Service facility	400 Foothill Rd	Service Facility	53,000 SF	Proposed

MAP	PROJECT NAME/	LOCATION	I AND LICE	E17E	23-Jun-2008
NO.	FROJECT NUMBER	LOCATION		SIZE	STATUS
BH20		50 N La Cienega Bl	Medical Office Existing Office	14,000 SF (14,000 SF)	Proposed
BH21	BMW	9001 Olympic Bl	New Car Dealer	39,700 SF	Proposed
BH22		326 N Rodeo Dr	Retail	4,550 SF	Proposed
BH23		8536 Wilshire Bl	Medical Office Retail	12,445 SF 12,445 SF	Proposed
BH24		8601 Wilshire Bl	Condominiums	37 DU	Proposed
BH25		8767 Wilshire Bl	Retail/Office	75,000 SF	Proposed
BH26		143-149 N Amaz Dr	Condominiums	23 DU	Proposed
BH27		216-220 S Amaz Dr	Condominiums	16 DU	Proposed
BH28		201 N Crescent Dr	Assisted Care Facility	80 DU	Proposed
BH29		155-157 N Hamilton Dr	Condominiums	יעם דו	Proposed
BH30		225 S Hamilion Dr	Condominiums Existing Condominiums	27 DU (14 DU)	Proposed
BH31		140-144 S Oakhurst Dr	Condominiums	יו טע וו	Proposed
BH32		432 N Oakhurst Dr	Condominiums	34 DU	Proposed
внзз		450-460 N Palm Dr	Condominiums	38 DU	Proposed
BH34		437-443 N Palm Dr	Condominiums	13 DU	Proposed
BH35		146 Clark Dr	Retail Condominiums Existing Single-Family Home	500 SF 6 DU (1 DU)	Proposed
HB36		9844 Wilshire Boulevard	Commercial Existing Retail	95,000 SF (9,633 SF)	Proposed
BH37		9754 Wilshire Boulevard	Office Medical Office	24,566 SF 7,977 SF	Proposed
BH38		9876 Wilshire Boulevard	Residential Existing Non-Hotel Office Existing Hotel Support Existing Hotel	120 DU (13,030 SF) (1,804 SF) (47 Rooms)	Proposed
BH39		129 S. Linden Drive	Senior Congregation	76 DU	Proposed
BH40		9900 Wilshire Boulevard	Condominiums Retail Restaurant	252 DU 15,600 SF 4,800 SF	Proposed

MAP	PROJECT NAME/			r	23-Jun-2008
NO.	PROJECT NUMBER	LOCATION	LAND USE	SIZE	STATUS
		CITY OF WEST HOL		T	
WHI	TT-62042	928 N Crofi Ave	Condominiums	12 DU	Proposed
WH2	ENV 2005-2427-CE	141 S Clark Dr	Condominiums	105 DU	Proposed
WH3	Beverly West Square Commercial Center TIS 1996-0923	Beverly BI & Doheny BI	Retail Center	94,000 SF	Proposed
WH4	Sunset Millennium Project TIS 1999-0722	La Cienega Bl & Sunset Bl	Hotel Retail/Restaurant Condominiums	296 Rooms 39,440 SF 189 DU	Proposed
WH5	DMP-004-026	8900 Beverly Bl	Retail Existing Condominiums	39,178 SF (8 DU)	Proposed
WH6	DVP-03-10	901 Hancock Ave	Retail Condominiums Restaurant	12,500 SF 40 DU 3,200 SF	Proposed
WH7	DVP-04-21	1351 Havenhurst Dr	Condominiums	12 DU	Proposed
WH8	DMP 004-013	1342 Hayworth Ave	Apartments Existing Apartments	16 DU (10 DU)	Proposed
WH9	CUP-005-012	723 Huntley Dr	Day Care Center	28 Children	Proposed
WH10	TTM-005-014	1248 Laurel Ave	Condominiums Existing Condominiums	16 DU (6 DU)	Proposed
WHII	TTM-005-024	1238 Larrabee St	Apartments Existing Apartments	15 DU (13 DU)	Proposed
WH12	DVP 04-26	1343 Laurel Ave	Senior Housing	35 DU	Proposed
WH13	TTM 006-001	1350 Hayworth Ave	Condominiums Existing Apartments	17 DU (16 DU)	Proposed
WH14	DMP 005-036	8580 Melrose Ave	Retail Existing Retail	9,995 SF (6,475 SF)	Proposed
WH15	DMP 005-035	8590 Meirose Ave	Retail Existing Retail	6,905 SF (3,523 SF)	Proposed
WH16	DMP-005-014	9061 Nemo St	Mixed-Use (Retail, Office, Condominiums)	9,990 SF	Proposed
WH17	DMP-005-004	923 Palm Ave	Condominiums Existing Condominiums	20 DU (8 DU)	Proposed
WH18	DMP-005-040	8120 Santa Monica Bl	Retail Condominiums	13,830 SF 28 DU	Proposed
WH19	DVP-004-002	8631 Santa Monica Bl	Retail	4,200 SF	Proposed
WH20	DVP-00-56	8788 Shoreham Dr	Condominiums	15 DU	Proposed

					23-Jun-2008
MAP NO.	PROJECT NAME/ PROJECT NUMBER	LOCATION	LAND USE	SIZE	STATUS
WH21	DMP-005-033	8760 Shoreham Dr	Condominiums Existing Single-Family Home	12 DU (1 DU)	Proposed
WH22	Mixed-Use Project DMP-006-008	9040 Sunset Bl	Retail/Restaurant/Office Condominiums Apartments	190,350 SF 61 DU 15 DU	Proposed
WH23	DMP-006-014	612 Westmont Dr	Retail Townhomes	2,900 SF 6DU	Proposed
WH24	DVP-004-018	612-616 Croft Avenue	Condominiums Existing Single-Family Home	11 DU (2 SF)	Proposed
WH25		1200 Alta Ioma Rd	Hotel Addition	40 Rooms	Proposed
WH26		8783 Bonner Dr	Retail	1,000 SF	Proposed
WH27		1042-1050 N Edinburgh Ave	Condominiums Existing Condominiums	18 DU (8 DU)	Proposed
WH28		1433 Havenhurst Dr	Apartments Existing Apartments	24 DU (3 DU)	Proposed
WH29		8465 Holloway Dr	Condominiums Hotel Restaurant	16 DU 20 Rooms 4,619 SF	Proposed
WH30		825 N Kings Rd	Condominiums Existing Single-Family Home	18 DU (1 DU)	Proposed
WH31		1136-1142 N La Cienega Bl	Condominiums Existing Condominiums	16 DU (2 DU)	Proposed
WH32		1037-1051 N Laurel Ave	Condominiums Existing Condominiums	16 DU (10 DU)	Proposed
WH33		8448 Melrose Ave	Retail	4,000 SF	Proposed
WH34		8525 Melrose Ave	Retail Existing Single-Family Home	9,206 SF (2 DU)	Proposed .
WH35		8687 Melrose Ave	Office	400,000 SF	Proposed
WH36		8750 Melrose Ave	Medical Office	120,000 SF	Proposed
WH37	Melrose Triangle	9040-9098 Santa Monica Bl	Condominiums Retail Self-storage Facility Existing Retail	191 DU 71,000 SF 327,000 SF (90,000 SF)	Proposed
WH38		8121 Norton Ave	Condominiums Existing Single-Family Home	16 DU (3 DV)	Proposed
WH39		1220 N Orange Grove Ave	Condominiums Existing Single-Family Home	12 DU (1 DU)	Proposed

MAP	PROJECT NAME/			[23-Jun-2008
NO.	PROJECT NUMBER	LOCATION	LAND USE	SIZE	STATUS
WH40		8474-8544 W. Sunset Boulevard	Retail/Restaurant Hotel Residential	39,440 SF 296 Rooms 189 DU	Proposed
WH41	Sunset Olive	8430 W Sunset Bl	Retail Condorniniums	35,000 SF 138 DU	Proposed
WH42		8746 W Sunset Bl	Retail	2,323 SF	Proposed
WH43		8873 W Sunset Bl	Retail	9,995 SF	Proposed
WH44		8950-8970 W Sunset Bl	Hotel Condominiums	196 Rooms 4 DU	Proposed
WH45	i	9016 W Sunset Bl	Medical Office Existing Retail	107,900 SF (11,400 SF)	Proposed
WH46		841-851 Westmount Dr	Condominiums	16 DU	Proposed
WH47		310 N Huntley Dr	Private School	170 Student	Proposed
WH48	TTM 03-01	1146 Hacienda Place	Condominiums Existing Single-Family Home	10 DU (1 SF)	Proposed
WH49	TTM-006-003	1236 Harper Avenue	Condominiums	40 DU	Proposed
WH50	DMP-006-011	9001 Santa Monica Boulevard	Condominiums Retail Restaurant Five Existing Lots	42 DU	Proposed
WH51	DVP-005-059	914 Wetherly Drive	Apartments Condominiums Senior Housing Existing Single-Family Home	28 DU 2 DU 26 DU (2 SF)	Proposed
WH52	DVP-006-006	8969 Santa Monica Boulevard	Supermarket	65,325 SF	Proposed
WH53		8849 W. Sunset Boulevard	Retail	7,726 SF	Proposed
WH54		1140 N. Formosa Avenuc	Condominiums	יעם וו	Proposed
WH55		329 N. La Cienega Boulevard	Private School	140 Stds.	Proposed
WH56		9062 Nemo Street	Retai] Condominiums	20,105 SF 4 DU	Proposed
WH57		365 N. San Vicente Boulevard	Condominiums Senior Housing	135 DU 42 DU	Proposed
WH58		8989 Santa Monica Boulevard	Commercial	70,000 SF	Proposed
WH59		8305 W. Sunset Boulevard	Retail Restaurant	2,972 SF 10,300 SF	Proposed

[1]

Sources: - City of Los Angeles Departments of Planning and Transportation. - City of Beverly Hills Planning and Community Development Department. - City of West Hollywood Planning and Community Development Department. - Draft Environmental Report, Volume I, for 9900 Wilshire Project, prepared by Impact Sciences, Inc., August 2007. - Traffic Impact Study, Westfield Century City for New Century Plan, prepared by LLG Engineers, September 2007.

seupinon 8005/25/30 12:51:80 90 pwb.1-73/pwb/jongsncs/2485/s01 codrigues

Table 7-2 RELATED PROJECTS TRIP GENERATION [1]

2330172000			DAILY	AM PEAK HOUR			PM PEAK HOUR			
	LAND USE	SIZE	TRIP ENDS [2] VOLUMES		OUT	S [2] TOTAL		OUT	S [2] TOTAL	
						101112		001	10111L	
LA1	Private School [3]	42,000 GSF	1,570	275	225	500	140	146	286	
LA2	Auto Body Shop [4]	17,036 GLSF	637	33	17	50	29	29	58	
LA3	Apartments [5] Retail [6]	93 DU 15,826 GLSF	625 680	9 10	38 6	47 16	38 28	20 31	58 59	
LA4	Private School [3]	140 Students	314	69	57	126	40	45	85	
LA5	Condominiums [7] Apartments [5] Restaurant [8] Retail [9]	62 DU 177 DU 38,739 GSF 316,279 GLSF	363 1,189 4,926 14,354	5 18 232 190	22 72 214 122	27 90 446 312	21 72 258 643	11 38 165 696	32 110 423 1,339	
LA6	Apartments [5]	300 DU	2,016	31	122	153	121	65	186	
LA7	Retail [6] Fast-Food Restaurant [10] Apartments [5]	29,060 GLSF 2,500 GSF 130 DU	1,248 1,790 874	18 66 13	12 44 53	30 110 66	52 33 53	57 32 28	109 65 81	
LA8	Condominiums [7] Retail [6]	183 DU 12,891 GLSF	1,072 554	14 8	67 5	81 13	64 23	31 25	95 48	
LA9	Apartments [5] Retail [6]	39 DU 11,327 GLSF	262 486	4 7	16 5	20 12	16 20	8 22	24 42	
LA10	Condominiums [7]	16 DU	94	1	6	7	5	3	8	
LAII	Condominiums [7]	16 DU	94	1	6	7	5	3	8	
LA12	Condominiums [7]	12 DU	70	1	4	5	4	2	6	
LA13	Hotel [11]	17 Rooms	152	6	5	11	6	6	12	
LA14	Condominiums [7]	14 DU	82	1	5	6	5	2	7	
LA15	Condominiums [7]	22 DU	129	2	8	10	7	4	11	
LA16	Restaurant [8]	42 Seats	203	10	10	20	10	8	18	
LA17	Condominiums [7]	60 DU	352	4	22	26	21	10	31	
LA18	Condominiums [7]	28 DU	164	2	10	12	10	5	15	
LA19	Condominiums [7]	8 DU	47	1	3	4	3	1	4	
LA20	Condominiums [7]	10 DU	59	1	3	4	. 3	2	5	
LA21	Condominiums [7]	10 DU	59	1	3	4	3	2	5	
1.A22	Retail [6]	7,929 GLSF	340	5	3	8	14	16	30	
LA23	Fast-Food Restaurant [10]	1,600 GSF	794	43	42	85	29	26	55	
LA24	Fast-Food Restaurant [10]	3,160 GSF	1,568	86	82	168	57	52	109	
LA25	Food Court [8]	11.023 GSF	1.402	66	61	127	73	47	120	

	23-Jun-2008		DAILY	LY AM PEAK HOUR			PM PEAK HOUR			
			TRIP ENDS [2]	VOLUMES [2]		v	OLUME	S [2]		
<u> </u>	LAND USE	SIZE	VOLUMES	IN	OUT	TOTAL	IN	OUT	TOTAL	
1 4 7 6	Poteil [6]	2072 CISE	120	_		,		6	11	
LAZO	Restaurant [8]	10.300 GSF	1.310	62	57	119	68	44	112	
			-,							
LA27	Self Storage [12]	139,200 GSF	348	12	9	21	18	18	36	
1 4 20	Bostourout [9]	150 Conto	725	27	24	71	27	26	(7	
LAZO	Residurant [8]	100 36415	725	וכ	54	/1	, ,	20	60	
1 4 2 9	Retail [6]	18.610 SF	799	12	7	19	34	36	70	
		10,010 21		12			5.		70	
LA30	Private School (addition) [24]	14,800 Students	660	92	40	132	37	55	92	
1 4 7 1	A	176 DU	1.17(10		RA	- 1	20	100	
LASI	Apaunent [5]	1/3 00	1,170	10	/1	89	/1	86	109	
LA32	Museum [33]	8,400 SF	30	Nom.	Nom.	Nom.	2	3	5	
			(0.1							
LA33	Condominiums [7] Retail [6]	118 DU 26 400 GISE	691	9	43	52 27	41	20	61	
	Restaurant [26]	3.000 GSF	270	10	1	27	15	7	22	
 		, -				_				
LA34	Office [14]	28,800 GSF	317	40	5	45	7	36	43	
	Retail [6]	800 GLSF	34	1	0	1	1	2	3	
LA35	Apartments [5]	60 DU	403	6	25	31	24	13	37	
LA36	Office [14]	7,000 SF	77	10	1	11	2	8	10	
	High Turnover Restaurant [8] Restaurant [26]	3,500 SF	445	21	19	40	23 78	30	38 117	
	icesmutant [20]	15,015 61	1,107	,	Ŭ	15	/0		,	
LA37	Condominiums [7]	140 DU	820	11	51	62	49	24	73	
1 4 7 9	School Expension (20)	38 240 85	554	07	82	170	Nom	Nom	Nom	
2730	School Expansion [29]	50,240 01	-66	, ,,	02	175	14011.	14011.	14010.	
LA39A	CSMC AHSP [30]	379,000 SF	10,108	503	189	692	251	599	850	
1 4 20 0		193 (60.95	7 702	174		250		1.21	255	
LA39B	CSIMC Remaining Entitled [31]	187,050 SF	3,792	1/4	85	259	84	171	255	
LA40	Apartment [5]	288 DU	1,935	29	118	147	116	63	179	
	Restaurant [26]	4,000 GSF	360	2	1	3	20	10	30	
	Retail [6]	8,500 GLSF	365	5	4	9	15	17	32	
1.441	Apartment [5]	125 DU	840	13	51	64	51	27	78	
12.1.1	Retail [6]	22,300 GLSF	958	14	9	23	40	44	84	
\	Retail [6]	(19,200)GLSF	(824)	(12)	(8)	(20)	(35)	(37)	(72)	
<u> </u>	······································		vorly Hills							
		City of Be	veriy mills					[
BH1	Mixed-Use [13]	14,570 GSF	381	25	3	28	28	85	113	
		3.050 01.05		_		_				
BH2	Ketall [6] Office [14]	2,870 GLSF	123	2		3	5	6	11	
	Office (Less Existing) [14]	(1,260)GSF	(14)	(2)	0	(2)	0	(2)	(2)	
	((-, -)	()	(-/		(-)	Ű		x -7	
BH3	Condominiums [7]	60 DU	352	4	22	26	21	10	31	
	Retail [6]	12,000 GLSF	515	7	5	12	22	23	45	
BH4	Condominiums [7]	53 DU	311	4	19	23	19	9	28	
	Retail [6]	14,000 GLSF	601	9	5	14	25	28	53	

	· · · · · · · · · · · · · · · · · · ·		DAILY TRIP ENDS (2)	AM V(PEAK I	IOUR S [2]	PM PEAK HOUR VOLUMES [2]			
	LAND USE	SIZE	VOLUMES	IN	OUT	TOTAL	IN	OUT	TOTAL	
BH5	Condominiums [7] Medical Office [15]	25 DU 4,800 GSF	147 173	2 9	9 3	11 12	9 5	4	13 18	
BH6	Office [14]	201,000 GSF	2,213	275	37	312	51	248	299	
BH7	Condominiums [7] Condominiums (Less Existing) [7]	25 DU (8)DU	147 (47)	2 (1)	9 (3)	11 (4)	9 (3)	4 (1)	13 (4)	
BH8	Condominiums [7] Apartments (Less Existing) [5]	23 DU (16)DU	135 (108)	2 (2)	8 (6)	10 (8)	8 (7)	4 (3)	12 (10)	
BH9	Condominiums [7] Apartments (Less Existing) [5]	10 DU (4)DU	91 (27)	1 0	7 (2)	8 (2)	6 (1)	3 (1)	9 (2)	
BH10	Condominiums [7] Condominiums (Less Existing) [7]	16 DU (6)DU	94 (35)	1 (1)	6 (2)	7 (3)	5 (2)	3 (1)	8 (3)	
BHII	Synagogue [16]		127	16	9	25	4	4	8	
BH12	Beverly Hill Gardens [17]		2,953	121	73	194	172	134	306	
BH13	Office [14]	41,500 GSF	457	56	8	64	11	51	62	
BH14	Retail [6]	1,750 GLSF	78	1	1	2	2	3	5	
BH15	Medical Office [15] Medical Office [15] Retail [6]	23,139 GSF 13,609 GSF 8,148 GLSF	836 492 350	45 27 5	12 7 3	57 34 8	23 14 15	63 37 16	86 51 31	
BH16	Retail [6]	11,900 GLSF	511	7	5	12	22	23	45	
BH17	Apartments [5] Office [14]	88 DU 40,000 GSF	591 440	9 55	36 7	45 62	36 10	19 50	55 60	
BH18	Cultural Center [16]	34,000 GSF	778	34	21	55	16	40	56	
BH19	Service Facility [4]	53,000 GSF	1,767	101	55	156	90	89	179	
BH20	Medical Office [15] Office (Less Existing) [14]	14,000 GSF (14,000)GSF	506 (154)	28 (19)	7 (3)	35 (22)	14 (4)	38 (17)	52 (21)	
BH21	New Car Sales [18]	39,700 GSF	1,324	60	21	81	41	64	105	
BH22	Retail [6]	4,550 GLSF	195	3	2	5	8	9	17	
BH23	Medical Office [15] Retail [6]	12,445 GSF 12,445 GLSF	450 534	24 8	7 5	31 13	12 23	34 24	46 47	
BH24	Condominiums [7]	37 DU	217	3	13	16	13	6	19	
BH25	Office [14]	75,000 GSF	826	102	14	116	19	93	112	
Bh26	Condominiums [7]	23 DU	135	2	8	10	8	4	12	
BH27	Condominiums [7]	16 DU	94	1	6	7	5	3	8	
BH28	Assisted Living [19]	80 Beds	213	7	4	11	8	10	18	

r	23-Jun-2008		DAILY	AM PEAK HOUR			PM PEAK HOUR			
			TRIP ENDS [2]	V	OLUME	S [2]	V	S [2]		
	LAND USE	SIZE	VOLUMES	IN	Ουτ	TOTAL	IN	OUT	TOTAL	
BH29	Condominiums [7]	11 DU	64	1	4	5	4	2	6	
вн30	Condominiums [7] Condominiums (Less Existing) [7]	27 DU (14)DU	158 (82)	2 (1)	10 (5)	12 (6)	9 (5)	5 (2)	14 (7)	
BH31	Condominiums [7]	11 DU	64	1	4	5	4	2	6	
BH32	Condominiums [7]	34 DU	199	3	12	15	12	6	18	
BH33	Condominiums [7]	38 DU	223	3	14	17	13	7	20	
BH34	Condominiums [7]	13 DU	76	1	5	6	5	2	7	
внз5	Retail [6] Condominiums [7] Single-Family Home (Less Existing) [32]	500 GLSF 6 DU (1)DU	21 35 (10)	1 1 0	0 2 (1)	1 3 (1)	1 2 (1)	1 1 0	2 3 (1)	
BH36	Beverly Hills Gateway [24]	95,000 SF	1,090	131	(4)	127	21	140	161	
BH37	Office [14] Medical Office [15]	24,566 SF 7,977 SF	270 288	33 16	5 4	38 20	6 8	31 22	37 30	
внз8	Condominiums [7] Office (Less Existing) [14] Hotel Support (Less Existing) [14] Hotel (Less Existing) [11]	120 DU (13,030) SF (1,804) SF (47) Rooms	703 (143) (20) (384)	9 (18) (3) (16)	44 (2) 0 (10)	53 (20) (3) (26)	42 (3) (1) (15)	20 (16) (2) (13)	62 (19) (3) (28)	
BH39	Senior Congregation [27]	76 DU	282	6	9	15	12	8	20	
BH40	9900 Wilshire Project [25]		(321)	52	80	132	(6)	(18)	(24)	
		City of Wes	t Hollywood							
WHI	Condominiums [7]	12 DU	70	1	4	5	4	2	6	
WH2	Condominiums [7]	105 DU	615	8	38	46	37	18	55	
WH3	Retail [6]	94,000 GLSF	4,036	59	38	97	169	184	353	
WH4	Hotel [11] Retail [6] Condominiums [7]	296 Rooms 39,440 GLSF 189 DU	2,640 1,694 1,108	115 25 14	83 16 69	198 41 83	101 71 66	106 77 32	207 148 98	
WH5	Retail [6] Condominiums (Less Existing) [7]	37,178 GLSF (8)DU	1,596 (47)	23 (1)	15 (3)	38 (4)	67 (3)	72 (1)	139 (4)	
WH6	Retail [6] Condominiums [7]	12,500 GLSF 40 DU	537 234	8 3	5 15	13 18	23 14	24 7	47 21	
WH7	Condominiums [7]	12 DU	70	1	4	5	4	2	6	
WH8	Apartments [5] Apartments (Less Existing) [5]	16 DU (10)DU	108 (67)	2 (1)	6 (4)	8 (5)	7 (4)	3 (2)	10 (6)	
WH9	Day Care Center [20]	28 Students	125	12	10	22	11	12	23	

	23-Jun-2008		DAILY	AM	PEAK I	IOUR	PM PEAK HOUR			
	I AND HEE	\$17F	TRIP ENDS [2]		DLUME	S [2]	<u>ν</u> (S [2]		
<u> </u>	LAND USE	SILE	VOLUMES	114	001	IUIAL	111	001	IUIAL	
WH10	Condominiums [7]	16 DU	94	1	6	7	5	3	8	
	Condominiums (Less Existing) [7]	(6)DU	(35)	(1)	(2)	(3)	(2)	(1)	(3)	
WH11	Apartments [5]	15 DU	101	2	6	8	6	3	9	
	Apartments (Less Existing) [5]	(13)DU	(87)	(1)	(6)	(7)	(5)	(3)	(8)	
WH12	Senior Housing [21]	35 Occ. DU	122	1	2	3	2	2	4	
WH 13	Condominiums [7]	17 DU	100	1	6	7	6	3	9	
	Apartments (Less Existing) [5]	(16)DU	(108)	(2)	(6)	(8)	(7)	(3)	(10)	
WH14	Retail [6]	9,995 GLSF	429	6	4	10	18	19	37	
	Retail (Less Existing) [6]	(6,475)GLSF	(278)	(4)	(3)	(7)	(12)	(12)	(24)	
WH15	Retail [6]	6,905 GLSF	297	4	3	7	12	14	26	
	Retail (Less Existing) [6]	(3,523) GLSF	(151)	(2)	(2)	(4)	(6)	(7)	(13)	
WH16	Retail [6]	9,990 GLSF	429	6	4	10	18	19	37	
WH17	Condominiums [7]	20 DU	117	2	7	9	7	3	10	
	Condominiums (Less Existing) [7]	(8)DU	(47)	(1)	(3)	(4)	(3)	(1)	(4)	
WH18	Retail [6]	13,830 GLSF	594	9	5	14	25	27	52	
	Condominiums [7]	28 DU	164	2	10	12	10	5	15	
WH19	Retail [6]	4,200 GLSF	180	2	2	4	8	8	16	
WH20	Condominiums [7]	15 DU	88	1	6	7	5	3	8	
WH21	Condominiums [7]	12 DU	70	1	4	5	4	2	6	
	Single-Family Home (Less Existing)	(1)DU	(10)	0	(1)	(1)	(1)	0	(1)	
WH22	Retail [9]	190,350 GLSF	10,319	140	90	230	459	498	957	
	Condominiums [7]	61 DU	357	5	22	27	21	11	32	
	Apartments [5]	15 DU	101	2	6	8	6	3	9	
WH23	Retail [6]	2,900 GLSF	125	2	1	3	5	6	11	
	Townhouses [7]	6 DU	35	1	2	3	2	1	3	
WH24	Condominiums [7]	11 DU	64	1	4	5	4	2	6	
	Single-Family Home (Less Existing)	(2)DU	(-19)	(1)	(1)	(2)	(1)	(1)	(2)	
WH25	Hotel Addition [11]	40 Rooms	357	16	11	27	14	14	28	
WH26	Retail [6]	1,000 GLSF	43	1	0	1	2	2	4	
WH27	Condominiums [7]	18 DU	105]	7	8	6	3	9	
	Condominiums (Less Existing) [7]	(8)DU	(47)	(1)	(3)	(4)	(3)	(1)	(4)	
WH28	Apartments [5]	24 DU	161	2	10	12	10	5	15	
	Apartments (Less Existing) [5]	(3)DU	(20)	0	(2)	(2)	(1)	(1)	(2)	
WH29	Condominiums [7]	16 DU	94	1	6	7	5	3	8	
	Hotel [11]	20 Rooms	178	8	5	13	7	7	14	
	Restaurant [8]	4,619 GSF	587	28	25	53	31	19	50	

r										
			DAILY TRIP ENDS 121	AM PEAK HOUR VOLUMES 121			PEAK I	HOUR		
	LAND USE	SIZE	VOLUMES	IN	OUT	TOTAL	IN	OUT	TOTAL	
WH30	Condominiums [7]	18 DU	105	1	7	8	6	3	9	
	Single-Family Home (Less Existing)	(1)DU	(10)	0	(1)	(1)	(1)	0	(1)	
WH31	Condominiums [7]	16 DU	94	1	6	7	5	3	8	
	Condominiums (Less Existing) [7]	(2)DU	(12)	0	(1)	(1)	(1)	0	(1)	
117122			0.4			-				
WH32	Condominiums [/]		(59)		(3)	(4)	5 (3)		8	
	Concommuna (Tess Existing) [1]	(10)20	(35)			(-)	(3)	(2)	(3)	
WH33	Retail [6]	4,000 GLSF	172	2	2	4	7	8	15	
WH34	Retail [6]	9 206 GLSE	395	5	4	0	17	18	35	
	Single-Family Home (Less Existing)	(2) DU	(19)	(1)	(1)	(2)	(1)		(2)	
						.,				
WH35	Office [23]	400,000 GSF	3,879	501	68	569	90	437	527	
WH36	Medical Office [15]	120,000 GSF	4,336	235	63	298	120	326	446	
WH37	Condominiums [7]	191 DU	1,119	14	70	84	66	33	99	
	Retail [6]	71,000 GLSF	3,049	45	28	73	128	138	266	
	Self Storage [12]	327,000 GSF	818	29	20	49	43	42	85	
	Retail (Less Existing) [6]	(90,000) GLSF	(3,865)	(57)	(36)	(93)	(162)	(176)	(338)	
WH38	Condominiums [7]	16 DU	94	1	6	7	5	3	8	
	Single-Family Home (Less Existing)	(3)DU	(29)	(1)	(1)	(2)	(2)	(1)	(3)	
WH39	Condominiums [7]	12 DU	70	1	4	5	4	2	6	
	Single-Family Home (Less Existing)	(1)DU	(10)	0	(1)	(1)	(1)	0	(1)	
	- 1945									
WH40	Retail/Restaurant [6]	39,440 SF	1,694	25	16	41	71	77	148	
		296 Rooms	2,640	115	83	198	101	106	207	
	Residentiar [7]	109 DU	1,106]4	09	ده	60	32	98	
WH41	Retail [6]	35,000 GLSF	1,503	22	14	36	63	68	131	
	Condominiums [7]	138 DU	809	10	51	61	48	24	72	
WH42	Retail [6]	2,323 GLSF	100	1	1	2	4	5	9	
WH43	Retail [6]	9,995 GLSF	429	6	4	10	18	19	37	
WHAA	Lotal [11]	106 Paome	1.749	76	55	121	67	70	127	
**1144	Condominiums [7]		1,748	70	2	101	1	70	201	
	condominano [7]	1 20	25		-	2	. 1	1	-	
WH45	Medical Office [15]	107,900 GSF	3,898	212	56	268	108	293	401	
	Retail (Less Existing) [6]	(11,400)GLSF	(490)	(7)	(5)	(12)	(21)	(22)	(43)	
WH46	Condominiums [7]	16 DU	94	1	6	7	5	3	8	
l										
WH47	Private School [3]	170 Students	381	84	69	153	49	55	104	
V/LI/V	Condominiums [7]	10 101	50	1	2	ا ہر ا	-	n	ç	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Single-Family Home (Less Existing)	טם טו	4C (10)	U I	נ (1)	4 (1)	د (1)	2 ^	, U	
	enters ranning traine (reas rysone)	(1)00	(10)	U	(1)	(1)	(1)	v	(1)	
WH49	Condominiums [7]	40 DU	234	3	15	18	14	7	21	
				_	_					
WH50	Condominiums [7]	42 DU	246	3	15	18	15	7	22	
1										

	23-Jun-2008							-	
			DAILY	AM	PEAK I	IOUR	PM	PEAK I	IOUR
			TRIP ENDS [2]	S [2] VOLUMES [2]		v	OLUME	S [2]	
	LAND USE	SIZE	VOLUMES	IN	OUT	TOTAL	IN	OUT	TOTAL
WH51	Apartments [5]	28 DU	188	3	11	14	11	6	17
	Condominiums [7]	2 DU	12	0	1	1	1	0	1
	Senior Housing [21]	26 Occ. DU	90]	1	2	2	1	3
	Single-Family Home (Less Existing)	(2)DU	(19)	(1)	(1)	(2)	(1)	(1)	(2)
WH52	Supermarket [22]	65,325 GSF	6,679	129	83	212	348	335	683
WH53	Retail [6]	7,726 SF	332	5	3	8	14	15	29
WH54	Condominiums [7]	11 DU	64	1	4	5	4	2	6
WH55	Private School [28]	140 Students	347	68	43	111	10	14	24
WH56	Retail [6]	20,105 SF	863	13	8	21	36	39	75
	Condominiums [7]	4 DU	23	0	2	2	1	1	2
WH57	Condominiums [7]	135 DU	791	10	49	59	47	23	70
	Senior Housing [27]	42 DU	156	3	5	8	7	4	11
WH58	Commercial [14]	70,000 SF	771	96	13	109	18	86	104
WH59	Retail [6]	2,972 SF	128	2	1	3	5	6	11
	Restaurant [26]	10,300 SF	926	4	4	8	52	25	77
ΤΟΤΑΙ			152,108	5,864	4,342	10,202	6,596	7,742	14,338

[1] Source: ITE "Trip Generation", 7th Edition, 2003.

[2] Trips are one-way traffic movements, entering or leaving.

[3] ITE Land Use Code 534 (Private School (K-8) trip generation average rates. Please note that no weekday daily trip rates are provided for ITE Land Use 534. As such, a comparison of the ITE Land Use Code 536 (Private School [K-12]) weekday weekday daily and AM peak hour trips rates (2.48 per student and 0.79 per student, respectively) with the AM peak hour trip rate for ITE Land Use Code 534 (i.e., 11.91 per 1,000 SF) was made in order to derive a weekday daily trip rate for this land use: (11.91 / 0.79) x 2.48 = 37.39 trips per 1,000 SF

Similarly, a comparison of the ITE Land Use Code 536 daily and PM peak hour of generator was made to derive a weekday daily trip rate based on number of students:

- (0.55/0.61) x 2.48 = 2.24 trips per student
- [4] ITE Land Use Code 942 (Automobile Care Center) trip generation average rates.
- [5] ITE Land Use Code 220 (Apartment) trip generation average rates.

[6] ITE Land Use Code 820 (Shopping Center) trip generation average rates.

- [7] ITE Land Use Code 230 (Residential Condominium/Townhouse) trip generation average rates.
- [8] ITE Land Use Code 932 (High-Turnover [Sit-Down] Restaurant) trip generation average rates.
- [9] ITE Land Use Code 820 (Shopping Center) trip generation equation rates.
- [10] ITE Land Use Code 934 (Fast-Food Restaurant With Drive-Through Window) trip generation average rates.
- [11] ITE Land Use Code 310 (Hotel [Occupied Rooms]) trip generation average rates.
- [12] ITE Land Use Code 151 (Mini-Warehouse) trip generation average rates.
- [13] "Traffic & Parking Study for the Proposed 8800 Burton Way Mixed-Use Development Project," prepared by Coco Traffic Planners, Inc., February 2006.
- [14] ITE Land Use Code 710 (General Office) trip generation average rates.
- [15] ITE Land Use Code 720 (Medical-Dental Office Building) trip generation average rates.

23-Jun-2008								
		DAILY	AM PEAK HOUR			PM PEAK HOUR		
		TRIP ENDS [2]	VOLUMES [2]			VOLUMES [2]		
LAND USE	SIZE	VOLUMES	IN	OUT	TOTAL	IN	OUT	TOTAL

[16] "Transportation Systems Analysis, UCLA Long Range Development Plan," prepared by Crain & Associates, October 2002.

[17] "Traffic and Parking Impact Analysis for Beverly Hills Gardens and Montage Hotel Project," prepared by Parsons Transportation Group, November 2003.

[18] ITE Land Use Code 841 (New Car Sales) trip generation average rates.

[19] ITE Land Use Code 254 (Assisted Living) trip generation average rates.

[20] ITE Land Use Code 565 (Day Care Center) trip generation average rates.

[21] ITE Land Use Code 252 (Senior Adult Housing - Attached) trip generation average rates.

[22] ITE Land Use Code 850 (Supermarket) trip generation average rates.

[23] ITE Land Use Code 710 (General Office) trip generation equation rates.

[24] "Traffic Impact Study for Westfield Century City for New Century Plan," prepared by LLG Engineers, September 2007.

[25] "Draft Environmental Impact Report, Volume I, for 9900 Wilshire Project," prepared by Impact Sciences, Inc., August 2007.

[26] ITE Land Use Code 931 (Quality Restaurant) trip generation average rates.

[27] ITE Land Use Code 251 (Senior Adult Housing - Detached) trip generation average rates.

[28] ITE Land Use Code 536 (Private School [K-12]) trip generation average rates.

[29] ITE Land Use Code 520 (Elementary School) trip generation average rates.

[30] ITE Land Use Code 720 (Medical-Dental Office Building) and Code 610 (Hospital) trip generation average rates. Trip generation increased by 15% to reflect gross building floor area.

[31] ITE Land Use Code 610 (Hospital) trip generation average rates. Trip generation increased by 15% to reflect gross building floor area.

[32] ITE Land Use Code 210 (Single Family Detached Housing) trip generation average rates.

[33] The daily traffic volumes and distributational splits for the peak hour traffic volumes is calculated based on other City of Los Angeles Museum daily rates. It is assumed that there is no AM peak hour as the peak hour period during weekdays for Museums generally occur between 12:00 PM and 1:00 PM.

-49-

7.1.2 CSMC Build-out of Current Development Agreement

A total of 133,350 square feet of the approved 700,000 square feet authorized by Ordinance No. 168,847 has been constructed. Of the remaining 566,650 square feet of entitled but not built construction, 379,000 square feet will be developed as the Advanced Health Sciences Pavilion at CSMC (refer to Related Project No. LA39A in *Table 7-1*). The remaining entitled floor area (i.e., 187,650 square feet), which will be incorporated into the overall proposed project building square footage, is also accounted for in this traffic analysis (refer to Related Project No. LA39B in *Table 7-1*).

7.2 Ambient Traffic Growth Factor

In order to account for unknown related projects not included in this analysis, the existing traffic volumes were increased at an annual rate of one percent (1.0%) per year to the year 2023 (i.e., the anticipated year of project build-out). The ambient growth factor was based on general traffic growth factors provided in the 2004 Congestion Management Program for Los Angeles County (the "CMP manual") and determined in consultation with LADOT staff. It is noted that based on review of the general traffic growth factors provided in the CMP manual for the West Los Angeles area, it is anticipated that the existing traffic volumes are expected to increase at an annual rate of less than 1.0% per year between the years 2005 and 2025. Thus, application of this annual growth factor allows for a conservative, worst case forecast of future traffic volumes in the area. Further, it is noted that the CMP manual's traffic growth rate is intended to anticipate future traffic generated by development projects in the project vicinity. Thus, the inclusion in this traffic analysis of both a forecast of traffic generated by known related projects <u>plus</u> the use of an ambient growth traffic factor based on CMP traffic model data results in a conservative estimate of future traffic volumes at the study intersections.

¢

8.0 TRAFFIC IMPACT ANALYSIS METHODOLOGY

The 22 study intersections were evaluated using the Critical Movement Analysis (CMA) method of analysis which determines Volume-to-Capacity (ν/c) ratios on a critical lane basis. The overall intersection ν/c ratio is subsequently assigned a Level of Service (LOS) value to describe intersection operations. Level of Service varies from LOS A (free flow) to LOS F (jammed condition). A description of the ICU method and corresponding Level of Service is provided in *Appendix B*.

8.1 Impact Criteria and Thresholds

The relative impact of the added project traffic volumes to be generated by the proposed Cedars-Sinai Medical Center project during the AM and PM peak hours was evaluated based on analysis of future operating conditions at the 22 study intersections, without and with the proposed project. The previously discussed capacity analysis procedures were utilized to evaluate the future v/c relationships and service level characteristics at each study intersection.

The significance of the potential impacts of project generated traffic at each study intersection was identified using the traffic impact criteria set forth in LADOT's *Traffic Study Policies and Procedures*, March, 2002. According to the City's published traffic study guidelines, a significant transportation impact is determined based on the sliding scale criteria presented in *Table 8-1*.

INTERS	Table 8-1 CITY OF LOS ANGELE ECTION IMPACT THRESH	S IOLD CRITERIA
Final v/c	Level of Service	Project Related Increase in v/c
> 0.700 - 0.800	С	equal to or greater than 0.040
> 0.800 - 0.900	D	equal to or greater than 0.020
>0.900	E or F	equal to or greater than 0.010

The City's Sliding Scale Method requires mitigation of project traffic impacts whenever traffic generated by the proposed development causes an increase of the analyzed intersection v/c ratio by an amount equal to or greater than the values shown above.

As previously mentioned, an annual one percent (1.0%) ambient growth rate was assumed so as to account for unknown related projects in the vicinity of the proposed project. Additionally, it was assumed that the build-out of the proposed project will be complete and the building fully occupied by the end of the year 2023.

8.2 Traffic Impact Analysis Scenarios

Traffic impacts at the study intersections were analyzed for the following conditions:

- [a] Existing conditions.
- [b] Condition [a] plus 1.0 percent (1.0%) annual ambient traffic growth through year 2023.
- [c] Condition [b] with completion and occupancy of the related projects.
- [d] Condition [c] with completion and occupancy of the proposed project.
- [e] Conditions [d] with implementation of project mitigation measures, where necessary.

The traffic volumes for each new condition were added to the volumes in the prior condition to determine the change in capacity utilization at the 22 study intersections.

Summaries of the v/c ratios and LOS values for the study intersections during the AM and PM peak hours are shown in **Table 8-2**. The proposed project CMA data worksheets for the analyzed intersections are contained in *Appendix B*.

Table 8-2 SUMMARY OF VOLUME TO CAPACITY RATIOS AND LEVELS OF SERVICE AM AND PM PEAK HOURS

	9002-40P-F2					ŀ		ŀ				ľ				Ī				
			Ξ		[2]		[2]			j	4			[5]					6]	
					YEAR 2	023	YEAR 21	520	YEAR 2	023			YEAR 2	£20;			YEAR 2	2023		
					W/ AMB	TENT	W/ RELA	TED	W/PROPC	DSED C	CHANGE 1	SIGNIF.	W/ PRO.	TECT (CHANGE	-ITIM	W/ PROJ	TECT	CHANGE	MITI-
		PEAK	EXIST	DNL	GROW	тн	PROJEC	TS	PROJE	5	V/C I	MPACT	MITIGA	TION	V/C	GATED	TDN	-	V/C	GATED
Ŷ	INTERSECTION	HOUR	V/C	LOS	V/C	LOS	V/C	LOS	V/C	LOS	[(1)-(1)]		V/C	LOS	[(2)-(3)]		V/C	LOS	[(6)-(4)]	
	2		500	Ľ		Ľ	, ric 1	Ľ	216 1	Ľ	100 0	C,	216 1	Ľ	100 0			Ľ	0000	
-	Kobertson Boulevard/	Ā	0.714	IJ	ICN.1	L.	710.1	 L,	010.1		0.004	DZ	010.1	 L,	U.U04		010.1		0,000	
	Beverly Boulevard	Μď	0.740	υ	0.832	۵	1.217	ц.	1.224	Ŀ.	0.007	Q	1.224	Ŀ.	0.007	1	1.224	łĽ,	0.000	:
														1						
7	Robertson Boulevard/	AM	0.481	A	0.534	۷	0.825	D	0.847	D	0.022	YES	0.824	D	-0.001	YES	0.824	D	-0.023	YES
	Alden Drive-Gracie Allen Drive	PM	0.572	A	0.639	В	0.981	ы	1.010	ч	0.029	YES	0.918	ы	-0.063	YES	0.918	ш	-0.092	YES
~	Robertson Boulevard/	AM	0.701	υ	0.787	υ	1.168	 1.,	1.177	μ.,	0.009	oz	1.177	 µ,	0.009	1	1.177	<u>р</u>	0.000	
	Third Street	Μď	0.659	В	0.739	υ	1.216	щ	1.220	ц	0.004	Q	1.220	ц	0.004	1	1.220	ц	0.000	1
-	Dohartson Boulawad/	AM	0 874	Ĺ	8000	ц	1 258	ц	נאר ו	ц	700 V	QN	6961	ц	7000		<i>LYL</i> 1	u د	0000	
t				ו ב		ן ג			707.1	- 1			707.1	- 1			707.1	4	0000	
	Burton Way	MY	0.872		0.983	ш	1.268	-	1.276	-	0.008	NO	1.276	1	0.008	1	1.276	ш	0.000	1
v	Dohartson Boulawrd/	ΨW	0.057	μ	101 1	μ	100 P	ц	1 107	ц	E00 0	Q	1 307	ц			701 I	ц		
י		DMd	0000	 1)	021 1	. н	VLV 1	. µ	LLY 1	. µ			227	ц,	200.0			. L		
	w lishire boulevard	LINI	0.490	1	001.1	-	1.4/4	-	1.4//		c.00.0		1.4//	-	500.0	;	1.4//	2	0.000	1
ي 	George Burns Boad/	AM	0 523	4	0 587	4	0 676		ט פספ	ď	0200	QN	0 646	д	020 0-		0 646	۵	0.050	
> 	Deverin Doulerterd	Md	0.656	: ¤	2020	; c	0 888	- د ا	0 010 0	ц	0.000	227	0 880	а <i>С</i>		VEC V		ם ב		VEC VEC
	Develly Douicvalu		0.00'n	3	nn	ر	0.000		012.0	4	770.0	1 10	0.000	2	-0.00	3	0.000		0c0.0-	S
2	George Burns Road/	AM	0.455	۷	0.523	~	0.633	В	0.674	В	0.041	ON	0.674	В	0.041		0.674	щ	0.000	
	Gracie Allen Drive	ΡM	0.534	۲	0.614	В	0.699	ш	0.730	υ	0.031	ON	0.730	υ	0.031	1	0.730	υ	0.000	1
				"				(1				1						
	George Burns Koad-Hamel Koad/	Å	0.635	79	0.710		0.834		0.847		£10.0	Sc	0.847	n	0.013	1	0.847	Δ	0.000	1
	Third Street	M	0.436	A	0.482	$\overline{\mathbf{A}}$	0.630	m	0.648	m	0.018	QN	0.648	m	0.018	1	0.648	m	0.000	
c	Willower Drive/	AM	0.416	~~~~	0 450	4	1250	4	0 578	Ā	200.0	QN	0 578	•			073 0	*		
	Think Church	DNG		: <	723.0	; <	91.7 0	: A	2020	: p	200.0		6070	: 6	10000			< t	00000	
	I IIIIa Street	ML	0.484	<	/ 50.0	<	0.070	n	0.063	n	0.007	DN I	0.063	n	0.007	1	0.083	n	0.000	!
2	Willaman Drive/	AM	0.713	υ	0.820	D	0.941	ш	0.941	ш	0.000	ON	0.941	щ	0.000	I	0.941	щ	0.000	
	Wilshire Boulevard	PM	0.668	щ	0.768	U	0.898	р	0.898	D	0.000	0 Z	0.898		0.000	I	0.898		0.000	

LLG Ref. 1-99-2843-1 Cedars-Sinai Medical Center Project Table 8-2 (Continued) SUMMARY OF VOLUME TO CAPACITY RATIOS AND LEVELS OF SERVICE AM AND PM PEAK HOURS

MITI-GATED YES ΥES CHANGE [(0)-(4)] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 V/C 0.000 6 YEAR 2023 W/ PROJECT So < C 11. LL υD цц ц ц ци ць а а ц. ե հ TDM 0.632 1.120 1.048 0.754 1.112 1.058 1.191 1.576 1.213 1.184 0.693 1.228 0.480 0.706 0.893 V/C MITI-GATED 1 1 | | ł 1 1 1 1 ł | | 1 |] 1 | | 1 CHANGE (2)-(3) 0.009 0.005 0.006 0.004 0.005 0.007 0.007 0.002 0.007 0.005 0.005 0.003 0.003 0.004 V/C 0.001 YEAR 2023 W/ PROJECT LOS 2 MITIGATION щ μ ы, ы < c ու հ υ Δ ц. ц <u>11</u> ы. н. ы. ы а а μ 1.213 0.632 1.048 0.754 1.112 0.706 1.058 1.006 1.230 0.693 1.120 1.228 0.480 0.893 1.191 .576 2/2 IMPACT CHANGE SIGNIF. 2 2 2 2 2 2 oz oz g g g g o y 2 S 8 g o z (4)-(3)V/C 0.007 0.005 0.005 0.006 0.004 0.009 0.005 0.007 0.002 0.007 0.004 0.006 0.003 0.003 0.001 4 YEAR 2023 W/PROPOSED LOS а с ц., ци < C ᆈᅭ υ цц ц и и ц. ц. Ĺ1 C 11 PROJECT 0.632 1.228 1.048 1.112 0.706 1.058 1.213 1.230 1.120 0.480 0.754 1.576 0.693 0.893 161.1 V/C YEAR 2023 W/ RELATED LOS μц υ 山山 <u>р.</u> р а а ц., р <u>и</u> и < (E ц. ц. <u>и</u>, <u>и</u>, PROJECTS <u>e</u> 0.686 0.625 1.119 1.226 0.475 0.749 1.107 0.703 0.887 1.054 1.003 1.182 1.573 1.208 1.364 1.226 1.041 1.081 2/2 YEAR 2023 W/ AMBIENT LOS ш ДΩ ΔU 0 0 шш щш щρ < F < ¤ ≺ α GROWTH [7] 0.853 0.810 0.489 0.888 0.630 0.832 0.796 0.929 0.984 0.925 0.822 0.520 0.937 0.838 0.387 0.547 0.653 0.994 0.811 1.118 ۷/C LOS < ΔC υυ ∢ υυ × υu Ωш 0 0 ρc EXISTING Ξ 0.469 0.723 0.746 0.741 0.709 0.759 0.721 0.825 0.873 0.442 0.814 0.772 0.353 0.565 0.493 0.585 0.882 0.989 0.822 22 PEAK HOUR MA M AM PM AM MM AM PM PM AM M ΜA ÅΜ М PM PM MM MM San Vicente Boulevard-Le Doux Road/ Gracie Allen Drive-Beverly Center INTERSECTION San Vicente Boulevard/ San Vicente Boulevard/ Beverly Boulevard San Vicente Boulevard/ Third Street San Vicente Boulevard/ Wilshire Boulevard San Vicente Boulevard/ La Cienega Boulevard/ La Cienega Boulevard/ La Cienega Boulevard/ Beverly Boulevard Sherbourne Drive/ Melrose Avenue Third Street Burton Way Third Street 23-Jun-2008 NO. = 2 Ľ 15 16 17 8 6 20 14

LLG Ref. 1-99-2843-1 Cedars-Sinai Medical Center Project

0.000

0.006

0.732

San Vicente Boulevard

LINSCOTT, LAW & GREENSPAN, engineers

Table 8-2 (Continued) SUMMARY OF VOLUME TO CAPACITY RATIOS AND LEVELS OF SERVICE AM AND PM PEAK HOURS

23-Jun-2008

			Ξ		[2]		[£]			[4]		_		5]				[9]		
					YEAR 20.	23	YEAR 20.	23	YEAR 202	3			YEAR 202				YEAR 203	23		
					W/ AMBIE	NT.	W/ RELAT	ED \	W/PROPOS	ED CH	ANGE SI	GNIF.	W/ PROJEC	T CHAN	GE M	1TI- W	// PROJE	CT CH	ANGE	MITI-
		PEAK	EXISTI	Uz	GROWT	н	PROJECT	rs	PROJECT		V/C IM	PACT 1	AITIGATIC	N V/C	40 C	TED	TDM	-	//C 0	ATED
0 N	INTERSECTION	HOUR	v/C	LOS	V/C 1	SO	V/C I	SOL	V/C L	OS I([(E)-(1	-	V/C LI	DS 1(5)-(3	11	-	//C 1	os 10)-(4)]	
2	La Cienega Boulevard/	AM	0.976	ш	1.122	12.	1.446	<u>ь</u>	1.449	F 0	003	0N N	1.449	- 0.00		-	.449	F O	000	YES
	Wilshire Boulevard	ΡM	0,996	ш	1.145	ц	1.495	ц	1.497	0 1	002	0N N	1.497	: 0.00		-	.497	F 0.	000	YES
22	Orlando Avenue/	AM	0.740	υ	0.831	۵	0.955	ш	0.957	о —	002	0N N	0.957	0.002			.957	о ш	000	YES
	Third Street	PM	0.706	C	0.793	U	1.003	ц	1.005	F 0	002	NO	1.005	: 0.002		-	.005	Е 0.	000	YES

City of Los Angeles intersection impact threshold criteria is as follows: Einal w/c LOS Project.Related Increase in w/c > 0.700 - 0.800 C equal to or greater than 0.040 > 0.800 - 0.900 D equal to or greater than 0.020 > 0.900 E.F equal to or greater than 0.010

ł

.

9.0 TRAFFIC ANALYSIS

9.1 Existing Conditions

As indicated in column [1] of *Table 8–2*, 18 of the 22 study intersections are presently operating at LOS D or better during the AM and PM peak hours under existing conditions. The following four study intersections are currently operating at LOS E or F during the peak hours shown below:

0	Int. No. 1: Robertson Blvd./Beverly Blvd.	AM Peak Hour: v/c=0.914, LOS E
0	Int. No. 5: Robertson Blvd./Wilshire Blvd.	AM Peak Hour: $v/c=0.957$, LOS E
		PM Peak Hour: v/c=0.990, LOS E
•	Int. No. 18: La Cienega Blvd./Beverly Blvd.	PM Peak Hour: v/c=0.989, LOS E
8	Int. No. 21: La Cienega Blvd./Wilshire Blvd.	AM Peak Hour: <i>v/c</i> =0.976, LOS E
		PM Peak Hour: v/c=0.996, LOS E

As previously mentioned, the existing traffic volumes at the study intersections during the AM and PM peak hours are displayed in *Figures* 5-1 and 5-2, respectively.

9.2 Existing With Ambient Growth Conditions

Growth in traffic due to the combined effects of continuing development, intensification of existing developments and other factors was assumed to be one percent (1.0%) per year through year 2023. This ambient growth incrementally increases the v/c ratios at all of the study intersections. As shown in column [2] of *Table 8–2*, 14 of the 22 study intersections are expected to continue to operate at LOS D or better during the AM and PM peak hours with the addition of ambient growth traffic through the year 2023. The following eight study intersections are expected to operate at LOS E or F during the peak hours shown below with the addition of ambient growth traffic:

8	Int. No. 1: Robertson Blvd./Beverly Blvd.	AM Peak Hour: $v/c=1.031$, LOS F
6	Int. No. 4: Robertson Blvd./Burton Way	AM Peak Hour: v/c=0.928, LOS E
		PM Peak Hour: v/c=0.983, LOS E
8	Int. No. 5: Robertson Blvd./Wilshire Blvd.	AM Peak Hour: v/c=1.101, LOS F
		PM Peak Hour: v/c=1.138, LOS F
0	Int. No. 12: San Vicente Blvd./Melrose Ave.	AM Peak Hour: v/c=0.937, LOS E

•	Int. No. 18: La Cienega Blvd./Beverly Blvd.	AM Peak Hour: v/c=0.994, LOS E
		PM Peak Hour: $v/c=1.118$, LOS F
•	Int. No. 19: La Cienega Blvd./Third St.	AM Peak Hour: $v/c=0.929$, LOS E
		PM Peak Hour: v/c=0.984, LOS E
0	Int. No. 20: La Cienega Blvd./San Vicente Blvd.	AM Peak Hour: v/c=0.925, LOS E
	Int. No. 21: La Cienega Blvd./Wilshire Blvd.	AM Peak Hour: <i>v/c</i> =1.122, LOS F
		PM Peak Hour: v/c=1.145, LOS F

The existing with ambient growth traffic volumes at the study intersections during the AM and PM peak hours are shown in *Figures 9-1* and *9-2*, respectively.

9.3 Future Pre-Project Conditions

The v/c ratios at all of the study intersections are incrementally increased with the addition of traffic generated by the related projects listed in *Table 7–1*. As presented in column [3] of *Table 8–2*, seven of the 22 study intersections are expected to continue operating at LOS D or better during the AM and PM peak hours with the addition of growth in ambient traffic and the traffic due to the related projects. The following 15 study intersections are expected to operate at LOS E or F during the peak hours shown below with the addition of ambient traffic and the traffic due to the related projects:

	Int. No. 1: Robertson Blvd./Beverly Blvd.	AM Peak Hour: $v/c=1.312$, LOS F
		PM Peak Hour: $v/c=1.217$, LOS F
0	Int. No. 2: Robertson Blvd./Alden DrG. Allen Dr.	PM Peak Hour: $v/c=0.981$, LOS E
	Int. No. 3: Robertson Blvd./Beverly Blvd.	AM Peak Hour: $v/c=1.168$, LOS F
		PM Peak Hour: $v/c=1.216$, LOS F
9	Int. No. 4: Robertson Blvd./Burton Way	AM Peak Hour: $v/c=1.258$, LOS F
		PM Peak Hour: $\nu/c=1.268$, LOS F
8	Int. No. 5: Robertson Blvd./Wilshire Blvd.	AM Peak Hour: $\nu/c=1.394$, LOS F
		PM Peak Hour: $v/c=1.474$, LOS F

- 59 -

8	Int. No. 10: Willaman Drive/Wilshire Blvd.	AM Peak Hour: $v/c=0.941$, LOS E
•	Int. No. 12: San Vicente Blvd./Melrose Ave.	AM Peak Hour: $v/c=1.119$, LOS F
		PM Peak Hour: v/c=1.226, LOS F
•	Int. No. 13: San Vicente Blvd./Beverly Blvd.	AM Peak Hour: $v/c=1.041$, LOS F
		PM Peak Hour: v/c=1.081, LOS F
	Int. No. 15: San Vicente Blvd./Third St.	AM Peak Hour: $v/c=1.107$, LOS F
		PM Peak Hour: v/c=1.035, LOS F
8	Int. No. 17: San Vicente Blvd./Wilshire Blvd.	AM Peak Hour: $v/c=1.054$, LOS F
		PM Peak Hour: $\nu/c=1.003$, LOS F
0	Int. No. 18: La Cienega Blvd./Beverly Blvd.	AM Peak Hour: $v/c=1.182$, LOS F
		PM Peak Hour: $v/c=1.573$, LOS F
	Int. No. 19: La Cienega Blvd./Third St.	AM Peak Hour: $v/c=1.208$, LOS F
		PM Peak Hour: $v/c=1.364$, LOS F
8	Int. No. 20: La Cienega Blvd./San Vicente Blvd.	AM Peak Hour: $v/c=1.226$, LOS F
		PM Peak Hour: $\nu/c=1.178$, LOS F
8	Int. No. 21: La Cienega Blvd./Wilshire Blvd.	AM Peak Hour: $v/c=1.446$, LOS F
		PM Peak Hour: v/c=1.495, LOS F
•	Int. No. 22: Orlando Ave./Third St.	AM Peak Hour: v/c=0.955, LOS E
		PM Peak Hour: v/c=1.003, LOS F

The future pre-project (existing, ambient growth and related projects) traffic volumes at the study intersections during the AM and PM peak hours are presented in *Figures 9-3* and *9-4*, respectively.

o:\job_fiie\2843\csmcproj\dwg\f9-3.dwg LDP 08:14:60 06/23/2008 rodriquez

9.4 Future With Project Conditions

As shown in column [4] of *Table 8–2*, application of the City's threshold criteria to the "With Proposed Project" scenario indicates that the proposed project is expected to create a significant impact at two of the 22 study intersections. The proposed project is expected to create a significant impact at the following locations according to the City's impact criteria during the peak hour shown below with the addition of ambient growth, related projects traffic, and project-related traffic:

• Int. No. 2: Robertson Blvd./Alden Dr.-Gracie Allen Dr.

AM peak hour v/c ratio increase of 0.022 [to 0.847 (LOS D) from 0.825 (LOS D)]

PM peak hour v/c ratio increase of 0.029 [to 1.010 (LOS F) from 0.981 (LOS E)]

• Int. No. 6: George Burns Rd./Beverly Blvd.

PM peak hour v/c ratio increase of 0.022 [to 0.910 (LOS E) to 0.888 (LOS D)]

Incremental, but not significant, impacts are noted at the remaining 20 study intersections as presented in *Table 8–2*. The future with project (existing, ambient growth, related projects and project) traffic volumes at the study intersections during the AM and PM peak hours are illustrated in *Figures 9-5* and *9-6*, respectively.

9.4.1 Future With Project Access

According to the City of Los Angeles *Draft LA Thresholds Guide*, May 14, 1998, the significance threshold for project access is as follows:

• "A project would normally have a significant project access impact if the intersection(s) nearest the primary site access is/are projected to operate at LOS E or F during the a.m. or p.m. peak hour, under cumulative plus project conditions."

The following five key intersections provide primary project site access to the CSMC campus:

- Robertson Boulevard/Alden Drive-Gracie Allen Drive (Study Intersection No. 2)
- George Burns Road/Beverly Boulevard (Study Intersection No. 6)
- George Burns Road-Hamel Road/Third Street (Study Intersection No. 8)
- Sherbourne Drive/Third Street (Study Intersection No. 11)
- San Vicente Boulevard/Gracie Allen Drive-Beverly Center (Study Intersection No. 14)

As indicated in *Table 8-2*, Study Intersection numbers 6, 8, 11 and 14 provide primary project site access and are projected to operate at LOS D or better under the future cumulative plus

project analysis conditions (i.e., future with project conditions). As also indicated in *Table 8-2*, the Robertson Boulevard/Alden Drive-Gracie Allen Drive intersection (Study Intersection No. 2) provides primary project site access and is projected to operate at LOS E during the PM peak hour under the future cumulative plus project analysis conditions. However, it should be noted that the subject intersection is forecast to operate at LOS E during the PM peak hour under the future pre-project analysis condition. Therefore, the proposed project contributes to the future forecast adverse operating conditions at the Robertson Boulevard/Alden Drive-Gracie Allen Drive intersection and is expected to result in a significant project access impact based on application of the City's CEQA threshold criteria to the "With Proposed Project" scenario.

As noted above, the proposed project is expected to create a significant impact at the Robertson Boulevard/Alden Drive-Gracie Allen Drive intersection according to the City's intersection threshold impact criteria during the PM peak hour shown with the addition of ambient growth, related projects traffic, and project-related traffic. Mitigation is available to reduce the forecast intersection and project access impacts to less than significant levels. Refer to Section 10.0, Transportation Mitigation Measures, for a discussion of the recommended roadway improvement measure for this location.

10.0 TRANSPORTATION IMPROVEMENT MEASURES

The following sections provide an overview of transportation improvement measures that are anticipated to address project impacts to the local roadway network associated with the proposed Cedars-Sinai Medical Center project to less than significant levels.

10.1 Recommended Mitigation Measures

As summarized in the Future With Project Conditions section (refer to Subsection 9.4) herein, application of the City's threshold criteria to the "With Proposed Project" scenario indicates that the proposed project is anticipated to create significant impacts at the following two study intersections:

- Int. No. 2: Robertson Blvd./Alden Dr.-Gracie Allen Dr.
- Int. No. 6: George Burns Rd./Beverly Blvd.

The following paragraphs summarize the recommended transportation mitigation measures for the subject study intersections.

• Int. No. 2: Robertson Blvd./Alden Dr.-Gracie Allen Dr.

Provide a right-turn only lane at the northbound approach on Robertson Boulevard at the intersection, and widen along the north side of the roadway, east of Robertson Boulevard, to provide one shared left-turn/through lane and one right-turn only lane at the westbound approach to the intersection. The resultant lane configurations at the northbound approach to the intersection will be one exclusive left-turn lane, one through lane and one right-turn only lane. This improvement measure would require restriping both the northbound ad southbound approaches to the intersection, as well as the removal of onstreet parking along the east side of Robertson Boulevard south of the intersection for a distance of approximately 130 feet (approximately 6 spaces). A copy of the conceptual roadway mitigation improvement plan for the Robertson Boulevard/Alden Drive-Gracie Allen Drive intersection is contained in *Appendix C*.

As indicated in *Table 8-2*, this measure is anticipated to reduce the potentially significant project-related impact to less than significant levels. The improvement is expected to improve operations to 0.824 (LOS D) from 0.847 (LOS D) with the proposed project during the AM peak hour. During the PM peak hour, the improvement is expected to improve operations to 0.918 (LOS E) from 1.010 (LOS F).

• Int. No. 6: George Burns Rd./Beverly Blvd.

Provide a right-turn only lane at the eastbound approach of Beverly Boulevard at the George Burns Road intersection, as well as two lanes at the northbound approach of George Burns Road to the intersection. The resultant lane configurations at the eastbound approach to the intersection will be one two-way left-turn lane, two through lanes and one right-turn only lane. The resultant lane configurations at the northbound approach to the intersection will be one shared left-turn/through lane and one right-turn only lane. These improvement measures would require widening along the south side of Beverly Boulevard west of the intersection by approximately three feet and the removal of on-street parking for a distance of approximately 55 feet to accommodate the installation of the eastbound right-turn only lane (approximately 4 spaces). A copy of the conceptual roadway mitigation improvement plan for the George Burns Road/Beverly Boulevard intersection is contained in *Appendix C*.

As indicated in *Table 8-2*, this measure is anticipated to reduce the potentially significant project-related impact to less than significant levels. The improvement is expected to improve operations to 0.880 (LOS D) from 0.910 (LOS E) with the proposed project during the PM peak hour.

While the recommended mitigation measure is feasible, it is noted that this intersection is located in the City of West Hollywood and thus implementation of the recommended mitigation is beyond the control of the Lead Agency (City of Los Angeles). Should the City of West Hollywood not allow the implementation of this recommended mitigation measure, a significant unmitigated impact would result for this intersection.

11.0 CONGESTION MANAGEMENT PROGRAM TRAFFIC IMPACT ASSESSMENT

The Congestion Management Program (CMP) is a state-mandated program that was enacted by the State Legislature with the passage of Proposition 111 in 1990. The program is intended to address the impact of local growth on the regional transportation system.

As required by the 2004 Congestion Management Program for Los Angeles County, a Traffic Impact Assessment has been prepared to determine the potential impacts on designated monitoring locations on the CMP highway system. The analysis has been prepared in accordance with procedures outlined in the 2004 Congestion Management Program for Los Angeles County, County of Los Angeles Metropolitan Transportation Authority, July 2004.

11.1 Intersections

The following CMP intersection monitoring locations in the project vicinity have been identified:

0	CMP Station	Intersection
	No. 5	Santa Monica Boulevard/Wilshire Boulevard
	No. 6	Wilshire Boulevard/La Cienega Boulevard (Study Int. No. 21)
	No. 161	Santa Monica Boulevard/La Cienega Boulevard

The CMP TIA guidelines require that intersection monitoring locations must be examined if the proposed project will add 50 or more trips during either the AM or PM weekday peak periods. The proposed project will not add 50 or more trips, during the AM or PM peak hours at the CMP monitoring intersection, which is the threshold for preparing a traffic impact assessment, as stated in the CMP manual. Therefore, no further review of potential impacts to intersection monitoring locations that are part of the CMP highway system is required.

11.2 Freeways

No CMP intersection monitoring freeway locations in the project vicinity. The CMP TIA guidelines require that freeway monitoring locations must be examined if the proposed project will add 150 or more trips (in either direction) during either the AM or PM weekday peak periods. The proposed project will not add 150 or more trips (in either direction), during either the AM or PM weekday peak hours to the CMP freeway monitoring location, which is the threshold for preparing a traffic impact assessment, as stated in the CMP manual. Therefore, no further review of potential impacts to freeway monitoring locations that are part of the CMP highway system is required.

11.3 Transit Impact Review

As required by the 2004 Congestion Management Program for Los Angeles County, a review has been made of the CMP transit service. As previously discussed, existing transit service is provided in the vicinity of the proposed Cedars-Sinai Medical Center project.

The project trip generation, as shown in *Table 6-1*, was adjusted by values set forth in the CMP (i.e., person trips equal 1.4 times vehicle trips, and transit trips equal 3.5 percent of the total person trips) to estimate transit trip generation. Pursuant to the CMP guidelines, the proposed project is forecast to generate demand for 6 transit trips (4 inbound trips and 2 outbound trips) during the weekday AM peak hour. During the weekday PM peak hour, the proposed project is anticipated to generate demand for 7 transit trips (3 inbound trips and 4 outbound trips). Over a 24-hour period, the proposed project is forecast to generate demand for 58 daily transit trips. The calculations are as follows:

- AM Peak Hour = $113 \times 1.4 \times 0.035 = 6$ Transit Trips
- PM Peak Hour = $130 \times 1.4 \times 0.035 = 7$ Transit Trips
- Daily Trips = 1,181 × 1.4 × 0.035 = 58 Transit Trips

As shown in *Table 4-1*, over 11 bus transit lines and routes are provided adjacent to or in close proximity to the project site, with 10 of these transit lines and routes directly serving the site (i.e., they traverse the site or travel along one or more of the project frontages). A total of three different bus transit providers provide service within the study area. As outlined in *Table 4-1* under the "No. of Buses During Peak Hour" column, these 11 transit lines provide service for an average (i.e., an average of the directional number of buses during the peak hours) of approximately 93 buses during the AM peak hour and roughly 94 buses during the PM peak hour. Therefore, based on the above calculated peak hour transit trips, this would correspond to less than one project-related transit rider per bus. Therefore, it is anticipated that the existing transit service in the project area will adequately accommodate the project generated transit trips. Thus, given the low number of generated transit trips per bus, no impacts on existing or future transit services in the project area are expected to occur as a result of the proposed project.

12.0 PROJECT PARKING

This section summarizes the review of the project's parking requirements according to the current CSMC Zone Change Ordinance approved by the City of Los Angeles in 1993 (per Ordinance No. 168,847) and of the planned campus parking supply. Please note that required parking for any development project is ultimately determined by the City of Los Angeles Department of Building and Safety. It is anticipated that the proposed project will provide required parking as determined by the City of Los Angeles prior to issuance of a building permit for the project.

The City of Los Angeles Ordinance No. 168,847 (i.e., the Ordinance authorizing the development of the CSMC Master Plan) sets forth the parking requirements for new development at the CSMC campus. Parking requirements applicable to the CSMC campus land use components include the following rates:

- Administrative, Diagnostic, Imaging and Support Uses:
 - 3.3 parking spaces per 1,000 square feet of floor area
- Hospital Uses:
 - 2.5 parking spaces per hospital bed
- Medical Suite Uses:
 - 5.0 parking spaces per 1,000 square feet of floor area

The floor area referenced in the Ordinance is assumed to be consistent with Section 12.21 of the Los Angeles Municipal Code, which excludes building areas devoted to exterior walls, stairwells, shafts, rooms housing building operating equipment, etc.

It should be noted that the parking supply and requirements for CSMC and the adjacent Third Street Medical Office Towers are considered together by the City, even though the facilities are separately owned and operated. At the time the Medical Office Towers were approved, the City tied their parking requirements to the adjacent CSMC due to anticipated overlapping of parking demand expected to occur between the two facilities (e.g., a doctor on staff at Cedars-Sinai also leases office space at the Medical Office Towers).

12.1 CSMC Existing Parking Analysis

12.1.1 CSMC Existing Parking Supply

The City of Los Angeles determines parking (required and supply) for an environment such as CSMC on a campus-wide basis, rather than on a building-by-building or lot-by-lot basis. The baseline for the existing City required parking and supply for the CSMC campus was established by the City of Los Angeles in 1993 (per Ordinance No. 168,847). This included Zoning Case Nos. 21332 and 21940 which authorized the development of the medical office towers on Third Street and its associated parking.

As presented in *Table 12-1*, a total of 7,276 parking spaces are provided on the existing CSMC campus that serve the City parking requirements. This total includes a total of 5,622 spaces in parking facilities controlled by CSMC and a total of 1,654 spaces in the two Medical Office Tower parking structures.

12.1.2 City of Los Angeles Existing Required Parking

A summary of the existing Code parking requirements for the current CSMC campus is provided in *Table 12-1*. As indicated in *Table 12-1*, a total of 6,639 parking spaces are currently required for the CSMC campus (including the required spaces for the adjacent Medical Office Towers) based on City parking requirements.

12.1.3 Existing Supply-Required Parking Summary

The City of Los Angeles parking requirement for the existing CSMC campus totals 6,639 spaces (including the required spaces for the adjacent Medical Office Towers). A total of 7,276 parking spaces are currently provided for the existing CSMC campus, including a total of 5,622 spaces in parking facilities controlled by CSMC and a total of 1,654 spaces in the two Medical Office Tower parking structures. Therefore, as presented in *Table 12-1*, the CSMC parking supply of 7,276 spaces exceeds the City parking requirement of 6,369 spaces by a total of 637 spaces.

12.2 CSMC Future Parking Analysis

An analysis of future parking conditions was prepared for CSMC based on the build-out and occupancy of the proposed project. As previously discussed in Subsection 2.3 (Proposed Project Description) herein, the proposed project will be 11-stories high and contain 100 hospital beds, and will be used for medical purposes, including inpatient services, medical suites, research, administrative and diagnostic space. The proposed project will include 100 new inpatient beds (200,000 square feet or approximately 230,000 gross square feet) of additional authorized inpatient development on the medical campus beyond the current authorized development previously approved by the City of Los Angeles. Authorization for development of the new facility will consist of three components:

- 1. The proposal to develop 100 new inpatient beds (200,000 square feet);
- 2. Replacement of the existing 90,000 square feet of building floor area and uses contained within the Existing Building; and

Table 12-1
EXISTING CSMC CAMPUS PARKING SUMMARY

	REQUIRED PARKING	
Item		No. of
No.	Required Parking	Spaces
1	Zoning Case 21332 and 21940 (main hospital and 3rd Street MOTS)	3,964
2	Harvey Morse Conference Center (within the South Tower)	179
3	8723 Alden Drive Medical Building (including new elevator)	182
4	Comprehensive Cancer Center	81
5	Becker Building (within the North Tower)	22
6	Mark S. Taper Imaging Center	157
7	Davis Research Building Phase 1	456
8	Computer Center (within the Mental Health Center)	48
9	Emergency Room Expansion (within the North Tower)	78
10	Administration/Pediatric Walk-in entrance (within the North Tower)	1
11	Davis Research Building Phase 2	20
12	North Care Tower (180 bed replacement of 201 bed Schuman/Brown buildings)	0
13	Human Resources Trailers	5
14	Advanced Health Sciences Pavilion (379,000 SF):	
	Medical Suites: 114,800 SF x 5.0 spaces/1,000 SF	574
	Other: 264,200 SF x 3.3 spaces/1,000 SF	872
	Total Required Parking	6,639
	PARKING SUPPLY	
Item No.	Parking Facility	No. of Spaces
1	Parking Lot 1 (site of Research Building)	0
	Parking Lot 2 (8723 Alden Drive Medical Building lot)	217
3	Mental Health Center (after construction of Computer Center)	95
4	Employee Parking Structure (excluding public meters)	2 140
5	Within Main Hospital Structure (after construction of FR expansion & Telecomm remodel)	567
5	Within Service Yard	29
7	3rd St. MOT Parking Structures:	
	133 S. Sherbourne	838
	8675 W. 3rd St.	816
8	Parking Lot 9 (Cancer Center)	105
9	Parking Lot 7 (Taper)	0
10	Parking Structure 4 (3rd St and San Vicente)	1.922
11	Parking Structure 4 Expanded	547
	Total Parking Supply	7,276
	PARKING SURPLUS/(DEFICIT)	637

3. Development of the anticipated 187,650 square feet of remaining floor area entitled in 1993 (pursuant to Ordinance No. 168,847).

12.2.1 CSMC Future Parking Supply

The future parking supply at the CSMC will also be modified based on development of the proposed Cedars-Sinai Medical Center project. In general, parking on the existing Parking Lot No. 2 will be removed to accommodate the proposed project. Approximately 700 parking spaces are planned to be provided in an adjoining parking structure to be constructed as part of the proposed project. This existing 217 spaces currently provided in Parking Lot No. 2 will be removed. No other modifications to the CSMC parking is currently planned as part of the proposed project. As such, the parking supply at the CSMC campus will increase by an approximate net change of 483 spaces as detailed below:

•	Loss of parking spaces in Parking Lot No. 2:	(217) Spaces
•	Addition of parking spaces in new structure:	700 Spaces
6	Net increase in CSMC parking supply:	483 Spaces

A summary of the future CSMC parking supply is presented in *Table 12-2*. As shown in *Table 12-2*, the parking supply for the CSMC campus will increase to a total of 7,812 spaces.

12.2.2 City of Los Angeles Future Required Parking

As previously discussed, the parking requirements for new development at the CSMC campus were established in the City of Los Angeles Ordinance No. 168,847 (i.e., the Ordinance authorizing the development of the CSMC Master Plan). The City parking requirement calculations for the proposed Cedars-Sinai Medical Center project components are as follows:

•	Removal of Existing	(182 spaces)	
0	Inpatient Beds:	100 beds (200,000 SF) × 2.5 spaces/bed =	250 spaces
9	Medical Suites:	94,200 SF × 5.0 spaces/1,000 SF =	471 spaces
۹	Other:	93,450 SF × 3.3 spaces/1,000 SF =	309 spaces
0	Replacement of Exis	182 spaces	
0	Total Required Parki	ng	1,030 Spaces ¹¹

¹¹ As the replacement floor area associated with the proposed removal of the Existing Building will equal the current floor area, there is no net change to its parking requirement of 182 spaces.

Table 12-2 FUTURE CSMC CAMPUS PARKING SUMMARY

REQUIRED PARKING					
ltem					
No.	Required Parking	Spaces			
]	Zoning Case 21332 and 21940 (main hospital and 3rd Street MOTS)	3,964			
2	Harvey Morse Conference Center (within the South Tower)	179			
3	8723 Alden Drive Medical Building (including new elevator)	0 [1]			
4	Comprehensive Cancer Center	81			
5	Becker Building (within the North Tower)	22			
6	Mark S. Taper Imaging Center	157			
7	Davis Research Building Phase 1	456			
8	Computer Center (within the Mental Health Center)	48			
9	Emergency Room Expansion (within the North Tower)	78			
10	Administration/Pediatric Walk-in entrance (within the North Tower)	1			
11	Davis Research Building Phase 2	20			
12	North Care Tower (180 bed replacement of 201 bed Schuman/Brown buildings)	0			
13	Human Resources Trailers	5			
14	Advanced Health Sciences Pavilion (379,000 SF):				
	Medical Suites: 114,800 SF x 5.0 spaces/1,000 SF	574			
	Other: 264,200 SF x 3.3 spaces/1,000 SF	872			
15	Proposed Project:				
	Inpatient Beds: 100 beds (200,000 SF) x 2.5 spaces/bed	250			
	Medical Suites: 94,200 SF x 5.0 spaces/1,000 SF	471			
	Other: 93,450 SF x 3.3 spaces/1,000 SF	309			
	8723 Alden Drive Medical Building Replacement (90,000 SF)	182			
Total Required Parking 7					
	PARKING SUPPLY				
Item	Deubling Fragilian	No. of			
110.		Spaces			
	Parking Lot 1 (site of Research Building)	0			
2	Parking Lot 2 (8/23 Alden Drive Medical Building lot - removed for proposed project)	0 [2]			
	Mental Health Center (after construction of Computer Center)	95			
4	Employee Parking Structure (excluding public meters)	2,140			
<u> </u>	Within Main Hospital Structure (after construction of ER expansion, & Telecomm. remodel)				
<u> </u>	Within Service Yard	29			
/	3rd St. MOT Parking Structures:				
	133 S. Sherbourne	838			
	8675 W. 3rd St.	816			
8	Parking Lot 9 (Cancer Center)	105			
9	Parking Lot / (laper)	0			
10	Parking Structure 4 (3rd St and San Vicente)	1,922			
11	Parking Structure 4 Expanded	547			
12	New Parking Structure 2 (part of proposed project)	700			
Total Parking Supply					
PARKING SURPLUS/(DEFICIT)					

Notes:

[1] Assumes removal of the 8723 Alden Drive Medical Building.[2] Assumes removal of 217 spaces previously on Parking Lot 2.

Based on the parking requirements for the planned development program, the future City parking requirement for the CSMC campus will total approximately 7,669 spaces. This is based on the existing City requirement of 6,639 spaces and the future Code requirement of 1,030 spaces for the planned development program (6,639 + 1,030 = 7,669 spaces).

12.2.3 Future Supply-Required Parking Summary

The City of Los Angeles parking requirement for the future CSMC campus totals 7,669 spaces (including the required spaces for the adjacent Medical Office Towers). A total of 7,759 parking spaces will be provided for the future CSMC campus, including a total of 6,105 spaces in parking facilities controlled by CSMC and a total of 1,654 spaces in the two Medical Office Tower parking structures. Therefore, as presented in *Table 12-2*, the planned CSMC parking supply of 7,759 spaces exceeds the City parking requirement of 7,669 spaces by a total of 93 spaces.

13.0 TRANSPORTATION DEMAND MANAGEMENT

This section has been prepared to review the results of the Transportation Demand Management (TDM) program implemented by Cedars-Sinai Medical Center (CSMC) to achieve trip reduction and Average Vehicle Ridership (AVR) requirements set forth in City of Los Angeles Ordinance No. 168,847, as well as to determine whether the specific requirements should still be required. Specifically, CSMC has determined that it has achieved the trip reduction goals identified in the current entitlement (i.e., achieve a 9 percent overall PM peak hour trip reduction for the entire CSMC campus) without attaining the aggressive AVR targets also identified in Ordinance No. 168,847. As such, it is recommended that it would be appropriate to remove the trip reduction requirements in Ordinance No. 166847.

CSMC maintains a TDM program that has successfully reduced vehicle trips and parking demand at that campus. Pursuant to the most recent rideshare report filed with the South Coast Air Quality Management District (SCAQMD), CSMC has attained an Average Vehicle Ridership (AVR) among its full-time employees of approximately 1.4 persons per vehicle. In addition to trip reduction programs available to full-time employees, CSMC encourages ridesharing and other amenities to part-time and contract employees, as well as to patients and visitors to reduce vehicle trips during peak commute hours. These programs include flexible work schedules and high accessibility to public transportation. As discussed below, the TDM program operated by CSMC has resulted in an overall reduction in the trip generation of CSMC as may otherwise be expected by a similar, unmanaged medical center. With respect to the analysis of future traffic associated with the project, no reductions in the potential trip generation of these new facilities have been assumed so as to provide a conservative (worst case) assessment of the potential traffic impacts.

13.1 Current CSMC AVR/Trip Reduction Requirements

City of Los Angeles Ordinance No. 168,847, the Ordinance approving the Zone Change and Height District Change for the CSMC campus in 1993, provides for two related trip reduction requirements associated with CSMC:

- "Applicant shall prepare and submit a Transportation Demand Management (TDM) plan to LADOT which will contain measures to achieve an 18 percent reduction in PM peak hour trips above and beyond SACQMD Regulation XV requirements for new facilities and a 9 percent overall PM peak hour trip reduction for the entire Cedars-Sinai Medical Center campus (existing facilities plus proposed)."
- "No later than the date of issuance of any building permit for the second building of the ODTC, Organ Transplant Wing or Rehabilitation Center, CSMC shall achieve an Average Vehicle Ridership (AVR) of 1.6 for current employees as documented for the most recent SACQMD Regulation XV compliance, to the satisfaction of DOT. No later than the date of issuance of any building permit for the third building of the ODTC, Organ Transplant Wing or Rehabilitation Center,

CSMC shall achieve an AVR of 1.8 for current employees as documented for the most recent SCAQMD Regulation XV compliance to the satisfaction of DOT."

Based on its operating experience, CSMC has determined that it can achieve the effect of the overriding goal of the trip reduction program set forth in the current entitlement (i.e., achieve a 9 percent overall PM peak hour trip reduction for the entire CSMC campus) without having to attain the aggressive AVR targets of 1.6 and 1.8. This is likely due to the ridesharing and trip reduction efforts attributed to other population segments at CSMC such as part-time employees, contract employees, and patients/visitors. This trip reduction has been documented based on traffic counts of the current trip generation of the campus as compared to the theoretical trip generation potential of the existing facilities.

13.2 Existing Trip Generation and Trip Reduction Verification

Traffic counts were conducted during the PM peak period at the CSMC campus to measure trip generation of the existing facilities. Specifically, traffic counts were conducted during the PM peak period (4:00 to 6:00 PM) on Tuesday, Wednesday and Thursday, June 19, 20 and 21, 2007, respectively. The traffic counts were conducted at the driveways serving existing CSMC parking facilities. In addition, traffic counts were conducted at the two parking structures serving the Third Street Medical Office Towers as CSMC employees park in these garages.¹² Summaries of the existing CSMC campus driveway counts are provided in *Appendix D*.

Based on the three days of driveway traffic counts, PM peak hour volumes were derived for the campus. A summary of the driveway counts conducted at the CSMC campus is illustrated in the attached *Figure 13-1*. A summary of the existing PM peak hour counts is presented in *Table 13-1*. As shown on *Table 13-1*, the existing CSMC campus was counted to generate 1,921 PM peak hour trips (350 trips inbound trips, 1,572 trips outbound trips).

The next step in the analysis was to establish a trip generation baseline of the existing CSMC campus for purposes of comparing the counted trip generation summarized in *Table 13-1*. It is noted that the traffic study and EIR prepared for the 1993 Master Plan and Development Agreement did not calculate a trip generation baseline for the CSMC campus as it existed at that time (instead, the prior studies evaluated the potential traffic impacts associated with the new facilities). Therefore, it accordance with standard traffic engineering practice, an estimate was made of the trip generation potential of the current CSMC campus (i.e., the CSMC campus as it existed in 1993 plus facilities developed to date under the Master Plan) in a manner similar to forecasting trips associated with new development projects. Accordingly, the trip generation potential of the existing CSMC facilities (including the Third Street Medical Office Towers) was

¹² The Third Street Medical Office Towers were originally developed by CSMC so as to provide a complementary and synergistic medical facility adjacent to the Medical Center. The availability of medical suites at the Medical Office Towers for physicians who are on-staff at CSMC, as well as medical diagnostic facilities not available at CSMC is efficient and traffic-reducing While no longer under CSMC ownership, the Medical Office Towers continue to be linked operationally to CSMC, including sharing of parking spaces.. Therefore it is appropriate to consider the trip generation characteristics of the Medical Office Towers in evaluating the overall trip generation of the CSMC campus.

Table 13-1 SUMMARY OF EXISTING CSMC CAMPUS PM PEAK HOUR DRIVEWAY COUNTS [1] OVERALL AVERAGE

OBSERVATION	PEAK	OVERALL CAMPUS		
DAY	HOUR	INBOUND	OUTBOUND	TOTAL
Tuesday, June 19, 2007	4:45-5:45 PM	328	1,639	1,967
Wednesday, June 20, 2007	4:30-5:30 PM	381	1,582	1,963
Thursday, June 21, 2007	4:45-5:45 PM	340	1,494	1,834
Overall Campus Average for the				
Three Observation Days	4:45-5:45 PM	350	1,572	1,921

 The manual peak period driveway turning movement counts were conducted by City Traffic Counters. Refer to Figure A for the CSMC driveway locations included in the driveway counts. calculated using trip rates provided in the ITE *Trip Generation* manual. The trip generation forecast for the existing facilities at CSMC is summarized in **Table 13-2**. This trip generation forecast encompasses the entire property as governed by the Master Plan and Development Agreement adopted by the City Council in 1993. The Master Plan and Development Agreement authorized an additional 700,000 square feet of new development, with a maximum allowable total gross floor area for the CSMC campus of 2.27 million square feet and a maximum overall floor area ratio of 2.46:1. Since 1993, a number of infill projects that were approved under the Master Plan were constructed, totaling 73,501 square feet.

As noted on *Table 13-2*, the existing facilities are forecast to generate 2,994 PM peak hour trips. By comparison, the existing facilities were counted to generate 1,921 PM peak hour trips, or approximately 35.8% less than the forecast generation. As previously noted, the trip reductions are likely a result of TDM and other vehicular trip reduction programs implemented by CSMC for full-time employees, part-time employees and contract employees, as well as for patients and visitors. Further, it is likely that the relatively lower trip generation of CSMC as compared to the forecast made based on the ITE trip rates can be attributed to the fact that the database utilized in preparing the *Trip Generation* manual is from medical facilities located in suburban locations with little trip-making made by public transit, walking, or bicycling. The CSMC campus, by comparison, is in a highly urbanized area with access to extensive public transportation resources. Further, the urbanized nature of the campus and surrounding synergistic land uses which support the medical center (such as medical office buildings, retail and restaurant uses that draw patronage from the medical center, etc.) allow for trip-making by walking and bicycling that is otherwise not experienced at the ITE-studied facilities.

It is noted that the 35.8% reduction is in consideration of the existing 1.4 AVR among full-time CSMC employees. The 35.8% reduction substantially exceeds the target 9% reduction in the current entitlement. Therefore, the current requirement to attain phased AVR targets of 1.6 and 1.8 persons per vehicle can be removed.

13.3 Recommendations

Based on the existing reduction of trips achieved by CSMC, it would be appropriate to remove the trip reduction requirements noted in Sections 2.2.n.iii and 2.13 within Ordinance No. 166847. Removal is supported by the State Legislature's adoption of Senate Bill (SB) 437 in 1995, which amended the Clean Air Act. SB 437 limits government agencies' ability to require that employers implement trip reduction programs unless the program is expressly required by federal law and the elimination of the program will result in the imposition of federal sanctions. Trip reduction programs may be appropriate as one option which employers may choose in meeting ambient air quality standards, provided that the other alternatives are reasonably practicable. However, given CSMC's success in reducing trips and exceeding their target 9% reduction, it is appropriate to allow CSMC to continue with its other successful efforts.

Table 13-2 TRIP GENERATION FORECAST OF EXISTING CSMC CAMPUS VS. ACTUAL COUNTS [1]

		PM PEAK HOUR VOLUME [2]		
LAND USE	SIZE	RATE	TOTAL	
Hospital [3]	952 Beds	1.30 /Bed	1,238	
Research/Development [4]	222,205 SF	1.08 /KSF	240	
Medical Office Towers [5]	356,900 SF	3.72 /KSF	1,328	
Comprehensive Cancer Center [5]	21,539 SF	3.72 /KSF	80	
Taper Imaging [5],[6]	29,092 SF	3.72 /KSF	108	
FORECAST TRIPS			2,994	
ACTUAL COUNTS	1,921			
REDUCTION		(1,073)		
PERCENT DIFF. FORECAST VS. ACTUAL	-35.8%			

[1] Source: ITE "Trip Generation", 7th Edition, 2003; and actual driveway counts conducted at the CSMC campus on Tuesday, June 19, Wednesday, June 20, and Thursday, June 21, 2007.

[2] Trips are one-way traffic movements, entering or leaving.

- [3] ITE Land Use Code 610 (Hospital) trip generation average rates.
- [4] ITE Land Use Code 760 (Research and Development Center) trip generation average rates.
- [5] ITE Land Use Code 720 (Medical-Dental Office Building) trip generation average rates.
- [6] Approximately 45 percent of the overall Taper Imaging building (i.e., 64,649 SF) is utilized for outpatient services (64,649 SF x 0.45 = 29,092 SF).

14.0 CONCLUSIONS

This traffic analysis has been conducted to identify and evaluate the potential impacts of traffic generated by the proposed Cedars-Sinai Medical Center project. The proposed project is located at the northwest corner of the George Burns Road/Gracie Allen Drive within the CSMC campus. The proposed Cedars-Sinai Medical Center project will be 11-stories high and contain 100 hospital beds, and will be used for medical purposes, including inpatient services, medical suites, research, administrative and diagnostic space.

This traffic analysis evaluates potential project-related impacts at 22 key intersections in the vicinity of the CSMC campus. Application of the City's threshold criteria to the "With Proposed Project" scenario indicates that two of the 22 study intersections are anticipated to be significantly impacted by the proposed project. Incremental but not significant impacts are noted at the remaining 20 study intersections. Roadway improvement measures are recommended to mitigate the forecast project-related impacts at the affected study intersections. These measures are anticipated to reduce the project-related impacts to less than significant levels at the two study intersections.
APPENDIX A

MANUAL TRAFFIC COUNTS

≻

File Name : 364301 Site Code : 00364301 Start Date : 10/9/2007 Page No : 1

Groups Printed- Turning Movement ROBERTSON BLVD. BEVERLY BLVD. ROBERTSON BLVD. BEVERLY BLVD. Southbound Westbound Northbound Eastbound App. App. App. App. Int Start Time Right Thru Left Right Thru Left Right Thru Left Right Thru Left Total Total Total Total Total 1.0 1.0 1.0 1.0 1.0 1.0 Factor 1.0 1.0 1.0 1.0 1.0 1.0 07:00 AM 07:15 AM 07:30 AM 07:45 AM Total 08:00 AM 08:15 AM 08:30 AM 08:45 AM Total 09:00 AM 09:15 AM 09:30 AM 09:45 AM Total *** BREAK *** 03:00 PM 03:15 PM 03:30 PM 03:45 PM Total 04:00 PM 04:15 PM 04:30 PM 04:45 PM Total 05.00 PM 05:15 PM 05:30 PM 05:45 PM Total Grand Total 63.6 5.4 85.1 9.5 23.9 64.6 11.5 7.4 86.2 6.4 Apprch % 27.2 9.3 30.7 Total % 4.8 11.2 1.6 17.6 1.9 30.6 3.4 35.9 3.8 10.2 1.8 15.9 2.3 26.5 2.0

	RC	DBERT	SON BL	_VD.	E	BEVER	LY BLV	D.	RC	BERT	SON BL	VD.	E	BEVER	LY BLV	D.	
		South	nbound			West	lbound			North	bound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Fro	m 07:0	0 AM to	09:45	AM - Pea	ak 1 of 1	1			1				(i	
Intersection	08:00	AM			1												
Volume	223	468	52	743	53	1358	116	1527	113	334	55	502	87	896	36	1019	3791
Percent	30.0	63.0	7.0		3.5	88.9	7.6		22.5	66.5	11.0		8.5	87.9	3.5		
08:45 Volume	64	110	15	189	17	357	29	403	34	95	9	138	20	219	6	245	975
Peak Factor																	0.972
High Int.	08:00	AM			08:45	AM			08:45	AM			08:15	AM			
Volume	55	128	11	194	17	357	29	403	34	95	9	138	26	244	8	278	
Peak Factor				0.957				0.947				0.909				0.916	

 File Name
 : 364301

 Site Code
 : 00364301

 Start Date
 : 10/9/2007

 Page No
 : 2

	RC	DBERT	SON BI	_VD.	E	BEVER	LY BLV	D.	RC	BERT	SON BL	VD.	E	BEVER	LY BLV	D.	
		South	nbound			West	tbound			North	ibound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Fro	m 03:0	0 PM to	05:45	PM - Pea	ak 1 of 1												
Intersection	04:30	PM															
Volume	107	370	82	559	80	941	89	1110	150	455	78	683	66	1118	133	1317	3669
Percent	19.1	66.2	14.7		7.2	84.8	8.0		22.0	66.6	11.4		5.0	84.9	10.1		
04:30	24	104	22	150	22	250	22	294	33	115	20	168	16	285	30	340	052
Volume	24	104	22	100	22	200	22	204	00	110	20	100	10	200	55	540	552
Peak Factor																	0.963
High Int.	04:45	PM			04:30	PM			05:00	РМ			04:30	PM			
Volume	26	103	23	152	22	250	22	294	48	104	23	175	16	285	39	340	
Peak Factor				0.919				0.944				0.976				0.968	

File Name : 364302 Site Code : 00364302 Start Date : 10/9/2007 Page No : 1

Groups Printed- Turning Movement ROBERTSON BLVD. ALDEN DR. ROBERTSON BLVD. ALDEN DR. Southbound Westbound Northbound Eastbound App. App. App. App. Int Right Thru Start Time Right Thru Left Left Right Thru Left Right Thru Left Total Total Total Total Total 1.0 1.0 Factor 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 07:00 AM 07:15 AM 07:30 AM 07:45 AM Total 08:00 AM 08:15 AM 08:30 AM 08:45 AM g Tota 09:00 AM 09:15 AM 09:30 AM 09:45 AM Total *** BREAK *** 03:00 PM 03:15 PM 03:30 PM 03:45 PM Δ Total 04:00 PM 04:15 PM 04:30 PM 04:45 PM Total 05:00 PM 05.15 PM 05:30 PM 05:45 PM Total Grand Total 4.9 88.3 6.8 32.6 35.7 Apprch % 31.7 11.9 84.3 3.9 26.4 51.5 22.2 . Total % 1.9 39.2 34.7 2.7 3.2 3.5 3.1 9.7 4.9 35.0 1.6 41.5 2.5 9.5 4.9 2.1

	RC	DBERT	SON BL	_VD.		ALDE	IN DR.		RC	BERT	SON BL	VD.		ALDE	EN DR.		
		South	nbound			West	lbound			North	bound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Fro	m 07:0	0 AM to	09:45	AM - Pea	ak 1 of 1										L		
Intersection	08:15	AM														1	
Volume	54	559	35	648	32	55	40	127	87	478	22	587	48	67	29	144	1506
Percent	8.3	86.3	5.4		25.2	43.3	31.5		14.8	81.4	3.7		33.3	46.5	20.1		
08:30 Volume	15	158	8	181	10	18	5	33	19	122	3	144	13	20	7	40	398
Peak Factor																	0.946
High Int.	08:30	AM			09:00	AM			08:45	AM			08:30	AM			
Volume	15	158	8	181	12	15	14	41	34	120	5	159	13	20	7	40	
Peak Factor				0.895				0.774				0.923				0.900	

 File Name
 : 364302

 Site Code
 : 00364302

 Start Date
 : 10/9/2007

 Page No
 : 2

	RC	DBERT	SON BL	.VD.		ALDE	EN DR.		RC	BERT	SON BL	VD.		ALDE	EN DR.		
Start Time	Diaht	The	1 off	App.	Disht			App.	D:			App.	D: 11			App.	Int.
Start Time	Right	innu	Leit	Total	Right	Thru	Leit	Total	Right	Inru	Lеπ	Total	Right	Inru	Lett	Total	Total
Peak Hour Fro	om 03:0	0 PM to	05:45	PM - Pea	ak 1 of 1												
Intersection	04:45	PM			1												
Volume	20	480	32	532	62	63	67	192	67	616	22	705	39	94	39	172	1601
Percent	3.8	90.2	6.0		32.3	32.8	34.9		9.5	87.4	3.1		22.7	54.7	22.7		
04:45	5	179	7	140	25	10	10	51	10	160	c	100		04		20	400
Volume	5	120	1	140	25	15	15	51	13	103	0	102	11	21	4	36	409
Peak Factor					,												0.979
High Int.	04:45	PM			05:00	РМ			04:45	PM			05:30	PM			
Volume	5	128	7	140	16	23	16	55	13	163	6	182	10	29	14	53	
Peak Factor				0.950				0.873				0.968				0.811	

File Name : 364303 Site Code : 00364303 Start Date : 10/9/2007 Page No : 1

						0		~							Pag	je No :	1
	pr		SON PI		I	Gro	ND ST	nted- lu		ovemer							1
		i ADER I Souti		VD.		Wost	LUSI.			JBERI	SON BL	VD.		THIF	KD ST.		
		1		Ann		1103		App		NOIL	IDOUIIU				DOULIO	A	
Start Time	Right	Thru	Left	Total	Right	Thru	Left	Total	Right	Thru	Left	Total	Right	Thru	Left	Total	Total
	1 1.0	1.0	1.0	0.1	1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		
07:00 AM	8	11	6	91	8	100	31	139	34	()	4	115	3	36	9	48	393
07:15 AM	11	84	/ -	102	10	92	18	120	42	83	5	130	7	45	8	60	412
07:30 AM	8	114	C C	127	9	141	40	190	32	92	5	129	3	73	9	85	531
07:45 AlVI	13	123	11	147	12	156	36	204	38	101	3	142	12	78	11	101	594
Total	40	398	29	467	39	489	125	653	146	353	17	516	25	232	37	294	1930
08:00 AM	14	135	6	155	17	164	32	213	42	118	6	166	6	73	16	95	629
08:15 AM	14	118	7	139	13	179	34	226	47	110	7	164	8	77	8	93	622
08:30 AM	11	129	10	150	18	197	27	242	37	125	8	170	15	75	11	101	663
08:45 AM	13	132	12	157	21	198	28	247	35	141	12	188	7	82	8	97	689
Total	52	514	35	601	69	738	121	928	161	494	33	688	36	307	43	386	2603
09:00 AM	9	126	8	143	16	179	30	225	34	133	3	170	5	86	9	100	638
09:15 AM	12	111	12	135	18	164	30	212	43	112	9	164	7	65	9	81	592
09:30 AM	13	109	10	132	15	149	38	202	46	117	8	171	12	65	11	88	593
09:45 AM	17	115	12	144	8	136	34	178	48	121	10	179	8	65	9	82	583
Total	51	461	42	554	57	628	132	817	171	483	30	684	32	281	38	351	2406
*** BREAK ***																	
	17	00	10	128	10	100	26	155	21	144	10	40C	0	C O	40	00.1	550
03:15 PM	13	104	12	120	15	100	20	140	21	144	10	160	9	69	10	88	556
03:30 PM	16	104	10	120	10	93 70	20	140	20	152	5	175	14	83	15	112	545
03:45 PM	10	124	6	140	16	106	26	1/12	20	100	5 7	1/0	10	04	40	101	482
Total	56	420	36	512	63	369	131	563	93	584	25	702	36	297	47	380	2157
04.00 DM	40	400	40	407	40									201		000	2107
04:00 PM	13	138	16	167	19	92	28	139	20	132	9	161	21	108	16	145	612
04.15 PW	0	123	10	141	9	93	30	132	12	132	10	154	13	103	20	136	563
04.30 PM	40	111	12	132	14	111	33	158	28	127	8	163	6	113	19	138	591
	12	400	13	143		100	30	163	26	126	4	156		107		135	597
TOTAL	42	490	51	583	69	390	127	592	86	517	31	634	47	431	76	554	2363
05:00 PM	15	115	14	144	10	116	25	151	36	137	4	177	14	105	10	129	601
05:15 PM	9	124	12	145	13	120	29	162	26	134	11	171	10	115	12	137	615
05:30 PM	16	121	17	154	16	98	37	151	23	154	6	183	8	110	9	127	615
05:45 PM	9	109	11	129	16	105	27	148	31	132	4	167	16	108	16	140	584
Total	49	469	54	572	55	439	118	612	116	557	25	698	48	438	47	533	2415
Grand Total	290	2752	247	3289	352	3059	754	4165	773	2988	161	3922	224	1986	288	2498	13874
Apprch %	8.8	83.7	7.5		8.5	73.4	18.1		19.7	76.2	4.1		9.0	79.5	11.5		
Total %	2.1	19.8	1.8	23.7	2.5	22.0	5.4	30.0	5.6	21.5	1.2	28.3	1.6	14.3	2.1	18.0	

	RC	DBERT	SON BL	.VD.		THIF	RD ST.		RC	BERT	SON BL	VD.		THIF	RD ST.		
		South	nbound			West	lbound			North	bound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Fro	m 07:0	0 AM to	09:45	AM - Pea	ak 1 of 1						L4			t			
Intersection	08:15	AM														1	
Volume	47	505	37	589	68	753	119	940	153	509	30	692	35	320	36	391	2612
Percent	8.0	85.7	6.3		7.2	80.1	12.7		22.1	73.6	4.3		9.0	81.8	9.2		
08:45 Volume	13	132	12	157	21	198	28	247	35	141	12	188	7	82	8	97	689
Peak Factor																	0.948
High Int.	08:45	AM			08:45	AM			08:45	AM			08:30	AM			
Volume	13	132	12	157	21	198	28	247	35	141	12	188	15	75	11	101	
Peak Factor				0.938				0.951				0.920				0.968	

 File Name
 : 364303

 Site Code
 : 00364303

 Start Date
 : 10/9/2007

 Page No
 : 2

	RC	DBERT	SON BL	VD.		THIF	RD ST.		RC	DBERT	SON BI	VD.		THIF	RD ST.]	
		Sout	nbound			Wes	tbound			North	nbound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Fro	m 03:0	0 PM to	05:45	PM - Pea	ak 1 of 1		I						I		I		
Intersection	04:45	PM															
Volume	52	478	56	586	66	434	127	627	111	551	25	687	39	437	52	528	2428
Percent	8.9	81.6	9.6		10.5	69.2	20.3		16.2	80.2	3.6		7.4	82.8	9.8		
05:30 Volume	16	121	17	154	16	98	37	151	23	154	6	183	8	110	9	127	615
Peak Factor																	0.987
High Int.	05:30	РМ			04:45	РМ			05:30	РМ			05:15	РМ		1	
Volume	16	121	17	154	27	100	36	163	23	154	6	183	10	115	12	137	
Peak Factor				0.951				0.962				0.939				0.964	

 File Name
 : 364304

 Site Code
 : 00364304

 Start Date
 : 10/17/2007

 Page No
 : 1

						Gro	ups Prir	nted- Tu	rning M	ovemei	nt						
	RC	DBERT	SON BL	VD.		BURT	אר אכ	/	RC	DBERT	SON BL	VD,		BURTO	DN WAY	′	
		South	hbound			West	bound			North	hound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Factor	1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		
07:00 AM	10	105	2	117	16	156	7	179	3	94	15	112	7	32	10	49	457
07:15 AM	12	101	8	121	8	182	15	205	4	109	13	126	20	72	10	102	554
07:30 AM	28	141	7	176	7	268	20	295	3	97	9	109	16	98	11	125	705
07:45 AM	18	149	3	170	14	296	19	329	8	127	12	147	21	134	29	184	830
Total	68	496	20	584	45	902	61	1008	18	427	49	494	64	336	60	460	2546
08:00 AM	19	166	5	190	21	285	17	323	4	145	28	177	23	138	27	188	878
08:15 AM	15	152	10	177	12	281	33	326	4	128	25	157	17	116	28	161	821
08:30 AM	18	157	4	179	21	361	37	419	9	151	31	191	26	160	24	210	999
08:45 AM	14	161	10	185	27	333	37	397	5	168	28	201	19	138	26	183	966
Total	66	636	29	731	81	1260	124	1465	22	592	112	726	85	552	105	742	3664
09:00 AM	18	154	13	185	22	298	36	356	7	133	31	171	21	155	17	193	905
09:15 AM	18	145	13	176	15	301	37	353	7	149	31	187	15	147	23	185	901
09:30 AM	22	133	5	160	15	278	30	323	6	159	33	198	24	171	22	217	898
09:45 AM	21	154	6	181	16	237	24	277	5	155	25	185	16	144	24	184	827
Total	79	586	37	702	68	1114	127	1309	25	596	120	741	76	617	86	779	3531
*** BREAK ***																	
03:00 PM	6	126	13	145	9	167	30	206	9	131	22	162	15	171	36	222	735
03:15 PM	14	135	16	165	14	185	38	237	12	140	33	185	19	193	24	236	823
03:30 PM	14	137	7	158	15	173	55	243	13	156	26	195	26	227	38	291	887
03:45 PM	20	157	16	193	10	163	45	218	17	160	25	202	11	232	35	278	891
lotal	54	555	52	661	48	688	168	904	51	587	106	744	/1	823	133	1027	3336
04:00 PM	14	160	14	188	10	159	32	201	14	159	22	195	15	219	23	257	841
04:15 PM	10	167	5	182	9	189	27	225	11	168	21	200	18	260	12	290	897
04:30 PM	10	143	11	164	13	196	32	241	14	146	30	190	14	230	24	268	863
04:45 PM	12	136	9	157	14	224	43	281	16	158	18	192	12	269	19	300	930
Total	46	606	39	691	46	768	134	948	55	631	91	777	59	978	78	1115	3531
05:00 PM	9	151	20	180	11	201	25	237	10	157	22	189	11	274	19	304	910
05:15 PM	10	160	11	181	17	214	35	266	11	148	28	187	10	230	34	274	908
05:30 PM	11	167	7	185	12	203	29	244	10	166	23	199	13	267	30	310	938
05:45 PM	9	144	13	166	13	236	37	286	11		22	185	15	263	23	301	938
Iotal	39	622	51	712	53	854	126	1033	42	623	95	760	49	1034	106	1189	3694
Grand Total	352	3501	228	4081	341	5586	740	6667	213	3456	573	4242	404	4340	568	5312	20302
Apprch %	8.6	85.8	5.6		5.1	83.8	11.1		5.0	81.5	13.5		7.6	81.7	10.7		
Total %	1.7	17.2	1.1	20.1	1.7	27.5	3.6	32.8	1.0	17.0	2.8	20.9	2.0	21.4	2.8	26.2	

	RC	DBERT	SON BL	.VD.		BURT	ON WA'	Y	RC	BERT	SON BL	VD.		BURTO	ON WA	Y	
		South	bound			Wes	tbound			North	nbound			East	bound		
Start Time	Riaht	Thru	Left	App.	Right	Thru	Left	App.	Riaht	Thru	Left	App.	Right	Thru	l eft	App.	_ Int.
	, j			lotal	-			lotal				lotal				otal	l otal
Peak Hour Fro	om 07:0	0 AM to	09:45	AM - Pea	ak 1 of 1												
Intersection	08:30	AM															
Volume	68	617	40	725	85	1293	147	1525	28	601	121	750	81	600	90	771	3771
Percent	9.4	85.1	5.5		5.6	84.8	9.6		3.7	80.1	16.1		10.5	77.8	11.7		
08:30	19	157	1	170	21	261	27	410	0	151	21	101	26	100	24	210	000
Volume	10	157	4	175	21	301	57	415	9	131	31	191	20	100	24	210	999
Peak Factor																	0.944
High Int.	08:45	AM			08:30	AM			08:45	AM			08:30	AM			
Volume	14	161	10	185	21	361	37	419	5	168	28	201	26	160	24	210	
Peak Factor				0.980				0.910				0.933				0.918	

 File Name
 : 364304

 Site Code
 : 00364304

 Start Date
 : 10/17/2007

 Page No
 : 2

	RC	BERT	SON BI	VD.		BURT	ON WA	Y	RC	BERT	SON BI	VD.		BURT	ON WA	Y	
		South	nbound			West	lbound			North	nbound			East	bound		
Start Time	Right	Thru	Left	App.	Right	Thru	Left	App.	Right	Thru	Left	App.	Right	Thru	Left	App.	Int.
Deels Heyre Ere	- 02.0		OFILE					Total	_			Total	_			Total	Total
Peak Hour Fro	om 03:0	UPWILC	005.45	PIVI - Pea	актогі												
Intersection	05:00	РМ															
Volume	39	622	51	712	53	854	126	1033	42	623	95	760	49	1034	106	1189	3694
Percent	5.5	87.4	7.2		5.1	82.7	12.2		5.5	82.0	12.5		4.1	87.0	8.9		
05:45	٥	144	13	166	12	226	27	286	11	150	22	195	15	262	22	201	020
Volume	5	144	15	100	10	200	57	200		1JZ	22	105	15	203	20	301	930
Peak Factor																	0.985
High Int.	05:30	PM			05:45	PM			05:30	PM			05:30	PM			
Volume	11	167	7	185	13	236	37	286	10	166	23	199	13	267	30	310	
Peak Factor				0.962	1			0.903				0.955				0.959	

 File Name
 : 364305

 Site Code
 : 00364305

 Start Date
 : 10/17/2007

 Page No
 : 1

						-									Page	NO : 1	
					·	Gro	pups Pri	nted- Lu	rning M	ovemei	nt						
	RC	DBERT	SON BL	VD.	V	VILSHI	RE BLV	D.	RC	DBERT	SON BL	VD.	V	VILSHI	RE BLV	D.	
		South	nbound			Wes	tbound			North	nbound			East	bound		
Start Time	Right	Thru	l oft	App.	Right	Thru	Loft	App.	Right	Thru	Loft	App.	Dight	Thru	Loft	App.	Int.
	, uau		2011	Total	rugin		Lon	Total	ragin	1110	Lon	Total	ragin	TING	Len	Total	Total
Factor	1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		
07:00 AM	15	93	12	120	8	288	23	319	15	93	27	135	10	95	14	119	693
07:15 AM	11	117	15	143	7	372	20	399	19	114	28	161	18	138	17	173	876
07:30 AM	14	156	12	182	8	367	25	400	21	85	26	132	10	148	10	168	882
07:45 AM	21	134	15	170	11	390	17	418	23	104	25	152	21	195	17	233	973
Total	61	500	54	615	34	1417	85	1536	78	396	106	580	59	576	58	693	3424
																,	
08:00 AM	22	180	17	219	21	438	25	484	31	153	49	233	31	247	18	296	1232
08:15 AM	20	177	13	210	15	446	30	491	30	144	53	227	23	260	15	298	1226
08:30 AM	25	176	14	215	20	501	40	561	35	173	36	244	26	261	18	305	1325
08:45 AM	28	163	23	214	19	495	26	540	39	176	55	270	21	260	17	298	1322
Total	95	696	67	858	75	1880	121	2076	135	646	193	974	101	1028	68	1197	5105
																	0.00
09:00 AM	23	157	22	202	20	481	29	530	29	143	41	213	32	273	21	326	1271
09:15 AM	27	154	32	213	13	478	33	524	25	174	46	245	39	254	17	310	1292
09:30 AM	35	141	13	189	27	387	33	447	38	171	48	257	40	253	13	306	1199
09:45 AM	34	155	25	214	22	317	36	375	17	160	47	224	31	245	19	295	1108
Total	119	607	92	818	82	1663	131	1876	109	648	182	939	142	1025	70	1237	4870
																1	
*** BREAK ***																	
03:00 PM	27	130	20	177	38	297	40	375	26	119	45	190	68	382	36	486	1228
03:15 PM	28	154	22	204	26	287	37	350	18	143	46	207	47	369	34	450	1211
03:30 PM	24	176	26	226	24	315	39	378	15	153	42	210	35	334	38	407	1221
03:45 PM	19	187	23	229	23	346	39	408	25	159	48	232	52	395	38	485	1354
Total	98	647	91	836	111	1245	155	1511	84	574	181	839	202	1480	146	1828	5014
04:00 PM	15	183	23	221	25	282	37	344	20	151	48	219	46	369	40	455	1239
04:15 PM	30	153	44	227	13	269	30	312	21	143	47	211	54	398	51	503	1253
04:30 PM	30	161	11	202	20	292	33	345	21	132	36	189	36	409	39	484	1220
04:45 PM	32	148	25	205	17	279	37	333	19	139	46	204	41	373	29	443	1185
Total	107	645	103	855	75	1122	137	1334	81	565	177	823	177	1549	159	1885	4897
				,												1000	1001
05:00 PM	25	169	14	208	17	350	47	414	30	154	49	233	40	414	19	473	1328
05:15 PM	16	197	11	224	10	309	40	359	25	144	46	215	42	448	28	518	1316
05:30 PM	22	179	19	220	14	327	28	369	24	168	51	243	40	414	31	485	1317
05:45 PM	21	161	19	201	8	317	29	354	16	123	49	188	31	411	40	482	1225
Total	84	706	63	853	49	1303	144	1496	95	589	195	879	153	1687	118	1958	5186
				1				1				2.0					2.00
Grand Total	564	3801	470	4835	426	8630	773	9829 l	582	3418	1034	5034	834	7345	619	8798	28496
Apprch %	11.7	-78.6	9.7		4.3	87.8	7.9		11.6	67.9	20.5		9.5	83.5	70	2.00	
Total %	2.0	13.3	1.6	17.0	1.5	30.3	2.7	34.5	2.0	12.0	3.6	177	2.9	25.8	22	30.9	
		2						S	2.0	0	0.0		£.0	20.0	A	00.0	

	RC	DBERT	SON BI	_VD.	V	VILSHI	RE BLV	′D.	RC	BERT	SON BL	VD.	V	VILSHI	RE BLV	′D.	
		South	nbound			Wes	tbound			North	nbound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Fro	m 07:0	0 AM to	09:45	AM - Pea	ak 1 of 1				·		L				I		
Intersection	08:30	AM															
Volume	103	650	91	844	72	1955	128	2155	128	666	178	972	118	1048	73	1239	5210
Percent	12.2	77.0	10.8		3.3	90.7	5.9		13.2	68.5	18.3		9.5	84.6	5.9		
08:30 Volume	25	176	14	215	20	501	40	561	35	173	36	244	26	261	18	305	1325
Peak Factor																	0.983
High Int.	08:30	AM			08:30	AM			08:45	AM			09:00	AM			
Volume	25	176	14	215	20	501	40	561	39	176	55	270	32	273	21	326	
Peak Factor				0.981				0.960				0.900				0.950	

 File Name
 : 364305

 Site Code
 : 00364305

 Start Date
 : 10/17/2007

 Page No
 : 2

	RC	DBERT	SON BI	VD.	V	VILSHI	RE BLV	D.	RC	BERT	SON BL	.VD.	V	VILSHI	RE BLV	′D.	
		South	nbound			Wes	tbound			North	nbound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Fro	m 03:0	0 PM to	05:45	PM - Pea	ak 1 of 1	1			·				h				
Intersection	05:00	PM															
Volume	84	706	63	853	49	1303	144	1496	95	589	195	879	153	1687	118	1958	5186
Percent	9.8	82.8	7.4		3.3	87.1	9.6		10.8	67.0	22.2		7.8	86.2	6.0		
05:00 Volume	25	169	14	208	17	350	47	414	30	154	49	233	40	414	19	473	1328
Peak Factor																	0.976
High Int.	05:15	PM			05:00	PM			05:30	РМ			05:15	PM			
Volume	16	197	11	224	17	350	47	414	24	168	51	243	42	448	28	518	
Peak Factor				0.952				0.903				0.904				0.945	

File Name : 364306 Site Code : 00364306 Start Date : 10/10/2007 Page No : 1

						Gro	ups Prir	nted- Tu	rning M	ovemer	nt						
		DRIV	'EWAY		E	BEVER	LY BLVI	D.	GE	ORGE	BURNS	RD.	E	BEVER	LY BLVE	D.	
		South	nbound			West	lbound			North	bound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Factor	1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		
07:00 AM	0	0	0	0	0	208	64	272	18	0	10	28	24	102	0	126	426
07:15 AM	0	0	0	0	1	255	76	332	27	1	4	32	34	120	1	155	519
07:30 AM	0	0	0	0	2	283	57	342	31	0	8	39	28	144	3	175	556
07:45 AM	0	0	0	0	3	324	64	391	44	1	4	49	35	174	2	211	651
Total	0	0	0	0	6	1070	261	1337	120	2	26	148	121	540	6	667	2152
08:00 AM	0	0	1	1	7	365	71	443	24	0	2	26	51	191	4	246	716
08:15 AM	2	0	0	2	12	352	62	426	27	1	5	33	36	216	4	256	717
08:30 AM	3	0	2	5	8	382	53	443	17	3	8	28	35	195	8	238	714
08:45 AM	1	0	0	1	10	384	66	460	19	2	6	27	46	213	9	268	756
Total	6	0	3	9	37	1483	252	1772	87	6	21	114	168	815	25	1008	2903
09:00 AM	2	0	2	4	12	355	52	419	24	4	8	36	30	199	5	234	693
09:15 AM	5	Ō	2	7	7	347	65	419	21	Ó	15	36	24	190	5	219	681
09:30 AM	4	Ō	1	5	6	341	46	393	27	2	11	40	29	197	3	229	667
09:45 AM	4	Ō	2	6	7	292	47	346	22	ō	10	32	26	217	4	247	631
Total	15	0	7	22	32	1335	210	1577	94	6	44	144	109	803	17	929	2672
*** BREAK ***																	
03:00 PM	8	1	3	12	4	254	29	287	50	1	27	78	19	289	1	309	686
03:15 PM	4	2	5	11	2	263	21	286	40	0	19	59	28	306	2	336	692
03:30 PM	6	0	3	9	2	230	26	258	66	0	27	93	19	278	0	297	657
03:45 PM	2	0	8	10	5	237	24	266	65	2	23	90	26	270	3	299	665
Total	20	3	19	42	13	984	100	1097	221	3	96	320	92	1143	6	1241	2700
04:00 PM	12	1	4	17	2	215	18	235	76	1	34	111	26	285	1	312	675
04:15 PM	9	2	6	17	4	241	25	270	86	3	30	119	21	278	2	301	707
04:30 PM	12	2	3	17	3	268	20	291	74	1	35	110	32	306	3	341	759
04:45 PM	11	1	5	17	2	254	26	282	74	0	36	110	18	309	2	329	738
Total	44	6	18	68	11	978	89	1078	310	5	135	450	97	1178	8	1283	2879
05:00 PM	15	2	4	21	6	236	19	261	94	0	33	127	13	281	0	294	703
05:15 PM	12	1	4	17	6	255	23	284	83	2	32	117	19	315	3	337	755
05:30 PM	10	2	6	18	2	228	17	247	72	0	40	112	17	285	1	303	680
05:45 PM	4	0	5	9	1	242	19	262	68	0	26	94	20	304	0	324	689
Total	41	5	19	65	15	961	78	1054	317	2	131	450	69	1185	4	1258	2827
Grand Total	126	14	66	206	114	6811	990	7915	1149	24	453	1626	656	5664	66	6386	16133
Apprch %	61.2	6.8	32.0		1.4	86.1	12.5		70.7	1.5	27.9		10.3	88.7	1.0		
Total %	0.8	0.1	0.4	1.3	0.7	42.2	6.1	49.1	7.1	0.1	2.8	10.1	4.1	35.1	0.4	39.6	

		DRIV	'EWAY		E	BEVER	LY BLV	D.	GE	ORGE	BURNS	RD.	E	BEVER	LY BLV	D.	
		South	nbound			Wes	tbound			North	bound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Fro	m 07:0	0 AM to	09:45	AM - Pea	ak 1 of 1				·				l		1		
Intersection	08:00	AM															
Volume	6	0	3	9	37	1483	252	1772	87	6	21	114	168	815	25	1008	2903
Percent	66.7	0.0	33.3		2.1	83.7	14.2		76.3	5.3	18.4		16.7	80.9	2.5		
08:45 Volume	1	0	0	1	10	384	66	460	19	2	6	27	46	213	9	268	756
Peak Factor																	0.960
High Int.	08:30	AM			08:45	AM			08:15	AM			08:45	AM			
Volume	3	0	2	5	10	384	66	460	27	1	5	33	46	213	9	268	
Peak Factor				0.450				0.963				0.864				0.940	

 File Name
 : 364306

 Site Code
 : 00364306

 Start Date
 : 10/10/2007

 Page No
 : 2

		DRIV	'EWAY		E	BEVER	LY BLV	D.	GE	ORGE	BURNS	RD.	E	BEVER	LY BLV	D.	
		Sout	nbound			Wes	lbound			North	nbound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Fro	m 03:0	0 PM to	05:45	PM - Pea	ak 1 of 1									·			10101
Intersection	04:30	РM							-								
Volume	50	6	16	72	17	1013	88	1118	325	3	136	464	82	1211	8	1301	2955
Percent	69.4	8.3	22.2		1.5	90.6	7.9		70.0	0.6	29.3		6.3	93.1	0.6	ĺ	
04:30	12	2	з	17	2	268	20	201	74	1	35	110	22	206	2	244	750
Volume	12	2	5	17	5	200	20	231	14	1	55	110	32	300	5	341	759
Peak Factor																	0.973
High Int.	05:00	РМ			04:30	РМ			05:00	PM			04:30	РМ			
Volume	15	2	4	21	3	268	20	291	94	0	33	127	32	306	3	341	
Peak Factor				0.857				0.960				0.913				0.954	

File Name : 364307 Site Code : 00364307 Start Date : 10/10/2007 Page No : 1

,							Gro	pups Pri	nted- Tu	rning M	ovemer	nt						
		GE	ORGE	BURNS	RD.	GF	RACIE	ALLEN	DR.	GE	ORGE	BURNS	RD.	G	RACIE	ALLEN	DR.	
			Sout	nbound			West	tbound			North	ibound			East	bound		
	Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Ì	Factor	1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		
Ì	07:00 AM	9	48	7	64	7	11	13	31	9	17	1	27	7	12	5	24	146
	07:15 AM	11	68	8	87	9	13	17	39	13	24	3	40	9	16	6	31	197
	07:30 AM	14	51	9	74	12	25	12	49	16	26	8	50	14	18	12	44	217
	07:45 AM	19	62	9	90	18	19	21	58	24	39	4	67	16	17	7	40	255
Ì	Total	53	229	33	315	46	68	63	177	62	106	16	184	46	63	30	139	815
																	100	010
	08:00 AM	22	71	9	102	8	10	21	39	17	16	7	40	4	22	11	37	218
	08:15 AM	16	70	3	89	17	16	21	54	23	19	6	48	16	23	7	46	237
	08:30 AM	12	66	10	88	17	22	21	60	27	23	5	55	18	15	9	42	245
	08:45 AM	24	56	13	93	9	32	15	56	17	22	5	44	12	15	7	34	227
	Total	74	263	35	372	51	80	78	209	84	80	23	187	50	75	34	159	927
	09:00 AM	27	51	10	88	12	37	15	64	18	18	4	40	11	11	11	33	225
	09:15 AM	27	33	12	72	9	31	18	58	17	20	4	41	9	16	10	35	206
	09:30 AM	15	40	8	63	10	25	17	52	22	22	4	48	6	18	8	32	195
	09:45 AM	16	40	10	66	10	17	11	38	19	22	2	43	10	20	9	39	186
	Total	85	164	40	289	41	110	61	212	76	82	14	172	36	65	38	139	812
1	*** BREAK ***																	
	03:00 PM	17	35	9	61	18	18	16	52	28	42	6	76	5	31	20	56	245
	03:15 PM	12	26	10	48	10	9	17	36	25	38	1	64	11	27	8	46	194
	03:30 PM	13	26	6	45	15	21	18	54	36	50	4	90	8	26	20	54	243
	03:45 PM	17	32	9	58	19	18	18	55	38	48	7	93	4	22	18	44	250
	Total	59	119	34	212	62	66	69	197	127	178	18	323	28	106	66	200	932
	04:00 PM	15	24	13	52	22	10	12	44	34	52	5	91	12	34	22	68	255
	04:15 PM	11	24	16	51	16	20	13	49	28	63	10	101	8	32	31	71	272
	04:30 PM	. 16	39	12	67	20	10	15	45	31	59	5	95	10	32	26	68	275
	04:45 PM	11	33	10	54	17	17	15	49	32	64	8	104	5	36	30	71	278
	Total	53	120	51	224	75	57	55	187	125	238	28	391	35	134	109	278	1080
	05:00 PM	13	23	10	46	16	22	23	61	36	62	2	100	8	45	33	86	293
	05:15 PM	12	38	8	58	16	28	15	59	43	62	7	112	11	47	21	79	308
	05:30 PM	13	24	8	45	21	18	17	56	31	55	10	96	5	44	25	74	271
	05:45 PM	7	24	10	41	12	25	16	53	19	45	8	72	4	49	25	78	244
	Total	45	109	36	190	65	93	71	229	129	224	27	380	28	185	104	317	1116
	Grand Total	369	1004	229	1602	340	474	397	1211	603	908	126	1637	223	628	381	1232	5682
	Apprch %	23.0	62.7	14.3	[28.1	39.1	32.8		36.8	55.5	7.7	ĺ	18.1	51.0	30.9	_	
	Total %	6.5	17.7	4.0	28.2	6.0	8.3	7.0	21.3	10.6	16.0	2.2	28.8	3.9	11.1	6.7	21.7	

	GE	ORGE	BURNS	SRD.	GF	RACIE	ALLEN	DR.	GE	ORGE	BURNS	RD.	GF	RACIE	ALLEN I	DR.	
		South	nbound			West	lbound			North	nbound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Fro	m 07:0	0 AM to	09:45	AM - Pea	ak 1 of 1										L		
Intersection	07:45	AM			l											1	
Volume	69	269	31	369	60	67	84	211	91	97	22	210	54	77	34	165	955
Percent	18.7	72.9	8.4		28.4	31.8	39.8		43.3	46.2	10.5	•	32.7	46.7	20.6		
07:45 Volume	19	62	9	90	18	19	21	58	24	39	4	67	16	17	7	40	255
Peak Factor																	0.936
High Int.	08:00	AM			08:30	AM			07:45	AM			08:15	AM			
Volume	22	71	9	102	17	22	21	60	24	39	4	67	16	23	7	46	
Peak Factor				0.904				0.879				0.784				0.897	

 File Name
 : 364307

 Site Code
 : 00364307

 Start Date
 : 10/10/2007

 Page No
 : 2

	GE	ORGE	BURNS	RD.	GF	RACIE	ALLEN	DR.	GE	ORGE	BURNS	RD.	GF	RACIE	ALLEN	DR.	
		South	nbound			Wes	tbound			North	bound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Fro	m 03:0	0 PM to	05:45	PM - Pea	ak 1 of 1				1								
Intersection	04:30	PM															
Volume	52	133	40	225	69	77	68	214	142	247	22	411	34	160	110	304	1154
Percent	23.1	59.1	17.8		32.2	36.0	31.8		34.5	60.1	5.4		11.2	52.6	36.2		
05:15	10	20	o	59	16	28	15	50	12	62	7	110	11	47	21	70	208
Volume	12	30	U	50	10	20	15	39	40	02	'	112	11	47	21	19	300
Peak Factor																	0.937
High Int.	04:30	PM			05:00	РM			05:15	РМ			05:00	PM			
Volume	16	39	12	67	16	22	23	61	43	62	7	112	8	45	33	86	
Peak Factor				0.840				0.877				0.917				0.884	

 File Name
 : 364308

 Site Code
 : 00364308

 Start Date
 : 10/10/2007

 Page No
 : 1

						~									Faye		
	05	0000				Gro	oups Prir	nted- i u		ovemer					ND 07		
	GE	ORGE	BOKNS	RD.		IHIF	OSI.		GE	ORGE	BURNS	RD.		THIF	RD ST.		
		South	bound			West	lbound			North	bound			East	bound		
Start Time	Right	Thru	Left	App.	Right	Thru	Left	App.	Right	Thru	Left	App.	Right	Thru	Left	App.	Int.
	, agin			Total				Total	1	=		Total				Total	Total
Factor	1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		
07:00 AM	10	2	11	23	51	114	4	169	3	18	2	23	0	70	21	91	306
07:15 AM	16	3	20	39	54	162	2	218	2	15	0	17	1	54	32	87	361
07:30 AM	18	6	35	59	53	204	4	261	2	32	0	34	0	78	30	108	462
07:45 AM	16	6	31	53	70	185	9	264	1	30	0	31	0	85	56	141	489
Total	60	17	97	174	228	665	19	912	8	95	2	105	1	287	139	427	1618
08:00 AM	16	8	32	56	67	218	3	288	4	38	0	42	4	107	49	160	546
08:15 AM	20	10	22	52	61	238	6	305	1	43	1	45	1	95	56	152	554
08:30 AM	18	9	17	44	65	240	7	312	3	34	0	37	6	109	53	168	561
08:45 AM	25	12	21	58	64	222	4	290	9	32	2	43	3	110	45	158	549
Total	79	39	92	210	257	918	20	1195	17	147	3	167	14	421	203	638	2210
09:00 AM	17	18	17	52	41	246	9	296	10	28	3	41	3	109	28	140	529
09:15 AM	10	11	19	40	60	229	10	299	8	22	1	31	3	97	22	122	492
09:30 AM	18	9	20	47	60	226	8	294	9	17	2	28	6	91	21	118	487
09:45 AM	20	9	22	51	41	183	16	240	9	20	2	31	4	101	23	128	450
Total	65	47	78	190	202	884	43	1129	36	87	8	131	16	398	94	508	1958
*** BREAK ***																	
03:00 PM	16	29	45	90	35	153	11	199	4	11	0	15	4	116	18	138	442
03:15 PM	24	33	39	96	32	155	6	193	8	7	1	16	5	130	14	149	454
03:30 PM	25	28	43	96	45	129	7	181	6	11	2	19	4	101	21	126	422
03:45 PM	28	19	53	100	35	123	7	165	4	11	0	15	6	119	27	152	432
Total	93	109	180	382	147	560	31	738	22	40	3	65	19	466	80	565	1750
					•												
04:00 PM	35	34	57	126	39	130	6	175	11	15	1	27	5	139	16	160	488
04:15 PM	52	29	42	123	30	130	6	166	5	6	0	11	8	154	21	183	483
04:30 PM	50	35	61	146	35	151	6	192	6	9	0	15	4	140	14	158	511
04:45 PM	43	35	70	148	21	126	8	155	2	11	1	14	3	166	12	181	498
Total	180	133	230	543	125	537	26	688	24	41	2	67	20	599	63	682	1980
, ota,			200	0.0							-			000	00		
05:00 PM	42	52	88	182	27	139	2	168	2	8	1	11	4	159	12	175	536
05:15 PM	53	40	65	158	29	162	5	196	5	8	Ó	13	4	164	16	184	551
05:30 PM	38	34	59	131	21	125	8	154	2	8	3	13	3	181	13	197	495
05:45 PM	38	29	59	126	35	121	7	163	3	10	1	14	2	182	13	197	500
Total	171	155	271	597	112	547	22	681	12	34	5	51	13	686	54	753	2082
i otai		,00	211	007	1 12	071	6 6	507	1 12	-0	0	0.1	10	000		100	-002
Grand Total	648	500	948	2096	1071	4111	161	5343	119	444	23	586	83	2857	633	3573	11598
Approh %	30.9	23.9	45.2	2000	20.0	76.9	3.0	0040	20.3	75.8	39	500	23	80.0	17 7	0010	1,000
Total 0/	56	20.0	90.2 g ว	12 1	a2	35 1	1 /	46.1	1 0	10.0 2 R	0.0	51	0.7	24 6	55	30.8	
	0.0	4.0	U.Z	10.1	J 0.2	55.4	1.7	-U.1	1 1.0	0.0	0.4	0.1	0.7	∠-+.U	0.0	00.0	

	GE	ORGE	BURNS	S RD.		THIF	D ST.		GE	ORGE	BURNS	RD.		THIF	RD ST.		
		South	nbound			West	bound			North	nbound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Fro	om 07:0	0 AM to	09:45	AM - Pea	ak 1 of 1												
Intersection	08:00	AM															
Volume	79	39	92	210	257	918	20	1195	17	147	3	167	14	421	203	638	2210
Percent	37.6	18.6	43.8		21.5	76.8	1.7		10.2	88.0	1.8		2.2	66.0	31.8		
08:30	19	0	17	11	65	240	7	312	3	34	0	37	6	100	53	168	561
Volume	10	5	17	44	00	240	'	512	5	54	U	57	0	109	55	100	501
Peak Factor																	0.985
High Int.	08:45	AM			08:30	AM			08:15	AM			08:30	AM			
Volume	25	12	21	58	65	240	7	312	1	43	1	45	6	109	53	168	
Peak Factor				0.905				0.958				0.928				0.949	

 File Name
 : 364308

 Site Code
 : 00364308

 Start Date
 : 10/10/2007

 Page No
 : 2

	GE	ORGE South	BURNS	S RD.		THIF	RD ST. Ibound		GE	ORGE North	BURNS	RD.		THIF	RD ST. bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Fro	om 03:0	0 PM to	05:45	PM - Pea	ak 1 of 1	1							·	·			
Intersection	04:30	PM															
Volume	188	162	284	634	112	578	21	711	15	36	2	53	15	629	54	698	2096
Percent	29.7	25.6	44.8		15.8	81.3	3.0		28.3	67.9	3.8		2.1	90.1	7.7		
05:15 Volume	53	40	65	158	29	162	5	196	5	8	0	13	4	164	16	184	551
Peak Factor																	0.951
High Int.	05:00 PM				05:15	PM			04:30	PM			05:15	РМ			0.00
Volume	42	52	88	182	29	162	5	196	6	9	0	15	4	164	16	184	
Peak Factor				0.871	l			0.907				0.883				0.948	

 File Name
 : 364309

 Site Code
 : 00364309

 Start Date
 : 10/10/2007

 Page No
 : 1

						Gro	une Drir	atod Tu	mina M	ovomor	at				i age	NU .1	
	r							ileu- i ui				с. С	r	TLUE	DOT		
		0	- I							VVILLAI		۲.					
		Souti	npouna			vves	bound	•		NOLL	nbouna			East	bouna		
Start Time	Right	Thru	Left	App.	Right	Thru	Left	App.	Right	Thru	Left	App.	Right	Thru	Left	App.	Int.
				Total				Total				Total				Total	Total
Factor	1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		
07:00 AM	0	0	0	0	0	175	11	186	19	0	3	22	13	72	0	85	293
07:15 AM	0	0	0	0	0	205	14	219	17	0	4	21	2	62	0	64	304
07:30 AM	0	0	0	0	0	264	11	275	24	0	7	31	7	107	0	114	420
07:45 AM	0	0	0	0	0	253	12	265	38	0	14	52	10	105	0	115	432
Total	0	0	0	0	0	897	48	945	98	0	28	126	32	346	0	378	1449
			Ū		•			0.0			20			0.0	0	0101	1110
08.00 0W	٥	Ο	Ω	0	0	286	15	301	44	0	11	55	R R	136	0	1441	500
08.15 AM	0	0	n	0	ň	283	20	303	51	0	11	62	4	112	0	117	100
00.10 AM	0	0	0	0	0	203	20	200	47	0	16	62	4	113	0	100	40Z
00.30 AM	0	0	0	0	0	304	20	329	47	0	10	03	12	117	0	129	120
08.45 AIV	<u> </u>	0	<u> </u>	0	0	200	32	207	102	0	14	00	14	117	<u> </u>	131	483
lotal	U	0	U	0	U	1128	92	1220	193	U	52	245	38	483	0	521	1986
	_	_	_	- 1	-					_					_		
09:00 AM	0	0	0	0	0	285	15	300	53	0	14	67	8	121	0	129	496
09:15 AM	0	0	0	0	0	287	22	309	53	0	18	71	9	124	0	133	513
09:30 AM	0	0	0	0	0	277	20	297	58	0	17	75	5	118	0	123	495
09:45 AM	0	0	0	0	0	224	14	238	71	0	18	89	18	129	0	147	474
Total	0	0	0	0	0	1073	71	1144	235	0	67	302	40	492	0	532	1978
*** BREAK ***																	
03:00 PM	0	0	0	0	0	193	17	210	60	0	13	73	14	164	0	178	461
03:15 PM	0	0	0	0	0	173	19	192	89	1	13	103	23	161	Ó	184	479
03:30 PM	Ō	Ō	Ō	Ō	0	165	26	191	67	1	9	77	10	139	0	149	417
03·45 PM	n n	0	Ō	0	0	149	23	172	65	Ó	20	85	20	165	ñ	185	442
Total	0	<u> </u>	0	0	0	680	85	765	281	2	55	338	67	629	<u> </u>	696	1799
10101	Ū	0	0	U	0	000	00	100	201	2	00	000	07	020	U	000	1100
	Δ	0	Ω	0	0	162	23	196	64	0	10	74	24	100	0	206	166
04.001 M	0	0	0	0	0	160	40	172	04	0	14	00	10	200	0	200	400
04.10 PM	0	0	0	0	0	400	10	1/3	04	0	14	90	10	200	0	210	409
04.30 PM	0	0	0	0	0	109	20	212	00	0	9	11	20	190	0	221	510
04:45 PM		<u>U</u>	0	0	0	151	13	164	12	0	6	8/	23	223		246	488
l otal	0	0	0	0	0	663	72	735	288	0	39	327	90	801	0	891	1953
		_			-											1	
05:00 PM	0	0	0	0	0	161	26	187	70	0	10	80	29	202	0	231	498
05:15 PM	0	0	0	0	0	178	17	195	84	0	8	92	27	196	0	223	510
05:30 PM	0	0	0	0	0	170	15	185	94	5	6	105	22	212	0	234	524
05:45 PM	0	0	0	0	0	146	10	156	73	0	9	82	21	221	0	242	480
Total	0	0	0	0	0	655	68	723	321	5	33	359	99	831	0	930	2012
Grand Total	0	0	0	0	0	5096	436	5532	1416	7	274	1697 l	366	3582	0	3948	11177
Apprch %	0.0	0.0	0.0	_	0.0	92.1	7.9	_	83.4	0.4	16.1		9.3	90.7	0.0		
Total %	0.0	0.0	0.0	0.0	0.0	45.6	3.9	49.5	12.7	0.1	2.5	15.2	3.3	32.0	0.0	35.3	
	0.0	0.0	0.0	0.0	0.0		0.0		,	0.1	2.5		0.0	02.0	0.0	00.01	

						THIF	RD ST.		1	WILLA	MAN DI	२.		THIF	RD ST.		
		South	nbound			Wes	tbound			North	bound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Fro	om 07:0	0 AM to	09:45	AM - Pea	ik 1 of 1												
Intersection	08:30	AM															
Volume	0	0	0	0	0	1131	94	1225	204	0	62	266	43	479	0	522	2013
Percent	0.0	0.0	0.0		0.0	92.3	7.7		76.7	0.0	23.3		8.2	91.8	0.0		
08:30	0	0	0	0	0	304	25	329	47	0	16	63	12	117	0	129	521
Peak Factor																	0.966
High Int.	6:45:0	0 AM			08:30	AM			09:15	AM			09:15	AM			
Volume	0	0	0	0	0	304	25	329	53	0	18	71	9	124	0	133	
Peak Factor								0.931				0.937				0.981	

File Name : 364309 Site Code : 00364309 Start Date : 10/10/2007 Page No : 2

		South	hound			THIF	RD ST. Ibound			WILLAI North	MAN DF	२.		THIF East	RD ST. bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Fro	m 03:0	0 PM to	05:45	PM - Pea	ak 1 of 1		· · · · · ·		f				fat				
Intersection	04:45	РМ								Ω	- 35						
Volume	0	0	0	0	0	660	71	731	320	7	Jer 1	355	101	833	0	934	2020
Percent	0.0	0.0	0.0		0.0	90.3	9.7		90.1	1.4	8.5		10.8	89.2	0.0		
05:30 Volumo	0	0	0	0	0	170	15	185	94	5	6	105	22	212	0	234	524
Peak Factor																	0.964
High Int.					05:15	РМ			05:30	PM			04:45	РМ			
Volume	0	0	0	0	0	178	17	195	94	5	6	105	23	223	0	246	
Peak Factor								0.937				0.845				0.949	

 File Name
 : 364310

 Site Code
 : 00364310

 Start Date
 : 10/17/2007

 Page No
 : 1

						Gro	ups Prir	nted- Tur	ning Mo	ovemer	it						
	۱ ۱	WILLAN	IAN DF	۶.	V	VILSHI	RE BLV	D.	,	WILLAN	IAN DR	•	v	VILSHI).	
		South	bound			West	bound			North	bound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Total
Factor	1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		
07:00 AM	4	4	0	8	3	333	4	340	6	8	6	20	7	132	3	142	510
07:15 AM	5	7	2	14	6	413	5	424	8	8	11	27	6	169	1	176	641
07:30 AM	8	11	3	22	5	427	7	439	2	15	12	29	6	185	2	193	683
07:45 AM	11	14	3	28	7	418	5	430	12	29	17	58	5	230	2	237	/53
Total	28	36	8	72	21	1591	21	1633	28	60	46	134	24	716	8	748	2587
08·00 AM	5	24	2	31	4	467	9	480	14	38	20	72	2	271	7	280	863
08:15 AM	10	22	4	36	9	488	7	504	14	37	18	69	6	280	8	294	903
08:30 AM	13	23	11	47	6	527	13	546	10	26	24	60	5	292	6	303	956
08:45 AM	19	27	4	50	2	477	10	489	21	48	22	91	8	304	5	317	947
Total	47	96	21	164	21	1959	39	2019	59	149	84	292	21	1147	26	1194	3669
09:00 AM	16	30	16	62	4	469	14	487	17	55	36	108	9	309	7	325	982
09:15 AM	16	35	6	57	6	477	11	494	13	33	32	78	9	289	11	309	938
09:30 AM	17	22	7	46	8	431	18	457	16	34	16	66	13	292	10	315	884
09:45 AM	10	21	6	37	6	381	6	393	13	37	21	71	6	302	10	318	819
Total	59	108	35	202	24	1758	49	1831	59	159	105	323	37	1192	38	1267	3623
*** BREAK ***																	
03:00 PM	14	31	5	50	20	328	16	364	8	32	6	46	10	393	8	411	871
03:15 PM	11	46	5	62	24	301	16	341	17	31	13	61	9	402	10	421	885
03:30 PM	16	55	3	74	15	346	13	374	21	24	9	54	7	356	18	381	883
03:45 PM	6	53	12	71	4	362	16	382	11	28	7	46	13	413	14	440	939
Total	47	185	25	257	63	1337	61	1461	57	115	35	207	39	1564	50	1653	3578
04:00 PM	12	52	3	67	5	295	11	311	13	27	12	52	17	383	10	410	840
04:15 PM	8	48	2	58	6	285	9	300	18	32	12	62	24	406	7	437	857
04:30 PM	9	41	2	52	8	311	11	330	13	21	11	45	22	387	12	421	848
04:45 PM	12	64	3	79	5	291	17	313	11	31	13	55	16	378	13	407	854
Total	41	205	10	256	24	1182	48	1254	55	111	48	214	79	1554	42	1675	3399
05:00 PM	4	84	5	93	6	352	14	372	13	45	11	69	19	413	7	439	973
05:15 PM	10	84	6	100	4	329	12	345	9	42	4	55	13	434	13	460	960
05:30 PM	8	68	1	77	5	345	14	364	10	40	6	56	12	403	12	421	924
05:45 PM	5	57	1	63	4	341	12	357	14	41		82	13	389	13	410	2774
Total	27	293	13	333	19	1367	52	1438	46	174	42	202	5/	1039	40	1/41	5114
Grand Total	249	923	112	1284	172	9194	270	9636	304	768	360	1432	257	7812	209	8278	20630
Apprch %	19.4	71.9	8.7		1.8	95.4	2.8		21.2	53.6	25.1		3.1	94.4	2.5		
Total %	1.2	4.5	0.5	6.2	0.8	44.6	1.3	46.7	1.5	3.7	1.7	6.9	1.2	37.9	1.0	40.1	

[1	WILLA	MAN DI	R.	V	VILSHI	RE BLV	′D.	1	WILLA	MAN DF	۲.	V	VILSHI	RE BLV	D.	
		South	bound			West	bound			North	nbound			East	bound		
Start Time	Diabt	Thru	Loft	App.	Right	Thru	l oft	App.	Right	Thru	Left	App.	Right	Thru	Left	App.	Int.
Start Time	Right	mu	LCIL	Total	ragin	mu	LOIL	Total	ragin	mu	Lon	Total	1 agric			Total	lotal
Peak Hour Fro	m 07:0	0 AM to	09:45	AM - Pea	ak 1 of 1											1	
Intersection	08:30	AM															
Volume	64	115	37	216	18	1950	48	2016	61	162	114	337	31	1194	29	1254	3823
Percent	29.6	53.2	17.1		0.9	96.7	2.4		18.1	48.1	33.8		2.5	95.2	2.3		
09:00	16	30	16	62	4	469	14	487	17	55	36	108	9	309	7	325	982
Volume	10	50	10	02		400	1-1	107		00	00						
Peak Factor																	0.973
High Int.	09:00	AM			08:30	AM			09:00	AM			09:00	AM			
Volume	16	30	16	62	6	527	13	546	17	55	36	108	9	309	7	325	
Peak Factor				0.871				0.923				0.780				0.965	

 File Name
 : 364310

 Site Code
 : 00364310

 Start Date
 : 10/17/2007

 Page No
 : 2

		WILLAI Souti	MAN DI nbound	R.	V	VILSHI Wes	RE BLV tbound	D.		WILLAI North	MAN DI	२.	V	VILSHI East	RE BLV	D.	
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Fro	om 03:0	0 PM to	05:45	PM - Pea	ak 1 of 1												
Intersection	05:00	РМ			1												
Volume	27	293	13	333	19	1367	52	1438	46	174	42	262	57	1639	45	1741	3774
Percent	8.1	88.0	3.9		1.3	95.1	3.6		17.6	66.4	16.0		3.3	94.1	2.6		
05:00	4	04	E	02	6	252	14	170	10	A E	4.4	<u></u>	10	440	-7	400	070
Volume	4	04	5	95	0	352	14	312	15	40	11	69	19	413	/	439	973
Peak Factor																	0.970
High Int.	05:15	PM			05:00	РМ			05:45	РМ			05:15	PM			
Volume	10	84	6	100	6	352	14	372	14	47	21	82	13	434	13	460	
Peak Factor				0.833				0.966				0.799				0.946	

File Name : 364311 Site Code : 00364311 Start Date : 10/10/2007 Page No : 1

						~									Page	• No : 1	
		10000				Gro	ups Prir	nted- I u	rning M	ovemer	nt						
	51	1EKBO		JR.		IHIF	KD ST.		SF	1ERBC	URNE L	DR.		THIF	RD ST.		
		Soutr				vves	ibouna	A		Nortr	bound			East	bound		
Start Time	Right	Thru	Left	App.	Right	Thru	Left	App.	Right	Thru	Left	App.	Right	Thru	Left	App.	Int.
Fastor	10	10	10	Total	10	10	10	Total	10	4.0	10	Iotai	10	10	10	lotal	lotal
07:00 AM	1.0	1.0	1.0	14	1.0	170	1.0	216	1.0	1.0	1.0		1.0	1.0	1.0		
07:15 AM	11	1	2	10	04	200	10	210		2	1	37	0	00	24	90	320
07:10 AM	6	2	1	13	20	200	12	241	2	5	1	, 0	0	105	10	100	341
07:45 AM	15	2	י 2	20	61	248	12	324	6	13	3	22	3	100	19	100	472
Total	41	5	7	53	162	895	45	1102	10	26	5	<u></u> /1	12	347	23	441	1627
70101	-11	U	'	00	102	000	-10	1102	10	20	5		12	140	02	441	1037
08:00 AM	12	0	1	13	62	274	11	347	1	8	2	11	2	138	49	180	560
08:15 AM	7	1	, O	.0	55	289	16	360	7	9	2	18	1	123	40	165	551
08:30 AM	13	4	5	22	49	316	13	378	3	10	2	15	4	126	30	160	575
08:45 AM	5	1	4	10	44	286	13	343	2	16	2	20	11	136	23	170	543
Total	37	6	10	53	210	1165	53	1428	13	43	8	64	18	523	143	684	2229
09:00 AM	7	3	4	14	24	299	26	349	1	19	1	21	2	153	25	180	564
09:15 AM	11	2	0	13	21	292	17	330	6	8	5	19	4	142	22	168	530
09:30 AM	13	9	11	33	29	284	14	327	6	11	6	23	14	140	30	184	567
09:45 AM	26	7	12	45	35	211	12	258	5	10	0	15	8	177	17	202	520
Total	57	21	27	105	109	1086	69	1264	18	48	12	78	28	612	94	734	2181
*** BREAK ***																	
02.00 DM	- 20		40	co l	04	474		000		-		10			~-	000	
03:00 PM	20	11	19	58	21	1/1	14	206	4	5	1	10	6	191	25	222	496
03.10 PM	10	9	20	50	10	107	13	100	2	3	1	9	2	231	18	251	526
03.30 PM	40	11	41	97	21	1/2	7	102	3 7	2	2	12	11	202	12	225	511
	120	42	108	270	81	651	45	777	10	14	5	38	22	200	74	025	2010
10141	120	42	100	210	01	001	45		13	14	J	- 00 j	22	029	74	925	2010
04:00 PM	26	14	39	79	15	165	17	197	5	4	0	9	19	219	14	252	537
04:15 PM	24	19	28	71	17	144	8	169	4	5	1	10	.0	255	15	279	529
04:30 PM	24	15	25	64	18	183	8	209	3	7	3	13	6	240	13	259	545
04:45 PM	22	21	21	64	18	148	5	171	9	3	1	13	8	282	15	305	553
Total	96	69	113	278	68	640	38	746	21	19	5	45	42	996	57	1095	2164
												,				'	
05:00 PM	40	46	33	119	11	152	13	176	7	6	2	15	2	242	15	259	569
05:15 PM	31	21	23	75	11	167	13	191	8	4	8	20	3	276	24	303	589
05:30 PM	38	21	33	92	16	143	11	170	8	3	1	12	2	283	14	299	573
05:45 PM	22	9	21	52	5	137	18	160	1	5	1	7	0	295	15	310	529
Total	131	97	110	338	43	599	55	697	24	18	12	54	7	1096	68	1171	2260
o	100		<u></u>	10	<u></u>							·					
Grand Lotal	482	240	375	1097	673	5036	305	6014	105	168	47	320	129	4403	518	5050	12481
Appron %	43.9	21.9	34.2		11.2	83.7	5.1	40.0	32.8	52.5	14.7		2.6	87.2	10.3		
i otal %	3.9	1.9	ა.0	8.8	5.4	40.3	2.4	48.2	0.8	1.3	0.4	2.6	1.0	35.3	4.2	40.5	

	SH	IERBO	URNE	DR.		THIF	RD ST.		SF	IERBO	URNE	DR.	1	THIF	RD ST.		
		South	nbound			Wes	lbound			North	nbound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Fro	m 07:0	0 AM to	09:45	AM - Pea	ak 1 of 1	1							·····		I	,, <u> </u>	
Intersection	08:15	AM															
Volume	32	9	13	54	172	1190	68	1430	13	54	7	74	18	538	119	675	2233
Percent	59.3	16.7	24.1		12.0	83.2	4.8		17.6	73.0	9.5		2.7	79.7	17.6		
08:30 Volume	13	4	5	22	49	316	13	378	3	10	2	15	4	126	30	160	575
Peak Factor																	0.971
High Int.	08:30	AM			08:30	AM			09:00	AM			09:00	AM			
Volume	13	4	5	22	49	316	13	378	1	19	1	21	2	153	25	180	
Peak Factor				0.614				0.946				0.881				0.938	

 File Name
 : 364311

 Site Code
 : 00364311

 Start Date
 : 10/10/2007

 Page No
 : 2

	Sł	HERBO	URNE	DR.		THIF	D ST.		SF	IERBO	URNE	DR.	[THIF	RD ST.		
		South	bound			Wes	bound			North	bound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Fro	om 03:0	0 PM to	05:45	PM - Pea	ak 1 of 1				·		L		،۱				
Intersection	04:45	PM														1	
Volume	131	109	110	350	56	610	42	708	32	16	12	60	15	1083	68	1166	2284
Percent	37.4	31.1	31.4		7.9	86.2	5.9		53.3	26.7	20.0		1.3	92.9	5.8		
05:15 Volume	31	21	23	75	11	167	13	191	8	4	8	20	3	276	24	303	589
Peak Factor																	0 969
High Int.	05:00	РМ			05:15 I	PM			05:15	РМ			04:45	РМ		Í	0.000
Volume	40	46	33	119	11	167	13	191	8	4	8	20	8	282	15	305	
Peak Factor				0.735				0.927				0.750				0.956	

 File Name
 : 364312

 Site Code
 : 00364312

 Start Date
 : 10/17/2007

 Page No
 : 1

						Gro	ups Prii	nted- Tu	rning M	ovemer	nt						
	SA	N VICE	ENTE BL	VD.		MELRC	SE AVE	Ξ.	SA	N VICE	INTE BL	.VD.		MELRO	SE AV	Ε.]
		Sout	hbound			West	bound			North	bound			East	bound		1
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Factor	1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		
07:00 AM	6	58	8	72	27	90	28	145	11	75	4	90	9	23	3	35	342
07:15 AM	16	68	15	99	29	125	31	185	5	66	9	80	5	31	6	42	406
07:30 AM	12	73	8	93	33	150	42	225	11	109	12	132	9	48	5	62	512
07:45 AM	18	100	18	136	25	177	46	248	14	109	16	139	9	57	9	75	598
Total	52	299	49	400	114	542	147	803	41	359	41	441	32	159	23	214	1858
08:00 AM	19	96	32	147	57	162	41	260	18	121	12	151	12	88	6	106	664
08:15 AM	4	138	26	168	33	175	57	265	20	161	21	202	15	109	11	135	770
08:30 AM	11	126	27	164	40	181	47	268	24	147	15	186	13	92	24	129	747
08:45 AM	12	120	24	156	49	177	49	275	30	167	15	212	8	108	25	141	784
Total	46	480	109	635	179	695	194	1068	92	596	63	751	48	397	66	511	2965
09:00 AM	15	103	23	141	42	185	36	263	20	154	31	205	19	101	17	137	746
09:15 AM	18	114	16	148	39	188	54	281	19	179	19	217	8	71	20	00	740
09:30 AM	14	109	13	136	50	155	43	248	18	138	14	170	5	03	16	11/	668
09:45 AM	9	100	21	130	46	171	47	264	17	117	16	150	8	101	15	124	888
Total	56	426	73	555	177	699	180	1056	74	588	80	742	40	366	68	474	2827
*** BREAK ***																	
03:00 PM	16	133	30	179	41	122	37	200	26	114	10	150	18	160	14	192	721
03:15 PM	17	134	13	164	38	107	40	185	35	144	14	193	16	113	11	140	682
03:30 PM	18	128	23	169	35	117	45	197	47	135	10	192	18	138	8	164	722
03:45 PM	18	104	35	157	35	106	29	170	40	146	15	201	30	145	15	190	718
lotal	69	499	101	669	149	452	151	752	148	539	49	736	82	556	48	686	2843
04:00 PM	18	129	34	181	32	99	20	151	27	126	24	177	25	175	14	214	723
04:15 PM	15	132	33	180	32	103	36	171	38	133	12	183	21	167	19	207	741
04:30 PM	16	134	28	178	35	100	36	171	50	144	15	209	31	165	12	208	766
04:45 PM	19	127	25	171	32	124	39	195	59	188	14	261	21	160	17	198	825
Total	68	522	120	710	131	426	131	688	174	591	65	830	98	667	62	827	3055
05:00 PM	25	170	24	219	67	140	45	252	41	206	19	266	53	149	39	241	978
05:15 PM	31	203	42	276	42	124	53	219	70	217	28	315	31	167	29	227	1037
05:30 PM	19	153	43	215	54	102	40	196	62	201	21	284	23	189	43	255	950
05:45 PM	11	136	42	189	50	107	39	196	48	152	19	219	31	184	24	239	843
Total	86	662	151	899	213	473	177	863	221	776	87	1084	138	689	135	962	3808
Grand Total	377	2888	603	3868	963	3287	980	5230	750	3449	385	4584	438	2834	402	3674	17356
Apprch %	9.7	74.7	15.6		18.4	62.8	18.7		16.4	75.2	8.4	1001	11.9	77 1	10.9	0014	11000
Total %	2.2	16.6	3.5	22.3	5.5	18.9	5.6	30.1	4.3	19.9	2.2	26.4	2.5	16.3	2.3	21.2	
											Aug Aug.	-0.7	2.0	10.0	2.0	21.2	

	SA	N VICE	NTE B	LVD.	1	MELRC	SE AVI	Ξ.	SA	N VICE	NTE B	_VD.		MELRO	SE AVE	Ξ.	
		South	nbound			West	tbound			North	nbound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Fro	om 07:0	0 AM to	09:45	AM - Pea	ak 1 of 1									I	L		
Intersection	08:15	AM														1	
Volume	42	487	100	629	164	718	189	1071	94	629	82	805	55	410	77	542	3047
Percent	6.7	77.4	15.9		15.3	67.0	17.6		11.7	78.1	10.2		10.1	75.6	14.2		
08:45 Volume	12	120	24	156	49	177	49	275	30	167	15	212	8	108	25	141	784
Peak Factor																	0.972
High Int.	08:15	AM			08:45	AM			08:45	AM			08:45	АМ			-
Volume	4	138	26	168	49	177	49	275	30	167	15	212	8	108	25	141	
Peak Factor				0.936				0.974				0.949				0.961	

Groups Printed- Turning Movement

 File Name
 : 364312

 Site Code
 : 00364312

 Start Date
 : 10/17/2007

 Page No
 : 2

	SA	N VICE	NTE B	LVD.		MELRC	SE AV	E.	SA	N VICE	NTE B	LVD.		MELRC	SE AV	Ξ.	
		South	hound			Wes	tbound			North	nbound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Fro	m 03:0	0 PM to	05:45	PM - Pea	ak 1 of 1										I		
Intersection	05:00	PM															
Volume	86	662	151	899	213	473	177	863	221	776	87	1084	138	689	135	962	3808
Percent	9.6	73.6	16.8		24.7	54.8	20.5		20.4	71.6	8.0		14.3	71.6	14.0		
05:15	31	203	42	276	42	124	53	219	70	217	28	315	31	167	29	227	1037
Volume Peak Factor																	0.010
High Int.	05:15	PM			05:00	РМ			05:15	РМ			05:30	РМ			0.910
Volume	31	203	42	276	67	140	45	252	70	217	28	315	23	189	43	255	
Peak Factor				0.814				0.856				0.860				0.943	

.

 File Name
 : 364313

 Site Code
 : 00364313

 Start Date
 : 10/11/2007

 Page No
 : 1

						Gro	ups Prir	nted- Tu	rning M	ovemer	nt						
	SA	N VICE	NTE BL	.VD.	E	BEVER	LY BLVI).	SA	N VICE	NTE BL	VD.	E	BEVER	LY BLV	D.	
		South	nbound			West	bound			North	nbound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Factor	1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		
07:00 AM	16	80	19	115	18	210	30	258	8	81	15	104	15	67	7	89	566
07:15 AM	21	69	9	99	22	231	31	284	10	89	15	114	22	84	3	109	606
07:30 AM	30	104	16	150	22	235	25	282	16	83	26	125	16	140	10	166	723
07:45 AM	24	134	25	183	20	316	41	377	17	136	24	177	17	137	14	168	905
Total	91	387	69	547	82	992	127	1201	51	389	80	520	70	428	34	532	2800
08:00 AM	35	124	18	177	26	290	25	341	15	139	24	178	34	151	7	192	888
08:15 AM	48	138	19	205	33	281	17	331	13	155	20	188	16	167	10	193	917
08:30 AM	58	190	23	271	20	254	20	294	10	204	24	238	24	148	6	178	981
08:45 AM	54	225	21	300	34	374	26	434	8	209	25	242	22	147	14	183	1159
Total	195	677	81	953	113	1199	88	1400	46	707	93	846	96	613	37	746	3945
09:00 AM	60	197	29	286	32	341	21	394	9	192	20	221	26	138	14	178	1079
09:15 AM	51	133	24	208	32	350	33	415	19	134	28	181	26	142	14	182	986
09:30 AM	42	136	32	210	29	279	29	337	20	148	36	204	34	122	15	171	922
09:45 AM	37	179	19	235	35	271	37	343	16	127	18	161	27	173	17	217	956
Total	190	645	104	939	128	1241	120	1489	64	601	102	767	113	575	60	748	3943
*** BREAK ***																	
03:00 PM	26	151	41	218	22	183	27	232	49	149	30	228	32	213	17	262	940
03:15 PM	34	123	38	195	17	220	22	259	35	145	26	206	36	242	20	298	958
03:30 PM	26	154	33	213	38	156	34	228	38	149	18	205	29	230	23	282	928
03:45 PM	29	158	27	214	25	213	21	259	47	166	24	237	31	198	22	251	961
Total	115	586	139	840	102	772	104	978	169	609	98	876	128	883	82	1093	3787
04:00 PM	25	166	38	229	33	179	20	232	53	154	25	232	51	238	18	307	1000
04:15 PM	15	162	32	209	31	232	29	292	71	180	29	280	43	272	23	338	1119
04:30 PM	31	159	45	235	47	214	19	280	60	185	24	269	54	228	25	307	1091
04:45 PM	24	142	27	193	37	175	21	233	40	161	34	235	41	285	25	351	1012
Total	95	629	142	866	148	800	89	1037	224	680	112	1016	189	1023	91	1303	4222
05:00 PM	25	216	53	294	38	161	12	211	49	200	28	277	40	258	24	322	1104
05:15 PM	21	184	31	236	32	195	18	245	51	195	29	275	28	309	23	360	1116
05:30 PM	16	136	37	189	29	174	19	222	42	239	35	316	20	296	14	330	1057
05:45 PM	17	164	32	213	24	156	10	190	23	195	19	237	21	305	13	339	979
Total	79	700	153	932	123	686	59	868	165	829	111	1105	109	1168	74	1351	4256
Grand Total	765	3624	688	5077	696	5690	587	6973	719	3815	596	5130 l	705	4690	378	5773	22953
Apprch %	15.1	71.4	13.6		10.0	81.6	8.4	_	14.0	74.4	11.6	-	12.2	81.2	6.5	-	
Total %	3.3	15.8	3.0	22.1	3.0	24.8	2.6	30.4	3.1	16.6	2.6	22.4	3.1	20.4	1.6	25.2	

[SA	N VICE	NTE B	LVD.	E	BEVER	LY BLV	D.	SA	N VICE	NTE BI	VD.	E	BEVER	LY BLV	D.	
		South	nbound			West	bound			North	nbound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Fro	om 07:0	0 AM to	09:45	AM - Pea	ak 1 of 1		· · · · · · · · · ·								······································		
Intersection	08:30	AM															
Volume	223	745	97	1065	118	1319	100	1537	46	739	97	882	98	575	48	721	4205
Percent	20.9	70.0	9.1		7.7	85.8	6.5		5.2	83.8	11.0		13.6	79.8	6.7		
08:45 Volume	54	225	21	300	34	374	26	434	8	209	25	242	22	147	14	183	1159
Peak Factor																	0.907
High Int.	08:45	AM			08:45	AM			08:45	AM			08:45	AM		1	
Volume	54	225	21	300	34	374	26	434	8	209	25	242	22	147	14	183	
Peak Factor				0.888				0.885				0.911				0.985	

File Name : 364313 Site Code : 00364313 Start Date : 10/11/2007 Page No : 2

	SA	N VICE	NTE B	LVD.	E	BEVER	LY BLV	D.	SA	N VICE	NTE B	LVD.	E	BEVER	LY BLV	D.	
		South	nporud			Wes	tbound			North	nbound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Fro	m 03:0	0 PM to	05:45	PM - Pea	ak 1 of 1												
Intersection	04:15	РМ															
Volume	95	679	157	931	153	782	81	1016	220	726	115	1061	178	1043	97	1318	4326
Percent	10.2	72.9	16.9		15.1	77.0	8.0		20.7	68.4	10.8		13.5	79.1	7.4		
04:15	15	160	22	200	21	222	20	202	71	100	20	200	42	777	22	220	1110
Volume	15	102	52	209	51	232	29	292	11	100	29	200	43	212	23	330	1119
Peak Factor																	0.966
High Int.	05:00	PM			04:15	PM			04:15	РМ			04:45	РМ			
Volume	25	216	53	294	31	232	29	292	71	180	29	280	41	285	25	351	
Peak Factor				0.792				0.870				0.947				0.939	

 File Name
 : 364314

 Site Code
 : 00364314

 Start Date
 : 10/11/2007

 Page No
 : 1

						Gre	une Drir	ated Tu	rnina M	0.0000	-+				raye	5 NO .	1
ſ	<u> </u>							neu- ru		NUCE		VD				00	1
	54			_VD.		DRIV	EVVAI		SA			_VD.	G		ALLEN	DR.	
		- 3000	Dibound	A		vves	unoana	A		NOR	bnuoar	•		Easi	bound		
Start Time	Right	Thru	Left	App.	Right	Thru	Left	App.	Right	Thru	Left	App.	Right	Thru	Left	App.	Int.
				l otal	<u> </u>			l otal				l otal				Total	Total
Factor	1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		
07:00 AM	27	105	0	132	0	0	0	0	4	104	9	117	19	0	12	31	280
07:15 AM	22	104	5	131	0	0	1	1	3	106	13	122	16	1	11	28	282
07:30 AM	43	112	5	160	0	0	0	0	8	139	18	165	26	1	16	43	368
07:45 AM	48	132	4	184	1	0	0	1	7	173	17	197	22	1	13	36	418
Total	140	453	14	607	1	0	1	2	22	522	57	601	83	3	52	138	1348
08:00 AM	25	140	6	171	1	0	1	2	6	166	17	189	20	2	16	38	400
08:15 AM	46	148	4	198	1	0	2	3	3	189	22	214	17	2	19	38	453
08:30 AM	53	185	6	244	2	2	0	4	11	202	17	230	22	7	20	49	527
08:45 AM	50	177	11	238	1	0	Ō	1	12	233	17	262	20	7	15	42	543
Total	174	650	27	851	5	2	3	10	32	790	73	895	79	18	70	167	1923
, otal				001		-	U	.0	02	100		000	10	10	70	101	1020
09·00 AM	47	186	12	245	2	1	3	6		188	25	222	35	5	16	56	520
09:15 AM	31	171	17	210		'n	1	5	12	183	10	208	21	2	10	12	175
00.10 AM	47	1/1	10	213	4	1	1	5	25	100	12	200	15	5	19	43	470
00.45 AM	20	1/10	19	100	17	2	4	24	20	1/0	10	210	10	5	20	45	4/0
	155	644		103	11	2	10	24	20	740	01	200	10			44	450
Totai	100	041	20	004	24	4	15	41	12	113	60	853	89	15	84	188	1936
BREAK																	
02.00 DM	47	100	00	007	1 10	-	25	00	1 40	455	40		05	~		70	
03.00 PM	17	190	22	231	42	5	30	82	43	100	10	214	35	3	35	73	606
03:15 PM	10	159	20	195	33	3	41	11	40	138	16	194	35	5	37		543
03:30 PM	21	184	21	232	39	6	40	91	31	165	20	216		21	57	111	650
03:45 PM	26	164	21	211	48	5	39	92	36	156	26	218	34	18	52	104	625
lotal	86	705	84	875	162	19	161	342	150	614	78	842	137	47	181	365	2424
			-			-		1									
04:00 PM	26	192	8	226	37	6	35	78	40	153	10	203	34	8	48	90	597
04:15 PM	19	182	12	213	54	4	35	93	26	185	15	226	42	3	65	110	642
04:30 PM	17	202	18	237	33	13	28	74	37	181	13	231	41	7	73	121	663
04:45 PM	19	173	10	202	52	10	25	87	24	172	9	205	33	10	44	87	581
Total	81	749	48	878	176	33	123	332	127	691	47	865	150	28	230	408	2483
05:00 PM	25	233	18	276	44	3	38	85	27	182	8	217	35	8	74	117	695
05:15 PM	19	199	26	244	49	7	52	108	25	171	17	213	37	19	69	125	690
05:30 PM	18	189	21	228	40	6	49	95	53	206	9	268	40	14	92	146	737
05:45 PM	22	171	18	211	36	9	38	83	30	188	5	223	30	11	60	101	618
Total	84	792	83	959	169	25	177	371	135	747	39	921	142	52	295	489	2740
							-										
Grand Total	720	3990	314	5024	537	83	478	1098 l	538	4077	362	4977	680	163	912	1755	12854
Apprch %	14.3	79.4	6.3		48.9	7.6	43.5		10.8	81.9	7.3		38 7	93	52.0		
Total %	5.6	31.0	2.4	39.1	42	0.6	37	8.5	42	317	28	38 7	5.3	13	7 1	13.7	
, 0.0, 70	0.0	01.0	<u> </u>	00.1		0.0	0.7	0.0	1.2	01.1	2.0	00.7	0.0	1.0	(.)	10.7	

	SA	N VICE	NTE B	LVD.		DRIV	EWAY		SA	N VICE	NTE BL	VD.	GF	RACIE	ALLEN	DR.	
		South	nbound			West	tbound			North	bound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Fro	m 07:00	0 AM to	09:45	AM - Pea	ak 1 of 1												
Intersection	08:30	AM															
Volume	181	719	46	946	9	3	4	16	45	806	71	922	98	22	70	190	2074
Percent	19.1	76.0	4.9		56.3	18.8	25.0		4.9	87.4	7.7		51.6	11.6	36.8		
08:45 Volume	50	177	11	238	1	0	0	1	12	233	17	262	20	7	15	42	543
Peak Factor		•															0.955
High Int.	09:00	AM			09:00	AM			08:45	AM			09:00	AM			
Volume	47	186	12	245	2	1	3	6	12	233	17	262	35	5	16	56	
Peak Factor				0.965				0.667				0.880				0.848	

 File Name
 : 364314

 Site Code
 : 00364314

 Start Date
 : 10/11/2007

 Page No
 : 2

	SA	N VICE Sout	NTE B	LVD.		DRIV Wes	EWAY		SA	N VICE North	NTE BI	_VD.	Gł	RACIE / East	ALLEN	DR.	
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Fro	m 03:0	0 PM to	05:45	PM - Pea	ak 1 of 1												
Intersection	05:00	PM															
Volume	84	792	83	959	169	25	177	371	135	747	39	921	142	52	295	489	2740
Percent	8.8	82.6	8.7		45.6	6.7	47.7		14.7	81.1	4.2		29.0	10.6	60.3	100	2110
05:30 Volume	18	189	21	228	40	6	49	95	53	206	9	268	40	14	92	146	737
Peak Factor																	0 929
High Int.	05:00	PM			05:15	РМ			05:30	РМ			05:30	РМ			0.020
Volume Peak Factor	25	233	18	276 0.869	49	7	52	108 0.859	53	206	9	268 0.859	40	14	92	146 0.837	

 File Name
 : 364315

 Site Code
 : 00364315

 Start Date
 : 10/11/2007

 Page No
 : 1

						~	Б· 1								Faye	- NU . I	
						Grou	ps Print	ed-1-1	urning	Novem	ent						
	SA	N VICE	NTE BL	.VE.		THIF	RD ST.		SA	N VICE	ENTE BL	.VD.		THIF	RD ST.		
		South	nbound			Wes	bound			North	nbound			East	bound		
	Diskt	These	1 - 4	App.	D:	T L	1 - 4	App.	Dista	T 1		App.	D ¹ 1 1	-		App.	Int.
Start nme	Right	Inru	Len	Total	Right	Thru	Len	Total	Right	Inru	Len	Total	Right	Inru	Left	Total	Total
Factor	10	10	10		10	10	10		10	10	10	10101	10	10	10		10101
07:00 AM	13	60	23	105	10	162	7	188	1.0	1.0	20	122	1.0	1.0	10	66	401
07:15 AM	10	70	20	100	10	211	, 1	220		50	23	124	9	47	10	00	401
07.13 AW	10	12	21	100	10	211	2	229		94	40	134	0	40	8	54	523
07:30 AM	12	94	30	130	23	304	8	335	4	128	23	155	10	88	10	108	734
07:45 AM	16	95	25	136	33	255	11	299	1	153	48	202	12	101	12	125	762
Total	54	330	99	483	91	932	28	1051	5	468	140	613	37	276	40	353	2500
08:00 AM	23	115	35	173	17	279	11	307	0	164	20	184	13	105	11	129	793
08:15 AM	26	115	21	162	38	332	13	383	4	148	24	176	16	93	5	114	835
08:30 AM	29	142	17	188	35	329	10	374	2	178	22	202	19	104	18	141	905
08:45 AM	36	134	22	192	47	283	14	344	3	196	27	226	13	112	22	147	909
Total	114	506	95	715	137	1223	48	1408	Q	686	03	788	61	114	56	531	3442
10101	117	000	50	110	107	1220	40	1400	5	000	30	700	01	414	50	551	344Z
00-00 414	24	147	20	206	26	200	44	256	د I	170		100	10	440	40		004
09.00 AW	31	147	20	200	30	309		300	3	173	22	190	10	110	13	144	904
09:15 AM	22	120	22	170	53	282	9	344	5	156	20	181	12	106	14	132	827
09:30 AM	18	128	28	1/4	38	265	18	321	4	152	27	183	21	115	17	153	831
09:45 AM	11	129	20	160	41	217	9	267	2	131	19	152	25	126	27	178	757
Total	82	530	98	710	168	1073	47	1288	14	612	88	714	74	462	71	607	3319
*** BREAK ***																	
03:00 PM	30	206	53	289	37	159	6	202	14	138	10	162	32	163	24	219	872
03:15 PM	23	178	46	247	44	146	8	198	11	113	21	145	27	189	33	249	839
03·30 PM	32	194	49	275	42	123	7	172	16	130	20	166	30	190	23	252	865
03:45 PM	20	180	13	261	50	122	8	101	11	1/3	21	175	22	192	20	247	000
Total	11/	767	101	1072	173	561	20	763	52	524	70	649	120	725	110	067	2450
TOTAL	114	101	131	1012	175	501	23	103	52	524	12	040	130	125	112	907	5450
	24	004	40	000	20	40.4	0	400	00	400	40	400				<u></u>	0.50
04.00 PIVI	21	201	40	200	30	134	0	180	20	120	10	162	44	174	28	246	856
04:15 PM	20	211	53	284	32	132	4	168	8	142	18	168	37	209	37	283	903
04:30 PM	17	212	56	285	40	142	6	188	10	155	19	184	41	228	30	299	956
04:45 PM	25	195	58	278	45	137	12	194	13	135	23	171	39	213	34	286	929
Total	83	819	213	1115	155	545	30	730	51	558	76	685	161	824	129	1114	3644
05:00 PM	15	240	53	308	36	136	8	180	29	162	18	209	50	239	30	319	1016
05:15 PM	26	223	51	300	54	148	6	208	25	140	13	178	58	247	37	342	1028
05:30 PM	21	205	45	271	36	127	5	168	10	182	16	208	51	223	46	320	967
05:45 PM	17	213	41	271	44	128	3	175	18	161	20	100	47	2/8	20	327	072
Total	70	881	100	1150	170	520		721	- 10	645	67	704	206	240	115	1209	2002
i Ulai	13	001	130	1150	170	223	22	101	υZ	040	07	194	200	907	140	1308	2903
Cropd Tot-1	EDC	2022	000	EDAE	004	1070	204	EDTA I	040	2400	500	4040	000	0050		4000	00000
Grand Lotal	526	3833	000	5245	894	4873	204	5971	213	3493	536	4242	669	3658	553	4880	20338
Apprch %	10.0	/3.1	16.9		15.0	81.6	3.4		5.0	82.3	12.6		13.7	75.0	11.3		
l otal %	2.6	18.8	4.4	25.8	4.4	24.0	1.0	29.4	1.0	17.2	2.6	20.9	3.3	18.0	2.7	24.0	

	SA	N VICE	NTE B	LVE.		THIF	RD ST.		SA	N VICE	NTE BI	.VD.		THIF	RD ST.		
		South	nbound			Wes	bound			North	bound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Fro	m 07:0	0 AM to	09:45	AM - Pea	ak 1 of 1						·		·				
Intersection	08:15	AM															
Volume	122	538	88	748	156	1253	48	1457	12	695	95	802	64	424	58	546	3553
Percent	16.3	71.9	11.8		10.7	86.0	3.3		1.5	86.7	11.8		11.7	77.7	10.6		
08:45 Volume	36	134	22	192	47	283	14	344	3	196	27	226	13	112	22	147	909
Peak Factor																	0.977
High Int.	09:00	AM			08:15	AM			08:45	AM			08:45	AM			
Volume	31	147	28	206	38	332	13	383	3	196	27	226	13	112	22	147	
Peak Factor				0.908				0.951				0.887				0.929	

 File Name
 : 364315

 Site Code
 : 00364315

 Start Date
 : 10/11/2007

 Page No
 : 2

	SA	N VICE South	NTE B	LVE.		THIF Wes	RD ST. tbound		SA	N VICE North	NTE B	LVD.		THIF East	RD ST. bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Fro	om 03:0	0 PM to	05:45	PM - Pea	ak 1 of 1												
Intersection	05:00	PM															
Volume	79	881	190	1150	170	539	22	731	82	645	67	794	206	957	145	1308	3983
Percent	6.9	76.6	16.5		23.3	73.7	3.0		10.3	81.2	8.4		15.7	73.2	11.1		
05:15 Volume	26	223	51	300	54	148	6	208	25	140	13	178	58	247	37	342	1028
Peak Factor																	0.969
High Int.	05:00	PM			05:15	PM			05:00	РМ			05:15	РМ			
Volume	15	240	53	308	54	148	6	208	29	162	18	209	58	247	37	342	
Peak Factor				0.933				0.879				0.950				0.956	

File Name : 364316 Site Code : 00364316 Start Date : 10/16/2007 Page No : 1

						Gro	ups Pri	nted- Tu	rning M	ovemei	nt						
	SA	N VICE	NTE BL	.VD.		BURTO	ON WAY	(LE DO	DUX RD.			BURTO	ON WA	Y	
		South	nbound			West	bound			North	nbound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Factor	1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		
07:00 AM	14	0	72	86	129	175	1	305	0	0	1	1	1	55	0	56	448
07:15 AM	11	0	85	96	120	233	0	353	0	0	1	1	1	74	3	78	528
07:30 AM	15	0	103	118	143	323	0	466	1	0	1	2	1	93	1	95	681
07:45 AM	26	0	126	152	174	312	1	487	0	0	3	3	3	112	1	116	758
Total	66	0	386	452	566	1043	2	1611	1	0	6	7	6	334	5	345	2415
08:00 AM	38	0	124	162	196	338	0	534	3	0	1	4	4	130	1	135	835
08:15 AM	29	0	135	164	179	319	2	500	4	Ō	6	10	4	133	2	139	813
08:30 AM	34	Ō	143	177	149	360	1	510	1	0	2	3	0	122	4	126	816
08:45 AM	47	0	155	202	144	345	3	492	0	0	3	3	3	126	3	132	829
Total	148	0	557	705	668	1362	6	2036	8	0	12	20	11	511	10	532	3293
09:00 AM	39	0	130	169	151	320	2	473	1	0	3	4	5	138	1	144	790
09:15 AM	38	0	128	166	125	296	4	425	0	0	5	5	1	130	2	133	729
09:30 AM	22	0	134	156	169	285	2	456	1	0	4	5	0	143	2	145	762
09:45 AM	26	0	142	168	142	244	4	390	1	0	4	5	3	116	3	122	685
Total	125	0	534	659	587	1145	12	1744	3	0	16	19	9	527	8	544	2966
*** BREAK ***																	
03:00 PM	16	0	186	202	124	171	8	303	4	0	6	10	3	201	2	206	721
03:15 PM	26	0	213	239	126	144	1	271	2	0	10	12	4	199	5	208	730
03:30 PM	23	0	220	243	136	140	0	276	6	0	11	17	6	215	9	230	766
03:45 PM	14	0	171	185	132	156	2	290	6	0	8	14	11	218	9	238	727
Total	79	0	790	869	518	611	11	1140	18	0	35	53	24	833	25	882	2944
04:00 PM	11	0	227	238	130	167	2	299	8	0	3	11	5	220	6	231	779
04:15 PM	16	0	210	226	137	172	3	312	5	0	6	11	1	263	5	269	818
04:30 PM	15	0	264	279	142	177	5	324	8	0	4	12	4	241	5	250	865
04:45 PM	19	0	225	244	134	183	2	319	11	0	7	18	8	304	4	316	897
Total	61	0	926	987	543	699	12	1254	32	0	20	52	18	1028	20	1066	3359
05:00 PM	17	0	271	288	120	178	7	305	7	0	11	18	5	297	11	313	924
05:15 PM	9	0	252	261	133	202	5	340	7	0	15	22	7	279	9	295	918
05:30 PM	13	0	253	266	144	211	4	359	3	0	3	6	7	248	7	262	893
05:45 PM	16	0	239	255	127	188	4	319	8	0	8	16	1	281	3	285	875
Total	55	0	1015	1070	524	779	20	1323	25	0	37	62	20	1105	30	1155	3610
Grand Total	534	0	4208	4742	3406	5639	63	9108	87	0	126	213	88	4338	98	4524	18587
Apprch %	11.3	0.0	88.7		37.4	61.9	0.7		40.8	0.0	59.2		1.9	95.9	2.2		
Total %	2.9	0.0	22.6	25.5	18.3	30.3	0.3	49.0	0.5	0.0	0.7	1.1	0.5	23.3	0.5	24.3	1

	SA	N VICE	NTE B	LVD.		BURTO	ON WAY	1		LE DO	UX RD			BURT	ON WA	1	
		South	nbound			West	lbound			North	nbound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Fro	om 07:0	0 AM to	09:45	AM - Pea	ak 1 of 1												
Intersection	08:00	AM															
Volume	148	0	557	705	668	1362	6	2036	8	0	12	20	11	511	10	532	3293
Percent	21.0	0.0	79.0		32.8	66.9	0.3		40.0	0.0	60.0		2.1	96.1	1.9		
08:00	20	Ω	124	162	106	338	Ο	534	2	0	1	Λ	1	130	1	135	835
Volume	50	0	124	102	130	550	U	554	5	U	1	4	4	100		100	000
Peak Factor																	0.986
High Int.	08:45	AM			08:00	AM			08:15	AM			08:15	AM			
Volume	47	0	155	202	196	338	0	534	4	0	6	10	4	133	2	139	
Peak Factor				0.873				0.953				0.500				0.957	

 File Name
 : 364316

 Site Code
 : 00364316

 Start Date
 : 10/16/2007

 Page No
 : 2

	SA	N VICE Sout	NTE B	LVD.		BURT(Wes	ON WA	Y		LE DC North	UX RD			BURT(East	ON WA	Y	
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Fro	om 03:0	0 PM to	05:45	PM - Pea	ak 1 of 1	l							***************************************			/	
Intersection	04:45	PM															
Volume	58	0	1001	1059	531	774	18	1323	28	0	36	64	27	1128	31	1186	3632
Percent	5.5	0.0	94.5		40.1	58.5	1.4		43.8	0.0	56.3		2.3	95.1	2.6		
05:00	17	0	271	288	120	178	7	305	7	0	11	18	5	207	11	313	024
Volume		0	211	200	120	170	'	505	,	U	11	10	5	231	1.1	515	524
Peak Factor																	0.983
High Int.	05:00	PM			05:30	PM			05:15	PM			04:45	PM			
Volume	17	0	271	288	144	211	4	359	7	0	15	22	8	304	4	316	
Peak Factor				0.919				0.921				0.727				0.938	

File Name : 364317 Site Code : 00364317 Start Date : 10/18/2007 Page No : 1

						Crow	na Deint								гауе	: NO . I	
i	0.0	NUMOR		1/0		Grou	ps Prinu		uming i	viovem		10					
	5A		INTEBL	_VD.	v	VILSHI		U.	SA			.vd.	`	VILSHI	KE BLV	D.	
		Souti	pouna			vves	ibouna			Ινοπ	nbound			East	bound		
Start Time	Riaht	Thru	Left	App.	Riaht	Thru	Left	App.	Riaht	Thru	Left	App.	Right	Thru	Left	App.	Int.
				Total				Total				Total	····g···			Total	Total
Factor	1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		
07:00 AM	18	83	3	104	13	272	0	285	1	182	82	265	12	129	10	151	805
07:15 AM	33	93	16	142	24	330	4	358	2	237	98	337	18	140	12	170	1007
07:30 AM	42	99	30	171	46	347	1	394	2	290	86	378	29	187	11	227	1170
07:45 AM	45	120	26	191	54	321	0	375	3	330	84	417	44	216	13	273	1256
Total	138	395	75	608	137	1270	5	1412	8	1039	350	1397	103	672	46	821	4238
													,				
08:00 AM	50	144	37	231	47	349	0	396	8	322	97	427	46	230	16	292	1346
08:15 AM	51	141	36	228	36	343	1	380	7	310	96	413	33	253	17	303	1324
08:30 AM	75	181	48	304	40	288	3	331	11	294	97	402	29	288	16	333	1370
08:45 AM	65	153	54	272	53	300	3	356	7	372	104	483	36	284	18	338	1//0
Total	241	619	175	1035	176	1280	7	1463		1298	394	1725	144	1055	67	1266	5/80
10101	271	010	110	1000	170	1200	'	1400	00	1200	004	1120	144	1000	07	1200	5465
00.00 AM	67	125	54	246	35	307	5	367	10	224	74	407	27	270	20	225	1055
09.00 AM	10	147	47	240	41	220	2	201	7	270	74	407	27	270	20	222	1000
09.15 AM	40	100	47	404	41	220	2	201	7	210	12	201	33	200	23	321	1271
09.30 AM	39	102	40	101	41	201	3	323	<i>'</i>	294	80	301	30	204	18	302	1189
09:45 AM	23	101	48	1/2	20	302	<u></u>	300		317	69	391	39	249	23	311	1230
lotal	177	445	189	811	169	1248	12	1429	31	1210	295	1536	139	1046	84	1269	5045
BREAK																	
	00	~ • • •		000								000					
03:00 PM	20	241	45	306	47	260	6	313	6	159	40	205	49	298	18	365	1189
03:15 PM	22	193	41	256	43	238	15	296	16	253	45	314	54	288	21	363	1229
03:30 PM	19	277	36	332	29	230	4	263	4	158	57	219	55	262	17	334	1148
03:45 PM	19	295	54	368	50	263	6	319	7	163	42	212	52	268	22	342	1241
Total	80	1006	176	1262	169	991	31	1191	33	733	184	950	210	1116	78	1404	4807
04:00 PM	24	301	48	373	49	239	10	298	2	147	36	185	50	287	23	360	1216
04:15 PM	24	320	43	387	33	240	12	285	5	181	44	230	56	316	20	392	1294
04:30 PM	30	299	55	384	55	241	16	312	6	167	58	231	53	297	19	369	1296
04:45 PM	28	331	57	416	49	254	21	324	3	178	47	228	63	301	15	379	1347
Total	106	1251	203	1560	186	974	59	1219	16	673	185	874	222	1201	77	1500	5153
05:00 PM	23	260	39	322	70	260	30	360	4	188	40	232	47	312	15	374	1288
05:15 PM	30	301	63	394	55	288	23	366	4	171	38	213	49	328	20	397	1370
05:30 PM	42	230	52	324	55	267	15	337	3	193	44	240	50	292	25	367	1268
05.45 PM	38	298	58	394	54	287	28	369	7	206	61	274	44	300	22	366	1403
Total	133	1089	212	1434	234	1102	96	1432	18	758	183	950	190	1232	82	1504	5329
. 514		,000		1104	201			, , , , , , , ,	.0	100	100	000	100	1202	02	1001	0020
Grand Total	875	4805	1030	6710	1071	6865	210	8146	130	5711	1591	7441	1008	6322	131	7764	30061
Appreh %	13.0	71 6	15 4	5710	13.1	84 7	26	0,40	10	76.8	21 /	1 7 7 1	13.0	81 /	56	1104	00001
Total %	20	16.0	3.4	22.2	36	27 P	0.7	27 1	0.5	10.0	53	240	10.0	21.4	1.0	25.8	
TOLAT 70	∠.5	10.0	0.4	22.3	0.0	22.0	0.7	21.1	0.0	15.0	0.0	24.0	0.4	21.0	1.4	20.0	

	SA	N VICE	NTE B	LVD.	V	VILSHI	RE BLV	D.	SA	N VICE	NTE BI	VD.	V	VILSHI	RE BLV	'D.	
		South	nbound			West	bound			North	bound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Fro	m 07:0	0 AM to	09:45	AM - Pea	ak 1 of 1												
Intersection	08:15	AM															
Volume	258	600	192	1050	164	1258	12	1434	37	1297	371	1705	135	1103	71	1309	5498
Percent	24.6	57.1	18.3		11.4	87.7	0.8		2.2	76.1	21.8		10.3	84.3	5.4		
08:45 Volume	65	153	54	272	53	300	3	356	7	372	104	483	36	284	18	338	1449
Peak Factor																	0.949
High Int.	08:30	AM			08:15	AM			08:45	AM			08:45	AM			
Volume	75	181	48	304	36	343	1	380	7	372	104	483	36	284	18	338	
Peak Factor				0.863				0.943				0.883				0.968	

 File Name
 : 364317

 Site Code
 : 00364317

 Start Date
 : 10/18/2007

 Page No
 : 2

	SAN VICENTE BLVD.				WILSHIRE BLVD.				SAN VICENTE BLVD.				WILSHIRE BLVD.				
	Southbound				Westbound				Northbound				Eastbound				
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Fro	² eak Hour From 03:00 PM to 05:45 PM - Peak 1 of 1																
Intersection	05:00	PM															
Volume	133	1089	212	1434	234	1102	96	1432	18	758	183	959	190	1232	82	1504	5329
Percent	9.3	75.9	14.8		16.3	77.0	6.7		1.9	79.0	19.1		12.6	81.9	5.5		
05:45	20	208	59	204	54	707	20	260	7	206	61	074		200	00	000	4.400
Volume	50	290	50	394	- 54	207	20	209	/	200	01	214	44	300	22	366	1403
Peak Factor																	0.950
High Int.	05:15 PM				05:45 PM				05:45 PM				05:15 PM				
Volume	30	301	63	394	54	287	28	369	7	206	61	274	49	328	20	397	
Peak Factor				0.910				0.970				0.875				0.947	
File Name
 : 364318

 Site Code
 : 00364318

 Start Date
 : 10/18/2007

 Page No
 : 1

							0		+	· •						Page	INO II	
Г			OFNE		10		Gro	UPS Phi		rning M	ovemer		10				<u> </u>	
		LA	South		/D.		JEVER	LY BLVI	٦.	L -			VD.	'	JEVER		ע.	
$\left \right $			Souii		100		vves	lbound	Ann		NOFU	ibouna			East	bouna		
	Start Time	Right	Thru	Left	App.	Right	Thru	Left	App.	Right	Thru	Left	App.	Right	Thru	Left	App.	Int.
ŀ	Fastar	- 10	10	10	Totai	- 10	10	10	Total	10	10	10	iotai	10	10	10	l otal	lotai
L	Factor	1.0	170	1.0	014	1.0		1.0		1.0	1.0	1.0	400	1.0	1.0	1.0		005
	07:00 AM	20	179	1	211		217	40	269		109	13	132	5	72	6	83	695
	07:15 AW	54 CD	234	11	299	28	225	37	290	25	130	15	176	9	84	8	101	866
	07:30 AM	58	269	15	342	1/	298	60	380	34	150	14	204	6	143	26	175	1101
	07:45 AIVI	80	298	10	399	14	260	42	310	56	187	12	255	8	144	16	168	1138
	lotar	222	980	49	1251		1000	184	1255	125	588	54	/6/	28	443	56	527	3800
	00.00 414		040	40	200	00	207	<u></u>	444	1 40	407	05	074	1 40	457	07	404	1000
	00.00 AN	20	242	10	320	35	307	09	411	49	197	20	2/1	10	107	27	194	1202
	00:10 AM	13	201	10	370	23	204	44	321	34	101	22	237	19	154	30	203	1131
	00.30 AN	04	249	19	322	22	210	07	304	29	100	23	218	12	133	29	174	10/8
~	U0.45 Alvi	02	297	20	407	10	1160	240	418	41	701	25	243	<u> </u>	145	32	794	1202
	Total	215	1069	01	1425	90	1100	248	1514	153	721	90	969	58	289	118	765	4673
	00.00 414	00	261	22	267	1 1 5	200	£0	204	40	166	24	245	1 10	167	04	400	1101
	09.00 AM	03	201	20	207	10	200	60	275	40	170	20	240	10	107	21	190	1200
	09.13 AM	70	200	11	245	10	230	25	375	49	1/0	20	200	10	101	34	201	1200
	09.30 AM	20	200	21	272	20	212	50	320	50	204	41 20	200	13	102	20	201	1140
-	Total	233	1056		1470	20	1107	221	1200	195	797	126	1049	50	607	107	702	4717
	10141	000	1000	50	1473	10	1107	221	1330	105	131	120	1040	00	021	107	192	4717
,	** BREAK ***																	
	2112111																	
	03:00 PM	42	244	31	317	32	228	66	326	100	260	22	382	42	253	49	344	1369
	03:15 PM	44	291	36	371	18	183	68	269	77	295	27	399	35	261	49	345	1384
	03:30 PM	33	239	31	303	17	231	66	314	96	234	29	359	38	272	65	375	1351
	03:45 PM	47	271	25	343	34	176	66	276	106	283	36	425	26	249	60	335	1379
1	Total	166	1045	123	1334	101	818	266	1185	379	1072	114	1565	141	1035	223	1399	5483
																	,	
	04:00 PM	49	226	20	295	22	190	67	279	98	264	39	401	46	303	63	412	1387
	04:15 PM	53	267	35	355	36	157	52	245	101	256	33	390	25	284	62	371	1361
	04:30 PM	47	247	29	323	35	189	51	275	115	247	31	393	32	326	66	424	1415
	04:45 PM	25	276	28	329	18	149	61	228	109	306	25	440	30	280	76	386	1383
1	Total	174	1016	112	1302	111	685	231	1027	423	1073	128	1624	133	1193	267	1593	5546
	05:00 PM	37	255	23	315	26	205	50	281	97	273	22	392	40	311	70	421	1409
	05:15 PM	37	259	28	324	15	165	62	242	107	319	35	461	26	308	68	402	1429
	05:30 PM	37	200	36	273	34	194	61	289	95	264	28	387	29	342	66	437	1386
	05:45 PM	51	280	20	351	27	199	55	281	111	324	27	462	28	278	67	373	1467
	Total	162	994	107	1263	102	763	228	1093	410	1180	112	1702	123	1239	271	1633	5691
																	-	
	Grand Total	1332	6160	562	8054	553	5541	1378	7472	1675	5371	629	7675	541	5126	1042	6709	29910
	Apprch %	16.5	76.5	7.0		7.4	74.2	18.4		21.8	70.0	8.2		8.1	76.4	15.5		
	Total %	4.5	20.6	1.9	26.9	1.8	18.5	4.6	25.0	5.6	18.0	2.1	25.7	1.8	17.1	3.5	22.4	

	LA	CIENE	EGA BL	VD.	E	BEVER	LY BLV	D.	LA	CIENE	EGA BL	VD.	E	BEVER	LY BLV	D.	
		South	nbound			West	lbound			North	nbound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Fro	m 07:0	0 AM to	09:45	AM - Pea	ak 1 of 1												
Intersection	08:45	AM														1	
Volume	335	1091	87	1513	68	1202	230	1500	176	710	123	1009	53	605	113	771	4793
Percent	22.1	72.1	5.8		4.5	80.1	15.3		17.4	70.4	12.2		6.9	78.5	14.7		
08:45 Volume	82	297	28	407	18	332	68	418	41	177	25	243	17	145	32	194	1262
Peak Factor																	0.949
High Int.	08:45	AM			08:45	AM			09:30	AM			09:30	AM			
Volume	82	297	28	407	18	332	68	418	38	189	41	268	13	162	26	201	
Peak Factor				0.929				0.897				0.941				0.959	

File Name : 364318 Site Code : 00364318 Start Date : 10/18/2007 Page No : 2

	LA	CIENE	EGA BL	.VD.	E	BEVER West	LY BLV	D.	LA		EGA BL	VD.	E	BEVER Fast	LY BLV	D.	
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Fro	m 03:0	0 PM to	05:45	PM - Pea	ak 1 of 1				· I		l	- Total				(oran	Totar
Intersection	05:00	РМ															
Volume	162	994	107	1263	102	763	228	1093	410	1180	112	1702	123	1239	271	1633	5691
Percent	12.8	78.7	8.5		9.3	69.8	20.9		24.1	69.3	6.6		7.5	75.9	16.6		
05:45	51	280	20	351	27	100	55	281	111	324	27	462	28	278	67	373	1467
Volume	51	200	20	001	21	155	55	201	111	524	21	402	20	210	07	5/5	1407
Peak Factor																	0.970
High Int.	05:45	PM			05:30	PM			05:45	PM			05:30	РМ			
Volume	51	280	20	351	34	194	61	289	111	324	27	462	29	342	66	437	
Peak Factor				0.900				0.946				0.921				0.934	

 File Name
 : 364319

 Site Code
 : 00364319

 Start Date
 : 10/16/2007

 Page No
 : 1

LA CIENEGA BLVD. THIRD ST. LA CIENEGA BLVD. THIRD ST. Northbound The Left Total Pape. Northbound Thu Left Total App. Introduct Eastbound Introduct Introduc							Gro	ups Prir	nted- Tur	ning M	ovemer	nt						
Southbound Westbound Northbound Eastbound Pactor Start Time Right Thru Left App. Total No 1.0		LA	CIENE	EGA BL\	/D.		THIF	RD ST.		LA	CIENE	EGA BL	/D.		THIF	RD ST.		
Start Time Right Thru Left App. Total Right Thru Left App. Total Right Thru Left Total		,	South	bound			West	bound			North	bound			East	bound		
Link Log Log <thlog< th=""> <thlog< th=""></thlog<></thlog<>	Start Time	Right	Thru	Left	App.	Right	Thru	Left	App.	Riaht	Thru	Left	App.	Right	Thru	Left	App.	Int.
Factor 1.0 <th1.0< th=""> <th1.0< t<="" td=""><td></td><td>g.n</td><td></td><td></td><td>Total</td><td></td><td></td><td></td><td>l otal</td><td></td><td>1.0</td><td></td><td>l otal</td><td>10</td><td></td><td>1.0</td><td>lotal</td><td>lotal</td></th1.0<></th1.0<>		g.n			Total				l otal		1.0		l otal	10		1.0	lotal	lotal
07:00 AM 14 200 10 224 11 104 34 209 17 133 33 163 11 41 0 58 9 77 682 25 126 133 98 13 124 1015 07:15 AM 38 274 12 324 9 260 44 313 22 200 32 254 13 98 13 124 1015 07:15 AM 353 17 153 177 169 10 300 49 359 21 255 40 316 12 108 15 135 1172 26:15 112 26 143 117 108 16 12 108 15 135 1179 08:30 AM 49 294 144 357 7 305 49 361 31 247 44 342 117 1008 167 122 43 41 116 16 16 16 16 16 16 16 16 16 16	Factor	1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0	400	1.0	1.0	1.0		074
0 / 7:3 A M 20 260 13 293 9 207 38 294 (25 183 30 236 10 38 9 7 7 600 07:30 A M 38 274 12 324 9 260 44 373 22 200 32 254 13 98 13 124 1015 Total 107 1051 50 1208 41 871 167 1079 78 74 120 942 41 326 45 412 3641 08:00 A M 34 303 12 349 23 256 74 353 31 261 46 338 5 106 21 132 1172 08:15 A M 37 315 17 369 10 300 49 359 21 255 40 316 12 108 15 135 1159 08:30 A M 37 302 9 346 10 296 64 370 34 247 44 326 15 112 26 153 1196 08:45 A M 49 294 14 357 7 305 49 361 31 245 37 313 11 95 24 130 1161 Total 157 1214 52 1423 50 1157 236 1443 117 1008 167 1292 43 421 86 550 4708 09:00 A M 33 255 12 310 12 273 65 350 31 232 41 304 14 116 16 16 148 1112 09:15 A M 92 76 12 337 16 250 48 324 20 215 25 260 24 118 21 163 108 09:00 A M 30 261 13 304 28 196 55 26 280 37 255 31 323 15 83 28 126 143 107 1028 167 1292 43 421 86 550 4708 09:00 A M 30 261 13 304 28 196 55 26 280 37 255 31 323 15 83 28 126 1233 Total 151 1080 51 1282 77 46 0345 26 253 26 305 17 128 30 175 1156 09:45 A M 30 261 13 304 28 196 55 280 37 255 31 323 15 83 28 126 1233 Total 151 1080 51 1282 77 16 1006 215 1299 114 955 123 1192 70 445 97 612 438 *** BREAK *** 03:00 PM 28 255 31 314 44 154 58 256 256 31 246 31 348 24 191 27 242 1160 03:30 PM 23 293 43 359 34 156 42 232 37 299 32 368 30 204 39 273 122 03:30 PM 23 293 43 359 34 156 42 232 37 299 32 368 30 204 39 273 122 03:30 PM 23 293 43 359 34 156 42 232 37 299 33 368 31 163 39 253 1265 Total 108 1151 160 1419 169 603 190 962 181 1204 121 1506 109 722 147 978 4865 04:00 PM 21 271 38 330 37 130 35 202 32 397 19 347 40 216 43 299 1170 04:15 PM 15 278 38 331 128 46 205 45 293 26 346 36 274 41 351 1288 04:45 PM 20 294 55 369 28 132 34 194 53 328 17 398 13 230 44 325 1265 Total 108 1151 160 1419 169 603 190 962 181 1204 121 1506 109 722 147 978 4865 04:00 PM 21 271 38 331 128 46 205 45 293 26 364 36 274 41 351 1288 05:00 PM 12 267 39 318 34 128 46 205 45 293 26 344 36 274 41 351 1288 05:00 PM 12 267 39 318 34 128 46 205 45 293 26 64 36 274 41 351 1286 05:00 PM 15 249 29 294 27 165 45 237 57 399	07:00 AM	14	200	10	224	11	164	34	209	17	133	33	183	11	41	6	58	6/4
07:45 AM 35 317 15 367 12 240 51 303 14 228 25 267 7 129 17 153 1090 Total 107 1051 50 1208 41 871 167 1079 78 744 120 942 41 326 45 412 3641 08:00 AM 34 303 12 349 23 256 74 353 31 261 46 338 5 106 21 132 1172 08:15 AM 37 315 17 369 10 300 49 359 21 255 40 316 12 108 15 135 1179 08:30 AM 49 294 14 357 7 305 49 361 31 247 44 325 15 112 26 153 1196 08:45 AM 49 294 14 357 7 305 49 361 31 245 37 313 11 95 24 130 1161 Total 157 1214 52 1423 50 1157 236 1443 117 1008 167 1292 43 421 86 550 4708 09:00 AM 33 255 12 310 12 273 65 350 31 232 41 304 14 116 18 148 1112 09:15 AM 30 255 12 310 12 273 65 350 31 232 41 304 14 116 18 148 1112 09:30 AM 29 288 14 331 22 777 46 345 26 253 31 323 41 304 114 116 18 148 1112 09:45 AM 49 276 12 337 16 260 48 324 20 215 25 260 24 118 21 163 1084 09:30 AM 29 288 14 331 22 777 46 345 26 253 31 323 15 83 28 126 1133 Total 151 1080 51 1282 78 1006 215 1299 114 955 123 1192 70 445 97 612 4385 *** BREAK *** 03:00 PM 28 255 31 314 44 154 58 256 31 286 31 348 24 191 27 242 1160 03:30 PM 23 293 43 359 34 156 42 232 37 299 32 386 30 204 39 273 1232 03:45 PM 25 309 48 383 48 172 23 243 51 302 33 386 31 183 39 253 1265 Total 151 1080 51 1282 78 1006 215 1299 114 955 123 1192 70 445 97 612 4385 *** BREAK *** 03:00 PM 21 271 38 330 37 130 35 202 32 297 20 349 31 211 47 289 1170 04:15 PM 15 300 48 383 48 172 23 243 51 302 33 386 31 183 39 253 1265 Total 108 1151 160 1419 169 603 190 962 181 1204 121 1506 109 722 147 978 4865 04:00 PM 21 271 38 330 37 130 35 202 32 297 20 349 31 211 47 289 1170 04:30 PM 23 293 43 3359 34 138 52 224 55 33 328 15 346 36 474 41 351 1289 04:00 PM 21 271 38 331 28 128 148 62 205 45 293 32 6 364 36 274 41 351 1289 04:00 PM 21 271 38 331 128 46 205 45 293 127 398 31 123 44 305 1286 Total 100 1151 160 1418 169 603 190 962 181 1204 121 1506 109 722 147 978 4865 04:00 PM 23 293 43 335 34 128 46 205 45 293 32 6 364 36 274 41 351 1289 05:00 PM 15 2078 38 331 128 428 128 38 194 53 322 177 198 31 120 44 305 1286 Total 80 1177 174 1426 131 509 153 793 1	07:15 AM	20	260	13	293	9	207	38	254	25	183	30	238	10	58	9	11	4045
07:45 AM 35 317 15 367 12 240 31 303 14 228 25 27 7 7 17 133 109 Total 107 1051 50 1208 41 871 167 1079 7 744 120 942 41 326 45 412 3641 08:00 AM 34 303 12 256 7 353 31 261 46 338 5 106 21 132 1172 08:15 AM 37 315 17 366 10 300 49 355 21 255 40 316 12 246 135 1196 08:04 1161 157 124 43 117 1008 167 1292 43 421 86 550 4708 08 166 1292 43 404 14 116 18 148 1112 06: 363 31 232 41 304 14 116 128 100 116	07:30 AM	38	274	12	324	9	260	44	313	22	200	32	254	13	98	13	124	1015
Iotal 100 1051 50 1208 41 871 107 1079 78 744 120 942 41 326 43 412 334 08:16 AM 37 315 17 366 10 300 49 359 21 255 40 316 12 108 15 135 112 26 153 116 336 117 100 16 133 11 95 24 130 116 366 37 313 11 95 24 130 116 126 37 313 11 95 24 130 116 126 37 313 11 95 24 130 116 126 37 313 11 95 24 130 117 130 116 206 47 323 14 141 161 161 161 130 141 115 1080 175 1162	07:45 AM	35	31/	15	367	12	240	51	303	74	228	25	267	/	129	17	153	1090
08:00 AM 34 303 12 349 23 256 74 353 31 261 46 338 5 106 21 132 1172 08:15 AM 37 302 9 348 10 300 49 359 21 255 40 316 12 108 15 135 1179 08:30 AM 49 294 14 357 7 305 49 361 31 245 37 313 11 95 24 130 1161 Total 157 1214 52 1423 50 1157 236 1443 117 1008 167 1292 43 421 86 550 4708 09:00 AM 43 255 12 310 12 273 65 350 31 232 41 304 14 116 18 148 1112 09:15 AM 49 276 12 337 16 260 48 324 20 215 25 260 24 118 21 163 1084 09:00 AM 49 276 12 337 16 260 48 324 20 215 25 260 24 118 21 163 1084 09:00 AM 49 276 12 337 16 260 48 324 20 215 25 260 24 118 21 163 1084 09:00 AM 29 288 14 331 22 277 46 345 26 253 26 305 17 128 30 175 1156 09:45 AM 30 261 13 304 28 196 56 280 37 255 31 323 15 83 28 126 1033 Total 151 1080 51 1282 78 1006 215 1299 114 955 123 1192 70 445 97 612 4385 BREAK 03:00 PM 23 293 43 359 34 156 42 232 37 299 32 368 30 204 39 273 132 03:05 PM 31 224 38 363 43 121 67 231 62 317 25 404 24 144 42 21 128 03:30 PM 23 293 43 359 34 156 42 232 37 299 32 368 30 204 39 273 132 03:45 PM 31 224 38 363 43 121 67 231 62 317 25 404 24 144 42 10 1208 03:30 PM 23 293 43 359 34 156 42 232 37 299 32 368 30 204 39 273 132 03:45 PM 31 224 38 363 43 121 67 231 62 317 25 404 24 144 42 21 128 03:30 PM 23 293 43 359 34 156 42 232 37 299 32 368 30 204 39 273 132 03:45 PM 31 224 38 336 34 156 42 232 37 299 32 368 30 204 39 273 132 03:45 PM 31 294 38 363 43 121 67 231 62 317 25 404 24 144 22 11 47 289 1170 04:15 PM 31 294 38 363 43 121 67 231 62 317 29 33 386 31 183 39 253 1265 Total 108 1151 160 1419 168 603 190 962 181 1204 121 1506 109 722 147 978 4465 04:00 PM 21 271 38 330 37 130 35 202 32 297 20 349 31 211 47 289 1170 04:30 PM 23 303 42 366 31 128 46 205 45 293 26 364 46 274 41 351 1280 04:45 PM 16 304 39 359 35 119 38 192 55 273 19 347 40 216 43 299 1197 04:30 PM 23 303 42 366 31 128 46 205 45 293 26 364 36 274 41 351 1280 04:45 PM 16 304 39 359 35 119 38 192 55 273 19 347 40 216 43 299 1197 04:30 PM 22 298 44 362 28 123 44 194 53 328 17 38 31 1230 44 305 1266 Total 80 1172 174 1426	lotal	107	1051	50	1208	41	871	167	1079	78	744	120	942	41	320	45	412	3641
00.00 AM 34 303 12 343 23 230 14 333 21 255 40 336 13 135 17 135 117 136 112 108 167 1292 43 421 86 550 4708 09:00 AM 43 255 12 310 12 273 65 350 31 232 41 304 14 116 18 148 1112 09:15 AM 49 276 12 337 16 260 48 324 20 215 25 26 305 17 128 30 175 156 09:17 128	08-00 AM	24	202	10	340	23	256	74	353	31	261	46	338	5	106	21	132	1172
0b:30 AM 37 313 17 338 10 286 43 237 44 322 15 112 26 155 113 119 08:30 AM 37 302 9 338 17 236 44 317 245 37 313 11 95 24 130 1161 Total 157 1214 52 1423 50 1157 236 1443 117 108 167 1292 43 421 86 550 4708 09:00 AM 49 255 12 310 12 273 65 350 31 232 41 304 14 116 18 148 1112 09:15 AM 49 261 13 304 28 126 55 350 31 232 41 304 14 116 18 148 1112 063 063 277 46 345 26 253 266 305 17 128 30 175 156 108	00.00 AM	27	303	12	360	10	200	19	359	21	255	40	316	12	108	15	135	1179
00:30 AM 49 302 3 302 3 357 7 305 49 361 31 241 37 313 11 95 24 130 1161 Total 157 1214 52 1423 50 1157 236 1443 117 1008 167 1292 43 421 86 550 4708 09:00 AM 43 255 12 310 12 273 65 350 31 232 41 304 14 116 18 148 1112 09:15 AM 49 261 13 304 28 196 56 280 37 255 26 026 17 128 0175 1156 09:45 AM 30 261 13 304 28 196 56 280 37 255 31 323 15 83 28 126 1033 Total 151 1080 51 1282 78 1006 215 1299 114 955<	00.13 AM	37	302	۱ <i>۲</i>	348	10	206	64	370	34	200	40	325	15	112	26	153	1196
OULD AIM 43 22 14 50 12 20 11 20 11 20 12 20 11 20 12 20 12 20 12 20 12 20 12 20 12 20 12 20 12 21 43 421 86 500 4708 09:00 AM 43 255 12 310 12 273 65 350 31 232 41 304 14 116 18 148 1112 09:15 AM 49 276 12 337 16 260 48 324 20 215 25 26 305 17 128 30 175 1153 09:15 AM 30 261 13 344 154 58 256 31 236 31 348 24 191 27 242 1160 03:0 PM 28 255 31 31<	08:45 AM	10	202	1/	357	7	200	<u>1</u> 9	361	31	245	37	313	11	95	24	130	1161
OB:OD AM 43 255 12 310 12 273 65 350 31 232 41 304 14 116 18 148 1112 09:15 AM 49 276 12 337 16 260 48 324 20 215 25 260 24 118 301 12 277 46 345 26 253 26 305 17 128 30 175 1156 09:45 AM 30 261 13 304 28 196 56 280 37 255 31 323 15 83 28 126 1033 Total 151 1080 51 1282 78 1006 215 129 114 955 123 1192 70 445 97 612 4385 **** 03:00 PM 28 255 31 314 44 154 58 256 31 286 31 348 24 191 27 242 160 337	Total	157	1214	52	1423	50	1157	236	1443	117	1008	167	1292	43	421	86	550	4708
09:00 AM 43 255 12 310 12 273 65 350 31 232 41 304 14 116 18 148 1112 09:15 AM 49 276 12 337 16 260 48 324 20 215 25 260 24 118 21 153 1084 09:30 AM 29 288 14 304 28 196 56 280 37 255 31 323 15 83 28 126 1033 Total 151 1080 51 1282 78 1006 215 1299 114 955 123 1192 70 445 97 612 4385 Total 151 1080 51 1282 78 1006 215 1299 114 955 123 1192 70 445 97 612 4385 Total 151 160 151 156 52 31 263 31 243	10101	107		02														
09:15 AM 49 276 12 337 16 260 48 324 20 215 25 260 24 118 21 163 1084 09:30 AM 29 288 14 331 22 277 46 345 26 253 26 305 17 128 30 175 1156 09:45 AM 30 51 1282 78 1006 215 1299 114 955 123 1192 70 445 97 612 4385 *** BREAK *** 03:00 PM 28 255 31 314 44 154 58 256 31 286 31 348 24 191 27 242 1160 03:05 PM 23 293 43 359 34 156 42 232 37 299 32 368 30 204 39 273 1322 03:45 PM 26 309 48 331 211 67 231 62	09:00 AM	43	255	12	310	12	273	65	350	31	232	41	304	14	116	18	148	1112
09:30 AM 29 288 14 331 22 277 46 345 26 255 31 323 15 83 28 126 1033 Total 151 1080 51 1282 78 1006 215 1299 114 955 123 1192 70 445 97 612 4385 Total 151 1080 51 1282 78 1006 215 1299 114 955 123 1192 70 445 97 612 4385 Total 151 1282 78 106 215 129 114 955 123 1192 70 445 97 612 4385 Total 131 294 38 363 43 121 67 231 62 317 25 404 24 144 42 210 1208 03:0 PM 23	09:15 AM	49	276	12	337	16	260	48	324	20	215	25	260	24	118	21	163	1084
09:45 AM 30 261 13 304 28 196 56 280 37 255 31 323 15 83 28 126 1033 Total 151 1080 51 1282 78 1006 215 1299 114 955 123 1192 70 445 97 612 4385 *** BREAK *** 03:00 PM 28 255 31 314 44 154 58 256 31 286 31 348 24 191 27 242 1160 03:15 PM 31 294 38 363 43 121 67 231 62 317 25 404 24 144 42 210 1208 03:30 PM 23 293 43 359 34 156 42 232 37 299 32 368 31 133 39 253 1265	09:30 AM	29	288	14	331	22	277	46	345	26	253	26	305	17	128	30	175	1156
Total 151 1080 51 1282 78 1006 215 1299 114 955 123 1192 70 445 97 612 4385 *** BREAK *** 03:00 PM 28 255 31 314 44 154 58 256 31 286 31 348 24 191 27 242 1160 03:15 PM 31 294 38 363 43 121 67 231 62 317 25 404 24 144 42 210 1208 03:30 PM 23 293 43 359 34 156 42 232 37 299 32 368 30 204 39 273 1232 03:45 PM 26 309 48 383 48 172 23 243 51 302 33 366 31 146 246 121 1506 <t< td=""><td>09:45 AM</td><td>30</td><td>261</td><td>13</td><td>304</td><td>28</td><td>196</td><td>56</td><td>280</td><td>37</td><td>255</td><td>31</td><td>323</td><td>15</td><td>83</td><td>28</td><td>126</td><td>1033</td></t<>	09:45 AM	30	261	13	304	28	196	56	280	37	255	31	323	15	83	28	126	1033
**** BREAK *** 03:00 PM 28 255 31 314 44 154 58 256 31 286 31 348 24 191 27 242 1160 03:15 PM 31 294 38 363 43 121 67 231 62 317 25 404 24 144 42 210 1208 03:30 PM 23 293 43 359 34 156 42 232 37 299 32 368 30 204 39 273 1232 03:45 PM 26 309 48 383 48 172 23 243 191 722 147 978 4865 04:00 PM 21 271 38 330 37 130 35 202 32 297 20 349 31 211 47 289 1170 04:15 PM 16 304 39 359 35 119 38 122 55 273 19 347 <	Total	151	1080	51	1282	78	1006	215	1299	114	955	123	1192	70	445	97	612	4385
**** BREAK **** 03:00 PM 28 255 31 314 44 154 58 256 31 286 31 348 24 191 27 242 1160 03:15 PM 31 294 38 363 43 121 67 231 62 317 25 404 24 144 42 210 1208 03:30 PM 23 293 43 359 34 156 42 232 37 299 32 368 30 204 39 273 1232 03:45 PM 26 309 48 383 48 172 23 243 51 302 33 366 31 183 39 253 1265 Total 108 1151 160 1419 169 603 190 962 181 1204 121 1506 109 722 147 978 4865 04:00 PM 21 271 38 330 37 130 35 202																		
03:00 PM 28 255 31 314 44 154 58 256 31 286 31 348 24 191 27 242 1160 03:15 PM 31 294 38 363 43 121 67 231 62 317 25 404 24 144 42 210 1208 03:30 PM 23 293 43 359 34 156 42 232 37 299 32 368 30 204 39 273 1232 03:45 PM 26 309 48 383 48 172 23 243 51 302 33 386 31 183 39 253 1265 Total 108 1151 160 1419 169 603 190 962 181 1204 121 1506 109 722 147 978 4865 04:00 PM 21 271 38 330 37 130 35 202 32 297 20	*** BREAK ***																	
03:00 PM 28 255 31 314 44 154 58 256 31 286 31 346 24 191 27 242 1100 03:15 PM 31 294 38 363 43 121 67 231 62 317 25 404 24 144 42 210 1208 03:30 PM 23 293 43 359 34 156 42 232 37 299 32 368 30 204 39 273 1232 03:45 PM 26 309 48 383 48 172 23 243 51 302 33 366 31 183 39 253 1265 Total 108 1151 160 1419 169 603 190 962 181 1204 121 150 109 722 147 978 4865 04:00 PM 21 271 38 31 128 46 205 45 293 26 364<			055				454	50	050	04	000	24	240	04	101	07	242	1100
03:15 PM 31 294 38 363 43 121 67 231 62 317 25 404 24 144 42 210 1200 03:30 PM 23 293 43 359 34 156 42 232 37 299 32 368 30 204 39 273 1232 03:45 PM 26 309 48 883 48 172 23 243 51 302 33 866 31 1183 39 253 1265 Total 108 1151 160 1419 169 603 190 962 181 1204 121 1506 109 722 147 978 4865 04:00 PM 21 271 38 330 37 130 35 202 32 297 20 349 31 211 47 289 1170 04:15 PM 16 304 39 359 35 119 38 192 55 273 1	03:00 PM	28	255	31	314	44	154	58	255	31	200	31	348	24	191	27	242	100
03:30 PM 23 293 43 359 34 156 42 232 37 299 32 368 30 204 39 273 1232 03:45 PM 26 309 48 383 48 172 23 243 51 302 33 386 31 183 39 253 1265 Total 108 1151 160 1419 169 603 190 962 181 1204 121 1506 109 722 147 978 4865 04:00 PM 21 271 38 330 37 130 35 202 32 297 20 349 31 211 47 289 1170 04:15 PM 16 304 39 359 35 119 38 192 55 273 19 347 40 216 43 299 1197 04:30 PM 23 303 42 368 31 128 46 205 45 293 26	03:15 PM	31	294	38	363	43	121	67	231	62	317	20	404	24	144	42	210	1200
03:45 PM 26 309 48 383 48 172 23 243 51 302 33 386 31 183 39 253 1265 Total 108 1151 160 1419 169 603 190 962 181 1204 121 1506 109 722 147 978 4865 04:00 PM 21 271 38 330 37 130 35 202 32 297 20 349 31 211 47 289 1170 04:15 PM 16 304 39 359 35 119 38 192 55 273 19 347 40 216 43 299 1197 04:30 PM 23 303 42 368 31 128 46 205 45 293 26 364 36 274 41 351 1286 04:45 PM 20 294 55 369 28 132 34 194 53 328 17	03:30 PM	23	293	43	359	34	156	42	232	3/	299	32	368	30	204	39	2/3	1232
10tal 108 1151 160 1419 169 603 190 962 181 1204 121 1506 109 722 147 976 4863 04:00 PM 21 271 38 330 37 130 35 202 32 297 20 349 31 211 47 289 1170 04:15 PM 16 304 39 359 35 119 38 192 55 273 19 347 40 216 43 299 1197 04:30 PM 23 303 42 368 31 128 46 205 45 293 26 364 36 274 41 351 1288 04:45 PM 20 294 55 369 28 132 34 194 53 328 17 398 31 230 44 305 1266 Total 80 1172 174 1426 131 509 153 793 185 1191 <t< td=""><td>03:45 PM</td><td>26</td><td>309</td><td>48</td><td>383</td><td>48</td><td>1/2</td><td>23</td><td>243</td><td>51</td><td>302</td><td>33</td><td>386</td><td>31</td><td>183</td><td>39</td><td>203</td><td>1200</td></t<>	03:45 PM	26	309	48	383	48	1/2	23	243	51	302	33	386	31	183	39	203	1200
04:00 PM 21 271 38 330 37 130 35 202 32 297 20 349 31 211 47 289 1170 04:15 PM 16 304 39 359 35 119 38 192 55 273 19 347 40 216 43 299 1197 04:30 PM 23 303 42 368 31 128 46 205 45 293 26 364 36 274 41 351 1288 04:45 PM 20 294 55 369 28 132 34 194 53 328 17 398 31 230 44 305 1266 Total 80 1172 174 1426 131 509 153 793 185 1191 82 1458 138 931 175 1244 4921 05:00 PM 16 249 29 294 27 165 45 237 57 339 18<	Iotal	108	1151	160	1419	169	603	190	962	181	1204	121	1506	109	122	147	970	4000
04:00 PM 21 271 33 330 37 130 33 130 33 130 33 130 33 130 33 130 33 130 33 130 33 130 33 149 33 120 55 273 19 347 40 216 43 299 1197 04:30 PM 23 303 42 368 31 128 46 205 45 293 26 364 36 274 41 351 1288 04:45 PM 20 294 55 369 28 132 34 194 53 328 17 398 31 230 44 305 1266 Total 80 1172 174 1426 131 509 153 793 185 1191 82 1458 138 931 175 1244 4921 05:00 PM 16 249 29 294 27 165 45 237 57 339 18 414		04	074	20	220	50	120	25	202	22	207	20	340	21	211	47	280	1170
04:15 PM 10 304 39 303 42 368 31 128 46 205 45 293 26 364 36 274 41 351 128 04:30 PM 20 294 55 369 28 132 34 194 53 328 17 398 31 230 44 305 1266 Total 80 1172 174 1426 131 509 153 793 185 1191 82 1458 138 931 175 1244 4921 05:00 PM 16 249 29 294 27 165 45 237 57 339 18 414 34 247 49 330 1275 05:00 PM 16 249 29 294 27 165 45 237 57 339 18 414 34 247 49 330 1275 05:30 PM 12 267 39 318 34 138 52 224 50 </td <td>04:00 PIVI</td> <td>21</td> <td>271</td> <td>20</td> <td>350</td> <td>35</td> <td>110</td> <td>38</td> <td>102</td> <td>55</td> <td>237</td> <td>10</td> <td>343</td> <td>40</td> <td>216</td> <td>47</td> <td>200</td> <td>1197</td>	04:00 PIVI	21	271	20	350	35	110	38	102	55	237	10	343	40	216	47	200	1197
04:30 PM 23 303 42 366 31 126 40 203 43 293 20 304 30 214 41 305 1266 04:45 PM 20 294 55 369 28 132 34 194 53 328 17 398 31 230 44 305 1266 Total 80 1172 174 1426 131 509 153 793 185 1191 82 1458 138 931 175 1244 4921 05:00 PM 16 249 29 294 27 165 45 237 57 339 18 414 34 247 49 330 1275 05:15 PM 15 278 38 331 28 128 38 194 53 362 18 433 33 242 46 321 1279 05:30 PM 12 267 39 318 34 138 52 224 50 338 21<	04:15 Pivi	10	304	39 40	209	20	100	30	205	45	213	26	364	36	210	40	255	1288
O4:45 PM 20 294 33 369 28 132 34 194 33 325 17 330 31 235 44 503 1200 Total 80 1172 174 1426 131 509 153 793 185 1191 82 1458 138 931 175 1244 4921 05:00 PM 16 249 29 294 27 165 45 237 57 339 18 414 34 247 49 330 1275 05:15 PM 15 278 38 331 28 128 38 194 53 362 18 433 33 242 46 321 1279 05:30 PM 12 267 39 318 34 138 52 224 50 338 21 409 31 256 47 334 1285 05:45 PM 20 298 44 362 28 123 42 193 44 346 24<	04:30 PM	23	303	42	200	20	120	240	200	40	290	20	204	31	214	41	305	1200
O5:00 PM 16 249 29 294 27 165 45 237 57 339 183 414 34 247 49 330 1275 05:00 PM 15 278 38 331 28 128 183 194 53 362 18 414 34 247 49 330 1275 05:15 PM 15 278 38 331 28 128 38 194 53 362 18 433 33 242 46 321 1279 05:30 PM 12 267 39 318 34 138 52 224 50 338 21 409 31 256 47 334 1285 05:45 PM 20 298 44 362 28 123 42 193 44 346 24 414 24 244 57 325 1294 Total 63 1092 150 1305 117 554 177 848 204 1385 81 <td>04:45 PM</td> <td>20</td> <td>294</td> <td>174</td> <td>309</td> <td>20</td> <td>500</td> <td>450</td> <td>702</td> <td>105</td> <td>1101</td> <td>11</td> <td>1450</td> <td>120</td> <td>021</td> <td>175</td> <td>1244</td> <td>/021</td>	04:45 PM	20	294	174	309	20	500	450	702	105	1101	11	1450	120	021	175	1244	/021
05:00 PM 16 249 29 294 27 165 45 237 57 339 18 414 34 247 49 330 1275 05:15 PM 15 278 38 331 28 128 38 194 53 362 18 433 33 242 46 321 1279 05:30 PM 12 267 39 318 34 138 52 224 50 338 21 409 31 256 47 334 1285 05:45 PM 20 298 44 362 28 123 42 193 44 346 24 414 24 244 57 325 1294 Total 63 1092 150 1305 117 554 177 848 204 1385 81 1670 122 989 199 1310 5133 Grand Total 666 6760 637 8063 586 4700 1138 6424 879 6487	Iotai	80	1172	174	1420	3	209	153	193	100	1191	02	1400	130	931	175	1244	4521
05:15 PM 15 278 38 331 28 128 18 194 53 362 18 433 33 242 46 321 1279 05:15 PM 15 278 38 331 28 128 18 194 53 362 18 433 33 242 46 321 1279 05:30 PM 12 267 39 318 34 138 52 224 50 338 21 409 31 256 47 334 1285 05:45 PM 20 298 44 362 28 123 42 193 44 346 24 414 24 244 57 325 1294 Total 63 1092 150 1305 117 554 177 848 204 1385 81 1670 122 989 199 1310 5133 Grand Total 666 6760 637 8063 586 4700 1138 6424 879 6487	05:00 PM	16	249	29	294	27	165	45	237	57	339	18	414	34	247	49	330 l	1275
05:10 PM 10 267 39 318 34 138 52 224 50 338 21 409 31 256 47 334 1285 05:30 PM 12 267 39 318 34 138 52 224 50 338 21 409 31 256 47 334 1285 05:45 PM 20 298 44 362 28 123 42 193 44 346 24 414 24 244 57 325 1294 Total 63 1092 150 1305 117 554 177 848 204 1385 81 1670 122 989 199 1310 5133 Grand Total 666 6760 637 8063 586 4700 1138 6424 879 6487 694 8060 523 3834 749 5106 27653 Apprch % 8.3 83.8 7.9 9.1 73.2 17.7 10.9 80.5 8.6	05:15 PM	15	278	38	331	28	128	38	194	53	362	18	433	33	242	46	321	1279
05.30 FM 12 207 35 310 34 150 52 224 160 50 21 160 61 200 11 120 11 120 11 120 11 120 120 11 120 120 11 120	05.30 DM	12	267	20	318	34	138	52	22/	50	338	21	409	31	256	47	334	1285
O3.40 FM 20 290 44 302 20 123 42 133 44 540 24 414 24 244 57 520 125 Total 63 1092 150 1305 117 554 177 848 204 1385 81 1670 122 989 199 1310 5133 Grand Total 666 6760 637 8063 586 4700 1138 6424 879 6487 694 8060 523 3834 749 5106 27653 Appreh % 8.3 83.8 7.9 9.1 73.2 17.7 10.9 80.5 8.6 10.2 75.1 14.7	05.30 F M	20	207	14	362	28	123	12	103	11	346	21	400	24	200	57	325	1294
Grand Total 666 6760 637 8063 586 4700 1138 6424 879 6487 694 8060 523 3834 749 5106 27653 Apprch % 8.3 83.8 7.9 9.1 73.2 17.7 10.9 80.5 8.6 10.2 75.1 14.7		<u></u>	1002	150	1305	117	554	177	848	204	1385	81	1670	122	980	199	1310	5133
Grand Total 666 6760 637 8063 586 4700 1138 6424 879 6487 694 8060 523 3834 749 5106 27653 Appreh % 8.3 83.8 7.9 9.1 73.2 17.7 10.9 80.5 8.6 10.2 75.1 14.7	rotar	03	1092	150	1303	/	004		040	2.04	1000	01	1070	1 122	505	100	1010	0.00
Apprch % 8.3 83.8 7.9 9.1 73.2 17.7 10.9 80.5 8.6 10.2 75.1 14.7	Grand Total	666	6760	637	8063	586	4700	1138	6424	879	6487	694	8060	523	3834	749	5106	27653
	Apprch %	8.3	83.8	7.9		9.1	73.2	17.7		10.9	80.5	8.6		10.2	75.1	14.7		
Total % 2.4 24.4 2.3 29.2 2.1 17.0 4.1 23.2 3.2 23.5 2.5 29.1 1.9 13.9 2.7 18.5	Total %	2.4	24.4	2.3	29.2	2.1	17.0	4.1	23.2	3.2	23.5	2.5	29.1	1.9	13.9	2.7	18.5	

	LA		GA BL	VD.		THIF	RD ST.		LA		EGA BL	VD.		THIR	D ST.		
		South	bound			West	bound			North	nbound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Fro	m 07:0	0 AM to	09:45	AM - Pea	ik 1 of 1												
Intersection	08:00	AM															
Volume	157	1214	52	1423	50	1157	236	1443	117	1008	167	1292	43	421	86	550	4708
Percent	11.0	85.3	3.7		3.5	80.2	16.4		9.1	78.0	12.9		7.8	76.5	15.6		
08:30	27	202	0	249	10	206	64	370	34	247	11	325	15	112	26	153	1196
Volume	57	302	9	540	10	250	04	510	54	241	-1-1	525	1.5	112	20	100	1100
Peak Factor																	0.984
High Int.	08:15	AM			08:30	AM			08:00	AM			08:30	AM			
Volume	37	315	17	369	10	296	64	370	31	261	46	338	15	112	26	153	
Peak Factor				0.964				0.975				0.956				0.899	

 File Name
 : 364319

 Site Code
 : 00364319

 Start Date
 : 10/16/2007

 Page No
 : 2

	LA	CIENE	EGA BL	VD.		THIF	RD ST. tbound		LA	CIENE North	EGA BL	VD.		THIF East	RD ST. bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	int. Total
Peak Hour Fro	m 03:0	0 PM to	05:45	PM - Pea	ak 1 of 1						L.,						
Intersection	05:00	PM															
Volume	63	1092	150	1305	117	554	177	848	204	1385	81	1670	122	989	199	1310	5133
Percent	4.8	83.7	11.5		13.8	65.3	20.9		12.2	82.9	4.9		9.3	75.5	15.2		
05:45 Volume	20	298	44	362	28	123	42	193	44	346	24	414	24	244	57	325	1294
Peak Eactor																	0.992
High Int.	05:45	PM			05:00	РМ			05:15	РМ			05:30	РМ			
Volume	20	298	44	362	27	165	45	237	53	362	18	433	31	256	47	334	
Peak Factor				0.901				0.895				0.964				0.981	

 File Name
 : 364320

 Site Code
 : 00364320

 Start Date
 : 10/16/2007

 Page No
 : 1

						Grou	ns Print	ed- 1 - T	urnina l	Movem	ent				i ugo		
	10		GABL	/D	SA		NTE BI			CIEN	EGA BL	vn	SA		NTE BI	VD	
		South	-bound	VD.		West	thound			North	bound	• 0.		Fast	bound		
	_		ibound	App.				App.				App.				App.	Int.
Start Time	Right	Thru	Left	Total	Right	Thru	Left	Total	Right	Thru	Left	Total	Right	Ihru	Left	Total	Total
Factor	1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		
07:00 AM	10	238	0	248	25	240	0	265	0	177	62	239	41	90	0	131	883
07:15 AM	11	313	Ō	324	40	312	0	352	0	206	49	255	48	113	0	161	1092
07:30 AM	10	327	Õ	337	70	415	õ	485	Ō	210	43	253	78	137	0	215	1290
07:45 AM	30	328	õ	358	69	403	ō	472	0	223	82	305	79	160	Ō	239	1374
Total	61	1206	0	1267	204	1370	0	1574	0	816	236	1052	246	500	0	746	4639
10101	01	1200	U	1207	201	1010	0	101.1		0,0	200	1002		000	•		
08:00 AM	22	358	0	380	84	475	0	559	0	294	63	357	68	211	0	279	1575
08:15 AM	41	361	õ	402	85	397	Õ	482	0	274	91	365	74	229	0	303	1552
08:30 AM	29	382	Ő	411	83	422	Õ	505	Ō	268	71	339	79	212	ō	291	1546
08:45 AM	23	338	õ	361	63	411	õ	474	Ō	249	65	314	79	219	Õ	298	1447
Total	115	1439	0	1554	315	1705	0	2020	0	1085	290	1375	300	871	0	1171	6120
10101		1100	0	1001	0.0			2020	1 0				,		-		
09·00 AM	25	341	0	366	65	374	0	439	0	236	68	304	64	236	0	300	1409
09:15 AM	42	319	õ	361	62	325	õ	387	Ō	217	86	303	58	221	Õ	279	1330
09:30 AM	41	334	ñ	375	79	368	õ	447	0	244	63	307	54	247	Ő	301	1430
09:45 AM	20	325	ñ	354	79	323	ñ	402	0	247	73	320	64	208	Ő	272	1348
Total	137	1319	0	1456	285	1390	0	1675	0	944	290	1234	240	912	0	1152	5517
(otal	101	1010			200				, .	•••							
*** BREAK ***																	
03:00 PM	20	322	0	342	79	267	0	346	0	293	44	337	78	338	0	416	1441
03:15 PM	18	344	Ō	362	84	208	0	292	0	332	74	406	67	362	0	429	1489
03:30 PM	22	337	Ó	359	81	219	0	300	0	311	54	365	66	385	0	451	1475
03:45 PM	19	320	0	339	95	238	0	333	0	282	50	332	73	355	0	428	1432
Total	79	1323	0	1402	339	932	0	1271	0	1218	222	1440	284	1440	0	1724	5837
					•												
04:00 PM	19	317	0	336	84	217	0	301	0	300	55	355	76	376	0	452	1444
04:15 PM	17	352	0	369	85	255	0	340	0	274	52	326	80	439	0	519	1554
04:30 PM	18	339	0	357	75	250	0	325	0	313	74	387	84	459	0	543	1612
04:45 PM	22	328	0	350	79	255	0	334	0	321	66	387	81	480	0	561	1632
Total	76	1336	0	1412	323	977	0	1300	0	1208	247	1455	321	1754	0	2075	6242
05:00 PM	20	308	0	328	95	274	0	369	0	336	42	378	77	492	0	569	1644
05:15 PM	25	299	0	324	94	259	0	353	0	350	75	425	89	436	0	525	1627
05:30 PM	18	322	0	340	79	291	0	370	0	368	57	425	86	451	0	537	1672
05:45 PM	17	324	0	341	100	269	0	369	0	332	50	382	89	474	0	563	1655
Total	80	1253	0	1333	368	1093	0	1461	0	1386	224	1610	341	1853	0	2194	6598
Grand Total	548	7876	0	8424	1834	7467	0	9301	0	6657	1509	8166	1732	7330	0	9062	34953
Apprch %	6.5	93.5	0.0		19.7	80.3	0.0		0.0	81.5	18.5		19.1	80.9	0.0		
Total %	1.6	22.5	0.0	24.1	5.2	21.4	0.0	26.6	0.0	19.0	4.3	23.4	5.0	21.0	0.0	25.9	

	LA		EGA BL	VD.	SA	N VICE	NTE B	VD.	LA	CIENE	EGA BL	VD.	SA	N VICE	NTE BL	VD.	
		South	nbound			West	bound			North	bound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Fro	m 07:0	0 AM to	09:45	AM - Pea	ak 1 of 1												
Intersection	08:00	AM															
Volume	115	1439	0	1554	315	1705	0	2020	0	1085	290	1375	300	871	0	1171	6120
Percent	7.4	92.6	0.0		15.6	84.4	0.0		0.0	78.9	21.1		25.6	74.4	0.0		
08:00	22	359	0	380	84	475	0	550	n	201	63	357	68	211	n	279	1575
Volume	22	330	0	500	04	475	U	000	U	204	00	007		211	U	210	10/0
Peak Factor																	0.971
High Int.	08:30	08:30 AM			08:00	AM			08:15	AM			08:15	AM			
Volume	29	382	0	411	84	475	0	559	0	274	91	365	74	229	0	303	
Peak Factor				0.945				0.903				0.942				0.966	

 File Name
 : 364320

 Site Code
 : 00364320

 Start Date
 : 10/16/2007

 Page No
 : 2

	LA		EGA BL	VD.	SA	N VICE	NTE BI	VD.	LA	CIENE	EGA BL	VD.	SA	N VICE	NTE BL	VD.	
		South	nbound			West	lbound			North	bound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Fro	om 03:0	0 PM to	05:45	PM - Pea	ak 1 of 1	1		· ·									
Intersection	05:00	PM															
Volume	80	1253	0	1333	368	1093	0	1461	0	1386	224	1610	341	1853	0	2194	6598
Percent	6.0	94.0	0.0		25.2	74.8	0.0		0.0	86.1	13.9		15.5	84.5	0.0		
05:30	18	300	0	340	70	201	Ω	370	0	368	57	125	98	451	0	527	1670
Volume	10	522	U	040	15	231	U	570	0	300	51	425	- 00	451	0	557	1072
Peak Factor																	0.987
High Int.	05:45	РM			05:30	РМ			05:15	РМ			05:00	PM			
Volume	17	324	0	341	79	291	0	370	0	350	75	425	77	492	0	569	
Peak Factor				0.977				0.987				0.947				0.964	

 File Name
 : 364321

 Site Code
 : 00364321

 Start Date
 : 10/18/2007

 Page No
 : 1

						Gro	oups Prir	nted- Tu	rning M	overner	nt			_			
	LA	CIENE	EGA BL'	VD.	V	VILSHI	RE BLV	D.	LA	CIENE	EGA BL'	VD.	V	VILSHI	RE BLV	D.	
		South	bound			Wes	tbound			North	nbound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Factor	1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		
07:00 AM	23	206	10	239	11	303	40	354	31	218	41	290	21	118	11	150	1033
07:15 AM	16	238	12	266	13	393	41	447	43	230	37	310	26	128	15	169	1192
07:30 AM	22	255	8	285	8	412	44	464	35	289	55	379	12	172	14	198	1326
07:45 AM	34	252	15	301	13	390	32	435	55	300	61	416	19	222	29	270	1422
Total	95	951	45	1091	45	1498	157	1700	164	1037	194	1395	78	640	69	787	4973
08:00 AM	44	284	10	338	14	414	33	461	52	328	59	439	28	244	28	300	1538
08:15 AM	51	269	21	341	15	407	42	464	70	304	65	439	18	230	40	288	1532
08:30 AM	55	245	20	320	13	399	33	445	46	291	54	391	26	281	17	324	1480
08:45 AM	85	235	23	343	16	409	31	456	60	311	67	438	28	266	27	321	1558
Total	235	1033	74	1342	58	1629	139	1826	228	1234	245	1707	100	1021	112	1233	6108
09:00 AM	62	230	25	317	13	407	38	458	62	311	65	438	29	277	23	329	1542
09:15 AM	62	262	18	342	16	375	34	425	55	282	63	400	28	260	28	316	1483
09:30 AM	56	237	16	309	24	318	41	383	58	290	63	411	33	244	31	308	1411
09:45 AM	45	248	15	308	15	314	41	370	62	284	65	411	25	237	45	307	1396
Total	225	977	74	1276	68	1414	154	1636	237	1167	256	1660	115	1018	127	1260	5832
*** BREAK ***																	
03:00 PM	22	282	28	332	20	281	55	356	43	274	28	345	55	293	39	387	1420
03:15 PM	30	265	27	322	15	262	44	321	50	286	44	380	48	317	42	407	1430
03:30 PM	29	181	19	229	21	278	35	334	28	208	35	271	45	289	48	382	1216
03:45 PM	40	278	17	335	26	261	62	349	40	293	48	381	45	304	39	388	1453
Total	121	1006	91	1218	82	1082	196	1360	161	1061	155	1377	193	1203	168	1564	5519
04:00 PM	37	270	33	340	19	249	60	328	56	288	54	398	29	292	34	355	1421
04:15 PM	30	311	23	364	16	252	49	317	42	289	45	376	25	320	40	385	1442
04:30 PM	36	306	23	365	25	274	52	351	35	321	50	406	42	326	38	406	1528
04:45 PM	31	323	20	374	30	269	53	352	43	303	45	391	35	334	35	404	1521
Total	134	1210	99	1443	90	1044	214	1348	176	1201	194	1571	131	1272	147	1550	5912
05:00 PM	27	308	23	358	24	256	53	333	39	280	41	360	33	311	56	400	1451
05:15 PM	28	347	39	414	28	291	68	387	38	325	48	411	23	349	40	412	1624
05:30 PM	24	338	28	390	23	285	63	371	42	318	44	404	42	327	39	408	1573
05:45 PM	16	322	_30	368	19	333	51	403	22	337	31	390	32	343	42	417	1578
Total	95	1315	120	1530	94	1165	235	1494	141	1260	164	1565	130	1330	177	1637	6226
Grand Total	905	6492	503	7900	437	7832	1095	9364	1107	6960	1208	9275	747	6484	800	8031	34570
Apprch %	11.5	82.2	6.4		4.7	83.6	11.7		11.9	75.0	13.0		9.3	80.7	10.0		
Total %	2.6	18.8	1.5	22.9	1.3	22.7	3.2	27.1	3.2	20.1	3.5	26.8	2.2	18.8	2.3	23.2	

	LA	CIENE	GA BL	VD.	V	VILSHI	RE BLV	′D.	LA		EGA BL	VD.	V	VILSHI	RE BLV	D.	
		South	nbound			West	lbound			North	nbound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Fro	om 07:0	0 AM to	09:45	AM - Pea	ak 1 of 1												
Intersection	08:15	AM															
Volume	253	979	89	1321	57	1622	144	1823	238	1217	251	1706	101	1054	107	1262	6112
Percent	19.2	74.1	6.7		3.1	89.0	7.9		14.0	71.3	14.7		8.0	83.5	8.5		
08:45 Volume	85	235	23	343	16	409	31	456	60	311	67	438	28	266	27	321	1558
Peak Factor																	0.981
High Int.	08:45	AM			08:15	AM			08:15	AM			09:00	AM			
Volume	85	235	23	343	15	407	42	464	70	304	65	439	29	277	23	329	
Peak Factor				0.963				0.982				0.972				0.959	

 File Name
 : 364321

 Site Code
 : 00364321

 Start Date
 : 10/18/2007

 Page No
 : 2

	LA		EGA BL	VD.	V	VILSHI	RE BLV	/D.	LA	CIEN	EGA BL	VD.	V	VILSHI	RE BLV	′D.	
		South	nbound			vves	toouna			NOTI	npouna			East	bouna		
Start Time	Right	Thru	Left	App.	Right	Thru	Left	App.	Right	Thru	Left	App.	Right	Thru	Left	App.	Int.
L				Total				TULAI				Total	l			Total	rotar
Peak Hour Fro	om 03:0	0 PM to	05:45	PM - Pea	ak 1 of 1												
Intersection	05:00	РМ															
Volume	95	1315	120	1530	94	1165	235	1494	141	1260	164	1565	130	1330	177	1637	6226
Percent	6.2	85.9	7.8		6.3	78.0	15.7		9.0	80.5	10.5		7.9	81.2	10.8		
05:15	28	347	39	414	28	291	68	387	38	325	48	411	23	349	40	412	1624
Volume	20	041	00		20	201	00	00.	00	020			20	0,0	10		1021
Peak Factor																	0.958
High Int.	05:15	РМ			05:45	PM			05:15	PM			05:45	PM			
Volume	28	347	39	414	19	333	51	403	38	325	48	411	32	343	42	417	
Peak Factor				0.924				0.927				0.952				0.981	

 File Name
 : 364322

 Site Code
 : 00364322

 Start Date
 : 10/10/2007

 Page No
 : 1

							Gro	ups Prir	nted- Tu	rning M	ovemer	nt						
		(ORLAN	DO AVE	Ξ.		THIF	RD ST.		-	ORLAÑ	DO AVE	Ξ.		THIR	D ST.		
			South	nbound			West	bound			North	nbound			East	bound		
	Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
	Factor	1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		
	07:00 AM	5	13	1	19	1	192	13	206	10	9	5	24	0	71	2	73	322
	07:15 AM	3	35	0	38	1	224	18	243	2	11	3	16	5	75	1	81	378
	07:30 AM	16	29	4	49	2	290	12	304	8	14	4	26	6	118	1	125	504
	07:45 AM	14	57	12	83	7	282	18	307	14	28	7	49	5	119	1	125	564
	Total	38	134	17	189	11	988	61	1060	34	62	19	115	16	383	5	404	1768
	08:00 AM	17	71	5	93	6	293	14	313	11	36	12	59	10	121	2	133	598
	08:15 AM	11	102	7	120	4	354	23	381	10	22	9	41	14	126	0	140	682
	08:30 AM	18	110	5	133	7	310	13	330	10	19	9	38	17	140	5	162	663
	08:45 AM	18	87	2	107	4	305	14	323	10	29	14	53	15	123	2	140	623
	Total	64	370	19	453	21	1262	64	1347	41	106	44	191	56	510	9	575	2566
	09:00 AM	21	90	4	115	0	314	11	325	21	24	6	51	16	133	3	152	643
	09:15 AM	10	76	3	89	3	339	33	375	9	38	3	50	7	136	4	147	661
	09:30 AM	6	53	1	60	4	294	17	315	16	20	8 8	44	13	120	3	136	555
	09:45 AM	13	46	8	67	6	265	21	292	14	23	4	41	13	135	6	154	554
	Total	50	265	16	331	13	1212	82	1307	60	105	21	186	49	524	16	589	2413
,	*** BREAK ***																	
	03:00 PM	8	32	10	50	9	202	23	234	27	37	8	72	24	222	5	251	607
	03:15 PM	6	56	9	71	12	201	11	224	16	40	13	69	14	253	15	282	646
	03:30 PM	14	56	6	76	2	200	12	214	21	44	4	69	17	241	9	267	626
	03:45 PM	6	44	12	62	6	171	10	187	23	46	8	77	27	234	7	268	594
	Total	34	188	37	259	29	774	56	859	87	167	33	287	82	950	36	1068	2473
	04:00 PM	11	36	10	57	13	180	7	200	25	68	11	104	21	270	1	292	653
	04:15 PM	11	.39	7	57	8	191	5	204	33	62	10	105	25	273	0	298	664
	04:30 PM	15	39	9	63	11	188	5	204	32	50	10	92	32	272	5	309	668
	04:45 PM	5	37	8	50	7	210	4	221	24	56	6	86	21	275	3	299	656
	Total	42	151	34	227	39	769	21	829	114	236	37	387	99	1090	9	1198	2641
	05:00 PM	6	41	10	57	12	184	3	199	22	81	10	113	27	279	2	308	677
	05:15 PM	9	36	5	50	10	174	7	191	24	84	4	112	12	275	6	293	646
	05:30 PM	8	55	10	73	12	203	1	216	25	103	9	137	29	308	7	344	770
	05:45 PM	5	49	9	63	8	169	7	184	18	95	5	118	24	304	5	333	698
	Total	28	181	34	243	42	730	18	790	89	363	28	480	92	1166	20	1278	2791
	Grand Total	256	1289	157	1702	155	5735	302	6192	425	1039	182	1646	394	4623	95	5112	14652
	Apprch %	15.0	75.7	9.2		2.5	92.6	4.9		25.8	63.1	11.1		7.7	90.4	1.9		
	Total %	1.7	8.8	1.1	11.6	1.1	39.1	2.1	42.3	2.9	7.1	1.2	11.2	2.7	31.6	0.6	34.9	
									,				,					

	(ORLAN	DO AV	E.	[THIF	RD ST.		(ORLAN	DO AV	Ε.		THIF	RD ST.		
		South	nbound			West	bound			North	bound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Fro	m 07:0	0 AM to	09:45	AM - Pea	ak 1 of 1												
Intersection	08:15	AM]							1	
Volume	68	389	18	475	15	1283	61	1359	51	94	38	183	62	522	10	594	2611
Percent	14.3	81.9	3.8		1.1	94.4	4.5		27.9	51.4	20.8		10.4	87.9	1.7		
08:15 Volume	11	102	7	120	4	354	23	381	10	22	9	41	14	126	0	140	682
Peak Factor																1	0.957
High Int.	08:30	AM			08:15	AM			08:45	AM			08:30	AM			
Volume	18	110	5	133	4	354	23	381	10	29	14	53	17	140	5	162	
Peak Factor				0.893				0.892				0.863				0.917	

File Name: 364322 Site Code : 00364322 Start Date : 10/10/2007 Page No : 2

	(ORLAN	IDO AV	E.		THIF	D ST.			ORLAN	DO AV	Ξ.		THIF	RD ST.		
		South	nbound			West	bound			North	nbound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Fro	m 03:0	0 PM to	05:45	PM - Pea	k 1 of 1	r								······································			
Intersection	05:00	PM				748	0,						1	1186	D.		
Volume	28	181	34	243	42	730	1⁄8	790	. 89	363	28	480	92	1166	20	1278	2791
Percent	11.5	74.5	14.0		5.3	92.4	2.3		18.5	75.6	5.8		7.2	91.2	1.6		
05:30 Volume	8	55	10	73	12	203	1	216	25	103	9	137	29	308	7	344	770
Peak Factor																	0.906
High Int.	05:30	РМ			05:30	РМ			05:30	PM			05:30	РМ			
Volume	8	55	10	73	12	203	1	216	25	103	9	137	29	308	7	344	
Peak Factor				0.832				0.914				0.876				0.929	

NO LEFT-TURNS 4-7PM

NO LEFT-TURNS 4-7.PM

APPENDIX B

CMA AND LEVELS OF SERVICE EXPLANATION PROPOSED PROJECT CMA DATA WORKSHEETS – AM AND PM PEAK HOURS

CRITICAL MOVEMENT ANALYSIS (CMA) DESCRIPTION

Level of Service is a term used to describe prevailing conditions and their effect on traffic. Broadly interpreted, the Level of Service concept denotes any one of a number of differing combinations of operating conditions which may take place as a roadway is accommodating various traffic volumes. Level of Service is a qualitative measure of the effect of such factors as travel speed, travel time, interruptions, freedom to maneuver, safety, driving comfort and convenience.

Six Levels of Service, A through F, have been defined in the 1965 *Highway Capacity Manual*. Level of Service A describes a condition of free flow, with low traffic volumes and relatively high speeds, while Level of Service F describes forced traffic flow at low speeds with jammed conditions and queues which cannot clear during the green phases.

Critical Movement Analysis (CMA) is a procedure which provides a capacity and level of service geometry and traffic signal operation and results in a level of service determination for the intersection as a whole operating unit.

The per lane volume for each movement in the intersection is determined and the per lane intersection capacity based on the Transportation Research Board (TRB) Report 212 (*Interim Materials on Highway Capacity*). The resulting CMA represents the ratio of the intersection's cumulative volume over its respective capacity (V/C ratio). Critical Movement Analysis takes into account lane widths, bus and truck operations, pedestrian activity and parking activity, as well as number of lanes and geometrics.

The Level of Service (abbreviated from the *Highway Capacity Manual*) are listed here with their corresponding CMA and Load Factor equivalents. Load Factor is that proportion of the signal cycles during the peak hour which are fully loaded; i.e. when all of the vehicles waiting at the beginning of green are not able to clear on that green phase.

Critical Mc	vement Analysis Characte	ristics
Level of Service	Load Factor	Equivalent CMA
A (free flow)	0.0	0.00 - 0.60
B (rural design)	0.0 - 0.1	0.61 - 0.70
C (urban design)	0.1 - 0.3	0.71 - 0.80
D (maximum urban design)	0.3 - 0.7	0.81 - 0.90
E (capacity)	0.7 - 1.0	0.91 - 1.00
F (force flow)	Not Applicable	Not Applicable

SERVICE LEVEL A

There are no loaded cycles and few are even close to loaded at this service level. No approach phase is fully utilized by traffic and no vehicle waits longer than one red indication.

SERVICE LEVEL B

This level represents stable operation where an occasional approach phase is fully utilized and a substantial number are approaching full use. Many drivers begin to feel restricted within platoons of vehicles.

SERVICE LEVEL C

At this level stable operation continues. Loading is still intermittent but more frequent than at Level B. Occasionally drivers may have to wait through more one red signal indication and backups may develop behind turning vehicles. Most drivers feel somewhat restricted, but not objectionably so.

SERVICE LEVEL D

This level encompasses a zone of increasing restriction approaching instability at the intersection. Delays to approaching vehicles may be substantial during short peaks within the peak hour, but enough cycles with lower demand occur to permit periodic clearance of queues, thus preventing excessive backups. Drivers frequently have to wait through more than one red signal. This level is the lower limit of acceptable operation to most drivers.

SERVICE LEVEL E

This represents near capacity and capacity operation. At capacity (CMA = 1.0) it represents the most vehicles that the particular intersection can accommodate. However, full utilization of every signal cycle is seldom attained no matter how great the demand. At this level all drivers wait through more than one red signal, and frequently through several.

SERVICE LEVEL F

Jammed conditions. Traffic backed up from a downstream location on one of the street restricts or prevents movement of traffic through the intersection under consideration.

Robertson Boulevard Beverly Boulevard Cedars-Sinai Medical Center / 1-992843-1

N-S St: E-W St: Project:

CMA1 Accutek

File Name: Counts by:

CRITICAL MOVEMENT ANALYSIS

Robertson Boulevard @ Beverly Boulevard Peak Hour: AM Annual Growth: 1.0%

CSMC Project

06/23/2008 2008 2023 Date: Date of Count: Projection Year:

		2008	EXIST. TR	AFFIC	2023 \	W/ AMBIE	INT GROW	E	2023 V	V/ OTHEF	ROJEC	TS	2023 V	II PROPO	SED PRO.	JECT	2023	W/ MITIG	ATION		
			No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	
Neutricity 66 7 66 6 64 7 7	Movement	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	
Mathial 37 1 37 1 37 1 37 1 37 1 37 1 37 1 37 1 37 1 37 1 37 1 37 1 37 1 37 1 37 1 37 1 37 1 <td>NB Left</td> <td>56</td> <td><i>←</i> 1</td> <td>56</td> <td>8</td> <td>64</td> <td>~− (</td> <td>64</td> <td>25</td> <td>89</td> <td>ب (</td> <td>89</td> <td>n</td> <td>92</td> <td>~ (</td> <td>92</td> <td>0</td> <td>92</td> <td> (</td> <td>92</td> <td></td>	NB Left	56	<i>←</i> 1	56	8	64	~ − (64	25	89	ب (89	n	92	~ (92	0	92	 (92	
	Comb. L-T NB Thru	337	o -	- 337	51	388	0 -	388	297	685	0 -	- 685	-	686	0	- 686	0	686	- c	- 686	
	Comb. T-R		0	ı			0	,			0	,			0	ī			0	ı	
	NB Right Comb. L-T-R -	114	- 0	114	17	131	- 0	131	38	169	- 0	169	0	169	- 0	169	0	169	- 0	169	
	SB Left	53	-	53	ø	60		60	52	112	+	112	0	112	-	112	0	112	-	112	
	Comb, L-T	527	0 0		7.1	544	00	, ,	206	840	00		er.	843	00	1 1	C	843	00	1 1	
SB Right 225 0 - 34 293 0 - 0 272 0 272 0 272 0 272 0 272 0 272 0 272 0 272 0 272 0 272 0 272 0 272 0 272 0 272 0 272 0 272 0 272 0 272 0 273 273 <t< td=""><td>Comb. T-R</td><td>Ē</td><td> v</td><td>698</td><td>-</td><td></td><td></td><td>803</td><td>4</td><td></td><td></td><td>1112</td><td>D</td><td></td><td> c</td><td>1115</td><td>0</td><td></td><td> c</td><td>1115</td><td></td></t<>	Comb. T-R	Ē	v	698	-			803	4			1112	D		c	1115	0		c	1115	
	SB Right	225	0		34	259	0	,	13	272	0	r	0	272	0	ı	0	272	0		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Comb. L-T-R -		0				0				0				0				0		
	EB Left	36	ر ر	36	5	42	- (42	18	60		60	0	09	- (60	0	60	- (60	
	Comb. L-1 EB Thru	905	5 0	- 452	136	1041	0 0	- 520	155	1196	0 0	- 598	0	1196	0 0	- 598	0	1196	0 0	- 598	
	Comb. T-R		0	1			0	I			0	,			0				0	ı	
	EB Right	88	- 1	88	13	101	- 1	101	39	140	(140	80	148	÷ ،	148	0	148	÷ ۱	148	
	Comb. L-I-K -		D				Ð				0				0				Ð		
WB Thru: 1372 2 686 206 1577 2 789 139 1716 2 858 0 1716 2 858 0 1716 2 858 0 1716 2 858 0 1716 2 858 0 1716 0 0 116 1 116 0 116 1 116 0 116 1 116 0 116 116 0 116 116 116 116 116 116 116 116 116	WB Left	117	c	117	18	135	c	135	38	173	c	173	0	173	~ c	173	0	173	c	- 173	
	WB Thru	1372	0	686	206	1577	0 01	789	139	1716	2	858	0	1716	2	858	0	1716	0 01	858	
we have 0	Comb. T-R	, u	0 •	- -	C	53	0 •	- -	N H	u	0 7	י 12	c	1,1	0 7	-		u T	0 7	1	
Crit. Volumes: N-S: 753 N-S: 866 N-S: 1200 N-S: 1206 N-S: 1204 No of Phases: 2 <	Comb. L-T-R -	5	- 0	5	D	70	- 0	70	5	-	- 0	2	þ	-	- 0	2	D	-	- 0	-	
E-W: 722 E-W: 830 E-W: 918 E-W: 918 E-W: 918 No. of Phases: SUM: 1476 SUM: 1697 SUM: 2124 SUM: 2124 No. of Phases: 2 2 SUM: 213 SUM: 2124 SUM: 2124 No. of Phases: 2 2 2 2 2 2 2 Volume / Capacity: [11] 0.914 [11],[2] 1.031 [11],[2] 1.312 [11],[2] 1.316 [11],[2] 1.316 Level of Service: E F F F F F	Crit. Volumes:		N-S:	753			N-S:	866			N-S:	1200			N-S:	1206			N-S:	1206	
No. of Phases: 2 <th2< th=""> 2 <th2< th=""> <t< td=""><td></td><td></td><td>E-W: SUM:</td><td>722 1476</td><td></td><td></td><td>E-W: SUM:</td><td>830 1697</td><td></td><td></td><td>E-W: SUM:</td><td>918 2118</td><td></td><td></td><td>E-W: SUM:</td><td>918 2124</td><td></td><td></td><td>E-W: SUM:</td><td>918 2124</td><td></td></t<></th2<></th2<>			E-W: SUM:	722 1476			E-W: SUM:	830 1697			E-W: SUM:	918 2118			E-W: SUM:	918 2124			E-W: SUM:	918 2124	
Volume / Capacity: [1] 0.914 [1],[2] 1.312 [1],[2] 1.316 [2],[2] 1.316 [2],[2] 1.316 [2],[2] 1.316 [3],[2] 1.316 [3],[2] 1.316 [3],[2] 1.316 [3],[2] 1.316 [3],[2] 1.316 [3],[2] 1.316 [3],[2] <t< td=""><td>No. of Phases:</td><td></td><td></td><td>2</td><td></td><td></td><td></td><td>N</td><td></td><td></td><td></td><td>2</td><td></td><td></td><td></td><td>2</td><td></td><td></td><td></td><td>2</td><td></td></t<>	No. of Phases:			2				N				2				2				2	
Level of Service: E F F F F	Volume / Caps	icity:	[1]	0.914			[1][2]	1.031			[1],[2]	1.312			[1].[2]	1.316			[1],[2]	1.316	
	Level of Servic	iei i		ш				ш.				ц.,				Ŀ				Ц.	

Assumptions:

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1426, 4+ Phase=1375, Unsignalized=1200. For dual turn lanes, 55% of volume is assigned to heavier lane. For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. [1] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. Note: Year 2007 manual traffic counts were adjusted by a 1.0 percent (1.0%) ambient growth factor to reflect year 2008 existing conditions.

CRITICAL MOVEMENT ANALYSIS

Robertson Boulevard @ Beverly Boulevard Peak Hour: PM Annual Growth: 1.00%

CSMC Project

Beverly Boulevard Cedars-Sinai Medical Center / 1-992843-1

CMA1 Accutek

N-S St: E-W St: Project: File Name: Counts by:

Robertson Boulevard

Projection Year: Date: Date of Count:

06/23/2008 2008 2023

	2008 EXI	IST. TRAI	=FIC	2023 \	<i>NI</i> AMBIE	INT GROW	TH	2023 V	V/ OTHER	ROJEC	TS	2023 M	// PROPO	SED PROJ	IECT	2023	N/ MITIG	ATION	
	ž	o. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement V	'olume La	ines	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
NB Left Comb - T	79	c	79	12	91	c	91	51	142	÷- c	142	80	150	c	150	0	150	~ c	150
NB Thru	460	o ← c	460	69	528	o – c	528	355	883	o ~ c	883	ы	886	o ← c	- 886	0	886	o – c	886
NB Right Comb. L-T-R -	152	0-0	152	23	174	0-0	174	3	189	00	189	0	189	0-0	189	0	189	0-0	189
SB Left Comh I -T	83	- c	83	12	95	c	95 -	78	173	- c	173	0	173	c	173	0	173	c	173
SB Thru	374	- o c		56	430	00-	 554	362	792		 953	2	794	- 0 0	י י	0	794	- 0 0	י י
SB Right Comb. L-T-R -	108	- 0 0	1	16	124	- 0 0		37	161	- 0 0	1	0	161	- 0 0		0	161	- 0 0	
EB Left	134	~- (134	20	154	- (154	34	188	- 0	188	0	188	- c	188	0	188	- ·	188
EB Thru	1129	5 10 0	- 565	169	1299	0 00 0	- 649	234	1533) N C	- 766	0	1533	2 14 0	- 766	0	1533	0 M C	- 766
Comb. I-K EB Right Comb. L-T-R -	67	0 0	- 67	10	17	0-0	- 77	33	110	0 - 0	110	ю	115	0 - 0	- 115	0	115	0 - 0	- 115
WB Left	06	- 0	06	13	103	- 0	103	11	114	c	114	o	114	~	114	0	114	← 0	114
WB Thru	950	200	- 475	143	1093	0 0 0	546	241	1334	5 M C	- 667	0	1334	5 M C	- 667	0	1334	200	- 667
Came. 1-K WB Right Camb. L-T-R -	81	0-0	, 19	12	93	0-0	- 63	69	162	0 - 0	- 162	0	162	0-0	- 162	0	162	00	- 162
Crit. Volumes:	~ ш ळ	-S: -W: UM:	561 654 1215			N-S: SUM: SUM:	645 753 1397			N-S: E-W: SUM:	1095 881 1975			N-S: E-W: SUM:	1105 881 1985			N-S: E-W: SUM:	1105 881 1985
No. of Phases:			N				2				2				2				7
Volume / Capac. Level of Service:	ity:	10 10	0.740			[1],[2]	0.832 D			[1],[2]	1.217 F			[1].[2]	1.224 F			[1],[2]	1.224 F
Assumptions:	Ma	ximum St	Im of Critic	al Volume.	s (Intersec	tion Capac.	ity): 2 Phas	e=1500, 3	Phase=14	425, 4+ Ph	ase=1375, l	Jnsignaliz	ed=1200.						

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200.
 For dual turn lanes, 55% of volume is assigned to heavier lane.
 For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane.
 70% of volume is assigned to exclusive lane.
 70% of volume is assigned to exclusive lane.
 71% of volume is assigned to exclusive lane.
 71% of volume is assigned to exclusive lane.
 70% of volume is assigned to exclusive lane.
 70% of volume is assigned to exclusive lane.
 70% of volume is assigned to exclusive lane.
 71% or exclusive reaction and the installation of the Wilshine West ATSAC system improvements.
 [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshine West ATCS system improvements.
 [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshine West ATCS system improvements.
 [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshine West ATCS system improvements.
 [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshine West ATCS system improvements.

CRITICAL MOVEMENT ANALYSIS

Robertson Boulevard @ Alden Drive Peak Hour: AM Annual Growth: 1.0%

CSMC Project

Robertson Boulevard Alden Drive Cedars-Sinai Medical Center / 1-992843-1 CMA2 Accutek

Project: File Name: Counts by:

N-S St: E-W St:

06/23/2008 2008 2023 Date: Date of Count: Projection Year:

	2008 EXIST. TI	RAFFIC	2023 V	V/ AMBIE	INT GROW	ТН	2023 N	// OTHER	PROJEC	CTS	2023 \	V/ PROPO	SED PRO	JECT	2023	W/ MITIG	ATION		
	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	43
Movement Vc	olume Lanes	Volume	Volume	Volume	Lanes	Volume	Volume \	/olume I	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volun	пе
NB Left	22 1	22	n	26	. .	26	16	42	۲	42	0	42	-	42	0	42			42
Comb. L-1 NB Thru	483 0		72	555	0 0	, ,	325	RRU	00		C	088	00		c		0 1	ı	000
Comb. T-R	, 	571	1			656	040	200		1012	2	000	C	1026	>	000	- c		000
NB Right	88 0	,	13	101	0		31	132	0		14	146	0	-	0	146	c	I	146
Comb. L-T-R -	0				0				0				0				0		
SB Left	35 1	35	5	41	1	41	44	85	-	85		96	-	96	0	96	-		96
Comb. L-T					0				0	,			0				0		
SB Thru Comh T-R	565 0	619	85	649	0 -	- 712	321	970	0,	-	0	0/6	0 1	-	0	970	0 1	1	L L
SB Right	55 0	<u>ה</u> י	80	63	- 0	7	1	74	- 0	++01 -	-	75	- c	C+01.	C	75		-	045
Comb. L-T-R -	0				0				0		•	2	0)	2	0		
EB Left	29 0		4	34	0		18	52	0	1	2	54	0	,	0	54	C		
Comb. L-T	0				0	ı			0	,			0	,			0		
EB Thru	68 0	145	10	78	0 0	167	30	108	00	229	0	108	0	231	0	108	0		231
EB Right	48 0	1 1	7	56	00		4	70			C	70	- c		C	70			
Comb. L-T-R -									-				-		ŀ	2	(
WB Left	40 0	,	9	46	0		15	61	0		9	67	0	,	0	67	0	•	
Comb. L-T	0	•			0	ı			0	,			0	ı		5			142
	56 0	128	æ	64	0 0	148	11	75	0 0	194	0	75	0	205	0	75	0	•	
WB Right	32 0		LC.	37		• •	00	57	0 0		ų	63	0 0	1	c	5	0 1	,	ç
Comb. L-T-R -					·) I	5	(0	40			D	2	- 0		20
Crit. Volumes:	N-S:	641			N-S:	738			N-S:	1097			N-S:	1122			·S-N	÷	087
	E-W:	186			E-W:	214		-	E-W:	291			E-W:	299			Е-И:		299
	SUM:	827			SUM:	951			SUM:	1388			SUM:	1421			SUM:	#	385
No. of Phases:		Ν				2				2				2					2
Volume / Capacity	r: [1]	0.481			[1],[2]	0.534			[1].[2]	0.825			111.121	0.847			[1].[2]	0.1	824
Level of Service:		A				A								0				۵	
Assumptions:	Maximum	Sum of Criti	cal Volumes	Intersec	tion Canac	itv). 2 Dhas	a=1500 3 E	haro-44	25 A+ Dh	1076	Incine l	0007-20							

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200. For dual turn lanes, 55% of volume is assigned to heavier lane. For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. Right turns on red from excl. lanes = 50% of overlapping left turn.

[1] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshine West ATSAC system improvements.
[2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshine West ATCS system improvements.
[2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshine West ATCS system improvements.
[2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshine West ATCS system improvements.
[2] Note: Year 2007 manual traffic counts were adjusted by a 1.0 percent (1.0%) ambient growth factor to reflect year 2008 existing conditions.

CRITICAL MOVEMENT ANALYSIS

Robertson Boulevard @ Alden Drive Peak Hour: PM Annual Growth: 1.00%

CSMC Project

Cedars-Sinai Medical Center / 1-992843-1

N-S St: E-W St: Project: File Name: Counts by:

CMA2 Accutek

Robertson Boulevard Alden Drive

Projection Year: Date: Date of Count:

2008 2023 06/23/2008

	2008 5	EXIST. TR/	AFFIC	2023	W/ AMBIE	INT GROW	TH HT	2023 V	V/ OTHEF	ROJEC	CTS	2023 V	V/ PROPC	SED PRO	JECT	2023	W/ MITIG	BATION		
		No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lan	ē
Movement	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volur	an
NB Left	22	~~	22	С	26		26	35	61	~	61	0	61	-	61	0	61			61
Comb. L-T		0				0				0	•			0	•			0	ı	
NB Thru	622	0 1	,	93	715	0 1	1005	363	1078	0 1	-	0	1078	0 •		0	1078	c	,	1078
NB Right	68	- c	080 -	10	78	- c	CR/ -	, 17	63	- c		~	101	- c	A/11.	C	101	⊃ -	,	101
Comb. L-T-R	}	0		-		0		2	}	0)	2	0)	2	0		2
SB Left	32	-	32	υ	37	-	37	22	59	F	59	7	99	-	99	0	99	-		66
Comb. L-T		0	,			0	ı			0	,			0	,			0	ı	
SB Thru	485	0 1	1 () 1	73	558	0 7	i i	380	938	0,	-	0	938	0,	1 1 1	0	938	0	ı	
SB Right	20	- c	cUc ,	er.	23	- c	180 -	t)	35	- c	- 9/3	~	37		с/6 -	C	37	- c	,	6/6
Comb. L-T-R	¦	0		,	1	0		Į.	}	0		I	5	0)	5	00		
EB Left	39	0	.	9	45	0	•	8	53	0	,	-	54	0		0	54	a	,	
Comb. L-T		0				0	ı			0				0	ı			0	1	
	95	0 0	174	14	109	0 0	200	15	124	0	257	0	124	0	258	0	124	0		258
Comb. 1-K	0			G	15	0 0	1	P.C	02	0 0		c	6	00	ı	c	¢,	0 0	ï	
Comb. L-T-R	, ,			0	5	⊃ ~	1	5	2	C	,	2		C	1	2	0	⊃ ~-	ı	
WB Left	68	0	r	10	78	0	,	31	109	0	ı	15	124	0		0	124	0	•	
Comb. L-T	;	0		!	ł	0	1	1		0	,			0						233
	64	0 0	194	10	73	0 0	223	36	109	0 0	338	0	109	0 0	365	0	109	0 0	·	
WB Right	63			0	22	- c	1 1	48	120	- c		12	132			C	137	ə -	ı	132
Comb. L-T-R				I		·		!		~		ļ		-		1		0		
Crit. Volumes		N-S:	722			N-S:	830			N-S:	1230			N-S:	1245			N-S:		1145
		E-W:	241			E-W:	278			E-W:	391			E-W:	419			E-W:		382
		SUM:	964			SUM:	1108			SUM:	1622			SUM:	1665			SUM:	,	1526
No. of Phases			2				5				2				2					2
Volume / Cap	acity:	[1]	0.572			[1],[2]	0.639			[1],[2]	0.981			[1].[2]	1.010			[1],[2]		.918
Level of Servi	:e:		A				В				ш				ш				ш	
Accimutions		Aavimum S	um of Critic	-amilo// le-	e lintereer	vfinn Canao	itul- 2 Phas	e=1500 3	Dhace=14	405 4+ Dh	1375 1375	l Insidnaliz	od=1200							
1 iondi incet		VIDUIUN V		cal voluina	מ (הוומוסמו	יווחוו המהמה	ary). z Frida	0-1000 - D		+ 10, +	5	TIBLIARIO	20111200							

Maximum Sum of Gritical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1376, Unsignalized=1200. For dual turn lanes, 55% of volume is assigned to heavier lane. Right turns on read mone opt. turn lane, 70% of volume is assigned to exclusive lane. (1) The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshine West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshine West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshine West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshine West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshine West ATCS system improvements.

Robertson Boulevard Third Street Cedars-Sinai Medical Center / 1-992843-1

CMA3 Accutek

Project: File Name: Counts by:

N-S St: E-W St:

CRITICAL MOVEMENT ANALYSIS

Robertson Boulevard @ Third Street AM 1.0% Annual Growth: CSMC Project Peak Hour:

Date: Date of Count: Projection Year:

2008 2023 06/23/2008

	2008 EX	IST. TRA	FFIC	2023 V	V/ AMBIE	INT GROW	HT	2023 V	V/ OTHEF	ROJEC	TS	2023 V	// PROPO	SED PRO	JECT	2023 V	V/ MITIG	ATION	
	ž	o. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement	Volume Lá	anes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
NB Left	30	.	30	ъ	35	~ ~ (35	2	37	÷	37	0	37	 (37	0	37	 (37
Comb. L-T NB Thru Comb T P	514	00+		77	591	007	- - 760	329	920	- o c	 1186	1	931	- o -	- - 1107	0	931	- 0 0	1197
NB Right Comb. L-T-R -	155	- 0 0	а 00 1	23	178	- 0 0		88	266	- 0 0		0	266	- 0 0	1	0	266	- 0 0	1
SB Left	37	c	37	9	43	، - د	43	'n	46	ہ - ر	46	o	46	← 0	46	0	46	+- c	46
SB Thru	510		2 L L	77	587			294	881			5	886	- o c	1 0 1	0	886	00,	1 I
Comb. I-K SB Right Comb. L-T-R -	47	-00	2 C C I	7	55	-00	140 1	54	109	- 0 0	202 202 1	۲	110	-00	С Э.Э.	0	110	-00	С 22 27 27 27 27 27 27 27 27 27 27 27 27
EB Left	36	- 0	36	ъ	42	- 0	42	39	81	c	81	n	84	c	84	0	84	- 0	84
COMD. L-1 EB Thru Comb T D	323	o ← •	179	48	372	⊃ , ,	- 206 206	171	543		- 297 207	0	543	⊃ -	- 297 207	0	543	⊃ ~- ₹	- 297 207
Conto: 1-K EB Right Comb. L-T-R -	35	- 0 0	n 	Ω	41	- 0 0	-	10	51	- 0 0	1	0	51	- 0 0	-	0	51	- 0 0	102
WB Left	120	~~ (120	18	138	<i>⊷</i> 0	138	53	191	- c	191	o	191	+ c	191	0	191	۰ م	191
WB Thru	761	c	- 415	114	875	⊃ ~ •	- 477 477	222	1097	⊃ ·	589	0	1097	⊃ ~ •	- 589	0	1097		- 589
VB Right	69	- 0	cl.+ -	10	52	- 0	- 4//	ო	82	- 0	ROC -	O	82	- 0	80C ,	0	82	- 0	7000 -
Comb. L-T-R -		0				0				0				0				0	
Crit. Volumes:	<u>г</u> Ш	-N: -W:	706 451			N-S: E-W:	812 519			N-S: E-W:	1232 670			N-S: E-W:	1243 673			N-S: E-W:	1243 673
	S	UM:	1157			SUM:	1330			SUM:	1902			SUM:	1916			SUM:	1916
No. of Phases:			2				7				7				2				2
Volume / Capa Level of Servic	city: e:	ίμ	0.701 C			[1],[2]	0.787 C			[1],[2]	1.168 F			[1],[2]	1.177 F			[1],[2]	1.177 F

Assumptions:

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200.
 For dual turn lanes, 55% of volume is assigned to heavier lane.
 For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane.
 For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane.
 For one excl. and one opt. turn lane, 70% of volume is assigned to the installation of the Wilshine West ATSAC system improvements.
 The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshine West ATSAC system improvements.
 Note: Year 2007 manual traffic counts were adjusted by a 1.0 percent (1.0%) ambient growth factor to reflect year 2008 existing conditions.

CRITICAL MOVEMENT ANALYSIS

Robertson Boulevard @ Third Street Peak Hour: PM Annual Growth: 1.00% Annual Growth:

CSMC Project

Cedars-Sinai Medical Center / 1-992843-1

CMA3 Accutek

File Name: Counts by:

Robertson Boulevard Third Street

N-S St: E-W St: Project:

Date: Date of Count: Projection Year:

06/23/2008 2008 2023

	2008 EXIS	TRAF	FIC	2023 V	V/ AMBIE	NT GROW	Η	2023 V	V/ OTHEF	RROJEC	TS	2023 V	V/ PROPO	SED PRO	JECT	2023	W/ MITIG	ATION	
	No.	of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement	Volume Lar	ves v	olume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
NB Left	25		25	4	29	~	29	ŋ	38	-	38	0	38	~	38	0	38	-	38
Comb. L-T	567	00	r	60	079	0 0	,	360	800	00	,	٢	1005	00	1	C	1005	00	1
Comb T-R	lee	-, c	- 669	00	040	c	- 769		000		-	-	2001		- 1229		CONT	C	- 1229
NB Right	112	• 0		17	129	• •	- -	95	224	0		0	224	0	1	0	224	. 0	
Comb. L-T-R -		0				0				0				0				0	
SB Left	57	-	57	8	65	-	65	0	65	~	65	0	65		65	0	65	-	65
Comb. L-T		0 1	1	ſ	1	0 0	1		C L C	0 0	•		000	0 (,	(0 0	ı
SB INU	483	C	קפק	7.1	0 0 0	- C	- 616	401	OCA	- -	- 1059	71	908	C	- 1074	0	908	⊃ <i>-</i>	- 1074
SB Right	53	- 0	р 22 22 1	8	60	- 0	2 2 1	42	102	- 0	1	n	105	- 0	-	0	105	- 0	-
Comb. L-T-R -		0				0				0				0				0	
EB Left	53	c	53	80	60	0	60	56	116	- 0	116	~	118	c	118	0	118	- 0	118
Come. L-1 EB Thru	441	c	- 240	99	508	c	- 276	292	800	⊃ C	425	0	800	c	- 425	0	800	⊃ - -	- 425
Comb. T-R		-	240			.	276				425			,	425			·	425
EB Right	39	0	,	9	45	0	,	5	50	0	1	0	50	0	ı	0	50	0	•
Comb. L-T-R -		0				0				0				0				0	
WB Left	128	-	128	19	148	-	148	114	262	-	262	0	262	-	262	0	262	-	262
Comb. L-T		0	1			0				0				0				0	1
WB Thru	438	÷	253	66	504	. .	290	241	745	 .	411	0	745	 .	411	0	745	-	411
Comb. I-K	67	- 0	502	5	77	- c	067	C	77	- c	411	c	77	~ 0	411	c	77		411
Comb. L-T-R -	5	00		2	:	0)	:	00		0	:	0		0	-	0	
Crit. Volumes:	Ň	;; ;;	725			N-S:	834			N-S:	1287			N-S:	1294			N-S:	1294
	 Ш	W:	369			E-W:	424			E-W:	686			E-W:	686			E-W:	686
	SU		1094			SUM:	1258			SUM:	1973			SUM:	1980			SUM:	1980
No. of Phases:			2				2				5				2				2
Volume / Capa	city:	[4]	0.659			[1],[2]	0.739			[1].[2]	1.216			[1],[2]	1.220			[1].[2]	1.220
Level of Servic	نە: تە	Ш					o				ĿL.				LL.				ĿL.
Accumptions.		0			-	•													

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200. For dual turn lanes, 55% of volume is assigned to heavier lane. For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane.

Right turns on red from excl. lanes = 50% of overlapping left turn. If The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] Note: Year 2007 manual traffic counts were adjusted by a 1.0 percent (1.0%) ambient growth factor to reflect year 2008 existing conditions.

Robertson Boulevard Burton Way Cedars-Sinai Medical Center / 1-992843-1 CMA4 Accutek

N-S St: E-W St: Project: File Name: Counts by:

CRITICAL MOVEMENT ANALYSIS

Robertson Boulevard @ Burton Way Peak Hour: AM Annual Growth: 1.0% CSMC Project

Date: Date of Count: Projection Year:

06/23/2008 2008 2023

20	08 EXIST. TR No. of	AFFIC Lane	2023 V Added	V/ AMBIE Total	ENT GROW	TH Lane	2023 V Added	// OTHEF Total	R PROJEC	TS Lane	2023 M Added	// PROPO Total	SED PRO. No. of	JECT Lane	2023 W Added	// MITIGA Total	vTION No. of	Lane
nt Volur	ne Lanes	Volume	Volume	Volume	Lanes	Volume	Volume V	/olume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume V	'alume	Lanes	Volume
÷-	22 1	122	18	141	← C	141	45	186	c	186	0	186	← C	186	0	186	c	186
ص - ۵	07 1 1	607	91	698	o ⊷ c	698	371	1069	o c	1069	8	1077	o c	1077	0	1077	o c	1077
	28 0	- 28	4	33	0 - 0	33	0	33	0 - 0	33	o	33	0 - 0	33	o	33	0-0	33
ľ	40 1	40	9	46	(46	2	48	← (48	0	48	← (48	o	48	، سه	48
	- 53 -	 607	93	717	00*	- 706	298	1015	007	, - , -	ю	1018	007	1 1 1	0	1018	00,	10 17 1
۲ ۲ ۲	- 0 0 69	780	10	62	- 0 0		55	134	- 0 0			135	- 0 0	-	0	135	-00	-
	91 1	91	14	105	c	105	46	151	<i>⊷</i> (151	с	154		154	0	154	ر - ر	154
ē - c	0 29 0	303	91	697	0 10 0	- 348	113	810) က (- 270	0	810	5 00 0	- 270	0	810	- ო ი	- 270
к. Т. 	82 U 0	- 82	12	94	0-0	- 94	28	122	0 - 0	- 122	0	122	0-0	- 122	o	122	00	122
÷	48 1	148	22	171	- c	171	თ	180	- c	180	0	180		180	0	180	d	180
13(00 33	- 435	196	1502	ວຕ	501	154	1656	⊃ m	- 552	0	1656	ວຕ	- 552	D	1656	ວຕ	- 552
R [[3]	86 0 0	- 86	13	66	0 - 0	66	7	101	0 - 0	- 101	0	101	0 - 0	- 101	O	101	0 - 0	- 101
mes:	N-S: E-W: SUM:	814 526 1340			N-S: E-W: SUM:	936 605 1541			N-S: E-W: SUM:	1334 702 2037			N-S: E-W: SUM:	1338 705 2044			N-S: E-W: SUM:	1338 705 2044
ases:		2				2				2				2				2
Capacity: Service:	[1]	0.824 D			[1],[2]	0.928 E			[1],[2]	1.258 F			[1],[2]	1.262 F			[1],[2] F	1.262
tions:	Maximum For dual tu For one ex Right turms [1] The vol [2] Funtion [3] Funtion Note: Year	Sum of Critic rrn lanes, ccl. and one (con red from ume to capa ume to capa al right-turn - 2007 manu	ial Volumes 55% 55% rexcl. lanes rexcl. lanes city ratios l city ratios i only lane. al traffic co	s (Intersed of volume ne, s = have beer have beer unts were	ction Capac is assigne 70% c 50% c reduced b r reduced b	ity): 2 Phas d to heavier if volume is if overlappin y 0.07 to ac y 0.03 to ac y a 1.0 perc	==1500, 3.1 lane. assigned to g left turn. count for th count for th count for th	Phase=14 exclusive ne installa ne installa ambient ,	425, 4+ Ph e lane. tion of the tion of the growth fac	ase=1375, Wilshire W Wilshire W tor to reflec	Unsignaliz est ATSAC est ATCS 4 t year 2004	ed=1200. System in System im	nprovemen provements conditions.	st a	289985	ote: Mitig laster Pla f a third ti oproach v ssumed ir roject Coi	gation for Ent n includes in hrough lane o which has beo the Future I ndition.	itled stallation at the EB an Dre-

CRITICAL MOVEMENT ANALYSIS

Robertson Boulevard @ Burton Way Peak Hour: PM Annual Growth: 1.00%

CSMC Project

Robertson Boulevard Burton Way Cedars-Sinai Medical Center / 1-992843-1 CMA4 Accutek

N-S St: E-W St: Project: File Name: Counts by:

Date: Date of Count: Projection Year:

06/23/2008 2008 2023

	2008 E	XIST. TR/	AFFIC	2023	W/ AMBII	ENT GROV	VTH	2023	W/ OTHE	R PROJE	CTS	2023	VI PROPC	DSED PRO.	JECT	2023	W/ MITIG	ATION	
		No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	Na. of	Lane	Added	Total	No. of	Lane
Movement	Volume 1	anes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
NB Left Comb I -T	96	c	96	14	110	ر - د	110	30	140	~ 0	140	0	140	(140	0	140	-	140
	629	o – c	629	94	724	o ← c	724	400	1124	o ← 0	- 1124	сı	1129	0 1	- 1129	0	1129	0 +	- 1129
NB Right Comb. L-T-R -	42	0-0	- 42	Ð	49	0 - 0	- 49	0	49	070	49	0	49	0 - 0	, 49	0	49	0-0	
SB Left Comb. L.T	52	، م	52	80	59	- 0	59	r	62	c	62	0	62	- (62	0	62	-	62
SB Thru Comh T-R	628	00-		94	722			469	1191	00,		œ	1199		1 1	0	1199	00	1 1
SB Right Comb. L-T-R -	39	- 0 0	1	9	45	- 0 0	-	48	63	- 0 0		ы	96	-00	- 1296	0	96	-00	- 1296
EB Left	107	- c	107	16	123	- 0	123	57	180	~ − (180	2	182	1	182	0	182	-	182
EB Thru	1044	200	522	157	1201	5 M C	600	188	1389	.	- 463	0	1389	0 00 1	- 463	0	1389	0 ო	- 463
EB Right Comb. L-T-R -	49	0 ~ 0	49	2	57	0-0	- 57	54	111	0 - 0	- 111	0	111	0 - 0		0	111	0 - 0	, , ,
WB Left Comb. L-T	127	- c	127	19	146	- c	146	18	164	- 0	164	0	164	÷ د	164	0	164	÷ (164
WB Thru Comb T-R	863		288	129	992	0 m c	331	157	1149	ი ი ი	383	0	1149	റ ന (- 383	0	1149	0 m c	- 383
WB Right [3] Comb. L-T-R -	54	0 0	54	8	62	0 - 0	62	4	66	0-0	99	0	99	0 - 0	- 66	0	66	0-0	99
Crit. Volumes:	(N-S: E-W:	764 649			N-S: E-W:	878 747			N-S: -W:	1425 627			N-S: E-W:	1436 627			N-S: E-W:	1436 627
No. of Dhaces		.IMI:	1413			SUM:	1625			SUM:	2052			SUM:	2063			SUM:	2063
IND. OI PIIASES.			7				7				7				7				2
Volume / Capa	icity: e	[1]	0.872			[1],[2]	0.983 E			[1],[2]	1.268 E			[1],[2]	1.276			[1],[2]	1.276
Assumptions:	Mé	aximum S	um of Critic	al Volumes	s (Intersec	stion Capac	city): 2 Phas	e=1500, 3	Phase=14	425, 4+ Pt	1 1ase=1375,	Unsignaliz	9d=1200.		_		Vote: Miti	dation for Er	F htitled
	τ Γ Π Π	or dual tur. or one exc. aht turns c	n lanes, I. and one c on red from	55% ppt. turn laı excl. lanes	ne, s =	of volume ; 70% c 50% o	is assigned of volume is of overlappir	to heavier . assigned ti nd left turn.	lane. o exclusiv	'e lane.						~ 0 0	Master Pli of a third	an includes i through lane	at the EB
	[2]	The volu	me to capa me to capa	city ratios / city ratios /	have beer have been	reduced t	by 0.07 to at	scount for t	he installa he installa	ation of the rtion of the	Wilshire W	est ATSAC	system in wstem im	nprovements	ts.		approaum assumed n Proinct CC	Witten nas u in the Future metion	Pre-
	101	. T	and the first of								-		· · · · · · · · · · · · · · · · · · ·			•	in malai	ווחוייייייי.	

[2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [3] Funtional right-turn only lane. Note: Year 2007 manual traffic counts were adjusted by a 1.0 percent (1.0%) ambient growth factor to reflect year 2008 existing conditions.

CRITICAL MOVEMENT ANALYSIS

Robertson Boulevard @ Wilshire Boulevard Peak Hour: AM Annual Growth: 1.0%

CSMC Project

Robertson Boulevard Wilshire Boulevard Cedars-Sinai Medical Center / 1-992843-1 CMA5 Accutek

N-S St: E-W St: Project: File Name: Counts by:

06/23/2008 2008 2023 Date: Date of Count: Projection Year:

200	8 EXIST. TR	AFFIC	2023 V	V/ AMBIE	NT GROW	HT	2023 M	// OTHER	1 PROJEC	TS	2023 V	// PROPO	SED PROJ	ECT	2023 V	V/ MITIG/	ATION	
	Na. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement Volun	le Lanes	Volume	Volume	Volume	Lanes	Volume	Volume V	/olume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
NB Left 18 Comb 1-T	0	180	27	207	← c	207	48	255	C	255	ο	255	+ c	255	0	255	c	255
NB Thru 67 Comb T-R	نه ۰	401 401	101	774	o ← ←	461 461	307	1081		623	9	1087	, t	- 626 626	0	1087		626 626
NB Right 12 Comb. L-T-R -	- 0 0 6	-	19	149	- 0 0	, ,	16	165	- 0 0	-	0	165	- 0 0	- 1	0	165	- 0 0	070 -
SB Left 9 Comb - T	2	92	14	106	- c	106	31	137	~ c	137	0	137	- 0	137	0	137	 (137
SB Thru 65 Comh T-R	7	- 380 380	98	755	⊃ - -	- 437 437	213	968	⊃ ~ ~	- 574 574	N	970	⊃ ~	- 576	0	0/6	0 - 1	- 576
SB Right 10 Comb. L-T-R -	4-00	р р г	16	120	- 0 0	- -	61	181	- 0 0	+/c -		182	- 0 0	a/c -	0	182	- 0 0	9/Q -
EB Left 7	4	74	11	85	<i>←</i> 0	85	72	157		157	2	159	. .	159	0	159	-	159
CULIE L-1 EB Thru 105 Comb + D	- 17 C	393	159	1217	0 01 7	451	302	1519	0 0 1	- 560	2	1521	0 0	561	0	1521	0 0	- 561
Conno. I -R EB Right 11 Comb. L-T-R -	-00	, 090	18	137	- 0 0		24	161	-00	096	0	161	-00	- 561	O	161	- 0 0	- 561
WB Left 12 Comb. L.T	6	129	19	149	- 0	149	9	155	~ c	155	0	155	- 0	155	0	155	(155
WB Thru 197	- 10 c	- 682 682	296	2271	- N -	- 785 705	406	2677	- M C	931	-	2678	0 (V (932	0	2678	0 0	- 932
Connu. I -R WB Right 7 Comb. L-T-R -	- 0 0 m	- 100	1	84	-00	cg/ -	34	118	-00	- 931	0	118	-00	932 -	0	118	- 0 0	- 932
Crit. Volumes:	N-S: E-W: SUM:	560 756 1316			N-S: E-W: SUM:	644 870 1514			N-S: E-W: SUM:	829 1088 1917			N-S: E-W: SUM:	831 1091 1921			N-S: E-W: SUM:	831 1091 1921
No. of Phases:		4				4				4				4				4
Volume / Capacity: Level of Service:		0.957 E				1.101				1.394 F				1.397				1.397
Assumptions:	Maximum 5 For dual tu For one exi Right turns Note: Year	Sum of Critic rn lanes, cl. and one c on red from 2007 manue	al Volumes 55% (ppt. turn lan excl. lanes al traffic cou	(Intersect of volume e, ints were	tion Capaci is assignec 70% of 50% of adjusted by	ity): 2 Phas d to heavier f volume is f overlappin y a 1.0 perc	e=1500, 3 f lane. assigned to g left turn. ent (1.0%)	phase=14 exclusive ambient g	125, 4+ Phi e lane. prowth fact	ase=1375, tor to reflect	Unsignaliz	ed=1200. 3 existing c	onditions.				-	

rasaueria, UA 81100 141

CRITICAL MOVEMENT ANALYSIS

Robertson Boulevard @ Wilshire Boulevard Peak Hour: PM Annual Growth: 1.00%

CSMC Project

Robertson Boulevard Wilshire Boulevard Cedars-Sinai Medical Center / 1-992843-1 CMA5 Accutek

N-S St: E-W St: Project: File Name: Counts by:

Date: Date of Count: Projection Year:

06/23/2008 2008 2023

	2008	EXIST. TR.	AFFIC	2023	W/ AMBIE	ENT GROV	VTH	2023 1	V/ OTHEI	R PROJE	CTS	2023 V	W PROPO	SED PRO.	JECT	2023	W/ MITIG	ATION	
÷		No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
NB Left Comb. L.T	197	<i>⊷</i> c	197	30	226	C	226	32	258	c	258	0	258	- 0	258	0	258	. (258
NB Thru	595	, ,	345	89	684	⊃ -	397	305	989	·	554 554	ო	992	⊃ ~ ·	- 556	0	992	⊃ - -	- 556
VB Right Comb. L-T-R	. 96	- 0 0	, 1	14	110	- 0 0		ð	119	- 0 0	+00	0	119	- 0 0	556	0	119	- 0 0	556
SB Left	64	c	64	10	73	~ c	73	68	141	← (141	0	141	۰ <i>ــ</i> ـ	141	0	141	-	141
SB Thru Comb T_R	713	⊃ ~ ~	399	107	820	⊃ ~ •	- 459 450	407	1227	⊃ ← r	- 712 712	Q	1233	o ← ,	- 716	0	1233	0	- 716
SB Right Comb. L-T-R	- 85	- 0 0	1	13	98	- 0 0	5 7 7	66	197	- 0 0		0	199	- 0 0	ol/ -	0	199	-00	, 16
EB Left Comb 1 -T	119	- c	119	18	137	c	137	69	206	c	206	-	207	- 0	207	0	207	- (207
EB Thru	1704	o ∩ -	619 610	256	1959	• ∩ •	712	422	2381	5 (N 7	- 871 871	-	2382	- 17 C	871	0	2382	<u>о</u> м.	871
EB Right Comb. L-T-R	- 155	-00		23	178	- 0 0		53	231	- 0 0	- /0	0	231	-00	2	0	231	-00	- 8/1
WB Left	145	c	145	22	167	c	167	18	185	c	185	0	185	- 0	185	0	185	-	185
WB Thru Comb T-R	1316	D CI	455	197	1513	- M C	- 523 523	331	1844	- N -	- 650 650	N	1846	- N C	- 651 651	0	1846	00,	- 651
WB Right Comb. L-T-R	49	- 0 0	1	~	57	- 0 0	1	49	106	- 0 0	1	0	106	- 0 0	100	0	106	-00	-
Crit. Volumes		N-S: E-W: SUM:	596 765 1361			N-S: E-W: SUM:	685 880 1565			N-S: E-W: SUM:	970 1056 2026			N-S: E-W: SUM:	974 1056 2031			N-S: E-W: SUM:	974 1056 2031
No. of Phase:	10		4				4				4				4				4
Volume / Cap Level of Servi	acity: ce:		0.990 E				1.138 F				1.474 F				1.477				1.477 F
Assumptions		Aaximum S	um of Critic	al Volume	e lintercer	tion Canad	-ini-	0-1500 2				11							

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=142b, 4+ Phase=13/b, Unsignatized=12uu. For dual turn lanes, 55% of volume is assigned to heavier lane. For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. Right turns on red from excl. lanes = 50% of overlapping left turn. Note: Year 2007 manual traffic counts were adjusted by a 1.0 percent (1.0%) ambient growth factor to reflect year 2008 existing conditions.

CRITICAL MOVEMENT ANALYSIS

George Burns Road @ Beverly Boulevard Peak Hour: AM Annual Growth: 1.0%

CSMC Project

George Burns Road Beverly Boulevard Cedars-Sinai Medical Center / 1-992843-1 CMA6 Accutek

N-S St: E-W St: Project: File Name: Counts by:

Date: Date of Count: Projection Year:

2008 2023 06/23/2008

	2008 EXIS	ST. TRA	FFIC	2023 V	V/ AMBIE	ENT GROW	HTH	2023 V	V/ OTHEF	RROJEC	CTS	2023 V	V/ PROPC	SED PRO	JECT	2023	W/ MITIG	ATION	
	No	. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement V	olume Lai	nes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
NB Left	21		21	ന	24	-	24	0	24		24	0	24	-	24	0	24	0	ı
Comb. L-T		0	1			0				0	ı			0				-	
NB Thru Comh T D	Q	0 +	5		7	0 7		0	7	0,		0	7	0,	,	0	7	00	1
NB Right	88	- 0	+ 72	13	101	- 0	901	22	123	- 0	130	6	132	- c	- 138	C	132	- c	1 1
Comb. L-T-R -		0				0				0		,		0)	1	0	2
SB Left	e	0	1	0	e	0	•	0	3	0	1	0	ε	0	ı	0	ε	0	
Comb. L-T		0	1			0	,			0	ı			0				0	,
SB Thru	0	0 0	ნ	0	0	0 0	10	0	0	0 0	10	0	0	0	10	0	0	0	-
Comb. I-K	ų	- -		Ŧ	٢	0 0		c	٢	0 0	,	c	٢	00	ı	c	٢	0 0	1
Comb. L-T-R -	þ	→ -	,	-	-		ı	2	-	כ	ı	5	~		ı	2	-	C	ı
EB Left	25	-	25	4	29		29	0	29	-	29	0	29	F	29	0	29	-	
Comb. L-T		0				0				0	ı			0	ı			0	•
	823	. .	496 406	123	947		571	244	1191	· •	693	0	1191	. .	693	0	1191	20	26
EB Right	170	- 0	1	25	195	- 0	1/6 -	0	195	- 0	- 080 -	0	195	- 0	- 093	C	195		t
Comb. L-T-R -		0				0				0				0				0	
WB Left	255	~	255	38	293	-	293	45	338	-	338	21	359	-	359	0	359		35
Comb. L-T		0				0				0				0	,			0	ı
WB Thru	1498	. ,	768	225	1723		883	232	1955		666 000	0	1955	• •	666	0	1955		6
WB Right	37	- c	00/-	Ŷ	43	- c	C00 -	C	43	- c	888 1	C	43	- 0	- BAB	C	ΕV	- c	5
Comb. L-T-R -		0				0				0		I		0		•	2	0	
Crit. Volumes:	Ż	ij	26			N-S:	112			N-S:	134			N-S:	143		:	N-S: N-S:	
	ш	W:	793			E-W:	912			E-W:	1031			E-W:	1052			:М- Ш	102
	SL	:M:	890			SUM:	1023			SUM:	1164			SUM:	1194			SUM:	106
No. of Phases:			2				2				2				5				
Volume / Capaci	:Ai	E	0.523			[1].[2]	0.582			[1],[2]	0.676			[1].[2]	0.696			[1],[2]	0.64
Level of Service:		ব	_				A				в				в				8
Accumulations:	weld.																		

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200.

For dual turn lanes, 55% of volume is assigned to heavier lane. For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. For one excl. and one opt. turn lanes = 50% of overlapping left turn. [1] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. Note: Year 2007 manual traffic counts were adjusted by a 1.0 percent (1.0%) ambient growth factor to reflect year 2008 existing conditions.

zuu, rasauena, CA struu 32.0941

George Burns Road Beverly Boulevard Cedars-Sinai Medical Center / 1-992843-1

CMA6 Accutek

N-S St: E-W St: Project: File Name: Counts by:

CRITICAL MOVEMENT ANALYSIS

George Burns Road @ Beverly Boulevard Peak Hour: PM Annual Growth: 1.00%

CSMC Project

06/23/2008 2008 2023

Date: Date of Count: Projection Year:

	2008	EXIST. TR	AFFIC	2023 V	V/ AMBIE	ENT GROW	ТН	2023 V	V/ OTHER	ROJEC	CTS	2023 V	V/ PROPO	SED PRO	JECT	2023	W/ MITIG	ATION		
		No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	
Movement	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume 1	/olume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volur	e
NB Left	137		137	21	158	~	158	0	158		158	0	158	~~	158	0	158	0		
Comb. L-T		0				0	t			0				0	ı			-		161
NB Thru	ო	0	ı	0	e	0	•	0	n	0	ı	0	ო	0	•	0	e	0	1	
Comb. T-R			331			-	381			-	425			~	447			0	,	
NB Right	328	0	•	49	377	0		44	421	0		22	443	0	,	0	443	-		443
Comb. L-T-R -		0				0				0				0				0		
SB Left	16	0	-	2	19	0		0	19	0		0	19	0	ı	0	19	0		
Comb. L-T		0	1			0	ı			0	ı			0	,			0	,	
SB Thru	9	0	73	-	7	0	84	0	7	0	84	0	7	0	84	0	7	0		84
Comb. T-R		0	1			0	,			0	ı			0	ı			0		
SB Right	51	0	1	8	58	0	ı	0	58	0	ı	0	58	0	ı	0	58	0	,	
Comb. L-T-R -						-				~~								-		
EB Left	8		8		6	.	0	0	თ	.	5	0	0		5	0	6	-		6
Comb. L-T	,	. 0	, ,		,	. 0	•			0	•			0	, 1	•	•	. 0	,)
EB Thru	1223		653	183	1407	-	751	326	1733	*	914	0	1733	-	914	0	1733	2		866
Comb. T-R		-	653				751				914			-	914			0	ı	
EB Right	83	0	•	12	95	0		0	95	0	ı	0	95	0	ı	0	92	*		95
Comb. L-T-R .		0				0				0				0				0		
WB Left	68	-	89	13	102	F	102	22	124	-	124	12	136	-	136	0	136	-		136
Comb. L-T		0	'			0	I			0	ı			0	ı			0		
WB Thru	1023		520	153	1177	-	598	321	1498	-	759	0	1498		759	0	1498	-		759
Comb. T-R			520			-	598				759			-	759					759
WB Right	17	0	ı	ო	20	0	ı	0	20	0	•	0	20	0	1	0	20	0	,	
Comb. L-T-R ·		0				0				0				0				0		
Crit. Volumes:		N-S:	347			N-S:	400			N-S:	444			N-S:	466			N-S:		394
		E-W:	742			E-W:	853			Е-W:	1038			E-W:	1050			E-W:	Ŧ	003
		SUM:	1089			SUM:	1253			SUM:	1482			SUM:	1516			SUM:	-	396
No. of Phases			2				2				2				2					е
Volume / Capa	acity:	[µ]	0.656			[1],[2]	0.735			[1],[2]	0.888			111.121	0.910			[1],[2]	0.	880
Level of Servic	ie:		В				υ				0				ш				۵	
						:				1										
Assumptions		Maximum :	Sum of Critic	al Volumes	s (Interse	ction Capac	city): 2 Phas	se=1500, 3	Phase=1	425, 4+ <i>FI</i>	hase=13/5,	Unsignaliz	ed=1200.							

For dual turn lanes, 55% of volume is assigned to heavier lane. For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. For one excl. and one opt. turn lane, 70% of volume is assigned to turn. [1] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to be account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to be account for the installation of the Wilshire West ATCS system improvements.

CRITICAL MOVEMENT ANALYSIS

George Burns Road @ Gracie Allen Drive Peak Hour: AM Annual Growth: 1.0%

CSMC Project

George Burns Road Gracie Allen Drive Cedars-Sinai Medical Center / 1-992843-1 CMA7 Accutek

N-S St: E-W St: Project: File Name: Counts by:

06/23/2008 2008 2023 Date: Date of Count: Projection Year:

200	18 EXIST. TRA	(FFIC	2023 V	VI AMBIE	NT GROW	Ш	2023 M	V/ OTHER	RROJEC	STS	2023 V	V/ PROPO	SED PRO.	JECT	2023	W/ MITIG	ATION		
	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lan	
Movement Volur	re Lanes	Volume	Volume	Volume	Lanes	Volume	Volume \	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volur	эг
NB Left 2	2 2 2	1	ю	26	00	t	45	71	00	,	21	92	00	,	0	92	00	ı	
	8	212	15	113	000	- 244	0	113		- 289	0	113	00	310	0	113			310
Comb. I-K NB Right Comb. L-T-R -	32 0		14	106	- 0 -	1 1	0	106	- o c	, ,	0	106	00-		O	106	- o c	1 1	
SB Left 3	0 0	-	5	36	0 0	,	0	36	0 0	.	0	36	0		0	36	0	ı	
SB Thru 27	, o o	- 373	41	312		- 429	0	312		- 474	0	312	00	- 495	0	312	00	1	495
Comb. I-K SB Right 7_P	0 0 0 7		10	80		1 1	45	125		1 1	21	146	00,		0	146	00,	• •	
					-				-				-						
EB Left 3 Comb I -T	34 1 0	34	Ω	39	c	39	22	61	~- c	61	0	20	c	20	0	20	c		70
EB Thru 7	8 ²	99	12	89) .	20	62	151	·	118	5	156) - ·	125	0	156		•	125
Comb. I-K EB Right 5	5	90	ø	63	- 0	. /6	22	85	- 0	- 118	đ	94	- 0	125	0	94	- 0	,	125
Comb. L-T-R -	0				0				0				0				o		
WB Left 8	1 1	85	13	98	c	98	0	98	- c	98	0	98	- 0	96	0	98	← (98
WB Thru 6	88	64	10	78	o ← ·	74	43	121	- c	32 7	1	132	C	- 101	0	132	- C	ı	101
VB Riaht 6	1 0	- 64	Ø	70	- 0	- 74	0	70	- 0	95	0	70	- 0	- 101	C	70	- c	ı	101
Comb. L-T-R -	0				0				0		•	2	0)	2	0		
Crit. Volumes:	N-S: -W: :	395 151			N-S: Ц-V:	454 174			N-S: E-W:	544 216			N-S: E-W:	586 223			N-S: F-W·		586 223
	SUM:	546			SUM:	628			SUM:	760			SUM:	809			SUM:		809
No. of Phases:		D								5	-							5	
Volume / Capacity:		0.455				0.523				0.633				0.674					674
Level of Service:	-	A				A				В				В				ß	
Assumptions:	Maximum S For dual turn For one exc Right turns (Note: Year 2	um of Critic n lanes, 1. and one (on red from 2007 manue	cal Volumes 55% - opt. turn lar n excl. lanes al traffic col	s (Intersec of volume ne, 5 = unts were	tion Capac is assigne 70% o 50% o adjusted b	city): 2 Phas d to heavier of volume is of overlappin vy a 1.0 perc	e=1500, 3 ane. assigned tc g left turn. :ent (1.0%)	Phase=1 [,] cexclusivi ambient <u>c</u>	425, 4+ Pf. e lane. growth fac.	iase=1375, tor to reflec	Unsignaliz t year 200	ted=1200. 8 existing (conditions.						

CRITICAL MOVEMENT ANALYSIS

George Burns Road @ Gracie Allen Drive Peak Hour: PM Annual Growth: 1.00%

CSMC Project

George Burns Road Gracie Allen Drive Cedars-Sinai Medical Center / 1-992843-1 CMA7 Accutek

N-S St: E-W St: Project: File Name: Counts by:

Date: Date of Count: Projection Year:

06/23/2008 2008 2023

20	08 EXIST. TF	REFIC	2023	W/ AMBIE	ENT GROV	VTH	2023	N/ OTHE	R PROJE	CTS	2023 \	N/ PROPC	SED PRO	JECT	2023	W/ MITIG	SATION		
	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	
Movement Volu	me Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volum	e
NB Left Comb J T	22 0		т	26	00	ı	22	48	0	ı	12	60	0	1	O	60	0	1	
NB Thru 2	49 0	415	37	287	00	- 477	0	287		- 499	0	287	00	- 511	C	287	0 0	1	بر 1
Comb. T-R	0.0	ı	ĉ	L C	00	t	¢	1	0				0	,)	2	00	,	-
Comb. L-T-R -	40 C	t	77	0	- C	ı	Ð	165	ə -	ı	D	165	0 ~	ı	0	165	0 -	,	
SB Left	40 0	,	9	46	0		0	46	c	,	c	46	c		C	AR AR	c		
Comb. L-T	0				0	ı			0		þ	2	00		5	t			
SB Thru 1 Comb T-R	34 0	227	20	154	00	261	0	154	00	283	0	154	0	295	0	154	0	(A	295
SB Right	53 0	1	8	60	00		22	82	00		12	94	00		0	94	0 0	• •	
Comb. L-1-K -					-														
EB Left 1 Comh I -T	11	111	17	128		128	44	172	c	172	22	194	- 0	194	0	194	- (194
EB Thru	62 1	98	24	186) - (113	49	235	0	- 159	12	247		- 176	0	247	⊃ ←	1	176
Comb. 1-K EB Riaht	34 0 1	- 98 -	ι.	95	~ c	. 113	44	58	c	159	ç	105	c	176	c		- (-	176
Comb. L-T-R -			D	3	00	I	t	20	00	ı	3	201	00	F	þ	COL	00	1	
WB Left	69 1	69	10	62		62	0	79	← (62	0	62	-	62	0	62	-		79
WB Thru	78 1	74	12	68		- 85	72	161	o ≁	- 121	7	168	0	- 124	0	168	0	,	124
Comb. T-R	c	74	ç	Ċ	 (85		;	-	121			-	124			· -		124
comb. L-T-R -		ı	2	80 D	00	·	0	80	00	ı	0	80	00		0	80	00	ı	
Crit. Volumes:	N-S:	456			N-S:	524			N-S:	546			N-S:	558			N-S:	ц.,	558
	E-W: SUM:	185 640			E-W: SUM:	213 736			E-W: SUM:	293 838			E-W: SLIM:	318 876			E-W:	(m) a	318 76
No. of Dharaer														5				כ	
		2				5				5				5				5	
Volume / Capacity:		0.534				0.614				0.699				0.730				0.7	30
Level of Service:		A				в				в				U				с	
Assumptions:	Maximum For dual tu For one ex Right turns Note: Year	Sum of Critic rn lanes, cl. and one ton red from	cal Volume. 55% opt. tum la. i excl. lane: al traffic co	s (Intersec , ne, s = unts were	tion Capac of volume i 70% c 50% c adjusted b	city): 2 Phas is assigned i of volume is of overlappin y a 1.0 perc	e=1500, 3. to heavier li assigned to g left turn. ent (1.0%)	Phase=1 [,] ane.) exclusiv ambient ₍	425, 4+ Pl e lane. growth fac	hase=1375, tor to reflect	Unsignaliz t year 200	:ed=1200. 9 existing c	conditions.						

CRITICAL MOVEMENT ANALYSIS

George Burns Road-Hamel Road @ Third Street Peak Hour: AM Annual Growth: 1.0%

CSMC Project

George Burns Road-Harnel Road Third Street Cedars-Sinai Medical Center / 1-992843-1 CMAB Accutek

N-S St: E-W St: Project: File Name: Counts by:

2008 2023 Projection Year: Date of Count:

06/23/2008

Date:

	2008 EX	IST. TRA	FFIC	2023 V	V/ AMBIE	INT GROW	ТН	2023 V	V/ OTHER	ROJE	CTS	2023 V	V/ PROPC	SED PRO	JECT	2023	W/ MITH	GATION		
	ź	o. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	
Movement	Volume Li	anes	Volume	Volume V	Volume	Lanes	Volume	Volume V	/olume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	
NB Left	n		ო	O	ო	-	ო	0	ო	÷-	n	0	ю	-	e G	0	e	t	e	
Comb. L-T NB Thru	148	0 0	1 1	22	171	00		0	171	00	, ,	0	171	00		0	171	0 0	1 1	
Comb. T-R		-	166			-	190			-	192			~~	192			· ~	192	
NB Right Comb. L-T-R -	17	00	1	n	20	00	ı	N	22	0 0		0	22	00		0	22	00	r	
		I				,)				D				D		
SB Left	93		93	14	107	d	107	22	129	0	129	6	138	- (138	0	138		138	
COMD. L-1 SB Thru	39	- 0	r 1	9	45	00	1 1	0	45	00	1 1	0	45	0 0		0	45	0 0	, ,	
Comb. T-R		-	119			-	137			-	137				137			-	137	
SB Right	80	0 0		12	92	0 0		0	92	0	ı	0	92	0		0	92	0	,	
Comb. L-1-K -		5				0				0				0				0		
EB Left	205		205	31	236	c	236	0	236	c	236	0	236	(236	0	236		236	1
COMD. L-1 FR Thri	425	⊃ ⊷	- 220	БA	480	⊃ -	- 253	263	752		- 38.4	c	752	C	- 195	c	767	• •	1	
Comb. T-R	1		220	5	2		253	2	10.		384	0	40		384	2			384	
EB Right	14	0	,	2	16	0	,	0	16	0	ı	0	16	0	•	0	16	0		
Comb. L-T-R -		0				0				0				0				0		
WB Left	20	-	20	3	23	-	23	11	34	-	34	0	34	-	34	0	34	-	34	Γ
Comb. L-T		0	·			0				0				0	,			0	ı	
WB Thru	927	. .	593 503	139	1066	τ τ	682	277	1343	 .	843	0	1343	. .	854	0	1343	.	854	
WR Right	260	- c	0A0 -	30	200	- 0	790	75	VVE		843	5	365	c	854	c	200	~- C	854	
Comb. L-T-R -		0		3		0		7		0		-	2	00	ł	0		00	ı	
Crit. Volumes:		I-S:	259			N-S:	297			N-S:	321			N-S:	330			N-S:	330	Т
	Ш	:M-	798			E-W:	918			E-W:	1079			E-W:	1090			Ш-М.	1090	
	Ŵ	UM:	1057			SUM:	1216			SUM:	1401			SUM:	1420			SUM:	1420	
No. of Phases:			2				73				2				2				N	
Volume / Capa	sity:	[1]	0.635			[1],[2]	0.710			[1],[2]	0.834			[11],[2]	0.847			[1].[2]	0.847	
Level of Servic			£				с				D				D				۵	
Assumptions.	- GVV	vimum Sı	un of Critic	of Volumos	l'htoroot			4600 2		<u> </u>	12.07									

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1426, 4+ Phase=1375, Unsignalized=1200.

For dual turn lanes, 55% of volume is assigned to heavier lane. For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. Right turns on red from excl. lanes = 50% of overlapping left turn. [1] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Witshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Witshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Witshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Witshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Witshire West ATCS system improvements.

CRITICAL MOVEMENT ANALYSIS

George Burns Road-Hamel Road @ Third Street Peak Hour: PM Annual Growth: 1.00%

CSMC Project

Cedars-Sinai Medical Center / 1-992843-1

N-S St: E-W St: Project: File Name: Counts by:

CMA8 Accutek

George Burns Road-Hamel Road Third Street

06/23/2008 2008 2023 Date: Date of Count: Projection Year:

No. of Lanes Added Total No. of Movement Volume Lanes Volume Lanes No. of Movement Volume Lanes Volume Lanes No. of Added Total No. of Movement Volume Lanes Volume Lanes Volume Lanes No. of NB Thru 36 0 - 52 42 0 0 NB Right 15 0 - 52 17 0 0 NB Right 16 0 - 287 330 1 0 0 SB Left 28 1 287 28 188 0 0 0 SB Right 190 0 - 287 28 218 0 0 SB Right 190 0 - 286 731 1 0 Comb. L-T-R- 0 288 731 1 0 <t< th=""><th>No. of Lane Lanes Volume 0 - 59 0 - 59 0 - 407 0 - 407 1 - 407 0 - 1 0 - 330 0 - 1 0 - 330 0 - 1 0 - 330 0 - 1 0 - 330 0 - 1 1 - 63 0 - 1 1 - 63 0 - 1 1 - 63 0 - 1 1 - 63 0 - 7 1 - 60 0 - 7 1 - 60 0 - 7 0 - 7 0</th><th>Added Tot Volume Volu 0 10 44 0 0</th><th>al No. of me Lanes 2 1 42 0 27 0 27 0</th><th>Lane Volume</th><th>Added To Volume Vol</th><th>otal No. of</th><th>Lane</th><th>Added Tot</th><th>al No. of me Lanes</th><th>Lane</th></t<>	No. of Lane Lanes Volume 0 - 59 0 - 59 0 - 407 0 - 407 1 - 407 0 - 1 0 - 330 0 - 1 0 - 330 0 - 1 0 - 330 0 - 1 0 - 330 0 - 1 1 - 63 0 - 1 1 - 63 0 - 1 1 - 63 0 - 1 1 - 63 0 - 7 1 - 60 0 - 7 1 - 60 0 - 7 0	Added Tot Volume Volu 0 10 44 0 0	al No. of me Lanes 2 1 42 0 27 0 27 0	Lane Volume	Added To Volume Vol	otal No. of	Lane	Added Tot	al No. of me Lanes	Lane
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Lanes Volume 1 2 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 0 - 0 - 0 - 1 - 1 - 374 -	Volume Volu 0 10 44 0	me Lanes 2 1 42 0 27 0	Volume	Volume Vol	and land			me Lanes	
	1 2 0 - 59 1 59 0 - 59 0 - 59 0 - 407 0 - 407 1 63 1 63	0 0 0 4 0	2 1 42 0 27 0			Inilia Latica	Volume	Volume Volui		Volume
Comb. L-1 0 - 5 42 0 NB Right 15 0 - 5 42 0 Comb. L-T-R. 1 52 2 17 0 NB Right 15 0 - 2 17 0 Comb. L-T-R. 0 - 287 1 287 43 330 1 SB Left 287 1 287 43 330 1 0 SB Thru 164 0 - 25 188 0 0 SB Thru 164 0 - 25 188 0 0 SB Thru 164 0 - 25 188 0 0 Comb. L-T 0 - 28 1 325 95 731 1 Comb. L-T 0 - 226 95 731 1 1 Comb. L-T 0 - 325 95 731 1 1 Comb. L-T 0 - 325	0	0 0 4 0	42 0 42 0 27 0 0	2	0	2	3	Ο	2	N
Comb. T-R 1 52 7 0 NB Right 15 0 - 2 17 0 Comb. L-T-R. 0 - 2 17 0 SB Left 287 1 287 43 330 1 SB Thru 164 0 - 26 188 0 SB Thru 164 0 - 26 188 0 SB Right 190 0 - 26 188 0 SB Right 190 0 - 26 188 0 Comb. L-T-R. 0 - 26 18 0 0 SB Right 15 0 - 28 11 11 Comb. L-T-R. 0 - 28 73 1 1 Comb. L-T-R. 0 - 325 95 73 1 1 Comb. L-T-R. 0 - 325 95 <td>1 59 0 - 50 0 1 330 0 - 407 1 407 0 - 407 0 - 330 0 - 330 1 - 50 0 - 50 0</td> <td>0 44 0</td> <td>27 0 0</td> <td></td> <td>0</td> <td>42 (</td> <td></td> <td>С</td> <td>42 0</td> <td>1 1</td>	1 59 0 - 50 0 1 330 0 - 407 1 407 0 - 407 0 - 330 0 - 330 1 - 50 0	0 44 0	27 0 0		0	42 (С	42 0	1 1
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	0 - 0 - 1 330 0 - 330 0 - 407 1 - 407 0 - 63 1 - 63 1 - 374	10 44 0	27 0 0	69	,	i i	69)		69
	0 1 330 0 - 1 407 0 - 0 - 1 63 1 374	44 6	0		0	27 C	-	0	27 0	1
SB Left 287 1 287 43 330 1 Comb. L-T 0 - 26 188 0 SB Thru 164 0 - 25 188 0 SB Right 190 0 - 25 188 0 SB Right 190 0 - 26 188 0 Comb. L-T-R. 0 - 28 28 1 1 SB Right 190 0 - 28 28 1 1 Comb. L-T-R. 0 - 325 95 731 1 1 Comb. L-R 1 325 95 731 1 1 1 Comb. L-R 0 - 28 1 325 1 1 1 Comb. L-R 1 21 2 1 1 1 1 1 1 Comb. L-R 1 2 2 2<	1 330 0 - 340 0 - 407 1 - 407 0 - 63 0 - 63 1 374	44 0				J	_		0	
Comb. L-T 0 - 25 188 0 SB Thru 164 0 - 25 188 0 Comb. L-T-R- 1 354 28 218 0 SB Right 190 0 - 28 218 0 Comb. L-T-R- 0 - 28 218 0 0 Comb. L-T-R- 0 - 28 57 1 1 Comb. L-T 0 - 325 95 731 1 Comb. L-R 0 - 325 95 731 1 Comb. L-R 1 325 95 731 1 1 Comb. L-R 0 - 2 1 1 1 1 Comb. L-T-R 0 - 2 1 1 1 1 1 1 Comb. L-T-R 0 - 2 2 1 1 1 1 <t< td=""><td>0 - 0 - 407 0 - 407 0 - 1 63 1 374</td><td>0</td><td>374 1</td><td>374</td><td>22</td><td>396 1</td><td>396</td><td>0</td><td>396 1</td><td>396</td></t<>	0 - 0 - 407 0 - 407 0 - 1 63 1 374	0	374 1	374	22	396 1	396	0	396 1	396
SB Indu 164 0 - 25 188 0 SB Right 190 0 - 354 28 188 1 SB Right 190 0 - 28 28 28 1 1 SB Right 190 0 - 28 28 1 1 Comb. L-T-R- 0 - 55 8 63 1 1 EB Left 55 1 55 8 63 1 1 Comb. L-T 0 - 325 95 731 1 1 Comb. T-R 1 325 95 731 1	1 - 407 0 - 407 0 - 63 1 - 63 1 - 374		0	•	ſ		,		0	ı
SB Right 190 - 28 218 0 Comb. L-T-R- 0 - 28 28 28 0 Comb. L-T-R- 0 - 55 1 55 8 63 1 EB Left 55 1 55 8 63 1 1 Comb. L-T 0 - 325 95 731 1 1 Comb. T-R 1 325 95 731 1 1 Comb. T-R 1 325 95 731 1 1 Comb. L-R 0 - 24 1 0 0 0 WB Left 21 1 24 1 1 24 1 0 WB Thru 584 1 248 8 671 1 1 WB Thru 584 1 348 8 671 1 WB Thru 584 1 348 67	00 00 1 - 63 1 - 374		188	- 407	0	188 [- 1	0	188 0	- 407
Comb. L-T-R- 0 0 0 EB Left 55 1 55 8 63 1 Comb. L-T 0 - 325 95 731 1 Comb. L-T 635 1 325 95 731 1 Comb. T-R 1 325 95 731 1 1 Comb. L-T 0 - 2 7 0 0 0 WB Left 21 1 21 3 24 1 0 0 0 WB Thru 584 1 348 88 671 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 63 0 - 63 1 374	0	218 0	-	0	218 0		0	218 0	- -
EB Left 55 1 55 8 63 1 Comb. L-T 0 - 55 95 731 1 Comb. L-T 0 - 325 95 731 1 Comb. L-T 1 325 95 731 1 1 Comb. T-R 1 325 95 731 1 1 Comb. T-R 1 325 95 731 1 1 Comb. T-R 1 325 95 731 1 <td< td=""><td>1 63 0 - 1 374</td><td></td><td>0</td><td></td><td></td><td>C</td><td>-</td><td></td><td>0</td><td></td></td<>	1 63 0 - 1 374		0			C	-		0	
Comb. L-1 0 - - - 0 - 0 - 0 0 0 0 0 0 0 0 1 <th1< th=""> <th1< th=""> <th1< t<="" td=""><td>u - 1 374</td><td>0</td><td>63 1</td><td>63</td><td>0</td><td>63 1</td><td>63</td><td>0</td><td>63 1</td><td>63</td></th1<></th1<></th1<>	u - 1 374	0	63 1	63	0	63 1	63	0	63 1	63
Comb. T-R 1 325 1 1 EB Right 15 0 - 2 17 0 Comb. L-T-R- 0 - 2 17 0 WB Left 21 1 21 3 24 1 WB Left 21 1 21 3 24 1 Comb. L-T 0 - 0 - 0 0 WB Thru 584 1 348 671 1 1 Comb. T-R 1 348 88 671 1 1 WB Right 113 0 - 17 130 0		387 1-	18	- 568	c	1118) - 568	C	18 0	1 1 1 1 1 1 1 1
EB Right 15 0 - 2 17 0 Comb. L-T-R- 0 - 2 17 0 WB Left 21 1 21 3 24 1 WB Left 21 1 21 3 24 1 Comb. L-T 0 - 0 - 0 0 WB Thru 584 1 348 88 671 1 Comb. T-R 1 348 0 - 0 0 WB Right 113 0 - 17 130 0	1 374	-		568	2	2	568	-		568 568
Comb. L-T-R- 0 0 WB Left 21 1 21 3 24 1 WB Left 21 1 21 3 24 1 Comb. L-T 0 - 0 - 0 0 WB Thru 584 1 348 88 671 1 1 Comb. T-R 1 348 0 - 0 1 1 WB Right 113 0 - 17 130 0	- 0	0	17 0	ı	0	17 C	-	0	17 0	1
WB Left 21 1 21 3 24 1 Comb. L-T 0 - 0 - 0 1 1 0	0		0			J			0	
Comb. L-T 0 - 0 - 0 - 0 0 WB Thru 584 1 348 671 1 Comb. T-R 1 348 671 1 1 Comb. T-R 1 348 671 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 24	κ	27 1	27	0	27 1	27	0	27 1	27
WB Thru 584 1 348 88 671 1 Comb.T-R 1 348 8 671 1 WB Right 113 0 - 17 130 0	0		0	1		U	'		0	•
WB Right 113 0 - 17 130 0	1 401	354 10	1 1	589	0	1025 1	595	0 10	1 1	595
	- 4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	. 66	- 0 - 29	800 -	1	164	CAC -	c	1 19	- cAc
Comb. L-T-R - 0 0	0		0		!)	0	
Crit. Volumes: N-S: 356 N-S:	N-S: 409		N-S:	443		N-S:	465		N-S:	465
E-W: 403 E-W:	E-W: 463		E-W:	651		E-W:	657		E-W:	657
SUM: 759 SUM:	SUM: 872		SUM:	1095		SUM:	1123		SUM:	1123
No. of Phases: 2	2			2			2			2
Volume / Capacity: [1] 0.436 [1],[2]	[1],[2] 0.482		[1],[2]	0.630		[1],[2	1 0.648		[4],[2]	0.648
Level of Service: A	A			в		1	В			B

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200. of volume is assigned to heavier lane.

70% of volume is assigned to exclusive lane. For dual turn lanes, 55% For one excl. and one opt. turn lane, Right turns on red from excl. lanes =

Right turns on red from excl. lanes = 50% of overlapping left turn. (1) The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements. (2) The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. (2) The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. (2) The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. (2) The volume to capacity ratios counts were adjusted by a 1.0 percent (1.0%) ambient growth factor to reflect year 2008 existing conditions.

CRITICAL MOVEMENT ANALYSIS

Willarnan Drive @ Third Street Peak Hour: AM Annual Growth: 1.0% Peak Hour: Annual Growth:

CSMC Project

Cedars-Sinai Medical Center / 1-992843-1

CMA9 Accutek

Project: File Name: Counts by:

Willaman Drive Third Street

N-S St: E-W St:

Date of Count: Projection Year:

Date:

2008 2023 06/23/2008

	2008 E	XIST. TR	AFFIC	2023 \	N/ AMBIE	ENT GROW	H	2023 1	V/ OTHER	ROJE	CTS	2023 V	V/ PROPO	SED PRO.	JECT	2023	W/ MITIG	ATION		
		No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	
Movement	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Vołume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	a l
NB Left	63	÷	63	6	72		72	0	72	~	72	0	72	~	72	0	72	~~		72
Comb. L-T		0	,			0	·			0				0	1			0	ı	
	0	0 0		0	0	0 1	•	0	0	0	ı	0	0	0	ı	0	0	0	ı	
	900	-, C	- 200	fe	100	C	-	ç	500	0 1	-	c	000	0,		c		0 ·	1	0
Comb. L-T-R -	007	- 0	האמ	ō	107	- 0	107	07	207	- 0	602	5	202	- 0	507	D	202	- 0	Ň	202
SBLeft	C	C		C	C	C		C	c	c		c	C	c			c	c		
Comb. L-T	D	00	,	0	2	0		5	0	00		2	5	0 0		>	>			
SB Thru	0	0	ı	0	0	0	t	0	0	0		0	0	00		0	0	00		
Comb. T-R		0	1			0	,			0	1			0	ı			0		
SB Right	0	0		0	Ð	0	,	0	0	0		0	0	0	1	0	0	0	ı	
Comb. L-T-R -		0				0				0				0				0		
EB Left	0	0	,	0	0	0	,	0	0	0	1	0	0	0		0	0	C		
Comb. L-T		0	,			0				0	1			0	1			0		
EB Thru	484	~~ ·	264	73	556	-	303	264	820		436	6	829		441	0	829		4	141
Comb. 1-R	ç	· (264	r	i.	-	303	((1	- ı	436	•	1	1	441				4	14
Comb - H D	40	5 0	•		20			N	70	-		D	22	- (1	D	52	0	ı	
- COITID. L-1-K -		>				D				Ð				D				o		
WB Left	95		95	14	109	-	109	9	115	÷	115	0	115	-	115	0	115	F	-	15
Comb. L-T		0	,			0				0	·			0	1			0		
WB Thru	1142	61 0	571	171	1314	0	657	288	1602	2	801	21	1623	7	811	0	1623	2	έQ	311
Comp. 1-K	¢	-	1	c	c	0 0		c	C	0	ı	c	c	0 (0	ı	
Comb. L-T-R -	2	00	ı	5	5	- c		>	Þ	- c		5	0		,	0	D	э с	ı	
						,				0				0				5		
Crit. Volumes:		N-S:	159			N-S:	182			N-S:	205			N-S:	205			N-S:	Ñ	205
			571			М-Ш	657			: М	801			: М-	811			E-W:	ê	11
		SUM:	730			SUM:	839			SUM:	1006			SUM:	1017			SUM:	10	117
No. of Phases:			2				2				2				2					2
Volume / Capa	icity:	ĺμ	0.416			[1],[2]	0.459			[1],[2]	0.571			111.121	0.578			111.121	0.5	:78
Level of Servic	ë		A				A			1	A			- 117. I	A				٩	
				1 1 1 1		c														
Assumptions.	2			Setuliton ie.	Jestellus :					1 + 1										

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1426, 4+ Phase=1375, Unsignalized=1200.

For dual turn lanes, 55% of volume is assigned to heavier lane. For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. Right turns on red from excl. lanes = 50% of overlapping left turn. [1] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.

CRITICAL MOVEMENT ANALYSIS

Willaman Drive @ Third Street Peak Hour: PM Annual Growth: 1.00% Annual Growth:

CSMC Project

Willaman Drive Third Street Cedars-Sinai Medical Center / 1-992843-1 CMA9 Accutek

N-S St: E-W St: Project: File Name: Counts by:

Date of Count: Projection Year:

Date:

2008 2023 06/23/2008

		2008 E)	(IST. TR/	VFFIC	2023 M	V/ AMBIE	INT GROV	VTH	2023	N/ OTHEI	R PROJEC	CTS	2023 V	V/ PROPO	SED PRO	JECT	2023	W/ MITIG	ATION		
		<u>ح</u> ت	lo. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	
NBLeft 35 1 35 4 1 41 1 41 2 43 1 333 1 333 1 333 1 333 1 333 1 333 1 333 1 333 1 333 1	Movement Vo	olume L	anes	Volume	Volume /	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	
	NB Left	35	~~	35	ŋ	41	-	41	0	43		43	0	43	-	43	O	43		7	43
	Comb. L-T		0	ı			0				0	ı			0				0	,	
	NB Thru	0	0		0	0	0	ı	0	0	0	ı	0	0	0	ı	0	0	0	ı	
	Comb. T-R		0	ı			0	ı			0	ı			0	1			0	,	
	NB Right	323	-	323	48	372	-	372	5	383	-	383	0	383		383	0	383		35	183
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Comb. L-T-R -		0				0				0				0				0		
	SB Left	0	0	,	0	0	0		С	С	С	.	C	C	c		C	C	C		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Comb. L-T		0	1	•	1	0		0	0	0 0		•)		ı	0	2	о с		
	SB Thru	0	0	,	0	0	0	,	0	0	0	,	0	0	0	,	0	0	• C	ı	
	Comb. T-R		0	,			0	,			0	ı			0	ı		•	0	,	
	SB Right	0	0	ı	0	0	0	,	0	0	0	ı	0	0	0	,	0	0	0	,	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Comb. L-T-R -		0				0				0				0				0		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	FR I off	c	c		c	C	C		c	c	c			C	c		C	C	c		Τ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Comb. L-T	0	0	1	0	þ	0 0		þ	5	0 0		5	0			0	5	o c		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	EB Thru	841	÷	472	126	968		542	392	1360	~	739	22	1382		750	0	1382		75	50
	Comb. T-R		.	472			-	542				739				750			-	75	50
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	EB Right	102	0	,	15	117	0	ı	-	118	0		0	118	0	ı	0	118	0	ı	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Comb. L-T-R -		0				0				0				0				0		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	WB Left	72	-	72	11	82	-	82	-	83	-	83	0	83	-	83	0	83	-		83
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Comb. L-T		0	ı			0	ı			0	1			0	•			0	1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	WB Thru	667	2	333	100	787	2	383	349	1116	7	558	12	1128	2	564	0	1128	2	56	164
WB Right 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0<	Comb. T-R		0				0	ı			0				0				0	1	
Comb. L-T-R- 0 0 0 0 Crit. Volumes: N-S: 287 N-S: 330 N-S: 341 N-S: 341 Crit. Volumes: N-S: 543 E-W: 625 E-W: 822 E-W: 833 SUM: 831 SUM: 1163 SUM: 1174 1174 No of Phases: 2 2 2 2 2 2 2 Volume / Capacity: [1] 0.484 [1]/[2] 0.537 [1]/[2] 0.676 [1]/[2] 0.683 Level of Service: A B B B 341 341	WB Right	0	0	•	0	0	0	1	0	0	0	1	0	0	0	ı	0	0	0	ı	
Crit. Volumes: N-S: 287 N-S: 330 N-S: 341 N-S: 341 E-W: 543 E-W: 625 E-W: 822 E-W: 833 SUM: 831 SUM: 1163 SUM: 1174 1174 No. of Phases: 2 2 2 2 2 2 2 Volume / Capacity: [1] 0.484 [1],[2] 0.537 [1],[2] 0.676 [1],[2] 0.683 Level of Service: A A A B B 341	Comb. L-T-R -		0				0				0				0				0		
E-W: 543 E-W: 822 E-W: 833 SUM: 831 955 SUM: 1163 1174 No. of Phases: 2 2 2 2 2 Volume / Capacity: [1] 0.484 [1],[2] 0.537 [1],[2] 0.676 [1],[2] 0.683 Level of Service: A A A B B 3	Crit. Volumes:		N-S:	287			N-S:	330			N-S:	341			N-S:	341			N-S:	37	41
SUM: 831 SUM: 1163 SUM: 1174 No. of Phases: 2 2 2 2 2 2 2 Volume / Capacity: [1] 0.484 [1],[2] 0.537 [1],[2] 0.676 [1],[2] 0.683 Level of Service: A A A B B 3			:M-	543			E-W:	625			E-W:	822			E-W:	833			E-W:	80	33
No. of Phases: 2 2 2 2 2 Volume / Capacity: [1] 0.484 [1],[2] 0.537 [1],[2] 0.676 [1],[2] 0.683 Level of Service: A B B		.,	SUM:	831			SUM:	955			SUM:	1163			SUM:	1174			SUM:	117	74
Volume / Capacity: [1] 0.484 [1],[2] 0.537 [1],[2] 0.676 [1],[2] 0.683 Level of Service: A A A A	No. of Phases:			2				2				2				2					5
Level of Service: A A B B B B	Volume / Capacit	iy:	[4]	0.484			[1],[2]	0.537			[1],[2]	0.676			141.121	0.683			[1].[2]	0.65	83
	Level of Service:			A				٨				8				в				8	

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200.

For dual turn lanes, 55% of volume is assigned to heavier lane. For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. Right turns on red from excl. lanes = 50% of overlapping left turn. [1] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.

CRITICAL MOVEMENT ANALYSIS

Willarman Drive @ Wilshire Boulevard Peak Hour: AM Annual Growth: 1.0% Peak Hour: Annual Growth:

CSMC Project

Willaman Drive Wilshire Boulevard Cedars-Sinai Medical Center / 1-992843-1 CMA10 Accutek

N-S St: E-W St: Project: File Name: Counts by:

Date: Date of Count: Projection Year.

06/23/2008 2008 2023

	2008	EXIST. TR	AFFIC	2023 \	W/ AMBIE	ENT GROW	HTY	2023 \	// OTHE	R PROJE	CTS	2023	NI PROP(DSED PRC	JECT	2023	W/ MITIC	SATION		
		Na. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lai	ne
Movement	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volu	amu
NB Left	115	O	ı	17	132	0	,	5	137	0	ı	0	137	0	,	0	137	0	1	
Comb. L-T		0		;		0	1			0	1			0	•			0	ı	
	164	0 0	340	25	188	0 0	391	Q	194	00	404	0	194	0 0	404	0	194	0 0		404
Comb. 1-K	63	- c		σ	7			ç	57	- c	1 1	C	73			C	73			
Comb. L-T-R	1	(0	-	o ←		1	2			þ	2	- -		0	-	(
; ; ;		•		ľ		ľ		1	ł	ľ		ľ		4			l			
SB Left	37	00	1	9	43	00		1	20	00		D	20	00		0	20	00		
COND. L-1 S.B. Thru	116	- c	- 218	17	134	- c	- 251	~	142		- 266	o	142		- 266	0	142		r	266
Comb. T-R	-	0 0		:	2	0	-)		0	1	9	!	0	,)		0	ı)
SB Right	65	0		10	74	0	ı	0	74	0	·	0	74	0	t	0	74	0	•	
Comb. L-T-R		-				-				-				-				-		
EB Left	29	-	29	4	34	-	34	0	34		34	0	34	-	34	0	34	-		34
Comb. L-T		¢	ı			0	ı			0	ı			0	,			0	,	
EB Thru	1206	0	412	181	1387	7	474	328	1715	7	584	2	1717	7	585	0	1717	2		585
Comb. T-R		-	412				474				584			-	585			-		585
EB Right	31	0	ı	ŋ	36	0	I	-	37	0	1	0	37	0	ı	0	37	0	ı	
Comb. L-T-R		0				0				0				0				0		
WB Left	48		48	7	56	-	56	2	58	-	58	0	58	-	58		58	-		58
Comb. L-T		0	ı			0	ŧ			0	ı			0	ı			0	•	
WB Thru	1970	0	663	295	2265	7	762	478	2743	2	923		2744	0	924	0	2744	2		924
Comb. T-R	!		663		i		762		!		923		1	- 1	924	'	1			924
WB Right	18	0 0	1	m	21	0 0	ı	Ð	27		•	0	21	- 0	1	D	27	0 0	ı	
Comb. L-I-K	1	D				D				5				0				D		
Crit. Volumes		N-S:	378			N-S:	434			N-S:	454			N-S:	454			N-S:		454
		E-W:	692			E-W:	796			E-W:	957			: М-Ш	957			Е-W:		957
		SUM:	1070			SUM:	1230			SUM:	1411			SUM:	1412			SUM:		1412
No. of Phase			27				7				5				5					2
Volume / Cap	acity:		0.713				0.820				0.941				0.941					0.941
Level of Serv	ice:		с				۵				ш				ш				ш	

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200. For dual turn lanes, 55% of volume is assigned to heavier lane. For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. Right turns on red from excl. lanes = 50% of overlapping left turn. Note: Year 2007 manual traffic counts were adjusted by a 1.0 percent (1.0%) ambient growth factor to reflect year 2008 existing conditions.

Willaman Drive Wilshire Boulevard Cedars-Sinai Medical Center / 1-992843-1 CMA10 Accutek

N-S St: E-W St: Project: File Name: Counts by:

CRITICAL MOVEMENT ANALYSIS

Willaman Drive @ Wilshire Boulevard Peak Hour: Annual Growth: 1.00%

CSMC Project

06/23/2008 2008 2023 Date: Date of Count: Projection Year:

	2008 E	EXIST. TR.	AFFIC	2023	W/ AMBIE	ENT GROV	VTH	2023 \	W/ OTHE	R PROJE	CTS	2023 \	V/ PROPO	SED PRO	JECT	2023	W/ MITIG	ATION	
		No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
NB Left	42	0	ı	9	49	0	ï		50	0	ł	0	50	0	,	0	50	0	P
Comb. L-T NB Thru	176	0 0	- 265	26	202	0 0	304	¢,	205	00	- 211	c	205	00		C	200	00	1
Comb. T-R	2	00	1	2	101	00	1 1	c	202	00		0	C117		- - -	2	CU12		۱۳۵ ۱۳۵
NB Right Comb. L-T-R	. 46	0 +	ı	7	53	0 -	,	n	56	0	,	0	56	0.0-	ı	0	56) O -	
SB Left	13	00	1	5	15	0 0	1	6	24	0 (1	0	24	0	1	0	24	0	
SB Thru	296	00	- 336	44	340	00	- 387	N	342	00	- 398	0	342	0 0	- 398	C	342	00	- 105
Comb. T-R		0				0		I		0		,	1	00)) ,	נ	4	0	- 12
SB Right	27	0	ı	4	31	0	ı	0	31	0	1	0	31	0		0	31	0	,
Comb. L-T-R		~-				-				-				-					
EB Left	45	-	45	7	52	-	52	0	52		52	0	52	-	52	0	52	-	52
Comb. L-T		¢,	1			0				D	1			0	ı			0	
EB Inru	1655	CN 7	571	248	1904	си т	657	530	2434	2	835	-	2435	2	835	0	2435	7	835
EB Right	58	- 0	- 100 -	σ	99	- c	/00 -	LC.	71		C58 -	C	74	c	835	Ċ	1	c	835
Comb. L-T-R		0				0		•		00		0	-	00	,	2		00	,
)	
WB Left	53	-	53	8	60	-	60	4	64	-	64	0	64	-	64	0	64		64
Comb. L-T	1001	0 0	1			0 1				0				0				0	ł
Comb T-R	1301	√ +	40/ 167	707	8801	N +	53/	380	1968	N 7	667	2	1970	~ ~	668	0	1970	N.	668
WB Right	19	- 0	5	n	22	- 0	100 -	12	34	- c	100 -	C	PE	- 0	608	C	15	c	668
Comb. L-T-R		ο				0		!	,	0)	5	0		þ	5	00	1
Crit. Volumes:		N-S:	379			N-S:	436			N-S:	448			÷S-N	448			is-N	AAA
		E-W:	624			E-W:	717			E-W:	899			Е-N:	006			М-	006
		SUM:	1002			SUM:	1153			SUM:	1347			SUM:	1347			SUM:	1347
No. of Phases			2				2				7				2				
															ı				4
Volume / Capi	acity:		0.668				0.768				0.898				0.898				0.898
Level of Serviu	.e:		В				U				D				D				D

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200. For dual turn lanes, 55% of volume is assigned to heavier lane. For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. Right turns on red from excl. lanes = 50% of overlapping left turn. Note: Year 2007 manual traffic counts were adjusted by a 1.0 percent (1.0%) ambient growth factor to reflect year 2008 existing conditions.

Assumptions:

101 1089 1190

N-S: E-W: SUM:

101 1089 1190

N-S: E-W: SUM:

101 1078 1179

N-S: E-W: SUM:

101 829 930

N-S: E-W: SUM:

88 721 809

N-S: E-W: SUM:

2

Crit. Volumes:

0.693

[1],[2]

0.693

[1],[2]

0.686 N

[1],[2]

0.520

[1],[2]

∢

∢

Ξ

Volume / Capacity: Level of Service:

Vo. of Phases:

N

2 0.469 ш

ഫ

ß

N

For dual turn lares, 55% of volume is assigned to heavier lane. For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. Right turns on red from excl. lanes = 50% of overlapping left turn. [1] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200. For dual turn lanes, 55% of volume is assigned to heavier lane. For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. Right turns on red from excl. lanes = 50% of overlapping left turn.

vv .u Proiect:	Cedars-6	eer Sinal Medic	al Center / 1	-992843-1				AIIIUAI GI	DWILL.	۵/ NV. I						Projectic	Count: on Year		2008
File Name: Counts by:	CMA11 Accutek							CSMC Pr	oject								0111601.		2202
	2008	EXIST. TR	AFFIC	2023 V	V/ AMBI	ENT GROV	NTH	2023 \	V/ OTHE	R PROJE	STS	2023	W/ PROP	OSED PR	DJECT	2023	W/ WITIC	BATION	
		No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	Na. of	Lane	Added	Total	No. af	Lane
Movement	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
VB Left	12	0	ı	2	14	0	1	0	14	0	,	0	14	0	ŀ	0	14	0	•
Comb. L-T		0	ı			0	1			0				0		,	:	0	ı
VB Thru Comb. T-R	16	0 0	, 61	5	6	0 0	02 -	0	19	0 0	- 70 -	0	19	00	- 70	0	19	00	- 70
VB Right Comb. L-T-R	- 32	0 -	ı	Ω	37	0-	ı	0	37	0-	ı	0	37	0-	ı	0) 37	00-	
SB Left	111	0	1	17	128	0		0	128	0		0	128	0	-		128	0	ı
Comb. L-T			221				254			-	254			1	254			-	254
SB Thru Comh T-R	110	00	1 1	17	127	00		0	127	00		0	127	00	r	J	127	00	
SB Right	132	C	132	20	152	> - -	152	72	224		- 224	0	224	C	- 224	D	1 224	C	- 224
Comb. L-T-R	,	0				0				0				0				0	
EB Left	69	c	69	10	62	- c	62	45	124	- c	124	0	124	c	124	0	124	- 0	124
EB Thru	1094		554	164	1258	C	638	406	1664	c	- 841	22	1686	C	- 852	0	1686	C	- 852
Comb. T-R	4	c	554	c	1	~ c	638	c	1	- c	841	c	1	- 0	852	C	Ţ	- (852
ze rigii Comb. L-T-R	2	00	1	V	2	00		0	2	00	ŀ	S		00	ı	ب		5 0	ı
VB Left	42	c	42	9	49	← c	49	0	49	c	49	0	49	- (49	0	49	- (49
VB Thru	616	0 0	308	92	709	2 01	354	306	1015	5 01	- 507	12	1027	n c	- 513	0	1027	2 (1	- 513
Comb. T-R NB Richt	22	0 -	- 57	α	65	o -	65	85	150	0 -	- 150	c	150	0 +	- 150	c	150	0 7	1
Comb. L-T-R		0		I		0	}	}		0		,		0		,	2	• 0	2
Crit. Volumes		N-S: T	172			N-S:	197			N-S:	197			N-S:	197			N-S:	197
		SUM:	190 190			SUM:	060 884			SUM:	869 1087			E-W: SUM:	1098			E-W: SUM:	900 1098
Vo. of Phase.	S:		2				2				2				8				N
/olume / Cap	acity:	[4]	0.442			[1]'[2]	0.489			[1],[2]	0.625			[1].[2]	0.632			[1],[2]	0.632
evel of Servi	ice:		A				A				В				в				B

CRITICAL MOVEMENT ANALYSIS

LINSCOTT, LAW & GREENSPAN, ENGINEERS 236 N. Chester Ave., Suite 200, Pasadena, CA 91106 626.796.2322 Fax 626.792.0941

For dual turn lanes, 55% of volume is assigned to heavier lane.
 For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane.
 For one excl. and one opt. turn lane, 70% of volume is assigned to turn.
 For une to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements.
 [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.
 [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.
 [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.
 [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.
 [2] The volume to capacity ratios counts were adjusted by a 1.0 percent (1.0%) ambient growth factor to reflect year 2008 existing conditions.

LINSCOTT, 236 N. Che: 626 706 233	LAW & GREENSPAN, ENGINEERS ster Ave., Suite 200, Pasadena, CA 91106 20 5-655 722 0041	CRITICAL MOVEM	NT ANALYSIS
107001.070			
		San Vicente Boulevi	ard @ Melrose Avenue
N-S St:	San Vicente Boulevard	Peak Hour:	AM
E-W St:	Melrose Avenue	Annual Growth:	1.0%

Metroscarea Avenue Metroscares Avenue Cedars-Sinai Medical Center / 1-992843-1 CMA12 Accutek N-S St: E-W St: Project: File Name: Counts by:

CSMC Project

06/23/2008 2008 2023

Date: Date of Count: Projection Year:

	2008	EXIST. TR	AFFIC	2023 V	V/ AMBIE	ENT GROW	VTH	2023 \	N/ OTHEF	ROJEC	TS	2023 V	// PROPO	SED PRO	JECT	2023	W/ MITIG	ATION		
		No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	
Movement	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	
NB Left	83	-	83	5	95		95	47	142	~	142	0	142		142	0	142	-	14	Ņ
Comb. L-T		0	ı			0				0				0				0	ı	
NB Thru	635	2	318	95	731	2	365	282	1013	2	506	с	1016	2	508	0	1016	2	50	80
Comb. T-R		0				0	•			0	1			0	1			0	I	
NB Right	95	-	95	14	109		109	82	191		191	-	192		192	0	192	, - 1	19	N
Comb. L-T-R -		0				0				0				0				0		
SB Left	101	1	101	15	116	-	116	18	134	-	134	0	134	-	134	0	134		13	4
Comb. L-T		0	,			0				0	1			0	1			0	I	
SB Thru	492	7	246	74	566	2	283	277	843	2	421	80	851	0	425	0	851	0	42	ហ្គ
Comb. T-R		0 .	, '	C	ç	•	<u>و</u> ۱	ľ		о т		c	001	0 1	1	c	001		1	
VE Right	47	- c	42	٥	49	- c	43	20	0 01	- c	201	0	201	- c	100	-	001	- c		0
соты. L-I -К		2				C				5				0				5		
EB Left	78	-	78	12	89	-	68	25	114	, .	114	0	114		114	0	114			4
Comb. L-T		0	ı			0	ı			0	•			0	,			0	ŧ	
EB Thru	414	 .	235	62	476	. .	270	140	616	·	347	0	616	. .	347	0	616	~	5.9	<u> </u>
Comb. T-R	Ĺ	· (235	c	č	 (270	ç	ł	c	347	c	<u> </u>	. 	347	c	ł	- c	34	~
EB Right	56	o	,	÷	64	0	•	13	11	þ	,	0	11	0	1	D	2	0	,	
Comb, L-T-R .		0				0				0				0				0		
WB Left	191	-	191	29	220		220	38	258	÷	258	2	260	F	260	0	260	-	26	0
Comb. L-T		0	ı			0	1			0	ı			0	ł			0	1	
WB Thru	725	c	725	109	834	c	834	06	924	- c	924	0	924	c	924	0	924	C	92	4
	166	C	166	26	100	C	190	75	215	C	215	C	215		215	C	215	- c	- 10	LC.
Comb. L-T-R -		. 0		1		0		ł	1	0		ł		0	1	I	1	0	l	
Crit. Volumes:		N-S:	419			N-S:	481			N-S:	640			N-S:	642			N-S:	64	2
		E-W: SUM:	803 1222			E-W: SUM:	923 1405			E-W: SUM:	1038 1679			E-W: SUM:	1038 1680			E-W: SUM:	103	80
i i			c				c				c				c					,
No. of Phases			N				N				2				7					N.
Volume / Capi	acity:		0.814				0.937				1.119				1.120				1.12	Q,
Level of Serviu	je.		D				ш				ш				ш				Ŀ	

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200. For dual turn lanes, 55% of volume is assigned to heavier lane. For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. Right turns on red from excl. lanes = 50% of overlapping left turn. Note: Year 2007 manual traffic counts were adjusted by a 1.0 percent (1.0%) ambient growth factor to reflect year 2008 existing conditions.

Assumptions:
San Vicente Boulevard Melrose Avenue Cedars-Sinai Medical Center / 1-992843-1

CMA12 Accutek

N-S St: E-W St: Project: File Name: Counts by:

CRITICAL MOVEMENT ANALYSIS

San Vicente Boulevard @ Melrose Avenue Peak Hour: Annual Growth: 1.00%

CSMC Project

 Date:
 06/23/2008

 Date of Count:
 2008

 Projection Year:
 2023

	2008 EXIST. 1	RAFFIC	2023	W/ AMBI	ENT GROW	/TH	2023 \	N/ OTHE	R PROJE	CTS	2023 \	V/ PROPC	SED PRO.	JECT	2023 V	N/ MITIG	ATION	
	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
IVIOVEIMENT VC		voiume	voiume	volume	Lanes	volume	volume	volume	Lanes	volume	Volume	Volume	Lanes	Volume	volume	volume	Lanes	voiume
NB Left	88 1	88	13	101	c	101	24	125	~ C	125	0	125	- c	125	0	125	← C	125
NB Thru	784 2	392	118	901	000	451	419	1320	0 01 0	660	80	1328	000	664	0	1328	0 01 0	664
Comb. I-K NB Right Comb. L-T-R -	223 1	- 223	33	257	0 - 0	- 257	49	306	0-0	306	N	308	0-0	308	0	308	00	308
SB Left	153 1	153	23	175	- c	175	43	218	c	218	0	218	c	218	0	218	c	218
SB Thru	669 2	334	100	769	5 10 0	- 384	418	1187	2 10 0	- 593	Ŋ	1192	5 0 0	- 596	0	1192	5 M C	- 596
comb. L-T-R SB Right Comb. L-T-R -	87 1 0	- 87	13	100	0 + 0	100	46	146	0-0	- 146	0	146	070	- 146	0	146	0 0	- 146
EB Left	136 1	136	20	157	c	157	85	242	c	242	0	242		242	0	242	c	242
EB Thru Comh T.R	696	418 418	104	800)	480	135	935) .	580	0	935	o ← ←	580	0	935		580
EB Right Comb. L-T-R -	139 0	1	21	160		1	65	225	- 0 0	1 1 1	0	225	00	1	0	225	- 0 0	ı I
WB Left Comh 1_T	179 1	179	27	206	- 0	206	81	287	- c	287	-	288	c	288	0	288	c	288
WB Thru	478 1	478	72	549	o ← c	549	169	718	o – c	718	ο	718	o c	718	0	718	o — a	718
Comb. I-K WB Right Comb. L-T-R -	215 1	215	32	247	0-0	- 247	38	285	0 - 0	- 285	0	285	0-0	- 285	0	285	070	- 285
Crit. Volumes:	S-N N	544			S-N S-N	626 700			-S-N S-N	879			N-S: N	883			N, N,	883
	SUM:	1158			SUM:	1332			SUM:	900 1839			SUM:	900 1843			SUM:	900 1843
No. of Phases:		2				2				2				2				2
Volume / Capacity	y:	0.772				0.888				1.226				1.228				1.228
Level of Service:		ပ				٥				ш				ш			-	
Assumptions:	Maximur For dual For one Right tur Note: Ye	m Sum of Crith turn lanes, excl. and one ins on red fror ar 2007 manu	ical Volume 55% opt. turn la n excl. lane ual traffic co	es (Interse ine, ss = sunts wer	iction Capa of volume i 70% c 50% c sadjusted b	city): 2 Pha: is assigned of volume is of overlappii yy a 1.0 peri	se=1500, 3 to heavier assigned t ag left turn. cent (1.0%)	Phase=1 lane. o exclusiv) ambient	'425, 4+ P. /e lane. growth fac	hase=1375, tor to reflec	Unsignali: t year 200	zed=1200. 8 existing	conditions.					

LINSCOTT, LAM 236 N. Chester A 626.796.2322	V & GREENSP Ave., Suite 200, Fax 626.792.0	AN, ENGINEE , Pasadena, C, 1941	ERS A 91106			-1	CRITICAL I	MOVEME	NT ANAL'	VSIS								
N-S St: Sa E-W St: Be Project: Ce File Name: CN Counts by: Acr	ın Vicente Boul vverly Boulevar adars-Sinai Mec AA13 cutek	levard d dical Center / 1	1-992843-1			• ~	San Vicent Peak Hour. Annual Gro CSMC Pro	e Bouleva wth: ject	rd @ Bevi AM 1.0%	erly Boulev.	ard				Date: Date of C Projectior	ount: Year:		06/23/2008 2008 2023
	2008 EXIST.	TRAFFIC	2023 W	// AMBIENT	GROWT		2023 M	// OTHER	PROJEC	TS	2023 M	// PROPC	SED PRO	JECT	2023	W/ MITIG	ATION M2 25	-
Movement Vo	No. of olume Lanes	Volume	Added Volume V	Total Nc 'olume La	o. of nes 🛝	Lane /olume	Added Volume V	Total (No. of -artes	Lane Volume	Volume	Total Volume	No. of Lanes	Lane Volume	Volume	l otal Volume	No. of Lanes	Lane Volume
NB Left	86	1 98	15	113		113	14	127	+ c	127	0	127	c	127	0	127	← C	127
VB Thru	746	2 373	112	858	5 01 0	- 429	330	1188	000	594	ო	1191	000	596	0	1191	000	596
Comb. 1-R NB Right Comb. L-T-R -	46	- 46 0	7	53	0 - 0	53	39	92	00	92	0	92	0-0	- 92	0	92	0-0	- 92
SB Left	. 86	1 98	15	113	-	113	47	160		160	0	160	-	160	0	160	← (160
Comb. L-T SB Thru	752	0 - 2 376	113	865	0 0	- 433	288	1153	0 0	- 577	Ð	1159	0 0 0	- 580	0	1159	500	- 580
Comb. T-R SB Right Comb. L-T-R -	225	0 - 1 225 D	34	259	0 - 0	- 259	13	272	0 - 0	- 272	С	275	0 - 0	- 275	0	275	0 - 0	- 275
EB Left	48	1 48	7	56	-	56	12	68	-	68	F	69		69	0	69	(69
Comb. L-T EB Thru	581	1 340	87	668	0	391	219	887	0 10 0	- 443	7	894	0 0 0	- 447	0	894	D N C	- 447
Comb. I-R EB Right Comb. L-T-R -	66	1 340 0 - 0	15	114	-00	- 65 - 65	33	147	00	- 147	0	147	00	- 147	0	147	0-0	- 147
WB Left	101	1 101	15	116	c	116	20	186		186	0	186	c	186	0	186	- c	186
WB Thru	1332	2 666	200	1532	2 (1) (- 766	248	1780	2 14 0	890	17	1797	200	- 668	0	1797	0 (1) (668
Comb. 1-R WB Right Comb. L-T-R -	119	0 - 119 0	18	137	0 - 0	- 137	40	177	0-0	- 177	0	177	0-0	- 177	0	177	0-0	- 177
Crit. Volumes:	N-S: E-W: SUM:	474 715 1189		(~山)	:8-1 :W- :ML	545 822 1367			N-S: E-W: SUM:	754 958 1712			N-S: E-W: SUM:	755 967 1723			N-S: E-W: SUM:	755 967 1723
No. of Phases:		2				2				2				2				2
Volume / Capaci	ity: f	1] 0.723			1],[2]	0.811			[1],[2]	1.041			[1],[2]	1.048			[1],[2]	1.048
Level of Service.		с								ц.				ш				Ŀ
Assumptions:	Maxim For du For one Right tu	um Sum of Crit al turn lanes, excl. and one urns on red fror	tical Volumes 55% (s opt. turn lan m excl. lanes	: (Intersectic of volume is 'e,	on Capaci assigned 70% of 50% of	ty): 2 Phas t to heavier volume is overlappin	e=1500, 3 ·lane. assigned tu g left turn.	Phase=14,) exclusive	125, 4+ Ph e lane.	iase=1375,	Unsignaliz	zed=1200.						

[1] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements.
[2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.
[2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.
[2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.
Note: Year 2007 manual traffic counts were adjusted by a 1.0 percent (1.0%) ambient growth factor to reflect year 2008 existing conditions.
Note: Mitigation for the Entitled Master Plan includes installation of an EB right-tum only lane which is assumed in the Future Pre-Project condition.

San Vicente Boulevard Beverly Boulevard Cedars-Sinai Medical Center / 1-992843-1

CMA13 Accutek

N-S St: E-W St: Project: File Name: Counts by:

CRITICAL MOVEMENT ANALYSIS

San Vicente Boulevard @ Beverly Boulevard Peak Hour: PM Annual Growth: 1.00% Peak Hour: Annual Growth:

CSMC Project

Projection Year: Date of Count:

Date:

2008 2023 06/23/2008

	2008 E	XIST. TR/	VFFIC	2023	W/ AMBI	ENT GROW	VTH	2023	N/ OTHEI	R PROJEC	CTS	2023 \	N/ PROPC	OSED PRO	JECT	2023	W/ MITIG	ATION	
-	-	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
NB Left	116	C	116	17	134	c	134	36	170	c	170	0	170	~- C	170	0	170	، م	170
	733	5 (1) (367	110	843	0 01 0	422	413	1256	0 00 0	- 628	7	1263	2 (1)	- 632	0	1263	00	- 632
Comb. I-K NB Right Comb. L-T-R -	222	070	222	33	256	0 - 0	- 256	68	324	0-0	- 324	O	324	0 - 0	- 324	0	324	0 - 0	- 324
SB Left	159	- 0	159	24	182	c	182	61	243	- 0	243	0	243	< (243	0	243	- (243
SB Thru	686	201	343	103	789	2 14 1	394	453	1242	5 01 0	- 621	4	1246	0 01 1	- 623	0	1246	00	- 623
Comb. I-K SB Right Comb. L-T-R -	96	0-0	96	14	110	0 - 0	110	17	127	0 - 0	- 127	2	129	0 - 0	- 129	0	129	0 ~ 0	- 129
EB Left	98	÷ 1	98	15	113	÷	113	20	133	-	133	e	136	÷	136	0	136	-	136
Comb. L-T EB Thru	1053	0 -	- 617	158	1211	0	- 709	337	1548	0 0	- 774	18	1566	0 0	- 783	0	1566	0 N	- 783
Comb. I-R EB Right Comb. L-T-R -	180	-00	-	27	207	- 0 0		15	222	0-0	- 222	0	222	0-0	- 222	O	222	0 - 0	- 222
WB Left	82	- d	82	12	94	← (94	31	125		125	0	125		125	o	125	ر - ۱	125
WB Thru	190	0 10 0	- 395	118	908	0 01 0	- 454	289	1197	0 0 0	- 599	10	1207	000	- 604	0	1207	0 0 1	- 604
Comb. I-K WB Right Comb. L-T-R -	155	0-0	- 155	23	178	0-0	- 178	59	237	0-0	- 237	0	237	0-0	- 237	D	237	0 - 0	- 237
Crit. Volumes:		N-S: E-W: SUM:	525 698 1224			N-S: E-W: SUM:	604 803 1407			N-S: E-W: SUM:	871 899 1771			N-S: E-W: SUM:	875 908 1783			N-S: SUM: SUM:	875 908 1783
No. of Phases:			7				2				2				N				2
Volume / Capac Level of Service	itty:	[1]	0.746 C			[1],[2]	0.838 D			[1],[2]	1.081 F			[1].[2]	1.089 F			4 [1],[2]	1.089
Assumptions:	<u>אתת הנ</u> אלא א	flaximum 5 or dual tur or one exc Right turns I] The volu I] The volu ote: Year ote: Mitigi	ium of Critic in lanes, A. and one (on red from the to capa the to capa 2007 manu, stion for the	ial Volume 55% 55% i excl. lane i excl. lane city ratios i city ratios i al traffic co	s (Interse ne, s = have beei have beei nunts werc faster Pla	ction Capa of volume 70% c 50% c n reduced t n reduced t a adjusted t n includes i	city): 2 Phase is assigned of volume is of overlappit y 0.07 to ac y 0.03 to ac y a 1.0 perv installation c	se=1500, 3 to heavier I assigned tr assigned turn. ig left turn. count for th count for th count for th com fan EB rig	Phase=1 lane. o exclusiv he installs he installs th-turn or tht-turn or	425, 4+ Pi /e lane. // ation of the growth fac /ity lane wh	iase=1375, Wilshire W Wilshire W Wilshire W tor to reflec	Unsignaliz Unsignaliz est ATSA est ATCS t year 200 med in the	ed=1200. System i system im B existing Future Pru	mprovemen provement conditions.	ıts. s. əndition.				

CRITICAL MOVEMENT ANALYSIS

San Vicente Boulevard @ Gracie Allen Drive/Beverly Center Entrance-Exit Peak Hour: AM Annual Growth: 1.0%

CSMC Project

San Vicente Boulevard Gracie Allen Drive/Beverly Center Entrance-Exit Cedars-Sinai Medical Center / 1-992843-1 CMA14 Accutek

N-S St: E-W St: Project: File Name: Counts by:

Date: Date of Count: Projection Year:

2008 2023 06/23/2008

5	JOB EXIST. T	RAFFIC	2023	<i>NI</i> AMBIE	INT GROW	VTH	2023 V	V/ OTHEF	ROJEC	:TS	2023 V	// PROPO	SED PROJ	ECT	2023 V	W/ MITIG/	ATION	
	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement Volu	tme Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
NB Left	72 1	72	5	82	C	82	50	132	c	132	Q	137	c	137	0	137	<u>~</u> (137
	814 2	407	122	936	0 0 0	468	320	1256	2010	- 628	0	1256	500	- 628	0	1256	5 N (- 628
Comb. r-r. NB Right [1] Comb. L-T-R -	45 0	- 45	7	52	00	52	0	52	0 - 0	52	0	52	0-0	52	O	52	0 - 0	- 52
SB Left	46 1	46	7	53	- 0	53	ο	53		53	0	53		53	0	53	-	53
Comb. L-1 SB Thru	0 726 1	455	109	835	о г .	523	359	1194	0 01	- 597	0	1194	0 0	- 597	0	1194	0 N	- 597
Comb. I-K SB Right	1 183 0	455	27	210	- 0	523	34	244	0	- 244	9	250	0 -	- 250	0	250	0 -	- 250
Comb. L-T-R -	0				0				0				0				0	
EB Left Comb J T	71 1	71		81		81	64	145	~ ~	80	3	148	20	82	0	148	20	82
EB Thru	22 0	t i	ю	26	00		0	26	00	1 1	0	26	00		0	26	00	
Comb. T-R EB Riaht	1 1	52 69	15	114		60 80	ι.	119		61 83	5	121		62 85	C	101		62 85
Comb. L-T-R -	0	1	!		0	2)	2	0	3	1	1	- 0	3	0		- 0	2
WB Left	4	4	-	ъ	c	5	0	5	- 0	5	0	5	- (5	0	2		Ω
WB Thru	0 8	9	0	ო	00	- 7	0	ŋ	00	- 7	0	ы	00	®	0	ę	00	- 7
Comb. T-R WB Rinht	a 0 +	ۍ ۲	+	10	0 +	-	c	10	0 +	-	c	C F	0 -	ی ۱	c	Ċ	0 1	۲ ۱
Comb. L-T-R -	, 	0	-	2		-	þ	2		-	5	2		D	2	2		~
Crit. Volumes:	N-S: E-W: SUM:	526 77 603			N-S: E-W: SUM:	605 89 694			N-S: E-W: SUM:	730 90 820			N-S: E-W: SUM:	735 92 827			N-S: E-W: SUM:	735 92 826
No. of Phases: (EB-WB Split Phas	e)	m				ю				3				ς				т
Volume / Capacity:	[2]	0.353			[2],[3]	0.387			[2],[3]	0.475			[2]'[3]	0.480			[2],[3]	0.480
Level of Service:		A				A				A			'	4			4	_
Assumptions:	Maximun For dual. For one (Right turn [7] The vr [3] The vr Note: Yea	n Sum of Criti turn lanes, excl. and one ns on red fron nound right-tu ourme to capt ourme to capt sr 2007 manu	cal Volume. 55% opt. turn laı n excl. lanev nerthas an c scity ratios t acity ratios f al traffic coi	s (Intersec of volume ne, s = werlappin; neve been nave been unts were	ction Capax is assigne 70% c 50% c g phase wi ireduced t reduced t adjusted t	city): 2 Phas ed to heaviei of volume is of overlappir ith the westt yy 0.07 to ac yy 0.03 to ac yy a 1.0 pero	e=1500, 3 -lane. assigned tu assigned tu assigned tu assigned tu assigned tu count for th count for th count for th count for th	Phase=1. o exclusiv e. 'e installa 're installa ambient <u>(</u>	425, 4+ Pt. e lane. tion of the growth faci	iase=1375, Wilshire W Wilshire W tor to reflec	Unsignaliz est ATSAC est ATCS v t year 2004	ed=1200. system ir system im; 8 existing c	nprovemeni provements conditions.	<u>ب</u>	< < 0 a b t	Vote: Miti, Aaster Pla of a secon SB right- seen assu Pre-Projec	gation for the an includes in d EB left-turr -turn lane wh. rmed in the F. ct Condtion.	Entitled stallation lane and ch has uture

CRITICAL MOVEMENT ANALYSIS

San Vicente Boulevard @ Gracie Allen Drive/Beverly Center Entrance-Exit Date: Peak Hour: PM Annual Growth: 1.00% Projection Year:

CSMC Project

San Vicente Boulevard Gracie Allen Drive/Beverly Center Entrance-Exit Cedars-Sinai Medical Center / 1-992843-1 CMA14 Accutek

N-S St: E-W St: Project: File Name: Counts by:

06/23/2008 2008 2023 r

	2008 E	XIST. TR/	VFFIC	2023	W/ AMBIE	ENT GROV	NTH	2023	N/ OTHE	R PROJE	CTS	2023	W/ PROPO	DSED PRO.	JECT	2023 \	W/ MITIG/	ATION	
Movement V	/olume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Volume	Volume	No. of Lanes	Lane Volume	Volume	Total Volume	No. of Lanes	Lane Volume
NB Left	39		39	9	45		45	25	70		20	n	73	-	73	o	73	÷	73
Comb. L-I NB Thru	754	0 0 0	- 377	113	868	0 M C	- 434	323	1191	2 (1)	- 595	0	1191	00	- 595	0	1191	0 0	- 595
Comb. T-R NB Right [1] Comb. L-T-R -	136	0 ~ 0	- 136	20	157	0-0	- 157	0	157	0 - 0	- 157	D	157	0 - 0	- 157	0	157	0 - 0	- 157
SB Left	84	c	84	13	96	- د	96	0	96	c	96	0	96	c	96	0	96	~ c	96
SB Thru	800	⊃ -	442	120	920) r	- 509 509	482	1402	2010	701	0	1402	000	- 701	0	1402	5 M C	- 701
SB Right Comb. L-T-R -	85	-00	N 1 1 1	13	68	- 0 0	0 0 1	17	115	0 0	115	4	119	0-0	119	0	119	0 - 0	119
EB Left	298	- (298	45	343		343	194	537	2	295	7	544	5	299	0	544	5	299
Comb. L-1 EB Thru	53	00		8	60	00	1 1	0	60		1 1	0	60	00	1 1	0	60	00	1 1
Comb. T-R EB Right Comb. L-T-R -	143	0	96 100	22	165	0	115	10	175	0	113	Ω	180	0	114	0	180	0	114 126
WB Left	179	- c	125	27	206	c	144	0	206	c	144	0	206	c	144	0	206	- 0	144
	25	000	125	4	29	000	- 143	0	29	000	- 143	0	29		- 144	0	29	000	- 143
WB Right Comb. L-T-R -	171	o ← ←	125	26	196	- - -	144	0	196	⊃ <i>←</i> ←	144	o	196	o ← ←	- 144	0	196		- 144
Crit. Volumes:		N-S: E-W: SUM:	482 423 905			N-S: E-W: SUM:	554 487 1041			N-S: E-W: SUM:	771 439 1210			N-S: E-W: SUM:	774 443 1217			N-S: E-W: SUM:	774 443 1217
No. of Phases: (EB-WB Split PI	hase)		ε				ю				n				m				Υ
Volume / Capac Level of Service	sity: *:	[2]	0.565 A			[2].[3]	0.630 B			[2],[3]	0.749 C			[2],[3]	0.754 C) [2]/[3]	0.754
Assumptions:	w F F F F F F 店 店 店 店 店	faximum 5 or dual tur or one ext light turns lj Northbo ij The volu ij The volu ote: Year	ium of Critik n lanes, l. and one on red fron und right-tu me to capa me to capa 2007 manu	al Volume 55% 55% rurn la n excl. lane. ru has an c city ratios l city ratios l al traffic co	s (Interse ne, s = verlappin 'ave beer 'ave beer unts were	ction Capa of volume 70% 19 phase w n reduced i n reduced i s adjusted i	ceity): 2 Phas is assigned of volume is of overlappii iith the west! by 0.07 to ac by 0.03 to ac by a 1.0 pen	e=1500, 3 to heavier assigned t assigned t assigned t assigned t assigned turn. count for t scount for t cont for t	Phase=1 lane. o exclusiv se. he installi he installi) ambient	425, 4+ P /e lane. /e lane. /e lane. growth fa	hase=1375, wilshire W wilshire W ctor to refle	Unsignali lest ATSA lest ATCS ct year 200	zed=1200. C system i system im	mprovement provements conditions.	र्थ स		Note: Mitti Master Pla of a secon a SB right- been assu Pre-Projec	gation for the an includes in d EB left-turr turn lane wh. med in the F. t. Condtion.	Entitled stallation lane and ch has uture

N-S St: E-W St: Project: File Name: Counts by: <i>J</i>	San Vice Third Strt Cedars-S CMA15 Accutek	inte Boulev: eet Sinai Medici	ard al Center / 1	-992843-1				San Vicen Peak Houi Annual Gr CSMC Pr	te Boulev : owth: <i>ject</i>	ard @ Thir AM 1.0%	d Street					Date: Date of C Projectior	count: n Year:		06/23/2008 2008 2023	
Movement	2008 Volume	EXIST. TR No. of Lanes	AFFIC Lane Volume	2023 V Added Volume	V/ AMBIE Total Volume	ENT GROM No. of Lanes	/TH Lane Volume	2023 V Added Volume	V/ OTHEI Total Volume	R PROJEC No. of Lanes	TS Lane Volume	2023 M Added Volume	// PROPO Total Volume	SED PRO. No. of Lanes	JECT Lane Volume	2023 Added Volume	W/ MITIG Total Volume	ATION No. of Lanes	Lane Volume	1
NB Left Comb. L-T NB Thru Comb. T-R NB Right Comb. L-T-R -	96 702 12	-000	96 - 357 357 -	14 105 2	110 807 14	-000	- 110 411 411	88 344 0	198 1151 14	-000	- 198 583 583	ت ی م	207 1156 14	-000	207 - 585 - 585	000	207 1156 14	-000	207 - 585 - 585 -	T
SB Left Comb. L-T SB Thru Comb. T-R SB Right Comb. L-T-R	89 543 123	-000-0	89 - 272 - 123	13 82 18	102 625 142	-000-0	102 312 142	57 253 12	159 878 154	-000-0	159 - 439 - 154	0 7 0	159 880 154	-000-0	159 - 440 154	0 0 0	159 880 154	-000-0	159 - 440 - 154	1
EB Left Comb. L-T EB Thru Comb. T-R EB Right Comb. L-T-R -	59 428 65	-000	59 - 246 246 - 246	9 64 10	67 492 74	-000	67 - 283 - 283 - 283	12 144 31	79 636 105	-000-0	79 - 318 - 105	o n 4	79 641 109	-000-0	- 79 - 321 - 109	000	79 641 109	-000-0	79 - 321 - 109	
WB Left Comb. L-T WB Thru Comb. T-R WB Right Comb. L-T-R -	48 1266 158	-000	48 - 712 712 -	7 190 24	56 1455 181	-000	, 818 818 818	0 328 14	56 1783 195	-000	56 989 - '	0 7 0	56 1794 195	-000	56 995 995	0 0 0	56 1794 195	-000		1
Crit. Volumes:		N-S: E-W: SUM:	446 770 1216			N-S: E-W: SUM:	513 886 1398			N-S: E-W: SUM:	742 1069 1810			N-S: E-W: SUM:	744 1074 1818			N-S: E-W: SUM:	744 1074 1818	
No. of Phases Volume / Capɛ Level of Servic	s: acity: ce:	[1]	2 0.741 C			[2]'[1]	2 0.832 D			[1],[2]	2 1.107 F			[1],[2]	2 1.112 F			[1]'[2]	2 1.112 F	
Assumptions	in	Maximum For dual tu For one ey Right turns [1] The voi [2] The voi Note: Yeai	Sum of Criti Sum of Criti urn lanes, kcl. and one s on red from lume to caps lume to caps	cal Volumes 55% opt. turn lar excl. lanes acity ratios l scity ratios l al traffic co	s (Interse of volum ne, s = nave bee nave bee unts wer	ction Capa e is assigne 70% 50% n reduced l n reduced l e adjusted l	city): 2 Phas sd to heavier of volume is of overlappin by 0.07 to ac by a 1.0 peru	e=1500, 3 lane. assigned t assigned t assign	Phase=1 o exclusiv he installi he installi) ambient	425, 4+ Pf e lane. ation of the ation of the growth fac	iase=1375, Wilshire W Wilshire W to reflec	Unsignaliz est ATSAC est ATCS . t year 200.	ed=1200. ; system in system im 8 existing	nprovemer provement conditions.	ıts. S.		Note: Mit Master PI of an EB which has in the Fut condition.	tigation for lan includes right-turn o s been asst 'ure Pre-Pro	he Entitled installation nly lane med iject	

CRITICAL MOVEMENT ANALYSIS

LINSCOTT, LAW & GREENSPAN, ENGINEERS 236 M. Chester Ave., Suite 200, Pasadena, CA 91106 626.796.2322 Fax 626.792.0941

CRITICAL MOVEMENT ANALYSIS

San Vicente Boulevard @ Third Street Peak Hour: PM Annual Growth: 1.00%

CSMC Project

San Vicente Boulevard Third Street Cedars-Sinai Medical Center / 1-992843-1 CMA15 Accutek

N-S St: E-W St: Project: File Name: Counts by:

 Date:
 06/23/2008

 Date of Count:
 2008

 Projection Year:
 2023

2	008 EXIST. TF	SAFFIC	2023 \	V/ AMBIE	ENT GROW	HT	2023 V	V/ OTHER	ROJEC	TS	2023 M	II PROPO	SED PRO.I	ECT	2023 V	V/ MITIGA	ATION	
	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No of		Added	Total	No. of	Lane
Movement Vol-	ume Lanes	Volume	Volume	Volume	Lanes	Volume	Volume V	/olume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
NB Left	68 0	68	10	78		78	35	113	c	113	9	119	~ (119	0	119	c	119
Comb. L-I NB Thru Comb T-R	0 651 1 1	- 367 367	98	749	C	- 422 422	328	1077	⊃ -	- 586 586	ы	1080	o	- 588 588	0	1080	o	- 588 588
NB Right Comb. L-T-R -	83	1	12	95	.00	1	D	95	. 0 0		0	95	. 0 0	1	0	95	00	1
SB Left	192 1	192	29	221	c	221	152	373	~ c	373	0	373	- c	373	0	373	- c	373
SB Thru	890 2	445	133	1023	000	512	551	1574	000	787	Ω	1579	000	190	0	1579	000	190
Comb. L-T-R - Comb. L-T-R -	80 10	80	12	92	0-0	92	10	102	0 - 0	102	0	102	0-0	102	0	102	0 - 0	102
EB Left	146 1	146	22	168	c	168	12	180	- 0	180	o	180	c	180	0	180	- c	180
Comb. L-1 EB Thru Comb. T B	0 967 1 1	- 587 687	145	1112	- ,	- 675 675	305	1417	0 0 0	- 708	12	1429	5 N C	714	0	1429	5 N C	714
Comb. I-K EB Right Comb. L-T-R -	208 0 0	-	31	239	-00	200	21	260	0-0	260	10	270	0-0	270	0	270	0-0	270
WB Left	22	22	m	26	- 0	26	0	26	-	26	0	26		26	0	26	← c	26
WB Thru	544 1	- 358 358	82	626	⊃ ·	412	295	921		- 563 563	7	928		- 567 567	0	928		- 567 567
WB Right Comb. L-T-R -	172 0	-	26	197	-00	<u>4</u> + +	ω	205	- 0 0	'	0	205	- 0 0	5	0	205	- 0 0	5
Crit. Volumes:	N-S: E-W: SUM:	559 610 1169			N-S: E-W: SUM:	643 701 1344			N-S: E-W: SUM:	959 744 1703			N-S: E-W: SUM:	960 747 1708			N-S: E-W: SUM:	960 747 1708
No. of Phases:		2				2				5				2				2
Volume / Capacity Level of Service:	[L] :	0.709 C			[1],[2]	0.796 C			[1].[2]	1.035 F			[1],[2]	1.038 F			[1],[2] F	1.038
Assumptions:	Maximum For dual t For one e Right turn [1] The vc Note: Yea	i Sum of Criti urn lanes, xxcl. and one is on red fron hume to cape ir 2007 manu	cal Volume. 55% opt. turn la. 1 excl. lane. acity ratios l scity ratios l al traffic co	s (Interse ne, s = have bee) unts were	ction Capac of volume i 70% c 50% c n reduced b n reduced b	city): 2 Phas is assigned of volume is of overlappir vy 0.07 to ac vy 0.03 to ac vy a 1.0 perc	e=1500, 3 to heavier l assigned ti assigned to assigned to to to to to to to to to to to to to t	Phase=14 ane. 5 exclusiv 6 installa 1e installa	425, 4+ Ph e lane. ttion of the growth fac	ase=1375, Wilshire W Wilshire W tor to reflec	Unsignaliz est ATSAC est ATCS (t year 200	ed=1200. \$ system in \$ystem im	nprovemen provements conditions.	ts.		Vote: Miti; Master Pla of an EB ri which has which has the Futu condition.	gation for the an includes in ight-turn only been assume ire Pre-Projec	Entitled Iane ed :t

CRITICAL MOVEMENT ANALYSIS

San Vicente Boulevard-Le Doux Road @ Burton Way AM 1.0% Annual Growth: Peak Hour:

CSMC Project

Burton Way Cedars-Sinai Medical Center / 1-992843-1 CMA16 Accutek

N-S St: E-W St: Project: File Name: Counts by:

San Vicente Boulevard-Le Doux Road

2008 2023 Date of Count: Projection Year:

06/23/2008

Date:

	2008 EXIST.	TRAFFIC	2023	W/ AMBII	ENT GROW	НН	2023 V	// OTHER	PROJEC	TS	2023 V	V/ PROPO	SED PRO.	JECT	2023	N/ MITIGA	VTION		
	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lan	ۍ ع
Movement Vo	olume Lanes	Volume	Volume	Volume	Lanes	Volume	Volume \	/olume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volur	ne
NB Left	8	8		6		σ	0	σ	-	σ	0	თ	-	თ	0	6	-		G
Comb. L-T	0	•			0	,			0	,			0	,			0	ı	
NB Thru	0	1	0	0	0	·	0	0	0		0	0	0	ı	0	0	0		
Comb. T-R	C	•			0	ı			0	ı			0	,			0	•	
NB Right Comb. L-T-R -	12	12	2	4	- 0	14	0	14	- 0	14	0	14	- 0	14	0	4	- 0		4
SB Left	563	309	84	647	5	356	259	906	20	498	Q	912	2	502	0	912	00		502
Comb. L-T	، ب ر	'	C	c	0 0	1	c	c	5 0		c	c	5 0	1	c	c		·	
SB Thru	0	'	0	þ	0 0		0	C	50	1	þ	D	5 0	1	5	0		ı	
Comb. I-K SB Right	149 1	- 149	66	172	C	- 172	1	183	C	- 183	C	183	⊃	- 183	0	183	C	ı	183
Comb. L-T-R -			1	1	0	1	:		0		I		0		I		0		
EB Left	10 (-	2	12	0	•	0	12	0	I	0	12	0	ł	0	12	0	1	
Comb. L-T	J	'			0	1			0		1	1	0	,		1	0	,	
EB Thru	516	176	77	594	C1 ·	202	86	680	N	231	0	680	N ·	231	0	680	N ·		231
Comb. T-R	1	176	1	!	 (202	c		· (231	Ċ	9	. .	231	C		- (231
EB Right	11	-	N	13	0	1	D	13		,	0	13	0	1	D	13	0	•	
Comb. L-T-R -		-			0				Э				þ				D		
WB Left	9	9	-	4	-	7	0	7		7	0	7		7	0	7	-		7
Comb. L-T	0	-			0	ı			0	ı			0	ı			0	,	
WB Thru	1376	2 526	206	1582	2	605	143	1725	0	695	0	1725	2	697	0	1725	2		697
Comb. T-R	•	526			۰	605			-	695				697					697
WB Right	. 675	472	101	776	-	543	427	1203	-	842	14	1217	-	852	0	1217			852
Comb. L-T-R -	-	-			0				0				0				0		
Crit. Volumes:	N-S:	319			N-S:	366			N-S:	509			N-S:	512			N-S:		512
	:М-Э	526			E-W:	605			E-W:	695			E-W:	697			E-W:		697
	SUM:	845			SUM:	971			SUM:	1204			SUM:	1209			SUM:		1209
No. of Phases:		7				2				2				2					2
Volume / Capacit	V: M	1 0.493			111.[2]	0.547			[1],[2]	0.703			141.121	0.706			[1].[2]	0	706
It avel of Service.	•	. ⊲				Δ				c			[-]:(·.]					С	
דבאבו הו הבו אורבי		c												ر				,	
Assumptions:	Maximu	m Sum of Cri	tical Volume	s (Interse	ection Capac	citv): 2 Phas	e=1500.3	Phase=14	125 4+ Ph	ase=1375.1	Insignali	ed=1200							

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200.

For dual turn lanes, 55% of volume is assigned to heavier lane. For one excl. and one opt. turn lane, 50% of volume is assigned to exclusive lane. For one excl. and one opt. turn lane, 50% of vortlapping left turn. Ti The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Witshire West ATSAC system improvements. If The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Witshire West ATCS system improvements. Note: Year 2007 manual traffic counts were adjusted by a 1.0 percent (1.0%) ambient growth factor to reflect year 2008 existing conditions.

San Vicente Boulevard-Le Doux Road Burton Way Cedars-Sinai Medical Center / 1-992843-1

N-S St: E-W St: Project:

CMA16 Accutek

File Name: Counts by:

CRITICAL MOVEMENT ANALYSIS

San Vicente Boulevard-Le Doux Road @ Burton Way Peak Hour: PM Annual Growth: 1.00%

CSMC Project

06/23/2008 2008 2023 Date: Date of Count: Projection Year:

	2008	EXIST. TR/	AFFIC	2023	W/ AMBIE	ENT GROW	ЛН	2023 V	V/ OTHEF	RROJE	CTS	2023	N/ PROPC	SED PRO.	JECT	2023	W/ MITIG	ATION	
		No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
NB Left	36	-	36	Ω	42	-	42	0	42	÷	42	0	42	-	42	0	42	-	42
Comb. L-T	4	0	ı			0 0	ı	Ċ	c	0 0	·	c	c	0 0		C	c	0 0	ı
	0			0	0			Ð	0			5				0	5		1 1
NB Right	28	⊃ ←	- 28	4	33	c	33	0	33	c	33	0	33	c	33	0	33	o	33
Comb. L-T-R -		0				0				0				0				0	
SB Left	1011	2	556	152	1163	2	639	536	1699	2	934	15	1714	7	943	0	1714	N	943
Comb, L-T		0	,			0	1			0	1			0	1			0	ı
SB Thru	0	0	,	0	0	0	ı	0	0	0 0	ı	0	0	0 0	ī	0	0	0 0	1
Comb. T-R	ŭ	0 7	- -	c	73	o •	-	36	501	э ,	-	c	201	э т	- 103	C	103	- C	- 103
Comb. L-T-R -	ñ	- 0	מ	מ	6	- 0	6	2	2	- 0	201	>	8	- 0	6	2	2	- 0	
EB Left	31	0	1	5	36	0		0	36	0	1	0	36	0	,	0	36	0	ı
Comb. L-T		0	·			0				0		1		0				0	ı
EB Thru	1139	C1 +	389	171	1310	∾ +	447	169	1479	cv +	504 504	0	1479	~ ~	504	0	1479	CV +	504 504
EB Right	27	- 0	- 102	4	31	- 0	Ì,	0	31	- 0	5	0	31	- 0		0	31	- 0	-
Comb. L-T-R -		0				0				0				0				0	
WB Left	18	1	18	en	21		21	0	21	-	21	0	21	-	21	0	21		21
Comb. L-T		0				0				0				0				0	1
WB Thru	782	21	314	117	899	~ ~	361	128	1027	~ ~	440	0	1027	∩ ⁺	441	0	1027	~ ~	441
Comp. I-K	536		314 275	UR DR	617		105	263	080		440 686	~	980		691	C	980		144 601
Comb. L-T-R -	2	• •) j	3	5	. 0	1)		0)	}	0		•) }	0	
Crit. Volumes:		N-S:	575			S-S:	662			N-S:	956			-S-N	965			N-S:	965
		E-W:	407			E-W:	468			E-W:	524			E-W:	524			E-W:	524
		SUM:	982			SUM:	1130			SUM:	1481			SUM:	1489			SUM:	1489
No. of Phases:			2				2				7				5				2
Volume / Capa	icity:	[4]	0.585	:		[1].[2]	0.653			[1].[2]	0.887			[1],[2]	0.893			[1],[2]	0.893
Level of Servic	ë.		A				8				۵				0				0
A octomotioner		- minum																	

For dual turn lanes, 55% of volume is assigned to heavier lane. For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. Right turns on red from excl. lanes = 50% of overlapping left turn. [1] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improverments. Notre: Year 2007 manual traffic counts were adjusted by a 1.0 percent (1.0%) ambient growth factor to reflect year 2008 existing conditions.

LINSCOTT, LA 236 N. Chester 626.796.2322	W & GREE Ave., Suite Fax 626.7	ENSPAN, 200, Pas 92.0941	ENGINEEF sadena, CA	8 S 91106			•	CRITICAL	MOVEME	ENT ANAL	YSIS									
N-S St: E-W St: Project: File Name: Counts by: A	aan Vicente Vilshire Bou Sedars-Sina XMA17 vccutek	Boulevar Ilevard İ Medical	d Center / 1-'	992843-1				San Vicent Peak Hour Annual Grc CSMC Pro	e Bouleva 	ard @ Wils AM 1.0%	hire Boulev	ard				Date: Date of Co Projection	unt: Year:		06/23/2008 2008 2023	
	2008 EX	IST. TRA	FFIC	2023 W	'/ AMBIE	INT GROWT	H	2023 W	// OTHER	PROJEC.	TS	2023 W	/ PROPO	SED PROJ	ECT	2023 V	V/ MITIGA	lion		-
	ž	o. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	
Movement	Volume Lá	anes	Volume	Volume V	'olume	Lanes	Volume	Volume V	/olume I	Lanes	Volume	Volume \	'olume	Lanes	Volume	Volume V	/olume I	Lanes	Valume	
NB Left	375	ر د	375	56	431	، د	431	61	492	20	271	0	492	2 10	271	0	492	20	271	
NB Thru	1310	ი ი ი	437	196	1506	ימיכ	502	347	1853	ന ്	618	G	1862	ວຕ	- 621	0	1862	5 00	- 621	
Comb. T-R NB Right [1] Comb. L-T-R -	37	0 - 0	- 37	9	43	0-0	43	10	53	0 - 0	53	o	53	0 - 0	53	0	53	0 - 0	53	
SBLeft	194	-	194	29	223	 (223	114	337	5	185	7	339	2	186	0	339	2	186	
SB Thru	606	000	- 202	91	697	0 00 0	- 232	202	668	0 0 0	300	4	903	0 0	301	0	903	0 ო	- 301	
Comb. 1-K SB Right [1] Comb. L-T-R -	261	0-0	- 261	30	300	0 - 0	300	0	300	0 - 0	300	0	300	0 - 0	300	0	300	0 - 0	300	
EB Left	72	c	72	:	82	+- c	82	0	82	c	82	0	82	- c	82	0	82	c	82	
EB Thru	1114	• ~ •	417	167	1281	N 1	479	266	1547	о (ч т	579		1548	0 01 -	580	ο	1548	. 17	580	
EB Right Comb. L-T-R -	136	- 0 0	- + ,	20	157	- 0 0	7 7	34	191	- 0 0		0	191	- 0 0	noc -	o	191	- 0 0	000 -	
										-								,		
WB Left Comb. L-T	12	- 0	- 12	0	14	- 0	- 14	16	30	- 0	30	0	30	- c	30	0	30	+ C	30	
WB Thru Comb. T-R	1271	~ ~	479 479	191	1461	~ ~	551 551	395	1856	~ ~	758 758	5	1858	0.4	761 761	0	1858	· 0 +	761 761	
WB Right	166	00	1	25	190	00		228	418	00		ъ	423	. 0 0	1	0	423	. 0 (1	
		-				-	90 - La 199							Ð				0		-
Crit. Volumes:	<u>د</u> ش	N-7-	631 550			У-Ч	/25 633			М.	803 841			N-S: П-W:	807 843			N-S: 	807 843	_
	ŝ	UM:	1181			SUM:	1358		.,	SUM:	1644			SUM:	1650			SUM:	1650	
No. of Phases:			с				m				m				m				m	
Volume / Capa	city:	[2]	0.759			[2],[3]	0.853			[2],[3]	1.054			[ɛ]'[z]	1.058			[2],[3]	1.058	_
Level of Servic											11-			ш						
Assumptions:	Ma For [2] [2]	iximum Si r dual turr r one excl iht turns c Northbou The volur	um of Critica 1 lanes, 1. and one o on red from 1. nd and sour 1. ne to capac	al Volumes 55% o pt. turn lan excl. lanes thbound rig ity ratios he	(Intersec if volume e, = ht-turn n ive been	tion Capaci is assigned 70% of 50% of novements c reduced by	ty): 2 Phase to heavier volume is a overlappin controlled by 0.07 to act 0.03 to act	==1500, 3 lane. assigned to g left turn. y stop-sign count for th	Phase=14. exclusive s. le installat	25, 4+ Pha t lane. ion of the l	ase=1375, (Wilshire We	Unsignalize est ATSAC	d=1200. system in wetem imr	iprovement	Ś	< 4 0 3 4	lote: Mitiga Nan include econd NB , hich has b uture Pre-I	tion for the ss installatic and SB left een assum Project con	Entitled n of turn lanes ed in the lition.	
	Noi Noi	te: Year 2	ile to capar	It raffic cou	nts were	reduced by	/ a 1.0 perc	court tot ut ent (1.0%)	e insiana. ambient g	ion or ure i prowth fact	or to reflect	351 A 1 UO 3	ystern my existing c	novenuenus. onditions.						

LINSCOTT, LA 236 N. Chester 626.796.2322	W & GREENSF Ave., Suite 200 Fax 626.792.0	•AN, ENGINEE), Pasadena, C/ 1941	RS 1 91106				CRITICAL	MOVEME	ENT ANAL	YSIS									
N-S St: S. E-W St: A Project: C File Name: C Counts by: A	an Vicente Bou /iishire Bouleva edars-Sinai Me MA17 ccutek	levard Ird dical Center / 1	-992843-1				San Vicent Peak Houn Annual Grc CSMC Pro	e Bouleva wth: ject	ard @ Wils PM 1.00%	shire Boulev	ard				Date: Date of C Projectior	kount: n Year:		06/23/20 20(20;	208 23 23
	2008 EXIST.	TRAFFIC	2023 W	/ AMBIE	NT GROWI	H	2023 M	// OTHER	ROJEC	TS	2023 M	// PROPC	SED PRO	JECT	2023	W/ MITIG	ATION		
	No. of	Lane	Added -	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	
Movement V	/olume Lanes	Volume	Volume V	olume	Lanes	Volume	Volume \	olume	Lanes	Volume	Volume	/olume	Lanes	Volume	Volume	Volume	Lanes	Volume	
NB Left	185	1 185	28	213	← C	213	39	252	2 17	138	o	252	2 17	138	0	252	2 10	÷	38
	766	3 255	115	880	ວຕາເ	293	357	1237	ດທີ່ເ	412	9	1243	5 ന (414	0	1243	ວຕເ	4	14
Comb. I-K NB Right [1] Comb. L-T-R -	18	- 18 D 18	ო	21	0-0	21	21	42	0-0	- 42	a	42	0 - 0	- 42	0	42	070	1	42
SB Left	214	1 214	32	246	- (246	269	515	7	283	5	520	2	286	0	520	21	5	86
SB Thru	1100	0 - 3 367	165	1265	၁ ო ძ	- 422	437	1702) က (- 567	10	1712	၁ ო ძ	- 571	0	1712) က (in '	171
Comb. I-K SB Right [1] Comb. L-T-R -	134	1 - 134 D	20	154	0-0	- 154	O	154	0 - 0	- 154	0	154	0-0	154	0	154	0-0		54
EB Left	83	1 83	12	95	c	95	0	95	~ c	95	0	95	← c	95	0	95	~ c		95
EB Thru	1244	2 479	187	1431	0 01 1	551	477	1908	2 (1) 1	740	7	1910	201	- 741	0	1910	- M C	۱ ټا ۱	41
EB Right Comb, L-T-R -	192	, , , ,	29	221	- 0 0	- 	92	313	- 0 0		0	313	- 0 0	- - -	O	313	- 0 0		_ +
			1	1			1	-			1						,		
WB Left Comb. L-T) 26	1 97 0 - 0	15	112	- 0	- 112	15	127	- 0	127 -	0	127	- 0	- 127	0	127	- 0	÷.	27
WB Thru Comb. T-R	1113	2 450 1 450	167	1280	~ ~	517 517	323	1603	~ ~	688 688	،	1604	си г.	689 689	0	1604	- 13	σσ	689 89
WB Right Comb. L-T-R -	236		35	272	00		189	461	00	ı	ი	464	00	1	0	464	00	1	
Crit. Volumes:	N-S: T-W·	551 576			N-S: F-W·	634 662			N-S: P-W:	706 867			N-S: N-N-	709 867			N-S: F-M'	17	09 67
	SUM:	1127			SUM:	1296			SUM:	1572			SUM:	1576			SUM:	τ	128
No. of Phases:		3				ы				m				e					m
Volume / Capac Level of Service	sity: E	<i>zj</i> 0.721 C			[2],[3] [0.810			[2],[3]	1.003 F			[2],[3]	1.006 F			[2],[3]	н 1.0	906
Assumptions:	Maxim For du For one Right tu [1] The [2] The [3] The	Im Sum of Criti. al turn lanes, e excl. and one irns on red fron 'hbound and so volume to capa volume to capa	cal Volumes (55% 55% n excl. lane of trantios ha totity ratios ha noity ratios ha	(Intersec a, ht-turn n ave been	tion Capaci of volume is 50% of novements c reduced by	ty): 2 Phas assigned t volume is overlappin controlled b v 0.07 to ac	e=1500, 3 o heavier k assigned tc g left turn. y stop-sign count for th count for th	⊃hase=14 ane. • exclusive s. • e installa	225, 4+ Ph e lane. tion of the tion of the	ase=1375, Wilshire W Wilshire W	Unsignaliz est ATSAC est ATCS (ed=1200. system i system im	improveme provemen	nts.		Note: Miti Plan inclu second N which has Future Pr	gation for th des installat B and SB le s been assur e-Project co	e Entitled ion of ft-turn lane ned in the ndition.	- Sec.

LINSCOTT, L. 236 N. Cheste 626.796.2322	AW & GRE r Ave., Suit Fax 626.	ENSPAN, e 200, Pas 792.0941	ENGINEER adena, CA	91106			·	CRITICAL	MOVEME	ENT ANAL	YSIS								
N-S St: E-W St: Project: File Name: Counts by:	La Cienega Beverly Bou Cedars-Sin CMA18 Accutek	a Boulevarr ulevard iai Medical	d Center / 1-:	992843-1				La Cienega Peak Hour: Annual Gro <i>CSMC Pro</i>	a Bouleva wth: <i>ject</i>	rd @ Beve AM 1.0%	riy Bouleva	P				Date: Date of Co Projection	unt: Year:		06/23/2008 2008 2023
	2008 E)	XIST. TRA	FFIC	2023 W	// AMBIEI	NT GROW	TH	2023 M	// OTHER	PROJEC	TS	2023 W	PROPOS	ED PROJI	ECT	2023 V	V/ MITIGA	TION	
	-	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	la. of	Lane	Added	Total	No. of	Lane
Movement	Volume 1	Lanes	Volume	Volume V	'olume	Lanes	Volume	Volume V	olume	Lanes	Volume	Volume V	olume	anes	Volume	Volume V	/olume	Lanes	Volume
NB Left	124	c	124	19	143	c	143	30	173	~ c	173	9	179		179	0	179	÷- 0	179
	717	5 (7) (359	108	825	5 01 0	412	415	1240	0 0 0	- 620	0	1240	500	- 620	D	1240	201	- 620
Comb. I-K NB Right [1] Comb. L-T-R -	178	0-0	- 178	27	204	0 - 0	- 204	0	204	0-0	204	0	204	0-0	- 204	o	204	0-0	- 204
SB Left	88	- 0	88	13	101	- c	101	76	177	0	177	0	177	0	177	o	177	, - 0	177
Comb. L-1 SB Thru Comb. T D	1102	⊃ (N +	- 480 480	165	1267	⊃ (V 7	- 552 652	345	1612	- M -	- 677 677	0	1612	⊃ N 7	- 679 670	0	1612	⊃ N 7	- 679 670
SB Right Comb. L-T-R -	338	- 0 0	- -	51	389	- 0 0		31	420	- 0 0		ы	425	-00		o	425	- 0 0	
EB Left	114	~ ~	63	17	131	~ ~	72	53	184	~ ~	101	5	186	~ ~	102	0	186	~ ~	102
EB Thru	611	2 (1) (306	92	703	200	351	178	881	000	440	ო	884	2010	442	0	884	5 N C	- 442
EB Right [1] Comb. L-T-R -	54	00	54	80	62	0 0	62	23	85	0 - 0	85	5	87	0-0	87	0	87	0-0	87
WB Left	232	~ ~	128	35	267	~ ~	147	35	302	~ ~	166	0	302	~ ~	166	0	302	~ ~	166
WB Thru Comb. T-R	1214)	641 641	182	1396) -	738 738	225	1621	0 0 0	811	7	1628	0 0 0	- 814	0	1628	000	- 814
WB Right Comb. L-T-R -	69	00		10	79	00	ı	59	138	- 0	138	o	138	- 0	138	0	138	-0	138
Crit. Volumes:		N-S: E-M:	604 704			N-S: E Wi	695 840			N-S: M:	850			N-S: 1 M:	858 016			N-S: M:	858 046
		SUM:	1308			SUM:	1505			SUM:	1762		_ 0,	SUM:	1774			SUM:	916 1774
No. of Phases			4				4				4				4				4
Volume / Capi	acity:	[2]	0.882			[2],[3]	0.994			[2],[3]	1.182			[2],[3]	1.191		2	[2],[3]	1.191
Assumptions	. W	aximum Si	um of Critics	I Volumes	(Intersect	tion Capaci	ity): 2 Phase	9=1500, 31	hase=14	125, 4+ Ph	r ase=1375, (Jnsignalize	d=1200.		_	< .	lote: Mitig	ation for the	Entitled
	ΓĽŒΥ	or aual tun or one exc. 'ight turns c	l and one o I. and one o In red from	pt. turn lan excl. lanes	e, e, e,	Is assigned 70% of 50% of	f volume is f overlappin	assigned to g left turn.	exclusive	e lane.	1	4				< 0 5 1	faster Plai fa WB rig hich has t	n includes in ht-turn only been assum	stallation lane, ed in the
	- 27 6	ry routinou 2] The volui 1] The volui	me to capac me to capac me to capac	ri overlaps city ratios h. city ratios h.	will west ave been ave been	reduced by	y 0.07 to ac y 0.03 to ac	count for th count for th	e installat e installat e installat	aps wun no tion of the tion of the	Wilshire We Wilshire We Wilshire We	st ATCS s	system im, vstem impi	orovement ovements.	Ś	L	-airi ainin.	Project con	.incom
	Ż	ote: Year 2	2007 manua	n traffic cou	ints were	adjusted bj	y a 1.0 perc	ent (1.0%)	ambient g	growth fac	or to reflect	year 2008	existing co	onditions.					

LINSCOTT, L 236 N. Chesté 626.796.2322	AW & GREI 3r Ave., Suitt Fax 626.	e 200, Pa: 792.0941	ENGINEEF sadena, CA	SS 91106			-1	CRITICAL	MOVEME	NT ANALY	SIS								
N-S St: E-W St: Project: File Name: Counts by:	La Cienega Beverly Bou Cedars-Sin _i CMA18 Accutek	Boulevar Jevard ai Medical	d Center / 1_	992843-1				La Cienega Peak Hour: Annual Gro CSMC Pro	ı Boulevar wth: <i>ject</i>	d @ Beve PM 1.00%	rly Bouleva	ē				Date: Date of Co Projection	ount: Year:		06/23/2008 2008 2023
	2008 EX	(IST. TRA	FFIC	2023 W	// AMBIE	INT GROWT	E	2023 M	// OTHER	PROJEC.	S	2023 W	PROPOS	ED PROJE	ECT	2023 V	V/ MITIGA	TION	
	4	io. of	Lane	Added	Total	No. of	Lane	Added	Total 1	Vo. of	Lane	Added	Total N	lo. of	Lane	Added	Total	No. of	Lane
Movement	Volume L	anes	Volume	Volume V	/olume	Lanes	Volume	Volume V	olume	anes	Volume	Volume V	olume L	anes	Volume	Volume	Volume	Lanes	Volume
NB Left Comb 1 -T	113	C	. 113	17	130	c	130	16	146	- c	146	ы	149	- c	- 149	0	149	C	- 149
	1192	0 10 0	596	179	1371	000	685	445	1816	0 0 0	908	0	1816	0 0 0	908	0	1816	. (1 (908
Comb. L-T-R Comb. L-T-R	414	0-0	- 414	62	476	0 - 0	476	0	476	0-0	- 476	0	476	0-0	476	0	476	0-0	476
SB Left	108	-	108	16	124		124	180	304		304	0	304	 .	304	0	304	I	304
Comb. L-1 SB Thru	1004	- N C	389	151	1155	э N т	- 448 448	507	1662	- N C	- 631 831	0	1662	0 0 7	- 632	0	1662	- N C	632
Comb. L-T-R . Comb. L-T-R .	164 -	- 0 0	, 1	25	188	-00	- - -	44	232	- 0 0	-	n	235	- 0 0	-	0	235	- 0 0	700
EB Left	274	0 0	151	41	315	<i>6</i> 1 0	173	53	368	2 13	202	ъ	373	0 0	205	0	373	0 0	205
Conue. L-1 EB Thru	1251	5 61 6	- 626	188	1439) N (- 720	366	1805	2 (1) (- 903	7	1812	5 14 0	906	0	1812	500	906
Comb. I-K EB Right [1] Comb. I -T-R -	124	o - c	- 124	19	143	o - c	- 143	21	164	o – c	- 164	9	170	o – c	- 170	0	170	o + c	- 170
		,				5				5				,				b	
WB Left Comb. L-T	230	00	127 -	35	265	0 0	- 146	73	338	0 0	- 186	0	338	0 0	- 186	0	338	0 0	- 186
WB Thru Comb. T-R	771	~ ~	437 437	116	886	~ ~	502 502	301	1187	0 0	594 -	4	1191	0 0	- 596	0	1191	0 7	596
WB Right Comb. L-T-R	103	00	r	15	118	00	r	56	174	- 0	174	0	174	- 0	174	0	174	- 0	174
Crit. Volumes		N-S: E-W: SUM:	704 752 1456			N-S: E-W: SUM:	810 865 1675			N-S: E-W: SUM:	1212 1088 2300			N-S: E-W: SUM:	1212 1092 2304			N-S: E-W: SUM:	1212 1092 2304
No. of Phases			4				4				4				4				4
Volume / Cap Level of Servi	acity: ce:	[2]	0.989 E			[2],[3] F	1.118			[2],[3] I	1.573			[2],[3] F	1.576			1 [2]/[3]	1.576
Assumption	ж А Т Т Б <u>Г</u> <u>Г</u> <u>Б</u> <u>А</u>	aximum S or dual tur or one exc gght turns Northbou The volu ote: Year S	um of Critic n lanes, A. and one c on red from ind right-tur me to capau to capau 2007 manue	al Volumes 55% 55% excl. lanes n overlaps city ratios hi sity ratios hi al traffic cou	(Interse) e, mith wes ave beer ave beer nts were	ction Capaci of volume is 70% of 50% of tbound left-t r reduced by r reduced by	ty): 2 Phase ty): 2 Phase volume is i overlappin urm. Eastb v 0.07 to ac v 0.03 to ac v a 1.0 perc	p=1500, 3 / o heavier le assigned to g left turn. ound right-i count for th count for th count for th	Phase=14 Ine. exclusive um overla e installat e installat ambient <u>g</u>	25, 4+ Pha tane. aps with no ion of the ion of the trowth fact	ise=1375, l ise=1375, l ithbound le Wilshire We Nilshire We	Jnsignalize hft-turn. st ATSAC st ATCS s year 2008	d=1200. system imp ystem impr existing cc	provement: overments.	tõ.	< < 0 5 L	Vote: Mitig Aaster Plaı of a WB rig vhich has I ⁻uture Pre-	ation for the n includes ir ht-turn only been assum Project con	Entitled stallation lane, ed in the lition.

1.213 2008 2023 597 597 49 656 656 138 309 100 846 846 821 984 805 06/23/2008 166 364 Volume Lane u. -00 [1],[2] 0 \sim 00 NO N 00 0 10 0 - 0 0 Lanes No. of N-S: E-W: SUM: 2023 W/ MITIGATION 176 245 619 1616 89 1722 138 100 1583 109 Volume Volume 364 Total 301 Projection Year: Date of Count: 0 0 С Added 0 0 C 0 0 C 0 Date: 1.213 49 656 656 846 821 984 805 ব 166 138 309 100 846 597 597 364 Lane Volume 2023 W/ PROPOSED PROJECT ш [1],[2] 00 - c No. of N 00 0 0 NO 0 0 Lanes N-S: SUM: SUM: 245 1616 176 89 1722 138 619 100 1583 109 301 364 Volume Volume Total Added 0 S 0 ć ω 0 2 2 er, 843 843 1.208 162 595 595 49 655 655 308 97 817 981 1798 4 Volume 138 364 Lane La Cienega Boulevard @ Third Street CRITICAL MOVEMENT ANALYSIS 2023 W/ OTHER PROJECTS ш [1],[2] AM 1.0% No. of Lanes N-S: E-W: SUM: Volume 295 1610 176 89 1720 245 138 617 97 1578 109 Added Total 364 Annual Growth: CSMC Project Peak Hour: Volume 310 439 4 29 63 128 47 6 234 101 5 ò 637 778 1415 4 0.929 436 436 33 244 22 107 701 ane Volume 531 531 274 2023 W/ AMBIENT GROWTH ш [1],[2] 00 00 0 10 . 0 0 00 N 0 N NO No. of Volume Lanes N-S: N-N: SUM: 1410 489 Added Total 194 1171 136 60 182 5 274 1344 58 Cedars-Sinai Medical Center / 1-992843-1 Volume 8 22 153 18 20 184 24 5 64 36 175 LINSCOTT, LAW & GREENSPAN, ENGINEERS 236 N. Chester Ave., Suite 200, Pasadena, CA 91106 626.796.2322 Fax 626.792.0941 213 610 554 676 231 4 0.825 6 379 379 29 462 462 67 43 238 610 Volume Lane 2008 EXIST. TRAFFIC La Cienega Boulevard 0 0 Ξ c 2 0 N 00 0 00 0 0 0 No. of Lanes N-S: E-W: SUM: Fhird Street Volume 1018 118 1226 43 53 159 425 1169 169 67 ່ດ CMA19 Accutek /olume / Capacity: -evel of Service: Vo. of Phases: WB Right Comb. L-T-R -Crit. Volumes Comb. L-T-R Comb. L-T-R Comb. L-T-R SB Thru Comb. T-R EB Thru Comb. T-R File Name: Counts by: Movement Comb. T-R Comb. T-R Comb. L-T Comb. L-T Comb. L-T Comb. L-T NB Right EB Right WB Thru N-S St: E-W St: NB Thru SB Right VB Left SB Left Project: NB Left EB Left

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200 Assumptions:

55% of volume is assigned to heavier lane. For dual turn lanes,

of volume is assigned to exclusive lane. of overlapping left turn. 70% For one excl. and one opt. turn lane,

Right turns or red from exc. lanes = 50% of overlapping left turn. [1] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. Note: Year 2007 manual traffic counts were adjusted by a 1.0 percent (1.0%) ambient growth factor to reflect year 2008 existing conditions.

CRITICAL MOVEMENT ANALYSIS

La Cienega Boulevard @ Third Street Peak Hour: PM Annual Growth: 1.00%

CSMC Project

La Cienega Boulevard Third Street Cedars-Sinai Medical Center / 1-992843-1 CMA19 Accutek

N-S St: E-W St: Project: File Name: Counts by:

Date: Date of Count: Projection Year:

2008 2023 06/23/2008

	2008 EXIST	. TRAFFIC	2023	W/ AMBII	ENT GROW	HT	2023 M	// OTHER	PROJEC	TS	2023 M	// PROPO	SED PRO.	JECT	2023 V	N/ MITIGA	VTION	
	No. c	of Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement Vo.	viume Lane	s Volum	e Volume	Volume	Lanes	Volume	Volume V	/olume 1	Lanes	Volume	Volume V	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
NB Left Comh 1 -T	82	4	5 12	94	2 0	52	67	161	20	89	4	165	20	91	0	165	0	91
NB Thru	1399	ນີ້ ເບິ່ 	5 210 5	1609	7 M T	- 615 615	526	2135	⊃ (N ⊤	- 816 816	ŝ	2138	0 N 1	817	0	2138	0 01	- 817
NB Right Comb. L-T-R -	206	- 0 0		237	- 0 0	2	75	312	- 0 0	D 0 -	o	312	-00	α1/ -	D	312	-00	- 817
SB Left Comh 1 -T	152	, 0 8	3 23	174	~ ~	96	57	231	2 0	127	0	231	0	127	0	231	2	127
SB Thru Comb T-R	1103	- 38 38 38	9 165 c	1268	- 10 -	447	499	1767	5 M T	- 628 528	9	1773	0 0 ,	- 630	O	1773	0 01	- 630
SB Right Comb. L-T-R -	64	- 0 0	10	73	- 0 0	-	44	117	- 0 0	979	0	117	-00	630	o	117	-00	630
EB Left Comh 1-T	201	1 20	1 30	231	+ c	231	132	363	- c	363	0	363	- (363	0	363	-	363
EB Thru Comb T-R	666	2 49	9 150	1149	000	574	270	1419	500	- 709	ŋ	1424	0 M G	- 712	0	1424	0 0	- 712
EB Right Comb. L-T-R -	123	12	3 18	142	0-0	- 142	124	266	0 - 0	- 266	7	273	0-0	- 273	0	273	0 - 0	- 273
WB Left Comb 1-T	179	1 17	9 27	206	c	206	155	361	c	361	o	361	- 0	361	0	361	-	361
WB Thru Comb. T-R	560	1 33(98 84	643	⊃ -	390 300	245	888	⊃ ~ ~	533	ო	891	o ← •	534	0	891	0	534
WB Right Comb. L-T-R -	118	- 0 0	18	136	- 0 0	2	41	177	- 0 0	°°°	O	177	-00	- 450	0	177	-00	534
Crit. Volumes:	N-S: E-W: SUM	618 671	og m ∧		N-S: E-W: SUM:	711 780 1491			N-S: E-W: SUM:	943 1070 2013			N-S: E-W: SUM:	944 1072 2016			N-S: E-W: SUM:	944 1072 2016
No. of Phases:		7	4			4				4				4				4
Volume / Capacity Level of Service:	2	7 <i>1</i> 0.87: D			[1],[2] E	0.984			1 [1][[1]	1.364			[1],[2] F	1.366			[1],[2] F	1.366
Assumptions:	Maxim	um Sum of C	ritical Volume	as (Intersed	stion Capaci	tv) ⁻ 2 Phase	=1500 3 E	hasa=14	05 44 Dha	1 375 1	Incienaliza	4-1200						

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200, For dual turn lanes, 55%

[1] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements.
[2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.
[2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.
[2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.
[2] Note: Year 2007 manual traffic counts were adjusted by a 1.0 percent (1.0%) ambient growth factor to reflect year 2008 existing conditions. 70% of volume is assigned to exclusive lane. 50% of overlapping left turn. For one excl. and one opt. turn lane, Right turns on red from excl. lanes =

CRITICAL MOVEMENT ANALYSIS

La Cienega Boulevard @ San Vicente Boulevard Peak Hour: AM Annual Growth: 1.0%

CSMC Project

La Cienega Boulevard San Vicente Boulevard Cedars-Sinai Medical Center / 1-992843-1 CMA20 Accutek

N-S St: E-W St: Project: File Name: Counts by:

2008 2023 Date: Date of Count: Projection Year:

06/23/2008

20	08 EXIST. TR	AFFIC	2023 \	V/ AMBIE	NT GROW	TH	2023 V	V/ OTHER	ROJEC	:TS	2023 M	// PROPO	SED PROJ	IECT	2023 V	V/ MITIG/	ATION	
:	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement Volu	me Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume V	/olume	Lanes	Volume
NB Left 2	93	293	44	337	← (337	182	519	÷- 1	519	O	519	*	519	0	519	-	519
NB Thru 10	96 3	365	164	1260	റ ന	- 420	520	1780	0 m	- 593	12	1792	0 ო	- 597	. 0	1792	0 ო	- 597
Comb. T-R	0				0				0				0	•			0	1
NB Right Comb. L-T-R -	00	,	0	0	00	,	0	0	00	r	0	0	00	ı	D	0	00	I
SB Left	0 0	1	0	0	0	1	0	0	0	-	0	0	0	1	0	0	0	-
Comb. L-T	0 0	-	010	1671	0 0	, 1	001		0 0	1 1 1	ı		0 0	; ; ;			0	,
Comb. T-R	7 F	523	213	1/01	N -	602 602	436	/012	N	747 747	ŋ	2112	г и г	749 749	0	2112	сı +	749 749
SB Right 1	16 0	ı	17	134	0		0	134	. 0		0	134	- 0	1	0	134	- 0	
Comb. L-T-R -	0				0				0				0				0	
EB Left	0		0	0	0	1	ο	0	0	,	0	0	0		0	0	0	
Comb. L-1 FR Thru	30 0	- 220	130	1012	0 *	, 752	+66	0707	0 7	1	C		0 •	,	c		0	
Comb. T-R	. 0	-	10	101	t 0	52	107	047	+ 0	- - -	D	1243	4 C	312	0	1249	4 C	312
EB Right 3	03 1	303	45	348	~ (348	113	461	-	461	0	461		461	0	461		461
- 21-1-Y	D				0				0				0				0	
WB Left Comb. L-T	0 C 0		0	0	0 0		0	0	0 0		0	0	0 0		0	0	0 0	l
WB Thru 17.	22 3	454	258	1980	0 0	523	389	2369	აო	624	14	2383	מכ	- 627	0	2383	ວຕ	- 627
Comb. T-R	÷	454			 .	523	i		-	624			-	627				627
wв киди Comb. L-T-R -	18	677	48	366	- 0	256	53	419	- 0	293	0	419	- 0	293	0	419	C	293
Crit. Volumes:	N-S:	816			·S-N	938			V-N	1766			÷.	1967				F00 F
	E-W:	454			E-W:	523			с. М.	624			ю. М-	627			-M-	1201
	SUM:	1270			SUM:	1461			SUM:	1890			SUM:	1895			SUM:	1895
No. of Phases:		ς				т				ю				ę				ŋ
Volume / Capacity:	[1]	0.822			[1],[2]	0.925			[1],[2]	1.226			161 [14]	1 230			141121	1 230
Level of Service:		۵			ш					۱L			1	ji.				Ŀ
Assumptions:	Maximum	Sum of Critic	al Volumes	(Intersect	tion Capacit	ty): 2 Phase	=1500, 31	phase=14.	(25, 4+ Ph.	ase=1375, L	Insignalize	id=1200.						

Maximum sum or critical volumes (intersection Lapacity): 2 rnase=13uu, 3 rnase=13.4, unsignatized=12u0.
 For dual turn lanes, 55% of volume is assigned to heavier lane.
 For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane.
 Right turns on red from excl. lanes = 50% of volume is assigned to exclusive lane.
 The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements.
 The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.
 The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.
 The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.
 The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.
 The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.
 The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.

CRITICAL MOVEMENT ANALYSIS

La Cienega Boulevard @ San Vicente Boulevard Peak Hour: PM 1.00% Peak Hour: Annual Growth:

CSMC Project

La Cienega Boulevard San Vicente Boulevard Cedars-Sinai Medical Center / 1-992843-1 CMA20 Accutek

Project: File Name: Counts by:

N-S St: E-W St:

06/23/2008 2008 2023

Date: Date of Count: Projection Year:

Movement Volume NB Left 226		2	1 0707	IVI ANILIIL	יואו פעכעי	5	1 0707			20	2023 V	W PROPL	SED PRO.	JECT	2023	W/ MITIG	ATION	
Movement Volume NB Left 226	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	Na. of	Lane	Added	Total	No. of	Lane
NB Left 226	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
	. 	226	34	260	-	260	118	378		378	0	378		378	0	378	÷	378
Comb. L-T	0	ı			0	1			0	,			0	,			0	
NB Thru 1400	en i	467	210	1610	e	537	652	2262	n	754	7	2269	en	756	0	2269	ო	756
Comb. T-R	0	ı			0	1			0	,			0	I			0	ı
NB Right 0	0	I	0	0	0	'	0	0	0	ı	0	0	0	ı	0	0	0	1
Comb. L-1-K -	0				D				0				0				0	
SB Left 0	0		0	0	0	1	0	0	0	.	0	0	0	1	0	0	0	
Comb. L-T	0	ı			0	1			0	1			0	,			0	ı
SB Thru 1266	7	449	190	1455	2	516	778	2233	2	775	12	2245	2	677	0	2245	2	677
Comb. T-R		449			-	516			-	775			-	779			-	677
SB Right 81	0	ı	12	63	0	,	0	93	0	,	0	93	0	,	0	93	0	,
Comb. L-T-R -	0				0				0				0				0	
	c		c	c	c		c		c		c	c	c		d	¢	d	
Comb 1-T			2	5	o c	, ,	2	c			2	5			0	5	50	1
EB Thru 1872	9 4	468	281	2152	9 4	538	520	2672	4	999	т. г.	2687	7	- 672	C	7687	~	- 677
Comb. T-R	. 0		2		- 0) } '	040	4	- 0		2	2004		1	2		t C	100 -
EB Right 344	-	344	52	396	~	396	186	582	-	582	0	582	, 	582	0	582	o	582
Comb. L-T-R -	0				0				0				0				0	
WB1eft 0	С	-	C	С	c	r	C	c	C		c	C	C		C	C	c	
Comb. L-T	0	,			0	,	•	•	0	,	0	5		,	2	5) C	,
WB Thru 1104	ო	304	166	1270	ę	349	374	1644	ю	444	8	1652	n	446	0	1652		446
Comb. T-R	÷	304			-	349			-	444			-	446			~~	446
WB Right 372	÷	260	56	427	-	299	16	443	,	310	0	443	-	310	0	443	+	310
Comb. L-T-R -	0				0				0				0				0	
Crit. Volumes:	N-S:	675			N-S:	776			N-S:	1154			N-S:	1158			N-S:	1158
	E-W:	468			E-W:	538			E-W:	668			E-W:	672			E-W:	672
	SUM:	1143			SUM:	1314			SUM:	1822			SUM:	1829			SUM:	1829
No. of Phases:		ъ				з				ო				e				3
Volume / Capacity:	[4]	0.732			[1],[2]	0.822			[1],[2]	1.178			[1],[2]	1.184			[1].[2]	1.184
Level of Service:		с				D				Ŀ.				Ш.,				ш
e		- <i>m</i> O <i>T</i>																

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200. of volume is assigned to heavier lane.

For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. Right turns on red from excl. lanes = 50% of overlapping left turn. [1] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. For dual turn lanes, 55% For one excl. and one opt. turn lane, Right turns on red from excl. lanes =

CRITICAL MOVEMENT ANALYSIS

La Cienega Boulevard @ Wilshire Boulevard Peak Hour: AM Annual Growth: 1.0% Annual Growth:

CSMC Project

La Cienega Boulevard Wilshire Boulevard Cedars-Sinai Medical Center / 1-992843-1 CMA21 Accutek

N-S St: E-W St: Project: File Name: Counts by:

06/23/2008 2008 2023

Date: Date of Count: Projection Year:

Model Line Added Total No. Line Added Total Model Model Total Model Total Model Model Model Model Model Mod		2008	EXIST. TR	AFFIC	2023	W/ AMBIE	ENT GROW	VTH	2023 V	W/ OTHEF	R PROJEC	TS	2023 M	// PROPO	SED PRO.	JECT	2023 \	N/ MITIG/	VTION	
			No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Nel Lett 244 1 264 36 1 386 1 386 1 386 1 386 1 386 1 386 1 386 1 386 1 386 1 386 1 386 1 386 1 386 1 386 1 386 1 386 1 386 1 386 1 3 386 1 3 386 1 3 386 1 3 3 386 1	Movement	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	/olume	Lanes	Volume	Volume	Volume	Lanes	Volume
	NB Left	254	~	254	38	292	-	292	94	386	-	386	0	386		386	0	386		386
	Comb. L-T		0	,			0	,			0	1			0	1			0	ı
	NB Thru	1229	0	490	184	1414	2	563	473	1887	2	730	æ	1895	2	732	0	1895	2	732
	Comb. T-R	-	~ I	490	;	ļ	- 1	563	1		I	730			- 1	732	•		~ ~ 1	732
	NB Kight Comb. L-T-R -	240	00	I	36	2/6	00	T	97	302	00	,	0	302	00	ı	D	302	0 0	ı
	CR Loff	U	÷	G	61	103	Ŧ	103	R7	170	Ţ	170	Ţ	171	ŀ	174	c	474	T	727
Starturu 080 2 415 148 1137 2 477 389 1526 2 625 0 155 0	Comb. L-T	De l	- 0	06 -	2	5	- 0	<u>,</u>	5		- 0		-		- 0		5	171	- 0	
	SB Thru	989	2	415	148	1137	2	477	389	1526	2	623	С	1529	0	625	0	1529	2	625
	Comb. T-R			415			-	477				623			-	625			-	625
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SB Right Comb. L-T-R -	256	00	,	38	294	00	1	20	344	00	1	.	345	00		0	345	00	
	EB Left	108	c	108	16	124	c	124	63	187	c	187	7	189		189	0	189	c	189
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1065		280	160	1001	, ,	- 447	800	0511		- 537	c	1120	5 0	- 537	c	0011	5 (- 597
	Comb. T-R		ч г.	389	20	4771	v ←	447	007	7041	ч г	537	5	1041	v ←	537 537	2	704	ч г	537 537
	EB Right	102	0	,	15	117	0	,	62	179	0	,	0	179	0	1	0	179	0	1
WB Left 145 1 145 1 145 1 145 1 145 1 145 1 145 1 145 1 145 1 145 1 145 1 145 1 145 1 145 0 195 0 195 0 1 195 0 1 195 0 1 195 0 1 195 0 1 195 0 1 195 0 1 195 0 12 1 195 0 12 2 133 2 134 2 663 347 2231 2 134 2 134 2 134 2 134 2 134 1 133 1 133 1 133 1 133 1 133 1 133 1 <td>Comb. L-T-R -</td> <td></td> <td>ο</td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td>0</td> <td></td>	Comb. L-T-R -		ο				0				0				0				0	
	WB Left	145		145	22	167	÷	167	28	195	+	195	0	195	-	195	0	195	-	195
WB Thu 1638 2 565 347 2231 2 793 0 223 Comb. T-R 1 565 3 1 660 347 2231 2 793 0 223 Comb. T-R 1 565 0 - 80 146 0 - 2 148 0 - 0 1 793 0 1 703 0 1 703 0 223 0 223 0 223 0 223 0 223 0 225 0 10 1 703 0 2 0 225 0 233 0 253 0 223 0 233 0 235 0 235 0 1 1 7 1 <td< td=""><td>Comb. L-T</td><td></td><td>0</td><td>ı</td><td></td><td></td><td>0</td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td>0</td><td>,</td><td></td><td></td><td>0</td><td>ı</td></td<>	Comb. L-T		0	ı			0				0				0	,			0	ı
Comb. I-R 1 565 0 1 792 1 793 0 1 1993 0 1 193 0 1 193 1 1393 1 1393 1 1393 1 1393 1 1393 1 1393 1 1393 1 1393 1 1393 1 1 1	WB Thru	1638	2	565	246	1884	0	650	347	2231	2	792	0	2231	2	793	0	2231	7	793
We rught Jo U Jo U Jo	Comb. T-R	01	c	565	c	00	~- c	650	0	077	- c	792	c	077	~ c	793	c		c	793
Crit. Volumes: N-S: 668 N-S: 769 N-S: 1009 N-S: 1010 E-W: 673 E-W: 774 E-W: 980 E-W: 982 SUM: 1342 SUM: 1543 SUM: 1989 SUM: 1993 No. of Phases: 4 A 4 A 4 4 Volume / Capacity: 0.976 1.122 1.146 1.446 1.449 Level of Service: E F T F 7.449 T	Comb. L-T-R -	2	00	1	Ð	B	00	r	0	<u></u>	00		N	0	00	I	5	140	00	I
E-W: 673 E-W: 774 E-W: 980 E-W: 982 SUM: 1342 SUM: 1543 SUM: 1989 SUM: 1993 No. of Phases: 4 4 4 4 4 Volume / Capacity: 0.976 1.122 1.446 1.449 Level of Service: E F 7 7	Crit. Volumes:		N-S:	668			:S-N	769			N-S:	1009			N-S:	1010			N-S:	1010
SUM: 1342 SUM: 1543 SUM: 1989 SUM: 1993 No. of Phases: 4 4 4 4 4 4 No. of Phases: 4 4 4 4 4 4 Volume / Capacity: 0.976 1.122 1.446 1.446 1.449 Level of Service: E F 7 7			:м- Ш	673			Е-W:	774			E-W:	980			E-W:	982			Е-W:	982
No. of Phases: 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			SUM:	1342			SUM:	1543			SUM:	1989			SUM:	1993			SUM:	1993
Volume / Capacity: 0.976 1.122 1.446 1.449 Level of Service: E F F F F	No. of Phases			4				4				4				4				4
Level of Service: E F F F F	Volume / Cap	acity:		0.976				1.122				1.446				1.449				1.449
	Level of Servic	je:		ш				ш				Ľ				Ш.				ш
Accumutione: Maximum Sum of Oritical Volumes (Intersection Canacity): 2 Phase=1405, 4+ Phase=1375, 1 Insignalized=1200	Assumptions		Maximum	Sum of Critic	amiloV lev	s /Interse	tion Canar	-itu)- 2 Phas	a=1500_3	Dhase=1.	405 4+ Ph	aca=1375	l Insignalizi	ad=1200						

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200. For dual turn lanes, 55% of volume is assigned to heavier lane. For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. Right turns on red from excl. lanes = 50% of overlapping left turn. Note: Year 2007 manual traffic counts were adjusted by a 1.0 percent (1.0%) ambient growth factor to reflect year 2008 existing conditions.

La Cienega Boulevard Wilshire Boulevard Cedars-Sinai Medical Center / 1-992843-1 CMA21 Accutek

N-S St: E-W St: Project: File Name: Counts by:

CRITICAL MOVEMENT ANALYSIS

La Clenega Boulevard @ Wilshire Boulevard Peak Hour: PM Annual Growth: 1.00%

CSMC Project

06/23/2008 2008 2023 Date: Date of Count: Projection Year:

200	18 EXIST. TR	AFFIC	2023 V	V/ AMBIE	NT GROW	HL	2023 V	// OTHEF	ROJEC	TS	2023 V	V/ PROPC	SED PRO.	JECT	2023	W/ MITIG	ATION	
	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement Volun	te Lanes	Volume	Volume	Volume	Lanes	Volume	Volume \	/olume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
NB Left 16)6 1	166	25	190	c	190	61	251	c	251	0	251	- c	251	0	251	c	251
Comb. L-1 NB Thru 127 Comb. T-R	7 2	- 473 473	191	1468	р 04 -	- 544 544	536	2004	- 10 0	- 728 728	Û	2009	- 17 0	- 730 730	0	2009	5 N +	- 730 730
NB Right 1 ⁴ Comb. L-T-R -	- 0 0 - 0) F	21	164	- 0 0	1	16	180	- 0 0	04 	0	180	- 0 0	1	0	180	- 0 0	-
SB Left 12	21 1	121	18	139		139	173	312	- c	312	N	314	c	314	0	314	c	314
SB Thru 132 Comb T-R	28	475 475	199	1527	о сч -	546 546	621	2148	, cu -	780	8	2156	о с и т	- 783 783	0	2156	0 CI +	- 783 783
SB Right 5 Comb. L-T-R -	96 0) - -	14	110	00		81	191		1	7	193	- 0 0	1	0	193	- 0 0	1
EB Left 17 Comb L-T	1 1 0	179 -	27	206	c	206	75	281	- c	281	-	282	c	282	0	282	c	282
EB Thru 134 Comb T-R	13 12 1	492 492	201	1545	0 64 +	565	381	1926	o (1 -	724	0	1926	о си т	724	0	1926	- M	724
EB Right 15 Comb. L-T-R -	31 0	1	20	151	- 0 0		95	246	- 0 0	r 1	0	246	- 0 0	-	0	246	- 0 0	+71
WB Left 25	37 1	237	36	273	- 0	273	18	291	- c	291	0	291	0	291	0	291	÷ - 0	291
WB Thru 117 WB Thru 117	7 2	424	176	1353	5 01 7	- 487 487	244	1597	- N -	- 602 603	0	1597	- N C	602	0	1597		602
WB Right 5 Comb. L-T-R -	35 0 0	t 77 1	1 4	109	- 0 0	-0+ -	66	208	- 0 0	-	←	209	- 0 0	-	0	209	- 0 0	700 .
Crit. Volumes:	N-S: E-W: SUM:	640 729 1369			N-S: E-W: SUM:	736 838 1575			N-S: E-W: SUM:	1040 1015 2055			N-S: E-W: SUM:	1044 1015 2059	:		N-S: E-W: SUM:	1044 1015 2059
No. of Phases;		4				4				4				4				4
Volume / Capacity: Level of Service:		0.996 E				1.145 F				1.495 F				1.497 F				1.497 F
Assumptions:	Maximum For dual tu For one ex Right turns Note: Year	Sum of Critic urn lanes, ccl. and one (s on red from - 2007 manu,	al Volumes 55% opt. turn lar excl. lanes al traffic col	s (Intersec ne, s = unts were	tion Capac of volume ii 70% o 50% o adjusted b	city): 2 Phas is assigned i if volume is if overlappin y a 1.0 perc	e=1500, 3 o heavier la assigned tc g left turn. :ent (1.0%)	⊃hase=14 ane.) exclusivv ambient ;	t25, 4+ Ph e Iane. growth fac	ase=1375, tor to reflec	Unsignaliz t year 200	ed=1200. 8 existing	conditions.					

CRITICAL MOVEMENT ANALYSIS

Orlando Avenue @ Third Street AM 1.0% Annual Growth: Peak Hour:

CSMC Project

Orlando Avenue Third Street Cedars-Sinai Medical Center / 1-992843-1 CMA22 Accutek

N-S St: E-W St: Project: File Name: Counts by:

Date of Count: Projection Year:

Date:

2008 2023 06/23/2008

	2008 1	EXIST. TR.	AFFIC	2023	W/ AMBI	ENT GROV	VTH	2023 \	W/ OTHEN	R PROJE	CTS	2023 \	W PROPC	SED PRO	JECT	2023	W/ MITIG	BATION		
		No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	ø
Movement	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volun	ne
NB Left	38	00	1	Ð	44	0 0	,	45	89	00	ŀ	0	89	00	ı	0	89	00	•	
COMD. L-1 NB Thru	95	00	- 185	14	109	00	- 213	0	109	00	. 258	0	109	00	- 258	0	109	00		258
Comb. T-R NB Right	52	00	1 1	8	59	00		0	59	00	1 1	0	59	00	• •	0	59	00		
Comb. L-T-R	ı	-				-				-				-				-		
SB Left	18	0	-	3	21	0	.	0	21	0	,	0	21	0	,	0	21	0	1	
Comb. L-T SB Thru	505	00	- 480	50	452	00	- 557	C	452	00	-	C	452	00	- 557	c	452	00	1	552
Comb. T-R	200	0	-	3	4	00	100	0	101	00	-	0	401	00	-	0	101	00	ı	100
SB Right	69	0		10	79	0	ı	0	62	0	,	0	62	0	ŧ	0	79	0	,	
Comb. L-T-R	ı													-				~		
EB Left [1]	10	0	-	2	12	0 1	, L	0	12	0 1	-	0	12	0	, U	0	12	0,	1	1
Comb. L-1 FR Thru	527	c	300	52	606	- c	345	170	776	~ c	451	~	778	- c	- 452	C	778	- 0		452
Comb. T-R	j) —	300	-			345			, 	451	ı			452)		, -		452
EB Right	63	0	1	6	72	0	•	43	115	0	•	0	115	0	•	0	115	0		
Comb. L-T-R	1	0				0				0				0				0		
WB Left [1]	62	0 ·	,	6	71	0 ·	,	0	71	0 ·	1	0	71	o ·	;	0	71	0	,	
Comb. L-T WR Thru	1296	~ 0	- 686	194	1490	c	- 789	282	1779	- c	930	ur.	1777	c	933	C	1777	C		933
Comb. T-R	2024		686	2	-	o ←	789	404	1	c	930	2		- v	933	2		c		933
WB Right	15	0	ı	2	17	0	ı	0	17	0	,	0	17	0	,	0	17	0	,	
Comb. L-T-R		0				0				0				0				0		
Crit. Volumes		N-S:	518			N-S:	596			N-S:	641			N-S:	641			N-S:		641
		E-W:	696			E-W:	801			E-W:	942			E-W:	944			E-W:		944
		SUM:	1215			SUM:	1397			SUM:	1583			SUM:	1585			SUM:	-	1585
No. of Phase	:s		2				2				2				2					2
Volume / Cap	acity:	[2]	0.740			[1],[2]	0.831			[1],[2]	0.955			[1],[2]	0.957			[1]'[2]	0	.957
Level of Serv	ice:		ပ				D				ш				ш				ш	
Assumption	::	Maximum .	Sum of Critic	cal Volume	s (Interse	ction Capa	ncity): 2 Pha.	se=1500, 3	Phase=1	425, 4+ P	hase=1375,	, Unsignali.	zed=1200.							

For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. Right turns on red from excl. lanes = 50% of overlapping left turn. [1] No Left-turns from 4 PM to 7 PM Weekdays. [2] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements. [3] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [3] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [3] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. Note: Year 2007 manual traffic counts were adjusted by a 1.0 percent (1.0%) ambient growth factor to reflect year 2008 existing conditions.

CRITICAL MOVEMENT ANALYSIS

Ortando Avenue @ Third Street Peak Hour: Annual Growth: 1.00%

CSMC Project

Orlando Avenue Third Street Cedars-Sinai Medical Center / 1-992843-1 CMA22 Accutek

N-S St: E-W St: Project: File Name: Counts by:

Date: Date of Count: Projection Year:

06/23/2008 2008 2023

	2008 EXIST. TH	AFFIC	2023 V	V/ AMBIE	NT GROW	HL	2023 W	/ OTHER	PROJEC	TS	002 M		SED PRO	ECT.	2023	W/ MITIO	BATION		
	No. of	ane	Added	Total	No. of	lane	Added	Total N	do of	Lane	Added	Total	No of	045	Айдед	Total	No. of	1 31	٩
Movement Vo	lume Lanes	Volume	Volume	/olume	Lanes	Volume	Volume V	olume L	anes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volu	me
NB Left Comb 1_T	28 0	1 1	4	33	00	1	100	133	00		0	133	00		0	133	00	3 1	
	367 0	485	55	422	000	558	0	422	000	658	0	422	000	- 651	3	422	000		658
Comb. 1-K NB Right Comb. L-T-R -	90	1 1	13	103	- 0 0	1 1	o	103	00-		0	103	- 0 0	1 1	0	103	- 0 0		
SB Left	34 0	,	5	39	0 0		ο	39	0 0	•	0	39	0 0		o	39	0	,	
COMD. L-I SB Thru Comb T D	183 U	- 245	27	210		- 282	O	210		- 282	0	210		- 28	0	210		ı	282
Connu. IK SB Right Comb. L-T-R -	28 0	1 1	4	33	- o c		o	33	- 0 0		0	33	- 0 0	1 1	0	33	- 00		
EB Left [1]	0	,	0	0	0		0	0	0 0		0	0	0 0		0	0	0	,	
COMD. L-1 EB Thru Comb + D	1198 0	- 645 645	180	1378	⊃ - - 7	- 742	340	1718	⊃ ~ 7	- 958 058	Ð	1723	c	906 -	0	1723	⊃ -	·	960
Come. I-K EB Right Comb. L-T-R -	- 0 63 0	c 40 '	14	107	- 0 0	- 142	91	198	- 0 0	000	0	198	- 0 0	0 20 20 20 20 20 20 20 20 20 20 20 20 20	0	198	-00	ı	nos
WB Left [1]	0	, '	Q	0	0 0		0	0	0 0		0	0	0 0		0	0	0 0	,	
WB Thru	755 1	399	113	869	⊃ - -	459	244	1113	⊃ - -	581	ი	1116	⊃ ~ ·	283	0	1116	⊃ ~	,	582
Comb. I-R WB Right Comb. L-T-R -	42 0 0	- 100 -	Ø	49	-00	459 -	0	49	- 0 0	- 185	0	49	-00	1	0	49	-00	'	582
Crit. Volumes:	N-S: E-W: SUM:	519 645 1165			N-S: E-W: SUM:	597 742 1339			N-S: E-W: SUM:	697 958 1655			N-S: E-W: SUM:	96 165			N-S: E-W: SUM:		697 960 1657
No. of Phases:		2				2				2					0				2
Volume / Capacit Level of Service:	y: [2]	0.706 C			[1],[2]	0.793 C			[1].[2]	1.003 F			[1],[2]	F 1.00	10		[z]'[µ]	Ľ	1.005
Assumptions:	Maximurr For dual I For one є Right turr [1] No Lei [2] The vc [3] The vc Note: Yee	i Sum of Criti urn lanes, vcrl. and one is on red fron is on red from it turns from it une to capi it 2007 manu	cal Volumes 55% opt. turn lar n excl. lanes 4 PM to 7 P. acity ratios h acity ratios h acity ratios h acity ratios cou	(Intersec ae, M Weekd ave been ave been ints were	ition Capac of volume i 70% c 50% c ays. reduced b reduced b	ity): 2 Phasi s assigned t if volume is u if overlappin of 0.07 to ac y 0.03 to ac y a 1.0 perc	p=1500, 31 o heavier la sssigned to g left turn. count for th count for th to th	Phase=14 ane. • exclusive • einstallat e installat ambient g	25, 4+ Ph lane. ion of the ion of the rowth fact	ase=1375, Wilshire We Wilshire We tor to reflect	Unsignaliz sst ATSAC sst ATCS . ' year 200.	ed=1200. System in system imp	aprovemer provement: conditions.	sts.					

APPENDIX C

CONCEPT IMPROVEMENT PLANS

APPENDIX **D**

SUMMARIES OF CSMC CAMPUS DRIVEWAY COUNTS

Appendix Table D-1 CSMC CAMPUS DRIVEWAY COUNT SUMMARY [1] OVERALL AVERAGE Cedars-Sinai Medical Center

	FAL	TOTAL				91	, B	8(76	17
	IRLY TO	оит				56	50	47	45	44
eway	НОГ	N				35	31	33	31	33
orth Driv	OTAL	OUT	18	16	11	11	12	13	9	10
2: Lot 2 N	15-MIN 7	N	11	8	7	9	7	10	5	11
VAY NO.		RT OUT	9	7	9	7	6	5	4	4
DRIVEV	OUTBC	LT OUT	12	6	9	4	6	8	5	9
	DNL	RT IN	4	3	2	3	3	3	2	9
	INBOL	LTIN	7	5	2	9	4	7	ę	5
	AL	TOTAL				57	67	62	52	48
	ΓLY TOT	OUT				48	56	53	44	39
ing	ПОН	N				6	11	6	8	6
ans Build	OTAL	OUT	10	11	15	12	18	8	9	7
. 1: Thali	15-MIN T	N	2	3	2	2	4	1	1	3
WAY NO	UND	RT OUT	10	11	15	12	18	8	9	7
DRIVE	OUTBO	LT OUT	0	0	0	0	0	0	0	0
	DNI	RT IN	-	2	2	+	2	0	1	2
	INBOL	LTIN	-	-	0	1	2	1	0	
	COUNT	PERIOD	4:00-4:15 PM	4:15-4:30 PM	4:30-4:45 PM	4:45-5:00 PM	5:00-5:15 PM	5:15-5:30 PM	5:30-5:45 PM	5:45-6:00 PM

			DRIVE	WAY NO	. 4: PS8 I	Vorth Driv	eway					DRIVE	WAY NO.	5: PS8 N	liddle Driv	/eway		
COUNT	INBOI	UND	OUTB	DNUC	15-MIN	TOTAL	ПОН	IRLY TO	TAL	INBO	DND	OUTB	dNN0	15-MIN	TOTAL	НОГ	JRLY TO	TAL
PERIOD	LT IN	RT IN	LT OUT	RT OUT	N	OUT	N	OUT	TOTAL	LT IN	RT IN	LT OUT	RT OUT	NI	ουτ	N	OUT	TOTAL
4:00-4:15 PM	2	-	2	Ω.	ę	7				3	3	22	37	9	59			
4:15-4:30 PM	-	+	2	80	2	10				2	0	29	48	2	77			
4:30-4:45 PM	2	-	9	13	3	19				4	1	26	49	5	75			
4:45-5:00 PM	5	2	7	7	7	14	15	50	65	1	2	26	56	3	82	16	293	309
5:00-5:15 PM	3	3	5	11	9	16	18	59	77	3	2	30	55	5	85	15	319	334
5:15-5:30 PM	3	3	10	15	9	25	22	74	96	5	1	34	69	9	103	19	345	364
5:30-5:45 PM	3	3	4	10	9	14	25	69	94	4	3	27	61	7	88	21	358	379
5:45-6:00 PM	n	e S	e	9	9	6	24	64	88	9	2	24	51	ω	75	26	351	377

		DRIVEWAY N	10. 6: PS8	South Driv	reway				L)	RIVEWA	VY NO. 7: F	Research	Pavilion	Driveway		
BOUND OUTBOUND 15-MIN TOTAL	DUTBOUND 15-MIN TOTAL	15-MIN TOTAL	TOTAL		INOH	RLY TO'	TAL	INBO		OUTB		15-MIN	TOTAL	пон	RLY TO	TAL
V RTIN LTOUT RTOUT IN OU	OUT RTOUT IN OU	T IN OU	no	т	NI	OUT	TOTAL	LTIN	RTIN	LT OUT	RT OUT	N	OUT	NI I	our	TOTAL
5 2 5 6 7	5 6 7	6 7		11				2	7	11	4	6	15			
5 1 4 9 6	4 9 6	9 6		13				2	9	8	5	8	13			
3 2 2 6 5	2 6 5	6 5		8				+	7	10	4	80	14			
4 3 3 3 8 7	3 8 7	8 7		11	25	43	68	3	10	6	5	13	14	38	56	94
2 1 2 7 3	2 7 3	7 3		9	21	41	62	e	8	11	4	11	15	40	56	96
3 2 4 8 5	4 8 5	8 5		12	20	40	60	2	8	11	4	10	15	42	58	100
1 1 2 5 2	2 5 2	5 2		7	17	39	56	2	8	9	5	10	14	44	58	102
2 1 1 4 3	1 4 3	4 3		5	13	33	46	2	9	80	4	8	12	39	56	95

			JRIVEWA	Y NO. 8:	North Me	zzanine	Driveway					DRIVI	EWAY NO.	. 9: Pat T	ower Driv	reway		
COUNT	INBOL	DND	OUTBC		15-MIN	TOTAL	ПОН	RLY TO'	TAL	INBO	UND	OUTE	DUND	15-MIN	TOTAL	ЧÓ	JRLY TO	TAL
PERIOD	LT IN	RT IN	LT OUT	RT OUT	N	OUT	N	OUT	TOTAL	LT IN	RTIN	LT OUT	RT OUT	N	OUT	IN	our	TOTAL
4:00-4:15 PM	2	e	4	4	5	8				0	1	0	0	1	0			
4:15-4:30 PM	2	4	7	3	9	10				0	1	0	0	-	0			
4:30-4:45 PM	2	4	5	5	9	10				0	0	0	0	0	0			
4:45-5:00 PM	1	4	9	8	5	17	22	45	67	1	1	1	1	2	2	4	2	6
5:00-5:15 PM	1	4	13	5	5	18	22	55	77	0	0	1	0	0	1	3	3	9
5:15-5:30 PM	1	3	14	9	4	20	20	65	85	1	1	0	1	2	1	4	4	8
5:30-5:45 PM	3	9	10	9	6	16	23	71	94	0	0	1	1	0	2	4	6	10
5:45-6:00 PM		5	15	6	9	24	24	78	102	0		0	0		0	e	4	7

Appendix Table D-1 (Continued) CSMC CAMPUS DRIVEWAY COUNT SUMMARY [1] OVERALL AVERAGE Cedars-Sinai Medical Center

	TAL	TOTAL				46	З£	3	27	2,
	וצבץ דס:	OUT				0	0	0	0	0
veway	НОГ	N				46	36	33	27	21
West Dri	TOTAL	OUT	0	0	0	0	0	0	0	0
11: MOT	15-MIN	N	15	10	11	10	5	7	5	4
WAY NO.	anno	RT OUT	0	0	0	0	0	0	0	0
DRIVE	OUTB	LT OUT	0	0	0	0	0	0	0	0
	DND	RT IN	12	7	8	7	3	4	4	e
	INBO	LT IN	3	3	3	3	2	3	1	-
	TAL	TOTAL				117	135	150	173	171
	JRLY TO'	OUT				117	135	150	173	171
Driveway	НОГ	N				0	0	0	0	0
ezzanine	TOTAL	OUT	28	26	29	34	46	41	52	32
South M	15-MIN	N	0	0	0	0	0	0	0	0
Y NO. 10:	anno	RT OUT	12	14	12	16	13	18	20	13
RIVEWA'	OUTB	LT OUT	16	12	17	18	33	23	32	19
	UND	RT IN	0	0	0	0	0	0	0	0
	INBO	LT IN	0	0	0	0	0	0	0	0
	COUNT	PERIOD	4:00-4:15 PM	4:15-4:30 PM	4:30-4:45 PM	4:45-5:00 PM	5:00-5:15 PM	5:15-5:30 PM	5:30-5:45 PM	5:45-6:00 PM

			-	-	_		_	_	_	_	-
	TAL	TOTAL				56	53	44	36	31	
	JRLY TO	OUT				37	37	33	29	27	
way	HOL	N				19	16	11	7	4	
cer Drive	TOTAL	OUT	8	9	12	8	8	5	8	6	i
). 13: Can	15-MIN -	N	9	5	5	3	3	0	1	0	
EWAY NC		RT OUT	8	9	12	7	7	5	8	9	C
DRIVI	OUTB(LT OUT	0	0	0	1	1	0	0	0	
	DND	RT IN	5	2	4	3	2	0	1	0	
	INBO	LT IN	1	3	1	0	1	0	0	0	
	AL	TOTAL				36	31	26	22	19	
	RLY TOT	OUT				21	21	19	19	17	
ray	пон	IN				15	10	7	ß	2	
CT Drivey	FOTAL	OUT	4	9	6	5	4	4	9	e	
O. 12: NC	15-MIN 7	N	9	4	4	1	1	1	0	0	
/EWAY N		RT OUT	4	9	9	5	4	4	9	33	
DRIV	OUTBC	LT OUT	0	0	0	0	0	0	0	0	
	DNL	RT IN	S	2	3	1	1	1	0	0	
	INBOL	LT IN	1	2	1	0	0	0	0	0	
	COUNT	PERIOD	4:00-4:15 PM	4:15-4:30 PM	4:30-4:45 PM	4:45-5:00 PM	5:00-5:15 PM	5:15-5:30 PM	5:30-5:45 PM	5:45-6:00 PM	

	ral.	TOTAL				77	73	71	62	86
	IRLY TOT	OUT				40	37	35	39	42
reway	НОГ	N				37	36	36	40	44
arge Driv	TOTAL	OUT	12	12	6	7	6	10	13	10
15: Disch	15-MIN	N	6	12	7	9	8	12	11	13
WAY NO.		RT OUT	9	9	4	5	5	6	10	7
DRIVE	OUTB	LT OUT	6	9	5	2	4	4	3	e
	UND	RT IN	6	12	7	9	8	12	11	13
	INBO	LTIN	0	0	0	0	0	0	0	0
	TAL	TOTAL				49	48	46	49	44
	JRLY TO	OUT				24	23	23	26	23
ay	HOL	IN				25	25	23	23	21
R Drivew	TOTAL	OUT	9	S	4	9	5	S	7	9
NO. 14: E	15-MIN	N	5	7	5	8	5	5	5	9
VEWAY I		RT OUT	9	ŋ	4	9	5	5	7	9
DR	OUTB(LT OUT	0	0	0	0	0	0	0	Ö
	UND	RT IN	2	G	4	5	3	2	3	S
	INBO	LTIN	3	-	1	3	2	3	2	1
	COUNT	PERIOD	4:00-4:15 PM	4:15-4:30 PM	4:30-4:45 PM	4:45-5:00 PM	5:00-5:15 PM	5:15-5:30 PM	5:30-5:45 PM	5:45-6:00 PM

						_		_		_	
		TAL	TOTAL				17	16	14	12	6
		JRLY TO	OUT				7	7	ŝ	4	6
	riveway	НОГ	N				10	6	6	8	7
	naging D	FOTAL	out	2	2	-	2	2	0	0	C
	: Taper II	15-MIN -	N	ß	2	2	3	2	2	1	6
	Y NO. 17		RT OUT	2	1	-	1	1	0	0	С
	RIVEWA	OUTBC	LT OUT	0	1	0	1	1	0	0	C
			RT IN	1	0	1	1	1	1	1	С
and the second se		INBOL	LT IN	2	2	1	2	1	1	0	6
		AL	TOTAL				7	5	S	ε	9
		RLY TOT	OUT				3	2	2	1	6
	iveway	пон	N				4	3	e	2	4
	Dock Dr	OTAL	OUT		0	-	1	0	0	0	0
	: Loading	15-MIN T	N	-	+	2	0	0	1	1	6
	Y NO. 16:	UND	ΧΤ Ο UT	1	0	0	1	0	0	0	÷
	RIVEWA	OUTBO	T OUT	0	0	1	0	0	0	0	Ŧ
		IND	RT IN	1	0	1	0	0	1	1	-
		INBOU	LT IN	0	1	1	0	0	0	0	
		COUNT	PERIOD	4:00-4:15 PM	4:15-4:30 PM	4:30-4:45 PM	4:45-5:00 PM	5:00-5:15 PM	5:15-5:30 PM	5:30-5:45 PM	5-45-6-00 PM

Appendix Table D-1 (Continued) CSMC CAMPUS DRIVEWAY COUNT SUMMARY [1] OVERALL AVERAGE Cedars-Sinai Medical Center

	TAL	TOTAL				ю —	(F)	4	3	G
	JRLY TO	OUT				3	e	4	5	5
Driveway	HOL	Z				0	0	0	0	0
st North	TOTAL	OUT	-		0	1	1	2	1	-
: MOT Ea	15-MIN	z	0	0	0	0	0	0	0	0
Y NO. 19		RT OUT	1	-	0	1	1	1	0	-
DRIVEWA	OUTB	LT OUT	0	0	0	0	0	1	1	0
	UND	RT IN	O	0	0	0	0	0	0	0
	INBO	LT IN	0	Ö	0	0	0	0	0	0
	LAL	TOTAL				50	45	40	36	36
	IRLY TOT	OUT				36	35	31	28	25
veway	ЮН	N				14	10	6	8	11
West Driv	TOTAL	оит	6	11	6	7	8	7	9	4
18: DTC	15-MIN	N	9	3	4	1	2	2	3	4
WAY NO.		RT OUT	υ	9	3	5	5	4	3	2
DRIVE	OUTB	LT OUT	4	S	9	2	3	3	3	2
	UND.	RT IN	3	2	2	0	1	1	1	
	INBO	LTIN	3	1	2	1	1	1	2	3
	COUNT	PERIOD	4:00-4:15 PM	4:15-4:30 PM	4:30-4:45 PM	4:45-5:00 PM	5:00-5:15 PM	5:15-5:30 PM	5:30-5:45 PM	5:45-6:00 PM

		DRIVEWA	Y NO. 20:	MOT Eau	st South L	Driveway					DRIVE	EWAY NO.	. 21: PS4	West Driv	reway		
COUNT	INBOUND	OUTBC		15-MIN	TOTAL	ПОН	IRLY TO	TAL	INBO	UND	OUTB	DUND	15-MIN	TOTAL	НÓГ	JRLY TO	TAL
PERIOD	LT IN RT IN	LT OUT	RT OUT	N	OUT	N	OUT	TOTAL	LT IN	RT IN	LT OUT	RT OUT	Z	OUT	z	OUT	TOTAL
4:00-4:15 PM	8	8	29	13	37				S	£	20	13	10	33			
4:15-4:30 PM	7 2	13	17	σ	30				4	2	25	14	9	39			
4:30-4:45 PM	8 2	13	26	10	39				2	2	30	16	7	46			
4:45-5:00 PM	7 2	6	27	9	36	41	142	183	4	3	25	18	7	43	30	161	191
5:00-5:15 PM	3 1	14	50	4	64	32	169	201	1	1	32	24	2	56	22	184	206
5:15-5:30 PM	5 3	6	25	8	34	31	173	204	4	2	25	21	9	46	22	191	213
5:30-5:45 PM	7 0	13	36	7	49	28	183	211	1	2	24	21	3	45	18	190	208
5:45-6:00 PM	5 0	6	15	5	21	24	168	192	3	5	14	15	ω	29	19	176	195
		DRIVE	NAY NO	22. DTC	Fact Driv	Vewe.					aviau	ON VANT	23. DCA	Eact Driv			

_	_	_	_	_		_	_	_	_	_
-	TAL	TOTAL				138	152	151	139	124
	JRLY TO	OUT				135	149	147	136	121
'eway	ЮН	Z				e	e	4	0	e
East Driv	TOTAL	OUT	28	30	42	35	42	28	31	20
23: PS4	15-MIN	z	1	0	-	1	F	1	0	-
WAY NO.		RT OUT	24	23	31	21	32	22	23	15
DRIVE	OUTB	LT OUT	4	7	11	14	10	9	8	5
	UND	RT IN	·	0	-	1	1	1	0	-
	INBO	LT IN	0	0	0	0	0	0	0	0
	TAL	TOTAL				5	4	S	5	9
	JRLY TO	оит				5	4	5	5	4
reway	HOL	N				0	0	0	0	2
East Driv	TOTAL	OUT		1	2	1	0	2	2	0
. 22: DTC	15-MIN	N	0	0	0	0	0	0	0	2
WAY NO	OUND	RT OUT	1	Ļ	2	1	0	2	2	0
DRIVE	OUTB	LT OUT	0	0	0	0	0	0	0	0
	UND	RT IN	0	0	0	0	0	0	0	2
	INBO	LT IN	0	0	0	0	0	0	0	0
	COUNT	PERIOD	4:00-4:15 PM	4:15-4:30 PM	4:30-4:45 PM	4:45-5:00 PM	5:00-5:15 PM	5:15-5:30 PM	5:30-5:45 PM	5:45-6:00 PM

	TAL	TOTAL				1772	1851	1910	1918	1839
	IRLY TOT	OUT				1363	1489	1555	1577	1503
AL	요	z				409	362	355	341	336
PUS TOT	TOTAL	OUT	310	331	363	359	436	397	385	285
MC CAM	15-MIN .	N	121	95.	93	100	74	88	79	95
RALL CS		RT OUT	195	202	227	228	272	244	242	177
OVE	OUTBO	LT OUT	115	129	136	131	164	153	143	108
	UND	RT IN	71	54	57	58	46	49	48	58
	INBO	LT IN	50	41	36	42	28	39	31	37
	AL	TOTAL				36	45	52	48	50
	RLY TOT	OUT				35	45	52	48	50
reway	пон	N				+	0	0	0	0
d Lot Driv	TOTAL	OUT	10	8	11	9	20	15	7	80
24: Islan	15-MIN '	N	1	0	0	0	0	0	0	0
NAY NO.		RT OUT	10	8	11	9	20	15	7	80
DRIVE	OUTBC	LT OUT	0	0	0	0	0	0	0	0
	UND	RT IN	1	0	0	0	0	0	0	0
	INBO	LT IN	0	0	0	0	0	0	0	0
	COUNT	PERIOD	4:00-4:15 PM	4:15-4:30 PM	4:30-4:45 PM	4:45-5:00 PM	5:00-5:15 PM	5:15-5:30 PM	5:30-5:45 PM	5:45-6:00 PM

Appendix Table D-2 CSMC CAMPUS DRIVEWAY COUNT SUMMARY [1] DATE OF COUNT: TUESDAY, JUNE 19, 2007 Cedars-Sinai Medical Center

		DRIV	EWAY N	0. 1: Thal	ians Buil	ding					DRIVE	WAY NO	. 2: Lot 2	North Dri	veway		
-	QN	OUTB(OUND	15-MIN	TOTAL	НОГ	JRLY TO	TAL	INBO	UND	OUTB	OUND	15-MIN	TOTAL	пон	RLY TOT	.AL
_	RT IN	LT OUT	RT OUT	N	OUT	N	OUT	TOTAL	LT IN	RT IN	LT OUT	RT OUT	N	OUT	N	OUT	TOTAL
_	-	0	4	-	4				9	3	11	8	6	19			
	-	0	10	~	10				4	2	6	10	9	19			
_	2	0	18	2	18	-			e	2	7	6	5	16			
_	2	0	20	2	20	9	52	58	8	2	1	9	10	7	30	61	91
-	1	0	13	2	13	7	61	68	4	2	7	9	9	16	27	58	85
-	0	0	10	٣	10	2	61	68	9	3	13	2	6	15	30	54	84
0	1	0	9	*	9	9	49	55	4	1	9	5	5	11	30	49	79
0	4	0	10	4	10	8	39	47	9	3	8	4	б	12	29	54	83
		DRIVE	WAY NO	. 4: PS8 h	Vorth Driv	reway					DRIVE	WAY NO	. 5: PS8 N	liddle Dri	veway		
B	dND	OUTB(OUND	15-MIN	TOTAL	НОГ	JRLY TO	TAL	INBO	UND.	OUTB	OUND	15-MIN	TOTAL	ПОН	RLY TOT	AL
z	RT IN	LT OUT	RT OUT	Z	OUT	Z	OUT	TOTAL	LT IN	RT IN	LT OUT	RT OUT	NI	OUT	z	OUT	TOTAL
2	1	2	4	9	9				2	2	20	33	4	53			
2	1	2	7	9	6				2	0	32	45	2	77			
	0	7	12	1	19				4	0	27	48	4	75			
5	1	7	6	9	13	13	47	60	3	2	32	52	5	84	15	289	304
~	2	5	11	4	16	14	57	71	3	1	31	67	4	98	15	334	349
4	2	10	10	9	20	17	68	85	8	1	36	69	9	105	22	362	384
S	4	9	14	9	20	25	69	94	5	3	24	63	8	87	26	374	400
ы	2	4	12	5	16	24	72	96	9	1	23	59	7	82	28	372	400
		DRIVE	WAY NO.	. 6: PS8 S	South Driv	reway				J	JRIVEWA	X NO. 7:	Research	I Pavilion	Driveway		
NBO	DND	OUTBC	DUND	15-MIN	TOTAL	HOL	JRLY TO	TAL	INBO	UND	OUTB	OUND	15-MIN	TOTAL	пон	RLY TOT	AL
z	RT IN	LT OUT	RT OUT	N	OUT	N	OUT	TOTAL	LT IN	RT IN	LT OUT	RT OUT	z	OUT	z	OUT	TOTAL
5	+	7	7	9	14				2	80	2	9	10	10			
7	2	3	5	6	8				0	S	10	2	5	12			
2	2	3	4	4	7				1	œ	12	£	σ	15			
ε	e	2	10	6	12	25	41	66	e	11	6	4	14	13	38	50	88
-	ŝ	2	11	4	13	23	40	63	2	12	14	4	14	18	42	58	100
9	2	4	9	5	13	19	45	64	0	9	8	0	9	80	43	54	97
-	0	e	5	٢	8	16	46	62	-	7	10	4	8	14	42	53	95
co	2	0	4	5	4	15	38	53	0	5	6	2	5	11	33	51	84

-								_		
	TAL	TOTAL				11	11	6	11	4
	JRLY TO	OUT				7	2	9	8	۳ ا
10100	HOI	Z				4	4	e	3	-
Wer Driv	TOTAL	OUT	-	-	0	Ś	1	0	2	0
0. Dat To	15-MIN -	z	-	F	0	2	+	0	0	0
AN NO		RT OUT	0	0	0	9	0	0	+	0
DRIVE	OUTBO	LT OUT	F	-	0	2	-	0	٢	0
	QNI	RT IN	F	-	0	7	+	0	0	0
	INBOL	LTIN	0	0	0	0	0	0	0	0
	AL	TOTAL				65	68	79	90	107
	TOT YLY	OUT				39	48	61	99	83
rivewav	INOH	z				26	20	18	24	24
Zanine D		OUT	10	12	œ	6	19	25	13	26
Jorth Mez	15-MIN T	z	6	8	e	9	3	9	9	9
/ NO 8. N		RT OUT	4	4	£	9	9	8	7	11
RIVEWA	OUTBC	LT OUT	9	80	e	3	13	17	9	15
		RT IN	S	7	e	4	2	e	7	4
	INBOL	LT IN	4	-	0	2	1	ß	2	2
	COUNT	PERIOD	4:00-4:15 PM	4:15-4:30 PM	4:30-4:45 PM	4:45-5:00 PM	5:00-5:15 PM	5:15-5:30 PM	5:30-5:45 PM	5:45-6:00 PM

Appendix Table D-2 (Continued) CSMC CAMPUS DRIVEWAY COUNT SUMMARY [1] DATE OF COUNT: TUESDAY, JUNE 19, 2007 Cedars-Sinai Medical Center

	RLY TOTAL	OUT TOTAL				0 58	0 52	0 44	0 30	0 21		RLY TOTAL	OUT TOTAL	
<i>г</i> еway	NOH	N				58	52	44	30	21	way	пон	N	
West Driv	TOTAL	OUT	0	0	0	0	0	0	0	0	ncer Drive	TOTAL	OUT	
11: MOT	15-MIN	N	13	15	18	12	7	7	4	3	0. 13: Cai	15-MIN	N	
EWAY NO.	BOUND	r rt out	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	IVEWAY NO	DNNO8.	T RT OUT	
DRIV	001	LT OU'								- 4	DR	OUT	LT OU	
	DUND	RT IN	11	5	12	10	3	9	2	(7)		DNDC	RT IN	
	INBC	LT IN	2	9	9	2	4	1	2	0		INBC	LT IN	
	TAL	TOTAL				109	132	156	190	192		TAL	TOTAL	Í
~	JRLY TO	OUT				109	132	156	190	192		JRLY TO	OUT	
Drivewa	HOL	N				0	0	0	0	0	/ay	Ę	Z.	
ezzanine	TOTAL	OUT	26	28	19	36	49	52	53	38	CT Drivev	TOTAL	OUT	
South M	15-MIN	N	0	0	0	0	0	0	0	0	O. 12: N(15-MIN	N	
VY NO. 10:	DUND	RT OUT	11	13	6	15	12	24	21	13	IVEWAY N	10UND	RT OUT	
JRIVEWA	OUTE	LT OUT	15	15	10	21	37	28	32	25	R	OUTE	LT OUT	
	UND	RT IN	0	0	0	0	0	0	0	0		UND	RT IN	
	INBO	LT IN	0	0	0	0	0	0	0	0		INBO	LTIN	
	COUNT	PERIOD	4:00-4:15 PM	4:15-4:30 PM	4:30-4:45 PM	4:45-5:00 PM	5:00-5:15 PM	5:15-5:30 PM	5:30-5:45 PM	5:45-6:00 PM		COUNT	PERIOD	

COUNT	INBO	DND	OUTBOUND	15-MI	V TOTAL	P	URLY TO	TAL	INBO	UND	OUTE		15-MIN	TOTAL	HOL	IRLY TO'	FAL
PERIOD	LTIN	RT IN	LT OUT RT OU	T IN	OUT	N.	OUT	TOTAL	LTIN	RT IN	LT OUT	RT OUT	N	OUT	N	OUT	TOTAL
4:00-4:15 PM	-	9	0	4	4				1	6	0	4	7	4			
4:15-4:30 PM	4	4	0 1	3	9				4	4	0	6	8	6			
4:30-4:45 PM	0	9	1 0	0	3 10				0	6	0	10	9	10			
4:45-5:00 PM	0	1	1	7 1	8	22	31	53	0	1	1	7	1	8	22	31	53
5:00-5:15 PM	0	0	1	7 6	8	15	35	50	0	0	1	7	0	8	15	35	50
5:15-5:30 PM	0	0	0	3 6	3	7	29	36	0	0	0	3	0	3	7	29	36
5:30-5:45 PM	0	1	0	0	10	2	29	31	0	1	0	10	1	10	2	29	31
5:45-6:00 PM	0	0	0) 6	6	1	30	31	0	0	0	8	0	8	1	29	30
			100								22400	OIN AVAINT	4 E. Dian				

			DRI	VEWAY P	40.14: E	R Drivew	ay					DRIVE	WAY NO.	15: Disch	narge Driv	eway		
COUNT	INBO	UND	OUTBC	DNDC	15-MIN	TOTAL	НOL	IRLY TO	TAL	INBO	UND	OUTB		15-MIN	TOTAL	пон	гот үля	AL
PERIOD	LTIN	RT IN	LT OUT	RT OUT	N	OUT	N	OUT	TOTAL	LT IN	RT IN	LT OUT	RT OUT	N	OUT	N	OUT	TOTAL
4:00-4:15 PM	5	2	0	5.	7	5				0	9	0	6	9	6			
4:15-4:30 PM	0	4	0	-	4	-		_		0	11	0	7	11	7			
4:30-4:45 PM	1	3	0	8	4	8				0	7	0	8	7	80			
4:45-5:00 PM	1	8	0	6	9	6	24	23	47	0	10	0	11	10	11	34	35	69
5:00-5:15 PM	1	4	0	7	5	7	22	25	47	0	4	0	8	4	8	32	34	66
5:15-5:30 PM	1	2	0	4	3	4	21	28	49	0	12	0	11	12	11	33	38	71
5:30-5:45 PM	0	2	0	2	2	2	19	22	41	0	12	0	17	12	17	38	47	85
5:45-6:00 PM	2	9	0	8	8	8	18	21	39	0	12	0	11	12	11	40	47	87

	r al	TOTAL				19	22	21	18	14
	IRLY TO'	OUT				8	12	6	8	S
riveway	ЛОН	N				11	10	12	10	6
naging D	FOTAL	OUT	1	3	1	3	5	0	0	0
: Taper Ir	15-MIN 7	NI	4	2	2	3	3	4	0	2
Y NO. 17	anno	RT OUT	1	2	1	2	4	0	0	0
DRIVEWA	OUTBC	LT OUT	0	-	0	1	1	0	0	0
	DNL	RT IN	1	0	0	0	2	2	0	0
	INBOI	LT IN	3	2	2	3	1	2	0	2
	AL	TOTAL				4	3	4	3	4
	RLY TOT	OUT				2	1	1	0	
riveway	ПОН	N				2	2	3	3	ę
g Dock D	TOTAL	OUT	1	0	1	0	0	0	0	
: Loading	15-MIN 7	N	0	+	1	0	0	2	1	0
V NO. 16	DND	RT OUT	1	0	0	0	0	0	0	0
DRIVEWP	OUTBC	LT OUT	0	0	1	0	0	0	0	-
	DN	RT IN	0	1	-	0	0	2	1	0
	INBOL	LT IN	0	0	0	0	0	0	0	0
	COUNT	PERIOD	4:00-4:15 PM	4:15-4:30 PM	4:30-4:45 PM	4:45-5:00 PM	5:00-5:15 PM	5:15-5:30 PM	5:30-5:45 PM	5:45-6:00 PM

Appendix Table D-2 (Continued) CSMC CAMPUS DRIVEWAY COUNT SUMMARY [1] DATE OF COUNT: TUESDAY, JUNE 19, 2007 Cedars-Sinai Medical Center

		DTAL				2	e	5	7	7		_ 1
	TOTAL	T TC				2	3	5	7	7		TOTAL
y	URLY	.no		_				-				URLY
Irivewa	모	N				0	0	0	0	0	eway	모
North D	TAL	рит	0	0	0	2	1	2	2	2	st Driv	TAL
r East	AIN TO	-	0	0	0	0	0	0	0	0	S4 We	NIN TO
9: MOT	15-1	N	10	-							Э. 21: F	15-1
/ NO. 1	UND	RT OUT	0	0	0	1	1	1	1	2	VAY NC	OND
VEWAY	DUTBO	OUT	0	0	0	1	0	1	1	0	JRIVEV	DUTBO
DRIV	_	N LT	0	0	0	0	0	0	0	0		_
	ONDO	RTI										ONDO
	INBC	LT IN	0	0	0	0	0	0	0	0		INBC
		TAL				59	52	44	37	36		
	FOTAL	TO				40	39	35	32	28		LOTAL
	JRLY 1	OUT							•••		/	- אדאר
way	POH	N				19	13	9	5	8	riveway	ЮH
'est Drive	DTAL	OUT	10	11	10	6	9	7	7	5	South D	DTAL
DTC W	MIN TO	-	6	S	4	1	3	1	0	4	T East	MIN TO
0.18:	15-	L L	6	7	4	2	4	5	4	2	20: MO	15-
DRIVEWAY NC	DNDC	RT OU									Υ NO. 1	anno
	OUTBO	LT OUT	4	4	9	2	5	2	3	е	RIVEWA	OUTBO
		r in	2	4	n	0	۲	1	0	-	٥	
	BOUN	L R	7	-	-	+	2	0	0	8		BOUN
	Z	LT IP										Z
	F	Ď	5 PM	M C	S PM	M4 C	M S	MH C	S PM	M C		F
	COUN	PERIC	:00-4:1	:15-4:30	:30-4:4	:45-5:01	:00-5:1	:15-5:3(:30-5:4:	:45-6:0		COLIN
			4	4	4	4	0	2	LO.	ŝ		

		DRIVEWA	VY NO. 20:	: MOT Ea	st South	Driveway					DRIVEW	IAY NO.	21: PS4	West Driv	eway		
COUNT	IBOUND	OUTB	OUND.	15-MIN	TOTAL	HOL	IRLY TO	TAL	INBO	UND	OUTBO	UND	15-MIN	TOTAL	ЧĊ	IRLY TO'	r a l
PERIOD LT I	N RT IN	LT OUT	RT OUT	N	OUT	N	OUT	TOTAL	LT IN	RT IN	LT OUT F	RT OUT	N	OUT	N	OUT	TOTAL
4:00-4:15 PM	8	1 7	29	16	36				3	9	21	11	6	32			
4:15-4:30 PM	0 0	14	22	6	36				4	ទ	28	16	6	44			
4:30-4:45 PM	4	14	34	9	48				2	2	30	18	4	48			
4:45-5:00 PM	5	10	25	7	35	38	155	193	3	6	25	15	9	40	31	164	195
5:00-5:15 PM	0	14	52	0	66	22	185	207	1	1	31	20	2	51	24	183	207
5:15-5:30 PM	2 3	4	25	5	29	18	178	196	3	2	30	26	5	56	20	195	215
5:30-5:45 PM	8 1	15	30	9	45	21	175	196	2	3	24	25	5	49	21	196	217
5:45-6:00 PM	3 C	2 0	13	3	20	17	160	177	4	5	17	21	6	38	21	194	215
		JNIAC	ON VAN:	22. DTC	Eact Driv	19WaV					DRIVEV	VAY NO	23. PS4	East Driv	PWAV		

		٩٢				144	149	156	44	129		
	TAL	TOT,						-,-	1			TAL
	RLY TO	OUT				141	147	151	139	125		RLY TO
way	пон	N				3	2	5	5	4	٦L	ЛОН
ast Drive	OTAL	OUT	33	29	47	32	39	33	35	18	US TOT/	OTAL
3: PS4 E	15-MIN T	N	-	0	1	1	0	3	1	0	IC CAMP	15-MIN T
AY NO. 2		τ ουτ	31	21	33	19	29	25	24	12	ALL CSN	DND
DRIVEW	OUTBOL	T OUT R	2	8	14	13	10	8	11	9	OVER	OUTBOL
	QN	RT IN L	0	0	1	1	0	3	0	0		ND
	INBOU	LT IN	1	0	0	0	0	0	۲	0		INBOU
	ד אר	TOTAL				4	2	3	2	3		٩L
	גרץ דסד/	OUT 1				4	2	3	2	2		кгү тот/
way	нон	N				0	0	0	0	1	way	HOUF
ast Drive	DTAL	OUT	2	-	1	0	0	2	0	0	Lot Drive	OTAL
2: DTC E	15-MIN T(N	0	0	0	0	0	0	0	1	4: Island	15-MIN T(
(AY NO. 2	and	T OUT	2	~	٢	0	0	2	0	0	AY NO. 2	
DRIVEN	OUTBOI	LT OUT R	0	0	0	0	0	0	0	0	DRIVEW	OUTBO
	ani	RT IN	0	0	0	0	0	0	0	+		
	INBOL	LTIN	0	0	0	0	0	0	0	0		INBOL
	COUNT	PERIOD	4:00-4:15 PM	4:15-4:30 PM	4:30-4:45 PM	4:45-5:00 PM	5:00-5:15 PM	5:15-5:30 PM	5:30-5:45 PM	5:45-6:00 PM		COUNT

Appendix Table D-3 CSMC CAMPUS DRIVEWAY COUNT SUMMARY [1] DATE OF COUNT: WEDNESDAY, JUNE 20, 2007 Cedars-Sinai Medical Center

	ral	TOTAL				76	99	67	62	71
	JRLY TO	OUT				59	45	43	38	38
reway	НОГ	Z				17	21	24	24	33
Vorth Driv	TOTAL	OUT	21	14	12	12	7	12	7	12
2: Lot 2 h	15-MIN	N	5	4	2	6	9	7	2	15
WAY NO.		RT OUT	9	7	8	10	5	2	4	9
DRIVE	OUTB	LT OUT	12	7	4	2	2	10	3	9
	UND	RT IN	1	2	1	0	5	1	1	8
	INBO	LTIN	4	2	1	6	4	9	1	7
	r AL	TOTAL				64	62	51	41	39
	JRLY TO'	OUT				49	51	45	35	34
ding	ЪЧ	N				15	11	9	9	5
ians Buil	TOTAL	OUT	15	12	13	6	17	9	e	80
0. 1: Thal	15-MIN	N	9	5	0	4	2	0	0	e S
EWAY NO	anno	RT OUT	15	12	13	6	17	9	e	80
DRIVEWAY	OUTB(LT OUT	0	0	0	0	0	0	0	0
	UND	RT IN	ю	ę	0	2	1	0	0	-
	INBO	LT IN	С	2	0	2	1	0	0	2
	COUNT	PERIOD	4:00-4:15 PM	4:15-4:30 PM	4:30-4:45 PM	4:45-5:00 PM	5:00-5:15 PM	5:15-5:30 PM	5:30-5:45 PM	5;45-6:00 PM

		DRIVEWAY	NO. 4: PS8	North Driv	eway					DRIVEW/	AY NO. 5	5: PS8 M	iddle Driv	eway		
COUNT	INBOUND	OUTBOUNI	0 15-MII	N TOTAL	пон	RLY TO	TAL	INBO	UND	OUTBOL	DND	15-MIN	TOTAL	ноп	RLY TO	TAL
PERIOD	LTIN RTIN	LT OUT RT O	UT IN	OUT	Z	OUT	TOTAL	LT IN	RT IN	LT OUT R	T OUT	z	OUT	N	оит	TOTAL
4:00-4:15 PM		2	e e	4 5				9	5	23	36	11	59			
4:15-4:30 PM	1	2	10	3 12				3	0	28	57	3	85			
4:30-4:45 PM	2 2	ę	14 4	17 17				2	3	29	60	5	89			
4:45-5:00 PM	6 1	7	6	7 16	18	50	68	1	3	21	58	4	79	23	312	335
5:00-5:15 PM	с С	4	9	3 13	20	58	78	5	4	34	47	9	81	21	334	355
5:15-5:30 PM	3	13	19	32	20	78	98	3	0	33	70	3	103	21	352	373
5:30-5:45 PM	1	2	00	2 10	18	71	89	9	3	32	55	6	87	25	350	375
5:45-6:00 PM	3	2	4	4 6	15	61	76	4	5	21	45	6	66	30	337	367

DRIVEWAY NO. 6: PS8 South Driveway	DRIVEWAY NO. 6: PS8 South Driveway	DRIVEWAY NO. 6: PS8 South Driveway	WAY NO. 6: PSB South Driveway	6: PS8 South Driveway	outh Driveway	eway						RIVEWA	Y NO. 7: F	Research	Pavilion	Driveway		
COUNT	INBO	DND	OUTBC	dNDC	15-MIN	TOTAL	HOUF	RLY TOT	AL	INBO	UND	OUTB		15-MIN	TOTAL	ЛОН	RLY TOT	ral.
PERIOD	LTIN	RT IN	LT OUT	RT OUT	N	OUT	N	OUT	TOTAL	LT IN	RT IN	LT OUT	RT OUT	Z	OUT	N	OUT	TOTAL
4:00-4:15 PM	4	0	сл	4	4	6				0	9	13	2	9	15			
4:15-4:30 PM	S	1	9	10	9	16				e	σ	10	Э	12	13			
4:30-4:45 PM	9	2	1	9	8	7				3	11	11	9	14	17			
4:45-5:00 PM	9	2	3	8	8	11	26	43	69	4	14	10	5	18	15	50	60	110
5:00-5:15 PM	2	1	2	4	3	9	25	40	65	9	11	13	ŝ	17	16	61	61	122
5:15-5:30 PM	4	2	4	10	9	14	25	38	63	1	9	14	6	10	20	59	68	127
5:30-5:45 PM	2	-	n	6	ო	12	20	43	63	0	7	11	5	7	16	52	67	119
5:45-6:00 PM	4	1	2	4	5	9	17	38	55	с	6	7	3	12	10	46	62	108

	DTAL	TOTAL				1	1		1	4
	URLY TC	OUT				,-	,-	1		
'eway	ЮH	N				ŝ	е С	2	2	4
ower Driv	TOTAL	our	0	0	0	1	0	0	0	-
. 9: Pat T	15-MIN	N	0	2	0	1	0	1	0	e
WAY NO.		RT OUT	0	0	0	0	0	0	0	0
DRIVE	OUTBO	LT OUT	0	0	0	1	0	0	0	-
		RTIN	0	2	0	1	0	1	0	2
	INBOU	LT IN	0	0	0	0	0	0	0	-
	-AL	TOTAL				69	81	85	97	97
	IRLY TOT	OUT				54	64	69	77	73
Triveway	ПОН	N				15	17	16	20	24
zzanine L	TOTAL	OUT	8	13	10	23	18	18	18	19
Vorth Me:	15-MIN 7	N	2	4	9	3	4	3	10	7
Y NO. 8: 1	DND	RT OUT	7	4	5	12	3	4	4	7
RIVEWA	OUTBC	LT OUT		6	5	11	15	14	14	12
	DNL	RT IN	2	e	3	2	3	2	9	y
	INBOL	LT IN	0	-	e	1	1	1	4	-
	COUNT	PERIOD	4:00-4:15 PM	4:15-4:30 PM	4:30-4:45 PM	4:45-5:00 PM	5:00-5:15 PM	5:15-5:30 PM	5:30-5:45 PM	5-45-6-00 PM

The manual peak period driveway turning movement counts were conducted by City Traffic Counters. Please note that Driveway No. 3 at Lot No. 2 was chained-off during the driveway counts. Ξ

Appendix Table D-3 (Continued) CSMC CAMPUS DRIVEWAY COUNT SUMMARY [1] DATE OF COUNT: WEDNESDAY, JUNE 20, 2007 Cedars-Sinai Medical Center

DRIVEW/	DRIVEW	X X	;; ;; ;;	South Me	zzanine	Driveway			10011		DRIVEW	× No.	11: MOT	West Dri	veway		
INBOUND OUTBOUND 15-MIN TOTAL	OUTBOUND 15-MIN TOTAL	ID 15-MIN TOTAL	15-MIN TOTAL	OTAL		ПОН	RLY TO:	TAL	INBOU	anu	OUTBOU	Q	15-MIN 7	rotal	ПОН	RLY TOT	AL
LTIN RTIN LTOUT RTOUT IN OUT	LT OUT RT OUT IN OUT	OUT IN OUT	IN OUT	OUT	_	N	OUT	TOTAL	LT IN	RT IN	LT OUT R	T OUT	N	OUT	Z	OUT	TOTAL
0 0 15 15 0 30	15 15 0 30	15 0 30	0 30	30					4	15	ō	0	19	0			
0 0 10 12 0 22	10 12 0 22	12 0 22	0 22	22					n	2	0	0	10	0			
0 0 18 17 0 35	18 17 0 35	17 0 35	0 35	35					3	3	0	0	6	0			
0 0 12 23 0 35	12 23 0 35	23 0 35	0 35	35	_	0	122	122	5	5	0	0	10	0	45	0	45
0 0 28 16 0 4	28 16 0 4	16 0 4	0 4	4	4	0	136	136	0	5	0	0	5	0	31	0	31
0 0 23 13 0	23 13 0	13 0 3	0		36	0	150	150	6	6	0	0	12	0	33	0	33
0 0 30 18 0	30 18 0	18 0	0		48	0	163	163	-	4	0	0	5	0	32	0	32
0 0 19 14 0	19 14 0	14 0	0		33	0	161	161	e	e	0	0	9	0	28	0	28
													0				ſ
DRIVEWAY NU. 12: NUI DR	URIVEWAY NU. 12: NUL UN	VAY NU. 12: NUI DH	17: NCI DI	5	Vev	/ay					URIVEV	VAY NC	<u>. 13: Can</u>	cer urive	way		
INBOUND OUTBOUND 15-MIN TOTA	OUTBOUND 15-MIN TOTA	ID 15-MIN TOTA	15-MIN TOTA	OTO		HOU	RLY TO	TAL	INBOL	dND	OUTBOL	QN	15-MIN	TOTAL	PE	RLY TOT	AL
LTIN RTIN LTOUT RTOUT IN OU	LT OUT RT OUT IN OL	OUT IN OL	N	ŏ	Ę	z	0017	TOTAL	LTIN	RT IN	LT OUT R	T OUT	z	OUT	z	OUT	TOTAL
3 6 1 7 9	1 7 9	7 9	6		ω				-	2	-	10	9	11			
2 3 0 9 5	0 9 5	9 5	5		6				1	1	0	æ	2	8			
2 2 0 8 4	0 8 4	8 4	4		8				2	1	0	13	3	13			
1 2 0 7 3	0 7 3	7 3	e		7	21	32	53	0	9	0	7	S	7	14	39	53
0 1 0 4 1	0 4 1	4 1	٢		4	13	28	41	٢	7	1	9	3	7	11	35	46
0 2 0 9 2	0 9 2	9 2	2		5	10	28	38	-	0	1	9	1	7	10	34	44
0 2 0 0	0 7 0	7 0	0		7	9	27	33	0	1	0	7	1	7	æ	28	36
0 0 1 0	0 1 0	1	0		1	n	21	24	0	0	0	10	0	10	5	31	36
DRIVEWAY NO. 14: ER D	DRIVEWAY NO. 14: ER D	NAY NO. 14: ER D	O. 14: ER D		irivewa	ay					DRIVEW	VY NO.	15: Disch	large Dri	veway		
INBOUND OUTBOUND 15-MIN TO	OUTBOUND 15-MIN TO	ID 15-MIN TO	15-MIN TO	0	TAL	пон	RLY TO	TAL	INBOU	DND	OUTBOU	DN	15-MIN 7	TOTAL	ЛОН	RLY TOT	AL
LTIN RTIN LTOUT RTOUT IN C	LT OUT RT OUT IN C	OUT IN 0	N	9	DUT	N	OUT	TOTAL	LT IN	RT IN	LT OUT R	T OUT	N	OUT	N	OUT	TOTAL
3 1 0 9 4	0 9 4	9 4	4		9				0	13	17	0	13	17			
2 8 0 9 10	0 9 10	9	10		σ				0	20	18	0	20	18			
1 4 0 1 5	0 1 5	1 5	5		1				0	8	14	0	8	14			
3 5 0 10 8	0 10 8	10 8	8		10	27	29	56	0	8	5	0	8	5	49	54	103
1 3 0 5 4	0 5 4	5 4	4		5	27	25	52	0	12	11	0	12	11	48	48	96
4 1 0 5 5	0 5 5	5 5	5		5	22	21	43	0	13	13	0	13	13	41	43	84
4 6 0 11 10	0 11 10	11 10	10		11	27	31	58	0	7	10	0	7	10	40	39	79
1 4 0 6 5	0 6 5	6 5	£		9	24	27	51	0	14	10	0	14	10	46	44	90

	LAL	TOTAL				17	12	6	6	e e
	IRLY TO'	OUT				7	4	e	4	6
riveway	НОГ	N				10	ω	9	S	P
naging D	FOTAL	OUT	e	-	0	3	0	0	-	T
: Taper li	15-MIN	N	3	e	2	2	1	1	1	
 V NO. 17	DUND	RT OUT	2	0	0	1	0	0	0	c
DRIVEWA	OUTBO	LT OUT	1	1	0	2	0	0	1	Ŧ
		RT IN	2	1	2	0	0	0	-	С
	INBOI	LT IN	1	2	0	2	1	1	0	•
	AL	TOTAL				10	6	9	11	¢
	RLY TOT	OUT				9	5	4	5	4
'iveway	нои	N				4	4	5	9	9
g Dock D	TOTAL	OUT	1	1	1	3	0	0	2	6
: Loading	15-MIN 1	N	1	0	2	1	1	1	3	-
VY NO. 16		RT OUT	1	0	0	2	0	0	1	6
DRIVEW/	OUTBO	LT OUT	0	1	1	1	0	0	-	C
		RT IN	1	0	2	0	1	1	2	•
	INBOI	LT IN	0	0	0	1	0	0		10
	COUNT	PERIOD	4:00-4:15 PM	4:15-4:30 PM	4:30-4:45 PM	4:45-5:00 PM	5:00-5:15 PM	5:15-5:30 PM	5:30-5:45 PM	5.45_6.00 PM

The manual peak period driveway turning movement counts were conducted by City Traffic Counters. Please note that Driveway No. 3 at Lot No. 2 was chained-off during the driveway counts. Ξ

.
Appendix Table D-3 (Continued) CSMC CAMPUS DRIVEWAY COUNT SUMMARY [1] DATE OF COUNT: WEDNESDAY, JUNE 20, 2007 Cedars-Sinai Medical Center

	TAL	TOTAL				5	S	5	9	0 0		
	JRLY TO	out				5	сл и	5	9	9		
Driveway	Ð	N				0	0	0	0	0	veway	
ist North	TOTAL	оит	2	2	0	1	2	2	*	-	West Driv	
: MOT Ea	15-MIN	N	0	0	0	0	0	0	0	0	. 21: PS4	AC ANN
Y NO. 19	DUND	RT OUT	-	2	0	1	2	1	0	1	NAY NO	
DRIVEWA	OUTBO	LT OUT	-	0	0	0	0	1	-	0	DRIVE	
		RT IN	0	0	0	0	0	0	0	0		
	INBC	LT IN	0	0	0	0	0	0	0	0		
	TAL	TOTAL				42	42	40	42	40		1 4 1
	JRLY TO	OUT				29	31	27	31	29		
veway	НОГ	N				13	11	13	11	11	Driveway	Ċ
West Dri	TOTAL	OUT	7	11	5	9	9	7	Б	4	st South	TOTAL
18: DTC	15-MIN	N	9	t	4	2	4	3	2	2	: MOT Ea	AC SGIN
WAY NO.	OUND	RT OUT	4	7	1	4	7	6	G	3	Y NO. 20	
DRIVE	OUTB	LT OUT	3	4	4	2	2	1	4	1	DRIVEWA	OTIC.
	UND	RT IN	5	0	3	1	2	0	-	1		
	INBO	LT IN	1	1	1	1	2	3	-	1		Calvi
	COUNT	PERIOD	4:00-4:15 PM	4:15-4:30 PM	4:30-4:45 PM	4:45-5:00 PM	5:00-5:15 PM	5:15-5:30 PM	5:30-5:45 PM	5:45-6:00 PM		TNICC

-	-	_	-		_	*****	-	-		-	-
	TAL	TOTAL				198	214	210	199	181	
	RLY TO'	OUT				167	194	186	183	165	
eway	ПОН	N				31	20	24	16	16	10100
Vest Driv	TOTAL	OUT	33	41	52	41	60	33	49	23	Eact Driv
21: PS4 \	15-MIN	N	12	n	6	7	1	7	1	7	73- DCA
WAY NO.	DUND	RT OUT	13	17	17	17	28	12	24	10	ON VOW
DRIVE	OUTBO	LT OUT	20	24	35	24	32	21	25	13	UPINE
	DND	RT IN	5	0	7	1	0	4	1	3	
	INBOI	LT IN	7	3	2	9	1	3	0	4	
	AL	TOTAL				188	198	217	232	197	
	RLY TOT	OUT				145	161	177	198	168	
Driveway	ЛОН	N				43	37	40	34	29	
st South I	FOTAL	OUT	43	25	33	44	59	41	54	14	Eact Driv
MOT Eas	15-MIN 7	N	12	7	13	11	6	10	7	9	22- DTC
Y NO. 20:	DUND	RT OUT	32	15	24	32	44	26	38	10	MAY NO
RIVEWA	OUTBO	LT OUT	11	10	9	12	15	15	16	4	DRIVE
		RT IN	9	0	3	3	1	3	0	0	
	INBOI	LT IN	9	7	10	8	5	7	7	9	
	COUNT	PERIOD	4:00-4:15 PM	4:15-4:30 PM	4:30-4:45 PM	4:45-5:00 PM	5:00-5:15 PM	5:15-5:30 PM	5:30-5:45 PM	5:45-6:00 PM	

DRIVEWAY NO. 22: DTC	DRIVEWAY NO. 22: DTC	DRIVEWAY NO. 22: DTC	VAY NO. 22: DTC	22: DTC		East Driv	eway					DRIVE	WAY NO	. 23: PS4	East Driv	eway		
	INBOL	QN	OUTBO	UND	15-MIN	TOTAL	ЛОН	IRLY TO	TAL	INBO	UND	OUTB		15-MIN	TOTAL	Ы	IRLY TO	TAL
DD	LT IN	RT IN	LT OUT	ΧΤ ΟUT	z	OUT	N	OUT	TOTAL	LT IN	RT IN	LT OUT	RT OUT	IN	OUT	NI	OUT	TOTAL
5 PM	0	1	0	0	1	0				0	1	4	18	-	22			
30 PM	0	0	0	0	0	0				0	0	9	22	0	28			
45 PM	0	1	0	1	1	1				0	0	5	31	0	36			
DO PM	0	0	0	1	0	1	2	2	4	0	2	14	24	2	38	e	124	127
IS PM	0	0	0	1	0	1	1	3	4	0	0	13	36	0	49	2	151	153
30 PM	0	0	0	2	0	2	1	5	6	0	1	7	19	1	26	ω	149	152
45 PM	0	-	0	ю	1	3	1	7	80	0	0	5	26	0	31	n	144	147
00 P.M	0	с,	0	0	5	0	9	6	12	0	1	3	20	1	23	2	129	131

	/ TOTAL	JT TOTAL				1413 1842	191	582 1963	598 1954	184
	HOURLY	ō				429 1	392 1	381 1	356 1	351
OTAL		Z	53	5	2	3	2	5 3	88	Ľ
MPUS T	N TOTAL	OUT	32	37	37	37	43	40	36	90
SMC CA	15-MIN	z	125	100	96	108	88	83	.2	100
RALL C	DUND	RT OUT	193	209	233	246	260	235	230	163
9 N	OUTBO	LT OUT	130	136	139	127	172	170	158	100
	UND	RT IN	52	62	58	55	55	46	43	22
	INBO	LTIN	46	38	38	53	33	43	28	11
	TAL	TOTAL				24	42	56	50	22
	IRLY TO	OUT				24	42	56	50	52
eway	ЮН	N				0	0	0	0	C
I Lot Driv	TOTAL	OUT	5	5	8	9	23	19	2	ō
24: Islanc	15-MIN 7	N	0	0	0	0	0	0	0	c
VAY NO.		RT OUT	5	5	8	6	23	19	2	σ
DRIVEV	OUTBC	LT OUT	0	0	0	0	0	0	0	c
	DNL	RT IN	0	0	0	0	0	0	0	c
	INBOL	LTIN	0	0	0	0	0	0	0	C
	COUNT	PERIOD	4:00-4:15 PM	4:15-4:30 PM	4:30-4:45 PM	4:45-5:00 PM	5:00-5:15 PM	5:15-5:30 PM	5:30-5:45 PM	5.45_6-00 DM

The manual peak period driveway turning movement counts were conducted by City Traffic Counters. Please note that Driveway No. 3 at Lot No. 2 was chained-off during the driveway counts. Ξ

Appendix Table D-4 CSMC CAMPUS DRIVEWAY COUNT SUMMARY [1] DATE OF COUNT: THURSDAY, JUNE 21, 2007 Cedars-Sinai Medical Center

			DRIV	EWAY N	0. 1: Tha	lians Buil	ding					DRIVE	WAY NO.	. 2: Lot 2	North Driv	vеway		
COUNT	INBC	anno	OUTB	OUND	15-MIN	TOTAL	НОГ	JRLY TO	TAL	INBOL	DNC	OUTB	OUND	15-MIN	TOTAL	пон	IRLY TOT	AL
PERIOD	LT IN	RT IN	LT OUT	RT OUT	z	DUT	z	OUT	TOTAL	LTIN	RT IN	LT OUT	RT OUT	z	OUT	N	OUT	TOTAL
4:00-4:15 PM	-	0	0	10	-	10				12	6	14	2	21	16			
4:15-4:30 PM	1	2	0	12	3	12				80	9	10	4	14	14			
4:30-4:45 PM	0	ε	0	15	3	15				10	4	4	2	14	9			
4:45-5:00 PM	2	0	0	8	2	8	6	45	54	3	9	8	6	9	14	58	50	108
5:00-5:15 PM	e	3	0	23	9	23	14	58	72	5	3	10	3	8	13	45	47	92
5:15-5:30 PM	1	1	0	8	2	8	13	54	67	6	5	2	11	14	13	45	46	91
5:30-5:45 PM	0	1	0	6	1	6	11	48	59	4	4	9	5	8	6	39	49	88
5:45-6:00 PM	-	2	0	4	e	4	12	44	56	2	7	3	3	6	9	39	41	80
			DRIVE	WAY NC	0.4: PS8	Vorth Driv	reway					DRIVE	WAY NO.	5: PS8 M	liddle Driv	veway		
COUNT	INBC	DNDC	OUTB	OUND	15-MIN	TOTAL	면	JRLY TO	TAL	INBOL	DN	OUTB	OUND	15-MIN	TOTAL	HOL	IRLY TOT	AL
PERIOD	LTIN	RTIN	LT OUT	RT OUT	z	OUT	z	OUT	TOTAL	LTIN	RT IN	LT OUT	RT OUT	Z	OUT	Z	OUT	TOTAL
4:00-4:15 PM	2	2	1	7	4	8				-	ς Ν	24	42	4	99			
4:15-4:30 PM	0	0	e	9	0	6				-	0	26	41	-	67			
4:30-4:45 PM	3	2	7	12	5	19				7	-	23	39	80	62			
4:45-5:00 PM	3	3	80	9	9	14	15	50	65	0	2	26	57	2	83	15	278	293
5:00-5:15 PM	3	3	5	13	9	18	17	60	77	0	1	26	51	1	11	12	289	301
5:15-5:30 PM	1	7	9	16	8	22	25	73	98	4	e	34	68	7	102	18	324	342
5:30-5:45 PM	3	4	5	8	7	13	27	67	94	+	e	24	65	4	89	14	351	365
5:45-6:00 PM	3	5	3	2	8	2J	29	58	87	8	-	27	48	σ	75	21	343	364
			DRIVE	WAY NO). 6: PS8 5	South Driv	reway					RIVEWA	Y NO. 7: I	Research	Pavilion	Driveway		
COUNT	INBC	DND	OUTB	DUND	15-MIN	TOTAL	НОГ	JRLY TO	TAL	INBOL	DNL	OUTB	DUND	15-MIN	TOTAL	пон	RLY TOT	AL
PERIOD	LTIN	RT IN	LT OUT	RT OUT	N	OUT	N	OUT	TOTAL	LT IN	RTIN	LT OUT	RT OUT	IN	OUT	N	OUT	TOTAL
4:00-4:15 PM	2	5	4	8	10	12				e	7	12	8	10	20			
4:15-4:30 PM	2	0	e	11	2	14				4	З	З	11	7	14			
4:30-4:45 PM	1	1	+	7	2	8				0	e	9	4	3	10			
4:45-5:00 PM	3	3	e	7	9	10	20	44	64	2	5	9	9	2	15	27	59	86
5:00-5:15 PM	2	0	1	5	2	6	12	38	50	2	2	ŝ	ŝ	4	10	21	49	70
5:15-5:30 PM	2	1	4	4	3	80	13	32	45	4	8	10	9	12	16	26	51	77
5:30-5:45 PM	1	+	0	2	2	2	13	26	39	5	6	6	5	14	11	37	52	89
5:45-6:00 PM		0	7	Ϋ́.	0	2	7	21	28	4	£	2	7	σ	14	39	51	6
				0.011														ſ
			UKIVEVVA		NOLLI ME	SZANINE	Uriveway					URIVE	WAY NO	. 9: Pat I	ower Driv	reway		
COUNT		DND	OUTB	DNDO	15-MIN	TOTAL	Ę	JRLY TO	TAL	INBOL	QN	OUTB	DUND	15-MIN	TOTAL	P	RLY TOT	AL
PERIOD	L	RT IN	LT OUT	RT OUT	z	001	z	OUT	TOTAL	LTIN	RTIN	LT OUT	RT OUT	z	110	z	OUT	TOTAL
4:00-4:15 PM	-	2	4	7	e	9				-	-	0	-	2	-			
4:15-4:30 PM	2	2	5	2	2	7				0	0	0	0	0	0			
4:30-4:45 PM	2	2	2	5	6	12				0	0	0	0	0	0			
4:45-5:00 PM	1	5	12	9	9	18	25	43	68	2	0	0	0	2	0	4	~	5
5:00-5:15 PM	-	9	10	9	7	16	29	53	82	0	0	*	0	0	٢	2	1	3
5:15-5:30 PM	0	5	10	5	S.	15	27	61	88	2	2	0	2	4	7	9	e	6
5:30-5:45 PM	3	9	10	9	6	16	27	65	92	0	0	1	2	0	3	9	9	12
5:45-6:00 PM	0	4	17	8	4	25	25	72	26	0		0	0	-	0	2	9	÷

The manual peak period driveway turning movement counts were conducted by City Traffic Counters. Please note that Driveway No. 3 at Lot No. 2 was chained-off during the driveway counts. Ξ

Appendix Table D-4 (Continued) CSMC CAMPUS DRIVEWAY COUNT SUMMARY [1] DATE OF COUNT: THURSDAY, JUNE 21, 2007 Cedars-Sinai Medical Center

		ľ	DRIVEWA	V NO. 10): South A	Vezzanine	3 Drivewa					DRIVE	EWAY NO	111: MOT	^r West Driv	Vewav		
COUNT	INBOU	DNI	OUTB	dNDO	15-MIN	I TOTAL	Ŷ	URLY TO	TAL	INBO	UND	OUTE	JOUND	15-MIN	TOTAL	HOL	IRLY TOT	AL
PERIOD	LTIN	RTIN	LT OUT	RT OUT	Z	OUT	z	OUT	TOTAL	LTIN	RT IN	LT OUT	RT OUT	z	OUT	z	OUT	TOTAL
4:00-4:15 PM	0	Ō	17	10		1 27				n	10		0	13	0			
4:15-4:30 PM	0	0	11	16	0	0 27				0	S		0	5	0			
4:30-4:45 PM	0	0	24	10	0	34				1	80		0	6	0			
4:45-5:00 PM	0	0	22	11	0	33	0	121	121	1	9	0	0	7	0	34	0	34
5:00-5:15 PM	0	0	35	12	0	47	0	141	141	2	1	0	0	6	0	24	0	24
5:15-5:30 PM	0	0	19	16	0	35	0	149	149	2	1	0	0	6	0	22	0	22
5:30-5:45 PM	0	0	34	21	0	55	0	170	170	+	5	0	0	9	0	19	0	19
5:45-6:00 PM	0	0	14	11	0) 25	0	162	162	0	4		0	4	0	16	0	16
					0	0												
			DR	IVEWAY	NO. 12: N	VCT Drive	way					DRI	VEWAY N	10. 13: Ca	Incer Drive	eway		
COUNT	INBOU	QNI	OUTB	DUND	15-MIN	V TOTAL	9 H	URLY TO	TAL	INBO	DND	OUTE	DUND	15-MIN	TOTAL	ЧОГ	IRLY TOT	AL
PERIOD	LTIN	RT IN	LT OUT	RT OUT	Z	OUT	z	OUT	TOTAL	LTIN	RT IN	LT OUT	RT OUT	Z	OUT	Z	OUT	TOTAL
4:00-4:15 PM	0	9			[^m	-				2	e		1	5	÷			
4:15-4:30 PM	-	0	0			-				e	2		5	2	10			
4:30-4:45 PM	0	0	0			-				F	4		12	5	12			
4:45-5:00 PM	0	1	0	2	-	2	5	2	10	F	4	1	8	5	6	20	42	62
5:00-5:15 PM	0	1	0	0	F	0	3	4	7	1	3	0	7	4	2	19	38	57
5:15-5:30 PM	0	0	0	F	0	1	2	4	9	0	0	0	2	0	1	14	35	49
5:30-5:45 PM	1	0	0	0	1	0	3	e	9	0	1	F	4	-	80	10	31	41
5:45-6:00 PM	0	0	0			0	2		6	-	-			2	1	2	23	30
			1 E	RIVEWAY	' NO. 14: I	ER Drivev	vay					DRIVE	EWAY NO). 15: Disc	harge Driv	veway		
COUNT	INBOU	DNI	OUTB	DUND	15-MIN	I TOTAL	О́Н	υκιγ το	DTAL	INBO	DND	OUTE	BOUND	15-MIN	TOTAL	НОГ	IRLY TOT	AL
PERIOD	LT IN	RT IN	LT OUT	RT OUT	N	OUT	R	OUT	TOTAL	LTIN	RT IN	LT OUT	RT OUT	NI	OUT	z	OUT	TOTAL
4:00-4:15 PM	0	3	0	4	ص	4				0	7	0	80	7	80			
4:15-4:30 PM		S	0	ŝ	0	5				0	9	0	12	9	12			
4:30-4:45 PM	1	4	0	4	2	4				0	9	0	5	9	5			
4:45-5:00 PM	4	F	0	8	5	80	19	21	40	0	6	0	5	6	5	28	30	58
5:00-5:15 PM	3	ŝ	0	2	9	2	. 22	19	41	0	8	0	7	80	7	29	29	58
5:15-5:30 PM	9	2	0	5	5	5	21	19	40	0	11	0	8	11	80	34	25	59
5:30-5:45 PM	e	2	0	8	5	8	21	23	44	0	14	0	14	14	14	42	34	76
5:45-6:00 PM	0	4	0	4	4	4	20	19	39	0	13	0	6	13	6	46	38	84
			DRIVEN	VAY NO.	16: Loadi	ng Dock	Driveway					DRIVEV	VAY NO. 1	17: Taper	Imaging C	Jriveway		
COUNT	INBOU	QN	OUTB	GUND	15-MIN	N TOTAL	Э́Н	URLY TO	TAL	INBO	DND	OUTE	GUND	15-MIN	TOTAL	Ног	IRLY TOT	AL AL
PERIOD	LTIN	RT IN	LT OUT	RT OUT	Z	DOT	Z	τIJΟ	TOTAL	LT IN	RT IN	LT OUT	RT OUT	z	OUT	z	OUT	TOTAL
4:00-4:15 PM	-	Ŧ								-	0	5	e	-	e			
4:15-4:30 PM	2	0	0	0	N	0				-	0	0	0	-	0			
4:30-4:45 PM	2	-	-	0	е С	-				0	0	-	-	0	2			
4:45-5:00 PM	0	F	0	0	+	0	7	1	8	0	2	0	0	2	0	4	2 2	σ
5:00-5:15 PM	0	0	0	0	0	0	9	1	7	1	0	2	0	1	2	4	4	8
5:15-5:30 PM	0	1	0	۲	+	+	5	2	2	0	0	1	1	0	2	3	9	6
5:30-5:45 PM	0	0	0	0	0	0	2	F	8	0	1	0	0	+	0	4	4	8
5:45-6:00 PM	2	2	·	0	4	-	5 S	2	7	2	0			2	-	4	2 2	6

The manual peak period driveway turning movement counts were conducted by City Traffic Counters. Please note that Driveway No. 3 at Lot No. 2 was chained-off during the driveway counts. Ξ

Appendix Table D-4 (Continued) CSMC CAMPUS DRIVEWAY COUNT SUMMARY [1] DATE OF COUNT: THURSDAY, JUNE 21, 2007 Cedars-Sinai Medical Center

HOURLY TOTAL INBC OUT TOTAL LTIN 00 0 10 36 46 0 10 36 46 0	OUTBOUND OUTBOUND RT IN LT OUT RT OUT 0 0 0 0 0 0	15-MIN TOTAL 1 NU 2 0 1 0 1 0	HOURLY TOT	AL TOTAL
I OUT TOTAL LTIN 0 0 0 0 0 10 36 46 0 0	RT IN LT OUT RT OU 0 0 0 0 0 0	T IN OUT 2 0 0 2 1 0 1	IN OUT	TOTAL
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000	1 1 0 0 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
10 36 46 0 0 0 0 0 0 0 0 0 0 0 0 0	000	0 0		
10 36 46 0	00	1 0 1		
10 36 46 0	0 0			
		1 0 1	0	ß
8 33 41 0	0 0	0 0 0	0	ſ
9 27 36 0	0 0	0 0 0	0 2	
11 18 29 0	0 0	0 0 0	1	1
15 19 34 0	0	1 0 2	0	N
wav	DRIVEWAY N	O. 21: PS4 West Driv	reway	
B 33 41 0 9 27 36 0 11 18 29 0 15 19 34 0 wav 19 34 0	0 0 0 0 0 0 1 DRIVE	WAY N	0 0 0 0 0 0 1 0 2 WAY NO. 21: PS4 West Driv	0 0 0 0 3 0 0 0 0 2 1 1 0 2 0 2 1 WAY NO. 21: PS4 West Drivewav 21: PS4 West Drivewav 21: PS4 West Drivewav 21: PS4 West Drivewav

	AL	TOTAL				182	198	218	213	196	
	RLY TOT	OUT				153	174	193	191	171	
eway	NOH H	Z				29	24	25	22	25	
Vest Driv	OTAL	OUT	35	32	38	48	56	51	36	28	
21: PS4 \	15-MIN 1	Z	6	9	80	9	4	7	5	6	
NAY NO.		RT OUT	15	œ	14	23	24	26	13	15	
DRIVE	OUTBO	LT OUT	20	24	24	25	32	25	23	13	
	DND	RTIN	3	2	9	9	3	1	3	7	
	INBO	LT IN	9	4	2	3	1	9	2	2	
	r AL	TOTAL				171	199	197	206	200	
	JRLY TO	OUT				128	164	166	180	177	
Driveway	ЧОГ	N				43	35	31	26	23	
st South	TOTAL	OUT	32	30	36	30	68	32	50	27	
MOT Ea:	15-MIN '	N	12	11	11	9	4	7	9	9	
Y NO. 20:	DUND	RT OUT	26	15	19	25	55	24	41	21	
DRIVEWA	OUTB	LT OUT	9	15	17	5	13	8	9	9	
	UND	RT IN	+	n	2	1	1	2	0	0	
	INBO	LTIN	11	80	6	8	3	Ω.	6	9	
	COUNT	PERIOD	4:00-4:15 PM	4:15-4:30 PM	4:30-4:45 PM	4:45-5:00 PM	5:00-5:15 PM	5:15-5:30 PM	5:30-5:45 PM	5:45-6:00 PM	

			DRIVEV	VAY NO.	22: DTC	East Driv	veway					DRIVE	EWAY NO.	23: PS4	East Drive	eway		
COUNT	INBO	UND	OUTBO		15-MIN	TOTAL	НQГ	JRLY TO	TAL	INBO	UND	OUTB		15-MIN	TOTAL	HOL	RLY TO	TAL
PERIOD	LT IN	RT IN	LT OUT	RT OUT	N	OUT	N	OUT	TOTAL	LTIN	RT IN	LT OUT	RT OUT	R	OUT	z	OUT	TOTAL
4:00-4:15 PM	0	0	0	F	0					0	-	5	23	F	28			
4:15-4:30 PM	0	0	0	+	0	1				0	0	80	27	0	35			
4:30-4:45 PM	0	0	0	n	0	n				0	-	13	29	-	42			
4:45-5:00 PM	0	0	0	2	0	2	0	7	7	0	1	16	19	1	35	n	140	143
5:00-5:15 PM	0	1	0	0	1	0	-	9	7	0	3	9	31	3	37	ß	149	154
5:15-5:30 PM	0	0	0	2	0	2	-	7	80	0	0	ę	22	0	25	5	139	144
5:30-5:45 PM	0	0	0	2	0	2	1	9	7	0	0	60	19	0	27	4	124	128
5:45-6:00 PM	0	0	0	0	0	0	1	4	5	0	F	9	13	1	19	4	108	112

-	_	_	_							
	TAL	TOTAL				1684	1734	1806	1834	1757
	JRLY TO	OUT				1308	1401	1460	1494	1411
AL	POH	Z				376	333	346	340	346
PUS TOT	TOTAL	OUT	316	312	335	345	409	371	369	262
SMC CAM	15-MIN	N	114	78	96	88	71	91	90	94
RALL CS		RT OUT	204	197	200	209	262	244	240	159
OVE	OUTB(LT OUT	112	115	135	136	147	127	129	103
	UND	RT IN	63	37	54	53	44	51	56	59
	INBO	LTIN	51	41	42	35	27	40	34	35
	AL	TOTAL				45	42	43	45	45
	RLY TOT	OUT				44	41	42	44	44
/eway	ПОН	N				1	1	1	1	+
d Lot Driv	TOTAL	OUT	16	10	12	9	13	11	14	9
24: Islan	15-MIN	N	1	0	0	0	1	0	0	0
WAY NO.		RT OUT	16	10	12	9	13	11	14	9
DRIVE	OUTBO	LT OUT	0	0	0	0	0	0	0	0
	UND	RT IN	1	0	0	0	1	0	0	0
	INBO	LT IN	0	0	0	0	0	0	0	0
	COUNT	PERIOD	4:00-4:15 PM	4:15-4:30 PM	4:30-4:45 PM	4:45-5:00 PM	5:00-5:15 PM	5:15-5:30 PM	5:30-5:45 PM	5:45-6:00 PM

The manual peak period driveway turning movement counts were conducted by City Traffic Counters. Please note that Driveway No. 3 at Lot No. 2 was chained-off during the driveway counts. Ξ

APPENDIX F

ALTERNATIVES SUPPORTING TECHNICAL ANALYSIS DOCUMENTS

Table A2-1 PROJECT ALTERNATIVE 2 TRIP GENERATION [1]

05-Aug-2008 PM PEAK HOUR DAILY AM PEAK HOUR TRIP ENDS [2] VOLUMES [2] VOLUMES [2] LAND USE SIZE VOLUMES IN OUT | TOTAL IN OUT TOTAL 886 25 85 35 98 Hospital [3] 75 Beds 60 63 886 60 25 85 35 63 98 TOTAL

[1] Source: ITE "Trip Generation", 7th Edition, 2003.

[2] Trips are one-way traffic movements, entering or leaving.

[3] ITE Land Use Code 610 (Hospital) trip generation average rates. The number of inpatient hospital beds is based on a total of 150,000 square feet of development with an estimate of 2,000 square feet for each hospital bed (i.e., 150;000 SF / 2,000 SF = 75 beds).

- Daily Trip Rate: 11.81 trips/Bed; 50% inbound/50% outbound

- AM Peak Hour Trip Rate: 1.13 trips/Bed; 70% inbound; 30% outbound

- PM Peak Hour Trip Rate: 1.30 trips/Bed; 36% inbound; 64% outbound

Table A2-2 SUMMARY OF VOLUME TO CAPACITY RATIOS AND LEVELS OF SERVICE AM AND PM PEAK HOURS Project Alternative 2

IMPACT W/PROPOSED CHANGE SIGNIF. NO o y NO og og oz oz N N g g V/C [(4)-(3)] 0.016 0.016 0.029 0.009 0.005 0.005 0.000 0.003 0.005 0.017 0.007 0.003 0.004 0.006 0.002 0.002 0.023 0.013 0.000 0.021 4 LOS Дœ A B щΩ بتر L Δu <u>11.</u> (1 <u>ا</u>ت. Ĺ2 н. н υm υυ **YEAR 2023** PROJECT 1.319 1.237 1.055 1.189 1.226 0.945 0.775 0.585 0.698 0.898 0.867 1.266 1.293 1.399 1.483 0.711 0.704 0.850 0.674 0.941 V/C LOS W/ RELATED шО Ωц е п പറ рm A B PROJECTS ы н <u>ы</u> н р. р. цu **YEAR 2023** Ξ 1.316 1.232 1.262 1.287 0.850 1.182 1.223 0.929 0.675 0.580 0.898 1.034 1.397 0.695 0.752 0.841 0.693 0.941 1.481 0.661 V/C LOS W/ AMBIENT щΩ < m υu ωш [1_ μ < U < m υ A < < Ωυ **YEAR 2023** GROWTH 5 1.031 0.832 0.534 0.639 0.739 1.138 0.582 0.735 0.523 0.614 0.710 0.482 0.459 0.537 0.820 0.768 0.787 0.928 0.983 1.101 V/C LOS < < UВ щΟ < < UШ шш < a < < a < EXISTING Ξ 0.914 0.740 0.659 0.656 0.455 0.534 0.635 0.416 0.484 0.713 0.668 0.572 0.824 0.872 0.957 0.990 0.436 0.481 0.701 0.523 V/C PEAK HOUR AM PM AM MM AM PM AM PM AM PM AM AM PM AM PM AM PM AM PM ΡM George Burns Road-Hamel Road/ Alden Drive-Gracie Allen Drive INTERSECTION Robertson Boulevard/ Robertson Boulevard/ Robertson Boulevard/ Robertson Boulevard/ Robertson Boulevard/ George Burns Road/ George Burns Road/ Wilshire Boulevard Wilshire Boulevard Gracie Allen Drive Beverly Boulevard Beverly Boulevard Willaman Drive/ Willaman Drive/ Third Street Burton Way Third Street Third Street 05-Aug-2008 NO. 2 2 ŝ 4 Ś 9 ~ ∞ 6

LLG Ref. 1-99-2843-1 Cedars-Sinai Medical Center Project Table A2-2 (Continued) SUMMARY OF VOLUME TO CAPACITY RATIOS AND LEVELS OF SERVICE AM AND PM PEAK HOURS Project Alternative 2

	05-Aug-2008											
			[1]		[2]		[6]				[4]	
					YEAR 2 W/ AMBI	023 ENT	YEAR 2 W/ RELA	023 TED	YEAR 2 W/PROP(023 DSED	CHANGE	SIGNIF.
		PEAK	EXISTI	NG	GROW	TH	PROJEC	STS	PROJE	ដ	V/C	IMPACT
g	. INTERSECTION	HOUR	V/C	LOS	V/C	LOS	V/C	LOS	V/C	LOS	[(1)-(3)]	
=	Sherbourne Drive/	AM	0.469	A	0.520	A	0.698	æ	0 707	R	0.004	CN
	Third Street	ΡM	0.442	A	0.489	4	0.640	В	0.645	n m	0.005	ON N
12	San Vicente Boulevard/	AM	0.814	D	0.937	щ	1.120	μ.	1.121	μ	0.001	QN
	Melrose Avenue	ΡM	0.772	U	0.888	D	1.233	F	1.235	н	0.002	ON
13	San Vicente Boulevard/ Beverlv Boulevard	AM PM	0.723	ບບ	0.811 0.838	מם	1.050	р, р	1.055	ր, ր	0.005	o c
14	San Vicente Boulevard/ Grania Allan Drive Bouverly Canter	AM	0.353	4 <	0.387	∠ a	0.488	∢ (0.493	. < (0.005	o y
	Oracle Attent Drive-Devely Center		rnr.n	<	000.0	0	0.704	ر	0.700	ر	0.004	ON
15	San Vicente Boulevard/	AM	0.741	U	0.832	Δ	1.119	įب.	1.124	Ľ.	0.005	0N
	Third Street	Μd	0.709	υ	0.796	υ	1.045	щ	1.048	Ŀ	0.003	NO
16	San Vicente Boulevard-Le Doux Road/	AM	0.493	A	0.547	A	0.705	U	0.707	U	0.002	ON
	Burton Way	ΡM	0.585	A	0.653	m	0.901	ш	0.905	ш	0.004	ON
17	San Vicente Boulevard/ Witchire Boulevard	AM	0.759		0.853	ם מ	1.060	it, p	1.064	ц. ц	0.004	ON N
01		MA	C00 C		010-0	2 E	010.1	- F	001 1	- F	C00.0	
1	Beverly Boulevard	Md	0.989	л ш	1.118	<u>ц</u> р.	1.1580	ц (ц	1.582	ц (1.	0.007	
19	La Cienega Boulevard/	AM	0.825	<u>م</u>	0.929	ш	1.216	<u> </u>	1.220	, µ.	0.004	
	Third Street	ΡM	0.873	Ω	0.984	Е	1.369	щ	1.371	ц	0.002	o N
20	I.a Cieneza Boulevard/	AM	0 822	C	0 925	μ	1 231	ц	1 233	LT.	0.007	Q
	San Vicente Boulevard	PM	0.732	υ	0.822	L D	1.192	, Ľ.	1.196	, ц	0.004	NO N

LLG Ref. 1-99-2843-1 Cedars-Sinai Medical Center Project

LLG Ref. 1-99-2843-1 Cedars-Sinai Medical Center Project

Table A2-2 (Continued) SUMMARY OF VOLUME TO CAPACITY RATIOS AND LEVELS OF SERVICE AM AND PM PEAK HOURS Project Alternative 2

	05-Aug-2008											
			[1]		[2]		[5]				[4]	
					YEAR 2	2023	YEAR 2	2023	YEAR :	2023		
					W/ AMB	DENT	W/ RELA	ATED	W/PROP	OSED	CHANGE	SIGNIF.
		PEAK	EXISTI	UU	GROW	HI	PROJE	CTS	PROJE	ŗ	V/C	IMPACT
NO.	INTERSECTION	HOUR	V/C	LOS	V/C	LOS	V/C	LOS	V/C	LOS	[(4)-(3)]	
21	La Cienega Boulevard/	AM	0.976	ш	1.122	ц	1.450	ц	1.452		0.002	Q
	Wilshire Boulevard	PM	0.996	Е	1.145	ц	1.501	ц	1.503	F	0.002	ON
22	Orlando Avenue/	AM	0.740	U	0.831	Ω	0.958	ш	0.959	ш	0.001	ON
	Third Street	PM	0.706	υ	0.793	υ	1.007	Ъ	1.009	ц	0.002	NO

City of Los Angeles intersection impact threshold criteria is as follows:

IN CONDICI CUTCHIC IS AS TONOMS.	Project Related Increase in v/c	equal to or greater than 0.040	equal to or greater than 0.020	equal to or greater than 0.010
section impact	ros	C	D	Е, F
INIT SUBJECT SOLT TO	Final v/c	> 0.700 - 0.800	> 0.800 - 0.900	> 0.900

LINSCOTT, LAW & GREENSPAN, engineers

a:\job_file\2843\csmcproj\dwg\f-2a.dwg LDP 10:18:45 08/05/2008 rodriquez

o:\job_file\2843\csmcproj\dwg\f-2b.dwg LDP 10:34:49 08/05/2008 radriquez

o:\job_file\2843\csmcproj\dwg\f-2c.dwg LDP 10:35:25 08/05/2008 rodriquez

Robertson Boulevard Beverly Boulevard Cedars-Sinai Medical Center / 1-992843-1 CMA1 Accutek

Project: File Name: Counts by:

N-S St: E-W St:

CRITICAL MOVEMENT ANALYSIS

Robertson Boulevard @ Beverly Boulevard Peak Hour: AM Annual Growth: 1.0%

Project Alternative 2

Projection Year: Date: Date of Count:

08/05/2008 2008 2023

	2008	EXIST. TR.	AFFIC	2023	W/ AMBIE	ENT GROW	νTH	2023 \	V/ OTHE	RPROJEC	CTS	2023 V	V/ PROPC	SED ALT:	2	2023	W/ MITIG	ATION	
		No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
NB Left	56	 (56	80	64	~	64	25	89	-	89	ო	92		92	0	92	~	92
Comb. L-T	725	0 -	-	ŭ	000	0 *	1000	000	000	0 7	-	•		0 1	1	Ċ		0 .	
Comb. T-R	100	- c	100 1	0	000	- c	2005 -	067	000		999	-	180	- c	199	0	687	~ c	687
NB Right	114	, 	114	17	131	, -	131	38	169	C	169	0	169	c	169	0	169		- 169
Comb. L-T-R .		0				0				0				0				0	
SB Left	53	-	53	8	60	-	60	53	113	1	113	0	113	-	113	0	113	-	113
Comb. L-T		0 0	ı	ł	i	0 0				0 0	,			0	1			0	,
	4/3	э ,	- 608	5	544			301	845	•	-	2	847	0 1		0	847	0,	
SB Right	225	- 0	, 1	34	259	- 0	- -	13	272	- 0		0	272	- 0		C	670	- 0	
Comb. L-T-R -		0				0				0			l	00		0	ı İ	0	
EB Left	36	-	36	5	42	-	42	18	60	+	60	0	60	+	60	0	60		60
Comb. L-T		0	1			0	ı			0				0				0	1
EB Thru	905	0 0	452	136	1041	(1)	520	156	1197	0	598	0	1197	01	598	0	1197	7	598
EB Right	88	C	, 88	13	101	⊃ -	, 101	50	151	- c	- 151	ď	157	0.	- 157	C	167	0 •	-
Comb. L-T-R -		0				0		}	2	. 0	2	0	5	- 0	2	0	2	- 0	
	717	,	144	c,	101	,	107	00				c	()						
Comb 1 -T	/	- c) 	2	C51	c	C21	85	1/3	- c	1/3	0	173	- c	173	0	173	~- (173
WB Thru	1372	2 01	686	206	1577	2 01	- 789	139	1716	2 01	- 858	С	1716		- 858	C	1716	20	, 858
Comb. T-R		0	,			0	1			0		•	2	10		0	2	10	
WB Right	54	-	54	8	62	-	62	54	116		116	0	116		116	0	116	~	116
Comb. L-T-R .		0				0				0				0				0	
Crit. Volumes:		N-S:	753			N-S:	866			N-S:	1205			N-S:	1210			N-S:	1210
		E-W:	722			Е-W:	830			E-W:	918			E-W:	918			E-W:	918
		SUM:	1476			SUM:	1697			SUM:	2123			SUM:	2128			SUM:	2128
No. of Phases			2				5				2				7				5
Volume / Capa	icity:	141	0.914			[1].[2]	1.031			111.121	1.316			161141	1319			[6] [1]	1 310
Level of Servic	je:		ш				ш			- III. I	Ľ				2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			[-]/[·]	<u>р</u> - -

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1426, 4+ Phase=1375, Unsignalized=1200. For dual turn lanes, 55% of volume is assigned to heavler lane.

For dual turn lanes, 55% of volume is assigned to heavier lane. For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. Right turns on red from excl. lanes = 50% of overlapping left turn. [1] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.

Robertson Boulevard Beverly Boulevard Cedars-Sinai Medical Center / 1-992843-1

CMA1 Accutek

Project: File Name: Counts by:

N-S St: E-W St:

CRITICAL MOVEMENT ANALYSIS

Robertson Boulevard @ Beverly Boulevard Peak Hour: PM 1.00% Annual Growth:

Project Alternative 2

2008 2023

Projection Year: Date of Count: Date:

08/05/2008

		2008	EXIST. TR	AFFIC	2023 V	V/ AMBIE	ENT GROV	VTH	2023	N/ OTHE	R PROJE	CTS	2023	V/ PROPC	SED ALT	5	2023	W/ MITIG	ATION	
			No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
	Movement	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
	NB Left	62		79	12	91	-	91	70	161	۲	161	9	167	-	167	0	167	÷	167
	Comb. L-T		0	•			0				0	1			0				0	,
	NB Thru Comb T ₋ R	460	~- c	460	69	528	~ c	528	363	891	~ c	891	n	894	C	894	0	894	c	894
	NB Right	152	כ	152	23	174	⊃ ~	- 174	15	189	C	- 189	0	189	- c	- 189	0	189	C	- 189
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Comb. L-T-R		0				0				0				0				0	
	SB Left	83		83	12	95		95	78	173	-	173	0	173	Ļ	173	0	173	-	173
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Comb. L-T	100	00		Ĺ	007	0 0	,	100		0 (ı	•	i	0	ı			0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Comb. T-R	4/0	c	- 482	90	430	C	- 554	365	G6/	0 -	מקפ	-	796	0 -	- 067	0	796	0 1	- 067
	SB Right	108	. 0	,	16	124	. 0	т т	37	161	- 0		0	161	- 0	ine -	0	161	- 0	108 -
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Comb. L-T-R	r	0				0				0				0				0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	EB Left	134		134	20	154	-	154	34	188	-	188	0	188	-	188	0	188	F	188
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Comb. L-T		0,		001	0007	0 0	-	100		0 0	1	C		0 (4		0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Comb. T-R	6711	V 0	coc -	691	6671	NO	- 1045	C627	1534	NC	/9/ -	0	1534	NC	. 767	0	1534	~ ~	767
	EB Right	67		67	10	11	, -	77	39	116	o ←	116	4	120	c	120	0	120	⊃ ~-	120
WB Left 90 1 90 13 103 1 114 1 114 1 114 1 114 0 114 0 114 1 114 1 114 1 114 1 114 1 114 1 114 0 114 1 114 1 114 1 114 1 114 1 114 1 114 1 114 1 114 1 114 1 114 1 114 1 114 1 114 1 114 1 11 </td <td>Comb. L-T-R</td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td>0</td> <td></td>	Comb. L-T-R		0				0				0				0				0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	WB Left	06	-	06	13	103	-	103	11	114	-	114	0	114	-	114	0	114	-	114
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Comb. L-T	050	0,	- 476	677	0001	0 (-	0.00	1007	0 0	1	c		0 0		(0	
WB Right 81 1 81 1 81 12 93 1 93 70 163 1 163 0 163 1 163 0	Comb. T-R	002	4 0	7 7 7	0	CENT	V 0	0+c -	747	0001	NC	/00	0	C551	NC	/99	0	1335	NC	667
Comb. L-T-R- 0 11	WB Right	81	·	81	12	93		63	70	163	- -	163	0	163	o ←	163	0	163	C	- 163
Crit Volumes: N-S: 561 N-S: 645 N-S: 117 N-S: 1124 N-S: 1 E-W: 654 E-W: 753 E-W: 881 E-W: 881 E-W: 1 SUM: 1215 SUM: 1397 SUM: 1998 SUM: 2005 SUM: 2 No. of Phases: 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 <td>Comb. L-T-R</td> <td>ı</td> <td>0</td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td>0</td> <td></td>	Comb. L-T-R	ı	0				0				0				0				0	
E-W: 654 E-W: 753 E-W: 881 E-W: 881 E-W: 8 SUM: 1215 SUM: 1397 SUM: 1397 SUM: 2005 SUM: 2 2 No. of Phases: 2 2 SUM: 1397 SUM: 1398 SUM: 2005 SUM: 2 2 No. of Phases: 2 2 2 2 Z	Crit. Volumes		:S-N -N-S:	561			N-S:	645			N-S:	1117			N-S:	1124			N-S:	1124
No. of Phases: 2 2 2 2 2 2 No. of Phases: 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			E-W: SUM:	654 1215			E-W: SUM:	753 1397			E-W: SUM:	881 1998			E-W: SUM:	881 2005			E-W: SUM:	881 2005
Volume / Capacity: [1] 0.740 [1],[2] 0.832 [1],[2] 1.232 [1],[2] 1.237 [1],[2] 1. Level of Service: C D F	No. of Phase.	22		2				2				2				2				2
Level of Service: C D F F F F	Volume / Cap	acity:	[1]	0.740			[1],[2]	0.832		2	11.121	1.232			111.121	1.237			ICI IN	1 237
	Level of Serv	ice:		с				D				ш				Ш				i LL

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1426, 4+ Phase=1375, Unsignalized=1200.

For dual turn lanes, 55% of volume is assigned to heavier lane. For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. Right turns on red from excl. lanes = 50% of overlapping left turn. [1] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.04 to account for the installation of the Wilshire West ATCS system improvements.

CRITICAL MOVEMENT ANALYSIS

Robertson Boulevard @ Alden Drive Peak Hour: AM Annual Growth: 1.0% Annual Growth:

Project Alternative 2

Robertson Boulevard Alden Drive Cedars-Sinai Medical Center / 1-992843-1 CMA2 Accutek

Project: File Name: Counts by:

N-S St: E-W St:

Date: Date of Count: Projection Year:

2008 2023 08/05/2008

	200	8 EXIST. TI	RAFFIC	2023 V	// AMBIE	NT GROW	ЛН	2023	N/ OTHE	R PROJE	CTS	2023	V/ PROPC	SED ALT:		2023	W/ MITIG	ATION	
		No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
	Movement Volun	te Lanes	Volume	Volume V	/olume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
	NB Left 2	<i>6</i> 7	22	ო	26	÷	26	16	42	*	42	0	42	-	42	0	42	-	42
	Comb. L-T	0	ł			0	1			0	•			0	•			0	,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	NB Thru 48	0	•	72	555	0	,	325	880	0		0	880	0	'	0	880	~	880
	Comb. T-R	~~	571			~~	656			-	1030			-	1041			0	ł
	NB Right 8	8	ı	13	101	0		49	150	0	,	1	161	0	ı	0	161	-	161
	Comb. L-T-R -	¢				0				0				0				0	
	SB Left 3	5	35	ъ	41	-	41	59	100	-	100	~	108	ŀ	108	C	108	-	108
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Comb. L-T	0	r			0		•	1	. 0	1)		- 0		2	2	- c	
	SB Thru 56	5 0	,	85	649	0	,	321	970	0	,	0	970	0	,	0	970	0	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Comb. T-R		619				712			-	1044			-	1045				1045
	SB Right 5	5 0	ı	8	63	0	,	÷	74	0	ı	•	75	0	ī	0	75	. 0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Comb. L-T-R -	0				0				0				0				0	
	EB Left 2	0	,	4	34	0	.	20	54	с	1	+	55	c		C	ц	c	
	Comb. L-T	0	,			0	1	l		0		-	3			2	3		
	EB Thru 6	8 0	145	10	78	0	167	32	110	0	233	0	110	0	234	0	110		234
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Comb. T-R	0	ı			0	,			0	Ţ			0		1		0	-
	EB Right 4	8 0	1	7	56	0		14	20	0	,	0	20	0	,	0	20	0	1
	Comb. L-T-R -	-				-				-				-				-	
	WB Left 4	0 0		9	46	0		16	62	0		ъ	67	0	1	C	67	C	,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Comb. L-T	0	ı			0				0	ı			0	,	•	5	,	143
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	WB Thru 5	9	128	8	64	0	148	12	76	0	197	0	76	0	206	0	76	• •) - -
WB Right 32 0 - 5 37 0 - 21 58 0 - 4 62 0 - Comb. L-T-R- 1 - 5 37 0 - 21 58 0 - 4 62 0 - 149 1149 Crit. Volumes: N-S: 641 N-S: 738 N-S: 738 N-S: 130 N-S: 1416 Crit. Volumes: N-S: 641 N-S: 738 N-S: 130 N-S: 1416 SUM: 827 SUM: 214 E-W: 296 E-W: 302 No. of Phases: 2 2 2 2 2 2 2 2 No. of Phases: 2 <td< td=""><td>Comb. T-R</td><td>0</td><td>1</td><td></td><td></td><td>0</td><td>ı</td><td></td><td></td><td>0</td><td>t</td><td></td><td></td><td>0</td><td>,</td><td></td><td></td><td>0</td><td>ı</td></td<>	Comb. T-R	0	1			0	ı			0	t			0	,			0	ı
Comb. L-T-R- 1 1 1 1 Crit. Volumes: N-S: 641 N-S: 738 N-S: 1130 N-S: 1149 Crit. Volumes: N-S: 641 N-S: 738 N-S: 1130 N-S: 1149 Crit. Volumes: N-S: 186 E-W: 214 E-W: 206 E-W: 302 SUM: 827 SUM: 951 SUM: 1426 SUM: 1451 No. of Phases: 2 2 2 2 2 2 2 2 2 Volume / Capacity: 11 0.481 [11/2] 0.534 [11/2] 0.867 0.867 0.867 Level of Service: A A D D 0.867 0.867	WB Right 3	2	•	ŋ	37	0	,	21	58	0	,	4	62	0	1	0	62	~	62
Crit. Volumes: N-S: 641 N-S: 738 N-S: 1130 N-S: 1140 E-W: 186 E-W: 296 E-W: 302 SUM: 827 SUM: 951 E-W: 296 E-W: 302 No. of Phases: 2 SUM: 951 SUM: 1426 SUM: 1451 No. of Phases: 2	Comb. L-T-R -	-				-												0	
E-W: 186 E-W: 214 E-W: 296 E-W: 302 SUM: 827 SUM: 951 SUM: 1456 E-W: 302 No. of Phases: 2 2 2 2 2 2 No. of Phases: 2 2 2 2 2 2 Volume / Capacity: 11 0.481 [11][2] 0.534 [11][2] 0.860 [11][2] 0.861 Level of Service: A A A D D 0	Crit. Volumes:	N-S:	641			N-S:	738			N-S:	1130			N-S:	1149			N-S:	1087
SUM: 827 SUM: 951 SUM: 1426 SUM: 1451 No. of Phases: 2		E-W:	186			E-W:	214			E-W:	296			E-W:	302			E-W:	302
No. of Phases: 2 2 2 No. of Phases: 2 2 2 Volume / Capacity: [1] 0.481 [1],[2] 0.850 [1],[2] 0.867 Level of Service: A D D D D		SUM:	827			SUM:	951			SUM:	1426			SUM:	1451			SUM:	1388
Volume / Capacity: [1] 0.481 [1],[2] 0.534 [1],[2] 0.850 [1],[2] 0.867 Level of Service: A D D	No. of Phases:		2				2				2				2				2
Volume / Capacity: [1] 0.481 [1],[2] 0.534 [1],[2] 0.850 [1],[2] 0.867 Level of Service: A D D																			I
Level of Service: A A D D	Volume / Capacity:	[1]	0.481			[1],[2]	0.534			[4]'[2]	0.850			[1],[2]	0.867			[1],[2]	0.826
	Level of Service:		A				A				D				0				۵

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200.

For dual turn lanes, 55% of volume is assigned to heavier lane. For dual turn lanes, 55% of volume is assigned to exclusive lane. For one excl. and one opt. turn lane, 70% of overlapping left turn. [1] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.

Robertson Boulevard Alden Drive Cedars-Sinai Medical Center / 1-992843-1 CMA2 Accutek

N-S St: E-W St: Project: File Name: Counts by:

CRITICAL MOVEMENT ANALYSIS

Robertson Boulevard @ Alden Drive Peak Hour: PM Annual Growth: 1.00%

Project Alternative 2

Date: Date of Count: Projection Year:

2008 2023 08/05/2008

	1 0002	EXIST. IR	AFFIC	2023 \	V/ AMBIL	ENT GROV	NTH	2023 \	W OTHEI	R PROJEC	CTS	2023	W/ PROF	POSED ALT	2	2023	W/ MITIG	ATION	
		No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
NB Left	22		22	ო	26	-	26	35	61	*	61	0	61	ب	61	C	61	-	ĥ
Comb. L-T		0	1	I		0	,			0		•	,	• •	;)	5	· c)
NB Thru	622	0	,	93	715	0	,	363	1078	0	,	0	1075	0	ı	0	1078	·	1078
Comb. T-R		~	690			-	793			-	1181			+	1187			0	ı
NB Right Comb. L-T-R	- 68	00	,	10	78	00	,	25	103	00	ł	Ð	105	00	ı	0	109	c	10(
																		0	
SB Left	32	-	32	5	37	-	37	30	67	-	67	5	72		72	0	72	-	1.
Comb. L-T		0	1	ł	i	0			1	0	•			0	,			0	ı
SB Inru	485	э ,	, EOE	3	558	0,	-	380	938	0 1	, 777	0	938		1	0	938	0,	
SB Richt	00	- c	COC -	67	50	- c		4	90	- c	118	Ŧ	10		9/8	c	07	- 0	1/6
Comb. L-T-R	3	00		0	3	00		2	3	00	I	-	ŕ	00	I	כ	2	00	ı
EB Left	39	00	1	9	45	0 0	,	6	54	0 0			55	0		0	55	0	-
COUND. LT	97		- 174	14	100		200	а т	105		- 250	c	101			c	307		
Comb. T-R	3	00	+ - -	t		00	- 10	2	3	00	207 7	2	121	о с	no7 -	0	C71		107
EB Right	39	0	•	9	45	0	,	34	6/	0	•	0	52	0	,	0	62	0	ı
Comb. L-T-R	1	-								-				-				۰	
WB Left	68	0	,	10	78	0	,	63	141	0		11	152	0		0	152	0	
Comb. L-T		0	,			0	•			0	•			0	,			-	26
WB Thru	64	0	194	10	73	0	223	38	111	0	398	0	111	0	418	0	111	0	1
Comb. T-R	53	00	ı	c	57	0 0	,	i		00	•	c	1	0 0		Ċ	ţ	0	1
Comb. L-T-R	3	C		Ð	2	> ←		<u>t</u>	041			ת	ĕ	⊃ - -	ı	0	<u>cc </u>	- 0	ň
Crit. Volumes		N-S:	722			N-S:	830			N-S:	1248			N-S:	1259			N-S:	1151
		E-W: SUM:	241 964			E-W: SUM:	278 1108			E-W: SUM:	452 1701			E-W: SUM:	473 1733			E-W: SUM:	41: 1562
No. of Phase.	S:		2				2				7				2				
Volume / Cap	acity:	ĺμ]	0.572			[1],[2]	0.639			[1],[2]	1.034			11.121	1.055			[1].[2]	0.945
Level of Serv	ice:		A				ю				ш				LL.				ш

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200.

For dual turn lanes, 55% of volume is assigned to heavier lane. For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. Right turns on red from excl. lanes = 50% of overlapping left turn. [1] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.

CRITICAL MOVEMENT ANALYSIS

Robertson Boulevard @ Third Street Peak Hour: AM Annual Growth: 1.0%

Project Alternative 2

Cedars-Sinai Medical Center / 1-992843-1

N-S St: E-W St: Project: File Name: Counts by:

CMA3 Accutek

Robertson Boulevard Third Street

08/05/2008 2008 2023 Projection Year: Date of Count:

Date:

	2008 EXIST.	TRAFFIC	2023	W/ AMBIE	ENT GROW	ТН	2023 V	V/ OTHEF	RROJEC)TS	2023	V/ PROPC	SED ALT	2	2023	W/ MITIG	ATION	
	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement Vo	lume Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
NB Left	30 1	30	Ω	35	-	35	7	37	÷-	37	0	37		37	0	37	*	37
Comb. L-T	، ر.	ı		i	0				0				0	1		1	0	I
	514 (-	11	591	0 •	- 760	343	934	0 •	1 203	æ	942	0 -	101	0	942	0 +	-
NB Right	155 0		23	178	- 0	eo / -	91	269	- 0		0	269	- 0		0	269	- 0	
Comb. L-T-R -	J				0				0				0				0	
SB Left	37 1	37	9	43	-	43	8	46	-	46	0	46	-	46	0	46	-	46
Comb. L-T	J	1			0	·			0	·			0				0	,
SB Thru	510 0	1	77	587	0	•	295	882	0	1	4	886	o		0	886	0	ı
Comb. T-R	,- c	558	4	22	c	641	22		- c	991	Ŧ		. c	966	c	***	c	966
se rigii: Comb. L-T-R -	4/	•	-	0	0 0	•	8			•	-	Ξ		,	D	-		t
	,				•				•)				0	
EB Left	36 1	36	с,	42	-	42	43	85	-	85	2	87	, - 1	87	0	87	-	87
Comb. L-T			ç		0,	,	ļ		•		¢		0 .	1	ſ	i	0 ·	
Comb T.P	323	971	48	3/2		206	271	544		162	0	544		162	D	544		792
EB Right	35 0		ŋ	41	- 0	- ²	10	51	- 0	167 -	0	51	- 0	187 -	0	51	- 0	167 -
Comb. L-T-R -	J				0				0				0				0	
WB Left	120 1	120	18	138	F	138	54	192	F	192	0	192	-	192	0	192	.	192
Comb. L-T	J	'			0	,			0	,			0	•			0	1
WB Thru	761 1	415	114	875	-	477	222	1097	-	589	0	1097		589	0	1097	-	589
Comb. T-R	,- C	415	0	70	~ c	477	c	сa	. c	589	c	6	c	589	c	5	c	589
Comb. L-T-R -			2	2	00	ı	0	3	00	ı	0	40	00	ı	0	70	00	1
Crit. Volumes:	N-S:	706			N-S:	812			N-S:	1249			N-S:	1257			N-S:	1257
	E-W:	451			E-W:	519			Е-W:	674			E-W:	676			E-W:	676
	SUM:	1157			SUM:	1330			SUM:	1923			SUM:	1933			SUM:	1933
No. of Phases:		5				5				2				5				0
Volume / Capacity	r. [1],	0.701			[1],[2]	0.787			[1],[2]	1.182			111.121	1.189			[1].[2]	1.189
Level of Service:		U				υ				LL.				ï۲				ĿL.
Accumulance.	Moviment	10 Jo mi 0 s	111-1		, ,													

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200.

For dual turn lanes, 55% of volume is assigned to heavier lane. For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. For one excl. and one opt. turn lane, 50% of overlapping left turn. [1] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements. Note: Year 2007 manual traffic counts were adjusted by a 1.0 percent (1.0%) ambient growth factor to reflect year 2008 existing conditions.

Robertson Boulevard Third Street Cedars-Sinai Medical Center / 1-992843-1 CMA3 Accutek

N-S St: E-W St: Project: File Name: Counts by:

CRITICAL MOVEMENT ANALYSIS

Robertson Boulevard @ Third Street Peak Hour: PM Annual Growth: 1.00%

Project Alternative 2

Projection Year: Date of Count:

Date:

2008 2023 08/05/2008

	2008	EXIST. TR	AFFIC	2023 \	W/ AMBIE	ENT GROW	ΠH	2023 V	W OTHER	ROJEC	TS	2023 V	// PROPO	SED ALT		2023	W/ MITIG	ATION	
		No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume \	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
NB Left	25	÷- (25	4	29	~ (29	0	38	 (38	O	38	 (38	0	38	~	38
Comb. L-1 NB Thru	557	- o -		83	640	00		365	1005	00		ú	1010	00	1 1	0	1010	00	1 1
Comb. I-K NB Right Comb. L-T-R -	112	-00	- 669	17	129	-00	- 769	96	225	-00	1230 -	0	225	-00	- 1235	0	225	-00	- 1235
SB Left	57	c	57	8	65	c	65	0	65	 .	65	0	65	- 0	65	0	65		65
SB Thru	483		L C L	72	555			426	981	00		6	066	00	, ,	0	066	00	
Comb. I-K SB Right	53	- 0	ςχς -	80	60	- 0	616	49	109	- 0	1091 -	ę	112	- 0	- 1103	0	112	- 0	- 1103
Comb. L-T-R -		0				0				0				0				0	
EB Left Comb 1.T	53	c	53	89	60	- c	60	59	119	c	119	-	120	0	120	0	120	÷ (120
	441	·	240	99	508	. . .	276	293	801	⊃ - - ·	425	0	801	⊃ ~ ·	425	0	801	⊃ - -	- 425
Comb. 1-K EB Right	39	- 0	- 240	9	45	- 0	- 2/6	ۍ	50	- 0	425	0	50	- 0	- 425	0	50	- 0	- 425
Comb. L-T-R -		0				0				0				0				0	
WB Left Comb. I -T	128	- c	128	19	148	- c	148 -	116	264	- c	- 264	0	264	~ c	264	0	264	~ c	264
WB Thru	438)	253	99	504) 1	290	242	746) -	411	0	746	o ← •	411	0	746	·	411
WB Right	67	- 0	°°''''''''''''''''''''''''''''''''''''	10	77	- 0	067	0	17	- 0	+ -	0	77	- 0	- 411	0	11	- 0	- 411
Comb. L-T-R -		0				0				0				0				0	
Crit. Volumes:		N-S: E-W:	725 369			N-S: F-W:	834 424			N-S: F-W·	1295 689			N-S: P-M-	1300 680			N-S: E_M·	1300
		SUM:	1094			SUM:	1258			SUM:	1984			SUM:	1989			SUM:	1989
No. of Phases.			2				5				2				2				2
Volume / Capa	scity:	[1]	0.659			[1].[2]	0.739			[1].[2]	1.223			[1].[2]	1.226			[1],[2]	1.226
Level of Servic	:e:		В				с				ш				ш				ш
Assumptions:	~	Aaximum S	tum of Criti	cal Volumes	s (Intersed	ction Capac	itv): 2 Phas	e=1500.31	ohase=14	125. 4+ Ph	ase=1375. 1	Unsianaliza	3d=1200.						

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200. For dual turn lanes, 55% of volume is assigned to heavier lane. For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. Right turns on red from excl. lanes = 50% of overlapping left turn.

[1] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Witshire West ATSAC system improvements.
[2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Witshire West ATCS system improvements.
[2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Witshire West ATCS system improvements.
[2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Witshire West ATCS system improvements.
[2] The volume to capacity ratios counts were adjusted by a 1.0 percent (1.0%) ambient growth factor to reflect year 2008 existing conditions.

CRITICAL MOVEMENT ANALYSIS

Robertson Boulevard @ Burton Way Peak Hour: AM Annual Growth: 1.0%

Project Alternative 2

Robertson Boulevard Burton Way Cedars-Sinai Medical Center / 1-992843-1 CMA4 Accutek

N-S St: E-W St: Project: File Name: Counts by:

08/05/2008 2008 2023 Date: Date of Count: Projection Year:

	2008 EXIST.	TRAFFIC	2023	W/ AMBIE	ENT GROW	ЛН	2023 V	V/ OTHEF	ROJEC	TS	2023 V	V/ PROPC	SED ALT	5	2023	W/ MITIG	ATION	
	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement Vo	lume Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
NB Left	122	1 122	18	141	C	141	45	186	c	186	0	186	← c	186	0	186	c	186
	607	1 607	91	698	c	-	384	1082	o c	1082	9	1088	o c	- 1088	0	1088	⊃ - - c	1088
Comb. L-T-R - Comb. L-T-R -	28	- 1 28	4	33	0-0	33	0	33	0-0	33	0	33	00	33	0	33	0-0	33
SB Left	40	1 40	9	46	c	46	7	48	- 0	48	0	48	0	48	0	48		48
SB Thru	623		93	717	007	- 706	299	1016		1 1 1 1	ю	1019		1 1 1 1 1	0	1019		U U T
Comb. L-T-R - Comb. L-T-R -	69	- 0	10	79	-00	- 100	56	135	- 0 0		-	136	- 0 0		0	136	-00	CC -
EB Left	91	1 91	14	105	- c	105	50	155	, 	155	2	157	c	157	0	157	c	157
EB Thru	606	2 303	91	269	000	348	114	811	ດເ	270	0	811	5 m c	270	0	811	5 ന (- 270
Comb. I-R EB Right Comb. L-T-R -	82	6	12	94	0 - 0	94	28	122	00	- 122	0	122	0-0	- 122	0	122	0 - 0	- 122
WB Left	148	1 148	22	171	c	171	ດ	180	- 0	180	0	180	- 0	180	0	180	- c	180
WB Thru	1306	3 435	196	1502	5 M (501	154	1656	ວຕເ	- 552	0	1656	5 က (- 552	0	1656	500	- 552
Comb. I -K WB Right [3] Comb. L-T-R -	86	- 1 2 2	<u>13</u>	66 6	00	66	7	101	0-0	101	0	101	0-0	- 101	0	101	0 - 0	- 101
Crit. Volumes:	N-S: N-S:	814 576			N-S: N.S:	936 605			N-S: E-M:	1336 706			N-S: 1 M.	1340			N-S: N	1340
	SUM:	1340			SUM:	1541			SUM:	2043			SUM:	2049			SUM:	2049
No. of Phases:		2				2				2				2				2
Volume / Capacity Level of Service:	· ·	1] 0.824 D			[1].[2]	0.928 E			[1],[2]	1.262 F			[1],[2]	1.266 F			[1],[2]	1.266 F
Assumptions:	Maximu For du: For one Right tu [1] The [2] The	im Sum of Crit al turn lanes, excl. and one irns on red froi volume to cap volume to cap	ical Volume 55% • opt. turn la m excl. lane acity ratios acity ratios	s (Interse of volum ine, is = have beer have beer	ction Capac e is assigne 70% c 50% c n reduced b n reduced b	city): 2 Pha. ed to heavie. of volume is of overlappi y 0.07 to ac	se=1500, 3 r lane. assigned tu age left turn. count for th count for th	Phase=1. o exclusiv he installa	425, 4+ Ph. e lane. tion of the tion of the	iase=1375, Wilshire Wi Wilshire We	Unsignaliz est ATSAC est ATCS (ed=1200. System ii system im	mprovement	its.		Note: Mith Master Pla of a third approach assumed u Project Cc	gation for Er an includes i through lane which has b in the Future ondition.	ntitled nstallation e at the EB sen Pre-

[2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.
 [3] Funtional right-turn only lane.
 [3] Note: Year 2007 manual traffic counts were adjusted by a 1.0 percent (1.0%) ambient growth factor to reflect year 2008 existing conditions.

Robertson Boulevard Burton Way Cedars-Sinai Medical Center / 1-992843-1 CMA4 Accutek

N-S St: E-W St: Project: File Name: Counts by:

CRITICAL MOVEMENT ANALYSIS

Robertson Boulevard @ Burton Way Peak Hour: Annual Growth: 1.00%

Project Alternative 2

08/05/2008 2008 2023 Date: Date of Count: Projection Year:

	e E	me	140	1135	49	62		1321	184	463	11	165	383	99	1461 629 2090	7	.293	EB
	Lar	Volu		•	'			r					·	I			Г ц	Entitled s installat, ne at the been re Pre-
VTION	No. of	Lanes	-	0	0 - 0	-	00	-00	-	0 ო	0 - 0	. .	0 0	0 - 0	N-S: E-W: SUM:		[1],[2]	ration for l n includes hrough lar vhich has the Futu ndition.
V/ MITIG/	Total	/olume	140	1135	49	62	1217	103	184	1390	111	165	1150	66				ote: Mitig laster Pla f a third ti pproach w ssumed ir roject Cou
2023 V	Added	Volume V	o	0	0	0	0	0	0	0	0	0	0	0				2 2 0 6 6 C
	Lane	Volume	140	- 1135	- 49	62		- 1321	184	- 463	- 111	165	383	- 66	1461 629 2090	2	1.293	
DSED ALT 2	No. of	Lanes	÷ 4	0 - 0	0 - 0	- 0		-00	-	၂ က (0 0	- 0	ວ ຕ ເ	0 - 0	N-S: E-W: SUM:		[1].[2] F	nprovements. provements.
V/ PROPO	Total	Volume	140	1135	49	62	1217	103	184	1390	111	165	1150	66				ad=1200. system ir system im,
2023 V	Added	Volume	0	4	0	0	9	ы	-	0	0	٥	0	0				Jnsignalizz st ATSAC st ATCS s vear 2006
CTS	Lane	Volume	140	- 1131	49	62		151	183	- 463	- 111	165	383	-	1452 629 2081	2	1.287 F	ase=1375, (Wilshire We Wilshire We tor to reflect
ROJEC	No. of	Lanes	 (⊃ ~ c	0-0	(- c	00,	- 0 0	÷- (- m c	0-0	- 0	- m c	0-0	N-S: E-W: SUM:		[1],[2]	25, 4+ Ph t lane. ion of the ion of the rrowth fac
V/ OTHEF	Total	/olume	140	1131	49	62	1211	100	183	1390	111	165	1150	66				Phase=14 Ine. exclusive e installat e installat ambient c
2023 V	Added	Volume V	30	407	0	33	489	55	60	189	54	19	158	4				p=1500, 3 F peavier la so theavier la assigned to g left turn. count for th count for th ent (1.0%)
E	Lane	Volume	110	- 724	49	59		00/	123	. 600	- 57	146	331	- 62	878 747 1625	5	0.983	 yy): 2 Phase yy): 2 Phase assigned to assigned is a volume is a
NT GROW	No. of	Lanes	 c	⊃ ~ c	0 - 0	c	00,	- 0 0	- 0	200	0 - 0	c	ი ი ი	00	N-S: E-W: SUM:		[1],[2] E	ion Capaci f volume is 70% of 50% of reduced by reduced by
V/ AMBIE	Total	/olume	110	724	49	59	722	45	123	1201	57	146	992	62				(Intersect e, ave been ave been mts were ,
2023 V	Added	Volume	14	94	G	80	94	Q	16	157	7	19	129	æ				il Volumes 55% pt. turn lan excl. lanes excl. lanes tity ratios h. nly lane. I traffic cou.
VFFIC	Lane	Volume	96	- 629 -	42	52	1	-	107	522	49	127	288	54	764 649 1413	61	0.872 D	um of Critica n lanes, 1. and one o, 2n red from o me to capac me to capac t right-turn o, 2007 manual
EXIST. TR/	No. of	Lanes	c) - c	0 - 0	c	, o ,	- 0 0	- د	0 01 0	0-0	c) M C	0-0	N-S: M-M: SUM:		[L]	Maximum S For dual tun For one exc Right turns ([1] The volu [2] The volu [3] Funtional Note: Year 2
2008		t Volume	96	629	42 R -	52	628	39 R -	107	1044	R - 49	127	863	3] 54 R -	:se	es:	apacity: vice:	.:
		Movemen	NB Left Comh 1 -T	NB Thru Comb T-P	NB Right Comb. L-T-	SB Left Comb 1 -T	SB Thru	SB Right Comb. L-T-I	EB Left Comh 1_T	EB Thru Comb T-R	EB Right Comb. L-T-I	WB Left Comb 1-T	WB Thru Comb T-R	WB Right [5 Comb. L-T-I	Crit. Volum	No. of Phas	Volume / Cź Level of Ser	Assumptio

Robertson Boulevard Wilshire Boulevard Cedars-Sinai Medical Center / 1-992843-1 CMA5 Accutek

N-S St: E-W St: Project: File Name: Counts by:

CRITICAL MOVEMENT ANALYSIS

Robertson Boulevard @ Wilshire Boulevard Peak Hour: AM Annual Growth: 1.0%

Project Alternative 2

Date: Date of Count: Projection Year:

08/05/2008 2008 2023

	2008 EXIST.	FRAFFIC	2023	W/ AMBIE	ENT GROW	μ	2023 V	// OTHER	ROJEC	TS	2023 V		SED ALT 2		2023	W/ MITIC	ATION	
	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement Vo.	ume Lanes	Volume	Volume	Volume	Lanes	Volume	Volume \	/olume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
NB Left Comb 1-T	180 1	180	27	207	~ c	207	48	255	c	255	O	255	c	255	0	255		255
NB Thru Comb. T-R	673 1 1	401 401	101	774	o ← ←	- 461 461	316	1090	>	- 627 627	4	1094	⊃ <i></i> -	- 629 620	O	1094	0 - 1	- 629 620
NB Right Comb. L-T-R -	129 0	I	10	149	00	1	16	165		1	0	165	- 0 0	670 -	0	165	-00	470 r
SB Left Comb. L-T	92 1 0	92	14	106		106	31	137	c	137	0	137		137	0	137	(137
SB Thru Comb. T-R	657 1	380 380	96	755) 	437 437	214	696	o	575 575	2	971		- 576 576	0	971	⊃ ·	- 576 576
SB Right Comb. L-T-R -	104 0	I	16	120	- 0 0		61	181	- 0 0	5	~~	182	- 0 0	o/c -	0	182	- 0 0	g/g 1
EB Left Comh 1-T	74 1	74		85		85	75	160	~ − c	160		161	- (161	0	161		161
EB Thru Comb T-R	058 2	393 393	159	1217	→ (v) +	- 451 451	305	1522	⊃ N 7	- 561 561	-	1523	0 0 7	- 561	0	1523	0 0	- 561
EB Right Comb. L-T-R -	119 0	'	18	137	- 0 0	- 	24	161	- 0 0		0	161	-00	- 100	0	161	- o c	- 561
WB Left Comb 1 T	129 1	129	19	149	- d	149	9	155	- (155	0	155	-	155	0	155	-	155
	975 2 1	- 682 682	296	2271	⊃ N 7	- 785 705	406	2677	- N C	- 931	-	2678	0 01 -	- 932	0	2678	50	- 932
WB Right Comb. L-T-R -	73 0	700	1	84	- 0 0	C0/ -	34	118	- 0 0		0	118	- 0 0	932	0	118	- 0 0	- 932
Crit. Volumes:	·S-N	560			·S-N	644			V	058				roo				
	М-Ш	756			ы. М.	870			Ш-М:	1091			ы. М.	1093			;, М- М-	831 1093
	SUM:	1316			SUM:	1514			SUM:	1921			SUM:	1924			SUM:	1924
No. of Phases:		4		Martin .		4				4				4				4
Volume / Capacity		0.957				1.101				1.397				1.399				1.399
Level of Service:		ш			-				_				ц.					ш
Assumptions:	Maximur	n Sum of Crit	fical Volumes	s (Intersec	tion Capaci	tv): 2 Phase	=1500.3 F	hase=14	25 4+ Ph	1375 I	Insimalizi							

For dual turn lanes, 55% of volume is assigned to heavier lane. For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. Right turns on red from excl. lanes = 50% of overlapping left turn. Note: Year 2007 manual traffic counts were adjusted by a 1.0 percent (1.0%) ambient growth factor to reflect year 2008 existing conditions.

Robertson Boulevard Wilshire Boulevard Cedars-Sinai Medical Center / 1-992843-1 CMA5 Accutek

N-S St: E-W St: Project: File Name: Counts by:

CRITICAL MOVEMENT ANALYSIS

Robertson Boulevard @ Wilshire Boulevard Peak Hour: PM Annual Growth: 1.00%

Project Alternative 2

08/05/2008 2008 2023 Date: Date of Count: Projection Year:

200	8 EXIST. TRA	FFIC	2023 V	V/ AMBIE	NT GROW	H	2023 V	V/ OTHEF	ROJEC	TS	2023 V	// PROPO	SED ALT 2		2023 \	N/ MITIG	ATION	
	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement Volun	ie Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
NB Left 15 Comb. L-T	1 1	197 -	30	226	C	226	32	258	c	258 -	0	258	- c	258 -	0	258	г с	258
NB Thru 55 Comb. T-R	1 - 1 - 1	345 345	68	684	,	397 397	309	663		556 556	7	995) - -	557 557	0	366	, +	557 557
NB Right E Comb. L-T-R -	00	<u>)</u> ;	14	110		1	σ	119	- 0 0)) 	0	119	- 0 0	1	0	119	- 0 0	5
SB Left 6	14 1	64	10	73	c	73	68	141	c	141	0	141	c	141	0	141	c	141
SB Thru 71 Comb T-R	, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	399 399	107	820	o	459 459	421	1241	o	- 721 721	4	1245	o ← ←	724	0	1245	⊃ - - +	- 724 724
SB Right &	55 O	1	13	98	.00	1	104	202				203		1	0	203	- 0 0	,
EB Left 11 Comb. I - T	9 1	- 119	18	137		137	70	207	- c	207	٢	208	- c	208	0	208	c	208
EB Thru 170 Comh T-R	4	619 619	256	1959	0.01 -	712 712	423	2382	• 0 +	871 871		2383	- N -	871 871	0	2383	o (V +	871
EB Right 15 Comb. L-T-R -	- 0 0	2	23	178	- 0 0	1	53	231	- 0 0	-	o	231	- 0 0	- 70	0	231	- 0 0	
WB Left 14 Comb 1-T	1 0	145	22	167	- c	167	18	185	+ c	185	0	185	c	185	0	185	~ c	185
WB Thru 131 Comb T-P	0 0	455 455	197	1513	0.01 +	523 523	336	1849) (V +	652 652	-	1850	о (V т	652 652	0	1850	, N 4	652
WB Right 4 Comb. L-T-R -	- O O 0	- -	7	57	- 0 0	0 7 7 7	49	106	- 0 0	-	0	106	- 0 c		0	106	- 0 c	700 -
									,				,				>	
Crit. Volumes:	N-S: N-T	596 765			N-S: -W-T	685 880			N-S: П-W·	980 1056			N-S: П_N/-	982 1057			N-S: M-II	982 1057
	SUM:	1361			SUM:	1565			SUM:	2036			SUM:	2039			SUM:	2039
No. of Phases:		4				4				4				4				4
Volume / Capacity:		066.0				1.138				1.481				1.483				1.483
Level of Service:	-	ш				Ŀ				LL.				1.				F
Assumptions:	Maximum S For dual tun For one exc Right turns (Note: Year 2	um of Critic n lanes, 1. and one (2n red from 2007 manu,	cal Volumes 55% opt. turn lar i excl. lanes al traffic coi	s (Intersec)e, s = unts were	ition Capac of volume i 70% o 50% o adjusted b	city): 2 Phas is assigned of volume is of overlappir y a 1.0 perc	e=1500, 3 to heavier l assigned tu ng left turn. cent (1.0%)	Phase=14 ane. o exclusiv) ambient (125, 4+ Ph e lane. growth fac	ase=1375, tor to reflec	Unsignaliz t year 200	ed=1200. 8 existing	conditions.					

George Burns Road Beverly Boulevard Cedars-Sinai Medical Center / 1-992843-1

CMA6 Accutek

N-S St: E-W St: Project: File Name: Counts by:

CRITICAL MOVEMENT ANALYSIS

George Burns Road @ Beverly Boulevard Peak Hour: AM Annual Growth: 1.0%

Project Alternative 2

08/05/2008 2008 2023

Projection Year: Date of Count: Date:

	2008 E	XIST. TRA	FFIC	2023 \	V/ AMBIE	ENT GROW	ΥТΗ	2023 V	V/ OTHEF	ROJEC	CTS	2023 V	V/ PROPC	SED ALT	5	2023	W/ MITIG	BATION		
		No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	
Movement	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volum	ē
NB Left	21	-	21	ы	24	-	24	0	24	-	24	0	24	-	24	0	24	0	ı	
Comb. L-T		0	1			0	,			0				0	•					31
	9	0,			7	0 7	-	0	7	0 7	-	0	7	0 1	-	0	7	00	·	
NB Right	88	- c	1 1 1 1	13	101	- c	on '	24	125	- c	761 ,	7	132	- c	- 139	C	132	- c	,	132
Comb. L-T-R -	}	0		2		0		i		0			1 -	00)		. 0		1
SB Left	e	0		0	6	0	.	0	ę	0		0	ę	c		C	6	c	1	Τ
Comb. L-T		0	,			0	,			0	ı			0	ı			0	ı	
SB Thru	0	0	6	0	0	0	10	0	0	0	10	0	0	0	10	0	0	0		10
Comb. T-R		0				0	1			0	ŧ			0	1			0	ı	
SB Right	9	0	1		7	0	ı	0	7	0	•	0	7	0	,	0	7	0	,	
Comb. L-I-K -						-				-								-		
EB Left	25	+	25	4	29	t-	29	0	29	-	29	o	29	-	29	0	29	-		29
Comb. L-T		0				0	,			0	,			0				0	ı	
	823		496	123	947		571	246	1193	· •	694	0	1193	· 1	694	0	1193	20		596
EB Right	170	- 0	- 490	25	195	- c	1/0 -	C	195	- c	1AD ,	C	195	- c	- 094	C	195	C		202
Comb. L-T-R -		0		l		0		I		0		I		0		Ì		0		
			- 100 M																	
WB Left	255	c	255	38	293	~- c	293	71	364	c	364	16	380	c	380	0	380	(380
V/B Thai	1408	C	- 768	775	1733	⊃ ~	- 882	233	1056	⊃ ⊤	-	c	1056	⊃ -	, ,	c	1050			000
Comb. T-R			768	1	3		883	224	0000		666	2	000		666	c	000			000
WB Right	37	. 0		9	43	. 0		0	43	• 0	•	0	43	- 0		0	43	- 0	,	2
Comb. L-T-R -		0				0				0				0				0		
Crit. Volumes:		N-S:	67			N-S:	112			N-S:	136			N-S:	143			N-S:		35
		E-W:	793			E-W:	912			: М-	1058			E-W:	1074			E-W:	Ŧ	028
		SUM:	890			SUM:	1023			SUM:	1193			SUM:	1216			SUM:	1	063
No. of Phases:	-		2				2				7				7					m
Volume / Capa	city:	[4]	0.523			[1].[2]	0.582			[1],[2]	0.695			[1].[2]	0.711			[1].[2]	0.6	646
Level of Servic	 G	-	đ				A				В				U				ß	
Assumptions:	Ŵ	faximum S.	um of Critic	al Volumes	s (Interseu	ction Capat	citv): 2 Phas	se=1500.3	Phase=14	425 4+ PI	1250-1375	Incidenti								

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200.

For dual turn lanes, 55% of volume is assigned to heavier lane. For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. 10 The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improverments. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.

George Burns Road Beverly Boulevard Cedars-Sinai Medical Center / 1-992843-1

CMA6 Accutek

N-S St: E-W St: Project: File Name: Counts by:

CRITICAL MOVEMENT ANALYSIS

George Burns Road @ Beverly Boulevard Peak Hour: PM Annual Growth: 1.00%

Project Alternative 2

Date of Count: Projection Year:

Date:

08/05/2008 2008 2023

	No. ofLaneAddedTotalMovementVolumeLanesVolumeNotementNotementMovementVolumeLanesVolumeNotementNotementNB Ltru137113721158Comb. L-T0-0-3NB Thru30-331377Comb. L-T-R0-0-1NB Right3280-219SB Left160-219Comb. L-T-R0-7317SB Right510-731SB Right510-731407Comb. L-T-R16531831407Comb. L-T-R16531831407Comb. L-T-R0-1295Comb. L-T-R16531831407Comb. L-T-R0-1295Comb. L-T-R16531331407Comb. L-T-R0-1295Comb. L-T-R16531331407Comb. L-T-R16531331407Comb. L-T-R16531331407Comb. L-T-R16531331407Comb. L-T-R16531331407Comb. L-T-R16531331407Comb. L-T-R16531331407 <tr< th=""><th>tal No. of International Internationae Internationae Internationae Internationae Internationae Internationae Internationae Internationae Internationae Internationae Internationae Inter</th><th>Lane Volume V 158</th><th>Added To</th><th>otal Nc</th><th>o. of</th><th>Lane</th><th>Added</th><th>l ct ct t</th><th></th><th></th><th></th><th></th><th></th><th></th></tr<>	tal No. of International Internationae Internationae Internationae Internationae Internationae Internationae Internationae Internationae Internationae Internationae Internationae Inter	Lane Volume V 158	Added To	otal Nc	o. of	Lane	Added	l ct ct t						
	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Inter Lanes 158 1 158 1 377 0 19 0 1 58 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Volume V 158	feloment Mar		5		50550	OLAI	No. of	Lane	Added	Total	No. of	Lane
	NB Left 137 1 137 21 158 Comb. L-T 0 - 0 - 0 3 NB Thru 3 0 - 0 - 0 3 NB Right 328 0 - 331 9 377 Comb. L-T-R. 0 - 0 - 1 7 Comb. L-T-R. 0 - 0 - 2 19 SB Left 16 0 - 2 19 7 Comb. L-T 0 7 1 7 7 SB Right 51 0 - 8 58 Comb. L-T 0 - 7 1 7 SB Right 51 0 - 8 58 Comb. L-T 1 1 - 8 58 Comb. L-T 1 0 - 8 58 Comb. L-T 1	158 1 3 0 377 0 19 0 7 0 58 0	158	volume vo	lume La	anes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Comb. L-1 0 - NB Right 3 0 - 331 337 Comb. L-T-R-, 0 - 331 49 377 Comb. L-T-R-, 0 - 2 19 377 Comb. L-T-R-, 0 - 2 19 377 SB Lefit 16 0 - 2 19 7 SB Thru 6 0 73 1 7 7 SB Right 51 0 - 8 58 58 Comb. L-T 0 - 7 1 7 SB Right 51 0 - 8 58 Comb. L-T, R 1 8 1 9 56 Comb. L-T, R 1 653 183 1407 Comb. L-T, R 1 653 13 1407 Comb. L-T, R 0 - 1 9 56 Comb. L-T, R 0 - 0 107 56 56 Comb. L-T, R 0 <td>377 0 377 0 19 0 7 0 58 0</td> <td>1 1</td> <td>0</td> <td>158</td> <td>~</td> <td>158</td> <td>0</td> <td>158</td> <td>-</td> <td>158</td> <td>0</td> <td>158</td> <td>0</td> <td>·</td>	377 0 377 0 19 0 7 0 58 0	1 1	0	158	~	158	0	158	-	158	0	158	0	·
		377 0 19 0 7 0 58 0	I	c	¢	00	1	c	e	0 0	,	c	ç	c	161
	NB Right 328 0 - 49 377 Comb. L-T-R- 0 - 2 19 377 SB Lefi 16 0 - 2 19 377 SB Thru 6 0 - 2 19 7 SB Right 51 0 - 7 7 7 SB Right 51 0 - 8 7 7 Comb. L-T-R, 1 1 8 1 9 58 Comb. L-T-R, 1 0 - 8 58 58 Comb. L-T-R, 1 6 1 8 1407 56 Comb. L-T-R, 0 - 1 653 1407 56 Comb. L-T-R, 1 653 183 1407 56 56 56 Comb. L-T-R, 0 - 0 - 12 95 56 Comb. L-T-R, 0 <td< td=""><td>377 0 19 0 7 0 58 0</td><td>381</td><td>5</td><td>2</td><td> c</td><td>472</td><td>5</td><td>C</td><td> c</td><td>- 488</td><td>2</td><td>o</td><td></td><td>1 1</td></td<>	377 0 19 0 7 0 58 0	381	5	2	c	472	5	C	c	- 488	2	o		1 1
	Comb. L-T-R- 0 SB Left 16 0 - 2 19 SB Thru 6 0 - 2 19 Comb. L-T 0 - 73 1 7 SB Tight 51 0 - 8 58 Comb. L-T 0 - 7 7 7 SB Right 51 0 - 8 58 Comb. L-T-R- 1 8 1 9 56 Comb. L-T-R- 1 6 - 8 58 EB Left 8 1 8 1407 56 Comb. L-T 0 - 653 183 1407 Comb. L-T 1 653 183 1407 56 Comb. L-T 0 - 653 133 1407 WB Left 83 0 - 12 95 56 Comb. L-T 1 663	19 19 58 0 58 0	I	91	468	0	I	16	484	0	ı	0	484	,	484
	SB Left 16 0 - 2 19 Comb. L-T 0 - 73 1 7 SB Thru 6 0 - 73 1 7 SB Right 51 0 - 8 58 Comb. T-R 0 - 8 58 SB Right 51 0 - 8 58 Comb. L-T-R- 1 8 1 9 Comb. L-T-R- 1 653 183 1407 Comb. L-T 0 - 653 183 1407 Comb. L-T 0 - 0 12 95 Comb. L-T-R 0 - 12 95 Comb. L-T-R 0 - 12 95 Comb. L-T-R 0 - 12 95 WB Right 10 - 0 13 102 WB Right 17 0 - 3 20 WB Right 17 0 - 3 20	19 0 7 0 58 0				0				0				0	
	Cormb. L-T 0 - SB Thru 6 0 73 1 7 SB Right 51 0 - 8 58 SB Right 51 0 - 8 58 SB Right 51 0 - 8 58 Comb. L-T-R- 1 8 1 9 Comb. L-T-R- 1 653 183 1407 Comb. L-T 0 - 12 95 Comb. L-T 1 653 183 1407 Comb. L-T 0 - 12 95 Comb. L-T-R 0 - 12 95 Comb. L-T-R 0 - 12 95 WB Right 10 - 13 102 WB Right 1 520 153 1177 Comb. L-T 0 - 3 20 WB Right 17 0 - 3 20	7 0 58 0	 •	0	19	0		0	19	0		0	19	0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	SB Thru 6 0 73 1 7 Comb. T-R 0 - 8 9 5 Comb. L-T.R. 1 - 8 8 Comb. L-T.R. 1 8 1 9 Comb. L-T.R. 1 8 1 9 EB Left 8 1 653 183 1407 EB Thru 1223 1 653 183 1407 Comb. L-T.R. 0 - 1 9 Comb. L-T.R. 0 - 12 95 Comb. L-T.R. 0 - 12 95 WB Left 89 1 89 13 102 WB Thru 1023 1 520 153 1177 WB Right 17 0 - 3 20 WB Right 17 0 - 3 20	7 0 58 0	,			0				0	•			0	1
	Comb. T-R 0 - 8 59 50 56 56 56 56 56 56 56 56 56 56 56 56 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 57 <th< td=""><td>58</td><td>84</td><td>0</td><td>7</td><td>0</td><td>84</td><td>0</td><td>7</td><td>0</td><td>84</td><td>0</td><td>7</td><td>0</td><td>84</td></th<>	58	84	0	7	0	84	0	7	0	84	0	7	0	84
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Sizi Fright 51 0 - 8 58 Comb. L-T-R- 1 8 1 9 EB Left 8 1 8 1 9 EB Left 8 1 653 183 1407 Comb. L-T 0 - 1 653 183 1407 EB Thru 1223 1 653 183 1407 Comb. L-R 0 - 12 95 Comb. L-T-R 0 - 12 95 WB Left 89 1 89 13 102 WB Left 89 1 89 13 102 WB Right 1023 0 - 0 107 WB Right 17 0 - 3 20 Comb. L-R 0 - 3 20	58 0	ı		ł	0	ı			0	,			0	•
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Comb. L-T-R-2 EB Left 8 1 8 1 9 Comb. L-T 0 - EB Thru 1223 1 653 183 1407 Comb. L-T-R 1 653 183 1407 Comb. L-T-R 1 653 183 1407 Comb. L-T-R 0 - WB Left 89 1 89 13 102 Comb. L-T 89 1 89 13 102 WB Nght 17 0 - WB Right 17 0 - Comb. L-T-R 0 3 20	•	t	0	58	0 1	,	0	58	0 1		0	58	0 1	ı
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	EB Left 8 1 8 1 9 Comb. L-T 0 - 0 - 1407 EB Thru 1223 1 653 183 1407 Comb. L-T 1 653 183 1407 Comb. L-T-R 1 653 183 1407 Comb. L-T-R 0 - 12 95 Comb. L-T-R 0 - 12 95 WB Left 89 1 89 13 102 WB Left 89 1 89 13 1177 WB Left 1023 0 - 0 137 WB Right 17 0 - 3 20 WB Right 17 0 - 3 20					-				-				-	
	Comb. L-T 0 - EB Thru 1223 1 653 183 1407 Comb. T-R 1 653 183 1407 Comb. T-R 1 653 183 1407 Comb. T-R 1 653 183 1407 Comb. L-T-R- 0 - 12 95 WB Left 89 1 89 13 102 WB Lut 1023 0 - 0 102 Comb. L-T 0 - 0 13 1177 WB Right 17 0 - 3 20 WB Right 17 0 - 3 20	9	6	0	6	-	6	0	6	-	6	°	6	1	σ
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	EB Thru 1223 1 653 183 1407 Comb. T-R 1 653 183 1407 Comb. L-T.R 0 - 12 95 Comb. L-T.R- 0 - 12 95 WB Left 89 1 89 13 102 WB Left 89 1 89 13 102 Comb. L-T 0 - 0 - 1177 WB Right 17 0 - 3 20 WB Right 17 0 - 3 20 Comb. L-T-R- 0 - 3 20	0	1			0	,			0	ı		•	0	,
	Comb. T-R 1 653 EB Right 83 0 - 12 95 Comb. L-T-R- 0 - 12 95 WB Left 89 1 89 13 102 WB Lut 1023 1 520 153 1177 WB Thu 1023 1 520 153 1177 WB Right 17 0 - 3 20 Comb. L-T-R - 0 - 3 20	407 1	751	327	1734	-	914	0	1734	-	914	0	1734	0	867
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	LED Kight 83 0 - 12 95 Comb. L-T-R- 0 13 102 WB Left 89 1 89 13 102 Comb. L-T 0 - 520 153 1177 Comb. T-R 1 520 153 1177 WB Right 17 0 - 3 20 Comb. L-T-R- 0 20	÷ -	751			. .	914			-	914			0	,
	Comb. L-I-R- 0 WB Left 89 1 89 13 102 WB Left 89 1 89 13 102 Comb. L-T 0 - 0 - 1177 WB Thru 1023 1 520 153 1177 WB Right 17 0 - 3 20 Comb. L-T-R- 0 - 3 20	95 0	ı	0	95	0	,	0	95	0	,	0	95	-	95
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	WB Left 89 1 89 13 102 Comb. L-T 0 - 620 153 1177 WB Thru 1023 1 520 153 1177 Comb. T-R 1 520 3 20 WB Right 17 0 - 3 20 Comb. L-T-R 0	0				0				0				0	
	Comb. L-T 0 - WB Thru 1023 1 520 153 1177 Comb. T-R 1 520 33 20 WB Right 17 0 - 3 20 Comb. L-T-R- 0	102 1	102	36	138	-	138	6	147	-	147	0	147	-	147
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	WB Thru 1023 1 520 153 1177 Comb. T-R 1 520 3 3 1177 WB Right 17 0 - 3 20 Comb. L-T-R 0 - 0	0	,			0	,			0				0	,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Comb. T-R 1 520 WB Right 17 0 - 3 20 Comb. L-T-R 0 -	177 1	598	323	1500		760	0	1500	-	760	0	1500	-	760
WB Right 17 0 - 3 20 0 - 0 20 0 20 0 <t< td=""><td>WB Right 17 0 - 3 20 Comb. L-T-R - 0</td><td>•</td><td>598</td><td></td><td></td><td></td><td>760</td><td></td><td></td><td>-</td><td>760</td><td></td><td></td><td></td><td>760</td></t<>	WB Right 17 0 - 3 20 Comb. L-T-R - 0	•	598				760			-	760				760
Comb. L-T-R- 0 </td <td>Comb. L-T-R - 0</td> <td>20 0</td> <td>•</td> <td>0</td> <td>20</td> <td>0</td> <td>1</td> <td>0</td> <td>20</td> <td>0</td> <td>,</td> <td>0</td> <td>20</td> <td>0</td> <td>1</td>	Comb. L-T-R - 0	20 0	•	0	20	0	1	0	20	0	,	0	20	0	1
Crit. Volumes: N-S: 347 N-S: 400 N-S: 491 N-S: 507 N-S: N-S: N-S: N-S: 507 N-S: N-S: N-S: N-S: N-S: 507 N-S:		0				0				0				0	
E-W: 742 E-W: 853 E-W: 1053 E-W: 1062 E-W: SUM: 109 SUM: 123 SUM: 1543 SUM: 1568 SUM: No. of Phases: 2 SUM: 1543 SUM: 1543 SUM: 1568 SUM: No. of Phases: 2 2 2 2 Z	Crit. Volumes: N-S: 347	N-S:	400		z	I-S:	491			N-S:	507			N-S:	429
SUM: 109 SUM: 1543 SUM: 1568 SUM: No. of Phases: 2 2 2 2 2 No. Volume / Capacity: [1] 0.656 [1],[2] 0.929 [1],[2] 0.945 [1],[2] Level of Service: B C E E E E	E-W: 742	E-W:	853		ш́	:M-	1053			E-W:	1062			E-W:	1014
No. of Phases: 2 2 2 No. of Phases: 2 2 2 Volume / Capacity: [1] 0.656 [1],[2] 0.929 [1],[2] 0.945 [1],[2] Level of Service: B C E E E E	SUM: 1089	SUM:	1253		ເວ	UM:	1543			SUM:	1568			SUM:	1443
Volume / Capacity: [1] 0.656 [1],[2] 0.735 [1],[2] 0.929 [1],[2] 0.945 [1],[2] Level of Service: B C C E E E	No. of Phases: 2		2				2				2				ε
Volume / Capacity: [1] 0.556 [1],[2] 0.735 [1],[2] 0.929 [1],[2] 0.945 [1],[2] Level of Service: B C C E E E															
Level of Service: B C E E E	Volume / Capacity: [1] 0.656	[1],[2]	0.735		7	[1],[2]	0.929			[1],[2]	0.945			[1],[2]	0.913
	Level of Service: B	0	o			Ш					ш				ш

For dual turn lanes, 55% of volume is assigned to heavier lane. For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. Right turns on red from excl. lanes = 50% of overlapping left turn. [1] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.

George Burns Road Gracie Allen Drive Cedars-Sinai Medical Center / 1-992843-1 CMA7 Accutek

N-S St: E-W St: Project: File Name: Counts by:

CRITICAL MOVEMENT ANALYSIS

George Burns Road @ Gracie Allen Drive Peak Hour: AM Annual Growth: 1.0%

Project Alternative 2

Date: Date of Count: Projection Year:

08/05/2008 2008 2023

	2008 EXIST.	TRAFFIC	2023 V	V/ AMBIE	ENT GROW	VTH	2023 V	V/ OTHEF	ROJEC	CTS	2023 M	// PROPO	SED PRO	JECT	2023	W/ MITIG	ATION		
	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	
Movement V	olume Lanes	Volume	Volume V	/olume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	e
NB Left	22	- (ო	26	0		99	92	0	1	14	106	0	T	0	106	0	•	
Comb. L-T		1	ļ		0 (1	,		0		4		0				0	,	
	26	212	15	113	00	244	0	113	00	310	0	113	0 0	324	0	113	00	n	324
NB Right	92		14	106	00		0	106	00		0	106	00		0	106			
Comb. L-T-R -					-				-				-		ı		-		
SB Left	31 (-	£	36	0	1	0	36	0		0	36	0		0	36	0	,	
Comb. L-T	-				0	r			0				0	ı			0	1	
SB Thru	272	0 373	41	312	0	429	0	312	0	500	0	312	0	516	0	312	0	5	516
Comb. T-R	-				0				0	,			0	ı			0		
SB Right	70		10	80	0	ı	71	151	0		16	167	0	ı	0	167	0	ı	
Comb. L-T-R -		-											-						
EB Left	34	34	5	39	-	39	24	63	·	63	7	20	ŀ	20	C	<u>0</u> 2	F		02
Comb. L-T					0	1			0		•		0	, ,	•		. 0	,	2
EB Thru	78	1 66	12	89	-	76	68	157	÷	121	4	161		126	0	161		-	126
Comb. T-R		1 66				76			-	121				126				-	126
EB Right	55		ø	63	0	,	22	85	0	,	9	91	0	ı	0	91	0	,	
Comb. L-T-R -	-	0			0				0				0				0		
WB Left	. 58	1 85	13	98	-	98	0	98	÷	98	0	98	-	98	0	98	-		98
Comb. L-T	2	,			0	,			0	•			0	•			0		
WB Thru	68	1 64	10	78		74	64	142		106	10	152	-	111	0	152	-	-	111
Comb. T-R	-	1 64			~	74			-	106			-	111				-	111
WB Right	61	'	6	70	0	,	0	20	0	t	0	70	0	,	0	70	0	ı	
Comb. L-T-R -	-	0			0				0				0				0		
Crit. Volumes:	N-S:	395			N-S:	454			N-S:	591			N-S:	621			N-S:	9	321
	E-W:	151			Е-W:	174			E-W:	219			E-W:	224			E-W:	2	224
	SUM:	546			SUM:	628			SUM:	810			SUM:	845			SUM:	¢	345
No. of Phases:																		=	Τ
						,)				5				5	
Volume / Capaci	ty:	0.455				0.523				0.675				0.704				0.7	202
Level of Service:		۷				A				В				с				υ	
Assumptions:	Maximu	m Sum of Criti	ral Volumes	l'utorno	tion Coool	2040 C .1.12			40 TF 207	107	•]

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200. For dual turn lanes, 55% of volume is assigned to heavier lane. For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. Right turns on red from excl. lanes = 50% of overlapping left turn. Note: Year 2007 manual traffic counts were adjusted by a 1.0 percent (1.0%) ambient growth factor to reflect year 2008 existing conditions.

George Burns Road Gracie Allen Drive Cedars-Sinai Medical Center / 1-992843-1 : CMA7 Accutek

N-S St: E-W St: Project: File Name: Counts by:

CRITICAL MOVEMENT ANALYSIS

George Burns Road @ Gracie Allen Drive Peak Hour: PM Annual Growth: 1.00%

Project Alternative 2

08/05/2008 2008 2023 Date: Date of Count: Projection Year:

				C7N7		DUD NU		2023			20	2023	1021 12	OSED PKU	JECT	5773		ALIUN	
		No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
lB Left	22	0	ı	n	26	0	ı	33	59	0	ı	ø	67	o	ı	0	67	0	,
comb. L-T		0				0	1			0	,			0	ı			0	ł
IB Thru	249	0	415	37	287	0	477	0	287	0	510	0	287	0	518	0	287	0	518
comb. T-R		0	ı			0	ı			0	ı			0	•			0	•
JB Right Somb. L-T-R -	143	0 -		22	165	0	1	0	165	0	ı	0	165	0 -	I	0	165	0 -	ı
40 I a	07	c		ų	16	c		c	46	c		c	91	c		c	40		
iomb. L-T	D t	00		0	1	00		D	5	0 0	1 1	0	0		1 1	5	P		
B Thru	134	0	227	20	154	0	261	0	154	0	297	0	154	00	306	0	154	00	306
comb. T-R		0	,			0	1			0	ı			0	ı			0	
iB Right	53	0	1	80	60	0	ı	36	96	0	ı	6	105	0	ı	0	105	0	•
comb. L-T-R .		-				-				-				-				-	
B Left	111	-	111	17	128	-	128	91	219	٢	219	16	235	-	235	0	235	1	235
comb. L-T		0	,			0	1			0	•			0	ı			0	1
B Thru	162		86	24	186		113	82	268	• •	196	10	278	- ·	208	0	278	·	208
B Richt	34	- c	02	LC.	39	- c	<u>-</u> ,	84	123	- c	061 -	и Т	138	- 0	807 -	C	138	- c	302
omb. L-T-R -		0		•	;	0			l	0		2		0		0	2	00	
VB Left	69	-	69	10	79	-	62	0	59	t-	50	0	62	F	62	0	50	+	29
:omb. L-T		0	,			0	ı			0	1			0	•			0	•
VB Thru	78	-	74	12	89	-	85	85	174		127	9	180	-	130	0	180		130
comb. T-R		~	74				85			-	127				130			-	130
VB Right amh. L-T-R -	0/	0 0	,	10	80	o c	ı	0	80	0 0	ı	0	80	00		0	80	00	,
)				2				D	
crit. Volumes:		S-N N-N	456 185				524 213			N-S: E-M:	557 346			N-S: F_W·	565 365			N-S: P-W-	565 365
		SUM:	640			SUM:	736			SUM:	903			SUM:	930			SUM:	930
lo. of Phases			, ,				D								Л				
'olume / Capa	acity:		0.534				0.614				0.752				0.775				0.775
evel of Servic	je:		A				в				с				U				υ

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200. For dual turn lanes, 55% of volume is assigned to heavier lane. For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. Right turns on red from excl. lanes = 50% of overlapping left turn. Note: Year 2007 manual traffic counts were adjusted by a 1.0 percent (1.0%) ambient growth factor to reflect year 2008 existing conditions.

George Burns Road-Hamel Road Third Street Cedars-Sinal Medical Center / 1-992843-1

N-S St: E-W St: Project: File Name: Counts by:

CMA8 Accutek

CRITICAL MOVEMENT ANALYSIS

George Burns Road-Hamel Road @ Third Street AM 1.0% Annual Growth: Peak Hour:

Project Alternative 2

2008 2023 Date of Count: Projection Year:

08/05/2008

Date:

		2008	EXIST. TR	AFFIC	2023	W/ AMBIE	ENT GROV	VTH	2023 V	V/ OTHEF	ROJEC	STS	2023 \	V/ PROPO	SED PRO.	JECT	2023	W/ MITIG	ATION		
			No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lan	a
	Movement	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volur	це
	NB Left	ო	~	ю	0	ო	-	ю	0	ო		ę	0	ę	~	n	0	ო	-		ი
	Comb. L-T		0	ı			0				0	,			0				0	,	
	NB Thru	148	0		22	171	0	1	0	171	0	,	0	171	0	,	0	171	0	,	
	Comb. T-R			166			*	190			-	192			-	192			-		192
	NB Right	17	0 0	·	ŝ	20	0 0	•	2	53	0		0	52	0	,	0	22	0		
	Comb. C-1-K		5				D				0				0				0		
	SB Left	93	-	93	14	107	-	107	22	129		129	9	135	-	135	0	135	-		135
	Comb, L-T		0	,			0	,			0	,			0	,			0	,	
	SB Thru	39	0		9	45	0	r	0	45	0	ı	0	45	0	,	0	45	0		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Comb. T-R	Ċ	(119			(137	•	:		137		1	-	137			-		137
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	SB Kight Comb I -T-R -	08		1	12	92	0 0	ı	0	92	0 0	,	0	92	0 0	ı	0	92	00	,	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			5				5				>				D				D		
	EB Left	205	- 0	205	31	236	- c	236	0	236	- c	236	0	236	- 0	236	0	236	(236
	EB Thru	425	כ	220	64	489	C	- 253	267	756	C	386	C	756	C	- 386	C	756	⊃ ←	1	386
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Comb. T-R		-	220			-	253	i			386)		• •	386	0	200			386
	EB Right	14	0	ı	2	16	0		0	16	0		0	16	0	,	0	16	0	,	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Comb, L-T-R .		0				0				0				0				0		
	WB Left	20	-	20	3	23	-	23	11	34	-	34	0	34	-	34	0	34	-		34
	Comb. L-T		0	•			0				0	ı			0	,			0	ı	,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	WB Thru	927	-	593	139	1066		682	278	1344	-	854	0	1344	-	861	0	1344			861
We rught Zou Jack Jack <thjack< th=""> Jack Jack <</thjack<>	Comb. T-R	000	~ c	593	00	000	- (682	č		(854		ļ	-	861					861
Crit. Volumes: N-S: 259 N-S: 297 N-S: 321 N-S: 327 N-S: 528 N-S: 527 N-S: 500 E-W: 1097 E-W: 1097 E-W: E-W: 1097 E-W: 1097 E-W: E-W: E-W: 1097 E-W:	Comb I -T-R -	na7		,	55	AAZ			99	365	o c	,	14	379	0 0	,	0	379	0 0	,	
Crift. Volumes: N-S: 259 N-S: 297 N-S: 327 N-S: 327 N-S: S2 N-S: S1 S1 S1 S1 <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td>5</td> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td>5</td> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td></td>			0				5				2				5				2		
E-W: 798 E-W: 918 E-W: 1097 E-W: No. of Phases: JUK: 1057 SUM: 1412 SUM: 1425 E-W: No. of Phases: 2 Z Z Z Z SUM: 1412 SUM: 1425 E-W: No. of Phases: 2 Z Z Z Z Z Level of Sum: 1425 SUM: 1412 SUM: 1425 SUM: I/I/Z5 SUM:	Crit. Volumes:		N-S:	259			N-S:	297			N-S:	321			N-S:	327			N-S:		327
SUM: 1057 SUM: 1412 SUM: 1425 SUM: No. of Phases: 2 2 2 2 SUM: 1412 SUM: 1425 SUM: SUM: 1415 SUM: 1415 SUM: 1415 SUM: 1415 SUM: 1415 SUM: 1415 SUM:			: А: Ш	798			: М-Ш	918			E-W:	1090			E-W:	1097			Е-W:	-	260
No. of Phases: 2 2 2 No. of Phases: 2 2 2 2 Volume / Capacity: [1] 0.635 [1],[2] 0.841 [1],[2] 0.850 [1],[2] Level of Service: B C C D D D D			SUM:	1057			SUM:	1216			SUM:	1412			SUM:	1425			SUM:	-	425
Volume / Capacity: [1] 0.635 [1],[2] 0.841 [1],[2] 0.850 [1],[2] Level of Service: B C D D D D	No. of Phases			2				2				5				N					7
Level of Service: B C C D D D D D D D D D D D D D D D D D	Volume / Capa	acity:	III	0.635			[1].[2]	0.710			141121	0.841			[41 [6]	0 0 2 0			161111	C	850
	Level of Servic	je.	2	8			1 16.1				F116-1				[2]4[1]	nco.n			[-]'[']		000
												2								2	

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1426, 4+ Phase=1376, Unsignalized=1200.

[1] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements.
[2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.
[2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.
[2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.
[2] Note: Year 2007 manual traffic counts were adjusted by a 1.0 percent (1.0%) ambient growth factor to reflect year 2008 existing conditions. 55% of volume is assigned to heavier lane. turn lane, 70% of volume is assigned to exclusive lane. 1. lanes = 50% of overlapping left turn. For dual turn lanes, 55% of vc For one excl. and one opt. turn lane, Right turns on red from excl. lanes =

George Burns Road-Hamel Road Third Street Cedars-Sinai Medical Center / 1-992843-1 CCMAB Accutek

N-S St: E-W St: Project: File Name: Counts by:

CRITICAL MOVEMENT ANALYSIS

George Burns Road-Hamel Road @ Third Street Peak Hour: PM Annual Growth: 1.00%

Project Alternative 2

08/05/2008 2008 2023 Date of Count: Projection Year:

Date:

20(08 EXIST. TR	AFFIC	2023 V	V/ AMBIE	ENT GROW	ПН	2023 \	W OTHEF	ROJEC	CTS	2023 V	V/ PROPC	SED PRO	JECT	2023 V	V/ MITIG	ATION	
	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement Volun	ne Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
NB Left	2	7	0	2	-	N	o	7	-	7	0	2	~	2	0	2	۲	2
Comb. L-T	0	ı			0				0	1			0	,			0	•
NB Thru	36 0	1	Ω	42	0	1	0	42	0		0	42	0	ı	0	42	0	ı
Comb. T-R	-	52				59			-	69				69			~	69
NB Right	15 0	1	5	17	0		10	27	0	1	0	27	0		0	27	0	
Comb. L-T-R -	0				0				0				o				0	
SB Left 28	37 1	287	43	330	F	330	84	414	, .	414	15	429	-	429	0	429	L-	429
Comb, L-T	0	ı			0	,			0	,			0	I			0	ŀ
SB Thru 16	34 0	•	25	188	0	ı	0	188	0		0	188	0	ı	0	188	0	,
Comb. T-R	•	354			-	407			÷	407			•	407				407
SB Right 15	0 06	,	28	218	0	ł	0	218	0	•	0	218	0		0	218	0	1
Comb. L-T-R -	0				0				0				0				0	
EB Left	<u>1</u>	55	8	63	F	63	С	63	-	63	c	63	+	63	c	63	F	63
Comb. L-T	0	1			0		I		. 0	:	•	}	. 0	;)	8	• 0	
EB Thru 6:	35 1	325	95	731	-	374	389	1120		569	0	1120	-	569	0	1120	-	569
Comb. T-R		325			-	374			÷	569			-	569				569
EB Right	15 0	•	2	17	0		0	17	0	ı	0	17	0	1	0	17	0	,
Comb. L-T-R -	0				0				0				0				0	
WB Left 2	21 1	21	e	24	ŀ	24	ю	27	-	27	0	27	+	27	0	27	F	27
Comb. L-T	0	,			0	1			0	,			0	i			0	,
WB Thru 58	34 1	348	88	671	-	401	357	1028	-	596	0	1028	-	600	0	1028		600
Comb. T-R	-	348			-	401				596			~	600			،	600
WB Right 1:	13 0		17	130	0	ı	33	163	0	1	80	171	0	ı	0	171	0	,
Comb. L-T-R -	0				0				0				0				0	
Crit. Volumes:	N-S:	356			N-S:	409			N-S:	483			N-S:	498			N-S:	498
	E-W:	403			E-W:	463			E-V:	658			E-W:	662			E-W:	662
	SUM:	759			SUM:	872			SUM:	1142			SUM:	1161			SUM:	1161
No. of Phases:		0				7				2				2				2
Volume / Capacity:	[1]	0.436			[1],[2]	0.482			[1],[2]	0.661			[1],[2]	0.674			[1],[2]	0.674
Level of Service:		A				A				8				В				8
Accumutione:	Advantation of the	Sum of Critic	Some lot	//	Ċ			i										

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200. of volume is assigned to heavier lane. 55% For dual turn lanes,

For one excland one opt, turn lane, 70% of volume is assigned to exclusive lane. Right turns on red from excl. lanes = 50% of overlapping left turn. [1] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.

CRITICAL MOVEMENT ANALYSIS

Willaman Drive @ Third Street Peak Hour: AM Annual Growth: 1.0% Peak Hour:

Project Alternative 2

Cedars-Sinai Medical Center / 1-992843-1

N-S St: E-W St: Project: File Name: Counts by:

CMA9 Accutek

Willaman Drive Third Street

08/05/2008 2008 2023 Date: Date of Count: Projection Year:

	2008 E	XIST. TR	AFFIC	2023 \	V/ AMBIE	ENT GROW	VTH	2023 V	// OTHER	ROJEC	TS	2023 V	// PROPO	SED PRO	JECT	2023	W/ MITIG	ATION		
		No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	
Movement \	/olume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	/olume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volum	e
NB Left	63	-	63	o	72		72	0	72	-	72	0	72	-	72	0	72	-		72
Comb. L-T		0	ı			0	ı			0	1			0	ı			0	ı	
NB Thru	0	0	ı	0	0	0		0	0	0		0	0	0		0	0	0		
Comb. T-R		0	,			0	ı			0	1			0	,			0	,	
NB Right	206	c	206	31	237	. - 0	237	27	264	c	264	0	264	c	264	0	264	c		264
Comb. L-1-K -		D				D				5				>				0		
SB Left	0	0	1	0	0	0		0	0	0		0	0	0		0	0	0		Τ
Comb. L-T		0	1			0	,			0	,			0	1			0	ı	
SB Thru	0	0	ı	0	0	0	1	0	0	0	1	0	0	0	ı	0	0	0	•	
Comb. T-R		0	ı			0				0				0	ı			0	ı	
SB Right	0	0	ı	0	0	0	'	0	0	0		0	0	0	,	0	0	0	•	
Comb. L-T-R -		0				0				0				0				0		
EB Left	0	0		0	0	0	,	0	0	0		0	0	0		0	0	0	1	Ι
Comb. L-T		0	,			0	,			0	•			0				0	ı	
EB Thru	484		264	73	556	-	303	270	826	-	439	g	832	-	442	0	832	-	,	442
Comb. T-R	1	~	264	I	1	-	303		ł	-	439	1	1	-	442				,	442
EB Kight	43	0 0	ı	~	20	0 0	ı	2	25	0		0	25	0 0	1	0	52	0 0	ı	
Comb. L-1-K -		D				>				5				5				D		
WB Left	95	-	95	14	109	-	109	9	115	-	115	0	115	-	115	0	115	-		115
Comb. L-T		0	•			0				0	1			0	ı			0	,	
WB Thru	1142	2	571	171	1314	0	657	315	1629	00	814	14	1643	0 0	821	0	1643	0 0	~	821
Comb. I-K	c			c	c	-	ı	c	c	-		c	c	-	1	c	c		,	
Comb I-T-R -	D		,	5	C	- c	•	5	5		•	þ	>		ı	D	5		t	
		•				9				•				3)		
Crit. Volumes:		N-S:	159			N-S:	182			N-S:	206			N-S-N	206			N-S:		206
		E-W:	571			E-W:	657			E-W:	814			E-W:	821			E-W:	~	821
		SUM:	730			SUM:	839			SUM:	1021			SUM:	1028			SUM:	1	028
No of Dharae.			c				ſ				c				ſ					6
IND. OI FILASES.			V				N				N				N					N
Volume / Capac	aity:	[1]	0.416			[1],[2]	0.459			[1],[2]	0.580			[11.[2]	0.585			[1],[2]	0.1	585
Level of Service	2		A				A				A				٩				A	
]

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200.

Assumptions:

For dual turn lanes, 55% of volume is assigned to heavier lane. For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. Registi turns on red from excl. lanes = 50% of overlapping left turn. [1] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improverments. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improverments. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improverments. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improverments. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improverments.

CRITICAL MOVEMENT ANALYSIS

Willaman Drive @ Third Street Peak Hour: PM Annual Growth: 1.00%

Project Alternative 2

Willarnan Drive Third Street Cedars-Sinai Medical Center / 1-992843-1 CMA9 Accutek

N-S St: E-W St: Project: File Name: Counts by:

08/05/2008 2008 2023 Projection Year:

Date of Count: Date:

	2008	EXIST. TR	AFFIC	2023 V	<i>NI AMBIE</i>	ENT GROV	VTH	2023	W OTHEI	R PROJE	CTS	2023 \	N/ PROPC	SED PRO	JECT	2023	W/ MITIG	ATION	
		No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
NB Left	35		35	ŋ	41	Ţ	41	2	43	.	43	0	43	-	43	0	43	۴	4
Comb. L-T		0	,			0				0				0	1			0	,
NB Thru	0	0	ı	0	0	0	,	0	0	0		0	0	0	ı	0	0	0	,
Comb. T-R		0	ł			0	,			0	,			0	,			0	
NB Right	323	-	323	48	372	-	372	12	384	-	384	0	384	-	384	0	384		36
Comb. L-T-R		0				0				0				0				0	
SB Left	0	0	,	0	0	0	,	0	0	0		0	0	0	,	C	С	С	,
Comb. L-T		0	ı			0	ı			0	,	1	I	0	,	0	0	0	1
SB Thru	0	0	ı	0	0	0		0	0	0	•	0	0	0	ı	0	0	0	,
Comb. T-R		0	1			0	ı			0	•			0	,			0	,
SB Right	0	0	ı	0	0	0	ı	0	0	0	,	0	0	0		0	0	0	
Comb. L-T-R	1	0				0				0				0				0	
EB Left	0	0		0	0	0	.	0	0	0		0	0	C		c	c	C	
Comb. L-T		0	•			0	ı			0				0	,	•	0	00	,
EB Thru	841	-	472	126	968		542	441	1409	-	763	15	1424	-	771	0	1424		17
Comb. T-R		-	472			-	542			-	763				771			*	11
EB Right	102	0		15	117	0	1	-	118	0	,	0	118	0	ı	0	118	0	,
Comb. L-T-R	1	0				0				0				0				0	
WB Left	72	-	72	11	82	-	82	1	83	F	83	0	83	-	83	0	83	-	æ
Comb. L-T		0	ı			0	•			0	,			0	,			0	•
	667	0	333	100	767	0	383	366	1133	2	566	80	1141	7	570	0	1141	2	57
Comb. 1-K	c	-	•	c	c	0 0	,	c	c	0 0	ı	c	c	0 0	•	C		0	•
Comb. L-T-R		00	ı	0	5	00	ł	2	C	00	ı	5	0	00		5	D	00	1
Crit. Volumes:		N-S:	287			N-S:	330			N-S-N	342			is-N	347			·u-n	VE
		E-W:	543			E-W:	625			Е-V:	847			ы. -М:	854			р Х Ч	5 8
		SUM:	831			SUM:	955			SUM:	1189			SUM:	1196			SUM:	119
No. of Phases			2				2				2				2				
Volume / Capi	acity:	[1]	0.484			[1],[2]	0.537			[1].[2]	0.693			ICI IFI	0.698			12114	0.69
Level of Servi	ce:		A				A				В			F=1(f, 1	E C				ш
															1				

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1426, 4+ Phase=1376, Unsignalized=1200. of volume is assigned to heavier lane.

For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. Right turns on red from excl. lanes = 50% of overlapping left turn. [1] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. For dual turn lanes, 55% For one excl. and one opt. turn lane,

CRITICAL MOVEMENT ANALYSIS

Willarman Drive @ Wilshire Boulevard Peak Hour: AM Annual Growth: 1.0%

Project Alternative 2

Willaman Drive Wilshire Boulevard Cedars-Sinai Medical Center / 1-992843-1 CMA10 Accutek

N-S St: E-W St: Project: File Name: Counts by:

Date: Date of Count: Projection Year:

08/05/2008 2008 2023

No. of Lane Added Total No. of L Movement Volume Lanes Volume Volume Lanes Vol NB Thru 164 0 - 17 132 0 NB Thru 164 0 - 340 25 188 0 NB Right 62 0 - 9 71 1 1 SB Left 37 0 - 9 71 1 1 SB Left 37 0 - 9 71 1 1 Comb. L-T R. 1 1 - 9 71 1 1 SB Left 37 0 - 9 71 1 1 SB Left 37 0 - 17 134 0 0 SB Thru 116 0 - 10 74 0 0 SB Right 85 0 -	al No. of Lane Add The Lanes Volume Volu 32 0 - 88 0 - 71 0 - 34 0 - 74 0 - 74 0 - 74 1 34 36 1 - 37 1 34 36 1 - 36 0 -	ed Total No. of me Volume Lanes 5 137 0 6 194 0 2 73 0 7 50 0 8 142 0 0 74 0 0 74 1 0 34 1 331 1718 2	Lane Addec Volume Volume Volume - 404 (- 266 (- 268 (- 34 (585 (585 (- 6	I Total No. of Polume Lanes 137 0 194 0 50 73 1142 0 1142 0 1142 0 1142 0 1142 0 1142 0 1142 0 1142 0 1142 1 1142 1 1142 1 1143 1	Lane Volume 266 	Added Total Volume Volume 0 137 0 134 0 73 0 73 0 73 0 73 0 73 0 73 0 73 0 73 0 73 0 73 0 74 0 74 0 74 0 74 0 74	No. of Lanes Vo 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ane 404 266 34
Movement Volume Lanes Volume <t< th=""><th>me Lanes Volume Volu 32 0 - - 88 0 - - - 71 0 - - - 71 0 - - - 34 0 - - - 74 0 - - - 34 1 34 - - 35 1 34 - - 36 0 - 47.4 - 36 0 - 47.4 - -</th><th>me Volume Lanes 5 137 0 6 194 0 2 73 0 7 50 0 8 142 0 0 74 0 0 74 1 0 34 1</th><th>Volume Volume - <td< th=""><th>e Volume Lanes 0 137 0 0 137 0 0 194 0 0 73 1 0 50 0 0 142 0 0 142 0 0 74 0 0 74 1 1 1719 2</th><th>Volume Volume Vo</th><th>Volume Volume 0 137 0 134 0 73 0 73 0 73 0 73 0 73 0 73 0 73 0 73 0 73 0 73 0 74 0 74 0 74 0 74 0 74 0 74</th><th>Lanes Vo</th><th>404 266 34</th></td<></th></t<>	me Lanes Volume Volu 32 0 - - 88 0 - - - 71 0 - - - 71 0 - - - 34 0 - - - 74 0 - - - 34 1 34 - - 35 1 34 - - 36 0 - 47.4 - 36 0 - 47.4 - -	me Volume Lanes 5 137 0 6 194 0 2 73 0 7 50 0 8 142 0 0 74 0 0 74 1 0 34 1	Volume Volume - <td< th=""><th>e Volume Lanes 0 137 0 0 137 0 0 194 0 0 73 1 0 50 0 0 142 0 0 142 0 0 74 0 0 74 1 1 1719 2</th><th>Volume Volume Vo</th><th>Volume Volume 0 137 0 134 0 73 0 73 0 73 0 73 0 73 0 73 0 73 0 73 0 73 0 73 0 74 0 74 0 74 0 74 0 74 0 74</th><th>Lanes Vo</th><th>404 266 34</th></td<>	e Volume Lanes 0 137 0 0 137 0 0 194 0 0 73 1 0 50 0 0 142 0 0 142 0 0 74 0 0 74 1 1 1719 2	Volume Vo	Volume Volume 0 137 0 134 0 73 0 73 0 73 0 73 0 73 0 73 0 73 0 73 0 73 0 73 0 74 0 74 0 74 0 74 0 74 0 74	Lanes Vo	404 266 34
NB Left 115 0 - 17 132 0 Comb. L-T 164 0 340 25 188 0 Comb. L-T R 2 0 - 340 25 188 0 Comb. L-T-R 2 0 - 9 71 0 NB Right 62 0 - 9 71 0 SB Left 37 0 - 17 134 0 Comb. L-T 116 0 - 218 17 134 0 Comb. L-T 116 0 - 218 17 134 0 Comb. L-T 1206 2 41 34 1 Comb. L-T 29 1 17 134 0 Comb. L-T 1206 2 412 181 1387 2 Comb. L-T 29 1 1387 2 Comb. L-T 29 1 206 2 SB Right 31 0 - 10 74 0 Comb. L-T 8 1 1 206 2 41 2 Comb. L-T 8 1 1206 2 412 181 1387 2 Comb. L-T 8 0 - 10 74 0 Comb. L-T 8 0 - 10 74 0 Comb. L-T 8 1 1 412 181 1387 2 Comb. L-T 8 0 - 10 74 0 Comb. L-T 8 1 1 412 181 1387 2 Comb. L-T 8 0 - 10 74 0 Comb. L-T 8 1 1 663 295 2265 2 Comb. L-T 8 0 - 0 Comb. L-T 8 0 0 - 0 Comb. L-T 8 0 0 - 0 Comb. Comb. Comb. Comb. Comb. Co	32 0 - 88 0 - 71 0 - 43 0 - 34 0 - 34 0 - 51 34 - 87 2 - 474 . 36 0 - 474 . 36 0 - 474 .	5 137 0 6 194 0 2 73 0 7 50 0 8 142 0 8 142 0 0 74 1 1718 2 331 1718 2		137 0 194 0 194 0 50 73 142 0 142 0 73 142 74 1 74 1 73 34 1 1719 2 2	404	0 137 0 194 0 73 0 73 142 0 142 0 74		404 266 34
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	88 0 - 391 71 0 - 391 43 0 - 391 34 0 - 251 74 0 - 251 34 1 - 34 87 2 - 1474 36 0 - 474 36 0 - 474	6 194 0 2 73 0 7 50 0 8 142 0 0 74 0 0 74 1 1718 2 331 1718 2	5 1 1 2 2 2 6 2 1 4 0 4 7 4 0 4 7 4 0 4 7 4 0 4 0 4 7 4 0 4 0	0 194 0 0 73 0 50 7 142 0 0 74 1 1 1719 2		0 194 0 73 0 73 0 142 0 142 0 74		404 266 34
NB Tinu 164 0 340 25 188 0 Comb. T-R 0 - 9 71 0 Comb. L-T-R - 1 9 71 1 Comb. L-T-R - 1 9 71 0 Comb. L-T-R - 1 7 134 0 SB Tairu 116 0 - 18 17 134 0 Comb. L-T-R - 1 7 134 0 Comb. L-T-R - 1 7 134 0 Comb. L-T-R - 1 1 7 134 0 Comb. L-T-R - 1 1 7 134 0 Comb. L-T-R - 1 1 7 134 0 Comb. L-T-R - 1 1 7 134 0 Comb. L-T-R - 1 1 7 134 0 Comb. L-T-R - 1 1 7 134 0 Comb. L-T-R - 1 1 7 134 0 Comb. L-T-R - 1 1 7 134 0 Comb. L-T-R - 1 1 7 134 0 Comb. L-T-R - 1 1 7 134 0 Comb. L-T-R - 1 1 7 134 0 Comb. L-T-R - 1 1 7 134 0 Comb. L-T-R - 1 1 7 136 1 Comb. L-T-R - 1 1 7 136 2 Comb. L-T-R - 0 - 0 Comb. L-T-R - 0 - 0 - 0 Comb. L-T-R - 0 - 0 - 0 Comb. L-T-R - 0 - 0 - 0 Comb. L-T-R - 0 - 0 - 0 - 0 Comb. L-T-R - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	88 0 391 71 0 - 43 0 - 34 0 - 74 0 - 34 1 - 87 2 - 87 2 - 36 0 - 36 0 -	6 194 0 2 73 0 7 50 0 8 142 0 0 74 0 0 34 1 1718 2	404 585 585 585 585 585 585 585 585 585 58	0 194 0 73 73 0 73 142 0 74 0 74 1 1 1719 2	404 	0 194 0 73 0 50 142 0 142 0 74		404 266 34
SB Left 5 0 - 9 71 0 Comb. L-T-R. 1 - 9 71 1 1 Comb. L-T-R. 1 - 6 43 0 - 1 1 SB Left 37 0 - 6 43 0 - 0 - 1	71 0 - 43 0 - 34 0 - 74 0 - 34 1 - 87 2 474 0 36 0 - 36 0 -	2 73 0 7 50 0 8 142 0 0 74 0 0 34 1 1718 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	73 50 0 73 50 0 74 0 74 1 719 2 2 2	, , , , , , , , , , , , , , , , , , ,	0 73 0 50 142 0 74 0 34		266 34
NB Right 62 0 - 9 71 0 Comb. L-T-R- 1 - 6 43 0 SB Left 37 0 - 6 43 0 SB Thru 116 0 - 218 17 134 0 SB Right 65 0 - 10 74 0 SB Right 29 1 29 4 34 1 Comb. L-T-R- 1 29 4 34 1 Comb. L-T-R 29 1 29 4 34 1 Comb. L-T-R 29 1 29 2 1 SB Thru 1206 2 412 181 1387 2 Comb. L-T-R 0 - 10 74 0 Comb. L-T-R 1 412 5 36 0 WB Left 48 1 412 5 36 0 WB Left 48 1 48 7 56 1 WB Left 1970 2 663 295 2265 2 WB Thru 1970 2 663 295 2265 2 WB Thru 1970 2 663 295 2265 2 WB Thru 1970 2 663 295 2265 2 WB Right 18 0 - 3 21 0 WB Right 18 0 - 3 21 0 WB Right 18 0 - 3 21 0	71 0 - 43 0 - 34 0 - 74 0 - 251 34 1 - 34 87 2 474 . 36 0 - 474 .	2 73 0 7 50 0 8 142 0 0 74 0 0 34 1 1718 2		73 73 1 50 0 0 142 0 0 74 1 1 73 34 1 1719 2 2		0 73 0 50 142 0 74 0 34		266 34
BB Left 37 0 - 6 43 0 Comb. L-T 0 - 116 0 - 134 0 SB Thru 116 0 - 128 17 134 0 SB Right 65 0 - 10 74 0 SB Right 65 0 - 10 74 0 SB Right 50 - 10 74 0 SB Right 29 1 29 4 34 1 EB Left 29 1 29 4 34 1 Comb. L-T.R. 0 - 1412 181 1387 2 SB Right 31 0 - 412 181 1387 2 Comb. L-T.R. 0 - 412 181 1387 2 Comb. L-T.R. 0 - 412 5 36 0 Comb. L-T.R. 0 - 412 5 36 0 Comb. L-T.R. 0 - 1412 1387 2 36 Comb. L-T.R. 0 - 0 - 0 0 VRI Left	43 0 - 34 0 - 74 0 - 34 1 34 35 1 34 36 0 -	7 50 0 8 142 0 0 74 0 0 34 1 0 34 1 331 1718 2	5855 34 C C C C C C C C C C C C C C C C C C	50 0 0 142 0 0 74 0 0 74 1 0 34 1 1 1719 2		0 50 0 142 0 74 0 34		266
Comb. L-T 0 - 0 - 0	34 0 - 251 74 0 - 251 34 1 - 34 87 2 - 474 (36 0 - 474 (8 142 0 0 74 0 0 34 1 0 34 1 1718 2	5 3 2 6 6 7 7 7 2 8 8 2 8 8 2 8 9 8 9 8 9 8 9 8 9 8 9 8	0 142 0 142 0 74 0 34 1 1 1719 2		0 142 0 142 0 74 0 34		266
SB Thru 116 0 218 17 134 0 Comb. T-R 0 - 10 74 0 Comb. L-T-R 1 29 - 10 74 0 Comb. L-T-R 1 29 4 34 1 1 EB Left 29 1 29 4 34 1 Comb. L-T-R 0 - 1387 2 1 EB Thru 1206 2 412 181 1387 2 Comb. T-R 31 0 - 412 5 36 0 Comb. L-T-R 0 - 412 5 36 0 0 MB Left 48 1 48 7 56 1 0 ANB Left 1970 - 0 - 0 0 0 ANB Left 18 0 - 0 - 0 0 0 0 <td>34 0 251 74 0 - 34 1 34 87 2 474 3 36 0 -</td> <td>8 142 0 0 74 0 0 34 1 0 34 1 1718 2</td> <td>266 285 585 585 585 585 585 585 585 585 585</td> <td>0 142 0 0 74 0 0 34 1 1 1719 2</td> <td>266 </td> <td>0 142 0 74 0 34</td> <td></td> <td>266</td>	34 0 251 74 0 - 34 1 34 87 2 474 3 36 0 -	8 142 0 0 74 0 0 34 1 0 34 1 1718 2	266 285 585 585 585 585 585 585 585 585 585	0 142 0 0 74 0 0 34 1 1 1719 2	266 	0 142 0 74 0 34		266
Comb. T-R 0 - 0 - 0 0 - 0 0 58 Right 65 0 - 10 74 0 0 58 Right 11 <	74 0 - 74 0 - 34 1 34 87 2 - 87 474 (36 0 -	0 74 0 0 34 1 0 34 1 331 1718 2	5 34 585 585 585 585 585 585 585 585 585 58	0 74 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	г, ', ' л. 34 л. 34	0 74 0 34		34
SB Right 65 0 - 10 74 0 Comb. L-T-R 1 29 1 29 4 34 1 EB Left 29 1 29 4 34 1 Comb. L-T 0 - 412 181 1387 2 Comb. T-R 1 412 5 36 0 EB Right 31 0 - 5 36 0 Domb. L-T.R 0 - 1 412 5 3 0 Domb. L-T.R 1 412 5 3 0	74 0 - 34 1 - 87 2 474 36 0 - 36 0 -	0 74 0 0 34 1 331 1718 2		0 74 0 34 1 1 1719 2	, 34 г. 34 г. 58	0 74 0 34	0 0	34
Comb. L-T-R- 1 1 1 EB Left 29 1 29 4 34 1 Comb. L-T 0 - 2412 181 1387 2 Comb. L-T 0 - 412 181 1387 2 Comb. L-T-R 0 - 412 181 1387 2 Comb. L-T-R 0 - 1 412 5 36 0 Comb. L-T-R- 0 - 1 48 7 56 1 NB Left 48 1 48 7 56 1 NB Left 1970 2 663 295 2265 2 Omb. L-T-R- 0 - 3 21 0	1 34 1 34 34 1 34 87 2 474 3 36 0 -	1 0 34 1 331 1718 2	, 34 585 585 585	0 34 1 1 1719 2	34 - 585	0 34	0	34
EBLeft 29 1 29 4 34 1 Comb. L-T 0 - 2 412 181 1387 2 EB Thru 1206 2 412 181 1387 2 Comb. T-R 1 412 5 36 0 EB Right 31 0 - 5 36 0 Comb. L-T-R 0 - 5 36 0 MB Left 48 1 48 7 56 1 Comb. L-T 0 - 0 - 0 0 0 MB Left 1970 0 - 663 295 2265 2 ANB Right 18 0 - 3 21 0 ANB. L-T-R 0 - 3 21 0 0	34 1 34 87 2 474 36 0 - 36 0 -	0 34 1 0 331 1718 2	34 585 585 585	0 34 1 1 1719 2	- 34 585	0 34	- 0	34
Damb. L-T 0 - 0 - 0 0 0 0 0 1387 2 0 2 2 11387 2 0 2 2 0 2 1387 2 2 0 2 2 0 1 1387 2 2 0 2 2 1 1 412 1 413 2 3 0 2 36 0 2 36 0 2 36 0 2 36 0 2 36 0 2 36 0 2 36 0 2 36 0 2 36 0 36 1 4 4 1 48 1 48 1 48 1 48 1 48 1 48 1 48 1 66 3 20 3 3 1 48 1 48 1 48 1 48 1 <th< td=""><td>87 2 474 (1 474 (36 0 -</td><td>331 1718 2</td><td>- 585 585 885</td><td>1 1719 2</td><td>- 787 787</td><td></td><td>. 0</td><td>;</td></th<>	87 2 474 (1 474 (36 0 -	331 1718 2	- 585 585 885	1 1719 2	- 787 787		. 0	;
EB Thru 1206 2 412 181 1387 2 Domb. T-R 1 412 5 36 0 EB Right 31 0 - 5 36 0 Domb. L-T-R- 0 - 5 36 0 NB Left 48 1 48 7 56 1 Obb. L-T 0 - 0 Somb. L-T 1 663 295 2265 2 MB Thru 1970 2 663 295 2265 1 MB Right 18 0 - 3 21 0 Comb. L-T-R- 0 - 0	87 2 474 (1 474 (36 0 -	331 1718 2	585 585	1 1719 2	505			
Domb. T-R 1 412 1 12 1 13 14 15 15 16 17 11 <t< td=""><td>1 474 36 0 -</td><td></td><td>585</td><td></td><td>200</td><td>0 1719</td><td>7</td><td>585</td></t<>	1 474 36 0 -		585		200	0 1719	7	585
EB Right 31 0 - 5 36 0 5 36 0 5 36 0 5 36 0 5 36 0 5 36 0 5 36 0 5	36 0 -	•		~	585		-	585
Comb. L-T-R- 0 WB Left 48 1 48 7 56 1 Comb. L-T 0 - 0 MB Thru 1970 2 663 295 2265 2 Comb. T-R 1 663 295 2265 2 MB Right 18 0 - 3 21 0 Comb. L-T-R- 0 - 0		1 37 0		0 37 0	•	0 37	- 0	
WB Left 48 1 48 7 56 1 Comb. L-T 0 - 0 - 0 - 0 - 0 0 - 0 0 0 0 0 0 0 0	0	0		0			0	
Comb. L-T 0 - 0 - 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 1 6.63 29.5 22.65 2 2 2 2 2 0 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 0 1 0 2 0 1 0 2 0 1 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2	56 1 56	2 58 1	58 (58 1	58	0 58	-	58
WB Thru 1970 2 663 295 2265 2 Comb. T-R 1 663 295 2265 1 MB Right 18 0 - 3 21 0 Comb. L-T-R- 0 - 0	- 0	0	1	0	1			
Comb. T-R 1 663 1 1 MB.Right 18 0 - 3 21 0 Comb. L-T-R- 0 0	65 2 762 4	178 2743 2	923 1	1 2744 2	924	0 2744	2	924
AB Right 18 0 - 3 21 0 . Comb. L-T-R- 0 - 0	1 762	-	923	£	924			924
Comb. L-T-R - 0 0	21 0 -	6 27 0	•	0 27 0	,	0 27	' 0	
	0	0		0			0	
Crit. Volumes: N-S: 378 N-S:	N-S: 434	N-S:	454	N-S: N-S:	454		N-S:	454
E-W: 692 E-W:	E-W: 796	E-W:	957	E-W:	957		E-W:	957
SUM: 1070 SUM:	SUM: 1230	SUM:	1411	SUM:	1412		SUM:	1412
No. of Phases: 2	2		2		3			2
Volume / Capacity: 0.713	0.820		0.941		0.941			0.941
-evel of Service: C C	Δ		Ш		ш		ш	

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1426, 4+ Phase=1375, Unsignalized=1200. For dual turn lanes, 55% of volume is assigned to heavier lane. For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. Right turns on red from excl. lanes = 50% of overlapping left turn. Note: Year 2007 manual traffic counts were adjusted by a 1.0 percent (1.0%) ambient growth factor to reflect year 2008 existing conditions.

HEERS , CA 91106	CRITICAL MOVEMENT ANALYSIS Willaman Drive @ Wilshire Boulevard
ve	Peak Hour: D
evard	Annual Growth: 1.00%
Medical Center / 1-992843-1	
	Project Alternative 2

08/05/2008 2008 2023

Date: Date of Count: Projection Year:

	2008	EXIST. TF	AFFIC	2023	VI AMB	IENT GROV	ΗĘ	2023	N/ OTHE	R PROJE(CTS	2023	N/ PROPC	SED ALT	2	2023	W/ MITIG	ATION	
		No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement \	/olume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
VB Left	42	o	ı	9	49	0	1		50	0	1	0	50	0	,	0	50	0	Ţ
Comb. L-T		0				0				0				0	1	•	•	0	•
VB Thru	176	0	265	26	202	0	304	n	205	0	311	0	205	0	311	0	205	0	311
Comb. T-R		0	1			0	,			0	•			0	,			0	,
VB Right	46	0	,	7	53	0	ı	en en	56	0	ı	0	56	0	,	0	56	0	ı
Comb. L-T-R -						-				-				.					
SB Left	13	0		2	15	0	-	6	24	0	1	0	24	0		0	24	0	,
Comb. L-T		0				0	,			0				0	,			0	
SB Thru	296	0	336	44	340	0	387	2	342	0	398	0	342	0	398	0	342	0	398
Comb. T-R		0	ı			0	1			0	•			0	,			0	ı
SB Right	27	0		4	31	0	,	0	31	0	,	0	31	0		0	31	0	,
Comb. L-T-R -		-				-				-				•				-	
EB Left	45	- 0	45	7	52	- (52	0	52		52	0	52	-	52	0	52	-	52
COMD. L-1	1655) C	- 574	910	1001	5,	-	103	3676	э (1	•	0070	0 0	, ,	c		0 0	,
Comb. T-R		ч г.	571	047	1001	ч ~	100 657	100	C047	ч г	035 835	-	2430	N 7-	836 836	D	2430	N 7	836
EB Right	58	0	1	6	99	0	,	Ω	71	0		0	71	• •		0	71	- 0	-
Comb. L-T-R -		0				0				0				0				0	
VB Left	53	-	53	8	60	-	60	4	64	-	64	0	64	-	64	0	64	F	64
Comb. L-T		0	ı			0	·			0	•			0	,	1		• 0	
NB Thru	1381	7	467	207	1588	2	537	385	1973	0	699	-	1974	2	699	0	1974	5	699
Comb. T-R	ç	~- c	467	c	Ċ	- 0	537	9	č	÷ •	699	•	i		699				699
v e kigni Comb. L-T-R -	<u>ת</u>	00	,	'n	77	- c	•	2	34	- C	,	D	34	00		0	34	00	1
)				5				5	
Crit. Volumes:		N-S: L	379			N-S: N-S:	436			S'N	448			N-S:	448			N-S:	448
		с. W.	624 1000				/1/			А Ц	006			: А Ш	006			: А Ш	006
		NINC	2001			SUNC	2011			SUN:	1347			SUM:	1348			SUM:	1348
Vo. of Phases:			2				7				2				2				2
/olume / Capac	ity:		0.668				0.768				0.898				0.898				0 898
evel of Service	·		ш				U				۵				0				с С
							-								1				1

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200. For dual turn lanes, 55% of volume is assigned to heavier lane. For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. Right turns on red from excl. lanes = 50% of overlapping left turn. Note: Year 2007 manual traffic counts were adjusted by a 1.0 percent (1.0%) ambient growth factor to reflect year 2008 existing conditions.

CRITICAL MOVEMENT ANALYSIS

Sherbourne Drive @ Third Street Peak Hour: AM Annual Growth: 1.0%

Project Alternative 2

Sherbourne Drive Third Street Cedars-Sinai Medical Center / 1-992843-1 CMA11 Accutek

Project: File Name: Counts by: N-S St: E-W St:

Date: Date of Count: Projection Year:

08/05/2008	2008	2023	

Movement Volu 4B Left Domb. L-T 4B Thru Comb. T-R	No. of)) ! ! !	うとこうこう			Í		
Movement Volu IB Left Comb. L-T dB Thru Comb. T-R		Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
lB Left Somb. L-T VB Thru Somb. T-R	me Lanes	Volume	Volume /	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
.omb. L-1 1B Thru Comb. T-R	7 0 2	·	-	80	0	ı	0	ø	0	1	0	ß	0	1	0	æ	0	ł
comb. T-R	55 57	- 75	a	63	0 0	-	c	5	0 0		c	00	0 0	, ,		1	0	,
	200	2.	o	20		00	0	50	- c	00 70 1	5	63		86	0	63	00	80
JB Right	13 0	ı	7	15	00	,	0	15	00		0	15	00	1 1	C	15		
Comb. L-T-R -					-				-				·		1	2		
iB Left	13 0	1	2	15	0		0	15	0		С	15	c	,	C	15	c	
Comb. L-T	-	22			-	26			. –	26	•	2	- -	26	0	2	C	
SB Thru	6	·	~~	10	0		0	10	0	ı	0	10	0	•	0	10	. 0	1
Jomb. I-K	0 F	-	ч	70	0,	1 1	2	2	0 1	,	c	2	0,	;	1		0	,
iomb. L-T-R -	- 0	20	n	ĥ	- c	31	74	10	- c	01	0	61	c	61	0	61	~ c	Ð
	,				0				0				5				Ð	
EB Left 1 tomb. L-T	20 1 0	120	18	138	- 0	138	95	233	- 0	233	0	233	c	233	0	233	- c	23
B Thru E	1 1	281	82	625	،	323	224	849	-	435	Q	855	·	438	0	855	·	43
Somo. I-K B Right	18 0	- 187	e	21	c	323	c	54	~- C	435	c	5	C	438	c	5	c	43
comb. L-T-R -	0			İ	0		I	i	0)	1	00	,	5	7	00	ı
VB Left	69 1	69	10	62	+	52	0	62	-	62	0	62	-	40	0	79	-	Ĺ
Somb. L-T	0 0				0				0				0				0	т
vernu 12 omb. T-R		- 601	180	1382	N C	691	342	1724	NC	862	14	1738	00	869	0	1738	20	86
VB Right 1	74 1	174	26	200	,	200	179	379	C	379	0	379	C	379	C	379	C	- 75
comb. L-T-R -	0				0				0				0		1)	0	õ
hit. Volumes:	S-Z	88			N-S:	101			N-S:	101			N-S:	101			N-S:	10
	SUM:	809		-	E-W: SUM:	829 930			E-W: SUM:	1095 1196			E-W: SUM:	1102 1203			E-W: SUM:	110
lo. of Phases:		2				2				7				2				
olume / Capacity: evel of Service:	[1]	0.469 A			[1],[2]	0.520			[1],[2]	0.698			[1],[2]	0.702			[1],[2]	0.70
		c				I				_ ח				0				u U

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200.

For dual turn lanes, 55% of volume is assigned to heavier lane. For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. Right turns on red from excl. lanes = 50% of overlapping left turn. [1] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.

CRITICAL MOVEMENT ANALYSIS

Sherbourne Drive @ Third Street Peak Hour: PM Annual Growth: 1.00%

Project Alternative 2

Cedars-Sinai Medical Center / 1-992843-1

N-S St: E-W St: Project: File Name: Counts by:

CMA11 Accutek

Sherbourne Drive Third Street

Date of Count: Projection Year:

Date:

2008 2023 08/05/2008

	2008	EXIST. TR.	AFFIC	2023 \	N/ AMBII	ENT GROV	VTH	2023 \	W/ OTHE	R PROJE	CTS	2023 V	II PROPO	SED PRO	JECT	2023	W/ MITIG	ATION		
		Na. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	
Movement	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	
NB Left	12	0	·	2	4	0	,	0	14	0	ı	0	14	0	ı	0	14	0	ı	
Comb. L-T		0	ł			0				0	1			0	,			0	1	
NB Thru	16	0	61	2	19	0	70	0	19	0	70	0	19	0	70	0	19	0	7	ç
Comb. T-R		0	,			0	t			0	ı			0	,			0	ı	
NB Right	32	0 7		ŋ	37	0 1	t	0	37	0,	ı	0	37	0,	,	0	37	0,	ı	
		-				-				-				-				-		
SB Left	111	0	1	17	128	0	,	0	128	0		0	128	0		0	128	0	1	Т
Comb. L-T			221			-	254				254			-	254			-	55	4
SB Thru	110	0	ł	17	127	0	•	0	127	0		0	127	0	•	0	127	0	ı	
Comb. T-R	001	0 .	,			0 ·	, ,	1		0 ·			1	0	,			0	t	
ואם אופתו המשה - ד ם	132	- c	132	07	291	c	152	c/	22/	- c	227	0	227	. .	227	0	227	(22	2
		5				D				Э				0				D		
EB Left	69		69	10	52	F	52	47	126	-	126	0	126	-	126	0	126	-	1	6
Comb. L-T		0	r			0	r			0				0	,			0	·	
	1094	1	554	164	1258	. ,	638	453	1711	. .	864	15	1726	. .	872	0	1726	·	87	2
COMD. I-K	ц ц	- c	4cc	ç	17	- 0	038	c	5	c	864	c	5	. - c	8/2	c	17	~ c	8/	<u>[</u>]
Comb 1-T-R -	2	• c		4	-	0 0		5	2		,	5	2	o c	ı	>	2		ı	
		0				þ				þ				5				5		
WB Left	42	-	42	9	49	÷	49	0	49	-	49	0	49	-	49	0	49	÷-	4	6
Comb. L-T		0				0				0	1			0				0	ı	
WB Thru	616	2	308	92	602	2	354	320	1029	2	514	8	1037	2	518	0	1037	2	51	80
Comb. T-R	1	0	, ,		1	0	•	;	ļ	0	,	,		0	,			0	ŧ	
	/9	- (57	ß	65	1	65	89	154	• •	154	0	154		154	0	154	~	15	4
Comp. L-1-K -		þ				D				D				0				0		
Crit. Volumes:		N-S:	172			N-S:	197			N-S:	197			N-S:	197			N-S:	15	2
		E-W:	597			E-W:	686			:М: Ш	913			E-W:	920			E-W:	60	0
		SUM:	769			SUM:	884			SUM:	1110			SUM:	1118			SUM:	111	80
No. of Phases:			2				2				5				2					2
rand / ominio/	city.	141	0110			[4] [4]				101 [71	0700							101 101	6	
volume / capa	icity:	Fi I	0.44Z			[2]'[1]	0.489			[7].[2]	0.640			[1],[2]	0.645			[1].[2]	0.64	ņ
Level of Servic	;;		A				A				В				8				в	
Accumutione.	•				:															

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200.
 For dual turn lanes, 55% of volume is assigned to heavier lane.
 For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane.
 For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane.
 If the under the compact of the wilshine West ATSAC system improvements.
 The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshine West ATSAC system improvements.
 The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshine West ATCS system improvements.
 The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshine West ATCS system improvements.
 The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshine West ATCS system improvements.
 The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshine West ATCS system improvements.
 The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshine West ATCS system improvements.
 The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshine West ATCS system improvements.
San Vicente Boulevard Melrose Avenue Cedars-Sinai Medical Center / 1-992843-1

CMA12 Accutek

N-S St: E-W St: Project: File Name: Counts by:

CRITICAL MOVEMENT ANALYSIS

San Vicente Boulevard @ Melrose Avenue Peak Hour: AM Annual Growth: 1.0%

Project Alternative 2

08/05/2008 2008 2023 Date: Date of Count: Projection Year:

	2008	EXIST. TF	AFFIC	2023 V	V/ AMBIE	ENT GROV	NTH	2023	W/ OTHE	R PROJE	CTS	2023	NI PROP(DSED ALT	2	2023 V	N/ MITIG/	VTION	
		No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
NB Left	83	,	83	12	95	 .	95	47	142	 (142	0	142		142	0	142	÷ -	142
Comb. L-T		0	1	1	ļ	0				0	,	4		0		I	1	0	
NB Thru Comh T-R	635		318	95	731		365	283	1014		507	n	1017		- 508	0	1017	N C	508
NB Right	92	• – •	95	14	109) 	109	82	191) (191	~	192	→ - -	192	0	192	(192
Comb. L-T-R		0				0				0				0				0	
SB Left	101	-	101	15	116	-	116	18	134	-	134	0	134	-	134	0	134		134
Comb. L-T		0	ı			0				0				0	ı			0	ı
SB Thru	492	2	246	74	566	2	283	290	856	2	428	9	862	7	431	0	862	2	431
Comb. T-R		0 ·		¢	9	0 .		ŝ		0 .	-	c		0 .				o ·	
SB Kight Comb 1, T. P.	42	c	42	Ð	49	- c	49	AC	108	c	80L	Ð	108	- c	108	D	108	c	108
		2				5				5				C				0	
EB Left	78		78	12	89	ب	89	25	114	. -	114	0	114	-	114	0	114	÷	114
Comb. L-T		0,	, ,	Ċ		0,	, ,		010	0,	1	c		0 7	, ,	c		0,	
Comb T.P	414		235	79	4/6		2/0	140	010		347	D	010		347	D	616		347
EB Right	56	- 0	•	8	64	- 0		13	77	- 0	τ ι	0	77	- 0	5.	0	77	- 0	-
Comb. L-T-R		0				0				0				0				0	
WB Left	191	-	191	29	220	-	220	41	261	-	261	-	262	-	262	0	262	+	262
Comb. L-T		0	ı			0				0				0				0	
WB Thru	725	I	725	109	834	÷- (834	06	924	(924	0	924	~ (924	0	924		924
Comb. I-K	166	- C	- 166	75	100	э ,	-	30	140	о т	- 246	c	17 T	• •	- 14	c	310	0 7	- urc
vve rugin Comb. L-T-R ·		- 0	B	3	Del	- 0	061	ß		- 0	2 2	0	2 7	- 0	017	5	C 7	- 0	<u>c</u>
Crit. Volumes:		N-S:	419			N-S:	481			N-S: N	641			N-S:	642			;s-N	642
		E-W:	803			E-W:	923			E-W:	1038			E-W:	1038			E-W:	1038
		SUM:	1222			SUM:	1405			SUM:	1679			SUM:	1681			SUM:	1681
No. of Phases			2				7				2				7				5
Volume / Cap	acity:		0.814				0.937				1.120				1.121				1.121
Level of Servi	:e:		۵				ш				ц.,				ш				Ш
Assumptions		Maximum	Sum of Criti	ral Volume	s (Interse	rtion Cana	city) · O Dha	eo=1500 3	Dhacall	135 1+ 0	h1011275	Incine I	000						

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200. For dual turn lanes, 55% of volume is assigned to heavier lane. For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. Right turns on red from excl. lanes = 50% of overlapping left turn. Note: Year 2007 manual traffic counts were adjusted by a 1.0 percent (1.0%) ambient growth factor to reflect year 2008 existing conditions.

CRITICAL MOVEMENT ANALYSIS

San Vicente Boulevard @ Meirose Avenue Peak Hour: PM Annual Growth: 1.00%

N-S St: E-W St:	San Vice Melrose	Avenue	ard output 1	F 6 F 8 C 00				Peak Houi Annual Gn	: owth:	PM 1.00%		1				Date: Date of Co	ount:		08/05/2008 2008
File Name: Counts by:	Cedars-: CMA12 Accutek			1-040766				Project A	ternative	N						Projection	r Year.		2023
	2008	EXIST. TR No. of	AFFIC Lane	2023 V Added	V/ AMBIE Total	INT GROW	ТН Lane	2023 V Added	V/ OTHEI Total	R PROJEC)TS Lane	2023 M Added	// PROPO Total	SED ALT 2		2023 / Added	W/ MITIG/ Total	ATION No. of	aue
Movement	Volume	Lanes	Volume	Volume 1	Volume	Lanes	Volume	Volume	/olume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
NB Left	88	1	88	13	101	-	101	24	125	~	125	0	125	-	125	0	125	£	125
Comb. L-T NB Thru	784	90	- 392	118	901	0 0	- 451	440	1341	00	- 671	9	1347	0 0	- 674	0	1347	0 0	- 674
Comb. T-R NB Right Comb. L-T-R	223	0-0	- 223	33	257	0-0	- 257	54	311	0 - 0	311	.	312	0 - 0	- 312	0	312	0 - 0	312
SB Left	153		153	23	175		175	43	218		218	0	218		218	0	218		218
SB Thru	699	2 10 0	- 334	100	769	0 14 0	- 384	425	1194	5 M C	- 597	4	1198	0 M C	200	0	1198	000	- 599
SB Right Comb. L-T-R	87	0-0	- 87	13	100	0-0	100	46	146	0-0	- 146	0	146	0-0	- 146	0	146	0-0	- 146
EB Left	136	c	136	20	157	c	157	85	242	- 0	242	0	242	- 0	242	0	242	- 0	242
EB Thru Comb T-R	969		418 418	104	800) -	480 480	135	935		580 580	0	935		- 580 580	0	935		- 580 580
EB Right Comb. L-T-R	139 ? -		1	21	160		,	65	225)) 1	0	225	- 0 0	,	0	225	- 0 0	1
WB Left	179	- c	179	27	206	c	206	83	289	- 0	289	-	290	- 0	290	0	290	- c	290
	478	o c	478	72	549	o c	549	169	718	o c	- 718	0	718	⊃ - - c	- 718	O	718	⊃ - 0	- 718
WB Right Comb. L-T-R	215	00	215	32	247	0 - 0	247	38	285	0 - 0	285	o	285	0-0	- 285	o	285	0-0	285
Crit. Volume:	i.	N-S: E-W: SUM:	544 614 1158			N-S: E-W: SUM:	626 706 1332			N-S: E-W: SUM:	889 960 1849			N-S: E-W: SUM:	892 960 1852			N-S: E-W: SUM:	892 960 1852
No. of Phase	s:		2				7				2				2				2
Volume / Cal Level of Serv	pacity: rice:		0.772 C				0.888 D				1.233 F				1.235 F				1.235 F
Assumption	ls:	Maximum .	Sum of Critics	al Volumes	(Intersec	tion Capac	ity): 2 Phase	i=1500, 3	Dhase=1.	425, 4+ Ph	ase=1375, (Unsignalize	3d=1200.						

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200. For dual turn lanes, 55% of volume is assigned to heavier lane. For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. Right turns on red from excl. lanes = 50% of overlapping left turn. Note: Year 2007 manual traffic counts were adjusted by a 1.0 percent (1.0%) ambient growth factor to reflect year 2008 existing conditions.

San Vicente Boulevard Beverly Boulevard Cedars-Sinai Medical Center / 1-992843-1

CMA13 Accutek

Project: File Name: Counts by:

N-S St: E-W St:

CRITICAL MOVEMENT ANALYSIS

San Vicente Boulevard @ Beverly Boulevard Peak Hour: AM Annual Growth: 1.0%

Project Alternative 2

Date: Date of Count: Projection Year:

08/05/2008 2008 2023

	2008 E	EXIST. TR/	FFIC	2023 M	II AMBIE	ENT GROW	HT	2023 \	N/ OTHEF	RPROJEC	TS	2023 V	VI PROPO	SED ALT:	~	2023	W/ MITIG	ATION		
		No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	
Movement V	/olume	Lanes	Volume	Volume V	/olume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	
NB Left	98	-	98	15	113	-	113	15	128		128	0	128	~	128	0	128	٢	128	
Comb. L-T		0	,			0				0	1			0				0		
NB Thru	746	2	373	112	858	7	429	332	1190	2	595	2	1192	7	596	0	1192	2	296	
Comb. T-R		0	ı			0	•			0				0	,			0	•	
NB Right Comb. L-T-R -	46	- 0	46	7	53	- 0	23	40	63	- 0	93	0	93	- 0	93	0	63	-0	66	~
SB Left	98	-	98	15	113	~	113	47	160	-	160	0	160	-	160	o	160	-	160	Τ
Comb. L-T		0	1			0				0	ŀ			0	ı			0		
SB Thru Comb T D	752	NC	376	113	865	0 0	433	300	1165	(1)	583	ŋ	1170	2	585	0	1170	0	585	
SB Right	225	⊃ . -	- 225	75	750	> 7	- 750	17	97G		- 776	ç	970	- -	- 170	c	020	0,	1	
Comb. L-T-R -		• 0	1	5	2	- 0	2	-	2	- 0		4	017	- 0	0/7		0/7	- 0	2/2	~
EB Left	48	F	48	7	56		56	13	69	-	69	-	02	-	70	0	70		20	
Comb. L-T		0				0	,			0	,			0	1		!	0	,	
EB Thru	581	 .	340	87	668		391	220	888	2	444	Ð	894	7	447	0	894	2	447	
Comb. 1-K	č	~- c	340	1		- c	391	L C		0			:	0				0	t	
Comb. L-T-R -	D D			<u>c</u>	114	- c		£	149	- c	149	0	149	c	149	0	149	, - c	149	
		þ				D				2				5				D		
WB Left	101	c	101	15	116	c	116	73	189		189	0	189		189	0	189	-	189	L
	1332	5 ~	- 666	200	1532	- -	- 766	070	1802	50	-	ţ	1815	0 (-	c	4 7 0 7	0 (-	
Comb. T-R		0			1	10		ī	4001	10		2	2	4 0	- 200	þ	0101	ч с	- 202	
WB Right	119	-	119	18	137	-	137	40	177		177	O	177		177	0	177	• ←	177	
Comb. L-T-R -		0				0				0				0				0		
Crit. Volumes:		N-S:	474			N-S:	545			N-S:	755			N-S:	756			N-S:	756	Τ.
		SIM:	715 1189			E-W:	822 1367			Е-W: с M:	970 1775			Ш-М: С	226 226			: М-Ш Ш	226	
			201-							SUM.	C7/1			SMIDE	1/33			SUM:	1/33	
No. of Phases:			7				2				2				7				2	T
Volume / Capaci	ty:	ĺμ	0.723			[1],[2]	0.811	nan-r-		[1],[2]	1.050			[1],[2]	1.055			[1].[2]	1.055	Τ
Level of Service:			O				D				ш				ш				ш	
Assumptions:	< α	Aaximum S or dual turn	um of Critica 1 Ianes	I Volumes	(Intersed	tion Capac	ity): 2 Phas	e=1500, 3 - Iana	Phase=14	:25, 4+ Ph	ase=1375,	Unsignaliz	ed=1200.							1
	. ч.	or one exc.	l. and one o	pt. turn lane	2.55 	0 %02	f volume is	assigned to	o exclusiv	e lane.										

Right furns on red from excl. lares = 50% of overlapping left furn. [1] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] Note: Year 2007 manual traffic counts were adjusted by a 1.0 percent (1.0%) ambient growth factor to reflect year 2008 existing conditions. Note: Mitigation for the Entitled Master Plan includes installation of an EB right-turn only lane which is assumed in the Future Pre-Project condition.

San Vicente Boulevard Beverly Boulevard Cedars-Sinai Medical Center / 1-992843-1

CMA13 Accutek

N-S St: E-W St: Project: File Name: Counts by:

CRITICAL MOVEMENT ANALYSIS

San Vicente Boulevard @ Beverly Boulevard Peak Hour: PM Annual Growth: 1.00%

Project Alternative 2

08/05/2008 2008 2023 Date: Date of Count: Projection Year:

	2008 EXIST.	TRAFFIC	2023	W/ AMBII	ENT GROW	VTH	2023 V	V/ OTHEF	ROJEC	CTS	2023 V	// PROPO	SED ALT 2		2023	W/ MITIG	ATION	
	No. of	. Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement V ₁	olume Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
NB Left	116	1 116	17	134	c	134	38	172	← c	172	0	172	، م	172	0	172	← (172
	733	2 367	110	843	2 14 0	- 422	431	1274	0 0 0	- 637	ŋ	1279	0 0 0	- 640	0	1279	000	- 640
NB Right	222	1 222	33	256	o c	256	71	327	o ← c	- 327	0	327	⊃ - c	- 327	0	327	o ← 0	- 327
		5			2				2				5				0	
SB Left Comh 1-T	159	1 159 0 -	24	182	- c	182	61	243	c	243	0	243	c	243	o	243	c	243
	686	2 343	103	789	000	394	459	1248	000	624	ю	1251	000	- 625	0	1251	0 11 0	625
SB Right	96		14	110	⊃ - - 0	110	20	130	⊃ ~ (130	-	131	⊃ ← (- 131	0	131	⊃ ← (- 131
Comb. L-1-K -		-			0				0				0				0	
EB Left Comb - T	98	1 98	15	113	- 0	113	27	140	c	140	ю	143	c	143	o	143	c	143
	1053	1 617	158	1211	·	-005 -	376	1587	2010	- 794	14	1601	0 0	- 801	0	1601	D Q	- 801
Comb. I-K EB Right	180	1 01/ 0 - 0	27	207	- 0	AU/ -	16	223	0	- 223	0	223	0 -	- 223	C	223	0 +	- 223
Comb. L-T-R -		0			D				0		I		0		I		0	
WB Left	82	1 82	12	94	~- c	94	32	126	← C	126	0	126		126	0	126	+- C	126
	190	2 395	118	908	5 M C	454	302	1210	000	- 605	8	1218	N 0	- 609	0	1218	2 14 0	- 609
WB Right Comb. L-T-R -	155	- 155 0	23	178	0-0	178	59	237	0-0	- 237	0	237	0 - 0	- 237	0	237	0 - 0	- 237
Crit. Volumes:	N-S: E-W: SUM:	525 698 1224			N-S: E-W: SUM:	604 803 1407			N-S: E-W: SUM:	880 920 1800			N-S: E-W: SUM:	883 927 1810			N-S: E-W: SUM:	883 927 1810
No. of Phases:		2				2				2				2				5
Volume / Capacit	iy: I	<i>1]</i> 0.746			[1]'[2]	0.838			[1],[2]	1.100			[1],[2]	1.107			[4]'[2]	1.107
Level of Service:		2 0								u.								
Assumptions:	Maxim For du: For on	im Sum of Ci al turn lanes, excl. and on	itical Volume 55% e opt. turn la	ss (Interse 'ne,	ction Capac of volume i 70% c	city): 2 Phas is assigned of volume is	e=1500, 3 to heavier l assigned to	Phase=1₄ ane. ⊃ exclusiv	425, 4+ Pt e lane.	iase=1375,	Unsignaliz	ed=1200.						

Right turns on red from excl. lanes = 50% of overlapping left turn. [1] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATCS system improvements. [3] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATCS system improvements. [4] The volume to capacity ratios have been reduced by 0.03 to proceent (10, 9%) ambient growth factor to reflect year 2008 existing conditions. [4] Note: Mitigation for the Entitled Master Plan includes installation of an EB right-turn only lane which is assumed in the Future Pre-Project condition.

CRITICAL MOVEMENT ANALYSIS

San Vicente Boulevard @ Gracie Allen Drive/Beverly Center Entrance-Exit Peak Hour: AM Annual Growth: 1.0%

Project Alternative 2

San Vicente Boulevard Gracie Allen Drive/Beverly Center Entrance-Exit Cedars-Sinai Medical Center / 1-992843-1 CMA14 Accutek

N-S St: E-W St: Project: File Name: Counts by:

Date: Date of Count: Projection Year:

2008 2023 08/05/2008

T

	2008 EXIST.	TRAFFIC	2023	W/ AMBI	ENT GROV	VTH	2023 \	W/ OTHE	R PROJEC	STS	2023 V	V/ PROPC	SED PRO.	JECT	2023 \	N/ MITIG	ATION	
	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement Vol	lume Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
NB Left	72	1 72	11	82	 (82	64	146	÷- (146	ŝ	151	، ب	151	0	151	-	151
NB Thru	814	2 407	122	936	0 0	- 468	320	1256	0 0	- 628	0	1256	0 0	- 628	0	1256	0 0	- 628
Comb. T-R NB Right [1] Comb. L-T-R -	45	0 - 45 0 -	7	52	0 - 0	52	0	52	0 - 0	- 52	0	52	0 + 0	- 52	O	52	0-0	52
SB Left	46	1 46	7	53	-	53	0	53	-	53	0	53		53	0	53	-	53
SB Thru	726	1 455	109	835	C	- 523	365	1200	0 0	600	0	1200	0 0	- 600	0	1200	0 0	- 600
Comb. T-R SB Right	183 (1 455 0 -	27	210	- 0	523 -	43	253	0 -	- 253	ŝ	258	0 -	- 258	0	258	0.4	- 258
Comb. L-T-R -	-	0			0				0				0		I		0	
EB Left Comb J T	71	1 71	11	81		81	66	147	C1 (81	2	149	5	82	0	149	2	82
EB Thru	22		ŋ	26	00	1 1	0	26	- 0		0	26	00	1 1	0	26	00	
Comb. T-R	0	52	Ĺ		•	09	r	ġ	 .	62	1		. -	62			-	62
EB RIGNt Comb. L-T-R -	66	0	<u>6</u>	114	- 0	80	7	121	- 0	85	N	123	- 0	86	0	123	+ 0	86
WB Left Comb 1-T	4	4	-	с	- c	5	0	ъ	c	ъ	o	ъ	← c	2	0	5	(5
WB Thru	, o	0 	0	ę	00	- 7	0	ო	00		0	ę	00	80 '	0	ę	00	- 7
VB Right	σ	 9	*	10	0 -	۲ י	c	0	0 +	-	c	ç	0,	, ,	c	1	0,	,
Comb. L-T-R -	>		-	2		-	5	2		~	D	2		٥	5	01		
Crit. Volumes:	N-S: N	526 717			S-N	605			N-S:	747			N-S:	752			N-S:	752
	SUM:	603			SUM:	694 694			E-W: SUM:	92 838			E-W: SUM:	94 845			E-W: SUM:	93 845
No. of Phases: (EB-WB Split Phas	se)	ю				3				3				ę	-			3
Volume / Capacity	:	ij 0.353			[2],[3]	0.387			[2],[3]	0.488			[2],[3]	0.493			[2],[3]	0.493
Level of Service:		A				A				A				A			+	~
Assumptions:	Maximu For dua For one Right tu [1] Norti [2] The	Itm Sum of Cril al turn lanes, e excl. and one rms on red frou hbound right-ti volume to cap	ical Volume 55% 9 opt. turn la m excl. lane urn has an (acity ratios	ss (Interse of volumk ine, is = overlappin have beer	ction Capa e is assigne 70% c 50% c ig phase wi 1 reduced b	city): 2 Phas ad to heavie of volume is of overlappir ith the westt ov 0.07 to ac	e=1500, 3 lane. assigned ti assigned turn. ound phas count for th	Phase=1 o exclusiv e. re installa	425, 4+ Ph e lane. tion of the	iase=1375, Wilshire We	Unsignaliz est ATSAC	ed=1200. svstem ir	nerrovemen.	si si	< < 0 m b u	Vote: Mitig Aaster Pla of a secon SB right- been assu	gation for the an includes in d EB left-turr -turn lane wh. rmed in the F.	Entitled stallation I lane and ch has uture
	[3] The Note: Y	volume to cap ear 2007 man	acity ratios ual traffic cc	have beer	n reduced L s adjusted L	by 0.03 to at bv a 1.0 pen	count for ti cent (1.0%)	he installs \ ambient	ation of the arowth fac	Wilshire W.	est ATCS : t vear 2008	system im, 3 existing i	provements conditions					
												0						

Т Т

San Vicente Boulevard Gracie Allen Drive/Beverly Center Entrance-Exit Cedars-Sinai Medical Center / 1-992843-1 CMA14 Accutek

N-S St: E-W St: Project: File Name: Counts by:

CRITICAL MOVEMENT ANALYSIS

San Vicente Boulevard @ Gracie Allen Drive/Beverly Center Entrance-Exit Peak Hour: PM Annual Growth: 1.00%

Project Alternative 2

08/05/2008 2008 2023 Date: Date of Count: Projection Year:

20	08 EXIST. TR	AFFIC	2023	W/ AMBIE	ENT GROW	VTH	2023 V	V/ OTHEF	R PROJEC	STS	2023 V	V/ PROP(OSED PRO	JECT	2023	W/ MITIG	ATION	
	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement Volui	ne Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
NB Left Comh I -T	39 1	30	ŋ	45	 c	45	32	11	← C	. 77	e	80	- c	80	0	80	، - د	80
NB Thru 7	54 2	377	113	868	000	434	323	1191	0 01 0	595	0	1191	0 01 0	595	0	1191	000	595
Comb. I-R NB Right [1] 1 Comb. L-T-R -	36 1	- 136	20	157	0-0	-	0	157	0 - 0	- 157	0	157	0-0	- 157	0	157	0 - 0	- 157
SB Left	84 1	84	13	96	0	96	0	96	c	96	0	96	- c	96	0	96		96
SB Thru 8	00	442	120	920		208 208	485	1405		- 702	0	1405	0 0 0	- 702	0	1405	0 10 0	- 702
Comu. I-K SB Right Comb. L-T-R -	85 0	1 1 1	13	98	- 0 0	600 -	22	120	o – o	- 120	£	123	0-0	- 123	0	123	0 - 0	- 123
EB Left 2	98 1	298	45	343	-	343	216	559	C3	307	5	564	7	310	0	564	7	310
Comb. L-T EB Thru	53 0	1 1	8	60	00		0	60	00		0	60	00) 1	0	60	00	
Comb. T-R EB Right Comb. L-T-R -	43 1	96 100	22	165	0	110	28	193	0	118 135	5	198	0	120 139	0	198	0	120 139
WB Left 1	79 1	125	27	206	÷ د	144	o	206	 (144	0	206	<i>ب</i> ر	144	0	206	, ,	144
WB Thru	25 25	- 125	4	29		- 143	0	29	000	- 143	0	29	000	- 144	0	29	00	- 143
Comb. I-R WB Right Comb. L-T-R -	71 1	- 125	26	196) - -	- 144	0	196		- 144	O	196	0	- 144	0	196	0	- 144
Crit. Volumes:	N-S: E-W: SUM:	482 423 905			N-S: E-W: SUM:	554 487 1041			N-S: E-W: SUM:	780 451 1231			N-S: E-W: SUM:	783 454 1236			N-S: E-W: SUM:	783 454 1237
No. of Phases: (EB-WB Split Phase	(ы				m				e,				3				m
Volume / Capacity: Level of Service:	[2]	0.565 A			[2],[3]	0.630 B			[2],[3]	0.764 C			[z]'[3]	0.768 C) [2]'[3]	0.768
Assumptions:	Maximum For dual tu For one ex Right turns [1] Northbu [2] The vol [3] The vol Note: Year	Sum of Criti rn lanes, cl. and one : on red fron bund right-tu ume to capi ume to capi	cal Volume 55% opt. turn la n excl. lane im has an (acity ratios scity ratios al traffic co	s (Interse ne, s = overlappin have beer have beer uunts were	of volume of volume 70% c 50% c 10 phase wi 1 reduced t 1 reduced t	city): 2 Phas is assigned of volume is of overlappit tith the west y 0.03 to ac yy a 1.0 perc	e=1500, 3 to heavier I assigned tr ig left turn. ound phas count for th count for th count for th	Phase=1 ane. o exclusiv e installa 're installa ambient	425, 4+ PH e lane. ttion of the growth fac	iase=1375, Wilshire W Wilshire W tor to reflec	Unsignali: est ATSA(est ATCS t year 200	ced=1200. 5 system i system in 8 existing	improvemer iprovement conditions.	nts. S.		Note: Mit Master Pli of a secor a SB right been assu Pre-Projes	igation for the an includes in od EB left-turn -turn lane wh umed in the F ct Condtion.	Entitled stallation ch has cth has uture

CRITICAL MOVEMENT ANALYSIS

San Vicente Boulevard @ Third Street Peak Hour: AM Annual Growth: 1.0%

Project Alternative 2

San Vicente Boulevard Third Street Cedars-Sinai Medical Center / 1-992843-1 CMA15 Accutek

N-S St: E-W St: Project: File Name: Counts by:

Date: Date of Count: Projection Year:

08/05/2008 2008 2023

	2008 EX	IST. TRA	FFIC	2023	V/ AMBIE	NT GROW	HT	2023 M	V/ OTHER	2 PROJEC	TS	V 5000			ECT	1 5000	W/ MITIG	ATION	Ĩ
	Z	o of	one	Addad	Total	No. of	out	Added	Total	No of				י דער					
Movement	Volume L	anes	Volume	Volume	Volume	Lanes	Volume	Volume /	/olume	Lanes	Volume	Volume	rotal Volume	No. of Lanes	Lane Volume	Volume	i otai Volume	No. of Lanes	Lane Volume
NB Left	96	c	96	4	110	~ c	110	97	207	÷ (207	9	213	← (213	0	213		213
COILIB. L-1 NB Thru Comb T-R	702	⊃ - -	- 357 357	105	807	⊃ ~ ~	- 411 411	358	1165	o ~ •	- 590 500	ю	1170	0 - 1	- 592 502	0	1170	0 - 1	- 592
NB Right Comb. L-T-R -	4	- 0 0	5	7	14	- 0 0	-	0	14	- 0 0	-	0	14	- 0 0	780	O	14	- 0 0	ZAC -
SB Left Comh L T	89	- c	68	13	102	c	102	59	161	- c	161	0	161	← 0	161	0	161	- 0	161
SB Thru Comb. T-R	543	0 0 0	272	82	625	000	312	257	882	000	- 441	7	884	0 10 0	- 442	0	884	0 M C	- 442
SB Right Comb. L-T-R -	123	0 - 0	123	18	142	0-0	142	12	154	0-0	154	0	154	0-0	- 154	0	154	0-0	- 154
EB Left Comb 1 -T	59	- c	59	6	67	c	67	12	62	- 0	62	0	62	- 0	62	0	62		62
EB Thru Comb. T-R	428) ~ ~	- 246 246	64	492	c	- 283 283	145	637	0 N C	319	4	641	2 10 0	- 321	0	641	000	- 321
EB Right Comb. L-T-R -	65) - 	10	74	- 0 0	2 2 4 1	30	104	0 - 0	104	n	107	0-0	107	0	107	o ~ o	- 107
WB Left Comh 1_T	48	c	48	7	56	c	56	0	56	- 0	56	0	56	، م	56	0	56	- (56
WB Thru Comb T-R	1266) +	- 712 712	190	1455	⊃ r	818 818	347	1802	⊃ - -	666 ,	ß	1810	·	- 1003	0	1810	0	- 1003
WB Right Comb. L-T-R -	158	- 0 0	4	24	181	- 0 0	5	14	195	- 0 0	ת ה ה י	0	195	- 0 0	500L -	O	195	-00	- 1003
Crit. Volumes:	μω	N-S: -W: UM:	446 770 1216			N-S: E-W: SUM:	513 886 1398			N-S: E-W: SUM:	751 1078 1829			N-S: SUM: SUM:	753 1082 1835			N-S: E-W: SUM:	753 1082 1835
No. of Phases:			2				5				5				2				N
Volume / Capac Level of Service	sity: *	E E	0.741			[1],[2] L	0.832 D			[1],[2]	1.119 F			[1],[2]	1.124			[1],[2]	1.124
Assumptions:	Ma F 70 [2] [2] [2] [2] [2]	iximum St r dual turr r one excl tht turms c The volur te: Year 2	um of Critica. 1 lanes, 1. and one op 1. red from e 1. ne to capaci 1. ne to capaci 1. ne to capaci 1. no 7 manual	I Volumes 55% - 55% - ot. turn lar. turn lar ty ratios h ty ratios h ty ratios h	(Intersec of volume ie, ave been ave been ints were	tion Capac. is assigned 70% oi 50% oi reduced by reduced by adjusted by	ity): 2 Phase d to heavier f volume is i f overlappin, y 0.07 to aci y 0.03 to aci y a 1.0 perci	==1500, 3 lane. assigned to g left turn. count for th count for th ent (1.0%)	Phase=14) exclusive (e installat e installat ambient <u>g</u>	125, 4+ Ph 3 lane. tion of the trowth fact	ase=1375, Wilshire Wi Wilshire Wi tor to reflect	Unsignalize est ATSAC est ATCS s t year 2008	ed=1200. system in system imp i existing c	nprovemen provements conditions.	<u>tó</u> .	< < 0 5 2 0	Vote: Miti Aaster Pla of an EB ri vhich has vhich has the Futu condition.	gation for the in includes ir ght-turn only been assum re Pre-Proje	e Entitled sstallation lane ed ct

08/05/2008 2008 2023 2023	Lane Volume	- 122 - 591 - 591	- 380 - 802 - 102	- 180 - 725 - 280	- 26 - 571 - 571	971 751 1722 2	1.048 Entitled stallation lane sd
	ATION No. of Lanes	-000	-000-0	-000-0	-000	N-S: E-W: SUM:	[1],[2] igation for the an includes in indut-turn only ight-turn only ure Pre-Projee
unt: Year:	V/ MITIG Total /olume	122 1087 95	380 1604 102	180 1451 280	26 936 205		lote: Mit faster Pl, fan EB I hich has the Fut ondition.
Date: Date of Co Projection	2023 V Added Volume	0 0 0	0 0 0	0 0 0	0 0 0		< < 0 5 2 0
	JECT Lane Volume	122 - 591 - 591	380 - 802 - 102	180 - 725 - 280	26 - 571 571	971 751 1722 2	т. 1.048 its. s.
	SED PRO. No. of Lanes	-000	-000-0	-000-0	-000	N-S: E-W: SUM:	[1],[2] nprovemer provements conditions.
	V/ PROPO Total Volume	122 1087 95	380 1604 102	180 1451 280	26 936 205		ed=1200. 5 system in 8 existing c
	2023 V Added Volume	4 0 0	ဝပာဝ	c o o	0 0 0		Unsignaliz est ATSAC est ATCS t year 200
d Street	CTS Lane Volume	- 118 590	380 - 800 - 102	180 - 721 - 274	- ⁻ 568 - 568 568	969 749 1718 2	1.045 F iase=1375, Wilshire W Wilshire W tor to reflec
/ard @ Thii PM 1.00% e 2	R PROJEC No. of Lanes	-000	-000-0	-000-0	-000	N-S: E-W: SUM:	[1],[2] 425, 4+ Pł 425, 4+ Pł e lane. etion of the ation of the growth fac
ite Boulev r: owth: <i>Iternativ</i>	N/ OTHE Total Volume	118 1084 95	380 1599 102	180 1442 274	26 931 205		Phase=1 lane. o exclusiv he installi he installi) ambient
San Vicer Peak Hou Annual Gr <i>Project A</i>	2023 \ Added Volume	40 335 0	159 576 10	12 330 35	305 0 8		se=1500, 3 to heavier assigned t ng left turn. ng left turn. ccount for t ccount for t ccount for t
	/TH Lane Volume	- 78 422 - 422 -	221 - 512 - 92	168 - 675 675 -	- 26 412 412	643 701 1344 2	0.796 C C s assigned of volume is of overlappin of overlappin of 0.07 to au y 0.03 to au y a 1.0 per
	NT GROM No. of Lanes	-000	-000-0	-000	-000	N-S: E-W: SUM:	[1],[2] [1],[2] of volume i 70% o 50% o reduced b reduced b
	V/ AMBIE Total /olume	78 749 95	221 1023 92	168 1112 239	26 626 197		(Intersec e, ave been ave been ints were
-992843-1	2023 V Added Volume	10 98 12	29 133 12	22 145 31	58 3 59 82 3		cal Volumes cal Volumes opt. turn lar 65% city ratios ti city ratios ti city ratios ti al traffic col
ird I Center / 1	AFFIC Lane Volume	68 - 367 - 367	192 - 445 - 80	146 - 587 - 587 -	, 358 358 -	559 610 1169 2	0.709 C Sum of Crititi n lanes, and one on red from me to cape ime to cape ime to cape
nte Bouleva set inai Medica	EXIST. TR. No. of Lanes	-000	-000-0	-000	-000	N-S: E-W: SUM:	[1] Maximum 5 For dual tui For one ext Right turns [1] The volt. [2] The volt. [2] The volt.
San Vicer Third Stre Cedars-S CMA15 Accutek	2008 Volume	68 651 83	192 890 80	146 967 208	22 544 172		acity:
N-S St: E-W St: Project: File Name: Counts by: J	Movement	NB Left Comb. L-T NB Thru Comb. T-R NB Right Comb. L-T-R -	SB Left Comb. L-T SB Thru Comb. T-R SB Right Comb. L-T-R -	EB Left Comb. L-T EB Thru Comb. T-R EB Right Comb. L-T-R -	WB Left Comb. L-T WB Thru Comb. T-R WB Right Comb. L-T-R -	Crit. Volumes: No. of Phases:	Volume / Caps Level of Servic Assumptions:

CRITICAL MOVEMENT ANALYSIS

LINSCOTT, LAW & GREENSPAN, ENGINEERS 236 M. Chester Ave., Suite 200, Pasadena, CA 91106 626.796.2322 Fax 626.792.0941

CRITICAL MOVEMENT ANALYSIS

San Vicente Boulevard-Le Doux Road @ Burton Way Peak Hour: AM Annual Growth: 1.0%

Project Alternative 2

San Vicente Boulevard-Le Doux Road Burton Way Cedars-Sinai Medical Center / 1-992843-1 CMA16 Accutek

N-S St: E-W St: Project: File Name: Counts by:

08/05/2008 2008 2023 Date: Date of Count: Projection Year:

	2008	EXIST. TR	AFFIC	2023 \	V/ AMBIE	ENT GROV	VTH	2023 \	V/ OTHEI	R PROJE	CTS	2023 \	V/ PROPC	SED ALT:	5	2023	W/ MITIG	ATION	
		No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
NB Left	80	4	8	~~	D		đ	0	6	-	Ø	0	0		6	0	σ	÷	0
Comb. L-T		0	1			0	ı			0	,			0	ı			0	۱
NB Thru	0	0	ı	0	0	0	t	0	0	0	1	0	0	0	ı	0	0	0	1
Comb. T-R		0	,			0	•			0	,			0	,			0	,
NB Right	12	-	12	2	14		14	0	14	-	14	0	14	-	14	0	14	-	14
Comb. L-T-R -		0				0				0				0				0	
SB Left	563	2	309	84	647	2	356	261	908	2	499	5	913	~	502	C	913	6	502
Comb. L-T		0	•			0				0	,)		10	1222	C	2	10	100
SB Thru	0	0		0	0	0	,	0	0	0	,	0	0	0	1	0	0	00	,
Comb. T-R		0				0	,			0	,			0	,			0	,
SB Right	149	-	149	22	172	-	172	12	184	-	184	0	184		184	0	184	-	184
Comb. L-T-R -		0				0				0				0				0	
FB I eft	10	c	,	6	10	c		c	10	C		c	10	c		c	ç	6	
Comb. L-T		0	,	I	!	0	,)	ł	0		0	ī		ļ	0	4		
EB Thru	516	7	176	77	594	2	202	86	680	0	231	0	680	2	231	0	680	0	231
Comb. T-R			176				202			-	231			-	231				231
EB Right	1	0	ŀ	5	13	0	,	0	13	0	•	0	13	0	1	0	13	0	,
Comb. L-T-R -		0				0				0				0				0	
WB Left	9	-	9		7	-	7	0	7	-	7	0	2	-	2	0	7	-	2
Comb. L-T		0	•			0				0	1			0	1			. 0	1
WB Thru	1376	2	526	206	1582	7	605	143	1725	2	697	0	1725	2	669	0	1725	2	669
Comb. T-R		~	526				605			-	697			-	669				669
WB Right	675		472	101	776		543	449	1225	-	857	5	1236	-	865	0	1236		865
Comb. L-1-R -		0				0				0				0				0	
Crit. Volumes:		N-S:	319			N-S:	366			N-S:	510		-	N-S:	513			N-S:	513
		: А:	526			E-W:	605			E-W:	697			E-W:	669			:М:	669
		SUM:	845			SUM:	971			SUM:	1207			SUM:	1211			SUM:	1211
No. of Phases:			2				2				2				2				2
Volume / Cana	citu:	IN	0 403			[4] [9]	0.647			101111	0 205							(11 L01	
	city.	F-1	Dat.0			[1][[140.0			[1]'[2]	cn/.n			[1],[2]	0.707			[2]'[1]	0.707
Level of Servic			A				A				с				c				υ
Accumulance.	-																		

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1426, 4+ Phase=1375, Unsignalized=1200.

For dual turn lanes, 55% of volume is assigned to heavier lane. For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. Right turns on red from excl. lanes = 50% of overlapping left turn. [1] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.

San Vicente Boulevard-Le Doux Road Burton Way Cedars-Sinai Medical Center / 1-992843-1

CMA16 Accutek

N-S St: E-W St: Project: File Name: Counts by:

CRITICAL MOVEMENT ANALYSIS

San Vicente Boulevard-Le Doux Road @ Burton Way Peak Hour: PM Annual Growth: 1.00%

Project Alternative 2

08/05/2008 2008 2023 Date: Date of Count: Projection Year:

	2008 EX	IST. TR/	VFFIC	2023	W/ AMBIE	ENT GROW	VTH	2023 V	V/ OTHEF	ROJEC	STS	2023 V	V/ PROPC	SED ALT:	2	2023	W/ MITIG	ATION		
	z	o. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	
Movement	Volume L	anes	Volume	Volume	Volume	Lanes Volume														
NB Left	36		36	Ω	42	-	42	0	42	-	42	0	42	-	42	0	42	-	4	2
Comb. L-T		0				0	•			0	•			0				0		
NB Thru	0	0		0	0	0	,	0	0	0	•	0	0	0	1	0	0	0	,	
Comb. T-R	ç	0 7	, ,	•	ę	0,	۲ ۲	c	ç	0,	, ,	c	ç	0,	, ,	c	ç	0,	,	ç
Comb. L-T-R -	07	- 0	07	4	ŝ	- 0	20	0	3	- 0	5	þ	2	- 0	55		5	- 0	ŋ	2
SB Left	1011	2	556	152	1163	5	639	573	1736	2	955	11	1747	2	961	0	1747	7	96	5
Comb. L-T		0				0				0				0				0		
SB Thru	0	0	•	0	0	0	1	0	0	0	1	0	0	0	,	0	0	0	1	
Comb. 1-K	ŭ	ə 7	-	c	11	Ð 7	, 1	00	101	C	1 1	c	101	0 1	-	c	101			ų
	20	- c	a C	מ	10	- c	10	00	201	- 0	COL	5	601	- (COL	0	201	- c	2	Q
сотр. L-I-К -		5				D				D				0				Ð		
EB Left	31	0	-	5	36	0	-	0	36	0	-	0	36	0		0	36	0	-	Τ
Comb. L-T		0				0	,			0	,			0	•			0	•	
EB Thru	1139	0	389	171	1310	7	447	169	1479	2	504	0	1479	2	504	0	1479	2	50	4
Comb. T-R		-	389				447				504			-	504			-	50	4
EB Right	27	0		4	31	0	1	0	31	0	•	0	31	0	,	0	31	0	ı	
Comb. L-I-K -		0				0				0				0				0		
WB Left	18	-	18	ę	21	-	21	0	21	-	21	0	21	-	21	0	21		2	1
Comb. L-T		0				0				0				0	,			0	,	
WB Thru	782	2	314	117	899	5	361	128	1027	61	442	0	1027	7	442	0	1027	2	44	5
Comb. T-R		,	314			.	361			-	442			-	442			-	44	ŭ
WB Right	536	-	375	80	617		432	375	992	-	694	Q	998		698	0	966	-	69	8
Comb. L-T-R -		0				0				0				0				0		
Crit. Volumes:		4-S:	575			N-S:	662			N-S:	677			N-S:	983			N-S:	98	5
	ш	:-W:	407			E-W:	468			: М-Ш	524			:-М-Ш	524			E-W:	52	4
	ť	SUM:	982			SUM:	1130			SUM:	1501			SUM:	1507			SUM:	150	27
No. of Phases			5				0				2				2					2
Volume / Cap¿	acity:	[1]	0.585			[1],[2]	0.653			[1].[2]	0.901			[1].[2]	0.905			[4],[2]	06.0	35
Level of Servic	jų.		A				ш				ш				L				ш	
															ı				ī	1

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200. of volume is assigned to heavier lane. 55% For dual turn lanes,

Assumptions:

For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. Right turns on red from excl. lanes = 50% of overlapping left turn. [1] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.

CRITICAL MOVEMENT ANALYSIS

San Vicente Boulevard @ Wilshire Boulevard Peak Hour: AM Annual Growth: 1.0%

Project Alternative 2

San Vicente Boulevard Wilshire Boulevard Cedars-Sinai Medical Center / 1-992843-1 CMA17 Accutek

N-S St: E-W St: Project: File Name: Counts by:

 Date:
 08/05/2008

 Date of Count:
 2008

 Projection Vear:
 2023

	2008 E	EXIST. TR/	VFFIC	2023	W/ AMBIE	ENT GROW	TH	2023 V	V/ OTHEF	ROJEC	:TS	2023 V	V/ PROPC	SED ALT 2		2023 V	N/ MITIGA	ATION	
		No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement V	'olume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
NB Left Comb 1_T	375	C	375	56	431	- c	431	61	492	2 10	271	0	492	0 0	271	0	492	00	271
	1310	0 M C	437	196	1506	000	502	362	1868		- 623	7	1875	ວຕເ	625	0	1875	- m (- 625
Conno. 1-K NB Right [1] Comb. L-T-R -	37	0-0	- 37	9	43	0 - 0	43	10	53	0-0	53	0	53	0-0	53	0	53	0 - 0	23
SB Left Comh 1_T	194	- c	194	29	223	c	223	115	338	c1 c	186	2	340	~ ~	187	0	340	0 0	187
SB Thru Comh T-R	606	0 m c	202	91	697	0 m C	232	204	901	ວຕເ	300	ю	904	0 M C	301	0	904	- m c	301
SB Right [1] Comb. L-T-R -	261	0 - 0	261	39	300	0-0	300	0	300	0-0	300	0	300	0-0	300	0	300	0 - 0	300
EB Left Comh 1-T	72	- c	72	11	82	- c	82	0	82	- 0	82	0	82	~- c	82	0	82	c	82
EB Thru	1114	o (N ∓	417	167	1281	- M	479	266	1547	, N C	- 579 579	-	1548		- 580 720	0	1548	0 01 -	- 580
EB Right Comb. L-T-R -	136	- 0 0	<u>-</u> t	20	157	- 0 0	2 7 7	34	191	- 0 0	л)с -	0	191	-00	080 -	0	191	-00	- 580
WB Left	12	- c	12	2	14	~ c	14	16	30	- 0	30	0	30	0	30	0	30		30
WB Thru Comb T-R	1271	o (1 ←	479 479	191	1461	- M	- 551 551	399	1860	- 10 כ	- 762 763	N	1862	⊃ N Ŧ	- 764 764	0	1862	D N 7	- 764 764
WB Right Comb. L-T-R -	166	- 0 0		25	190	- 0 0		236	426	- 0 0	-	4	430	- 0 0	+D -	0	430	- 0 0	- 104
Crit. Volumes:		N-S: E-W: SUM:	631 550 1181			N-S: E-W: SUM:	725 633 1358			N-S: E-W: SUM:	809 845 1653			N-S: E-W: SUM:	812 847 1659			N-S: E-W: SUM:	812 847 1659
No. of Phases:			e				ю				3				m				ę
Volume / Capaci Level of Service:	ity:	[2]	0.759 C			[2]'[3]	0.853 D			[2],[3]	1.060 F			الح),[ع] ا	1.064			[2],[3] F	1.064
Assumptions:	محتر طبر لغر لغر لسن لسن لمن هن	Aaximum S -or dual tur -or one exc Right turns 1] Northbou 2] The volu 3] The volu 10te: Year	um of Critic n lanes, l. and one (on red from ind and sot me to capa me to capau	al Volume: 55% 52%. vexcl. lane: thbound ri city ratios f city ratios f si traffic co	s (Interse of volume ne, s = 'ght-turn n 'ave beer 'ave beer 'ave beer unts were	ction Capac a is assigne 70% c 50% c novements 1 reduced b 1 reduced b	ity): 2 Phas d to heavier of volume is of overlappin controlled b y 0.07 to ac y 0.03 to ac y a 1.0 perc	= 1500, 3 lane. assigned tr g left turn. γ stop-sign count for th count for th	Phase=1. c exclusiv is. re installa re installa, re installa,	425, 4+ Ph e lane. tion of the growth fact	ase=1375, Wilshire W Wilshire W tor to reflec	Unsignaliz est ATSAC est ATCS : t year 2008	ed=1200. \$ system in \$ system im;	nprovement srovements.	نع ن	<u>сц 0 5 Ц</u>	Vote: Mitig Plan incluc second NE which has -uture Pre	ation for the les installatio 3 and SB left- been assum -Project conc	Entitled n of turn lanes ed in the lition.

San Vicente Boulevard Witshire Boulevard Cedars-Sinai Medical Center / 1-992843-1 CMA17 Accutek

N-S St: E-W St: Project: File Name: Counts by:

CRITICAL MOVEMENT ANALYSIS

San Vicente Boulevard @ Wilshire Boulevard Peak Hour: PM Annual Growth: 1.00%

Project Alternative 2

08/05/2008 2008 2023 Date: Date of Count: Projection Year:

	2008 EXIST. 1	IRAFFIC	2023 V	V/ AMBIE	ENT GROW	TH	2023 V	V/ OTHEF	ROJEC	TS	2023 W	// PROPO	SED ALT 2		2023 V	V/ MITIGA	ATION	
	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement Vo	olume Lanes	Volume	Volume	Volume	Lanes	Volume	Volume \	/olume	Lanes	Volume	Volume 1	/olume	Lanes	Volume	Volume \	/olume	Lanes	Volume
NB Left Comb 1_T	185 1	185	28	213	c	213	39	252	20	138	0	252	2 10	138	0	252	0 0	138
NB Thru	766 3	255	115	880	- m c	293	366	1246) က င	415	4	1250	0 m c	- 417	0	1250	- m c	- 417
NB Right [1] Comb. L-T-R -	18	18	n	21	0 - 0	21	21	42	0 - 0	- 42	0	42	0 - 0	- 42	0	42	0-0	42
SB Left	214 1	214	32	246	c	246	282	528	~ ~	291	4	532	~ ~	293	0	532	~ ~	293
SB Thru Comh T-R	1100 3	367	165	1265	0 M C	422	461	1726	- m c	575	Ø	1734	- m c	- 578	0	1734	- m c	- 578
SB Right [1] Comb. L-T-R -	134 1	134	20	154	0-0	154	O	154	0 - 0	154	O	154	0 - 0	154	0	154	0 - 0	- 154
EB Left	83	83	12	95	0	95	0	95	÷ - (95	0	95	÷ - (95	0	95		95
EB Thru	1244 2	479	187	1431	- N -	- 551 551	483	1914	- N -	- 742 742	7	1916	, N C	- 743	0	1916	2 01 7	- 743
Comb. 1-R EB Right Comb. L-T-R -	192 0	D 7	29	221	- 0 0		92	313	- 0 0	- 142	0	313	-00	- 143	0	313	- 0 0	- /43
WB Left Comb 1_T	97 1	26	15	112	- c	112	15	127	c	127	0	127	- 0	127	0	127	0	127
WB Thru Comb T-R	1113 2	450	167	1280	o 01 ←	517 517	324	1604	о (V т	- 690 690	-	1605	→ M +	- 691 601	0	1605	2017	- 691 601
WB Right Comb. L-T-R -	236 0	1	35	272	- 0 0	1	193	465	- 0 0	1	5	467	- 0 0	-	0	467	- 0 0	-
Crit. Volumes:	N-S: E-W: SUM:	551 576 1127			N-S: E-W: SUM:	634 662 1296			N-S: E-W: SUM:	714 869 1582			N-S: E-W: SUM:	716 869 1586		:	N-S: E-W: SUM:	716 869 1586
No. of Phases:		3				3				e				ę				ε
Volume / Capacit Level of Service:	y: [2	<i>J</i> 0.721 C			[2],[3]	0.810 D			[2],[3]	1.010 F			[2],[3] F	1.013			[2],[3] F	1.013
Assumptions:	Maximu For dual For one Right tu [1] North [2] The v [3] The v Note: Ye	m Sum of Criti turn lanes, excl. and one ers on red fror ibound and sc olume to capi olume to capi iar 2007 manu	ical Volumes 55% 55% • opt. turn lar n excl. lanes puthbound ri acity ratios t. acity ratios t. al traffic cou	s (Interse ne, 5 = ght-tum r 1ave beei 1ave beei 1ave beei 1ave beei	ction Capac of volume i 70% c 50% c movements n reduced b n reduced b a adjusted b	zity): 2 Phas is assigned t of volume is of overlappin of ontrolled b vy 0.07 to ac vy a 1.0 perc	= 1500, 31 o heavier la assigned to g left turn. y stop-sign count for th count for th count for th	Phase=14 ane.) exclusiv) exclusiv) exclusiv) exclusiv ne installa ne installa ne installa	425, 4+ Ph e lane. tion of the growth fact	ase=1375, Wilshire We Wilshire We tor to reflect	Unsignalize ast ATSAC ast ATCS s t year 2008	ed=1200. system in ystem im; R existing c	nprovement provements conditions.	vi .	ΖϤϬ℁Ϥ	lote: Mitig lan incluo econd NE hitch has uture Pre	lation for the tes installatio. 3 and SB left- been assume -Project conc	Entitled 1 of turn lanes ad in the ittion.

Т

La Cienega Boulevard Beverly Boulevard Cedars-Sinai Medical Center / 1-992843-1 CMA18 Accutek

N-S St: E-W St: Project: File Name: Counts by:

CRITICAL MOVEMENT ANALYSIS

La Cienega Boulevard @ Beverly Boulevard Peak Hour: AM Annual Growth: 1.0%

Project Alternative 2

08/05/2008 2008 2023 Date: Date of Count: Projection Year:

Ň	008 EXIST. TR	AFFIC	2023	V/ AMBIE	INT GROW	H	2023 W	// OTHER	PRO.IEC	TS	M FCUC		SED ALT 3		2023 W	// MITIGA	TION	
	No of	and	Added	Total	No of	i ane	Addad	Total	No of	ane			350 ALI 2		Addad	Total	No of	
Movement Voli	ime Lanes	Volume	Volume	Volume	Lanes	Volume	Volume V	olume 1	Lanes	Volume	Volume	Volume	ho. or Lanes	Lane Volume	Volume V	/olume	Lanes	Volume
NB Left	124 1	124	19	143	c	143	37	180	 c	180	4	184	c	184	0	184	~ c	184
NB Thru	717 2	359	108	825	000	412	415	1240	000	620	0	1240	5 N C	620	0	1240	0 10 0	- 620
NB Right [1] Comb. L-T-R -	178 1	178	27	204	0 - 0	204	0	204	0 - 0	204	0	204	0-0	204	0	204	0-0	- 204
SB Left Comh 1-T	88 1 0	88	13	101		101	76	177	- c	177	0	177	c	177	0	177	← c	177
SB Thru 1 SB Thru 1	102 2	480	165	1267	o ∩ +	552 552	346	1613	5 N 4	680 680	0	1613	- M -	- 681	0	1613	⊃ N -	- 681
Comb. L-T-R - Comb. L-T-R -	338 0	-	51	389	- 0 0	700	37	426	-00	-	4	430	-00		0	430	-00	- 681
EB Left Comb - T	114 2	63	17	131	0 0	72	53	184	2 12	101	7	186	2	102	0	186	21	102
Comb. L-1 EB Thru Comb. T. P	611 2 0	306	92	703	0 N C	351	179	882	2 14 0	- 441	2	884	5 M C	- 442	0	884	000	- 442
EB Right [1] Comb. L-T-R -	54 1	54	Ø	62	0-0	62	23	85	0 - 0	82 1	2	87	0-0	- 87	0	87	0-0	- 87
WB Left	232 2	128	35	267	2 0	147	35	302	2 0	166	0	302	64 6	166	0	302	5	166
WB Thru 1.	214 1	- 641 641	182	1396	⊃ ~ ~	- 738 728	236	1632	500	- 816	IJ	1637	5 M C	- 819	0	1637	0 N C	- 819
WB Right Comb. L-T-R -	- 0 0		10	79	- 0 0	oc, -	59	138	0 - 0	138	0	138	0-0	- 138	0	138	0 - 0	- 138
Crit. Volumes:	N-S: E-W: SUM:	604 704 1308			N-S: E-W: SUM:	695 810 1505			N-S: E-W: SUM:	860 917 1777			N-S: E-W: SUM:	865 921 1786			N-S: E-W: SUM:	865 921 1786
No. of Phases:		4				4				4				4				4
Volume / Capacity: Level of Service:	[2]	0.882 D			[2],[3]	0.994 E			[2],[3]	1.192			[2].[3] F	1.199			[2],[3] F	1.199
Assumptions:	Maximum For dual tu For one ex Right turn: [1] Northbu [2] The vol [3] The vol Note: Year	Sum of Critit urn lanes, xcl. and one s on red fron ound right-tu uume to capa 'ume to capa 'ume to capa	cal Volume: 55% opt. turn laı n excl. laney rm overlaps ncity ratios t ncity ratios t ai traffic col	s (Interse of volums ne, s = with wes nave beer nave beer nave beer nave beer	ction Capac is assigner 70% o 50% o tbound left- rreduced b rreduced b	ity): 2 Phass d to heavier f volume is i f overlappin, tum. Eastb y 0.07 to aci y 0.03 to aci y a 1.0 perci	=1500, 3 F lane. sssigned to g left turn. g left turn. count for th count for th count for th	Phase=14 exclusive urn overla e installat ambient g	25, 4+ Pha I lane. aps with no ion of the ion of the rowth fact	ise=1375, (inthbound le Milshire We Milshire We or to reflect	Unsignaliz fit-turn. st ATCS s year 2008	ad=1200. system in system imp 8 existing c	aprovements provements conditions.	ri -	Z ≥ 0 3 U	ote: Mitiq laster Pla f a WB rig hich has uture Pre uture Pre	gation for the m includes in pht-turn only been assum Project con	Entitled stallation lane, ed in the lition.

La Cienega Boulevard Beverly Boulevard Cedars-Sinai Medical Center / 1-992843-1 CMA18 Accutek

N-S St: E-W St: Project: File Name: Counts by:

CRITICAL MOVEMENT ANALYSIS

La Cienega Boulevard @ Beverly Boulevard Peak Hour: PM Annual Growth: 1.00%

Project Alternative 2

Date: Date of Count: Projection Year:

08/05/2008 2008 2023

	2008 EXIST.	TRAFFIC	2023	W/ AMBI	ENT GROW	TH	2023 M	// OTHER	PRO.IFC	TS	M FCOC		CED ALT 2		M 2002	MITIGA	TION	
	No of	lane	Δημοή	Total	No of	anel	Аннан	Total	No. of	out			0EU ALI 2	_	Added			
Movement Vo	lume Lanes	Volume	Volume	Volume	Lanes	Volume	Volume V	/olume I	Lanes	Volume	Volume \	i otai /olume	vo. or Lanes	Lane Volume	Volume V	olume	ku. u Lanes	Volume
NB Left	113	1 113	17	130	← c	130	20	150	c	150	7	152	+ (152	0	152	(152
	1192	2 596	179	1371	0 0 0	- 685	446	1817	0 00 0	- 908	0	1817	0 0	- 908	0	1817	0 0	- 908
Comb. I-K NB Right [1] Comb. L-T-R -	414	- 1 1 414 0	62	476	0 - 0	- 476	0	476	0-0	- 476	0	476	0-0	- 476	0	476	0-0	- 476
SB Left	108	1 108	16	124	c	124	180	304	- c	304	0	304	- 0	304	o	304		304
SB Thru Comb T-R	1004	2 389	151	1155	- M	- 448 448	507	1662	⊃ (N -	- 632 632	0	1662	- N -	- 633 633	0	1662	- M C	633
SB Right Comb. L-T-R -	164	- 0 0	25	188	- 0 0	, ,	47	235	- 0 0	700 -	2	237	-00	-	0	237	-00	-
EB Left Comb - T	274	2 151	41	315	0 0	173	64	379	2 10	208	4	383	0 0	211	0	383	2	211
Comb T_P	1251	2 - 626	188	1439	5 N C	- 720	385	1824	5 M C	- 912	g	1830	0 10 0	- 915	0	1830	0 10 0	- 915
EB Right [1] Comb. L-T-R -	124 (1 124	6	143	070	- 143	33	176	0-0	- 176	4	180	0 ~ 0	- 180	0	180	0 - 0	- 180
WB Left	230	2 127	35	265	2 0	146	73	338	0 0	186	0	338	5	186	0	338	0	186
	771	1 437	116	886	⊃ r	502	307	1193	2 (1 (- 597	ო	1196	5 M G	- 598	0	1196	0 0 0	- 598
WB Right Comb. L-T-R -	103	- 0 0	15	118	- 0 0	700 -	56	174	0 - 0	- 174	0	174	0-0	- 174	0	174	0-0	- 174
Crit. Volumes:	N-S: E-W: SUM:	704 752 1456			N-S: E-W: SUM:	810 865 1675			N-S: E-W: SUM:	1213 1098 2310			N-S: E-W: SUM:	1213 1101 2313			N-S: E-W: SUM:	1213 1101 2313
No. of Phases:		4				4				4				4				4
Volume / Capacity Level of Service:	<i>i</i> : <u></u> [2] 0.989 E			[2],[3]	1.118 F			[2],[3]	1.580 F			[2],[3] F	1.582			4 [2],[3]	1.582
Assumptions:	Maxim For dus For one Right tu [1] Nort [2] The [3] The Note: Y	im Sum of Cri Il turn lanes, • excl. and on rrns on red fro hbound right-t volume to cap volume to cap ear 2007 man	tical Volume 55% 9 opt. turn la m excl. lane urn overlaps iacity ratios iacity ratios ual traffic co	s (Interse ne, s = s with wes have beei have beei unts were	of volume i of volume i 70% o 50% o itbound left- n reduced b n reduced b	itty): 2 Phase s assigned t of volume is i overlappin turn. Eastb y 0.07 to ac y 0.03 to ac y a 1.0 perc	=1500, 3 F =1500, 3 F =16000000000000000000000000000000000000	Phase=14 ine. exclusive exclusive e installat e installat ambient g	25, 4+ Phr I lane. aps with no ion of the iron of the trowth fact	ase=1375, 1 arthbound le Wilshire Wé Wilshire Wé 'or to reflect	Jnsignalize ift-turn. ist ATCS s year 2008	ed=1200. system in ystem imp ' existing c	iprovements rovements onditions.	rë.	Ζ Ζ δ Ξ L	ote: Mitig aster Plau fa WB rig hich has I hich has L uture Pre-	lation for the n includes in tht-turn only i been assume Project conc	Entitled stallation ane, to in the ition.

CRITICAL MOVEMENT ANALYSIS

La Cienega Boulevard @ Third Street AM 1.0% Annual Growth: Peak Hour:

Project Alternative 2

Cedars-Sinai Medical Center / 1-992843-1 CMA19 Accutek

La Cienega Boulevard Third Street

N-S St: E-W St: Project: File Name: Counts by:

08/05/2008 2008 2023 Date of Count: Projection Year:

Date:

No. of Lane Added Movement Volume Lane Added Movement Volume Volume Volume Volume NB Left 169 2 93 25 Comb. L-T 0 - 379 153 Comb. L-T-R 1018 2 379 153 Comb. L-T-R 1018 2 29 8 Comb. L-T-R 1018 2 29 8 Comb. L-T-R 118 0 - 79 SB Right 118 0 - 24 Comb. L-T-R 0 - 462 14 Comb. L-T-R 0 - 24 24 Comb. L-T-R 0 - 213 64 Comb. L-T-R 0 - 213 7 EB Left 67 0 - 213 7 Comb. L-T-R 0 - 213 7 7 <td< th=""><th>Total No. of Volume Lanes 194 2 1171 2 136 0 60 2 61 2 1410 2 182 0 1410 2 182 0 77 1</th><th>Lane Volume 107 436 436 - 33 531 - 531 - 531</th><th>Added To Volume Vo 113 446</th><th>otal No. of lume Lanes</th><th>Lane Volume</th><th>Added Volume</th><th>Total Ne</th><th>o. of L</th><th>-ane</th><th>Added</th><th>Total</th><th>No. of</th><th></th></td<>	Total No. of Volume Lanes 194 2 1171 2 136 0 60 2 61 2 1410 2 182 0 1410 2 182 0 77 1	Lane Volume 107 436 436 - 33 531 - 531 - 531	Added To Volume Vo 113 446	otal No. of lume Lanes	Lane Volume	Added Volume	Total Ne	o. of L	-ane	Added	Total	No. of	
Movement Volume Lanes Volume	Volume Lanes 194 2 1171 2 136 0 60 2 60 2 1410 2 182 0 77 1	Volume 107 107 107 233 531 531 77	Volume Vol 113 446	lume Lanes	Volume	Volume \	- 1						Lane
NB Left 169 2 93 25 Comb. L-T 0 - 379 153 Comb. T-R 101B 2 379 153 Comb. L-T-R 101B 2 379 153 Comb. L-T-R 0 - 379 153 Comb. L-T-R 0 - 18 SB Left 53 2 29 8 Comb. L-T 226 2 462 184 Comb. L-T 8 0 - 462 184 Comb. L-T 8 0 - 462 184 Comb. L-T 8 0 - 462 184 Comb. L-T 8 0 - 462 184 Comb. L-T 8 0 - 462 184 Comb. L-T 8 0 - 462 184 Comb. L-T 8 0 - 462 184 Comb. L-T 8 0 - 462 184 Comb. L-T 8 0 - 462 184 Comb. L-T 8 0 - 462 184 Comb. L-T 8 0 - 462 184 Comb. L-T 8 0 - 462 184 Comb. L-T 8 0 - 462 184 Comb. L-T 8 0 - 462 184 Comb. L-T 8 0 - 178 Comb. L-T 8 0 - 175 Comb. L-T 8 0 - 175 WB Left 238 1 - 610 175	194 2 1171 2 136 0 1410 2 1410 2 182 0 177 1	, 107 , 436 , 436 , 436 , 531 , 531 , 531	113 446					nes Vo	olume	Volume V	/olume	Lanes	Volume
Comb. L-T 0 - MB Thru 1018 2 379 153 Comb. L-T-R. 1 2 379 153 Comb. L-T-R. 0 - 18 18 Comb. L-T-R. 0 - 18 18 Comb. L-T-R. 0 - 29 8 SB Left 53 2 29 8 Comb. L-T 1226 2 462 184 SB Right 159 0 - 24 Comb. L-T-R. 0 - 24 24 Comb. L-T-R. 0 - 213 64 Comb. L-T-R. 0 - 213 7 Comb. L-T-R. 0 - 213 7 Comb. L-T-R. 0	1171 2 1171 2 136 0 60 2 1410 2 182 0 1 182 0 1 1 77 1 1 2 2 0 0	, 436 , 436 , 436 , 436 , 531 , 531 , 531 , 531	446	307 2	169	£	312	2	172	0	312	2	172
NB Thru 1018 2 379 153 Rendb, T-R, 1 379 153 NB Right 118 0 - 18 Comb, L-T-R, 0 - 18 18 Comb, L-T-R, 0 - 18 18 Comb, L-T-R, 0 - 18 18 SB Left 53 2 29 8 Comb, L-T-R 0 - 24 SB Right 159 0 - 24 Comb, L-T-R 0 - 24 10 EB Left 67 1 67 10 Comb, L-T-R 0 - 213 64 Comb, L-T-R 0 - 213 64 Comb, L-T-R 0 - 213 64 Comb, L-T-R 0 - 213 7 Comb, L-T-R 0 - 213 7 Comb, L-T-R 0	1171 2 136 0 1410 2 182 0 182 0 182 0 177 1 182 0 19	436 - 436 - 33 531 - 531 - 531 - 77	446	0	,			- 0				0	ı
Comb. I-R 1 379 NB Right 118 0 - 18 Nu b. L-TR. 0 - 18 18 SE Left 53 2 29 8 Comb. L-T 0 - 16 18 SE Thu 1226 2 462 184 Comb. T-R 1226 2 462 184 Comb. L-T-R. 0 - 24 10 Comb. L-T-R. 0 - 16 10 EB Left 67 1 67 10 Comb. L-T-R. 0 - 213 64 Comb. L-T-R. 0 - 10 7 Comb. L-T-R. 0 - 143 7 Comb. L-T-R. 0 - 36 7 Comb. L-T-R. 0 - 36 7 Comb. L-T-R. 0 - 36 7 WB Left 238 1<	136 0 60 2 1410 2 182 0 77 7 7	, 436 , 33 531 , 531 , 531 , 77		1617 2	598	4	1621	0	599	0	1621	0	599
NB Kight 118 0 - 18 Comb. L-T-R 0 - 18 SB Left 53 2 29 8 Comb. L-T 26 2 462 134 SB Thru 1226 2 462 134 Comb. L-T-R 126 2 462 134 Comb. L-T-R 0 - 462 134 Comb. L-T-R 1 67 10 Comb. L-T-R 0 - 213 64 Comb. L-T-R 0 - 138 36 Comb. L-T 0 - 175 WB Left 238 1 238 36 Comb. L-T 0 - 175 WB Thru 1169 1 610 175	136 60 2 1410 2 182 0 77 71 71	, 33 531 531 77	9		598	((599		į	 (299
SB Left 53 2 29 8 Comb. L-T 0 - 8 8 SB Thru 1226 2 462 184 Comb. T-R 1 1 462 184 Comb. T-R 1 1 462 184 Comb. T-R 1 159 0 2 Comb. L-T-R 0 - 24 Comb. L-T-R 0 - 24 Comb. L-T-R 0 - 24 Comb. L-T-R 0 - 36 Comb. L-T-R 0 - 36 WB Left 238 1 238 36 WB Left 238 1 238 36 WB Thru 1169 1 610 175	60 2 1410 2 182 1 77 1	33 531 531 531	40	1/6 0	•	Ð	1/6	, 		C	1/6	00	1
Comb. L-T 0 - SB Thru 1226 2 462 184 Comb. T-R 1 462 184 Comb. T-R 1 462 184 Comb. T-R 1 62 245 Comb. L-T.R 0 - 24 Comb. L-T.R 0 - 24 EB Left 67 10 2 Comb. L-T 425 2 213 64 Comb. L-T 425 2 213 64 Comb. L-T.R 0 - 1 43 7 VB Left 238 1 238 36 WB Left 238 1 238 36 WB Thru 1169 1 610 175	1410 2 182 0 77 1	- 531 - 531 - -	29	89 2	49	0	89	2	49	0	89	2	49
SB Thru 1226 2 462 184 Comb. T-R 1 462 184 SB Right 159 0 - 24 Comb. L-T-R- 0 - 24 EB Left 67 1 67 10 Comb. L-T 425 2 213 64 Comb. L-T-R 0 - 213 64 Comb. L-T-R 0 - 36 7 Comb. L-T-R 0 - 36 7 WB Left 238 1 238 36 WB Left 238 1 238 36 WB Thru 1169 1 610 175	1410 2 182 0 77 1	531 531 - 77	ł	10	! 1	,	;	, 10	2	,	1	10	?
Comb. T-R 1 462 SB Right 159 0 - 24 SB Right 159 0 - 24 Comb. L-T-R- 0 - 24 EB Left 67 1 67 10 Comb. L-T 0 - 23 64 Comb. L-T 425 2 213 64 Comb. L-T-R 0 - 43 7 Comb. L-T-R- 0 - 43 7 WB Left 238 1 238 36 WB Left 238 1 238 36 WB Thhu 1169 1 610 175	1 182 0 77 1	531 - 77	310	1720 2	655	2	1722	2	656	0	1722	2	656
SB Right 159 0 - 24 Comb. L-T-R - 0 - 24 EB Left 67 1 67 10 Comb. L-T 425 2 213 64 Comb. L-T-R - 0 - 43 7 Comb. L-T-R - 0 - 43 7 Comb. L-T-R - 0 - 238 36 Comb. L-T - 1169 1 610 175	182 0 77 1 0		;		655			 (656				656
EB Left 67 1 67 10 Comb. L-T 0 - 0 - 10 EB Thru 425 2 213 64 Comb. T-R 0 - 36 7 Comb. T-R 43 1 43 7 Comb. L-T-R- 0 - 36 WB Left 238 1 238 36 WB Thru 1169 1 610 175	1 77	77	64	246 0	ı	0	246	. 0		0	246	00	1
Comb. L-T 0 - EB Thru 425 2 213 64 Comb. T-R 43 1 43 7 Comb. L-T-R 0 - 36 Comb. L-T-R 0 - 36 WB Left 238 1 238 36 Comb. L-T 0 - 175 WB Thru 1169 1 610 175	C		61	138 1	138	0	138		138	0	138	-	138
EB Thru 425 2 213 64 Comb. T-R 0 - 67 EB Right 43 1 43 7 Comb. L-T-R- 0 8 WB Left 238 1 238 36 Comb. L-T 0 - 175 WB Thru 1169 1 610 175	•			0	'			' 0				0	ı
Comb. I-R 0 - Comb. I-R 1 43 7 EB Right 43 1 43 7 Comb. L-T-R 0 0 - 238 1 238 36 Comb. L-T 238 1 238 36 WB Thru 1169 1 610 175	489 2	244	129	618 2	309	5	620	2	310	0	620	2	310
EB Fright 43 1 43 7 Comb. L-T-R- 0 238 1 238 36 Comb. L-T 238 1 238 36 Comb. L-T 1169 1 610 175	0 ·	, 1	9	0,		c		, 0	10	C		0 .	
Сомb. L-T-R - 0 WB. Left 238 1 238 36 Comb. L-T 0 - WB. Thru 1169 1 610 175		nc	49	66	66	N	LOL	-	101	D	101	-	101
WB Left 238 1 238 36 Comb. L-T 0 - WB Thru 1169 1 610 175	0			0				0				0	
Comb. L-T 0 - WB Thru 1169 1 610 175	274 1	274	60	364 1	364	0	364	-	364	0	364	-	364
WB Thru 1169 1 610 175	0	,		0	ı			- 0				0	
	1344 1	701	242	1586 1	847	4	1590	-	849	0	1590	-	849
Comb. T-R 1 610	1 1	701	ì		847	¢		. (849			÷- 1	849
VUB KIGNT 31 U - 8 Comb. L-T-R - 0		1	10	0 ANI	ı	5	ROL	, 		Ð	ROL	00	1
		1											1
Crit. Volumes: N-S: 554	: 2 2	637		:	824		~	Ņ	828			-s-z	828
E-W: 6/6	. М. С	118		: М-Ц	385		ц	N	1987			. М.	987
SUM: 1231	:MOC	CI 4-1		SUM	1003		n		C101			SUM:	C181
No. of Phases: 4		4			4				4				4
Volume / Capacity: [1] 0.825	[1],[2]	0.929		[1],[2]	1.216			11.121	1.220			[1],[2]	1.220
Level of Service: D		ш			ш			ш				LL.	

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200.

For dual turn lanes, 55% of volume is assigned to heavier lane. For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. For one excl. and one opt. turn lane, 70% of vortlapping left turn. [1] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. Note: Year 2007 manual traffic counts were adjusted by a 1.0 percent (1.0%) ambient growth factor to reflect year 2008 existing conditions.

CRITICAL MOVEMENT ANALYSIS

La Cienega Boulevard @ Third Street Peak Hour: PM 1.00% Annual Growth:

Project Alternative 2

La Cienega Boulevard Third Street Cedars-Sinai Medical Center / 1-992843-1 CMA19 Accutek

File Name: Counts by: N-S St: E-W St: Project:

Date: Date of Count: Projection Year:

2008 2023 08/05/2008

	2008	EXIST. TR/	AFFIC	2023 V	V/ AMBIE	ENT GROW	VTH	2023	W/ OTHE	R PROJEC	TS	2023 M	// PROPO	SED ALT 2		2023	W/ MITIG	ATION		
		No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	
Movement	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	/olume	Lanes	Volume	Volume	Volume	Lanes	Volume	
NB Left	82	N	45	12	94	N	52	72	166	2	91	Ю	169	2	63 33	0	169	N	93	
Comb. L-T		0	ı			0	,			0				0	ı			0	,	
NB Thru	1399	2	535	210	1609	2	615	530	2139	2	817	2	2141	7	818	0	2141	2	818	
Comb. T-R		-	535			-	615				817			-	818			-	818	
NB Right	206	0	1	31	237	0	ı	75	312	0	•	0	312	0	1	0	312	0	,	
Comb. L-T-R -		0				0				0				0				0		
SB Left	152	2	83	23	174	2	96	57	231	2	127	0	231	2	127	0	231	7	127	
Comb. L-T		0	•			0	ı			0				0	ı			0	ı	
SB Thru	1103	2	389	165	1268	2	447	511	1779	2	632	4	1783	7	634	0	1783	7	634	
Comb. T-R	ġ	-	389		i	(447	:	!	. .	632	1	!	-	634				634	
SB Kight	64	0		10	73	0		44	117	0	ŀ	0	117	0	,	0	117	0	1	
Comb. L-T-R -		0				0				0				0				0		
EB Left	201		201	30	231	-	231	133	364	+	364	0	364	1	364	0	364	-	364	-
Comb. L-T		0	ŧ			0	ı			0				0	1			0	,	
EB Thru	666	2	499	150	1149	2	574	283	1432	2	716	4	1436	7	718	0	1436	2	718	
Comb. T-R		0 ·	,			0	1			0		1		0	,			0	r	
הם אופות מידי איס	123	- 0	123	18	142	- c	142	142	284	- 0	284	ŋ	289		289	0	289	(289	
- COILID. L-1-K -		2				5				D				D				0		
WB Left	179		179	27	206	+	206	155	361	1	361	0	361	F	361	0	361	F	361	
Comb. L-T		0	ı			0	ı			0	ı			0	1			0		
WB Thru	560	, - 1	339	84	643	-	390	249	892	-	535	2	894	-	536	0	894		536	~~~~
Comb. I-K		, (339	ļ		 1	390	:	1	~ 1	535			~	536		:		536	
	118	5 0	ı	8	136	0 0	1	41	177	0 0		0	177	0 0	•	0	177	0	ı	
		5				5				2				D				Ð		
Crit. Volumes:		N-S:	618			N-S:	711			N-S:	944			N-S:	945			N-S:	945	
		E-W:	678			E-W:	780			E-W:	1076			E-W:	1078			E-W:	1078	
		SUM:	1297			SUM:	1491			SUM:	2020			SUM:	2023			SUM:	2023	
No. of Phases:			4				4				4				V					
							•				r				r				t	
Volume / Capa	acity:	[µ]	0.873			[1],[2]	0.984			[1],[2]	1.369			[1].[2]	1.371			[1],[2]	1.371	
Level of Servic	je:		D				ш				ш				ш				ш	
																				•
Assumptions:	-	Maximum S	Sum of Critic	al Volumes	Intersec	ction Canac	sitv): 2 Phas	e=1500.3	Phase=1.	425.4+ Ph	2751=92e	Insignalizi	od=1200							

For dual turn lanes, 55% of volume is assigned to heavier lane. For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. Right turns on red from excl. lanes = 50% of overlapping left turn. [1] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Witshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Witshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Witshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Witshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Witshire West ATCS system improvements.

La Cienega Boulevard San Vicente Boulevard Cedars-Sinai Medical Center / 1-992843-1

CMA20 Accutek

Project: File Name: Counts by:

N-S St: E-W St:

CRITICAL MOVEMENT ANALYSIS

La Cienega Boulevard @ San Vicente Boulevard AM 1.0% Annual Growth: Peak Hour:

Project Alternative 2

Date: Date of Count: Projection Year:

2008 2023 08/05/2008

	5000	EXIST. TR	AFFIC	2023	W/ AME	SIENT GRO	WTH	2023	W/ OTHE	R PROJE	CTS	2023	W/ PROF	OSED ALT	2	2023	W/ MITIG	ATION	
		No. of	Lane	Added	Total	No. of	Lane	Added	Total	Na. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
JB Left	293	-	293	44	337	-	337	182	519	-	519	0	515	-	519	0	519	~~	519
Comb. L-T	0001	0,	1			0,	-			0 0	1			0				0	ł
Comb T-R	0601	0 0	CDC ,	101		າ c	420	APC	RR/L	n c	900	ה	1806		603	0	1808	с о с	603
JB Right	0	0		ο	0	0 0		0	0	00	1 1	0	0	00	7 1	0	0	00	r 1
Comb. L-T-R .		0				0				0				0				0	
SB Left	0	0	-	0		0		0	0	0		°		0	1	0	0	o	1
comb. L-T		0 1	1		1	0				0	,			0	1			0	ı
öB I hru Somh T-R	1453	¢1 +	523 523	218	167	- 10	602 602	439	2110	~ ~	748	4	2114	cu +	749	0	2114	N 7	749
SB Right	116	- 0	-	17	134	- 0	700	0	134	- 0		0	134	- 0	. 149	0	134	- 0	- /49
Comb. L-T-R .		0				0				0				0				0	
EB Left	0	0 0	I	0		0	t	o	0	0	1	0		0	1	0	0	0	,
B Thru	880	7 4	- 220	132	1012	0 4	- 253	233	1245	04	311	ι.	1250	0 4	- 312	C	1250	0 -	- 212
Comb. T-R		0	•			0	,			0	,)		r 0	10	5	201	+ 0	1
EB Right	303	-	303	45	346	1	348	113	461	-	461	0	461	•	461	0	461	-	461
Comb. L-T-R .		0				0				0				0				0	
VB Left	0	0)	0	ľ	0		0	0	0	ſ	0	0	0		0	0	0	
Comb. L-T		0				0	,			0	,			0	,			0	1
	1722	ლ	454	258	1980	3	523	411	2391	e	629	÷	2402	e	632	0	2402	ო	632
Comb. 1-K	070	. .	454	5	000		523	c L		 .	629	•		~ ·	632			~	632
comb. L-T-R -	200	- 0	077	0		- 0	007	50	4	- 0	£67	Ð	415	- 0	293	o	419	- 0	293
rit. Volumes:		N-S:	816			N-S:	938			is-N	1267			N-C.	1768			N	0001
		E-W:	454			Е-W:	523			ы. М.	629			і Х	632			М	632
		SUM:	1270			SUM:	1461			SUM:	1896			SUM:	1900			SUM:	1900
lo. of Phases			n				ε				с				ę				3
'olume / Capa	acity:	ĺμ	0.822			111,121	0.925			[1].[2]	1.231			[6] [F]	1 222			161111	1 233
evel of Servic	.e.		Ω				ш				L			[-]·[·]	рот 1			F-14.1	о

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200.

For dual turn lanes, 55% of volume is assigned to heavier lane. For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. Right turns on red from excl. lanes = 50% of overlapping left turn. [1] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.

La Cienega Boulevard San Vicente Boulevard Cedars-Sinai Medical Center / 1-992843-1

CMA20 Accutek

N-S St: E-W St: Project: File Name: Counts by:

CRITICAL MOVEMENT ANALYSIS

La Cienega Boulevard @ San Vicente Boulevard Peak Hour: PM 1.00% Annual Growth:

Project Alternative 2

08/05/2008 2008 2023 Date: Date of Count: Projection Year:

	2008 E	EXIST. TR	AFFIC	2023	W/ AMBIE	ENT GROV	νтн	2023 \	V/ OTHEF	RROJEC	TS	2023 V	// PROPC	SED ALT	2	2023	W/ MITIG	ATION	
		No. of	Lane	Added	Total	Na. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
NB Left	226	-	226	34	260	-	260	118	378	-	378	0	378		378	0	378		37
Comb. L-T	007 F	0,0	- 467	010	0101	0,	- 607	100	1200	0,	- 757	L	9700	00	-	c	9700	0,	-
Comb. T-R	0041	00	- +0	210		00	100 -	100	177	00		C	0/77	0 0	RC / -	2	0/77	0 0	2 -
NB Right	D	0		0	0	0	,	0	0	00		0	0	00		0	0	00	,
Comb. L-T-R -		0				0				0				0				0	
SB Left	0	0	1	0	0	0	,	0	0	0		0	0	0		0	0	0	
Comb. L-T		0				0	ı			0	ı			0	·			0	•
SB Thru	1266	2	449	190	1455	2	516	808	2263	0	785	6	2272	2	788	0	2272	0	78
Comb. T-R	2	~- c	449	2	Ċ	- c	516	c	ĉ	c	785	C	č	- c	788	c	00	- c	78
ы кідпі Comb. L-T-R -	9	00	1	7	U U	00	,	D	5 A	00	1	5	59		ı	Þ	ς. Β	00	1
EB Left	0	0		0	0	0		0	0	0		0	0	0		0	0	0	,
Comb. L-T	0101	0 •		t ac	C a F C	•	-	667	0020	0 -	-	Ť	0020	0 -		c	0020	0.	
EB INU Comh T.P	7/81	4 C	468	197	2012	4 ⊂	850 -	/cc	60/2	4 C	1/9		7720	4 C	- 68U	0	77.20	4 0	89
EB Right	344	o ←	344	52	396	o 0	396	186	582		582	0	582		- 582	0	582	C	28
Comb. L-T-R -		0				0				0				0				0	
WB Left	0	0	1	0	0	0	,	0	0	0	,	0	0	0	,	0	0	0	-
Comb. L-T		0	,			0	,			0				0	ı			0	,
WB Thru	1104	€ CD	304	166	1270	n .	349	386	1656	ო	447	9	1662	ი	449	0	1662	ŝ	44
Comb. T-R	010	.	304	i	1	 ·	349			.	447			.	449				44
werkignt Comb L _a Taba	3/2	- c	007	00	124	c	667	91	443	- c	310	Þ	443	~ c	310	0	443		31
		2				5				2				0				0	
Crit. Volumes:		N-S:	675			N-S:	776			N-S:	1164			N-S:	1167			N-S:	116
		: М-Ш	468			E-W:	538			Щ-W:	677			: М-Ш	680			Е-W:	68
		SUM:	1143			SUM:	1314			SUM:	1841			SUM:	1847			SUM:	184
No. of Phases			ε				ε				ε				ε				
Volume / Cap	acity:	[1]	0.732			[1],[2]	0.822			[1].[2]	1.192			[1].[2]	1.196			[1],[2]	1.19
Level of Servic	je je		с U				D				Ľ				ш				ш
Assumptions		Aaximum .	Sum of Critic	cal Volume.	s (Interse	ction Capa	citv): 2 Phas	e=1500.3	Phase=1.	425. 4+ PI	lase=1375.	(Insignaliz	ed=1200						

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200. of volume is assigned to heavier lane.

For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. Right turns on red from excl. lanes = 50% of overlapping left turn. [1] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. For dual turn lanes, 55% For one excl. and one opt. turn lane, Right turns on red from excl. lanes =

CRITICAL MOVEMENT ANALYSIS

La Cienega Boulevard @ Wilshire Boulevard Peak Hour: AM Annual Growth: 1.0%

Project Alternative 2

La Cienega Boulevard Wilshire Boulevard Cedars-Sinai Medical Center / 1-992843-1 CMA21 Accutek

N-S St: E-W St: Project: File Name: Counts by:

08/05/2008 2008 2023 Date: Date of Count: Projection Year:

	2008	EXIST. TR	AFFIC	2023	W/ AMBI	ENT GROV	VTH	2023 \	V/ OTHEI	R PROJEC	CTS	2023 V	V/ PROPC	SED ALT	7	2023	W/ MITIC	SATION	
		No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
NB Left	254	c	254	38	292	c	292	94	386	~ c	386	0	386	- c	386	0	386	c	386
Comb. L-I NB Thru	1229	2 0	490	184	1414	2 01	- 563	486	1900	5 N	- 734	9	1906	5 N	- 736	0	1906	5 0	- 736
Comb, T-R			490				563			· •	734				736				736
NB Right	240	0	ı	36	276	0	,	26	302	0	ı	0	302	0	ı	0	302	0	1
Comb. L-T-R		0				0				0				0				0	
SB Left	90	-	06	13	103	-	103	67	170		170	-	171	-	171	0	171	÷ •	121
Comb. L-T	000	00				0 0		000		0 (- -	c		00	-	c		0 0	-
SB Inru Comb T_B	989	N +	415 715	148	1511	N -	4//	290	/7GL	N +	624 624	n	1530	- V	020 202	5	1530	N 7	629 676
SB Right	256	- 0	2	38	294	- 0	÷,	50	344	- 0	t 70 -		345	- 0	r7n -	0	345	- 0	- 1
Comb. L-T-R	,	0				0				0				0				0	
EB Left	108	-	108	16	124		124	99	190	-	190	-	191	-	191	0	191	-	191
Comb. L-T		0	,			0	ı			0	1			0	1			0	,
EB Thru Comh T.P	1065	C1 +	389	160	1224	∾ +	447	208	1432	¢1 +	537	0	1432	N +	537	0	1432	N +	537
EB Right	102	- 0		15	117	- 0	Ē,	62	179	- 0	5.	0	179	- 0	·	0	179	- 0	-
Comb. L-T-R		0				0				0				0				0	
WB Left	145	-	145	22	167	+	167	28	195	-	195	0	195	-	195	0	195	-	195
Comb. L-T		0	,			0	,			0	,			0	,			0	
WB Thru	1638	2 ·	565	246	1884	2	650	347	2231	2	794	0	2231	2	794	0	2231	2	794
Comb. T-R	ц	~- c	565	C	99	c	650	V B	150	c	794	ſ	150	~ c	794	c	150	c	794
Comb. L-T-R	3	0)	8	0		5	8	0		1	1	0		5	401	00	
Crit. Volumes.		N-S:	668			N-S:	769			N-S:	1009			N-S:	1011			N-S:	1011
		:М: Е-М:	673			E-W:	774			E-W:	984			E-W:	986			:М- П	986
		SUM:	1342			SUM:	1543			SUM:	1993			SUM:	1996			SUM:	1996
No. of Phases			4				4				4				4				4
Volume / Cap	acity:		0.976				1.122				1.450				1.452				1.452
Level of Servi	ice:		ш				ш				ц				ш				١Ŀ
Assumptions		Maximum	Sum of Criti	cal Volume	is (Interse	ction Canar	citv)- 2 Phas	se=1500_3	Phase=1	425 4+ PI	hase=1.375	l Insignali	ad=1200						
	ŕ	INTERNITION		בינייט אינייניי	DD ID II II CL	רווחוו סמתמ	LIVI, E FIG.	22211120	- Dooli			The second second second second second second second second second second second second second second second se							

Maxmum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsgnalized=1200. For dual turn lanes, 55% of volume is assigned to heavier lane. For one one opt. turn lane, 70% of volume is assigned to exclusive lane. Right turns on red from excl. lanes = 50% of overlapping left turn. Note: Year 2007 manual traffic counts were adjusted by a 1.0 percent (1.0%) ambient growth factor to reflect year 2008 existing conditions.

CRITICAL MOVEMENT ANALYSIS

La Cienega Boulevard @ Wilshire Boulevard Peak Hour: Annual Growth: 1.00%

Project Alternative 2

La Cienega Boulevard Wilshire Boulevard Cedars-Sinai Medical Center / 1-992843-1 CMA21 Accutek

N-S St: E-W St: Project: File Name: Counts by:

 Date:
 08/05/2008

 Date of Count:
 2008

 Projection Vear:
 2023

	2008 EX	(IST. TRA	FFIC	2023	N/ AMBIE	ENT GROW	TH	2023 V	V/ OTHEF	ROJE	CTS	2023 V	V/ PROPC	SED ALT	5	2023	W/ MITIG	ATION	
	Z	lo. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement V	/olume L	anes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
NB Left	166	ر م	166	25	190	c	190	61	251	~ c	251	0	251	c	251	0	251	- c	251
NB Thru	1277	5 (N +	473	191	1468	7 M T	544 544	543	2011	- 17 0	730	4	2015	о г ч т	732	0	2015	007	732
Comb. I-K NB Right Comb. L-T-R -	142	- 0 0	,	21	164	- 0 0	++ -	16	180	- 0 0	-	0	180	- 0 0	-	0	180	- 0 0	,
SB Left	121	- (121	18	139	- (139	179	318	- (318	2	320	- 0	320	0	320	c	320
SB Thru	1328	о (ч г	475	199	1527	0 N 1	- 546 	642	2169	о м ,	- 789	9	2175	5 M 7	791	0	2175	יאכ	- 791
Comb. I-K SB Right Comb. L-T-R -	96	-00	c/4	14	110	-00	04c	86	196	- 0 0	- 189	-	197	-00	-	0	197	- 0 0	-
EB Left	179		179	27	206	- 0	206	76	282	6	282		283		283	0	283	~ − 0	283
EB Thru	1343	⊃ ~ ·	492	201	1545	- M C	565	381	1926	- M -	- 724 	ο	1926	- M C	- 724 -01	0	1926	5 N T	- 724
Comb. I-K EB Right Comb. L-T-R -	131	- 0 0	- 492	20	151	-00	сос -	95	246	- 0 0	- 124	0	246	-00	- 124	o	246	-00	- 124
WB Left	237	~~	237	36	273	-	273	18	291	-	291	0	291		291	o	291	÷	291
Comb. L-T WB Thru	1177	0 0 .	424	176	1353	0 01 ·	- 487	244	1597	0 (1 -	- 602	0	1597	0 0 .	- 602	0	1597	0 0 .	- 602
Comb. T-R WB Right Comb. L-T-R -	95	- 0 0	424	14	109	-00	-	100	209	- 0 0	-		210	-00	- 602	0	210	-00	602
Crit. Volumes:		N-S: E-W: SUM:	640 729 1369			N-S: E-W: SUM:	736 838 1575			N-S: E-W: SUM:	1049 1015 2064			N-S: E-W: SUM:	1052 1015 2067			N-S: E-W: SUM:	1052 1015 2067
No. of Phases:			4				4				4				4				4
Volume / Capac Level of Service	sity: *		0.996 E				1.145 F				1.501 F				1.503 F				1.503 F
Assumptions:	N N N N N N N N N N N N N N N N N N N	aximum Sı ər dual turr ər one excl ght turns c əte: Year 2	um of Critics 1 lanes, 1. and one o 2017 manua	al Volume: 55% pt. turn laı excl. lane: I traffic co	s (Interse ne, s = unts were	ction Capa of volume 70% c 50% c adjusted t	city): 2 Phas is assigned of volume is of overlappir y a 1.0 peru	se=1500, 3 to heavier I assigned th ng left turn. :ent (1.0%)	Phase=1 lane. o exclusiv) ambient	425, 4+ Pl e lane. growth fa	hase=1375, ctor to reflect	Unsignaliz t year 200	ed=1200. 8 existing	conditions.					

CRITICAL MOVEMENT ANALYSIS

Orlando Avenue @ Third Street Peak Hour: AM Annual Growth: 1.0%

Project Alternative 2

Orlando Avenue Third Street Cedars-Sinai Medical Center / 1-992843-1 CMA22 Accutek

N-S St: E-W St: Project: File Name: Counts by:

08/05/2008 2008 2023 Date: Date of Count: Projection Year:

	2008 E	XIST. TR	AFFIC	2023	W/ AMBIE	ENT GROW	ТН	2023 \	V/ OTHE	R PROJE	CTS	2023 V	V/ PROPO	SED ALT 2		2023	W/ MITIG	ATION		
		No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	La	e
Movement	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volt	ame
NB Left	38	00	1	g	44	0 0	T	45	89	00	,	0	89	0 0	1	0	89	00	1	
NB Thru	95	00	- 185	14	109	00	- 213	0	109	00	- 258	0	109	00	- 258	0	109	00	·	258
Comb. T-R	1	0	,		i	0	ı			0				0	·			0	ł	
NB Right Comb. L-T-R -	52	0 ~	•	æ	23	0 -	,	0	59	0 -	·	0	29	0 -	1	0	59	0 +	•	
		-				-				-				-				-		
SB Left	18	0 0	r	n	21	0 0	ı	0	21	00	1	0	21	0 0	1	0	21	0	•	
COMD. L-1 SB Thru	393	00	480	59	452	- 0	- 552	0	452	00	- 552	¢	452	- 0	- 552	0	452	00	,	552
Comb. T-R	0	0 0	,		i	0	ı		i	0			l	0	1		i	0	ı	
SB Right	69	0,	1	10	29	0 .	,	0	79	0 ·	,	0	79	0		0	79	0	ı	
Comb. L-I-K -		-								-								-		
EB Left [1]	10	0		2	12	0		0	12	0	,	0	12	0	1	0	12	0		
Comb. L-1 FR Thru	507	c	300	70	BOB	C	345	171	777	c	452	ſ	770	c	453	c	770	- c		453
Comb. T-R	110) 	300	2		c	345	-	-	c	452	J			453	5		C	ı	453
EB Right	63	0	1	6	72	0	•	43	115	0	,	0	115	. 0		0	115	0	·)
Comb. L-T-R -		0				0				0				0				0		
WB Left [1]	62	0	ı	6	71	0		0	11	0		0	71	0		0	71	0		
Comb. L-T	0001	- c	686		0077	c	789	000		- 0	934			(936	c		 (936
Comb. T-R	9671	c	- 686	194	1490	C	- 789	082	1/80	- c	- 034	4	1/84	o -	- 036	0	1784	0 -	1	036
WB Right	15	0		7	17	0		0	17	0		0	17	• •		0	17	- 0	·	2
Comb. L-T-R -		0				0				0				0				0		
Crit. Volumes:		N-S:	518			N-S:	596			N-S:	641			N-S:	641			N-S:		641
		E-W:	969			E-W:	801			E-W:	946			E-W:	948			E-W:		948
		SUM:	1215			SUM:	1397			SUM:	1587			SUM:	1589			SUM:		1589
No. of Phases:			7				5				2				2					2
Volume / Capa	icity:	[2]	0.740			[1].[2]	0.831			[1].[2]	0.958			[1],[2]	0.959			[1],[2]		0.959
Level of Servic	jų.		с				D				ш				ш				ш	
Assumptions:	21	faximum S	Sum of Critic	al Volume	s (Interset	ction Capat	city): 2 Phas	e=1500, 3	Phase=1.	425, 4+ PI	hase=1375,	Unsignaliz	ed=1200.							
	Ll	or auai tu,	'n lanes,	%.cc	of volume	e is assigne	ed to neavie.	r lane.												

For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. Right turns on red from excl. lanes = 50% of overlapping left turn. [1] No Left-turns from 4 PM to 7 PM Weekdays. [2] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements. [3] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATSAC system improvements. [3] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [3] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [3] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.

CRITICAL MOVEMENT ANALYSIS

Orlando Avenue @ Third Street Peak Hour: PM Annual Growth: 1.00%

Project Alternative 2

Orlando Avenue Third Street Cedars-Sinai Medical Center / 1-992843-1 CMA22 Accutek

N-S St: E-W St: Project: File Name: Counts by:

Date: Date of Count: Projection Year:

2008 2023 08/05/2008

	Lane	Volume	1		658	1 1				282	. ,		1	- 066	996			P	-	584			697	1663	2	1.009	 ! !	
ATION	No. of	Lanes	0	0	00	00	~	0	0	0 0	00	-	0	0 •		0	0	0	0 -		00	2	N-S: N-S:	SUM:		[1].[2]	r-1.r. 1	
N/ MITIG	Total	Volume	133		4.2.7	103		39		210	33		0	1735		198		0	1110	-	49							
2023	Added	Volume	0	(Ð	a)	0		0	0		0	c	5	0		0	c)	0							
	Lane	Volume			800			1		7.97			1	- 066	996			,	- 584	584	1		697 066	900 1663	5	1 009	2	
SED ALT 2	No. of	Lanes	0	0 0		00	· ~	0	0 0		00	-	0	0 -		0	0	0	0 +		00	•	N-S: = M-	SUM:		141121		-
PROPOS	Total	olume	133	007	424	103		39		012	33		0	1735	2	198		0	1119		49			.,				d=1200.
2023 W	Added	Volume V	0	c	5	0		0	c	2	0		0	φ	٢	0		0	~	I	0							Insignalize
TS	Lane	Volume	ı	6 L C 1	8C0 -			.	, 1	707 -	ı		,	- 964	964	,		,	- 583	583	ı		697 064	1661	2	1.007	14-	ase=1375, U
PROJEC	No. of	Lanes	0	00		0 0		0	00	00	0	-	0	0 +		0	0	0	c	-	00	ı	N-S: E_M·	SUM:		[1],[2]		25, 4+ Ph. lane.
// OTHER	Total	/olume	133	004	774	103		39	010	210	33		ο	1731		198		0	1117		49							[⊃] hase=14. ine. exclusive
2023 W	Added	Volume \	100	c	>	0		0	c	2	0		0	353		91		0	248		0							=1500, 3 H heavier la issigned to
NTH	Lane	Volume	ı		onn 1			1	-	707 -				- 742	742	ı		F	459	459	ı		597 742	1339	2	0.793	с	city): 2 Phase is assigned to of volume is a
NT GROV	No. of	Lanes	0	00	00	0	-	0	00	00	0	-	0	- c		0	0	0 0	⊃ ←		00		N-S: F-W:	SUM:		[1],[2]		tion Capa of volume 70% of
<i>NI</i> AMBIE	Total	Volume	33	564	774	103		39		210	33		0	1378	5	107		0	869		49							t (Intersec
2023	Added	Volume	4	22	3	13		ъ	76	17	4		0	180	2	14		0	113		9							il Volumes 55% pt. turn lar
AFFIC	Lane	Volume	ı	105	100	,		t	-	· ·			1	- 645	645	•		ŗ	399	399	ı		519 645	1165	2	0.706	U	Sum of Critica rn lanes, c1. and one o
EXIST. TR	No. of	Lanes	0	00	00	0	-	0	00	00	0	~	0 0	c	·	0	0	0 0	⊃ ~		00		N-S: F-W:	SUM:		[2]		Jaximum : For dual tu
2008 E		Volume	28	367		06		34	581	2	28		0	1198		93		0	755		42					icity:	ë	
		Movement	NB Left	Comb. L-T NB Thri	Comb. T-R	NB Right	Comb. L-T-R -	SB Left	Comb. L-T SB Thri	Comb. T-R	SB Right	Comb. L-T-R -	EB Left [1]	Como. L-1 EB Thru	Comb. T-R	EB Right	Comb. L-I-K -	WB Left [1]	WB Thru	Comb. T-R	WB Right Comb. L-T-R -		Crit. Volumes:		No. of Phases:	Volume / Capa	Level of Servic	Assumptions:

Table A3-1 PROJECT ALTERNATIVE 3 TRIP GENERATION [1]

05-Aug-2008 PM PEAK HOUR DAILY AM PEAK HOUR TRIP ENDS [2] VOLUMES [2] VOLUMES [2] OUT TOTAL OUT TOTAL LAND USE SIZE VOLUMES IN IN 200,000 GSF 7.963 392 104 496 162 438 600 Medical Office Building [3] 496 TOTAL 7,963 392 104 162 438 600

[1] Source: ITE "Trip Generation", 7th Edition, 2003.

[2] Trips are one-way traffic movements, entering or leaving.

[3] ITE Land Use Code 720 (Medical-Dental Office Building) trip generation equation rates were utilized to forecast the daily and PM peak hour traffic volumes. ITE Land Use Code 720 trip generation average rates were used to forecast the AM peak hour traffic volumes as not equation rate is provided for the AM peak hour.
 - Daily Trip Rate: T = 40.89 (X) - 214.97; 50% inbound/50% outbound

- AM Peak Hour Trip Rate: 2.48 trips/1,000 SF; 79% inbound; 21% outbound

- PM Peak Hour Trip Rate: Ln(T) = 0.93 Ln(X) + 1.47; 27% inbound/73% outbound

Table A3-2 SUMMARY OF VOLUME TO CAPACITY RATIOS AND LEVELS OF SERVICE AM AND PM PEAK HOURS Project Alternative 3

	05-Aug-2008											
			[1]		[2]		E				[4]	
					YEAR 2	023	YEAR 20	123	YEAR 20	023		
					W/ AMBI	ENT	W/ RELAI	TED	W/PROPO	SED	CHANGE	SIGNIF.
		PEAK	EXISTI	5V NG	GROW	TH	PROJEC	ST	PROJEC	5	VIC	IMPACT
NO.	INTERSECTION	HOUR	V/C	LOS	V/C	LOS	V/C	<u>r</u> S	V/C	LOS	[(4)-(3)]	
								1		!		
-	Robertson Boulevard/	AM	0.914	ш	1.031	<u>1</u>	1.316	<u>ц</u>	1.333	<u>.</u>	0.017	YES
	Beverly Boulevard	Md	0.740	υ	0.832	۵	1.232	ц.	1.265	ı.	0.033	YES
2	Robertson Boulevard/	AM	0.481	<	0.534	×	0.850	Д	0.952	ш	0.102	YES
	Alden Drive-Gracie Allen Drive	PM	0.572	٨	0.639	В	1.034	ц	1.164	щ	0.130	YES
'n	Robertson Boulevard/	AM	0.701	υ	0.787	υ	1.182	يت.	1.229	μ.	0.047	YES
	Third Street	ΡM	0.659	В	0.739	U	1.223	ц	1.238	í1.,	0.015	YES
4	Robertson Boulevard/	AM	0.824	D	0.928	ш	1.262	μ.	1.282	<u>بت</u>	0.020	YES
	Burton Way	ΡM	0.872	D	0.983	Е	1.287	ц	1.329	Ъ	0.042	YES
ŝ	Robertson Boulevard/	AM	0.957	ш	1.101	ц	1.397	щ	1.407		0.010	YES
	Wilshire Boulevard	PM	0660	ш	1.138	ц	1.481	ц	1.496	۱L	0.015	YES
9	George Burns Road/	AM	0.523	۷	0.582	۷	0.695	д	0.781	ပ	0.086	YES
	Beverly Boulevard	ΡM	0.656	В	0.735	U	0.929	ш	1.033	ц	0.104	YES
7	George Burns Road/	AM	0.455	۲	0.523	A	0.675	ш	,0.856	D	0.181	YES
	Gracie Allen Drive	ΡM	0.534	۷	0.614	в	0.752	ပ	0.891	۵	0.139	YES
			1		1	(1		ſ		
∞	George Burns Road-Hamel Road/	AM	0.635	n	0.710	ບ	0.841	<u>م</u>	0.889	ב	0.048	YES
	Third Street	ΡM	0.436	۲	0.482	A	0.661	ш	0.744	ပ	0.083	YES
	-			-		-		-		¢		
5	Willaman Drive/	ΜA	0.416	<	0.409	K	080.0	<	710.0	n	0.032	DZ.
	Third Street	ΡM	0.484	۲	0.537	A	0.693	m	0.728	ပ	0.035	Q
										1		
10	Willaman Drive/	AM	0.713	υ	0.820	Δ	0.941	ш	0.941	ш	0.000	Q
	Wilshire Boulevard	PM	0.668	В	0.768	υ	0.898	Δ	0.899		0.001	QN

LLG Ref. 1-99-2843-1 Cedars-Sinai Medical Center Project

♠

Table A3-2 (Continued) SUMMARY OF VOLUME TO CAPACITY RATIOS AND LEVELS OF SERVICE AM AND PM PEAK HOURS Project Alternative 3

	05-Aug-2008											
			[1]		[2]		[£]				[4]	
					YEAR W/ AMB	2023 NENT	YEAR W/ REL	2023 ATED	YEAR 2 W/PROP	2023 OSED	CHANGE	SIGNIF.
		PEAK	EXIST	DNG	GROW	HTT	PROJE	CTS	PROJE	Ŀ	V/C	IMPACT
NO.	INTERSECTION	HOUR	V/C	LOS	V/C	LOS	V/C	LOS	V/C	LOS	[(4)-(3)]	
11	Sherbourne Drive/	AM	0.469	A	0.520	A	0.698	В	0.729	В	0.031	ON
	Third Street	ΡM	0.442	A	0.489	A	0.640	В	0.675	в	0.035	NO
12	San Vicente Boulevard/ Malrose Avenue	MA MM	0.814		0.937	шС	1.120 755	म, म	1.123	[I., [I	0.003	NO
13	San Vicente Boulevard/ Reverty Boulevard	AM PM	0.723		0.811		1.050	, r. r.	1.084	, jı, jı.	0.034	YES
14	San Vicente Boulevard/ Gracie Allen Drive-Beverly Center	AM	0.353	× ×	0.630	N V M	0.488	C A	0.786	ν γ υ	0.026	o v
15	San Vicente Boulevard/ Third Street	AM PM	0.741 0.709	00	0.832 0.796	U	1.119	ir. ir.	1.148 1.068	րո՝ եր՝	0.029 0.023	YES
16	San Vicente Boulevard-Le Doux Road/ Burton Way	AM PM	0.493 0.585	< <	0.547 0.653	A U	0.705 0.901	υш	0.717 0.930	υш	0.012 0.029	NO
17	San Vicente Boulevard/ Wilshire Boulevard	AM PM	0.759 0.721	υυ	0.853 0.810	00	1.060 1.010	ць	1.082 1.026	ــــا ــــا	0.022 0.016	YES YES
18	La Cienega Boulevard/ Beverly Boulevard	AM PM	0.882 0.989	ШD	0.994 1.118	шц	1.192 1.580	ը ե	1.233 1.594	цц	0.041 0.014	YES YES
19	La Cienega Boulevard/ Third Street	AM PM	0.825 0.873	םם	0.929 0.984	щщ	1.216 1.369	ււ	1.239 1.382	<u>ы</u> ы	0.023 0.013	YES YES
20	La Cienega Boulevard/ Son Visente Boulevard	AM	0.822		0.925	щС	1.231	р р	1.247	ыц	0.016	YES VFS

LLG Ref. 1-99-2843-1 • Cedars-Sinai Medical Center Project

Table A3-2 (Continued) SUMMARY OF VOLUME TO CAPACITY RATIOS AND LEVELS OF SERVICE AM AND PM PEAK HOURS Project Alternative 3

	05-Aug-2008											
			E		[2]		[5]				[4]	
					YEAR 2	023	YEAR 2	023	YEAR 20	023		
					W/ AMB)	GENT	W/ RELA	TED	W/PROPC	SED	CHANGE	SIGNIF.
		PEAK	EXISTIN	y	GROW	TH	PROJEC	CTS	PROJE	CT	V/C	IMPACT
NO.	INTERSECTION	HOUR	V/C I	LOS	V/C	LOS	V/C	LOS	V/C	LOS	[(4)-(3)]	
21	La Cienega Boulevard/	AM	0.976	ш	1.122	ĻL.	1.450	뇬	1.461	ы	0.011	YES
	Wilshire Boulevard	PM	0.996	ш	1.145	Ч	1.501	<u>н</u>	1.514	ц	0.013	YES
22	Orlando Avenue/	AM	0.740	U	0.831	Δ	0.958	ய	0.966	ш	0.008	ON
	Third Street	PM	0.706	υ	0.793	с	1.007	Ъ	1.016	ч	0.009	NO

City of Los Angeles intersection impact threshold criteria is as follows:

	Project Related Increase in v/c	equal to or greater than 0.040	equal to or greater than 0.020	equal to or greater than 0.010
_	TOS	U	D	E,F
	Final v/c	> 0.700 - 0.800	> 0.800 - 0.900	> 0.900

.

o:\job_file\2843\csmcproj\dwg\f-30.dwg LDP 11:02:39 08/05/2008 rodriquez

o:\job_file\2843\csmcproj\dwg\f-3b.dwg LDP 11:14:05 08/05/2008 rodriguez

a:\job_file\2843\csmcproj\dwg\f-3c.dwg_LDP_11:14:50_0B/05/2008_rodriguez

o:\job_file\2843\csmcproj\dwg\f-3d.dwg LDP 11:15:26 08/05/2008 rodriquez

CRITICAL MOVEMENT ANALYSIS

Robertson Boulevard @ Beverly Boulevard Peak Hour: AM Annual Growth: 1.0%

Project Alternative 3

Robertson Boulevard Beverly Boulevard Cedars-Sinai Medical Center / 1-992843-1 CMA1 Accutek

Project: File Name: Counts by:

N-S St: E-W St:

Date: Date of Count: Projection Year:

08/05/2008 2008 2023

	2008	EXIST. TR.	AFFIC	2023	W/ AMBIE	ENT GROW	/ТН	2023 V	V/ OTHEF	R PROJEC	CTS	2023 V	VI PROPC	SED ALT 2	~	2023	W/ MITIC	GATION	
		No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
NB Left	56	÷- 0	56	ß	64	← (64	25	89		89	10	66	÷ (66	0	66	-	66
NB Thru	337	⊃ <i>←</i> I	- 337	51	388	o ← I	- 388	298	686	- C	- 686	4	690	0 -	- 690	0	069	0	- 690
Comb. I-K NB Right Comb. L-T-R -	114	0 - 0	- 114	17	131	00	- 131	38	169	0-0	- 169	0	169	0 - 0	169	0	169	0-0	- 169
SB Left Comh 1T	53	c	53	80	60	c	60	53	113	- c	113	0	113	- 0	113	0	113	- 0	113
SB Thru	473	00,		71	544	00.		301	845	00		16	861	00		0	861	00	1 1
Comb. I-K SB Right Comb. L-T-R -	225	-00	1	34	259	-00	803 -	13	272	-00	-	0	272	-00	- 1133	0	272	-00	- 1133
EB Left Comb - T	36	- c	36	2	42	- 0	42	18	60	- (60	0	60	+	60	0	60	-	60
	305	5 M G	- 452	136	1041	5 M G	520	156	1197) N (- 598	0	1197	0 0	- 598	0	1197	0 0	- 598
Corno. I - K EB Right Comb. L-T-R -	88	0-0	88	13	101	00	- 101	50	151	0 - 0	- 151	39	190	0 - 0	- 190	0	190	0 0	- 190
WB Left	117	F	117	18	135	-	135	38	173		173	c	173	, -	173	c	173	, ,	173
Comb. L-T	1970	00	- 20	900	1677	00	-	007	2727	00				- 0 () (- L - C			- 0 (- i
Comb. T-R	4 V	101	- v	000		107	80 U		0 7	101				ч O т	0C0 1	-		N 0 1	800 - 800 -
Comb. L-T-R -	5	- 0	5	o	20	- 0	70	5	0	- 0	0	D	911	- 0	116	5	116	- 0	116
Crit. Volumes:		N-S: E-W: SUM:	753 722 1476			N-S: E-W: SUM:	866 830 1697			N-S: E-W: SUM:	1205 918 2123			N-S: E-W; SUM:	1231 918 2149			N-S: E-W: SUM:	1231 918 2149
No. of Phases:			2				2				2				2				2
Volume / Capa Level of Servic	icity: e:	[1]	0.914 E			[1],[2]	1.031 F			[1],[2]	1.316 F			[1],[2]	1.333 F			[1],[2]	1.333 F
Assumptions:	-	Aaximum 5	um of Critic	al Volumes	s (Intersec	stion Capac	itv): 2 Phas	9=1500, 3 /	Phase=14	425. 4+ Pł	iase=1375.	Unsionaliz	ed=1200.						

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200. For dual turn lares. 55% of volume is assigned to heavier lane.

For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. Right turns on red from excl. lanes = 50% of overlapping left turn. [1] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.

CRITICAL MOVEMENT ANALYSIS

Robertson Boulevard @ Beverly Boulevard Peak Hour: PM Annual Growth: 1.00%

Project Alternative 3

Robertson Boulevard Beverly Boulevard Cedars-Sinai Medical Center / 1-992843-1 CMA1 Accutek

N-S St: E-W St: Project: File Name: Counts by:

Date of Count: Projection Year:

Date:

08/05/2008 2008 2023

	2008	EXIST. TR.	AFFIC	2023	<i>NI</i> AMBIE	ENT GROW	VTH	2023 \	V/ OTHEN	R PROJE(CTS	2023 \	VI PROPO	SED ALT 2	2	2023	W/ MITIG	ATION	
		No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
NB Left	62		79	12	91		91	70	161	~~	161	44	205	-	205	0	205	~	205
Comb. L-T	1	0	1	:		0	,			0	1			0	,			0	1
	460	c	460	69	528	~- c	528	363	891	- (891	18	606	(606	0	606	·	606
Lomb. I-K NB Right	152	C	- 152	23	174	- c	- 174	<u>ب</u> ر	180	- c	-	C	081	• •	-	C	001	0 •	
Comb. L-T-R -	1	- 0	1]	-	- 0	-	2	2	- 0	2	•	6	- 0	601	5	0	- 0	60
SB Left	83	-	83	12	95	+	95	78	173	-	173	0	173	+	173	0	173	F	173
Comb. L-T	ł	0 0		ŭ		0 0	,			0	ı			0	,			0	ı
Comb T-R	3/4		- 482	00	430	C	- 554	G 05	G B/	э -	056	Ð	801	0,	- 10	0	801	0 1	-
SB Right	108	- 0	40t -	16	124	- 0	r 	37	161	- 0	1	0	161	- 0	706 -	0	161	- 0	706
Comb. L-T-R -		0				0				0				0				0	
EB Left Comb I H	134	c	134	20	154	- o	154	34	188		188	0	188		188	0	188	-	188
COMD. L-1 EB Thru	1129	0 N	- 565	169	1299	2 00	- 649	235	1534	0 N	- 767	0	1534	0 0	- 767	C	1534	0 ^	- 767
Comb. T-R		0				0	1			0	1	ı		0		•		10	
EB Right	67	-	67	10	11		77	39	116	-	116	16	132	-	132	0	132	-	132
Comb. L-T-R -		0				0				0				0				0	
WB Left	06		06	13	103	+	103	11	114	-	114	0	114	F	114	0	114	t	114
Comb. L-T	ļ	0	1			0	•			0	ı			0	,			0	ı
	950	NC	475	143	1093	N C	546	242	1335	~ ~	667	0	1335	0 0	667	0	1335	0 0	667
WB Right	81		81	12	93	⊃ ←	- 63	20	163	C	- 163	o	163	⊃ ~	- 163	C	163	C	- 163
Comb. L-T-R -		0				0				0			1	0) -)		• 0	2
Crit. Volumes:		N-S:	561			N-S:	645			N-S: N	1117			N-S:	1167			N-S:	1167
		E-W:	654			E-W:	753			E-W:	881			E-W:	881			Е-М:	881
		SUM:	1215			SUM:	1397			SUM:	1998			SUM:	2048			SUM:	2048
No. of Phases.			2				7				2				2				73
Volume / Caps	icity:	[4]	0.740			[1],[2]	0.832			[1],[2]	1.232			[1],[2]	1.265			11.121	1.265
Level of Servic	į		U				D				ц				ц				Ц.,
Assumptions		S minuiver	Sum of Critic	- Wolinion	(laterated)	Ċ			i	i									

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1426, 4+ Phase=1375, Unsignalized=1200. of volume is assigned to heavier lane. 55% For dual turn lanes,

For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. Right turns on red from excl. lanes = 50% of overlapping left turn. [1] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.

Robertson Boulevard Alden Drive Cedars-Sinai Medical Center / 1-992843-1

CMA2 Accutek

Project: File Name: Counts by:

N-S St: E-W St:

CRITICAL MOVEMENT ANALYSIS

Robertson Boulevard @ Alden Drive Peak Hour: AM Annual Growth: 1.0%

Project Alternative 3

08/05/2008 2008 2023 Date: Date of Count: Projection Year:

	2008	EXIST. TR	AFFIC	2023 \	V/ AMBIE	ENT GROW	VTH	2023 V	W/ OTHEF	ROJEC	TS	2023 V	II PROPO	SED ALT:	2	2023	W/ MITIG	ATION		Γ
		No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	
Movement	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Т
NB Left	22	-	22	e	26	£	26	16	42		42	0	42		42	0	42	.	42	
Comb. L-T		0	,	i		0	t			0				0	1			0	ı	
	483	0	;	72	555	0		325	880	0	,	0	880	0	1	0	880		880	_
Comb. T-R	:		571				656	:	į	. .	1030	i			1101			0	ı	
NB Right Comh L. T. P	88	00	ł	<u>6</u>	101	00	•	49	150	0 0	,	71	221	00	1	0	221	- c	221	
		0				5				2				5				D		
SB Left	35	-	35	5	41	F	41	59	100	-	100	55	155	-	155	0	155	-	155	Τ.
Comb. L-T		0	ı			0	,			0				0	,			0	Į	
SB Thru	565	0	r	85	649	0		321	970	0		0	970	0	ı	0	970	0	ı	
Comb. I-K	ц	~ c	619	α	63	c	712	÷	74	c	1044	r	76	c	1046	c	70	c	1046	
Comb. L-T-R -	3	0	I	C	3	00	ı	Ξ	ţ	00	ı	N	2	00	,		2	00	1	
EB Left	29	0	1	4	34	0	,	20	54	0		æ	62	0	•	0	62	0	1	
Comb. L-T	ġ	0 0	•	:	ł	0 1	1	:		0		1		0				0	,	
EB Thru	68	0 0	145	10	78	0 0	167	32	110	0 0	233	0	110	0 (241	0	110	0 (241	
COMD. I-K	48			7	5	5 0	1	٧F	70	- c		c	40	- c	ı	c	0 P	0 0	,	
Comb, L-T-R -	ř	c		-	3		•	t	2	⊃ ~	•	>	2		1	>	2	- c	ı	
														-				-		
WB Left	40	0	1	9	46	0	1	16	62	0	1	19	81	0		0	81	0	•	
Comb. L-T		0	,			0	ı			0	1			0					157	
	26	0 0	128	æ	64	0 0	148	12	76	0 0	197	0	76	0 0	231	0	76	0	ı	
VVB Right	68			Ľ	37			24	ц ц			ц Ц	73	- -		c	70	0 1	-	
Comb. L-T-R -	}	, 		>	5			ī	8	• ≁		2	2	c		0	2	- 0	2	_
														-						
Crit. Volumes:		in di	641				738			S-N	1130			ίΩ Ζ	1256			is i Z	1088	
		-W.	100			CLIM.	214				2962				323			х Ц	323	
		.WDD	170			- MIND	20			-ivine	0741			SUM:	6/CI			aulw:	1410	
No. of Phases:			2				2				2				2					
Volume / Capac	city:	[1]	0.481			[1],[2]	0.534			[1],[2]	0.850			171.121	0.952			[1].[2]	0.840	Τ
Level of Service	'n		A				A				D			- 1	L				۵	
																				1

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200.

Assumptions:

For dual turn lanes, 55% of volume is assigned to heavier lane. For one excl. and one opt. turn lane, 50% of volume is assigned to exclusive lane. Right turns on red from excl. lanes = 50% of overlapping left turn. [1] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.

CRITICAL MOVEMENT ANALYSIS

Robertson Boulevard @ Alden Drive Peak Hour: PM Annual Growth: 1.00% Annual Growth:

Project Alternative 3

Cedars-Sinai Medical Center / 1-992843-1 CMA2

Accutek

Counts by:

Project: File Name:

Robertson Boulevard Alden Drive

N-S St: E-W St:

08/05/2008 2008 2023 Projection Year: Date of Count:

Date:

1078 1.000 132 6 986 262 1169 482 1650 6 331 207 Volume Lane ш [1],[2] 0 - 0 0 0 00 00000 00 T C No. of Lanes N-S: E-W: SUM: 2023 W/ MITIGATION 132 48 125 79 1078 80 938 111 Volume Volume 6 57 220 207 Total Added 0 0 0 0 0 0 o c 0 0 0 262 1210 300 595 896 2 8 986 538 1.164 6 Volume Lane L 2023 W/ PROPOSED ALT 2 [1],[2] 00 00 00 000 00 00000 0 0 No. of Lanes N-S: N-B: SUM: 1078 132 6 938 48 125 79 11 6 5 220 207 Volume Volume Added Total 0 c C 0 C σ 0 20 29 23 61 1248 452 1701 2 1.034 Volume 1181 977 259 398 6 67 Lane 2023 W/ OTHER PROJECTS ц [1],[2] c 0 c 000 c 0 C 0 No. of Lanes N-S: E-W: SUM: Added Total Volume Volume 1078 103 938 39 54 125 79 E 146 9 67 41 35 363 380 9 10 38 74 25 30 34 63 2 0.639 26 793 200 223 830 278 1108 Volume 581 Lane 2023 W/ AMBIENT GROWTH в [1],[2] 00 00 0 0 00 000 00 000 00-No. of Lanes N-S: E-W: SUM: Volume Volume 715 73 26 78 23 45 601 45 72 Added Total 37 558 8 ŝ 73 Ċ ø 9 σ 63 9 ശ 4 9 2 22 690 32 505 174 194 722 241 964 0.572 Volume Lane 2008 EXIST. TRAFFIC ∢ E 00 0 00 0 0 00 0 0 0 0 0 000 No. of Lanes N-S: E-W: SUM: Volume 622 485 20 95 39 68 64 63 22 68 32 39 /olume / Capacity: evel of Service: lo. of Phases: Assumptions: EB Right Comb. L-T-R crit. Volumes: Comb. L-T-R Comb. L-T-R Comb. L-T-R WB Thru Comb. T-R NB Thru Comb. T-R SB Thru Comb. T-R Movement EB Left Comb. L-T Comb. T-R Comb. L-T Comb. L-T Comb. L-T WB Right NB Right EB Thru WB Left SB Right SB Left NB Left

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200. of volume is assigned to exclusive lane. of volume is assigned to heavier lane of overlapping left turn. 20% 50% Right turns on red from excl. lanes = For one excl. and one opt. turn lane, 55% For dual turn lanes,

[1] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements.
[2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.
Note: Year 2007 manual traffic counts were adjusted by a 1.0 percent (1.0%) ambient growth factor to reflect year 2008 existing conditions.

CRITICAL MOVEMENT ANALYSIS

Robertson Boulevard @ Third Street Peak Hour: AM Annual Growth: 1.0%

Project Alternative 3

Cedars-Sinai Medical Center / 1-992843-1 CMA3 Accutek

Robertson Boulevard Third Street

N-S St: E-W St: Project: File Name: Counts by:

Date of Count: Projection Year:

Date:

2008 2023 08/05/2008

	2008 EXI	IST. TRA	FFIC	2023 \	W/ AMBIE	ENT GROW	VTH	2023 V	V/ OTHE	R PROJE(CTS	2023 \	W/ PROPC	SED ALT 2	2	2023	W/ MITIG	ATION	
	Ň	o. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement	Volume La	nes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
NB Left	30	<i>← (</i>	30	ũ	35	I	35	7	37		37	0	37	÷	37	0	37	-	37
Comb. L-1 NB Thru	514	00		77	591	00	1 7	343	934	00		55	686	00		0	989	00	
NB Right	155	- 0 1	- 669	23	178	- 0	- 769	91	269	- 0	1203	0	269	-0	1258	0	269	- 0	1258 -
Comb. L-1-K		D				0				0				0				0	
SB Left Comb 1.T	37	c	37	9	43	- c	43	e	46		46	0	46	- 0	46	0	46	- (46
	510	00,		77	587	00		295	882			15	897	00		0	897	00	
SB Right	47	- 0	, box	7	55	- 0	- 641	55	110	- 0	991	4	114	- 0	- 1010	0	114	- 0	- 1010
Comb. L-T-R -	·	0				0				0				0				0	
EB Left Comh I -T	36	c	36	5	42	- 0	42	43	85	- c	85	16	101	- 0	101	0	101	+ (101
	323) - - 1	179	48	372	o — ·	206	172	544	o ⊷ ·	297	0	544	C	- 297	0	544	⊃ -	- 297
Como. I-K EB Right	35	- 0	6/L -	S	41	- 0	- 206	10	51	- 0	- 297	0	51	- 0	- 297	C	τ.	c	297 -
Comb. L-T-R -		0				0				0				0		•		0	
WB Left	120	+	120	18	138	-	138	54	192	1	192	0	192	t	192	0	192	-	192
Comb. L-T WB Thru	761	0 +	- 415	P ++	875	0 +	- 477	666	1007	0,	- 280	c	1007	0,	1	c	1001	0 1	, ,
Comb. T-R	-	- +	415	-	5		477		1001		589	2	Ien!		203 589	D	1801		985 589
WB Right	69	00	1	10	62	00	1	ε	82	0 0		0	82	0	1	0	82	0	I
		5				5				Þ				0				0	
Crit. Volumes:	Ζu	S- N	706			N-S: M	812			N-S: 1	1249			N-S:	1304			N-S:	1304
	ល	:Wr	1157			SUM:	1330			SUM:	0/4 1923			SUM:	690 1994			E-W: SUM:	690 1994
No. of Phases:			2				2				2				2				2
Volume / Capa	acity:	μ	0.701			[1],[2]	0.787			[1],[2]	1.182			12111	1.229			111.121	1.229
Level of Servic	je:		~				U				Ш.,				Ŀ				LL.
Assumptions	waw.	timum Su	m of Gritics	Nolumes	: lintersec	-tion Canac	vitv)- 2 Phas	0=1500 31	Dhace=17	40 H 204	1250-1375	l Incinali	000						

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200.

For dual turn lanes, 55% of volume is assigned to heavier lane. For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. Right turns on red from excl. lanes = 50% of overlapping left turn. [1] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.

Robertson Boulevard Third Street Cedars-Sinai Medical Center / 1-992843-1 CMA3 Accutek

N-S St: E-W St: Project: File Name: Counts by:

CRITICAL MOVEMENT ANALYSIS

Robertson Boulevard @ Third Street Peak Hour: PM Annual Growth: 1.00%

Project Alternative 3

Date: Date of Count: Projection Year:

2008 2023 08/05/2008

	2008	EXIST. TR.	AFFIC	2023	W/ AMBII	ENT GROV	VTH	2023 V	V/ OTHEF	ROJE	CTS	2023	V/ PROPO	SED ALT	2	2023	W/ MITIG	ATION		
		No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	
Movement	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume /	/olume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	
NB Left	25	÷ 1	25	4	29	*"	29	თ	38	-	38	0	38	÷	38	0	38	-	38	T
Comb. L-1 NB Thru	557	00	1 1	83	640	00		365	1005	00		23	1028	00	1 1	0	1028	00	1 1	
Comb. T-R NB Right	112	- 0 0	- eeg	17	129	-00	- 769	96	225	- 0	1230	0	225	- 0	1253 -	0	225	~ 0	1253	
ר-ו-א		5				0				0				0				0		
SB Left Comb 1 -T	57	 c	57	ω	65	+- C	65	0	65	- 0	65	0	65	- 0	65	0	65	-	65	
SB Thru	483	00,	1 C L	72	555	00	1	426	981	00		61	1042	00		0	1042	00	1 1	
SB Right	53	- 0	 -	8	60	- 0	616	49	109	- 0	1091	18	127	- 0	- 1170	0	127	- 0	1170	
Comb. L-T-R -		0				0				0				0		I	į	0		
EB Left Comb 1 - T	53		53	8	60	- 0	60	59	119		119	9	125	← (125	0	125	← 1	125	1
EB Thru	441	o ← •	240	66	508	· ·	276	293	801	⊃ - -	- 425	0	801	C	- 425	0	801	0 -	- 425	
Como. I-K EB Right	39	- 0	- 240	9	45	- 0	276 -	Ŋ	20	- 0	425	C	50	- c	425	C	0 L	c	425	
Comb. L-T-R -		0				0				0			;	0		þ	8	0		
WB Left	128	-	128	19	148	-	148	116	264	-	264	0	264	-	264	0	264	-	264	T
Comb. L-T	128	0,	- 753	99	F C U	0 1	-		(0,	,	0	1	0				0		
Comb. T-R	b		253	B	+00		790 280	747	/40		411 411	0	/46		411	0	746	÷ -	411	
WB Right	67	0	,	10	17	. 0	1	0	77	- 0	- -	0	11	- 0	- - -	C	77	- c	- 411	
Comb. L-T-R -		0				0				0				0		I	:	0		
Crit. Volumes:		N-S:	725			N-S:	834			N-S:	1295			N-S:	1318			S-N	1318	-
		: М:	369			н-М:	424			E-W:	689			E-W:	689			E-W:	689	
		SUM:	1094			SUM:	1258			SUM:	1984			SUM:	2007			SUM:	2007	
No. of Phases:			2				5				2				3				7	—
Volume / Capa	tcity:	[H]	0.659			[1],[2]	0.739			[1],[2]	1.223			141121	1 238			161111	1 238	Т
Level of Servic	ë		8			:	U			1 1	ш.			-14F. 1	2004 			- 1.1	р 	
Assumptions:	~	Aaximum S	um of Critic	al Volumes	(Interser	-fion Canar	viiu): 2 Phac	1 E UU 3 F	h=cacht	10E 44 Dh		I locionit	0004-200							1

Maximum surri or unident volumes (intersection Lapacity): z mase=1 out, s mase=1 + 4:0, ++ mase=1 + 1:0, unsignanceu=1 ± uu. For dual turn lanes, 55% of volume is assigned to heavier lane. For one excl. and one opt. turn lane, 70% of volume is assigned fo exclusive lane. Right turns on red from excl. lanes = 50% of overlapping fight turn. [1] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.
CRITICAL MOVEMENT ANALYSIS

Robertson Boulevard @ Burton Way Peak Hour: AM Annual Growth: 1.0%

Project Alternative 3

Robertson Boulevard Burton Way Cedars-Sinai Medical Center / 1-992843-1 CMA4 Accutek

N-S St: E-W St: Project: File Name: Counts by:

Date: Date of Count: Projection Year:

08/05/2008 2008 2023

	2008	EXIST. TR/	AFFIC	2023	W/ AMBIE	ENT GROW	HTV	2023 V	N/ OTHE	ROJEC	TS	M 5000		SED ALT 3		2023 M	V/ MITIGA	TION	
		No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	ane	Adad V				Addad	Total	No of	046
Movement	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	vo. or Lanes	Volume	Volume V	/olume	Lanes	Volume
NB Left	122	C	122	18	141	<i>←</i> 0	141	45	186	~ (186	0	186	. .	186	0	186	ب	186
COLLE- L NB Thru Comb T_P	607	o c	607	91	698	o - c	- 698	384	1082	o - c	- 1082	39	1121	0-0	- 1121	0	1121	0 1	- 1121
NB Right Comb. L-T-R -	28	0-0	28	4	33	0-0	33	D	33	0 - 0	33	0	33	00	33	o	33	0 ~ 0	33
SB Left Comh 1-T	40		40	Ð	46	c	46	7	48	c	48	0	48	~- c	48	0	48	- 0	48
SB Thru Comb. T-R	623	00-	- 692	93	717	, o -	- 796	299	1016	, o c	1 1 1 1 1 1 1 1 1 1 1 1 1	10	1026	00,	1 7 7 7	0	1026	00,	1 1 1
SB Right Comb. L-T-R -	69	- 0 0	4))	10	79	- 0 0		56	135	- 0 0	2	4	139	-00	coll -	0	139	-00	1
EB Left Comh I _T	91	c	91	14	105	- c	105	50	155	- 0	155	16	171		171	0	171	-	171
CONNUL C-1 EB Thru Comh T-R	606	0 0 0	303	91	697	0 N C	348	114	811	⊃ m c	- 270	0	811	- ო ძ	- 270	0	811	0 0 0	- 270
EB Right Comb. L-T-R -	82	0 - 0	82	12	94	0-0	94	28	122	00	122	0	122	0-0	- 122	o	122	0-0	- 122
WB Left Comb 1_T	148	c	148	22	171	- c	171	6	180	- 0	180	0	180	- (180	0	180		180
	1306	0 M C	435	196	1502	റ ന ര	501	154	1656) ന (- 552	0	1656	၂ ၂ ၂	- 552	0	1656	0 ന	- 552
WB Right [3] Comb. L-T-R -	86	0 - 0	86	13	66	0 - 0	66 '	N	101	0-0	101	0	101	0 - 0	101	0	101	0 - 0	- 101
Crit. Volumes:		N-S: E-W: SUM:	814 526 1340			N-S; E-W: SUM:	936 605 1541			N-S: E-W: SUM:	1336 706 2043			N-S: E-W: SUM:	1350 722 2073			N-S: E-W: SUM:	1350 722 2073
No. of Phases:			7				2				2				7				2
Volume / Capa Level of Servic	city: e:	[4]	0.824 D			[1],[2]	0.928 E			[4],[2]	1.262 F			[1].[2] F	1.282			[1].[2] F	1.282
Assumptions:		Maximum 5 For dual tur For one exc Right turns 1] The volu 2] The volu 3] Funtiona Vote: Year	lum of Critic n lanes, cl. and one c on red from une to capa ure to capa ure to capa ure to capa ure to capa ure to capa	al Volume. 55% 5pt. turn laı excl. lane: city ratios I city ratios I only lane.	s (Interse of volume ne, s = nave beer nave beer unts were	ction Capac e is assigne 70% c 50% c 1 reduced b 1 reduced b	city): 2 Phas of to heavier of volume is of overlappin y 0.03 to ac y 0.03 to ac	e=1500, 3, lane. assigned to g left turn. count for th count for th count for th	Phase=14 c exclusivv he installa he installa i ambient ;	425, 4+ Ph e lane. tion of the tion of the growth fact	ase=1375, Wilshire We Wilshire We	Unsignalize sst ATSAC sst ATCS s year 2008	d=1200. system im ystem imp existing c	aprovement: provements.	ń	7 8 9 8 6 X X	ote: Mitig laster Plau proach w ssumed in roject Cor	ration for Enti n includes ins hrough lane a vhich has bee the Future F ndition.	tled tallation tt the EB rn rre-

CRITICAL MOVEMENT ANALYSIS

Robertson Boulevard @ Burton Way Peak Hour: PM Annual Growth: 1.00%

Project Alternative 3

Robertson Boulevard Burton Way Cedars-Sinai Medical Center / 1-992843-1 CMA4 Accutek

N-S St: E-W St: Project: File Name: Counts by:

08/05/2008 2008 2023 Date: Date of Count: Projection Year:

	2008	EXIST. TR	AFFIC	2023	W/ AMBIE	ENT GROM	νтн	2023 \	V/ OTHEI	R PROJE	CTS	2023	N/ PROPC	DSED ALT	2	2023	W/ MITIG	ATION	
Movement	Volumo	No. of	Volumo	Volumo	Volumo	No. of	Lane	Volumo	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
												Volume	volume	Lanes	volume		allino	LAILES	AUNTIE
NB Left	96	c	96	14	110	- c	110	30	140	c	140	0	140	C	140	0	140	c	140
NB Thru	629		629	94	724	c	724	407	1131	c	1131	16	1147	c	1147	0	1147		- 1147
Comb. T-R	с. т	• •	, ,	c	ç	0,	, ,	d	ç	0,		0	ŝ	0 ·		4	:	0	•
Comb. L-T-R	- 42	- 0	4	٥	64 1	- 0	94	5	64	- 0	94 9	5	44	- 0	49	0	49	- 0	49
SB Left	52	-	52	ø	59	-	59	e	62	-	62	0	62	-	62	0	62	-	62
Comb. L-T	000	00		Č	662	00	ı		1	00	ŧ		11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0	ł	C		0 0	8
Comb. T-R	870	c	- 668	94	771	⊃ ←	- 768	484	1171	C	- 1312	44	GGZ1	- C	- 1374	D	1255	0 -	- 1374
SB Right	39	00	ı	ω	45	00	r	55	100	00	ł	18	118	00		0	118	. 0 (
Comb. E-1-K	i	Ð				0				D				0				0	
EB Left Comb 1_T	107	c	107	16	123	c	123	60	183	- c	183	9	189	- 0	189	0	189	c	189
EB Thru	1044	0 01 0	522	157	1201	0 01 0	600	189	1390	.	463	0	1390	ວຕ	- 463	0	1390	0 M	- 463
Comb. I-K EB Right	49	0 -	- 49	7	57	0 -	- 57	54	111	0 -	- 111	0	111	0 -	- 111	0	111	0 -	- -
Comb. L-T-R		0				0				0				0				0	
WB Left	127	c	127	19	146	- 0	146	19	165	- c	165	0	165	- 0	165	0	165	(165
	863		288	129	992	ວຕເ	331	158	1150	מייכ	383	0	1150	၁ က (- 383	0	1150	၂ က	- 383
WB Right [3]	54	⊃ - -	- 54	8	62	- c	- 62	4	66	C	66	0	99	0 -	- 66	0	66	0 -	- 66
Comb. L-T-R		0				0				0				0				0	
Crit. Volumes:		N-S: N N	764			N-N:	878			N-S:	1452			N-S:	1514			N-S:	1514
		SUM:	049 1413			SUM:	141 1625			E-W: SUM:	629 2081			E-W: SUM:	629 2143			E-W: SUM:	629 2143
No. of Phases	1-		2				2				2		5		2				2
Volume / Cap:	acity:	μ	0.872			[1],[2]	0.983			[1].[2]	1.287			16] [H]	1 320			141.121	1 329
Level of Servi	ce:		۵				ш				Ŀ.			F-147. 1	с Ц				ш
Assumptions		Maximum For dual tu For one ex Right turns	Sum of Critix rm lanes, cl. and one on red from	cal Volume. 55% opt. turn la	s (Intersev ne, s =	ction Capac of volume i 70% c 50% o	city): 2 Phas is assigned of volume is of overlappin	se=1500, 3 to heavier l assigned tr ng left turn.	Phase=1 ane. o exclusiv	425, 4+ P. 'e lane.	hase=1375,	Unsignali.	red=1200.				Note: Mi Master P. of a third	tigation for l lan includes through lar which has	Entitled installation ie at the EB heen
		[1] The vol	ume to cape	city ratios .	have beer	n reduced b	by 0.07 to ac	scount for t	he installs	stion of the	Wilshire W	est ATSA	C system i	mprovemei	nts.		assumed	in the Futur	e Pre-

tel me voume se verseus, severe severe adjusted by a 1.0 percent (1.0%) ambient growth factor to reflect year 2008 existing conditions. Note: Year 2007 manual traffic counts were adjusted by a 1.0 percent (1.0%) ambient growth factor to reflect year

CRITICAL MOVEMENT ANALYSIS

Robertson Boulevard @ Wilshire Boulevard Peak Hour: AM Annual Growth: 1.0% Peak Hour: Annual Growth:

Project Alternative 3

Robertson Boulevard Wilshire Boulevard Cedars-Sinai Medical Center / 1-992843-1 CMA5 Accutek

N-S St: E-W St: Project: File Name: Counts by:

08/05/2008 2008 2023 Date: Date of Count: Projection Year:

Movement Volume Movement Volume NB Left 180 Comb. L-T 673 NB Thru 673 NB Right 129 NB Right 129	:						1 0707			2	A C2U2	U TURUTU		~	5773		ATION	
Movement Volume I NB Left 180 Comb. L-T 673 Comb. T-R 0573 NB Right 129 NB Right 129	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
NB Left 180 Comb. L-T 673 NB Thru 673 Comb. T-R 129 NB Right 12	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
Contro: L-1 NB Thru 673 Comb. T-R 129 NB Right 129	c	180	27	207	(207	48	255	~ (255	0	255		255	0	255	÷	255
Comb. T-R NB Right 129	c	- 401	101	774	⊃ -	- 461	316	1090	0 -	- 627	76	1117	o +	- 641	C	1117	0 -	-
NB Right 129	. .	401				461	2			627	ā	-		641	2			641 641
Comb L-T-R -	0 0	1	19	149	00	ł	16	165	00	ı	0	165	00		0	165	00	1
- -	,				0				6				2				2	
SB Left 92	- (92	14	106	-	106	31	137	-	137	0	137	-	137	0	137	-	137
Comb. L-1 Sed Thru	0,		80	700	0 1	-	1		0 -	-	1		0,		(0	
Comb. T-R		380	000	cc/		437	214	80A		575 575	-	9/6	r- +-	5/9 570	0	976		579 E70
SB Right 104	0		16	120	0	; ,	61	181	- 0	, ,	2	183	- 0	-	0	183	- c	ה רומ י
Comb. L-T-R -	0				0				0		I		0		1	2	00	
EB Left 74	. .	74	11	85	+	85	75	160	1	160	8	168	-	168	0	168	-	168
Comb. L-T	0	,			0	ı			0	1			0	,			0	
EB Thru 1058 Comh T-R	~ ~	393 303	159	1217	~ ~	451	305	1522	~ ∽	561 561	8	1530	(N 7	564	0	1530	~ ~	564
EB Right 119	- 0	,	18	137	- 0	, F	24	161	- c	- - - -	C	161	- c	+0C	C	161	- c	- 100 -
Comb. L-T-R -	0				0				0		I		0)	2	0	
WB Left 129	F	129	19	149	-	149	9	155	-	155	0	155	-	155	C	155	-	155
Comb. L-T	0	,			0	ı			0				. 0		9	2	- 0	
WB Thru 1975	2	682	296	2271	2	785	406	2677	2	931	2	2679	2	932	0	2679	0	932
Comb. T-R	- (682			- 1	785	i		 -	931				932				932
Comb. L-T-R -	00	1	F	α4	2 0	ı	4 <u>5</u>	118	o c		0	118	0 0		0	118	00	•
									,				5				5	
Crit. Volumes:	:S-Z	560			N-S:	644			N-S:	830			N-S:	834			N-S:	834
	Ш-М:	756			: М-Ш	870			E-W:	1091			Е-W:	1100			E-W:	1100
-	SUM:	1316			SUM:	1514			SUM:	1921			SUM:	1934			SUM:	1934
No. of Phases:		4				4				4				4				4
Volume / Capacity:		0.957				1.101				1.397				1 407				1 407
Level of Service:		ш				ιL				Ľ.			_					ц

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200. For dual turn lanes, 55% of volume is assigned to heavier lane. For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. Right turns on red from excl. lanes = 50% of overlapping left turn. Note: Year 2007 manual traffic counts were adjusted by a 1.0 percent (1.0%) ambient growth factor to reflect year 2008 existing conditions.

CRITICAL MOVEMENT ANALYSIS

Robertson Boulevard @ Wilshire Boulevard Peak Hour: PM Annual Growth: 1.00% Peak Hour: Annual Growth:

Project Alternative 3

Robertson Boulevard Wilshire Boulevard Cedars-Sinai Medical Center / 1-992843-1 CMA5 Accutek

Project: File Name: Counts by:

N-S St: E-W St:

Date: Date of Count: Projection Year:

08/05/2008 2008 2023

	2008	EXIST. TR	AFFIC	2023	W/ AMBI	ENT GROV	VTH	2023 \	W OTHE	R PROJE	CTS	2023	NI PROP(DSED ALT	2	2023	W/ MITIC	SATION	
		No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
NB Left	197	C	197	30	226	 c	226	32	258	~ (258	0	258	~ 0	258	0	258	<u>~</u> (258
NB Thru	595	· c	345	89	684	⊃ - -	- 397	309	993	⊃	- 556 556	1	1004	⊃ - -	- 562	0	1004	⊃ ← ·	- 562 700
NB Right Comb 1-T-R -	96	- 0 0		14	110	- 0 0	180 -	6	119	- 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	119	- 0 0	700	0	119	- 0 0	790
				!		,	1			,				>				Þ	
SB Left Comb. L-T	64	- 0	- 64	10	73	- 0	- 73	68	141	- c	- 141	0	141	← C	- 141	0	141	c	141
SB Thru Comb T-R	713	. .	399	107	820	· • •	459 450	421	1241		721	31	1272) 1	741	0	1272	1	741
SB Right	85	- 0 0	1	13	98	- 0 0	n D t I	104	202	- 0 0	- 17/	0	211	- 0 (- 141	0	211	- 0 (- /41
		c				0				þ				0				0	
EB Left Comb 1-T	119	c	119	18	137	c	137	20	207	- c	207	ε	210	- 0	210	0	210	c	210
EB Thru	1704	0 01 7	619	256	1959	0 01 1	712	423	2382	. 10	871	ო	2385	D (N ·	- 872	0	2385	N C	- 872
EB Right	155	- 0	- 0	23	178	- 0	ZL/ -	53	231	- 0		0	231	- 0	872 -	0	231	- 0	- 872
Comb. L-T-R .		0				0				0				0				0	
WB Left	145		145	22	167	← c	167	18	185	c	185	0	185	c	185	0	185	ر ر	185
WB Thru	1316	0 0	455	197	1513	50	523	336	1849	9 0	- 652	Ø	1858	5 77	- 655	0	1858	9 6	- 655
Comb. T-R WB Riaht	49	- 0	455	7	57	- c	523	49	106	~ C	652 -	C	106	~ c	655	c	106	c	655
Comb. L-T-R -	!	0			;	0		2		00		0	2	00		2	2	00	ı
Crit. Volumes:		N-S:	596			N-S:	685			N-S:	980			N-S:	1000			N-S:	1000
		E-W: SUM:	765 1361			E-W: SUM:	880 1565			E-W: SUM:	1056 2036			E-W: SUM:	1057 2057			E-W: SUM:	1057 2057
No. of Phases			4				4				4				4				4
Volume / Capa	acity:		066.0				1.138				1.481				1.496				1 496
Level of Servic	.e:		ш				Ľ.				ш.				ц.				2

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200. For dual turn lanes, 55% of volume is assigned to heavler lane. For nor and non opt turn lane, 70% of volume is assigned to exclusive lane. Right turns on red from excl. lanes = 50% of overlappil geft turn. Note: Year 2007 manual traffic counts were adjusted by a 1.0 percent (1.0%) ambient growth factor to reflect year 2008 existing conditions.

George Burns Road Beverly Boulevard Cedars-Sinai Medical Center / 1-992843-1 CMA6 Accutek

Project: File Name: Counts by:

N-S St: E-W St:

CRITICAL MOVEMENT ANALYSIS

George Burns Road @ Beverly Boulevard Peak Hour: AM Annual Growth: 1.0%

Project Alternative 3

2008 2023

Date: Date of Count: Projection Year:

08/05/2008

	2008	EXIST. TR	AFFIC	2023	W/ AMBIE	ENT GROV	νтн	2023 \	V/ OTHEF	ROJEC	TS	2023 V	// PROPO	SED ALT	0	2023 V	V/ MITIG/	ATION	
		No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
NB Left	21	-	21	ю	24	~	24	0	24	-	24	0	24	÷	24	0	24	0	
Comb. L-T		0	,			0	•			0	,			0	,			-	31
NB Thru	9	0	,	~	7	0	,	0	7	0		0	7	0		0	7	0	1
Comb. T-R			94			-	108			-	132			-	159			0	ı
NB Right	88	0	ı	13	101	0	1	24	125	0		27	152	0		0	152		152
Comb. L-T-R -		0				0				0				0				0	
SB Left	е	0	-	0	ε	0		0	ę	c	,	C	e.	с		c	e	c	
Comb. L-T		0	,			0	,	,	,	0	1)	3	, a		2	2		
SB Thru	0	0	6	0	0	0	10	0	0	0	10	0	0	0	10	0	0	0 0	10
Comb. T-R		0	ł			0				0				0				0	•
SB Right	9	0		-	7	0	ı	0	7	0	1	0	7	0	1	0	7	0	,
Comb, L-T-R -		-												-					
EB Left	25	-	25	4	29		29	0	29	-	29	0	29	-	29	0	29		29
Comb. L-T		0	ı			0	i			0	,			0	1			0	1
	823	. .	496	123	947	 .	571	246	1193		694	0	1193		694	0	1193	7	596
Comb. I-K	170	- c	496	Ľ	10.7	c	571	Ċ	1	~ (694	Ċ	1	 1	694			0	ł
co rigii	0/1	5 0	•	C7	CAI	- o	1	2	CAL	0 0	,	0	195	0	1	0	195		195
- ב-ו-א		5				5				D				0				0	
WB Left	255	-	255	38	293	-	293	71	364	-	364	102	466	-	466	0	466	-	466
Comb. L-T		0	ı			0	ı			0				0	,			0	
WB Thru	1498		768	225	1723	-	883	233	1956	-	666	0	1956		666	0	1956	-	666
Comb. T-R	}	 -	768			-	883				666			-	666			-	666
WB Right	37	0		9	43	0		0	43	0	·	0	43	0	,	0	43	0	1
Comb. L-T-R -		0				0				0				0				0	
Crit. Volumes:		N-S:	67			N-S:	112			N-S:	136			N-S:	163			-S-N	35
		Е-W:	793			E-W:	912			E-W:	1058			E-W:	1160			Е-W:	1062
		SUM:	890			SUM:	1023			SUM:	1193			SUM:	1322			SUM:	1097
No. of Phases:			6				6				ſ				ſ				c
			1				1				4				V				ŋ
Volume / Capa	city:	[1]	0.523			[1],[2]	0.582			[1],[2]	0.695			111.121	0.781			[1],[2]	0.670
Level of Servic	ë		A				A				8				U				в
Acceleration of	•	Acriment .								-0 									
ASSURIDUORS:	2	, manual Xelv		Samuiov iec	s unterset	Parts i nome	CEV. 7 JUDE	111141=0		101 44 00	1/70-000	Incruout 1							

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200.

For dual turn lares, 55% of volume sessigned to heaver lare. For one excl. and one opt. turn lare, 70% of volume is assigned to exclusive lare. Right turns on red from excl. lares = 50% of overlapping left turn. [1] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.

George Burns Road Beverly Boulevard Cedars-Sinai Medical Center / 1-992843-1 CMA6 Accutek

N-S St: E-W St: Project: File Name: Counts by:

CRITICAL MOVEMENT ANALYSIS

George Burns Road @ Beverly Boulevard Peak Hour: PM Annual Growth: 1.00%

Project Alternative 3

2008 2023 Date: Date of Count: Projection Year:

08/05/2008

No of		A ded			-	2023			<u>.</u>	2023	W/ PROP(DSED ALT:	2	2023	W/ MITIG	ATION	
	Lane Volume	Volume	Volume	No. of Lanes	Lane Volume	Volume	Total Volume	No. of Lanes	Volume	Volume	Volume	No. of I anes	Volumo	Volume	Volume	No. of I anes	Lane
	137	21	158	-	158	0	158	-	158	0	158		158	C	158	C	
		0	ი	00		0	ო	00		0	(1) (1)	00	1 1	- C	er,) - c	161
	331	Q,	776	~ c	381	č	001	c	472			· ← (586) (0.0	,
	,	D T	- 10	00		- 7	400	00	•		790	00	ı	0	582	- 0	582
		5	19	0		0	19	0	ł	0	19	0	•	0	19	0	ł
	- 73	Ŧ	7	00	-	c	٢	00	1	c	1	0 0	1	c	ı	0 (
	2 '	-	-	00	* •	0	-	00	- 50 4	5	~	00	84	0	~	00	- 84
_	,	Ø	58	0 ·	,	0	58	0	1	0	58	0		0	58	00	ł
_				-				~								•	
	8	-	6	- c	6	0	თ	- (6	0	б	+	6	0	6		6
c	653	183	1407	C	- 751	327	1734	c	- 914	0	1734	- c	- 914	0	1734	0 0	- 867
c	653	¢+	05	c	751	c	90	. .	914	c	ŭ	c	914	c	ļ	0	
0		1	8	00	ı	5	0	00	1	Þ	02	00		5	C A	- 0	с _В
-	89	13	102	-	102	36	138	-	138	42	180	-	180	0	180	-	180
0,		1	ļ	0 .	-			0	,			0				0	ı
	520	501	77LL	~ ~	598 892	323	1500		760	0	1500	•- •	760	0	1500	· •	760
0		ы	20	0	,	0	20	- 0		0	20	- 0		0	20	- 0	na/ -
0				0				0				0				0	
	347			N-S:	400			N-S:	491			N-S:	605			N-S:	511
	742			Е-W:	853			Е-V:	1053			Е-W:	1095			E-W:	1047
	1089			SUM:	1253			SUM:	1543			SUM:	1699			SUM:	1558
	2				2				2		-		2				6
2	0.656			[1],[2]	0.735			[1],[2]	0.929	-		11.121	1.033			[1].[2]	0.993
	В			`	U				ш				ïL				ш

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200. For dual turn lanes, 55% of volume is assigned to heavier lane. For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. Fight turns on red from excl. lanes = 50% of overlapping left turn. [1] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.

CRITICAL MOVEMENT ANALYSIS

George Burns Road @ Gracie Allen Drive Peak Hour: AM Annual Growth: 1.0%

Project Alternative 3

George Burns Road Gracie Allen Drive Cedars-Sinai Medical Center / 1-992843-1 CMA7 Accutek

N-S St: E-W St: Project: File Name: Counts by:

 Date:
 08/05/2008

 Date of Count:
 2008

 Projection Year:
 2023

50	108 EXIST. TR	AFFIC	2023 \	V/ AMBIE	NT GROW	HTH	2023 1	V/ OTHEF	RROJEC	CTS	2023 \	N/ PROPC	DSED PRO	JECT	2023	W/ MITIG	ATION		
	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	
Movement Volu	me Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volum	e
NB Left	22 0		ю	26	00	1	66	92	00	ı	94	186	00	ı	0	186	00		
CONID. L-1 NB Thru	0 98 0	212	15	113	00	- 244	0	113	00	310	0	113	00	- 404	0	113	00	1	404
Comb. T-R	0	,	:	-	0		4		0	,	1		0	1			0	Ţ	
NB Kight Comb. L-T-R -	92 0	t	14	106	- C		Ð	106	- C		C	106	9 -	ĩ	0	106	0 -	1	
SB Left	31 0	,	5	36	0	-	0	36	0	-	0	36	0		0	36	0	. 1	
Comb. L-T	0 624	- 373	44	212	00	- 420	C	310	00	-	c	317	00	- 603	c	24.2	00		502
Comb. T-R	- 0	5	F	10	00	1	þ	40	00	-	0	1	0	- 100	2	1	00	,	700
SB Right Comb. L-T-R -	70 0	ı	10	80	0 ~	,	71	151	0 -		102	253	0	,	0	253	0 -	,	
EB Left	34 1	34	ъ	39	, - -	39	24	63	-	63	27	06	-	06	0	60	-		06
Comb. L-T			!	1	0	•	;	ļ	0	1			0	,			0	ŀ	
EB Ihru Comh T-R	78 1	66 66	12	89	← ←	76 76	68	157		121	17	174	•- •	142	0	174	.		142
EB Right	55 0		8	63	- 0	2	22	85	- 0	, 1 2	25	110	- 0	141	0	110	- 0	ı	44
Comb. L-T-R -	0				0				0				0				0		
WB Left	85 1	85	13	98		98	0	98	-	98	0	98	-	98	0	98	-		98
Comb. L-1 M/B Thu	68 4	- 64	10	78	0 -	- 74	Р.	C V F	0 -	- 106	53	205	0 +	- 197	c	206	0 •		107
Comb. T-R		64	2			74	5	44		106	20	007		137	5	CU2		·) c 137
WB Right	61 0		б	20	. 0		0	70	0	,	0	20	- 0		0	20	- 0	,	5
Comb. L-T-R -	0				0				0				0				0		
Crit. Volumes:	N-S: N	395			N-S: N	454			S-N	591			N-S:	787			N-S:		787
	SUM:	101 546			SUM:	1 / 4 628			E-W: SUM:	810			E-W: SUM:	240			E-W: SUM:	2	240 D27
No. of Phases:										, ,								_	Τ
Volume / Capacity:		0.455				0.523				0.675				0.856				0.0	856
Level of Service:		A				A				В				D				۵	
Assumptions:	Maximum For dual tu For one ex Right turns Note: Year	Sum of Critic Irn lanes, Icl. and one (5 on red from - 2007 manue	al Volumes 55% ppt. turn lar excl. lanes excl. lanes	s (Intersec of volume ne, s = unts were	tion Capac is assigne 70% c 50% c adjusted b	city): 2 Phas of to heavieu of volume is of overlappir y a 1.0 per	:e=1500, 3 r lane. assigned tı 19 left turn. cent (1.0%)	Phase=1. o exclusív ambient g	425, 4+ Pl e lane. growth fac	hase=1375, tor to reflec	Unsignali: t year 200	zed=1200. 8 existing	conditions.						

CRITICAL MOVEMENT ANALYSIS

George Burns Road @ Gracie Allen Drive Peak Hour: PM Annual Growth: 1.00%

Project Alternative 3

George Burns Road Gracie Allen Drive Cedars-Sinai Medical Center / 1-992843-1 CMA7 Accutek

N-S St: E-W St: Project: File Name: Counts by:

08/05/2008 2008 2023 Date: Date of Count: Projection Year:

	2008 EXIST. T	RAFFIC	2023 V	V/ AMBIE	INT GROV	VTH	2023	W/ OTHE	ROJEC	CTS	2023 V	V/ PROPO	SED PRO	JECT	2023	W/ MITIG	ATION	
	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement \	/olume Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
NB Left	22 0		ო	26	0		33	59	0	,	30	98	0		0	96 86	0	1
Comb. L-T	0	ı			0	,			0	1			0	,			0	ı
NB Thru	249 0	415	37	287	0	477	0	287	0	510	0	287	0	549	0	287	0	549
Comb. T-R	0	ı			0	ı			0	Ţ			0	ł			0	t
NB Right	143 0	ı	22	165	0		0	165	0		0	165	0	,	0	165	0	ı
Comb. L-T-R -	-				-								-				.	
SB Left	40 0		9	46	0		0	46	0		0	46	0		0	46	0	
Comb. L-T	0	ı			0	,			0	•			0	,			0	ı
SB Thru	134 0	227	20	154	0	261	0	154	0	297	0	154	0	339	0	154	0	339
Comb. T-R	0 0 4	ŀ	G	0	0 (,	ŭ	00	0 0	•	9		0 (,	¢		0 0	,
SB Right	0 89	•	æ	60	0		36	96	0		42	138	0	,	0	138	0	1
Comb. L-T-R -									-				-				-	
EB Left	111 1	111	17	128	-	128	91	219	-	219	114	333	-	333	0	333	-	333
Comb. L-T	0	ı			0	ı			0	r			0	,			0	ı
EB Thru	162 1	98	24	186	-	113	82	268	*	196	70	338	-	283	0	338	-	283
Comb. T-R	-	98			-	113				196			-	283			-	283
EB Right	34 0	ı	5	39	0	ı	84	123	0	ı	105	228	0	ı	0	228	0	,
Comb. L-T-R -	0				0				0				0				0	
WB Left	69 1	69	10	62	F	62	0	79	-	52	0	79	+	62	0	62		6/
Comb. L-T	0	•			0				0	·			0	•			0	1
WB Thru	78 1	74	12	89	-	85	85	174	-	127	26	200	-	140	0	200		140
Comb. T-R		74	:	1	-	85			-	127		}	~ 1	140			-	140
WB Right	0 0/		10	80	0 0	۱	0	80	0 (ı	0	80	0		0	80	0	•
Comb. L-1-K -	D				0				0				D				0	
Crit. Volumes:	N-S:	456			N-S:	524			N-S:	557			N-S:	596			N-S:	596
	E-W:	185			: М-	213			: М-Ш	346			:-М М-Ш	473			:: М:	473
	SUM:	640			SUM:	736			SUM:	903			SUM:	1069			SUM:	1069
No. of Phases:						D				5								D
Volume / Capac	lity:	0.534				0.614				0.752				0.891				0.891
		c				(1
Level of Service		A				В				с V				٥				D
Accimutione:	Also with the second	orm of Critic	of Victimas	occupation of the second secon			0037	1-ceedu										

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200. For dual turn lanes, 55% of volume is assigned to heavier lane. For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. Right turns on red from excl. lanes = 50% of overlapping left turn. Note: Year 2007 manual traffic counts were adjusted by a 1.0 percent (1.0%) ambient growth factor to reflect year 2008 existing conditions.

George Burns Road-Hamel Road Third Street Cedars-Sinai Medical Center / 1-992843-1

CMA8 Accutek

N-S St: E-W St: Project: File Name: Counts by:

CRITICAL MOVEMENT ANALYSIS

George Burns Road-Hamel Road @ Third Street Peak Hour: AM Annual Growth: 1.0% Peak Hour: Annual Growth:

Project Alternative 3

08/05/2008 2008 2023 Date: Date of Count: Projection Year:

	2008 EXI	ST. TRA	FFIC	2023	V/ AMBIE	INT GROW	HT	2023 V	// OTHEF	ROJEC	CTS	2023 \	W/ PROPC	SED PRO	JECT	2023	W/ WITIO	SATION		
	Ň	o. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	e
Movement	Volume La	ines	Volume	Volume	Volume	Lanes	Volume	Volume	/olume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volun	me
NB Left	ო	~~	ო	0	ę	-	ę	0	б		ო	0	ę		n	0	ς Ω	.		ĉ
Comb. L-T		0 1	,		į	0 (•		į	0 0	•	6	į	0 0	1	G	į	0 0	ı	
NB INU	148	- c	- 166	3	1/1	- -	190	0	1/1	- C	- 192	5	1/1	ə +	, 107	0	1/1	⊃ -		192
NB Right	17	- 0	2	e	20	- 0	-	2	22	- 0	1	0	22	- 0	701	0	22	- 0	,	70
Comb. L-T-R -		0				0				0				O				0		
SB Left	93	-	93	14	107	+	107	22	129	1	129	25	154	+	154	0	154	+		154
Comb. L-T		0				0				0				0				0	1	
SB Thru	39	0	r	9	45	0	1	0	45	0	1	0	45	0		0	45	0	ı	
Comb. T-R	0	C	119	ç	ç	c	137	c	2	- c	137	c	ĉ	- c	137	c	ç	~ c		137
Comb. L-T-R -	00	00	ı	2	A N	00		C	N N	00	1	5	76	00		5	7 F	00	ı	
EB Left	205	(205	31	236	(236	0	236	(236	0	236	- (236	0	236	~ − (236
Comb. L-1 ER Thri	425	ə -	- 220	БA	480	- C	- 253	767	756	C	- 386	C	756	- c	- 386	C	756	⊃ -	,	386
Comb. T-R			220	5			253	54	-		386	5			386	2	2			386
EB Right	14	0	•	2	16	0	,	0	16	0	,	0	16	0	1	0	16	0	ı	
Comb. L-T-R -		0				0				0				0				0		
WB Left	20	-	20	3	23		23	11	34	-	34	0	34	-	34	0	34	1		34
Comb. L-T		0				0				0				0	,			0		
WB Thru	927	-	593	139	1066	-	682	278	1344	-	854	0	1344	-	901	0	1344	-		901
Comb. T-R	000	← (593		000	(682	Ċ	1	- (854	č	i.	- ,	901		ļ			901
WB Kight Comb I -T-R -	260	o c	,	95	299	0 0	,	66	365	0 0		94	459	00	,	0	459	00	1	
						,)						
Crit. Volumes:	۲ ا	<u>.</u>	259			S-Z-	297			-S-2	321			in in	346			S-N-		346
	ц	<u> </u>	867			М	918				1090			: А: Н	1137			E-W:	.	1137
	n	UM:	/cnl			SUM:	9121			SUM:	1412			SUM:	1484			SUM:		1484
No. of Phases:			2				5				2				2					2
Volume / Capa	icity:	[4]	0.635			[1],[2]	0.710			[1],[2]	0.841			111.121	0.889			[1],[2]	Ö	.889
Level of Servic	ë.		ſ				с U				٥				D				۵	
	:								i				-							
Assumptions.	. Ma	ximum St	um of Critic.	al Volumes	: /Interset	-tion Canac.	Hur J Phas	a=1500.3	Ohace=1.	475 4+ 1	71212000	Incine	0001-000-							

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200. For dual turn lanes, 55% of volume is assigned to heavier lane. For once excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. [1] The volume to reapedity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.

CRITICAL MOVEMENT ANALYSIS

George Burns Road-Hamel Road @ Third Street Peak Hour: PM Annual Growth: 1.00% Peak Hour: Annual Growth:

Project Alternative 3

Cedars-Sinai Medical Center / 1-992843-1

CMA8 Accutek

Project: File Name: Counts by:

George Burns Road-Hamel Road Third Street

N-S St: E-W St:

Date of Count: Projection Year:

Date:

2008 2023 08/05/2008

	2008 EXIS1	. TRAFFIC	2023	W/ AMBI	ENT GROW	ΗL	2023	W/ OTHEF	RROJE	CTS	2023 V	W PROPC	SED PRO	JECT	2023	W/ MITIG	SATION	
	No. (of Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement	Volume Lane	s Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
NB Left	7	1	0	2	.	2	0	2		N	0	2	.	7	0	2	÷	2
Comb. L-T		, 0			0				0				0	,		I	0	' '
NB Thru	36	- 0	ŝ	42	0	ł	0	42	0	,	0	42	0	ı	0	42	0	,
Comb. T-R		1 52	¢.,		-	59				69			-	69				69
NB Right	15	- 0	2	17	0		10	27	0		0	27	0	ı	0	27	0	,
Comb. L-T-R -		0			0				0				0				0	
SB Left	287	1 287	, 43	330	-	330	84	414	-	414	105	519	-	519	0	519	-	519
Comb. L-T		0		1	0	1			0	1			0				0	1
	164	0 - 1 354	. 55	188	o ,	-	0	188	0 •	- 407	0	188	0 1	-	0	188	0,	-
SB Right	190	- 0	* 28	218	- 0	- 407	0	218	- 0	407	C	218	- c	- 407	C	218	- c	- 407
Comb. L-T-R -		0			0		1	1	0)	2	00		0	24	00	
EB Left Comb 1_T	55	1 55	8	63	- c	63	0	63	- c	63	0	63	- c	63	0	63	<i>←</i> 0	63
EB Thru	635	1 325	; 95	731		374	389	1120	C	569	0	1120		- 569	0	1120	⊃ ~-	- 569
Comb. T-R		1 325	10		-	374			-	569			-	569			4	569
EB Right	15	' 0	0	17	0		0	17	0	•	0	17	0	ı	0	17	0	ı
Comb. L-T-R -		0			0				0				0				0	
WB Left	21	1 21	3	24	٢	24	ы	27	F	27	0	27	-	27	0	27	-	27
Comb. L-T		, 0			0	·			0	,			0				0	•
	584	1 346	88	671		401	357	1028	·	596	0	1028	÷ ,	615	0	1028	~ ·	615
WB Right	113	- 04c - 04c	17	130	- c	- 40 - 10	33	163	- 0	080	30	cuc	- 0	615	c	500	c	615
Comb. L-T-R -	<u>)</u>	0	:		0		3	8	00		3	103	00		5	707	00	ı
Crit. Volumes:	S-N	356			N-S:	409			N-S:	483			N-S:	588			N-S:	588
	л- Л	: 403 1: 759	m -		E-W: SUM:	463 872			E-W: SUM:	658 1142			E-W: SUM:	678 1266			E-W: SUM:	678 1266
No. of Phases:		(1				2				2				2				5
Volume / Capa	city:	[1] 0.436			[1].[2]	0.482			[1],[2]	0.661			[4].[2]	0.744			[1].[2]	0.744
Level of Service	;;;	A				A				В				: : :			-	o
A continue to the	wively	در است مولی.	1.1.1		4													

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1426, 4+ Phase=1375, Unsignalized=1200. of volume is assigned to heavier lane. 55% For dual turn lanes,

For one excl. and one opt. turn lane. 70% of volume is assigned to exclusive lane. Right turns on red from excl. lanes = 50% of overlapping left turn. [1] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.

Willaman Drive Third Street Cedars-Sinai Medical Center / 1-992843-1 CMA9 Accutek

Project: File Name: Counts by:

N-S St: E-W St:

CRITICAL MOVEMENT ANALYSIS

Willaman Drive @ Third Street Peak Hour: AM מיחיים Growth: 1.0%

Project Alternative 3

Date: Date of Count: Projection Year:

2008 2023 08/05/2008

2	008 EXIST. TF	AFFIC	2023 W	// AMBIE	NT GROW	HT	2023 M	// OTHEF	ROJEC	CTS	2023 V	W PROPO	SED PRO	JECT	2023	W/ MITIG	ATION		Γ
	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	
Movement Volu	ume Lanes	Volume	Volume V	'olume	Lanes	Volume	Volume \	/olume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	
NB Left	63 1	63	თ	72	-	72	0	72		72	0	72	-	72	0	72	-	2	72
Comb. L-T	0	ı			0				0	ſ			0				0	1	
NB Thru Comh T-R	0 0		0	0	o c		0	0	00	1	0	0	00	ł	0	0	00	,	
NB Right	206 1	206	31	237) 	237	27	264	o ⊷	264	C	264	- c	- 264	C	264	C	- 76	75
Comb. L-T-R -	0			I	0	i	i		0		,	-	. 0	-)	1	0	1	<u>,</u>
SB Left	C C		С	c	c		c	c	c	,	C	C	C			c	c		
Comb. L-T	,	,	0	0	00		þ)	00		þ	5	00		2	5	00	• •	
SB Thru	0 0	ı	0	0	0	,	0	0	0	,	0	0	0		0	0	0	,	
Comb. T-R	0	ı	1		0	,			0	1			0	1			0	I	
SB Right	0	,	0	0	0 0		0	0	0	ı	0	0	0	1	0	0	0	,	
Comb. L-1-K -	0				0				0				0				0		
EB Left	0 0		0	0	0	,	0	0	0		0	0	0		0	0	0		Τ
Comb. L-T	0	1			0	,			0				0	ı			0	·	
EB Thru	484 1	264	73	556		303	270	826	-	439	25	851	-	452	0	851	-	45	52
Comb. T-R	- i	264	I	ł	 1	303	1		-	439			-	452			-	45	22
EB Kight	43 0	ı	1	20	0 0	1	7	52	0 0		0	52	0 1	ŀ	0	52	0	ı	
	5				5				D				0				0		
WB Left	95 1	95	14	109	-	109	9	115		115	0	115	F	115	0	115	-	11	15
Comb. L-T	0	1			0	ı			0				0	ı			0		
WB Thru 1	142 2	571	171	1314	2	657	315	1629	0	814	94	1723	5	861	0	1723	7	86	31
VV/R Picht			c	c	00	,	c	c	0 0		c	c	0 0	1	c	c	0 0		
Comb. L-T-R -	, ,		0	5	00	ı	2	5	00	ı	c	5	00		5	5	00	•	
Crit. Volumes:	N-S:	159			S-N	182			.s-N	206			iu-N	206			υN	06	ä
	E-W:	571			E-W:	657			М:	814			ы Кор Кор Кор Кор Кор Кор Кор Кор Кор Кор	861			E-W-	98	3 22
	SUM:	730			SUM:	839			SUM:	1021			SUM:	1068			SUM:	106	86
No. of Phases:		2				2				2				2					2
Volume / Capacity:	IH	0.416			[1].[2]	0.459			11121	0.580			101 [11]	0.64.0			ICI [1]	0.61	
and of Somisor					1.1.1	22			F-14F+1				111/12	710.0			[2]"[1]	0.0	<u>v</u>
רבגבו חו סבו גורב.		£			-	4				A				ш				в	٦
Assumptions.	mininety	ن بینان مرکز الدینون		horandell			10 0037			1101	•								

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1426, 4+ Phase=1375, Unsignalized=1200. 55% of volume is assigned to heavier lane. For dual turn lanes,

For one exclusion one opt, turn lane, 70% of overlapping left turn. Right turns on red from excl. lanes = 50% of overlapping left turn. [1] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.

CRITICAL MOVEMENT ANALYSIS

Willaman Drive @ Third Street Peak Hour: PM Annual Growth: 1.00%

Project Alternative 3

Willarman Drive Third Street Cedars-Sinai Medical Center / 1-992843-1 CMA9 Accutek

N-S St: E-W St: Project: File Name: Counts by:

Date: Date of Count: Projection Year:

2008 2023 08/05/2008

, ,	DOB EVICT TD	VIDDV	1 5505		MCGD TH	11	N 6606			TC				101	6000	VAL ANTTIC	ATION		
ā 	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	La	ш
Movement Volu	ime Lanes	Volume	Volume	Volume	Lanes	Volume	Volume 1	/olume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Voli	amu
NB Left	35 1	35	5	41	÷	41	2	43	-	43	0	43	-	43	0	43			43
Comb. L-T NR Thru	00		c	c	00	1 1	c	c	0 0	1 1	C	c	00		C	c	00	1	
Comb. T-R	0	. 1	2	þ	00		2	0	0	1	5	•	00		2	5	00		
NB Right	323 1	323	48	372	 (372	12	384	c	384	0	384	(384	0	384	(384
Comb. L-1-K -	D				D				D				0				D		
SB Left	0 0		0	0	0		0	0	0	ı	0	0	0	1	0	0	0	1	
Comb. L-T	00		c	C	00	,	c	c	0 0		c	c	00	1	c	c	00	'	
Comb. T-R	0		5	5	0 0		5	c	00		c	0	- C		>	2			
SB Right	0	ı	0	0	0	,	0	0	0	,	0	0	0		0	0	00	'	
Comb. L-T-R -	0				0				0				0				0		
EB Left	0		0	0	0		0	0	0	,	0	0	0	1	0	0	0		
Comb. L-T	0	,		000	0,				0,		10		0				0	1	
Comb T-R	841 1 1	472	971	202		242 542	441	1409		763	c01	1514		816 816	D	1514			816 816
EB Right	102 0	1	15	117	- 0	-	-	118	- 0	2 ,	0	118	- 0		0	118	- 0	1	2
Comb. L-T-R -	0				0				0				0				0		
WB Left	72 1	72	11	82	-	82	-	83	-	83	0	83	.	83	0	83	-		83
Comb. L-T	0	-	001	LOL	0 (-	500	10.11	0 (ç		0 0		Ċ		0 0	ı	0
Comb. T-R	7 /00		001	10/	NC	- 383	995	1133	NC	99C -	95	2/11	NC	980	C	11/2	NC	,	586
WB Right	0		0	0	0	,	0	0	00	1	0	0	00	1	0	0	00		
Comb. L-T-R -	0				0				0				0				0		
Crit. Volumes:	N-S:	287			N-S:	330			N-S:	342			N-S:	342			N-S:		342
	: ^: Ш	543			Ш-М: М:	625			Ш-М:	847			:М-Ш	899			: А-Ш		899
	SUM:	831			SUM:	955			SUM:	1189			SUM:	1241			SUM:		1241
No. of Phases:		5				2				7				2					2
Volume / Capacity:	[1]	0.484			[1]'[2]	0.537			[1],[2]	0.693			11,121	0.728			[1],[2]		0.728
Level of Service:		A				A				в				с				υ	
Assumptions:	Maximum 3	Sum of Critic	al Volumes	(Intersed	tion Ganac	iiv): 2 Phas	e=1500 3.	Dhaca=1,	105 4+ DI	1375 1375	l Incirnali	n001-1200							

Maximum Sum of Gritical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=12u0. For dual turn lanes, 55% of volume is assigned to heavier lane. Regint turns on read rom excl. lanes = 50% of voerlapping fit turn. [1] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.

CRITICAL MOVEMENT ANALYSIS

Willaman Drive @ Wilshire Boulevard Peak Hour: AM Annual Growth: 1.0%

Project Alternative 3

Willarnan Drive Wilshire Boulevard Cedars-Sinai Medical Center / 1-992843-1 CMA10 Accutek

N-S St: E-W St: Project: File Name: Counts by:

 Date:
 08/05/2008

 Date of Count:
 2008

 Projection Year:
 2023

200	8 EXIST. TR	AFFIC	2023 W	// AMBIEI	NT GROW	TH	2023 M	// OTHER	PROJEC	TS	2023 W	/ PROPO	SED ALT 2		2023	W/ MITIG	ATION		
	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lan	a
Movement Volum	e Lanes	Volume	Volume V	olume,	Lanes	Volume	Volume V	olume,	Lanes	Volume	Volume V	/olume	Lanes	Volume	Volume	Volume	Lanes	Volur	ne
NB Left 11	ن م ب	•	17	132	00	ı	ъ	137	00	ı	0	137	00	I.	0	137	00		
Comb. L-1 NB Thru 16	4	- 340	25	188	00	- 391	9	194	00	404	0	194	00	, 404	0	194	00	ı	404
Comb. T-R NB Right 6	5		თ	71	00		7	73	00,	1 1	0	73	00,		0	73		1 1	
Comb. L-T-R -	~ -				-				-				-				-		
SB Left 3	2 2	1	9	43	0 0		7	50	00	1 1	0	20	00		0	50	00		
COIIIU. L-1 SB Thru 11	0 0	218	17	134	00	251	8	142	00	266	0	142	000	266	0	142	000		266
Comb. T-R SB Right 6.	002		10	74	00		0	74	00		0	74			0	74	00		
Comb. L-T-R -									-				-				-		
EB Left 2	6	29	4	34	0	34	0	34	c	34	0	34	، م	34	0	34			34
Comb. L-1 EB Thru 120	، د م	- 412	181	1387	2 0	- 474	331	1718	0 0	- 585	80	1726	ы сч	- 588	0	1726	0	ı	588
Comb. T-R	1	412	2		ı 	474	ł	2	I	585			-	588			~		588
EB Right 3	0	ı	2	36	0	•		37	0 1	1	0	37	0 0		0	37	0 0	ı	
Comb. L-T-R -	0				0				o				0				Ð		
WB Left 4	8	48	2	56	t-	56	2	58	-	58	0	58		58	0	58	-		58
Comb. L-T	D	,		:	0	•	1		0				0 0	-	c		0 0	,	100
WB Thru 197	- 5 0	663 663	295	2265	N 7	762 762	478	2743	N +	923	N	C/45	N -	924	D	CF12	N +		924
WB Right 1	- 0	coo ,	ŝ	21	- 0	707 -	9	27	- 0	1 1 1	0	27	- 0	140	0	27	- 0	ł	
Comb. L-T-R -	0				0				0				0				0		
Crit. Volumes:	S-N S-N	378			S-N	434			N-S: N	454			N-S: N:S	454 068			N-S: 1 M:		454 059
	SUM:	1070			SUM:	1230			SUM:	1411			SUM:	1412			SUM:		1412
No. of Phases:		2				2				2				3					2
Volume / Capacity:		0.713				0.820				0.941				0.941					.941
Level of Service:		с				0				ш				ш				ш	
Assumptions:	Maximum For dual tı For one e: Right turn Note: Yea	Sum of Critic Irn lanes, xcl. and one s on red from r 2007 manu	cal Volumes 55% (opt. turn lan 1 excl. lanes al traffic cou	t (Intersec of volume ie, ints were	tion Capac is assigne 70% c 50% d adjusted b	city): 2 Phas of to heavier of volume is of overlappin of a 1.0 perc	e=1500, 3 lane. assigned tu g left turn. :ent (1.0%)	Phase=14 cecclusiv ambient	425, 4+ Pł e lane. growth fac	lase=1375, tor to reflec	Unsignaliz t year 200	əd=1200. 8 existing t	conditions.						

Willaman Drive Wilshire Boulevard Cedars-Sinai Medical Center / 1-992843-1 CMA10 Accutek

N-S St: E-W St: Project: File Name: Counts by:

CRITICAL MOVEMENT ANALYSIS

Willarman Drive @ Wilshire Boulevard Peak Hour: PM Annual Growth: 1.00%

Project Alternative 3

Date: Date of Count: Projection Year:

08/05/2008 2008 2023

	2008 EX	IST. TRA	FFIC	2023 \	V/ AMBIE	INT GROV	VTH	2023 \	W OTHER	R PROJE	CTS	2023	V/ PROPO	DSED ALT	2	2023	W/ MITIG	ATION		
	z	o. of	Lane	Added	Total	Na. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lan	e
Movement V	Volume L	anes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volur	me
NB Left	42	0	,	9	49	0	ı	~~	50	0	ı	0	50	0	ı	0	50	0	,	
Comb. L-T		0				0				0	·			0	ı			0	,	
	176	00	265	26	202	00	304	ę	205	0 0	311	0	205	0 0	311	0	205	0		311
	94	-		٢	53	5 0	•	c	5	-	,	c	ů L	-	ı	c	C L	0 0	,	
Comb 1-T-R -	40	- c	ı		20	⊃ ~		n	6	• •	•	5	8	⊃ .	ı	0	20	C	•	
		-				-				-				-				-		
SB Left	13	0		2	15	0		6	24	0		0	24	0		0	24	0	1	
Comb. L-T		0	t			0	•			0	,			0	I			0	•	
SB Thru	296	0 0	336	44	340	0	387	2	342	0	398	0	342	0	398	0	342	0		398
Comb. 1-K	70	20	,		ţ	o c		c	ĉ	0 0	,	c	č	0 0	ı	c	2	0	1	
Comb. L-T-R -	L.	C	,	1	0	⊃ - -	ı	5	0	- כ	•	2	ō	C	1	5	ņ	⊃ - ⊂	•	
EB Left Comh I T	45	c	45	4	52		52	0	52	- c	52	0	52	c	52	0	52	c		52
	1655	, c	574	arc	1004		667	101	3010	, c	300	c	0676	, c	900	c	0686	, (•	
Comb. T-R		4 4-	571	047	100	4 +	759 1	50	C647	v . -	835	o	0047	ч г	836	2	2430	ч г		0.00 8.36
EB Right	58	0		6	99	0	,	ŝ	71	0		0	71	. 0		0	71	. 0	,)
Comb. L-T-R -		0				0				0				0				0		
	Ċ,		ŭ	ſ	50															
	53	- c	23	20	60	c	60	4	64	- c	64	0	64	c	64	0	64	-		64
	1381	, ,	- 467	202	1580	, ,	- 537	205	1073	-	- 660	c	001	5 (, ,	c	0001	5 (ı	020
Comb. T-R		1 ←	467	24	2000	4	537	200		4	699 999	đ	7061	→	672	2	7061	ч г		672 672
WB Right	19	0		er.	22	Ċ		12	34	·c	,	c	34	· c	1	C	44	- c		1
Comb. L-T-R -		0				0				0		•		0)	5	0		
Crit Volumes:		÷	379			:S-N	436			N-S	448			V	448			U-U		448
	- ц	N N	674			М ц	717			-W				-M-				М		
	ŝ	UM:	1002			SUM:	1153			SUM:	1347			SUM:	1348			SUM:	r-	1348
i																				
No. of Phases:			2				2				2				2					2
Volume / Capac	ity:		0.668				0.768				0.898				0.899				0	899
Level of Service			E.				с				Ω				Δ				۵	
Assumptions:	Ma	ximum Sı	um of Critics	al Volumes	; (Intersec	tion Capa	city): 2 Phas	:e=1500, 3	Phase=1-	425, 4+ Pi	hase=1375,	Unsignali	ted=1200.							
	О Ц Ц	r dual tun r one exci	n lanes, 1 and one o	55% ort turn lar	ă	of volume	is assigned of volume is	to heavier i assimed to	lane. • exclusiv	anal a										
	, Ric	the turns c	on red from	excl. lanes	1	50% 6	of overlappi	na left turn.		2										
	No	te: Year ;	2007 manuá	al traffic co	unts were	adjusted i	by a 1.0 per	cent (1.0%)	ambient	growth fa	ctor to reflec	t year 200	8 existing	conditions.						

CRITICAL MOVEMENT ANALYSIS

Sherbourne Drive @ Third Street Peak Hour: AM Annual Growth: 1.0%

Project Alternative 3

Sherbourne Drive Third Street Cedars-Sinai Medical Center / 1-992843-1 CMA11 Accutek

N-S St: E-W St: Project: File Name: Counts by:

Date: Date of Count: Projection Year;

2008 2023 08/05/2008

	2008 EX	(IST. TRA	FFIC	2023	N/ AMBIE	NT GROW	H	2023 V	V/ OTHEF	ROJEC	TS	2023 V	// PROPC	SED PRO	JECT	2023	W/ MITIG	SATION		
	~	ło. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	
Movement V	Volume L	anes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volum	ē
NB Left	7	0	,		8	0		0	ø	0	,	0	ß	0	,	0	8	0	L	
Comb. L-T		0	,			0				0	•			0	1			0	,	
	55	0 0	75	80	63	00	86	0	63	0 0	86	0	63	0 0	86	0	63	0		86
NB Picht	4 6	- c		ç	ц,			c	ţ			c	Ţ	00	ı	c	U T	0 0	ı	
Comb. L-T-R -	2) ~		1	2	C	I	>	2		ı	D	2	c	ı	כ	2		ı	
SB Left	13	0 7	; '	2	15	0 •		0	15	0 1		0	15	0,		0	15	0 '	•	0
COULDULE-1	σ	- c	77 -	Ţ	10	- c	9 '	C	10	- c	07 7	c	5	- c	97	c	ţ	- c		20
Comb. T-R	c	00	L I	-	2	00	. 1	2	2	00		2	2	00	, ,	2	2	00	1 1	
SB Right	32		32	ŝ	37	۲	37	24	61		61	0	61	-	61	0	61	,		61
Comb. L-T-R -		0				0				0				0				0		
EB Left	120	-	120	18	138	-	138	95	233	-	233	0	233	-	233	0	233	+		233
Comb. L-T		0				0	1			0				0				0	1	
EB Thru	543	. -	281	82	625	 -	323	224	849	~	435	25	874	-	447	0	874		7	447
Comb. 1-K	а1	- c	281	¢	ç	~- c	323	c	ĉ	- c	435	c	ĉ	c	447	c	2	c	4	447
Comb I -T-R -	2	- C	1	o	7		ŧ	c	N			5	7		ı	D	17		ı	
1		þ				0				c				5				5		
WB Left	69	-	69	10	79	-	62	0	62	-	62	0	62	-	79	0	79			56
Comb. L-T		0 0				0				0	,			0	,			0	ł	
WB Thru	1202	N C	601	180	1382	~ ~	691	342	1724	0 C	862	94	1818	20	606	0	1818	00	0,	606
WB Right	174		174	26	200		200	179	379		379	0	379	C	- 379	0	379	c	1	979
Comb. L-T-R -		0				0				0				0				0		
Crit. Volumes:		N-S:	88			N-S:	101			N-S:	101			N-S:	101			N-S:		101
	ш	:M-1	721			E-W:	829			E-W:	1095			:м-	1142			E-W:	ţ.	142
		SUM:	808			SUM:	930			SUM:	1196			SUM:	1243			SUM:	1	243
No. of Phases:			2				2				5				2					2
Volume / Capac	ity:	[1]	0.469			[1],[2]	0.520			[1].[2]	0.698			[1].[2]	0.729			[1],[2]	0.7	729
Level of Service		1	A			1	A				В				o				с	
Assumptions:	M	iS mumixe	um of Critic	al Wolines	· /Intercer	tion Canaci	in.i. 2 Dhac	-1500 3	- Fronder	40 TV 301	27070	-ilonioul I	0002							

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200. 55% of volume is assigned to heavier lane.

Right turns on red from excl. lanes = 50% of overlapping left turn. [1] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] Note: Year 2007 manual traffic counts were adjusted by a 1.0 percent (1.0%) ambient growth factor to reflect year 2008 existing conditions. 70% of volume is assigned to exclusive lane. For dual turn lanes, 55% of vc For one excl. and one opt. turn lane, Right turns on red from excl. lanes =

CRITICAL MOVEMENT ANALYSIS

Sherbourne Drive @ Third Street Peak Hour: PM Annual Growth: 1.00%

Project Alternative 3

Sherbourne Drive Third Street Cedars-Sinai Medical Center / 1-992843-1 CMA11 Accutek

N-S St: E-W St: Project: File Name: Counts by:

08/05/2008 2008 2023 Date: Date of Count: Projection Year:

	2008 EXIST. 1	RAFFIC	2023 \	V/ AMBIE	INT GROW	ΗL	2023 V	V/ OTHER	ROJEC	STS	2023 V	V/ PROPC	SED PRO	JECT	2023	W/ MITIG	ATION		
	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lan	e
Movement Vo	lume Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volur	ne
NB Left	12	ł	0	14	00	ı	0	14	00	ı	0	14	00	ı	0	14	01	1	
NB Thru	16 0	- 61	N	19	000	- 70	0	19	000	- 70	0	19	000	- 70	0	19		ı	70
Comb. L-T-R Comb. L-T-R -	32 0	1 1	Ω	37	00-		o	37	- 0 -		0	37	- 0 0		0	37	- 0 6	11	
SB Left Comb. L-T SB Thru	111	221	17	128	0 - 0	- 254	0 0	128	0+0	- 254	0 0	128	0 - 0	- 254	0 0	128	0 - 0		254
Comb. T-R SB Right Comb. L-T-R -	132	- 132	50	152	0-0	- 152	75	227	0-0	- - 227	0 0	227	0-00	- 227	00	227	0 - 0	1 1	227
EB Left Comb 1_T	69	69	10	62	c	6/	47	126	- 0	126	0	126	(126	0	126	- 0		126
EB Thru	1094 1	- 554 554	164	1258	⊃ r	- 638 638	453	1711	⊃ .	864	105	1816	⊃ ← ·	- 917	0	1816	o ← ·	I	917
EB Right Comb. L-T-R -	15 0	t 0 1	N	17	- 0 0	1	0	17	- 0 0		0	17	-00	, Lb	0	17	-00	I	917
WB Left	42 1	42	9	49	- c	49	0	49	← c	49	0	49	- c	49	0	49	(49
WB Thru Comb T-R	616 2	308	92	209	0 N C	354	320	1029	2 14 0	514	39	1068	5 N C	534	0	1068	0 0 0	ı	534
WB Right Comb. L-T-R -	57 1	57	Ø	65	0-0	65	68	154	0 - 0	- 154	0	154	0-0	- 154	0	154	0 - 0	ŀ	154
Crit. Volumes:	N-S: E-W: SUM:	172 597 769			N-S: E-W: SUM:	197 686 884			N-S: E-W: SUM:	197 913 1110			N-S: E-W: SUM:	197 965 1163			N-S: E-W: SUM:		197 965 163
No. of Phases:		2				2				2				2					2
Volume / Capacity Level of Service:	и И	0.442 A			[1],[2]	0.489 A			[1],[2]	0.640 B			[1],[2]	0.675 B			[1],[2]	в	.675
Assumptions:	Maximur	1 Sum of Criti	cal Volumes	(Intersec	tion Capac.	itv): 2 Phase	e=1500. 3 I	hase=14	25 4+ Ph	ase=1375 +	l Insignaliza	ad=1200]

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200.

For dual turn lanes, 55% of volume is assigned to heavier lane. For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. Right turns on red from excl. lanes = 50% of overlapping left turn. [1] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.

San Vicente Boulevard Melrose Avenue Cedars-Sinai Medical Center / 1-992843-1 CMA12 Accutek

N-S St: E-W St: Project: File Name: Counts by:

CRITICAL MOVEMENT ANALYSIS

San Vicente Boulevard @ Melrose Avenue Peak Hour: AM Annual Growth: 1.0%

Project Alternative 3

08/05/2008 2008 2023 Date: Date of Count; Projection Year:

	2008 E	XIST. TR	AFFIC	2023	W/ AMBIE	ENT GROW	VTH	2023 \	V/ OTHEI	R PROJE	CTS	2023	W/ PROPC	SED ALT	2	2023	W/ MITIG	ATION	
		No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
NB Left	83	C	83	12	95	~ 0	95	47	142	÷ 1	142	0	142	-	142	0	142	÷	142
	635	000	318	95	731	5 M G	365	283	1014	0 0 0	- 507	10	1024	0 0	- 512	0	1024	0 0	- 512
NB Right Comb. L-T-R -	95	0 ~ 0	- 95	14	109	0-0	109	82	191	0-0	191	5	193	0 - 0	- 193	0	193	0 - 0	- 193
SB Left Comb 1_T	101	- c	101	15	116	+ c	116	18	134	- 0	134	0	134	-	134	0	134	, +-	134
SB Thru Comh T-R	492	000	- 246 -	74	566	5 N C	- 283	290	856	000	- 428	39	895	0 11 0	- 447	0	895	0 0	- 447
SB Right Comb. L-T-R -	42	0 - 0	42	Q	49	0-0	- 49	59	108	0-0	- 108	0	108	0-0	108	0	108	0-0	- 108
EB Left Comb. I -T	78	- 0	78	12	89	c	89	25	114	c	114	0	114	(114	0	114	÷	114
EB Thru Comh T.R	414) ~~ ~	235	62	476	, t	270	140	616	⊃ -	347	0	616	⊃ ·	347	0	616	0	- 347
EB Right Comb. L-T-R -	56	- 0 0	1	æ	64	-00	. 2/0	13	77	-00	. 347	0	77	-00	347 -	0	77	- o c	347 -
WB Left	191	~ c	191	29	220		220	41	261	-	261	8	269	-	269	0	269	, -	269
WB Thru Comb T-P	725	⊃ c	- 725	109	834	0 0	- 834	06	924	0 - (- 924	0	924	0 -	- 924	0	924	0 -	- 924
WB Right Comb. L-T-R -	166	0 - 0	166	25	190	0-0	190	25	215	0 - 0	- 215	0	215	0 - 0	- 215	0	215	0 + 0	- 215
Crit. Volumes:		N-S: E-W: SUM:	419 803 1222			N-S: E-W: SUM:	481 923 1405			N-S: E-W: SUM:	641 1038 1679			N-S: E-W: SUM:	646 1038 1684			N-S: E-W: SUM:	646 1038 1684
No. of Phases:			2				2				2				2				7
Volume / Capac Level of Service.	sity: :		0.814 D				0.937 E				1.120 F				1.123 E				1.123 F
Assumptions ⁻	V	avimum S	um of Critic	al Volumes	: /intersec	ting Canao	itul: 2 Phase	=1500 3	Dhacar 1	40 47 301	1075	Inciencia	0007-7-						-

For dual turn lanes, 55% of volume is assigned to heavier lane. For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. Right turns on red from excl. lanes = 50% of overlapping left turn. Note: Year 2007 manual traffic counts were adjusted by a 1.0 percent (1.0%) ambient growth factor to reflect year 2008 existing conditions.

San Vicente Boulevard Melrose Avenue Cedars-Sinai Medical Center / 1-992843-1 CMA12 Accutek

N-S St: E-W St: Project: File Name: Counts by:

CRITICAL MOVEMENT ANALYSIS

San Vicente Boulevard @ Meirose Avenue Peak Hour: Annual Growth: 1.00%

Project Alternative 3

Date: Date of Count: Projection Year:

2008 2023 08/05/2008

	2008 E	XIST. TR.	AFFIC	2023	W/ AMBIE	ENT GROM	VTH	2023 \	N/ OTHE	R PROJE	CTS	2023 V	// PROPO	SED ALT 2		2023	W/ MITIC	GATION	
		No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
NB Left	88	~	88	13	101		101	24	125	-	125	0	125	-	125	0	125	-	125
Comb. L-T		0	۱			0	ı			0	ı			0	1			0	,
	784	21	392	118	901	0	451	440	1341	2	671	44	1385	2	693	0	1385	7	693
	000		, ,	6		•	, ,	ì		0,		c	000	0,		•	1	0	
Comb. L-T-R -	622	- 0	\$77	5	107	- 0	107	40 4	115	- 0	115	ת	320	- 0	320	0	320	- 0	320
SB Left	153	-	153	23	175	 (175	43	218	-	218	0	218	-	218	0	218	-	218
Comb. L-1	000	0 (-	001	007	0 0	1	10,		0 0	1	5	0.00	0 0		(0,0,0	0 0	-
Se Inru Comb. T-R	800	N 0	1 1 1 1 1 1	001	69/	0 10	384	67.4	1194	NC	/AC -	16	0121	NC	c09 -	D	1210		- 605
SB Right	87	-	87	13	100	·	100	46	146	· •	146	0	146) ~~	146	0	146	, 	146
Comb. L-T-R -		0				0				0				0				0	
EB Left Comb I T	136	← c	136	20	157	- c	157	85	242	- 0	242	0	242	c	242	0	242	- 0	242
EB Thru	969	c	418	104	800	C	480	135	935	C	580	0	935	⊃ ~	- 580	C	935	C	- 580
Comb. T-R			418			· -	480	1			580	1			580	0			580
EB Right	139	0	r	21	160	0	1	65	225	0	,	0	225	0		0	225	0	ı
Comb. L-T-R -		0				0				0				0				0	
WB Left	179	t-	179	27	206	-	206	83	289	-	289	e	292	-	292	0	292	-	292
Comb. L-T		0				0	ı			0				0				0	,
	478	c	478	72	549	C	549	169	718	- c	718	0	718	- (718	0	718	 (718
WB Right	215	C	- 215	32	247	C	- 247	38	285		- 285	c	285	э -	- 785	c	200		1900 1
Comb. L-T-R -	2	0	2	3	5	- 0	ŝ	8		- 0	2	þ	201	- 0	2014	2	202	- 0	007
Crit. Volumes:		N-S:	544			N-S:	626			N-S:	889			N-S:	911			N-S:	911
		. М.	614			: М-Ш	202			Ш-М:	096			E-W:	960			:М: Ш	960
		SUM	8011			SUM:	1332			SUM:	1849			SUM:	1871			SUM:	1871
No. of Phases:			2				2				2				2				7
Volume / Capa	city:		0.772				0.888				1.233				1.247				1.247
Level of Servic			U				۵				ц			_	11.				UL.
Accimutione.	V	2 minuivet	Sum of Critic	al Volume	e linterser	-tion Canad	citul: 0 Dhae		1-00040	10 77 367	1000-1075	the standard for	0007						

For dual turn lanes, 55% of volume is assigned to heavier lane. For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. Right turns on red from excl. lanes = 50% of overlapping left turn. Note: Year 2007 manual traffic counts were adjusted by a 1.0 percent (1.0%) ambient growth factor to reflect year 2008 existing conditions.

San Vicente Boulevard Beverly Boulevard Cedars-Sinai Medical Center / 1-992843-1 CMA13

N-S St: E-W St: Project: File Name: Counts by:

Accutek

CRITICAL MOVEMENT ANALYSIS

San Vicente Boulevard @ Beverly Boulevard Peak Hour: AM Annual Growth: 1.0%

Project Alternative 3

08/05/2008 2008 2023 Date: Date of Count: Projection Year:

2	008 EXIST.	TRAFFIC	2023	W/ AMBIE	ENT GROW	TH	2023 V	V/ OTHER	ROJEC	TS	2023 V	V/ PROPO	SED ALT 2		2023	W/ MITIG	ATION	
	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement Voli	ume Lanes	Volume	Volume	Volume	Lanes	Volume	Volume \	/olume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
NB Left	98	1 98	15	113	÷- (113	15	128	(128	0	128	، ۲	128	0	128	÷ 1	128
Comb. L-I NB Thru	746	u - 2 373	112	858	5 N	- 429	332	1190	5 0	- 595	8	1198	0 14	, 200	0	1198	0 0	- 599
Comb. T-R NB Right Comb. L-T-R -	46	46 0	7	53	0 - 0	- 53	40	93	0 - 0	- 63	0	93	0 - 0	- 93	0	93	0 ~ 0	93
SB Left	98	1 98	15	113	-	113	47	160	-	160	0	160	-	160	0	160	-	160
Comb. L-T SB Thru	752	0 - 376 2 376	113	865	0 0	- 433	300	1165	0 0	583	31	1196	0 0	- 598	0	1196	0 0	- 598
Comb. T-R	L L	- 0	Ċ	010	0 1	1	ŗ	970	0,	9 <u>7</u> 0	4		10 1				101	
Comb. L-T-R -	-	C77 0	5	807	- 0	607	2	0/7	- 0	0/7	<u>0</u>	787	- 0	787	>	767	- 0	767
EB Left	48	1 48	7	56		56	13	69	- 0	69	4	73	- (73	0	73		73
EB Thru	581	1 340	87	668	o ⊷ ,	- 391	220	888	5 M C	- 444	23	911	0 0 0	- 455	0	911	0 0	- 455
EB Right	66	1 340 1 340	15	114	- 0 0		35	149	o – c	- 149	0	149	0 - 0	- 149	0	149	0 - 0	- 149
		5			D				5				D				D	
WB Left	101	1 101	15	116	- 0	116	73	189	c	189	0	189	c	189	0	189	- 0	189
WB Thru 1	332	2 666	200	1532	000	766	270	1802	000	901	86	1888	5 10 1	- 944	0	1888	0 01	- 944
VB Right Comb. L-T-R -	119	- 119	18	137	0 - 0	- 137	40	177	0 - 0	- 177	0	177	o ← c	- 177	0	177	o - c	- 177
Crit Volumas.	j. M	474			u V	545			U V	766			N	760			,	760
	ы SUM: SUM:	715 7189			E-W: SUM:	822 1367			E-W: SUM: SUM:	970 1725			E-W: SUM:	1017 1776			E-W: SUM: SUM:	1017 1776
No. of Phases:		2				2				7				2				2
Volume / Capacity: I evel of Service	1	/] 0.723 C			[1],[2]	0.811 D			[z]'[J]	1.050 F			1 [2]'[1]	1.084			[1],[2]	1.084
Assumptions:	Maximu For due For one Right tu [1] The [2] The Note: Y Note: A	um Sum of Crit si turn lanes, s excl. and one urns on red frou volume to cap volume to cap 'ear 2007 man. fitigation for th	ical Volume 55% 9 opt. turn la m excl. lane acity ratios. acity ratios. ual traffic cc	is (Interse of volumt ine, have beei have beer vunts were daster Pla	ction Capac a is assigned 70% o. 50% oi 1 reduced by 1 reduced by 3 adjusted by n includes ir	ity): 2 Phas d to heavier f volume is f overlappin y 0.07 to ac y 0.03 to ac y a 1.0 perc nstallation o	= 1500, 3 lane. assigned tc g left turn. count for tf count for tf ent (1.0%) f an EB rig.	Phase=14 o exclusive ne installau e installau ht-turn on	25, 4+ Ph e lane. tion of the growth fact ly lane whi	ase=1375, Wilshire W Wilshire W tor to reflec ch is assun	Unsignaliz est ATSA(est ATCS t year 200 ned in the	ed=1200. S system in system im B existing (Future Pre	n nprovement provements conditions. >-Project cou	S.				_

San Vicente Boulevard Beverly Boulevard Cedars-Sinai Medical Center / 1-992843-1 CMA13 Accutek

Project: File Name: Counts by:

N-S St: E-W St:

CRITICAL MOVEMENT ANALYSIS

San Vicente Boulevard @ Beverly Boulevard Peak Hour: PM Annual Growth: 1.00%

Project Alternative 3

Date: Date of Count: Projection Year:

2008 2023 08/05/2008

	2008 E.	XIST. TRA	FFIC	2023	W/ AMBIE	ENT GROW	/TH	2023 V	V/ OTHEF	ROJEC	:TS	2023 V	VI PROPO	SED ALT 2		2023 V	V/ MITIGA	VTION	
:		No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement v	olume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
NB Left Comh 1-T	116	c	116	17	134	- c	134	38	172	~ c	172	0	172	~- c	172	0	172	c	172
NB Thru	733	200	367	110	843	000	422	431	1274	000	637	35	1309	000	655	0	1309	0 0 0	- 655
Comb. 1-K NB Right Comb. L-T-R -	222	0-0	- 222	33	256	0-0	- 256	11	327	0 - 0	- 327	0	327	0-0	- 327	0	327	0 - 0	- 327
SB Left Comb 1.T	159	- 0	159	24	182	- c	182	61	243	- c	243	0	243	c	243	0	243	c	243
SB Thru	686	000	343	103	789	0 01 0	394	459	1248	000	624	13	1261	5 N C	- 630	0	1261	5 0 0	- 630
SB Right Comb. L-T-R -	96	0 - 0	96	14	110	0 - 0	110	20	130	0-0	130	Q	136	0 - 0	- 136	0	136	0 - 0	- 136
EB Left Comh 1_T	98	~ c	98	15	113	- c	113	27	140	c	140	18	158	0	158	0	158	c	158
EB Thru	1053	o ← ←	- 617 617	158	1211	⊃ -	- 709 709	376	1587	D N C	794	96	1683	5 N C	- 842	0	1683	- N C	- 842
EB Right Comb. L-T-R -	180	- 0 0		27	207	- 0 0		16	223	0-0	223	0	223	0-0	- 223	0	223	0-0	- 223
WB Left Comb 1-T	82	- c	82	12	94	- c	94	32	126	c	126	0	126	- c	126	0	126	c	126
WB Thru	790	000	395	118	908	000	454	302	1210	000	605	36	1246	5 N C	- 623	0	1246	5 N C	- 623
Comb. L-T-R -	155	0 - 0	155	23	178	0 - 0	- 178	59	237	0 - 0	- 237	0	237	0-10	237	0	237	00	- 237
Crit. Volumes:		N-S: E-W: SUM:	525 698 1224			N-S: E-W: SUM:	604 803 1407			N-S: E-W: SUM:	880 920 1800			N-S: E-W: SUM:	898 968 1866			N-S: E-W: SUM:	898 968 1866
No. of Phases:			2				2				7				2				2
Volume / Capaci Level of Service:	ity:	[4]	0.746 C			[1],[2]	0.838 D			[1],[2]	1.100 F			الا),[2]	1.144			[1],[2] F	1.144
Assumptions:	STTREZZZ	laximum S or dual turn or one exc ight turns (j The volu ote: Year i ote: Mitiga	um of Critic n lanes, l. and one (on red from me to capa me to capa 2007 manu; tion for the	cal Volume 55% 55% opt. turn la. excl. lane. city ratios l city ratios l al traffic co al traffic co	s (Interseu ne, s = have been nave been unts were 'aster Plar	of volume i of volume i 70% c 50% c reduced b reduced b reduced b	iity): 2 Phas is assigned of volume is of overlappir y 0.07 to ac yy 0.03 to ac yy a 1.0 perr installation o	e=1500, 3 to heavier l assigned tr g left turn. count for th count for th count for th count for th t an EB rig.	Phase=1 ⁴ ane. o exclusivi re installa re installai re installai tht-turn oni	425, 4+ PH e lane. tion of the growth fac ly lane wh	iase=1375, Wishire Wi Wishire Wi tor to reflect ich is assum	Unsignaliz est ATSAC est ATCS (t year 2000 red in the l	ed=1200. System in system im 8 existing c Future Pre	nprovement provements conditions. - Project cor	s. ndition.				

CRITICAL MOVEMENT ANALYSIS

San Vicente Boulevard @ Gracie Allen Drive/Beverly Center Entrance-Exit Peak Hour: Annual Growth: 1.0%

Project Alternative 3

San Vicente Boulevard Gracie Allen Drive/Beverly Center Entrance-Exit Cedars-Sinai Medical Center / 1-992843-1 CMA14 Accutek

N-S St: E-W St: Project: File Name: Counts by:

Date: Date of Count: Projection Year:

08/05/2008 2008 2023

	2008 EXIST. 1	TRAFFIC	2023	W/ AMBIE	ENT GROV	NTH	2023 \	V/ OTHE	R PROJE(CTS	2023 V	V/ PROPC	SED PRO.	JECT	2023 \	W/ MITIGA	ATION	
	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement Vol	ume Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
NB Left	72 1	72		82	← c	82	64	146	c	146	31	177	← C	177	D	177	← ¢	177
	814 2	407	122	936	000	468	320	1256	000	628	0	1256	000	- 628	0	1256	5 14 0	628
NB Right [1] Comb. L-T-R -	45	45	7	52	0 - 0	52	0	52	0 - 0	52	0	52	0 - 0	- 52	0	52	070	- 52
SB Left Comh 1_T	46 1 0	46	7	53	- c	53	0	53		53	ο	53	+- C	53	0	53	← c	53
SB Thru	726 1	455	109	835	⊃ -	523	365	1200	0 0 0	600	0	1200	5 14 1	600	0	1200	000	- 600
Comb. L-T-R Comb. L-T-R -	183 0	, 004 00	27	210	- 0 0	\$70 -	43	253	070	- 253	31	284	0 0	- 284	0	284	0 + 0	- 284
EB Left	71 1	11	11	81	-	81	99	147	¢1	81	8	155	2	85	0	155	2	85
Comb. L-1 EB Thru	22 0		ы	26	00		0	26	00	, ,	0	26	00		0	26	0 0	
Comb. T-R EB Right Comb. L-T-R -	99	52 69	Ω.	114	0	60 80	7	121	0	62 85	8	129	0	64 90	0	129	0	64 90
WB Left	4	4	1	2	c	5	0	5	÷ - ر	5	0	5	← 0	5	0	2		ιΩ.
WB Thru	о с ю	9 1	0	ю		- 7	0	ю	00	- 7	0	n	00	80	0	ო	00	- 7
Comb. I-K WB Right Comb. L-T-R -	0	9		10	0	- 1	0	10	0	- 7	0	10	0	G 1	0	10	0	- 7
Crit. Volumes:	N-S: E-W: SUM:	526 77 603			N-S: E-W: SUM:	605 89 694			N-S: E-W: SUM:	747 92 838			N-S: E-W: SUM:	778 98 875			N-S: E-W: SUM:	778 97 875
No. of Phases: (EB-WB Split Phas	se)	ε				3				6				ę				3
Volume / Capacity Level of Service:		0.353 A			[2],[3]	0.387 A			[2],[3]	0.488 A			[E]'[Z]	0.514 A			f [2]/[3]	0.514 4
Assumptions:	Maximuu For dual For one Right tur Right tur [1] North [2] The v [3] The Ve	m Sum of Crit turn lanes, excl. and one ns on red fror bound right-tu bound right-tu olume to cap. olume to cap.	ical Volume 55% opt. turn la m excl. lane urn has an u acity ratios acity ratios	is (Interse of volume ine, ss = overlappin have beer have beer	ction Capa e is assignt 70% 50% ig phase w 1 reduced L 1 reduced L	city): 2 Pha: ed to heavie of volume is of overtappii vith the west! by 0.07 to ac by 0.03 to ac	se=1500, 3 r lane. assigned t ng left turn. yound phas count for th count for th	Phase=1 o exclusiv ie. he installa he installa	425, 4+ Pl e lane. ation of the tition of the	hase=1375, Wilshire W Wilshire W	Unsignaliz est ATSAC 'est ATCS, '	:ed=1200. S system in system im	mprovemen provements	<u>بن</u> ي		Note: Mitiç Master Pla of a secon a SB right- been assur Pre-Projeci	gation for the an includes ir d EB left-tun turn lane wh turn lane wh t Condtion.	e Entitled Istallation I lane and ich has uture
						· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				1 yuu	ה האותויים						

CRITICAL MOVEMENT ANALYSIS

San Vicente Boulevard @ Gracie Allen Drive/Beverly Center Entrance-Exit Peak Hour: Annual Growth: 1.00%

Project Alternative 3

San Vicente Boulevard Gracie Allen Drive/Beverly Center Entrance-Exit Cedars-Sinai Medical Center / 1-992843-1 CMA14 Accutek

N-S St: E-W St: Project: File Name: Counts by:

Date: Date of Count: Projection Year:

08/05/2008 2008 2023

	2008 E	EXIST. TR/	AFFIC	2023 \	V/ AMBIE	ENT GROW	VTH	2023 V	V/ OTHEF	RROJEC	CTS	2023 \	NI PROPC	DSED PRO	JECT	2023	W/ MITIG	SATION	
		No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
NB Left Comh 1-T	39	c	36	9	45	c	45	32	77	- c	77	13	06	c	06	0	06	÷ (06
	754	000	377	113	868	2 (1) (434	323	1191	5 (V) (595	0	1191	9 01	- 595	0	1191	0 01	- 595
Comb. L-T-R Comb. L-T-R -	136	0-0	136	20	157	0-0	- 157	o	157	0 - 0	- 157	0	157	0-0	- 157	0	157	0 - 0	- 157
SB Left Comb L T	84	+- c	84	13	96	c	96	0	96	- 0	96	0	96	← (96	0	96	-	96
SB Thru	800	، د	442	120	920	⊃ -	509	485	1405	0 M G	- 702	0	1405	0 10 0	- 702	0	1405	0 0	- 702
SB Right Comb. L-T-R -	85	- 0 0	N 1 1 1	13	98	- 0 0	80C -	22	120	0 ~ 0	- 120	13	133	0-0	133	0	133	0-0	- 133
EB Left	298	- 0	298	45	343		343	216	559	C3	307	35	594	2	327	0	594	5	327
Come. L-1 EB Thru	53		1 1	æ	60	00	1 1	0	60	00	1 1	0	60	00	1 1	0	60	00	. ,
Comb. T-R EB Right	143	~ ~ (96 100	22	165	~- ~- (110	28	193		118 135	35	228	~~ ~~	129 160	0	228		129 160
Comb. L-I-K -		0				0				0				0				0	
WB Left Comb. L-T	179		125	27	206	- c	144	0	206	- c	144	0	206	c	144	0	206	+ c	144
WB Thru	25	000	125	4	29	000	143	0	29	000	143	0	29	000	144	0	29	00	- 143
WB Right Comb. L-T-R -	171) -	125	26	196		- 144	0	196	⊃ <i>~ ~</i>	- 144	0	196	0 ~ ~	- 144	0	196	0	- 144
Crit. Volumes:		N-S:	482			N-S:	554			N-S:	780			S-N	793			V-N	703
		E-W: SUM:	423 905			E-W: SUM:	487 1041			E-W: SUM:	451 1231			E-W: SUM:	470 1263			E-W: SUM:	470
No. of Phases: (EB-WB Split Pl	hase)		93				ю				ε				ю				3
Volume / Capac	sity:	[2]	0.565			[2],[3]	0.630			[2],[3]	0.764			[2],[3]	0.786			[2],[3]	0.786
Level of Service		-	A				В				с				υ				υ
Assumptions:	< ע ע ע ײַ ײַ ײַ	faximum S for dual tur. or one exc Right turns , 1] Northbou 2] The volu 3] The volu	um of Critic n lanes, 1. and one c 2. red from 1. nd right-tur me to capa. me to capa.	al Volumes 55% ppt. turn lar excl. lanes n has an o city ratios h	t (Interset ae, verlappin, ave been ave been	tion Capac of volume i 70% o 50% o g phase wit 1 reduced b	city): 2 Phas is assigned of volume is of overlappin th the westb y 0.07 to ac	e=1500, 3 i o heavier k assigned tc g left turn. ound phase count for th	Phase=1 ⁴ ane. o exclusivu e installat e installat	425, 4+ Př. e lane. tion of the tion of the	iase=1375, Wilshire W Wilshire W	Unsignali: est ATSAC est ATCS	zed=1200. 7 system in svstem im	mprovement. provement.	its.		Note: Mil Master Pl of a seco a SB righ been ass Pre-Proje	tigation for th lan includes nd EB left-tu t-turn lane v urmed in the set Condtion	ie Entitled installation mi lane and hich has Future
	<	lote: Year	2007 manu:	al traffic cou	unts were	adjusted b	iy a 1.0 per	ent (1.0%):	ambient ç	growth fac	tor to reflec	t year 200	8 existing	conditions.					

LINSCOTT, LAW 236 N. Chester Av 626.796.2322 F.	& GREENSPA e., <i>Suite 200, F</i> ax 626.792.094	N, ENGINEEF asadena, CA	SS 91106			-1	CRITICAL	MOVEME	ENT ANAL	YSIS								
N-S St: San E-W St: Thin Project: Ced. File Name: CM/ Counts by: Acct	Vicente Boulev d Street ars-Sinai Medic 116k	ard al Center / 1-	992843-1				San Vicent Peak Hour Annual Grc Project Alı	e Bouleva wth: ernative	ard @ Thir AM 1.0% 3	d Street					Date: Date of Co Projection	unt: Year:		08/05/2008 2008 2023
N	1008 EXIST. TR	AFFIC	2023 W/	AMBIEN	IT GROWI	E	2023 M	// OTHER	PROJEC	TS	2023 W	/ PROPOS	ED PROJ	ЕСТ	2023 V	V/ MITIGA	TION	
	No. of	Lane	Added	Total A	ło. of	Lane	Added	Total	No. of	Lane	Added	Total	Vo. of	Lane	Added	Total	No. of	Lane
Movement Vol	ume Lanes	Volume	Volume Vi	olume	anes	Volume	Volume \	olume	Lanes	Volume	Volume V	olume	anes	Volume	Volume	/olume	Lanes	Volume
NB Left Comb 1-T	96 1	96	14	110	- c	110	67	207	← c	207	39	246	c	246	0	246	+- C	246
NB Thru Comh T-R	702 1	357 357	105	807) - -	411	358	1165) ~ ~	590	31	1196	o ← •	605 605	0	1196	⊃ ~ •	- 605 605
NB Right Comb. L-T-R -	12 0	1	2	41	- 0 0	1	0	14	- 0 0)) 	0	14	- 0 0	1	o	14	- 0 0	-
SB Left	89 1	89	13	102	- 0	102	59	161	(161	0	161		161	0	161	، ب	161
SB Thru	543 U	- 272	82	625	0 M C	- 312	257	882	0 0 0	- 441	æ	890	0 0	- 445	0	890	0 0	445
Comb. I-K SB Right Comb. L-T-R -	123 1 0	- 123	18	142	0 - 0	- 142	12	154	0 - 0	, 154	o	154	0 - 0	- 154	0	154	0-0	- 154
EB Left	59 1	59	თ	67	c	67	12	62	c	79	0	62	← (62	0	62	- (- 62
EB Thru	428 1	- 246 246	64	492	⊃ -	- 283 283	145	637		319	15	652	0 0 0	- 326	0	652	0 M G	- 326
EB Right Comb. L-T-R -	65 0 0	0	10	74	- 0 0	C07 -	30	104	00	- 104	10	114	0-0	- 114	0	114	o - o	- 114
WB Left	48 1	48	2	56	-	56	0	56	-	56	0	56	.	56	0	56	-	56
Comb. L-T	0	1			0				0	1	•	}	0)	0	• 0	3
WB Thru Comb. T-R	266 1	712 712	190	1455		818 818	347	1802		666 666	55	1857		1026 1026	0	1857		1026 1026
WB Right Comb. L-T-R -	158 O 0	•	24	181	00	I	14	195	00	ı	0	195	00	ı	0	195	00	
Crit. Volumes:	N-S: E-W:	446 770			N-S: 	513 886			N-S: E-W:	751 1078			N-S: М-S:	766 1106			N-S: E-W:	766 1106
	SUM:	1216		.,	SUM:	1398			SUM:	1829		.,	SUM:	1872			SUM:	1872
No. of Phases:		2				5	:			7				5				2
Volume / Capacity Level of Service:	[L] :	0.741 C			[/1],[2] D	0.832			[1].[2]	1.119 F			[1],[2] F	1.148			[1].[2] F	1.148
Assumptions:	Maximum For dual tu For one ex Right turns [1] The voi [2] The voi Note: Yeai	Sum of Critic: In lanes, vcl. and one o s on red from lume to capac ume to capac	al Volumes (55% of 55% of pt. turn lane excl. lanes = :ity ratios ha ity ratios ha I traffic coun	Intersecti volume i ve been r ve been r ts were a	on Capacit s assigned 70% of 50% of educed by educed by djusted by	 y): 2 Phase to heavier volume is a overlapping 0.07 to acc 0.03 to acc a 1.0 perce 	p=1500, 3 <i>i</i> lane. issigned to <i>j</i> left turn. count for th count for th ⇒nt (1.0%) .	7hase=14 exclusive e installat e installat ambient g	25, 4+ Pha e lane. 'ion of the 'ion of the yrowth fact	ase=1375, l Wilshire We Wilshire We or to reflect	Jnsignalize sst ATSAC sst ATCS s year 2008	d=1200. system im _i existing co	provement ovements.	نه ن	< < 0 5 2 0	lote: Mitig faster Plau f an EB rig hich has t the Futur ondition.	ation for the i includes in tht-turn only seen assumu e Pre-Projec	Entitled stallation lane sd t

CRITICAL MOVEMENT ANALYSIS

San Vicente Boulevard @ Third Street Peak Hour: PM Annual Growth: 1.00%

Project Alternative 3

San Vicente Boulevard Third Street Cedars-Sinai Medical Center / 1-992843-1 CMA15 Accutek

N-S St: E-W St: Project: File Name: Counts by:

Date: Date of Count: Projection Year:

2008 2023 08/05/2008

	2008 EXIS	ST. TRA	FFIC	2023 V	V/ AMBI	ENT GROV	VTH	2023	W/ OTHE	R PROJE(CTS	2023 V	V/ PROPC	SED PRO	JECT	2023	W/ MITIG/	ATION	
:	Ν. Ν.	of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement Vo	olume Lai	nes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
NB Left	68	c	68	10	78	~ c	78	40	118	 (118	16	134	-	134	0	134		134
	651	C	- 367	86	749	c	- 422	335	1084	C	- 500	r,	1007	0,	1	c	1001	0 1	ľ
Comb. T-R		• • •••	367		-		422				590	2	1001		090 296	5	/RDI		980 985
NB Right Comb. L-T-R -	83	00	ı	12	95	00	ı	0	95	00	•	0	95	00	ı	0	95	00	
a - 00	001	,	007	00										>	-			5	
SB Lett Comb. L-T	792	- 0	- 192	29	221	C	- 221	159	380	- c	380	0	380	~ ⊂	380	0	380	c	380
SB Thru	890	0	445	133	1023	2	512	576	1599	20	800	35	1634	0 0	- 817	0	1634	ы с	- 817
Comb. T-R SB Right	80	0 +	-	ţ	60	0 7		ç	007	0,	, ,	c		0,		4		0	,
Comb. L-T-R -	2	- 0	2	2	מי	- 0	34	2	201	- 0	201	D	701	- 0	102	0	102	- 0	102
EB Left	146	-	146	22	168	÷	168	12	180	t	180	c		۲	001	c	100		007
Comb. L-T		0	2	1	2	- 0		1	2	- 0	- n -	C	101	- 0	181	5	180	- 0	- 180
EB Thru Comh T-R	967		587 587	145	1112	- •	675 675	330	1442	~ ~	721	61	1503	0	751	0	1503	0	751
EB Right	208	- 0	-	31	239	- 0	c/o -	35	274	C	- 274	44	318	0 -	- 318	0	318	0 -	- 318
Comb. L-T-R -		0				0				0				0				0	
WB Left Comb 1-T	22	- c	22	ы	26	0	26	o	26	- c	26	0	26	(26	0	26	-	26
WBThru	544	, .	358	82	626	o ←	412	305	931	C	568	23	954	- c	- 580	0	954	- c	- 580
Comb. 1-K	170	- c	358	90	101	c	412	c	100	÷ (568				580				580
Comb. L-T-R -	71	00	1	R	I AI	00	,	α	GU2	00	•	0	205	00	,	0	205	00	ı
Crit. Volumes:	ž	ċċ	559			N-S:	643			N-S:	696			N-S:	976			N-S:	976
	ЗU Г	N.W.	610 1169			E-W: SUM:	701 1344			E-W: SUM:	749 1718			E-W: SUM:	777 1753			E-W: SUM:	777 1753
No. of Phases:			2				2				6				c				c
											1				V				7
Volume / Capacity		LI LI	0.709			[1],[2]	0.796			[1].[2]	1.045			[1].[2]	1.068			[1].[2]	1.068
Level of Service:							0				ш				IL.				F
Assumptions:	Maxi For c For c Right [1] 71	imum Su dual turn one excl. t turns oi he volum he volum	im of Critica lanes, and one op n red from e re to capaci	I Volumes 55% nt. turn lan excl. lanes ty ratios he	(Interse e, ave been ave been	ction Capac of volume i 70% c 50% c 1 reduced b	city): 2 Phas is assigned i of volume is of overlappin vy 0.07 to ac	te=1500, 3 to heavier l assigned tr ig left turn. count for th count for th	Phase=1 ane. o exclusiv he installa	425, 4+ Pt e lane. ttion of the ttion of the	aase=1375, Wilshire Wi Wilshire We	Unsignaliz. est ATSAC est ATCS s	ed=1200. : system in :ystem imp	nprovemen provements	its.		Vote: Mitic Master Pla of an EB ri which has which has on the Futu condition.	gation for th in includes ght-turn on been assur re Pre-Proj	e Entitled installation y lane ned set
	INCIE	Lear C	ממו שמוחמו	tramc cou	ints were	e adjusted t	oy a 1.u pen	cent (1.u%)	ambient	growth fac	tor to reliec.	t year 20ut	3 existing ι	conditions.					

CRITICAL MOVEMENT ANALYSIS

San Vicente Boulevard-Le Doux Road @ Burton Way AM 1.0% Peak Hour: Annual Growth:

Project Alternative 3

San Vicente Boulevard-Le Doux Road Burton Way Cedars-Sinai Medical Center / 1-992843-1 CMA16 Accutek

N-S St: E-W St: Project: File Name: Counts by:

08/05/2008 2008 2023 Date: Date of Count: Projection Year:

No. of Lane Added Total N Movement Volume Lanes Volume	al No.of me Lanes / 9 1 14 1 14 1 172 1 172 1 172 0 12 0	Lane / Volume / Volume / 14	261 To 01ume Volv 261 0 12 12	ume Lan. 9 14 14	of La	ume Vo	lded T	otal N fume L	o. of anes	Lane Volume	Volume	Total Volume	No. of Lanes	Lane
Movement Volume Lanes Volume	me Lanes / 9 1 1 14 1 14 1 172 1 172 0 12 0	Volume V - 9 - 14 - 172 - 172	olume Vol 0 261 12 12	ume Lan 9 14	es Vol	ume Vo	ume Vo	ume	anes	Volume	Volume	Volume	Lanes	
NB Left 8 1 8 1 9 9 1 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 14 172 172	261 0 0 12 261 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	e 0 1	- o c	c					~			Volume
Comb. L-T 0 - NB Thru 0 0 - 0 0 Comb. T-R 0 0 - 12 14 Comb. L-T-R- 0 - 2 14 NB Right 12 1 12 2 14 Comb. L-T-R- 0 0 - 0 0 SB Left 563 2 309 84 647 Comb. L-T 0 0 - 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 261 12 0	0 41	· ·	ת	0	თ	÷	0	0	6	-	0
NB Thru 0 0 - 0 0 - 10 0 NB Thru 0 NB Thru 0 - 0 0 0 NB Right 12 1 12 2 14 NB SB Left 563 2 309 84 647 Comb. L-T R 0 0 - 0 0 Comb. L-T R 0 0 - 149 22 172 SB Right 149 1 149 22 172 SB Right 149 1 149 22 172 Comb. L-T R 0 0 - 158 Comb. L-T R 0 0 - 178 Comb. L-T R 0 0 - 178 Comb. L-T R 0 0 - 178 Comb. L-T R 0 0 - 178 Comb. L-T R 0 - 178 Comb. L 0 - 188 Comb. L 0 - 18	0 0 847 14 0 172 0 0 12 1 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		261 0 12 0 12 0	14 0	- -				0	1			0	ı
Corrent I-FK 0	14 547 2 172 0 12 12 12 0 0	- 356 - 1172	261 261 12	14	5 6		0	0	0	;	0	0	0	ı
ND Kight 12 1 12 2 14 Comb. L-T-R- 0 0 563 2 309 84 647 SB Left 563 2 309 84 647 SB Thru 0 0 - 0 0 Comb. L-T <r< td=""> 0 0 - 0 0 SB Thru 0 0 - 0 0 Comb. L-T-R 0 - 149 22 172 Comb. L-T-R 0 - 0 2 172 Comb. L-T-R 0 - 2 12 2 Comb. L-T 0 - 2 12 2 Comb. L-T 0 - 2 12 2 12 Comb. L-T 0 - 2 12 2 12 2</r<>	172 0 172 0 120 0 172 0 12 0	356	261 12 12	4	' o '		c		0,	;	C	-	0,	1
SB Left 563 2 309 84 647 Comb. L-T 0 - 0 - 0 0 SB Thru 0 0 - 0 149 12 172	547 2 0 0 172 1 172 0 12 0	356 	261 0 12		- 0	<u>+</u>	5	1	- 0	<u>+</u>	D	4	- 0	14
Comb. L-T	172 0 12 0 12 0	142	0 2	800	ç	100	10	700	ſ	u 10	c	200	c	C T L
SB Thru 0 0 - 0 149 22 172 0 0 149 22 172 0 0 1 0 1 149 22 172 172	0 0 172 1 12 0 12 0	- 172	0	200	י ס ע	444	n	176	NC	010	D	176	NC	. 10
Comb. T-R 0 - SB Right 149 1 149 22 172 Comb. L-T-R- 0 - 149 22 172 EB Left 10 0 - 2 12 Comb. L-T 6.6 0 - 77 6.04	172 0 12 0 12 0	- 172	12	0	. 0		0	0	0		0	0	00	ı
Ser Kight 149 1 149 22 1/2 Comb. L-T-R- 0 149 22 1/2 EB Left 10 0 - 2 12 Comb. L-T 0 - 2 7 504	12 0 1	- 1/2	2		, 0		Ċ		0				0	
EB Left 10 0 - 2 12 Comb. L-T 0 - 2 12 Ec Trin, 516 0 - 77 504	12 0	1		184	- 0	184	Ð	184	- 0	184	0	184	- 0	184
EB Left 10 0 - 2 12 Comb. L-T 0 - 2 12 Let Trans. 616 0 - 77 604	12 0	I							,				0	
CUIIID. L-1 U - ER Thru 518 2 176 77 504	c		0	12	' 0 0		0	12	0 0	,	0	12	0 0	1
	594 2	- 202	98	680	,	231	c	GRO	50	- 731	c	680	0,	- 731
Comb. T-R 1 176	1 -	202	3	200	1 +	231	5	200	ب 1	231	2	000	v +-	231
EB Right 11 0 - 2 13	13 0		0	13	' 0		0	13	0	•	0	13	0	,
Comb. L-T-R - 0	0				0				0				0	
WB Left 6 1 6 1 7	7 1	7	0	7	-	7	0	7		2	0	2		7
Comb. L-T 0 -	0	ı			' 0				0	,			0	•
WB Thru 1376 2 526 206 1582	582 2	605	143 1	725	2	697	0	1725	2	705	0	1725	7	705
Comb. T-R 1 526		605		1	 .	697	i		* ·	705			-	705
WIERIGNE 0/0 1 4/2 101 //6	1/10	543	449	CZZ	- 0	/58	1	1296	- (206	0	1296	I	907
	D				5				0				0	
Crit. Volumes: N-S: 319	N-S:	366		0-N		510			-S:	520			N-S:	520
E-W: 526	E-W:	605		Р Ч	:-	697		ш	-W	705			: М-	705
SUM: 845	SUM:	971		sun	Ÿ	207		S	UM:	1225			SUM:	1225
No. of Phases: 2		7				2				2				2
Volume / Capacity: [1] 0.493	[1],[2]	0.547		Ш	1.[2] 0	705			161 [1]	0 717			[1].[2]	0.717
Level of Service: A	đ	-		-	0 2				1-11(,)					: ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
					,									,

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200. For dual turn lanes,

55% of volume is assigned to heavier lane. turn lane, 70% of volume is assigned to exclusive lane. 2. lanes = 50% of overlapping left turn. Right turns on red from excl. lanes = For one excl. and one opt. turn lane,

(1) The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements.
[2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.
[2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.
[2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.
[2] Note: Year 2007 manual traffic counts were adjusted by a 1.0 percent (1.0%) ambient growth factor to reflect year 2008 existing conditions.

CRITICAL MOVEMENT ANALYSIS

San Vicente Boulevard-Le Doux Road @ Burton Way Peak Hour: PM Annual Growth: 1.00%

Project Alternative 3

San Vicente Boulevard-Le Doux Road Burton Way Cedars-Sinai Medical Center / 1-992843-1 CMA16 Accutek

N-S St: E-W St: Project: File Name: Counts by:

08/05/2008 2008 2023 Date: Date of Count: Projection Year:

	2008 E	XIST. TR/	VFFIC	2023	W/ AMBIE	ENT GROW	VTH	2023 V	W OTHE	R PROJE	CTS	2023	N/ PROPC	SED ALT	2	2023	W/ MITIC	SATION	
		No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
NB Left	36		36	5	42		42	o	42	•	42	0	42	-	42	0	42	-	42
Comb. L-T		0				0	ı			0	,			0				0	1
	0	0 (0	0	0		0	0	0	•	0	0	0	,	0	0	0	ı
Comb. T-R		0				0	ı			0	,			0	,			0	•
NB Right	28	-	28	4	33		33	0	33	*	33	0	33	~~	33	0	33		33
Comb. L-T-R -		0				0				0				0				0	
SB Left	1011	2	556	152	1163	2	639	573	1736	2	955	79	1815	2	998	C	1815	6	998
Comb. L-T		0	,			0	,			0	•			0		,		10	1
SB Thru	0	0		0	0	0	,	0	0	0	,	0	0	0	,	0	0	0	,
Comb. T-R		0	ŧ			0				0				0				0	ı
SB Right	59		59	6	67	-	67	38	105		105	0	105	-	105	0	105	-	105
Comb. L-T-R -		0				0				0				0				0	
FB Leff	31	c	,	ι.	36	c	,	C	36	C		c	36	c		c	96	c	
Comb. L-T		0	,)	3	0	,	2	3	00		0	3			5	2		1 1
EB Thru	1139	2	389	171	1310	7	447	169	1479	2	504	0	1479	2	504	0	1479	2	504
Comb. T-R		-	389				447			-	504				504			-	504
EB Right	27	0		4	31	0	•	0	31	0	۱	0	31	0	ı	0	31	0	1
Comb. L-T-R -		0				0				0				0				0	
WB Left	18	-	18	3	21	-	21	0	21	-	21	C	21	ŀ	21	C	21	+	10
Comb. L-T		0	1			0				0	•		i	. 0	i ,	•	i	• 0	
WB Thru	782	2	314	117	899	2	361	128	1027	2	442	0	1027	5	444	0	1027	5 64	444
Comb. T-R			314				361			≁-	442			~~	444			-	444
WB Right	536		375	80	617	~	432	375	992		694	29	1021		715	0	1021	•	715
Comb. L-T-R -		0				0				0				0				0	
Crit. Volumes:		N-S:	575			N-S:	662			N-S:	977			N-S:	1020			N-S:	1020
		E-W:	407			E-W:	468			Е-W:	524			E-W:	524			: М-	524
		SUM:	982			SUM:	1130			SUM:	1501			SUM:	1545			SUM:	1545
No. of Phases:			2				2				2				2				3
Volume / Canar	citv:	141	0.585			161111	0.653			161 [1]	0 901			[0] [5]	000 0			[0] [1]	0000
I avel of Sanice		2	V			1 -1-1-1				1-146.1	- - - - - - - - - - - - - - - - - 			[1]'[7]	0.930			[7]"[1]	nce.n
רבגבו הו סבו גותי			£				_ _				ш				Ш				Ш
Assumptions:	Å	Provincim C	مناقبة والمراورة	iomilal I-					ì			:							

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200.

For dual turn lanes, 55% of volume is assigned to heavier lane. For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. Right turns on red from excl. lanes = 50% of overlapping left turn. [1] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.

CRITICAL MOVEMENT ANALYSIS

San Vicente Boulevard @ Wilshire Boulevard Peak Hour: AM Annual Growth: 1.0%

Project Alternative 3

San Vicente Boulevard Wilshire Boulevard Cedars-Sinai Medical Center / 1-992843-1 CMA17 Accutek

N-S St: E-W St: Project: File Name: Counts by:

Date: Date of Count: Projection Year:

08/05/2008 2008 2023

	2008 E)	(IST. TR/	VFFIC	2023	W/ AMBIE	ENT GROW	VTH	2023	W/ OTHE	R PROJE	CTS	2023	N/ PROPO	DSED ALT	2	2023	W/ MITIG/	ATION	
Meyomont V	4	Vo. of	Lane	Volumo	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
NB L off	375	-	375	99	131		131				274	Aolume	Volume	Lanes	Volume	amilo	volume	ranes	Volume
Comb. L-T	5	- 0	, ,	3	- 7	- 0		5	101	10		0	434	V 0		0	764	N 0	
NB Thru Comb. T-R	1310	<i>т</i> 0	437	196	1506	<i>е</i> С	502 -	362	1868	с п С	623 -	47	1915	е С	638 -	0	1915	ი ⊂	638
NB Right [1] Comb. L-T-R -	37	- 0	37	G	43	0 0	43	10	53	0 - 0	53	0	53	0 - 0	53	0	53	0 - 0	23
SB Left	194	← c	194	29	223	- c	223	115	338	~ ~	186	G	344	2 10	189	0	344	0	189
SB Thru	606	იი	202	91	697	ວ ຕ ເ	232	204	901	ດ	300	12	913	5 m -	- 304	0	913	5 ന	304
Comb. T-R SB Right [1]	261	0 - 1	- 261	39	300	0 - 1	300	0	300	o -	300	0	300	0	- 300	0	300	0 -	300
Comb. L-T-R -		0				0				0				0				0	
EB Left Comb 1_T	72	c	72	11	82	c	82	0	82	- c	82	0	82	- 0	82	0	82		82
	1114	5 N 7	417	167	1281	о (ч т	479	266	1547	л о с	579	ŝ	1550	<u>э</u> м -	- 580	0	1550	0 N	- 580
EB Right	136	- 0	- 41/	20	157	- 0	- 479	34	191	- 0	579 -	0	191	- 0	- 580	0	191	- 0	- 580
Comb. L-T-R -		0				0				0				0				0	
WB Left Comb 1 - T	12	- c	12	2	14	- 0	14	16	30	c	30	0	30	~ c	30	0	30	← c	30
	1271) (V +	479	191	1461	о (ч т	551	399	1860	о сч т	762	12	1872	- 17) C	774	0	1872	5 M ·	- 774
WB Right	166	- 0 0	р †	25	190	- 0 0	8 ,	236	426	- 0 (70/ -	24	450	- 0 0		0	450	- 0	- //4
Comp. L-1-K -		5				5				0				0				0	
Crit. Volumes:		N-S: ≣-W: ŝUM:	631 550 1181			N-S: E-W: SUM:	725 633 1358			N-S: E-W: SUM:	809 845 1653			N-S: E-W: SUM:	828 857 1684			N-S: E-W: SUM:	828 857 1684
No. of Phases:			ю				m				ε				3				3
Volume / Capaci Level of Service:	ty:	[2]	0.759 C			[2],[3]	0.853 D			[2],[3]	1.060 F			[2],[3]	1.082 F			[2],[3] F	1.082
Assumptions:	х ч ч х х с с с с х Х	aximum S ar dual tur. Sr one exc ght turns I Northbou The volu ste: Year i	um of Critik n lanes, l. and one on red from und and sou me to capa me to capa	al Volume 55% 55% - excl. lane. Ithbound n city ratios l city ratios l al traffic co	s (Interseu of volume ne, s = 'ave beer 'ave beer 'nave beer 'nave beer	ction Capac is assigne 70% c 50% c novements reduced b reduced b	city): 2 Phas of to heavie. of volume is of overlappii of overlappii overlapd t overlappi over to ac	e=1500, 3 rlane. assigned t ng left turn. y stop-sign scount for t scount for t scount for t	Phase=1 o exclusiv ns. he installe he installe) ambient	425, 4+ Pl e lane. ation of the growth fac	nase=1375, Wilshire W Wilshire W Stor to reflec	Unsignali; est ATSA est ATCS t year 200	zed=1200. C system i system im	improvemer iprovement conditions.	st s		Note: Mitig Plan incluc second NE which has Future Pre	gation for the des installatio B and SB left- been assume Project conc	Entitled n of turn lanes ed in the lition.

CRITICAL MOVEMENT ANALYSIS

San Vicente Boulevard @ Wilshire Boulevard Peak Hour: Annual Growth: 1.00%

Project Alternative 3

San Vicente Boulevard Wilshire Boulevard Cedars-Sinai Medical Center / 1-992843-1 CMA17 Accutek

N-S St: E-W St: Project: File Name: Counts by:

08/05/2008 2008 2023

Date: Date of Count: Projection Year:

	2008	EXIST. TR	AFFIC	2023	W/ AMBI	ENT GROW	VTH	2023 V	N/ OTHEI	R PROJEC	STS	2023	N/ PROPC	SED ALT 2		2023 V	N/ MITIG/	ATION	
Morromet	Volumo	No. of	Lane	Added	Total Volumo	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
		railes								Calles		Volume	Volume	Lanes	Volume	vointile	volume	ranes	volume
Comb. L-T	COL	- 0	<u>co</u> ,	07	212	- 0	- 213	55	707	V 0	9 <u>2</u>	5	707	N 0	- 138	Ð	797	NO	- 138
NB Thru	766	<i>с</i> о с	255	115	880	en c	293	366	1246	ოი	415	19	1265	mc	422	0	1265	ന	422
NB Right [1] Comb. L-T-R -		0-0	- 18	с	21	0-0	21	21	42	0-0	- 42	o	42	0-0	- 42	0	42	o + o	- 42
SB Left	214	-	214	32	246		246	282	528	5	291	26	554	2	305	o	554	7	305
Comb. L-T SB Thru	1100	0 ო	- 367	165	1265	0 ო	- 422	461	1726	0 0	- 575	53	1779	0 °	- 593	C	1779	0 0	- 593
Comb. T-R		0			1	0		2		0		}		00	3	þ	-	00	1
SB Right [1] Comb. L-T-R -	- 134	- 0	134	20	154	- 0	154	0	154	- 0	154	0	154	- 0	154	0	154	- 0	154
EB Left	83	- (83	12	95	- (95	0	95	-	95	0	95	-	95	0	95	-	95
Comb. L-1	1244	0 0	- 479	187	1431	0 ~	י גרז	787	1014	0,	- 747	13	1007	0,	- 747	c	7001	0,	
Comb. T-R	1	1 1	479	5		1	551		5	4 ⊷	742	2	1761	4	747	5	1761	v ~	747
EB Right	192	00	ı	29	221	00		92	313	00	,	0	313	00	•	0	313	0 0	•
		5				0				5				5				0	
WB Left Comb 1-T	67	- c	26	15	112	c	112	15	127	- c	127	0	127	- 0	127	0	127	c	127
WB Thru	1113	0 01	450	167	1280	9 01	517	324	1604	0	690	5 2	1609	0 0	- 695	0	1609	D N	- 695
Comb. T-R		~ (450	;	ļ		517		1		690			1	695			-	695
WB KIGNT Comb. L-T-R -	- 236	00	1	τ. Έ	2/2	00	1	193	465	00	I	6	475	00	,	0	475	00	
Crit. Volumes:		N-S: E-W: SUM:	551 576 1127			N-S: E-W: SUM:	634 662 1296			N-S: E-W: SUM:	714 869 1582			N-S: E-W: SUM:	731 873 1604			N-S: E-W: SUM:	731 873 1604
No. of Phases			ę				ю				en				ю				m
Volume / Cap. Level of Servic	acity: ce:	[2]	0.721 C			[2][3]	0.810 D			[2]'[3]	1.010 F			[2],[3] F	1.026			[2],[3]	1.026
Assumptions		Maximum For dual tu For one ex Right turns [1] Northbc [2] The volu [3] The volu	Sum of Criti Irn lanes, Irn lanes, Irn and one ton red fron ound and so ume to cape ume to cape	cal Volume 55% opt. turn la n excl. lane uthbound r scity ratios	is (Interse ine, is = ight-turn r have beer have beer	of volume i of volume i 70% c 50% c movements n reduced b	city): 2 Phas is assigned of volume is of overlappi controlled t by 0.07 to ac	ie=1500, 3 to heavier l assigned to ig left turn. y stop-sign count for th count for th	Phase=1 lane. o exclusiv ns. he installa 'te installa	425, 4+ Pi /e lane. ttion of the	iase=1375, Wilshire W Wilshire W	Unsignali: est ATSA(est ATCS	zed=1200. C system in system im	mprovement provements	ы́	< 4 0 2 4	Vote: Mitig Plan incluc second NE which has ⁼uture Pre	ation for the tes installatic and SB left been assum -Project con	Entitled n of turn lanes ed in the dition.
		וערום. וכמי	בטער ווומוור	ומן וומוור רר	VIDA CIUNT	a dujuoteu r	ny a r.v per	(o/ n' i i ' n' n)	ן מוווחובווו	מוטאווו ומר	ומן וה ובוובר	I year Luu	o existing	coriuiuuis.					

LINSCOTT, L <i>i</i> 236 N. Cheste. 626.796.2322	WV & GR r Ave., St Fax 62	EENSPAN lite 200, Pé 6.792.0941	, ENGINEEI isadena, CA	RS 1 91106				CRITICAL	MOVEM	IENT ANAI	LYSIS									
N-S St: I E-W St: F Project: C File Name: C Counts by: <i>J</i>	⊥a Ciene(3everly B Cedars-S CMA18 ∖ccutek	ja Bouleva oulevard inai Medica	rd ai Center / 1-	-992843-1				La Cieneç Peak Hou Annual Gr <i>Project A</i>	ja Boulev r: owth: <i>iternativ</i>	ard @ Bev AM 1.0% e 3	rerly Boulev	p				Date: Date of C(Projection	ount: , Year:		08/05/2008 2008 2023	
	2008	EXIST. TR	AFFIC	2023 V	V/ AMBII	ENT GROV	WTH	2023	N/ OTHE	R PROJEC	CTS	2023 V	V/ PROPO	SED ALT 2		2023	W/ MITIG	ATION		·
Movement	Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	
NB Left	124		124	19	143	~ 0	143	37	180	- 0	180	27	207	(207	0	207		207	T
Comb. L-1 NB Thru Comh T D	717	2 14 0	359	108	825	0 0 0	- 412	415	1240	5 10 0	- 620	0	1240	5 M C	- 620	0	1240	0 10 0	- 620	
Comb. I-F. NB Right [1] Comb. L-T-R -	178	0 0	178	27	204	0 - 0	204	o	204	0-0	204	o	204	0-0	- 204	0	204	0 - 0	204	
SB Left Comh I_T	88	- c	88	13	101	- c	101	76	177	c	177	0	177	- م	177	0	177	- 0	177	
SB Thru Comb T-R	1102	o (V +-	480 480	165	1267	o (V +	- 552 557	346	1613	о с ч ғ	680 680	0	1613	- 10 C	- 688 688	0	1613	- M -	- 688 688	
SB Right Comb. L-T-R -	338	- 0 0	,	51	389	- 0 0	100	37	426	- 0 0	1	24	450	- 0 0	000 -	0	450	- 0 0	0 00 1	
EB Left Comb I T	114	2 0	63	17	131	2 17	72	53	184	2 12	101	ю	190	2	105	0	190	0 0	105	<u>.</u>
EB Thru	611	200	306	92	703	000	351	179	882	5 10 0	441	6	891	5 10 0	- 445	0	891	200	- 445	
EB Right [1] Comb. L-T-R -	54	0-0	54	ω	62	0 - 0	62	23	85	0 - 0	85	7	92	0 - 0	- 92	0	92	0-0	- 82	
WB Left Comb. L-T	232	0 2	128 -	35	267	0 0	147 -	35	302	0 5	166 -	0	302	2 0	166	o	302	N 0	166	
WB Thru Comb T-R	1214		641 641	182	1396		738 738	236	1632	2 10	816	35	1667	000	834	0	1667	000	834	
WB Right Comb. L-T-R -	69	- 0 0		10	79	- 0 0	1	59	138	0 - 0	138	0	138	0-0	138	0	138	0-0	138	
Crit. Volumes:		N-S: E-W: SUM:	604 704 1308			N-S: E-W: SUM:	695 810 1505			N-S: E-W: SUM:	860 917 1777			N-S: E-W: SUM:	895 938 1833			N-S: E-W: SUM:	895 938 1833	-
No. of Phases:			4				4				4				4				4	
Volume / Capa Level of Servic	icity: e:	[2]	0.882 D			[2],[3]	0.994 E			[2],[3]	1.192 F			[2],[3] F	1.233			[2],[3]	1.233	T
Assumptions:		Maximum : For dual tu. For one exi Right turns [1] Northbo	Sum of Critic rn lanes, cl. and one c on red from und right-tur	cal Volumes 55% (55% turn lan ppt. turn lan excl. lanes n overlaps	t (Interse of volum ne, t = with wes	ction Cape e is assign 70% 50% thound lef	acity): 2 Pha: ed to heavie of volume is of overlappii 't-turn. Eastl	se=1500, 3 r lane. assigned t ng left turn. nound right-	Phase=1 o exclusiv turn over	1425, 4+ Pl ve lane. †aps with n	hase=1375, iorthbound le	Unsignaliz eft-turn.	ed=1200.				Note: Miti Master Pli of a WB ri which has Future Pre	igation for the an includes i ght-turn only been assum Project con	Entitled istallation lane, ied in the dition.	1

Right turns on red from excl. lanes = 50% of overlapping left turn. [1] Northbound right-turn overlaps with westbound left-turn. Eastbound right-turn overlaps with northbound left-turn. [2] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Witshire West ATSAC system improvements. [3] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Witshire West ATSAC system improvements. [3] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Witshire West ATCS system improvements. [3] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Witshire West ATCS system improvements. [3] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Witshire West ATCS system improvements.

08/05/2008 2008 2023 908 476 636 636 932 186 1213 1117 2330 1.594 304 223 207 604 174 161 Volume Lane Master Plan includes installation which has been assumed in the Future Pre-Project condition. Note: Mitigation for the Entitled of a WB right-turn only lane, [2],[3] 0 7 0 10 0 0 10 - 0 0 N oc NO NO C Lanes No. of N-S: E-W: SUM: 2023 W/ MITIGATION 476 245 1817 1662 405 1863 207 1208 Volume Volume 338 174 161 304 Total Projection Year: Date of Count: 0 0 0 0 0 С 0 0 С Added 0 0 Date: 476 4 908 636 636 932 207 186 604 174 1213 1117 2330 161 304 223 1.594 Volume Lane [1] Northbound right-turn overlaps with westbound left-turn. Eastbound right-turn overlaps with northbound left-turn.
[2] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements.
[3] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATSAC system improvements.
[3] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATSCS system improvements.
[3] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.
Note: Year 2007 manual traffic counts were adjusted by a 1.0 percent (1.0%) ambient growth factor to reflect year 2008 existing conditions. ш 2023 W/ PROPOSED ALT 2 [2],[3] NONOTO NO - 0 0 C NO 0 C N No. of Lanes N-S: E-W: SUM: 245 1817 476 1662 405 1863 161 304 207 338 1208 174 Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200 Volume Volume Total Added o C C 0 9 39 ΰ Ξ 28 ä La Cienega Boulevard @ Beverly Boulevard Peak Hour: PM Annual Growth: 1.00% Volume 150 908 476 632 632 208 912 176 597 1213 1098 2310 1.580 186 174 304 Lane CRITICAL MOVEMENT ANALYSIS 2023 W/ OTHER PROJECTS ш [2],[3] NO NO C No. of Lanes 70% of volume is assigned to exclusive lane. N-S: B-W: SUM: Project Alternative 3 Volume 150 1817 476 1662 235 379 1824 176 338 1193 Total 304 174 Annual Growth: of volume is assigned to heavier lane Added of overlapping left turn. 20 446 o Volume 507 47 385 33 73 307 56 80 64 502 502 1.118 130 685 476 448 448 73 720 143 146 810 865 1675 Volume 124 Lane 2023 W/ AMBIENT GROWTH [2],[3] 50%NOFO 0 oc NO N 0 C NO 0 0 0 \sim No. of Lanes N-S: E-W: SUM: 1439 143 Total Volume 130 1371 476 124 1155 188 315 265 886 118 Right turns on red from excl. lanes = For one excl. and one opt. turn lane, La Cienega Boulevard Beverly Boulevard Cedars-Sinai Medical Center / 1-992843-1 CMA18 Volume 5 ñ Added 17 179 62 16 151 25 88 35 116 65% 4 236 N. Chester Ave., Suite 200, Pasadena, CA 91106 626.796.2322 Fax 626.792.0941 Volume 113 596 414 108 389 389 626 124 437 437 704 752 1456 0.989 Ω, 127 Lane For dual turn lanes, 2008 EXIST. TRAFFIC u. 00 [2] 2 Ó C 0 2 00 NO 2 0 0 NO No. of Lanes N-S: E-W: SUM: Volume 113 1192 414 103 80 1004 164 274 1251 124 771 230 Accutek /olume / Capacity: -evel of Service: lo. of Phases: Assumptions: NB Right [1] Comb. L-T-R -Crit. Volumes: Comb. L-T-R Comb. L-T-R Comb. L-T-R SB Thru Comb. T-R Comb. T-R Movement EB Left Comb. L-T EB Right [1] Comb. T-R Comb. T-R File Name: Comb. L-T Comb. L-T Counts by: Comb. L-T WB Right WB Thru SB Right NB Thru EB Thru N-S St: E-W St: **VB** Left SB Left Project: **NB Left**

LINSCOTT, LAW & GREENSPAN, ENGINEERS

CRITICAL MOVEMENT ANALYSIS

La Cienega Boulevard @ Third Street Peak Hour: AM Annual Growth: 1.0%

Project Alternative 3

La Cienega Boulevard Third Street Cedars-Sinai Medical Center / 1-992843-1 CMA19 Accutek

N-S St: E-W St: Project: File Name: Counts by:

Date: Date of Count: Projection Year:

2008 2023 08/05/2008

	2008 EX	(IST. TRA	FFIC	2023	<i>NI</i> AMBIE	ENT GROW	ΛTH	2023	V/ OTHE	R PROJEC	TS	2023 V	VI PROPC	SED ALT	~	2023	W/ MITIG	ATION	
	2	lo. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement V	/olume L	anes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
NB Left Comb 1_T	169	NC	93	25	194	∾ c	107	113	307	2 10	169	31	338	2 10	186	0	338	2 12	186
VB Thru	1018	o ∩ -	379	153	1171	→ (v) +	436	446	1617	- N T	598 508	27	1644	- M	- 607	0	1644	- M -	607
NB Right	118	- 0 0	e/c -	18	136	- 0 0	D 24	40	176	- 0 (0AC ,	0	176	- 0 (/ng -	0	176	- 0 1	- 100
רסשם. ב-ו-א -		D				D				þ				D				0	
SB Left Comb 1_T	53	2 10	29	8	60	~ ~	33	29	89	0 0	49	0	89	0 0	49	0	89	~ ~	49
SB Thru	1226	2014	462	184	1410	0 01 1	531	310	1720	- M -	655 011	7	1727	o ∾ •	- 658 010	0	1727	- M C	- 658
Comb. I-K SB Right	159	- 0	462	24	182	- 0		64	246	- 0	cco -	0	246	- 0	658	0	246	- 0	- 658
Comb. L-T-R -		0				0				0				0				0	
EB Left	67	c	67	10	17	÷ د	17	61	138	c	138	0	138	<i>←</i> (138	0	138	(138
EB Thru	425	0 CV	213	64	489	0 01	- 244	129	618	5 N	309	9	624	5 0	- 312	0	624	9 0	- 312
Comb. T-R FB Rinht	43	0 -	- 43	2	20	0 -	- 20	49	00	0 +	- -	α	107	0 +	- 107	C	107	0 7	-
Comb. L-T-R -	l	0	2		;	0	1	2	1	. 0	3)		0	5	2	5	- 0	6
WB Left	238	- I	238	36	274	-	274	06	364	-	364	0	364	-	364	0	364	-	364
Comb. L-T WB Thru	1169	0 ~	- 610	175	1344	o .	- 701	242	1586	o -	- 847	24	1610	0.+	- 859	c	1610	0.	גקם
Comb. T-R		-	610			·	701	!		· 	847	i			859)			859
WB Right Comb. L-T-R -	51	00	,	α	58	00	ı	51	109	00	,	0	109	00	ı	0	109	00	
Crit. Volumes:		N-S:	554			N-S:	637			N-S:	824			N-S:	844			N-S:	844
		≣-W: SUM:	676 1231			E-W: SUM:	778 1415			E-W: SUM:	985 1809			E-W: SLIM:	997 1841			E-W: SHM:	997 1841
	,										2001							CON.	
No. of Phases:			4				4				4				4				4
Volume / Capaci	ity:	[4]	0.825			[1],[2]	0.929			[1],[2]	1.216			[1].[2]	1.239			[1],[2]	1.239
Level of Service		-	P				ш				ш				١L				ш
Assumptions:	Mé	aximum St	um of Critic	al Volumes	s (Interse	stion Capac	itv): 2 Phas	e=1500.3	Phase=1,	425. 4+ Ph	ase=1375.	Unsionaliz	ed=1200.						

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200.

For dual turn lanes, 55% of volume is assigned to heavier lane.
For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane.
For one excl. and one opt. turn lane, 70% of volume is assigned to the more lane.
70% of volume is assigned to the more lane.
70% of volume is assigned to the more lane.
70% of volume is assigned to the more lane.
70% of volume is assigned to the missibilition of the Wilshire West ATSAC system improvements.
71 The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATCS system improvements.
72 The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.
73 The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.
70% of volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.
70% of volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.
70% The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.
70% The volume to capacity ratios have been reduced by a 1.0 percent (1.0%) ambient growth factor to reflect year 2008 existing conditions.

CRITICAL MOVEMENT ANALYSIS

La Cienega Boulevard @ Third Street Peak Hour: PM Annual Growth: 1.00%

Project Alternative 3

La Cienega Boulevard Third Street Cedars-Sinai Medical Center / 1-992843-1 CMA19 Accutek

N-S St: E-W St: Project: File Name: Counts by:

Date: Date of Count: Projection Year:

08/05/2008 2008 2023

	2008	EXIST. TR	AFFIC	2023 \	V/ AMBIE	ENT GROW	TH	2023 \	N/ OTHE	ROJEC	TS	2023	V/ PROPC	SED ALT	2	2023	W/ MITIG	ATION	
		No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
NB Left	82	7	45	12	94	7	52	72	166	2	91	13	179	2	98	0	179	2	98
Comb. L-T		0	1			0	,			0				0				0	•
NB Thru	1399	2	535	210	1609	7	615	530	2139	7	817	5	2150	2	821	0	2150	2	821
Comb. T-R			535			-	615				817			-	821			-	821
NB Right	206	0	ł	31	237	0	•	75	312	0		0	312	0	,	0	312	0	,
Comb. L-T-R -		0				0				0				0				0	
SB Left	152	2	83	23	174	2	96	57	231	2	127	0	231	7	127	0	231	2	127
Comb. L-T		0	ı			0				0				0				0	1
SB Thru	1103	2	389	165	1268	0	447	511	1779	7	632	31	1810	2	643	0	1810	7	643
Comb. T-R			389			-	447			-	632			-	643			-	643
SB Right	64	0		10	73	0	,	44	117	0	1	0	117	0	ı	0	117	0	
Comb, L-T-R -		0				0				0				0				0	
EB Left	201	1	201	30	231	-	231	133	364	-	364	0	364	-	364	0	364	÷	364
Comb. L-T		0				0				0				0	,	I		. 0	
EB Thru	666	0	499	150	1149	2	574	283	1432	7	716	26	1458	2	729	0	1458	2	729
Comb. T-R		0	,			0	,			0				0	ı			0	ı
EB Right	123	~	123	18	142	~ ~~ 1	142	142	284	-	284	35	319		319	0	319	-	319
Comb. L-T-R -		0				0				0				0				0	
WB Left	179	-	179	27	206	F	206	155	361	1	361	0	361	1	361	0	361	-	361
Comb. L-T		0	,			0	1			0				0	1			0	•
WB Thru	560	-	339	84	643	-	390	249	892	-	535	10	902	-	540	0	902	-	540
Comb. T-R		-	339				390			-	535			-	540			-	540
WB Right	118	0	1	18	136	0	1	41	177	0	,	0	171	0	1	0	177	0	,
Comb. L-T-R -		0				0				0				0				0	
Crit. Volumes:		N-S:	618			N-S:	711			N-S:	944			N-S:	948			N-S:	948
		E-W:	678			E-W:	780			E-W:	1076			E-W:	1089			E-W:	1089
		SUM:	1297			SUM:	1491			SUM:	2020			SUM:	2037			SUM:	2037
No of Dhacae																			
NU. UI FIIdses			4				4				4				4				4
Volume / Capa	acity:	[1]	0.873			[1],[2]	0.984			[1].[2]	1.369			11.121	1.382			[1],[2]	1.382
Level of Servic	:e:		Ω				ш				ï۲				Ľ.				ц.,
							-												
Assumptions		Maximum 5	Sum of Critic	al Volumes	s (Interset	stion Capac	Sihul: 2 Phas	te=1500.3	Dhase=1.	40 E 44 DF	2751-1275	Incinenti	0001-1000						

For dual turn lanes, 55% of volume is assigned to heavier lane. For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. Right turns on red from excl. lanes = 50% of overlapping left turn. [1] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.

La Cienega Boulevard San Vicente Boulevard Cedars-Sinai Medical Center / 1-992843-1 CMA20 Accutek

N-S St: E-W St: Project: File Name: Counts by:

CRITICAL MOVEMENT ANALYSIS

La Cienega Boulevard @ San Vicente Boulevard Peak Hour: AM Annual Growth: 1.0% Peak Hour:

Project Alternative 3

2008 2023 Date of Count: Projection Year:

08/05/2008

Date:

5	DOB EXIST. T	RAFFIC	2023	W/ AMBIE	ENT GROW	ΗT	2023 V	V/ OTHER	ROJEC	STS	2023 \	V/ PROPO	SED ALT 2		2023	W/ MITIG	ATION		
	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	
Movement Volu	ime Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	
NB Left	293 1	293	44	337	ب د	337	182	519	÷ (519	0	519	÷ 1	519	0	519	~	51	6
NB Thru 11	0 096 3	- 365	164	1260	0 m	420	539	1799	ວຕ		59	1858	0 ო	- 619	0	1858	0 ო	- 61	ŋ
Comb. T-R NB Right	0 0 0	1 1	C	C	00	1 1	c	C	00		c	C	0 0		c	c	00	ı	
Comb. L-T-R -	0		1	•	00		5	5	00		þ	0	00	l	C	5	00		
SB Left	0 0	,	0	0	0	1	0	0	0	,	0	0	0		0	0	0	r	
Comb. L-T SB Thru 14	453 2	- 523	218	1671	0 (- 602	439	2110	0 (- 748	16	2126	0 0	- 753	c	717F	00	- 75	0
Comb. T-R	. –	523	2	5	ı –	602 602	201	2	1	748	2	7	ب 1	753	2	7 120	ч с	c/ 5/	ი ო
SB Right	116 0		17	134	0 0	ı	0	134	0		0	134	0		0	134	0	1	
- Y-1-1 .0mo	D				D				0				0				0		
EB Left	0 0	,	0	0	0	,	0	0	0	-	0	0	0	I	0	0	0	1	
Comb. L-T		-	667	C 1 C 1	0 -		000		0 •	-	c T	1001	0 .		c		0 ·		
Comb. T-R	+ 0	1 1	701	2101	+ 0	°n7 ,	007	C+71	4 0		<u>ת</u>	1204	4 C	310	0	1264	4 C	31	9
EB Right	303 1	303	45	348	-	348	113	461	• 	461	0	461) 	461	0	461		46	-
Comb. L-1-K -	0				0				0				0				0		
WB Left	0 0		0	٥	0		0	0	0		0	0	0	,	0	0	0		
Comb. L-T	0	ı			0	1			0				0	1			0	,	
WB Thru 1.	722 3	454	258	1980	ი ე -	523	411	2391	n) ·	629	71	2462	с	647	0	2462	ю	64	~
WB Rinht	318	404 223	48	366	r	523 256	53	110		629 203	c	017	. .	647	c	017	. .	64	~ '
Comb. L-T-R -	0		2		• 0	2	3		- 0	2	5	1	- 0	007	>	ז מ	- 0	Ń.	.
Crit. Volumes:	N-S:	816			N-S:	938			N-S:	1267			S-N	1272			·S-N	127	
	E-W:	454			E-W:	523			E-W:	629			E-W:	647			E-W:	64	
	SUM:	1270			SUM:	1461			SUM:	1896			SUM:	1919			SUM:	191	6
No. of Phases:		3				m				в				3					
Volume / Capacity:	[1]	0.822			[1],[2]	0.925			[1].[2]	1.231			11.121	1.247			[1].[2]	1.24	L
Level of Service:		D				ш				ш				Ŀ			•	LL.	
Assumptions.	Maximum	s Sum of Crit	ical Voluma	· //nforcoc	Canal	1. 1 Dhan	6 0037-5												

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200.

For dual turn lanes, 55% of volume is assigned to heavier lane. For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. Right turns on red from excl. lanes = 50% of overlapping left turn. [1] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.

La Cienega Boulevard San Vicente Boulevard Cedars-Sinai Medical Center / 1-992843-1 CMA20 Accutek

N-S St: E-W St: Project: File Name: Counts by:

CRITICAL MOVEMENT ANALYSIS

La Cienega Boulevard @ San Vicente Boulevard Peak Hour: PM Annual Growth: 1.00%

Project Alternative 3

08/05/2008 2008 2023 Date: Date of Count: Projection Year:

Movement /	•					1029 INU		2023			27	2023	VI PROFC	SEU ALI	~	2023		ATION	
Movement / NB Left	2	lo. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
NB Left	Volume L	anes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
	226	F	226	34	260	*	260	118	378	-	378	0	378	~~	378	0	378	***	378
Comb. L-T		0 0				0 0				0		i		0	t			0	•
NB Inru Comh T-R	1400	.n ⊂	467	210	1610	m ⊂	53/	661	22/1	m c	/6/ -	24	2295	m ⊂	765	0	2295	т с	- 765
NB Right	0	00		0	0	00		0	0	00		0	0	00		0	0		
Comb. L-T-R -		0				0				0				0			I	0	
SB Left	0	0		0	0	0		0	0	0	-	0	0	0		0	0	0	
Comb. L-T		0	1			0				0				0	1			0	ı
	1266	2	449	190	1455	0	516	808	2263	0	785	66	2329	7	807	0	2329	5	807
Comb. I-K	81	c	449	10	03	- c	516	c	60	c	C8/	c	60	~ c	807	c	60	c	807
Comb. L-T-R -	5	00		1	20	00	I	5	0	00		2	ä	00	·	5	2	00	ı
EB Left	0	0		0	0	0	-	0	0	0	-	0	0	0		0	0	0	
Comb. L-T		0	ı			0	ı			0	ı			0	,			0	ł
EB Thru	1872	40	468	281	2152	40	538	557	2709	40	677	79	2788	4 (697	0	2788	4 (697
Comp. 1-rs EB Riaht	344	c	- 344	52	396	⊃	- 396	186	582	c	- 582	С	582	⊃ +	- 582	C	582	- c	- 582
Comb. L-T-R -		0				0				0				0				0	
WB Left	0	0	-	0	0	0	ı	0	0	0		0	0	0	,	0	0	0	1
Comb. L-T		0				0	t			0				0	,			0	1
WB Thru	1104	e	304	166	1270	e	349	386	1656	e	447	29	1685	e	454	0	1685	ю	454
Comb. T-R			304	i L		.	349			 .	447			~ ~ ·	454			-	454
we kigni Comb. L-T-R -	210	- 0	707	00	421	- 0	667	<u>0</u>	6443	- 0	310	Þ	443	- 0	310	Ð	443	- 0	310
Crit. Volumes:		N-S:	675			N-S:	776			N-S:	1164			N-S:	1186			:S-Z	1186
	ш	:-W:	468			E-W:	538			E-W:	677			E-W:	697			E-W:	697
		SUM:	1143			SUM:	1314			SUM:	1841			SUM:	1883			SUM:	1883
No. of Phases:			ε				ę				m				m				e.
Volume / Capac	sity:	[1]	0.732			[1],[2]	0.822			[1],[2]	1.192			[1],[2]	1.221			[1].[2]	1.221
Level of Service			υ				۵				Ŀ				ш.				ц.

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200. of volume is assigned to heavier lane. 55% For dual turn lanes,

For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. Right turns on red from excl. lanes = 50% of overlapping left turn. [1] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements. [2] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.

CRITICAL MOVEMENT ANALYSIS

La Cienega Boulevard @ Wilshire Boulevard Peak Hour: AM Annual Growth: 1.0%

Project Alternative 3

La Cienega Boulevard Wilshire Boulevard Cedars-Sinai Medical Center / 1-992843-1 CMA21 Accutek

N-S St: E-W St: Project: File Name: Counts by:

08/05/2008 2008 2023 Date: Date of Count: Projection Year:

	2000	EXIST. IN	AFFIC	2023	W/ AMB.	IENT GRO	WTH	2023	W/ OTHE	R PROJE	CTS	2023	W/ PROI	OSED ALT 2	~	2023	W/ MITIG	ATION	
		No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
VB Left	254	÷	254	38	292		292	94	386	-	386	0	386	*	386	C	386	÷	386
Comb. L-T		0				0	•			. 0	,	•	1	. 0	,	2	200	- 0	-
NB Thru	1229	2	490	184	1414	2	563	486	1900	2	734	39	1936	0	747	0	1939	5	747
Comb. T-R		-	490			-	563				734			-	747			-	747
NB Right	240	00	ŧ	36	276	00	I	26	302	00	ı	0	30;	0	ı	0	302	0 (
	I	>				5				>				þ				5	
SB Left	90	-	06	13	103	-	103	67	170	+	170	3	17:	-	173	0	173	-	173
Comb. L-T		0	•			0	ı			0	ı			0	'			0	,
SBThru	989	η.	415	148	1137	2	477	390	1527	2	624	10	153;	5	628	0	1537	2	628
Comb. I-K	0	- 0	415			· (477	;			624			-	628				628
SB RIGNT Comb. L-T-R	ф <u>с</u> 7 -	00		85	294	00	I	20	344	00	•	N	34(00	ı	0	346	00	
EB Left	108	- 0	108	16	124	- (124	99	190	-	190	8	196		198	0	198	÷	198
Comb. L-I			1			0				0	;			0	,			0	
EB Thru Comb. T-R	1065	~ ~	389 389	160	1224	- 10	447 447	208	1432	~ ~	537 537	0	143.	~ ~	537	0	1432	N +	537 537
EB Right	102	0	,	15	117	0	,	62	179	. 0	;	0	175	- 0	-	0	179	- c	-
Comb. L-T-R	,	o				0				0				0		ı		0	
VB Left	145	-	145	22	167	F	167	28	195	-	195	0	195	-	195	0	195	-	195
Comb. L-T		0	ı			0	,			0	•			0	1			0	
WB Thru	1638	CV 7	565	246	1884	N 7	650	347	2231	0	794	0	2231	7	798	0	2231	2	798
VB Rinht	58	- c	coc -	σ	99	- c	nca -	ВЛ	150	c	194	¢†	167	~- c	798	c	001	c	798
Comb. L-T-R	1	0		•)	0		5	8	00		4	2	0	ı	0	201	00	ı
Crit. Volumes.		N-S:	668			N-S:	769			N-S:	1009			N-S:	1013			N-S:	1013
		E-W: SUM:	673 1342			E-W: SUM:	774 1543			E-W: SUM:	984 1993			E-W: SUM:	996 2009			E-W: SUM:	996 2009
Vo. of Phases			4				4				4	-			4				4
/olume / Cap	acity:		0.976				1.122				1.450				1.461				1.461
evel of Servi	ce:		ш				ц.,				ш.				ш				١L

Maximum Sum of Critical Volumes (Intersection Capacity): 2 Phase=1500, 3 Phase=1425, 4+ Phase=1375, Unsignalized=1200. For dual turn lanes, 55% of volume is assigned to heavier lane. For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane. Right turns on red from excl. lanes = 50% of overlapping left turn. Note: Year 2007 manual traffic counts were adjusted by a 1.0 percent (1.0%) ambient growth factor to reflect year 2008 existing conditions.

CRITICAL MOVEMENT ANALYSIS

La Cienega Boulevard @ Wilshire Boulevard Peak Hour: Annual Growth: 1.00%

Project Alternative 3

La Cienega Boulevard Wilshire Boulevard Cedars-Sinai Medical Center / 1-992843-1 CMA21 Accutek

N-S St: E-W St: Project: File Name: Counts by:

08/05/2008 2008 2023 Date: Date of Count: Projection Year:

	2008	EXIST. TR	AFFIC	2023	W/ AMBIE	ENT GROW	TH	2023 \	N/ OTHE	R PROJE(STS	2023 \	W/ PROPC	SED ALT	8	2023	W/ MITIC	GATION	
		No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
Movement	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
NB Left	166		166	25	190	-	190	61	251	÷	251	0	251	-	251	0	251	ر	251
Comb. L-1		0 0				0 0				0	•	:		0				0	t
Comb. T-R	1171	N +-	4/3 473	191	1468	- 10	544 544	543	2011	~ ~	730	16	2027	~ ~	736	0	2027	∩ ד	736
NB Right	142	. 0) : ;	21	164	. 0	1	16	180	. 0		0	180	- 0	1	a	180	- c	-
Comb. L-T-R		0				o				0				0				0	
SB Left	121	-	121	18	139	F	139	179	318	-	318	13	331	-	331	0	331	-	331
Comb. L-T		0	,			0				0				0	1			0	1
SB Thru	1328	~ 5	475 475	199	1527	CV 7	546 546	642	2169	~ ~	780	44	2213	N 7	806	0	2213	~ ~	806
SB Right	96	- 0	2 7 7	14	110	- 0	0 1 0	86	196	- 0	R0/ -	თ	205	- 0	909 -	0	205	- 0	ang -
Comb. L-T-R		0				0				0				0		ŀ		0	
EB Left Comb 1 - T	179		179	27	206	- 0	206	76	282	c	282	ε	285	- c	285	0	285	÷ د	285
EB Thru	1343	0 (1	492	201	1545	0 (1	565	381	1926	20	724	0	1926	2 (1)	- 724	0	1926	л с	- 724
Comb. T-R			492			-	565				724			-	724				724
EB Right	131	0 0	ı	20	151	00	,	95	246	00	,	0	246	0 0	•	0	246	0	
COMD. L-1-K		D				5				Ð				D				0	
WB Left	237	- c	237	36	273	- c	273	18	291	- c	291	0	291	c	291	0	291	0	291
WB Thru	1177	2 24	424	176	1353	5 74	487	244	1597	2 (1	602	0	1597	2 01	- 604	0	1597	5 6	- 604
Comb. T-R			424			-	487				602				604			-	604
WB Right	95	0	,	4	109	0	ı	100	209	0	,	сл С	214	0	,	0	214	0	·
Comb. L-T-R		0				0				0				0				0	
Crit. Volumes.		N-S:	640			N-S:	736			N-S:	1049			N-S:	1067			N-S:	1067
		E-W:	729			E-W:	838			Е-W:	1015			E-W:	1015			E-W:	1015
		SUM:	1369			SUM:	1575			SUM:	2064			SUM:	2082			SUM:	2082
No. of Phases			4				4				4				4				4
Volume / Cap	acity:		0.996				1.145				1.501				1.514				1.514
Level of Servi	ce:		ш				Ľ.				ш				١Ŀ				ц.
Assumptions		Maximum 5 For dual tui For one exu	sum of Critic m lanes, .1. and one c	al Volume. 55% ppt. turn lav	s (Interseu ne,	ction Capac of volume i 70% o	city): 2 Phas s assigned vf volume is	se=1500, 3 to heavier l assigned t	Phase=1 'ane. o exclusiv	425, 4+ Pł 'e lane.	iase=1375,	Unsignali.	:ed=1200.						
		Right turns Note: Year	on red from 2007 manué	excl. lane. al traffic co	s = unts were	50% c • adjusted b	of overlappii v a 1.0 pen	ng left turn. cent (1.0%)	\ ambient	arowth fac	tor to reflec	t vear 200	8 existing	conditions.					
LINSCOTT, LAW & GREENSPAN, ENGINEERS 236 N. Chester Ave., Suite 200, Pasadena, CA 91106 626.796.2322 Fax 626.792.0941

CRITICAL MOVEMENT ANALYSIS

Orlando Avenue @ Third Street Peak Hour: AM Annual Growth: 1.0%

Project Alternative 3

Orlando Avenue Third Street Cedars-Sinai Medical Center / 1-992843-1 CMA22 Accutek

N-S St: E-W St: Project: File Name: Counts by:

Date: Date of Count: Projection Year:

08/05/2008 2008 2023

	2008 EXIST.	TRAFFIC	2023	W/ AMBIE	ENT GROW	ΗH	2023 V	// OTHER	PROJEC	TS	2023 V	// PROPC	SED ALT		2023	W/ MITIG	ATION		
	No. o	f Lane	Added	Total	No. of	Lane	Added	Total	No. af	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	
Movement Vc	olume Lanes	S Volume	Volume	Volume	Lanes	Volume	Volume V	olume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	
NB Left	38	- 0	9	44	0	ı	45	89	0	ı	0	89	0	1	0	89	0	1	
Comb. L-T	;	- 0	:	1	0	1			0	1			0	,			0		
NB Ihru Comb. T-R	32	0 185 0 -	14	109	0 0	- 213	0	109	0 0	258	o	109	0 0	- 258	0	109	00	- 258	
NB Right	52	- 0	80	59	0	,	0	59	0	ı	0	59	0	,	0	53	0	,	
Comb. L-T-R -		,			-								-				-		
SR Left	18	, 0	¢.	21	c	,	С	51	С	,	C	21	с	,	C	24	c		Т
Comb. L-T	1		,	i	00	,)	i	0)	i	00	,	0	1	00	•	
SB Thru	393	0 480	59	452	0	552	0	452	0	552	0	452	0	552	0	452	0	222	~
Comb. T-R	00		Ţ	07	0 0	,	c	02	0 0		c	65	0 0	1	c	t t	0 0	•	
Comb I_T_P_	60	, ,	2	21			C	R/	⊃ .	ı	5	R/	C	,	D	R/	э ,	ı	
		_			-				-				-				-		
EB Left [1]	10	- 0	2	12	0		0	12	0		0	12	0		0	12	0		Γ
Comb. L-T		1 300	r T		~- c	345	ļ		- (452	C		. .	455	,		(455	
Comb T-P	170		R/	ana	⊃ +	- 315	1/1	111	⊃ ,	- 157	٥	/83		- 155	D	/83	э ,	- 460	
EB Right	63	- 0	6	72	- 0		43	115	- 0	101	0	115	- 0	- -	0	115	- 0		_
Comb. L-T-R -		0			0				0				0				0		
WB Left [1]	62	- 0	σ	71	0	-	0	71	0	Ţ	0	71	0	,	0	71	C	1	Т
Comb. L-T		1 686			-	789				934			~	946				946	
WB Thru	1296	1	194	1490	0		290	1780	0	,	24	1804	0	1	0	1804	0	,	
Comb. I-R WR Right	15	1 686 0 -	~	17	- c	789 -	c	17	- c	934	C	17	c	946	C	17	~- C	946	
Comb. L-T-R -	!	0	I	:	0		,	:	0		1	:	0		0	:	00		
Crit. Volumes:	N-S:	518			N-S:	596			N-S:	641			N-S:	641			N-S:	641	Τ
	E-W:	696			E-W:	801			E-W:	946			E-W:	958			E-W:	956	
	SUM	1215			SUM:	1397			SUM:	1587			SUM:	1599			SUM:	1599	~
No. of Phases:		2				2				77				2			- 		
Volume / Capacit	y: [.	2] 0.740			[1],[2]	0.831			[1],[2]	0.958			[1],[2]	0.966			[1],[2]	0.966	L
Level of Service:		υ				D				Е				ш				ш	
Assumptions:	Maxim For due	um Sum of Cri al turn lanes.	tical Volume 55%	s (Interse	ction Capac e is assigne	:ity): 2 Phas d to heavier	9=1500, 31 lane.	ohase=14	25, 4+ Ph	ase=1375, (Jnsignaliz	ed=1200.							
	L			5															

For one excl. and one opt. turn lane, 70% of volume is assigned to exclusive lane.
Right turns on red from excl. lanes = 50% of overlapping left turn.
[1] No Left-turns from 4 PM o7 PM Weekdays.
[2] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements.
[3] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.
[3] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.
[3] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.
[3] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.
[3] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.
[3] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.
[3] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.

LINSCOTT, LAW & GREENSPAN, ENGINEERS 236 N. Chester Ave., Suite 200, Pasadena, CA 91106 626.796.2322 Fax 626.792.0941

CRITICAL MOVEMENT ANALYSIS

Orlando Avenue @ Third Street Peak Hour: PM Annual Growth: 1.00%

.

Orlando Avenue Third Street Cedars-Sinai Medical Center / 1-992843-1 CMA22 Accutek

N-S St: E-W St: Project: File Name: Counts by:

Project Alternative 3

08/05/2008 2008 2023

Date: Date of Count: Projection Year:

	2008	EXIST. TF	REFIC	2023 \	V/ AMBIE	ENT GROV	NTH	2023 V	V/ OTHEI	R PROJE(CTS	2023 M	// PROPO	SED ALT	2	2023	W/ MITIG	ATION		
		No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	
Movement	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	
NB Left	28	0	ı	4	33	0	ı	100	133	0	ı	0	133	0	ı	0	133	0		
Comb. L-T	100	0 0	,	L	007	0 0	, 1	c	001	0 0	1 1	c		0 0	, 1	c		0 0	,	ç
NB I Inu Comb. T-R	100		400	66	424		900 '	D	422	- c	9C0 -	5	774		900 -	D	422		ς ο ι	 x0
NB Right	06	0		13	103	0	ı	0	103	0		0	103	0	,	0	103	00	,	
Comb. L-T-R	1									-				-				-		
SB Left	34	0	1	5	39	0	,	0	39	0		0	39	0	1	0	39	0	,	
Comb. L-T	122	00	- 245	76	010	00	-	c	040	00	-	c	010	00	-	c	010	00	, '	,
Comb. T-R	20	00	C+7 -	17	210	00	707 -	5	710	00	707 -	>	210		707 -	D	012		87. ,	N
SB Right	28	0	•	4	33	0	1	0	33	0	ı	0	33	0	ı	0	33	00	ı	
Comb. L-T-R	,	-				~				-				-				-		
EB Left [1]	0	00	,	0	0	0 0	1	0	0	0 0	1	0	0	0 0	1	0	0	00	1	
EB Thru	1198	c	645	180	1378	C	742	353	1731	⊃ ←	- 964	26	1757	- c	- 779	0	1757	c	- 97	~
Comb. T-R		-	645			-	742			-	964			-	977			-	67	7
EB Right	93	0 0	•	14	107	0 0	ı	91	198	0 0	ı	0	198	0 0		0	198	0	·	
Comb. L-1-K		D				D				0				0				0		
WB Left [1]	0	0 0	,	0	0	0 0	1	0	0	0		0	0	0	ı	0	0	0		Γ
WB Thru	755	⊃ ~	399	113	869	c	- 459	248	1117	C	- 583	10	1127	C	- 588	C	1127	C	- 58	
Comb. T-R			399			-	459			·	583	!		· 	588)			28	
WB Right Comb. L-T-R ·	- 42	00	·	9	49	00	ı	0	49	00	1	0	49	00	t	0	49	00		
Crit. Volumes:		N-S	519			N-S:	597			N-S:	697			N-S:	697			N-S:	69	7
		E-W: SUM:	645 1165			E-W: SUM:	742 1339			E-W: SUM:	964 1661			E-W: SUM:	977 1674			E-W: SUM:	97 167	r 4
No. of Phases	12		2				2				7				2					~
Volume / Cap;	acity:	[2]	0.706			[1],[2]	0.793			[1],[2]	1.007			[1],[2]	1.016			[1],[2]	1.01	6
Level of Serviv	ce:		U				с				μ.,				ш				ш	
Assumptions		Maximum For dual tu For one ey	Sum of Critit um lanes, vol and one	cal Volume: 55% ont turn lar	s (Interse	ction Capa of volume 70%	icity): 2 Phas is assigned of volume is	se=1500, 3 to heavier l assimed tr	Phase=1 lane. 1 exclusiv	425, 4+ Pi ie lane	hase=1375,	Unsignaliz	ed=1200.							
					í,															

 Right turns on red from excl. lanes =
 50% of overlapping left turn.

 [1] No Left-turns from 4 PM to 7 PM Weekdays.
 50% of overlapping left turn.

 [7] No Left-turns from 4 PM to 7 PM Weekdays.
 50% of overlapping left turn.

 [7] No Left-turns from 4 PM to 7 PM Weekdays.
 50% of overlapping left turn.

 [7] The volume to capacity ratios have been reduced by 0.07 to account for the installation of the Wilshire West ATSAC system improvements.

 [3] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.

 [3] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.

 [3] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.

 [3] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Wilshire West ATCS system improvements.

 [3] The volume to capacity ratios have been reduced by 0.03 to account for the installation of the Vilshire West ATCS system improvements.

August 7, 2008

Dwight Steinert Vice President Planning Associates, Inc. 4040 Vineland Avenue, Suite 108 Studio City, CA 91604

Re: Air Quality and Noise Analysis for the Proposed Cedars-Sinai Medical Center West Tower Project Alternatives

Dear Mr. Steinert:

Terry A. Hayes Associates LLC (TAHA) has conducted an air quality and noise impact analysis for the three alternatives associated with the proposed Cedars-Sinai Medical Center (CSMC) West Tower project (proposed project). This letter summarizes the results of the air quality and noise impact analysis for the three alternatives. A comparison of each alternative's impacts relative to the proposed project is also provided.

DESCRIPTION OF PROJECT ALTERNATIVES

The air quality and noise impact analysis was analyzed for the following alternatives:

• No Project Alternative – Buildout of Master Plan. The No Project Alternative assumes that the remaining 170,650 square feet of entitled use under the 1993 Master Plan would be implemented as originally proposed and that no new additional increase in medical center uses beyond the 700,000 square feet evaluated in connection with the approval of the 1993 Master Plan would occur. Under this alternative, the existing 90,000-square-foot building (Existing Building) would not be demolished. Up to 170,650 square feet of the remaining entitled uses would be constructed on a building footprint limited to the existing surface parking lot on the project site. On the project site, the new construction scale and design would be essentially equivalent to that described for the "Site 2" Rehabilitation Center in the 1993 Master Plan. Under this alternative, the resultant physical and operational conditions described for the approved 1993 Master Plan are anticipated.

Terry A. Hayes Associates LLC 8522 National Boulevard, Suite102 Culver City, CA 90232 310.839.4200 fax 310.839.4201 webtaha.com

- **Reduced Project Alternative Net Increase of 150,000 square feet**. The Reduced Project Alternative would consist of the buildout of the 1993 Master Plan (i.e., the remaining 170,650 square feet of entitled uses) plus an additional 150,000 square feet (or the equivalent to 75 inpatient beds) of new medical center uses. This alternative represents a 25 percent reduction of the proposed project. Under this alternative, the 90,000-square-foot Existing Building would be demolished and the project site would be redeveloped with a total of approximately 410,650 square feet of medical center uses and associated parking structure. To account for the proposed reduction of 50,000 square feet of building area, the West Tower would be reduced to ten stories. A reduction in the parking requirement of approximately 75 spaces is anticipated. However, it is assumed that the overall scale and configuration of the proposed seven-level or larger parking structure under the proposed project would not change substantially, although the footprint may be slightly reduced.
 - **Change in Use Project Alternative Outpatient Use**. The Change in Use Project Alternative would consist of the buildout of the 1993 Master Plan (i.e., the remaining 170,650 square feet of entitled uses) plus an additional 200,000 square feet of new medical center uses dedicated for outpatient services. The 200,000 square feet of outpatient services would replace the 200,000 square feet for 100 inpatient beds requested with the proposed project. It should be noted that up to 200 inpatient beds could still be incorporated on the CSMC campus per the previous entitlement. Under the Change in Use Project Alternative, the 90,000-square-foot Existing Building would still be demolished and the project site would be redeveloped with a total of approximately 460,650 square feet of medical center uses and a seven-level or larger parking structure.

AIR QUALITY

٠

Construction Phase

No Project Alternative

Regional and Localized Construction Emissions. The No Project Alternative would not include demolition activities except for those activities already approved under the 1993 Master Plan; thus, only demolition of the 217-space parking lot (Existing Parking Lot) at the project site would occur. The construction activities associated with grading/excavation and building construction is anticipated to be similar to the proposed project (i.e., seven pieces of construction equipment operating simultaneously for eight hours during each day of construction, a maximum of two acres per day would be graded and/or excavated, the generation of 100 delivery/haul truck trips per day, 100 workers per day, and the application of architectural coating over a six-month time period). Daily regional and localized construction emissions associated with the No Project Alternative would be similar to the proposed project.

As with the proposed project, the No Project Alternative would be required to comply with South Coast Air Quality Management District (SCAQMD) Rule 403 and the mitigation measures that were adopted in connection with the approval of the 1993 Master Plan. It is mandatory for all construction projects in the South Coast Air Basin (Basin) to comply with SCAQMD Rule 403 (Fugitive Dust). Additionally, the construction mitigation measures for the proposed project (Mitigation Measures AQ1 through AQ11 in the *Cedars-Sinai Medical Center West Tower Project Air Quality and Noise Impact Report*) are applicable to the No Project Alternative. As with the proposed project, a significant and unavoidable regional NO_X impact and localized $PM_{2.5}$ and PM_{10} impacts are anticipated after implementation of the mitigation measures.

Toxic Air Contaminants. The No Project Alternative would not involve demolition of the Existing Building. As such, asbestos-containing materials (ACMs) and lead-based paint would not be released into the atmosphere.

As with the proposed project, the greatest potential for toxic air contaminant (TAC) emissions during grading/excavation and building construction activities would be diesel particulate emissions associated with heavy equipment operations. According to SCAQMD methodology, health effects from carcinogenic air toxics are usually described in terms of individual cancer risk. "Individual Cancer Risk" is the likelihood that a person continuously exposed to concentrations of TACs over a 70-year lifetime will contract cancer based on the use of standard risk assessment methodology. Construction of the remaining 170,650 square feet of entitled use would be temporary and would not result in a long-term (i.e., 70 years) source of TAC emissions, or to long-term exposure of TAC emissions. The associated risk would be below the carcinogenic risk of ten chances in a population of one million people and below the noncarcinogenic health hazard index value of 1.0. Thus, a less-than-significant impact associated with carcinogenic air toxics is anticipated. This impact is similar to the proposed project.

Odor Impacts. As with the proposed project, potential sources that may emit odors during construction of the No Project Alternative include equipment exhaust and architectural coatings. Odors from these sources would be localized and generally confined to the project site. The No Project Alternative would utilize typical construction techniques, and the odors would be typical of most construction sites and temporary. In addition, the No Project Alternative would be required to comply with regulations contained in SCAQMD Rule 402 (Nuisance). As such, construction odors would result in a less-than-significant impact. This impact is similar to the proposed project.

Reduced Project Alternative

Regional and Localized Construction Emissions. Construction of the Reduced Project Alternative would involve similar types of construction activities as the proposed project (i.e., use of seven pieces of equipment operating simultaneously for eight hours during each day of construction, the generation of 2,000 cubic yards of demolition debris per day, a maximum disturbed area of two acres per day would be graded and/or excavated, the generation of 100 delivery/haul truck trips per day, 100 workers per day, and application of architectural coating over a six-month time period). As with the proposed project, the Reduced Project Alternative would require the demolition of the Existing Building, Existing Parking Lot, grading/excavation, and building construction. As such, daily regional and localized construction emissions associated with the Reduced Project Alternative would be similar to the proposed project.

As with the proposed project, the Reduced Project Alternative would be required to comply with SCAQMD Rule 403 and the mitigation measures that were adopted in connection with the approval of the 1993 Master Plan. The construction mitigation measures for the proposed project (Mitigation Measures AQ1 through AQ11 contained in the *Cedars-Sinai Medical Center West Tower Project Air Quality and Noise Impact Report*) are applicable to the Reduced Project Alternative. As with the proposed project, a significant and unavoidable regional NO_X impact and localized PM_{2.5} and PM₁₀ impacts are anticipated after implementation of mitigation measures.

Toxic Air Contaminants. As with the proposed project, the Reduced Project Alternative would demolish the Existing Building, which was built in 1947, and has the potential to contain ACMs and lead-based paint. Demolition activities have the potential to result in the accidental release of ACMs and lead into the atmosphere. Mitigation Measure AQ12 contained in the *Cedars-Sinai Medical Center West Tower Project Air Quality and Noise Impact Report* would ensure proper removal of ACMs and lead-based paint.

As with the proposed project, the greatest potential for TAC emissions during grading/excavation and building construction activities would be diesel particulate emissions associated with heavy equipment operations. Construction of the Reduced Project Alternative would be temporary and would not result in a long-term (i.e., 70 years) source of TAC emissions, or to long-term exposure of TAC emissions. The associated risk would be below the carcinogenic risk of ten chances in a population of one million people and below the noncarcinogenic health hazard index value of 1.0. Thus, less-than-significant impacts associated with carcinogenic air toxics are anticipated. This impact is similar to the proposed project.

Odor Impacts. As with the proposed project, potential sources that may emit odors during construction of the Reduced Project Alternative include equipment exhaust and architectural coatings. Odors from these sources would be localized and generally confined to the project site. The Reduced Project Alternative would utilize typical construction techniques, and the odors would be typical of most construction sites and temporary. In addition, the proposed project would be required to comply with regulations contained in SCAQMD Rule 402 (Nuisance). As such, construction odors would result in a less-than-significant impact. This impact is similar to the proposed project.

Change in Use Project Alternative

Regional and Localized Construction Emissions. Construction of the Change in Use Project Alternative would involve similar types of construction activities as the proposed project (i.e., use of seven pieces of equipment operating simultaneously for eight hours during each day of construction, the generation of 2,000 cubic yards of demolition debris per day, a maximum disturbed area of two acres per day would be graded and/or excavated, the generation of 100 delivery/haul truck trips per day, 100 workers per day, and application of architectural coating over a six-month time period). As such, daily regional and localized construction emissions associated with the Change in Use Project Alternative would be similar to the proposed project.

As with the proposed project, the Change in Use Project Alternative would be required to comply with SCAQMD Rule 403 and the mitigation measures that were adopted in connection with the approval of the 1993 Master Plan. The mitigation measures for the proposed project (Mitigation Measures AQ1 through AQ11) are applicable to the Change in Use Project Alternative. As with the proposed project, a significant and unavoidable regional NO_X impact and localized PM_{2.5} and PM₁₀ impacts are anticipated after implementation of mitigation measures.

Toxic Air Contaminants. As with the proposed project, the Change in Use Project Alternative would demolish the Existing Building, which was built in 1947, and has the potential to contain ACMs and lead-based paint. Demolition activities have the potential to result in the accidental release of ACMs and lead into the atmosphere. Mitigation Measure AQ12 contained in the *Cedars-Sinai Medical Center West Tower Project Air Quality and Noise Impact Report* would ensure proper removal of ACMs and lead-based paint.

As with the proposed project, the greatest potential for TAC emissions during grading/excavation and building construction activities would be diesel particulate emissions associated with heavy equipment operations. Construction of the Change in Use Project Alternative would be temporary and would not result in a long-term (i.e., 70 years) source of TAC emissions, or to long-term exposure of TAC emissions. The associated risk would be below the carcinogenic risk of ten chances in a population of one million people and below the noncarcinogenic health hazard index value of 1.0. Thus, a less-than-significant impact associated with carcinogenic air toxics is anticipated. This impact is similar to the proposed project.

Odor Impacts. As with the proposed project, potential sources that may emit odors during construction of the Change in Use Project Alternative include equipment exhaust and architectural coatings. Odors from these sources would be localized and generally confined to the project site. The Change in Use Project Alternative would utilize typical construction techniques, and the odors would be typical of most construction sites and temporary. In addition, the Change in Use Project Alternative would be required to comply with regulations contained in SCAQMD Rule 402 (Nuisance). As such, construction odors would result in a less-than-significant impact. This impact is similar to the proposed project.

Operational Phase

No Project Alternative

Regional Emissions. Operational emissions associated with the No Project Alternative (i.e., the remaining 1993 Master Plan entitlement) are shown in Table 3-8 of the *Cedars-Sinai Medical Center West Tower Project Air Quality and Noises Impact Report*. As shown in the table, operational emissions of the No Project Alternative (i.e., the remaining 170,650 square feet of entitled use under the 1993 Master Plan) would be similar to the proposed project due to implementation of similar uses. Like the proposed project, the No Project Alternative would be required to comply with the mitigation measures adopted in connection with the approval of the 1993 Master Plan, which includes implementing a Transportation Demand Management program consistent with the provisions of SCAQMD Regulation XV.

Carbon Monoxide Concentrations. **Table 1** presents the one- and eight-hour CO concentrations associated with the No Project Alternative. As shown in the table, the No Project Alternative would result in a 2023 one-hour CO concentration of 2 parts per million (ppm). The eight-hour CO concentrations would range from 1.2 ppm to 1.7 ppm. CO concentrations for the No Project Alternative are similar to the proposed project.

Toxic Air Contaminants. Typical sources of acutely and chronically hazardous TACs include industrial manufacturing processes and automotive repair facilities. The No Project Alternative would not include any of these potential sources, although minimal emissions may result from the use of consumer products (e.g., aerosol sprays). As with the proposed project, the No Project Alternative may increase the amount of medical waste incinerated on the CSMC campus. The 1993 Master Plan, which included mitigation measures to reduce reliance on hazardous materials, discussed regulations and impacts associated with medical waste incineration (i.e., dioxin emissions). However, the CSMC has replaced the incinerator with two steam sterilizers. The steam sterilizers dispose of medical waste without generating dioxin emissions. The significant impacts related to dioxin emissions previously disclosed in the 1993 Master Plan approval process are no longer relevant as this impact has been eliminated. As such, the No Project Alternative would not release substantial amounts of TACs, and a less-than-significant impact on human health would occur. This impact is similar to the proposed project.

vight Steinert	ıgust 7, 2008	ge 6
Dwi	Aug	Page

TABLE 1: 2023 CARBON MONO	DXIDE CON	CENTRATION	S /a/					
		1-hour (part	ts per million)			8-hour (par	ts per million)	
Intersection	Proposed Project	No Project Alternative	Reduced Project Alternative	Change in Use Project Alternative	Proposed Project	No Project Alternative	Reduced Project Alternative	Change in Use Project Alternative
Robertson Blvd/Beverly Blvd	2	2	2	2	1.3	1.3	1.3	1.3
Robertson Blvd/Gracie Allen Dr- Alden Dr.	2	2	2	2	1.5	1.5	1.5	1.5
Robertson Blvd/Third St.	2	2	2	2	1.4	1.4	1.4	1.4
Robertson Blvd/Burton Way	2	2	2	2	1.5	1.5	1.5	1.5
George Burns Rd./Beverly Blvd	2	2	2	2	1.4	1.4	1.4	1.4
George Bums Rd./Gracie Allen DrAlden Dr.	2	2	2	2	1.2	1.2	1.2	1.2
San Vicente Blvd/Beverly Blvd	2	2	2	2	1.5	1.5	1.5	1.5
San Vicente Blvd/Third St.	2	2	2	2	1.5	1.5	1.5	1.5
San Vicente Blvd/Burton Way	2	2	2	2	1.5	1.5	1.5	1.6
San Vicente Blvd/Wilshire Blvd	2	2	2	2	1.6	1.6	1.6	1.6
La Cienega Blvd/Beverly Blvd	2	2	2	2	1.6	1.6	1.6	1.6
La Cienega Blvd/Third St.	2	2	2	2	1.5	1.5	1.5	1.5
La Cienega Blvd /San Vicente Blvd	2	2	2	8	1.7	1.7	1.7	1.8
State Standard			20				9.0	
/a/ CO concentrations include year 2023 one- a SOURCE: TAHA, 2008 (Attachment A)	and eight-hour amt	oient concentrations	of 2 ppm and 1.1 pp	m, respectively.				

Odor. According to the SCAQMD *CEQA Air Quality Handbook*, land uses and industrial operations that are associated with odor complaints include agricultural uses, wastewater treatment plants, food processing plants, chemical plants, composting, refineries, landfills, dairies and fiberglass molding. The No Project Alternative would develop the project site with hospital-related uses, not land uses that are typically associated with odor complaints. On-site trash receptacles would have the potential to create adverse odors. As trash receptacles would be located and maintained in a manner that promotes odor control, no adverse odor impacts are anticipated from these types of land uses. The No Project Alternative would comply with regulations contained in SCAQMD Rule 402 (Nuisance). In addition, the proposed project would comply with SCAQMD Rule 1138 (Control of Emissions from Restaurant Operations) which controls odors from restaurants (e.g., cafeteria). As such, operational odors would result in a less-than-significant impact. This impact is similar to the proposed project.

Consistency with the Air Quality Management Plan. A project is considered consistent with the Air Quality Management Plan (AQMP) if a project (1) will not result in an increase in the frequency or severity of existing air quality violations or cause or contribute to new violations, or delay the timely attainment of air quality standards or the interim emissions reductions specified in the AQMP; and (2) will not exceed the assumptions in the AQMP in 2010 or increments based on the year of project buildout.

As discussed above, the No Project Alternative would not exceed the State one- and eight-hour CO concentration standards.

The No Project Alternative would not increase population or housing in the Los Angeles subregion since this alternative does not include a residential component. The No Project Alternative is expected to incrementally increase employment by approximately 238 persons,¹ which represents less than one percent of the 278,264 new employment growth projected in SCAG's Regional Transportation Plan between 2007 and 2023 for the Los Angeles subregion. The 2007 AQMP, the most recent AQMP adopted by the SCAQMD, incorporates, in part, SCAG's 2004 RTP socioeconomic forecast projections of regional population and employment growth.² Since the No Project Alternative would not exceed the SCAG growth forecasts, the No Project Alternative is considered to be consistent with the growth assumptions included in the AQMP.

The No Project Alternative would not cause or contribute to new air quality violations and would not exceed the AQMP growth assumptions. Thus, the No Project Alternative would be consistent with the AQMP. This impact is similar to the proposed project.

Global Climate Change. Worldwide population growth and the consequent use of energy is the primary reason for greenhouse gas (GHG) emission increases. The market demand for goods and services and the use of land is directly linked to population changes and economic development trends within large geographies (e.g., regional, Statewide, national, worldwide). Individual site-specific projects have a negligible effect on these macro population-driven and growth demand factors. Whether an individual site-specific project is constructed or not has little effect on GHG emissions. This is because the demand for goods and services in question would be provided in some other location to satisfy the demands of a growing population if not provided on the project site. The only exception to this basic relationship between population growth, development, energy consumption and GHG emissions would occur if the site-specific project (1) embodied features that were not typical of urban environment or developing communities, and (2) generated a disproportionate amount of vehicle miles of travel or had other unique

¹Southern California Association of Governments, *Employment Density Study Summary Report*, October 31, 2001. ²SCAG, 2004 Regional Transportation Plan: Destination 2030, April 2004.

and disproportionately high fuel consumption characteristics. The No Project Alternative would develop the remaining 170,650 square feet of remaining entitled use under the 1993 Master Plan and does not fall within these exceptions. It is located in an urban area that has been planned for the medical uses associated with the No Project Alternative. As such, the No Project Alternative would have a negligible and less-than-significant impact on any increase in regional and national GHG emissions. This impact is similar to the proposed project.

As with the proposed project, the No Project Alternative would be required to comply with the applicable mitigation measures adopted in connection with the approval of the 1993 Master Plan and all Assembly Bill (AB) 32-related regulations.

Reduced Project Alternative

Regional Emissions. Operational emissions associated with the Reduced Project Alternative are shown in **Table 2**, which indicates that regional operational emissions from area and mobile sources would not exceed SCAQMD significance thresholds. Regional operational emissions for the Reduced Project Alternative would be less than the proposed project due to the reduced building size and the reduced traffic associated with the building. The Reduced Project Alternative would result in a less-than-significant impact. This impact is similar to the proposed project.

Carbon Monoxide Concentrations. **Table 1** presents CO concentrations associated with the Reduced Project Alternative, which indicates that the Reduced Project Alternative would result in a 2023 one-hour CO concentration of 2 ppm. The eight-hour CO concentrations would range from 1.2 ppm to 1.7 ppm. CO concentrations for the Reduced Project Alternative would be similar to the proposed project. As with the proposed project, the one- and eight-hour CO concentrations would not exceed the State standards. Thus, a less than significant impact is anticipated. This impact is similar to the proposed project.

Toxic Air Contaminants. The Reduced Project Alternative would not include any potential sources of acutely and chronically hazardous TACs, although minimal emissions may result from the use of consumer products (e.g., aerosol sprays). As with the proposed project, the Reduced Project Alternative may increase the amount of medical waste incinerated on the CSMC campus. The 1993 Master Plan, which included mitigation measures to reduce reliance on hazardous materials, discussed regulations and impacts associated with medical waste incineration (i.e., dioxin emissions). However, the CSMC has replaced the incinerator with two steam sterilizers. The steam sterilizers dispose of medical waste without generating dioxin emissions. The significant impacts related to dioxin emissions previously disclosed in the 1993 Master Plan approval process are no longer relevant as this impact has been eliminated. As such, the Reduced Project Alternative would not release substantial amounts of TACs, and a less-than-significant impact on human health would occur. This impact is similar to the proposed project.

Odor. The Reduced Project Alternative would develop the project site with hospital-related uses, not land uses that are typically associated with odor complaints. On-site trash receptacles would have the potential to create adverse odors. As trash receptacles would be located and maintained in a manner that promotes odor control, no adverse odor impacts are anticipated from these types of land uses. The Reduced Project Alternative would comply with regulations contained in SCAQMD Rule 402 (Nuisance). In addition, the proposed project would comply with SCAQMD Rule 1138 (Control of Emissions from Restaurant Operations) which controls odors from restaurants (e.g., cafeteria). As such, operational odors would result in a less-than-significant impact. This impact is similar to the proposed project.

			Pounds	per Day		
Emission Source	voc	NO _X	со	SOx	PM _{2.5}	PM ₁₀
SCAQMD Regional Threshold	55	55	550	150	55	150
New 150,000-Square-Foot Addit	ion					
Mobile Sources	4	5	47	<1	3	15
Area Sources /a/	<1	<1	2	<1	<1	<1
Total Emissions	4	5	49	<1	3	15
Exceed Threshold?	No	No	No	No	No	No
Remaining 1993 Master Plan En	titlement (17	0,650-square	-foot addition)		
Mobile Sources	23	33	282	<1	18	90
Area Sources /a/	<1	1	3	<1	<1	<1
Total Emissions	23	33	285	<1	18	90
Exceed Threshold?	No	No	No	No	No	No
Existing Building Equivalent (90),000 square	feet of floor a	area)			
Mobile Sources	7	10	84	<1	5	27
Area Sources /a/	<1	1	2	<1	<1	<1
Total Emissions	7	11	86	<1	5	27
Exceed Threshold?	No	No	No	No	No	No
Total Reduced Project Alternati	ve					
Mobile Sources	34	47	299	<1	26	132
Area Sources /a/	<1	2	7	<1	<1	<1
Total Emissions	34	49	420	<1	26	132
Exceed Threshold?	No	No	No	No	No	No

Consistency with the Air Quality Management Plan. As discussed above, the Reduced Project Alternative would not exceed the State one- and eight-hour CO concentration standards.

The Reduced Project Alternative would not increase population or housing in the Los Angeles subregion since this alternative does not include a residential component. The Reduced Project Alternative is expected to incrementally increase employment by approximately 543 persons,³ which represents less than one percent of the 278,264 new employment growth projected in SCAG's RTP between 2007 and 2023 for the Los Angeles subregion. The 2007 AQMP, the most recent AQMP adopted by the SCAQMD, incorporates, in part, SCAG's 2004 RTP socioeconomic forecast projections of regional

³Southern California Association of Governments, *Employment Density Study Summary Report*, October 31, 2001.

population and employment growth.⁴ Since the Reduced Project Alternative would not exceed the SCAG growth forecasts, the Reduced Project Alternative is considered to be consistent with the growth assumptions included in the AQMP.

The Reduced Project Alternative would not cause or contribute to new air quality violations and would not exceed the AQMP growth assumptions. Thus, the Reduced Project Alternative would be consistent with the AQMP. This impact is similar to the proposed project.

Global Climate Change. The Reduced Project Alternative would not embody features that were not typical of an urban environment or developing communities or generate a disproportionate amount of vehicle miles of travel. This alternative does not have other unique and disproportionately high fuel consumption characteristics. The Reduced Project Alternative is located in an urban area and would develop medical uses in an area that has been planned for these types of use. As such, the Reduced Project Alternative would have a negligible and less-than-significant impact on any increase in regional and national GHG emissions. This impact is similar to the proposed project.

As with the proposed project, the Reduced Project Alternative would be required to comply with any applicable mitigation measures adopted in connection with the approval of the 1993 Master Plan and all AB 32-related regulations.

Change in Use Project Alternative

Regional Emissions. Regional operational emissions associated with the Change in Use Project Alternative are shown in **Table 3**, which indicates that regional operational emissions from area sources and from mobile sources would exceed SCAQMD significance thresholds for VOC, NO_X , CO, and PM_{10} . Regional operational emissions for the Change in Use Project Alternative would be greater than the proposed project due primarily to the increase in traffic associated with the outpatient services. Operational emissions are primarily generated by motor vehicles, and no feasible mitigation measures are available to reduce emissions from motor vehicles. Thus, significant unavoidable impacts are anticipated for the Change in Use Project Alternative. This impact is greater than the proposed project.

Carbon Monoxide Concentrations. **Table 2** presents CO concentrations associated with the Change in Use Project Alternative, which indicates that the Change in Use Project Alternative would result in a 2023 one-hour CO concentration of 2 ppm. The eight-hour CO concentrations would range from 1.2 ppm to 1.7 ppm. CO concentrations for the Change in Use Project Alternative would be similar to the proposed project. As with the proposed project, the one- and eight-hour CO concentrations would not exceed the State standards. Thus, a less-than-significant impact is anticipated. This impact is similar to the proposed project.

⁴SCAG, 2004 Regional Transportation Plan: Destination 2030, April 2004.

			Pounds	per Day		
Emission Source	VOC	NO _x	СО	SOx	PM _{2.5}	PM ₁₀
SCAQMD Regional Threshold	55	55	550	150	55	150
New 200,000-Square-Foot Addit	ion – Outpat	ient Services				
Mobile Sources	35	49	423	1	26	135
Area Sources /a/	<1	1	3	<1	<1	<1
Total Emissions	35	50	426	1	26	135
Exceed Threshold?	No	No	No	No	No	No
Remaining 1993 Master Plan En	titlement (17	0,650-square	-foot addition)		
Mobile Sources	23	33	282	<1	18	90
Area Sources /a/	<1	1	3	<1	<1	<1
Total Emissions	23	33	285	<1	18	90
Exceed Threshold?	No	No	No	No	No	No
Existing Building Equivalent (90),000 square	feet of floor a	irea)			
Mobile Sources	7	10	84	<1	5	27
Area Sources /a/	<1	1	2	<1	<1	<1
Total Emissions	7	11	86	<1	5	27
Exceed Threshold?	No	No	No	No	No	No
Total Change in Use Project Alter	ernative					
Mobile Sources	57	79	674	1	49	252
Area Sources /a/	<1	3	8	<1	<1	<1
Total Emissions	65	84	797	1	49	252

SOURCE: TAHA, 2008 (Attachment B)

Toxic Air Contaminants. The Change in Use Project Alternative would not include any potential sources of acutely and chronically hazardous TACs, although minimal emissions may result from the use of consumer products (e.g., aerosol sprays). As with the proposed project, the Change in Use Project Alternative may increase the amount of medical waste incinerated on the CSMC campus. The 1993 Master Plan, which included mitigation measures to reduce reliance on hazardous materials, discussed regulations and impacts associated with medical waste incineration (i.e., dioxin emissions). However, the CSMC has replaced the incinerator with two steam sterilizers. The steam sterilizers dispose of medical waste without generating dioxin emissions. The significant impacts related to dioxin emissions previously disclosed in the 1993 Master Plan approval process are no longer relevant as this impact has been eliminated. As such, the Change in Use Project Alternative would not release substantial amounts of

TACs, and a less-than-significant impact on human health would occur. This impact is similar to the proposed project.

Odor. The Change in Use Project Alternative would develop the project site with hospital-related uses, not land uses that are typically associated with odor complaints. On-site trash receptacles would have the potential to create adverse odors. As trash receptacles would be located and maintained in a manner that promotes odor control, no adverse odor impacts are anticipated from these types of land uses. The Change in Use Project Alternative would comply with regulations contained in SCAQMD Rule 402 (Nuisance). In addition, the proposed project would comply with SCAQMD Rule 1138 (Control of Emissions from Restaurant Operations) which controls odors from restaurants (e.g., cafeteria). As such, operational odors would result in a less-than-significant impact. This impact is similar to the proposed project.

Consistency with the Air Quality Management Plan. As discussed above, the Change in Use Project Alternative would not exceed the State one- and eight-hour CO concentration standards.

The Change in Use Project Alternative would not increase population or housing in the Los Angeles subregion since this alternative does not include a residential component. As with the proposed project, the Change in Use Project Alternative is expected to incrementally increase employment by approximately 606 persons,⁵ which represents less than one percent of the 278,264 new employment growth projected in SCAG's RTP between 2007 and 2023 for the Los Angeles subregion. The 2007 AQMP, the most recent AQMP adopted by the SCAQMD, incorporates, in part, SCAG's 2004 RTP socioeconomic forecast projections of regional population and employment growth.⁶ Since the Change in Use Project Alternative would not exceed the SCAG growth forecasts, the Change in Use Project Alternative is considered to be consistent with the growth assumptions included in the AQMP.

The Change in Use Project Alternative would not cause or contribute to new air quality violations and would not exceed the AQMP growth assumptions. Thus, the Change in Use Project Alternative would be consistent with the AQMP. This impact is similar to the proposed project.

Global Climate Change. The Change in Use Project Alternative would not embody features that were not typical of an urban environment or developing communities or generate a disproportionate amount of vehicle miles of travel. This alternative does not have other unique and disproportionately high fuel consumption characteristics. The Change in Use Project Alternative is located in an urban area and would develop medical uses in an area that has been planned for these types of use. As such, the Change in Use Project Alternative would have a negligible and less-than-significant impact on any increase in regional and national GHG emissions. This impact is similar to the proposed project.

As with the proposed project, the Change in Use Project Alternative would be required to comply with any applicable mitigation measures adopted in connection with the approval of the 1993 Master Plan and all AB 32-related regulations.

⁵Southern California Association of Governments, *Employment Density Study Summary Report*, October 31, 2001. ⁶SCAG, 2004 Regional Transportation Plan: Destination 2030, April 2004.

NOISE AND VIBRATION

Construction Phase

No Project Alternative

Construction Noise. Construction of the No Project Alternative would involve similar types of grading/excavation and building construction activities as the proposed project. As such, construction noise levels associated with the No Project Alternative would be similar to the proposed project. The noise levels presented in Tables 4-6 and 4-7 of the *Cedars-Sinai Medical Center West Tower Project Air Quality and Noise Impact Report* are applicable to the No Project Alternative. Mitigation Measures N1 through N7 in the *Cedars-Sinai Medical Center West Tower Project Air Quality and Noise Impact Report* are applicable to the No Project Alternative. Moise Impact Report would be applicable to the No Project Alternative. Additionally, the No Project Alternative would be required to implement the mitigation measures that were adopted in connection with the approval of the 1993 Master Plan. As with the proposed project, construction-related noise levels would exceed the 5-decibel (dBA) significance threshold at various sensitive receptors even with implementation of mitigation measures. As such, the No Project Alternative would result in a temporary significant and unavoidable construction noise impact. This impact is similar to the proposed project.

Construction Vibration. Construction of the No Project Alternative would involve similar types of grading/excavation and building construction activities as the proposed project. As with the proposed project, construction-related vibration would be below the 0.5 inches per second peak particle velocity (PPV) significance threshold and would result in a less-than-significant impact if driven piles are not necessary during construction. If pile driving is required, vibration levels have the potential to exceed the significance threshold of 0.5 inches per second PPV. Implementation of Mitigation Measure N8 in the *Cedars-Sinai Medical Center West Tower Project Air Quality and Noise Impact Report* would ensure that construction-related vibration levels would result in a less-than-significant impact. This impact is similar to the proposed project.

Reduced Project Alternative

Construction Noise. Construction of the Reduced Project Alternative would involve similar types of demolition, grading/excavation, and building construction activities as the proposed project. As such, construction noise levels associated with the Reduced Project Alternative would be similar to the proposed project. The noise levels presented in Tables 4-6 and 4-7 of the *Cedars-Sinai Medical Center West Tower Project Air Quality and Noise Impact Report* are applicable to the Reduced Project Alternative. Mitigation Measures N1 through N7 in the *Cedars-Sinai Medical Center West Tower Project Air Quality and Noise Impact Report* would be applicable to the Reduced Project Alternative. Additionally, the Reduced Project Alternative would be required to implement the mitigation measures that were adopted in connection with the approval of the 1993 Master Plan. As with the proposed project, construction-related noise levels would exceed the 5-dBA significance threshold at various sensitive receptors even with implementation of mitigation measures. As such, the Reduced Project Alternative would result in a temporary significant and unavoidable construction noise impact. This impact is similar to the proposed project.

Construction Vibration. Construction of the Reduced Project Alternative would involve similar types of demolition, grading/excavation, and building construction activities as the proposed project. As with the proposed project, construction-related vibration would be below the 0.5 inches per second PPV significance threshold and would result in a less-than-significant impact if driven piles are not necessary during construction. If pile driving is required, vibration levels have the potential to exceed the

significance threshold of 0.5 inches per second PPV. Implementation of Mitigation Measure N8 in the *Cedars-Sinai Medical Center West Tower Project Air Quality and Noise Impact Report* would ensure that construction-related vibration levels would result in a less-than-significant impact. This impact is similar to the proposed project.

Change in Use Project Alternative

Construction Noise. Construction of the Change in Use Project Alternative would involve similar types of demolition, grading/excavation, and building construction activities as the proposed project. As such, construction noise levels associated with the Change in Use Project Alternative would be similar to the proposed project. The noise levels presented in Tables 4-6 and 4-7 of the *Cedars-Sinai Medical Center West Tower Project Air Quality and Noise Impact Report* are applicable to the Change in Use Project Alternative. Mitigation Measures N1 through N7 in the *Cedars-Sinai Medical Center West Tower Project Air Quality and Noise Impact Report* would be applicable to the Change in Use Project Alternative. Additionally, the Change in Use Project Alternative would be required to implement the mitigation measures that were adopted in connection with the approval of the 1993 Master Plan. As with the proposed project, construction-related noise levels would exceed the 5-dBA significance threshold at various sensitive receptors even with implementation of mitigation measures. As such, the Change in Use Project Alternative would result in a temporary significant and unavoidable construction noise impact. This impact is similar to the proposed project.

Construction Vibration. Construction of the Change in Use Project Alternative would involve similar types of demolition, grading/excavation, and building construction activities as the proposed project. As with the proposed project, construction-related vibration would be below the 0.5 inches per second PPV significance threshold and would result in a less-than-significant impact if driven piles are not necessary during construction. If pile driving is required, vibration levels have the potential to exceed the significance threshold of 0.5 inches per second PPV. Implementation of Mitigation Measure N8 in the *Cedars-Sinai Medical Center West Tower Project Air Quality and Noise Impact Report* would ensure that construction-related vibration levels would result in a less-than-significant impact. This impact is similar to the proposed project.

Operational Phase

No Project Alternative

Vehicular Noise. As with the proposed project, the predominant noise source associated with the No Project Alternative is vehicular traffic. According to the project traffic consultant, the No Project Alternative (i.e., the remaining 170,650 square feet of entitled use under the 1993 Master Plan) would generate approximately 5,324 daily vehicle trips, which is less than the West Tower, which incorporates the proposed project.

Table 4 presents the estimated Community Noise Equivalent Level (CNEL) for the No Project Alternative at roadways that would be the most affected by the proposed project. As shown in the table, noise levels for the No Project Alternative would range from 66.8 to 74.6 dBA CNEL. Therefore, the range in noise levels associated with the No Project Alternative would be either similar to the proposed project or less than the proposed project.

TABLE 4: 2023 ESTIMATED COMMUNITY NOIS	SE EQUIVALE	NT LEVEL /	a/	
		Estimated of	BA, CNEL /b/	
Roadway Segment (Adjacent Uses)	No Project Alternative	Proposed Project	Reduced Project Alternative	Change in Use Project Alternative
Beverly Blvd between Robertson Blvd and George Burns Rd. (commercial and single-family uses)	73.4	73.4	73.4	73.4
Beverly Blvd between George Burns Rd. and San Vincente Blvd (commercial uses)	73.6	73.6	73.6	73.8
Beverly Blvd between San Vicente Blvd and La Cienega Blvd (commercial uses)	74.6	74.7	74.6	74.8
Robertson Blvd between Beverly Blvd and Gracie- Allen DrAlden Dr. (commercial uses)	72.5	72.5	72.5	72.7
Robertson Blvd between Gracie Allen DrAlden Dr. and Third St. (commercial uses)	69.4	69.4	69.4	69.6
George Burns Rd. between Beverly Blvd and Gracie Allen DrAlden Dr. (medical uses)	68.3	68.5	68.4	69.0
George Burns Rd. between Gracie Allen DrAlden Dr. and Third St. (medical uses)	68.5	68.7	68.6	69.1
Gracie Allen DrAlden Dr. between Robertson Blvd and George Burns Rd. (medical uses)	66.8	67.2	67.1	68.3
Third St. between Robertson Blvd and George Burns Rd. (medical and commercial uses)	68.0	68.0	68.0	68.0
Third St. between George Burns Rd. and Sherbourne Dr. (medical and commercial uses)	72.6	72.7	72.7	72.9
La Cienega Blvd between Wilshire Blvd and Third St. (residential and commercial uses)	71.0	71.1	71.1	71.1
<i>Ia/</i> The predicted CNEL were calculated as peak hour L _{eq} and converte <i>Noise Supplement</i> (October 1998). The conversion involved making a traffic and a pipttime penalty correction. The peak hour traffic was as	ed into CNEL using th correction for peak h	ne California Depa nour traffic volume	artment of Transporta as a percentage o	ation <i>Technical</i> f average daily

/b/ CNEL is at 50 feet from the roadway right-of-way.

SOURCE: TAHA, 2008 (Attachment C)

Stationary Noise. As with the proposed project, the No Project Alternative would generate noise levels from mechanical equipment. The No Project Alternative would be required to implement the mitigation measures that were adopted in connection with the approval of the 1993 Master Plan (i.e., the installation of sound attenuating devices on exhaust fans, enclosing mechanical equipment, and providing sound absorbing and shielding provisions into the design of these equipment). The mitigation measures would ensure that the mechanical equipment would not incrementally increase ambient noise levels by 5 dBA or more. Thus, a less-than-significant impact is anticipated. This impact is similar to the proposed project.

Parking Noise. The No Project Alternative would include demolition of the Existing Parking Lot. The No Project Alternative would not include any new parking noise sources beyond those identified in the Original EIR for the 1993 Master Plan Development, which included a 650-space parking structure. At the project site, noise associated with the parking structure will be similar to noise associated with the

parking structure under the proposed project. Incremental parking noise impacts over the 1993 Master Plan impacts are not anticipated.

Operational Phase Vibration. The No Project Alternative would not include significant stationary sources of ground-borne vibration, such as heavy equipment operations. Operational ground-borne vibration in the project site vicinity would be generated by vehicles and delivery trucks on the local roadways. Similar to existing conditions, traffic-related vibration levels would not be perceptible by sensitive receptors. Thus, operational vibration would result in a less-than-significant impact. This impact is similar to the proposed project.

Reduced Project Alternative

Vehicular Noise. As with the proposed project, the predominant noise source associated with the Reduced Project Alternative is vehicular traffic. According to the project traffic consultant, the Reduced Project Alternative would generate a total of approximately 9,675 daily vehicle trips for the new facility to be constructed at the project site. The vehicle trips associated with the Reduced Project Alternative includes the 886 daily vehicle trips from the 150,000-square-foot new addition (75 beds), the 5,324 daily vehicle trips from the remaining square footage allowed under the 1993 Master Plan Entitlement (i.e., the 170,650-square-foot addition), and the 3,465 daily vehicle trips generated from the Existing Building to be incorporated into the facility. The total daily vehicle trips would be less than the proposed project due to the reduced inpatient bed count.

Vehicular noise levels associated with the Reduced Project Alternative are presented in **Table 4**, which indicates that noise levels for the Reduced Project Alternative would range from 67.1 to 74.6 dBA CNEL. The range in noise levels associated with the Reduced Project Alternative would be similar to or less than the proposed project. The greatest project-related noise increase would be 0.3 dBA CNEL when compared to the No Project Alternative (i.e., no expansion of the 1993 Master Plan) and would occur along Gracie-Allen Drive between Robertson Boulevard and George Burns Road. Roadway noise levels attributed to the Reduced Project Alternative would increase by less than 3 dBA CNEL at all analyzed segments. Thus, a less-than-significant impact is anticipated. This impact is similar to the proposed project.

Stationary Noise. As with the proposed project, the Reduced Project Alternative would generate noise levels from mechanical equipment. The Reduced Project Alternative would be required to implement the mitigation measures that were adopted in connection with the approval of the 1993 Master Plan (i.e., the installation of sound attenuating devices on exhaust fans, enclosing mechanical equipment, and providing sound absorbing and shielding provisions into the design of these equipment). The mitigation measures would ensure that the mechanical equipment would not incrementally increase ambient noise levels by 5 dBA or more. Thus, a less-than-significant impact is anticipated. This impact is similar to the proposed project.

Parking Noise. As with the propose project, the Reduced Project Alternative would develop a sevenstory parking structure on the project site. Similar to the proposed project, the noise level at the adjacent medical office building to the south of the project site would experience a noise level of 65.9 dBA, or 0.1 dBA over the existing noise level. Noise levels at other medical buildings farther away from the proposed parking structure would be less than the adjacent medical office building. As the parking structure activity would not incrementally increase ambient noise levels by 5 dBA or more, parking noise would result in a less-than-significant impact. The noise impacts associated with the parking structure under the Reduced Project Alternative would be the same as the proposed project.

Operational Phase Vibration. As with the proposed project, the Reduced Project Alternative would not include significant stationary sources of ground-borne vibration, such as heavy equipment operations. Operational ground-borne vibration in the project site vicinity would be generated by vehicles and delivery trucks on the local roadways. Similar to existing conditions, traffic-related vibration levels would not be perceptible by sensitive receptors. Thus, operational vibration would result in a less-than-significant impact. This impact is similar to the proposed project.

Change in Use Project Alternative

Vehicular Noise. As with the proposed project, the predominant noise source associated with the Change in Use Project Alternative is vehicular traffic. According to the project traffic consultant, the Change in Use Project Alternative would generate a total of approximately 16,752 daily vehicle trips from the facility to be constructed. The vehicle trips associated with the Change in Use Project Alternative includes the 7,963 daily vehicle trips from the 200,000-square-foot new addition for outpatient services, the 5,324 daily vehicle trips from the remaining square footage allowed under the 1993 Master Plan Entitlement (i.e., the 170,650-square-foot addition), and the 3,465 daily vehicle trips generated from the Existing Building to be incorporated into the facility. The total daily vehicle trips would be greater than the proposed project.

Vehicular noise levels associated with the Change in Use Project Alternative are presented in **Table 4**, which indicates that noise levels for the Change in Use Project Alternative would range from 68.0 to 74.8 dBA CNEL. The range in noise levels associated with the Change in Use Project Alternative would be similar to or greater than the proposed project. The greatest project-related noise increase would be 1.2 dBA CNEL when compared to the No Project Alternative and would occur along Gracie Allen Dr.-Alden Drive between Robertson Boulevard and George Burns Road. Roadway noise levels attributed to the Change in Use Project Alternative would increase by less than 3 dBA CNEL at all analyzed segments. Thus, a less-than-significant impact is anticipated. This impact is similar to the proposed project.

Stationary Noise. As with the proposed project, the Change in Use Project Alternative would generate noise levels from mechanical equipment. The Change in Use Project Alternative would be required to implement the mitigation measures that were adopted in connection with the approval of the 1993 Master Plan (i.e., the installation of sound attenuating devices on exhaust fans, enclosing mechanical equipment, and providing sound absorbing and shielding provisions into the design of these equipment). The mitigation measures would ensure that the mechanical equipment would not incrementally increase ambient noise levels by 5 dBA or more. Thus, a less-than-significant impact is anticipated. This impact is similar to the proposed project.

Parking Noise. As with the propose project, the Change in Use Project Alternative would develop a seven-story or larger parking structure on the project site. A larger parking structure may be required to accommodate additional parking requirements for the outpatient services. The noise level at the adjacent medical office building to the south of the project site would experience a noise level of 65.9 dBA, or 0.1 dBA over the existing noise level. This noise level would slightly increase with an increase in size and capacity of the parking structure. Noise levels at other medical office building. As the parking structure activity would not incrementally increase ambient noise levels by 5 dBA or more, parking noise would result in a less-than-significant impact. The noise impacts associated with the parking structure under the Change in Use Project Alternative would be the same as the proposed project.

Operational Phase Vibration. As with the proposed project, the Change in Use Project Alternative would not include significant stationary sources of ground-borne vibration, such as heavy equipment

operations. Operational ground-borne vibration in the project site vicinity would be generated by vehicles and delivery trucks on the local roadways. Similar to existing conditions, traffic-related vibration levels would not be perceptible by sensitive receptors. Thus, operational vibration would result in a less-thansignificant impact. This impact is similar to the proposed project.

CONCLUSION

Air Quality

Construction Phase. Regional emissions, localized emissions, and odors associated with construction of the No Project, Reduced Project, and Change in Use Project Alternatives would be similar to the proposed project. As with the proposed project, the three alternatives would result in a significant and unavoidable regional NO_X impact and localized $PM_{2.5}$ and PM_{10} impacts during construction. Less-than-significant odor impacts are anticipated for the three alternatives.

The No Project Alternative would not demolish the Existing Building. As such, the No Project Alternative would not accidentally release ACMs and lead into the atmosphere. However, similar to the proposed project, the Reduced Project and Change in Use Project Alternatives would require the demolition of the Existing Building. Thus, these two alternatives have the potential to result in the accidental release of ACMs and lead into the atmosphere. However, the impact is similar to the proposed project.

As with the proposed project, construction activities associated with the three alternatives would be temporary and would not be a long-term source of TAC emissions. The associated individual cancer risk would be below ten chances in a population of one million people and below the noncarcinogenic health hazard index value of 1.0. Thus, a less-than-significant impact is anticipated for the three alternatives. This impact is similar to the proposed project.

Operational Phase. Regional operational emissions associated with the No Project and Reduced Project Alternatives would be less than the proposed project. As with the proposed project, impacts for these two alternatives would be less than significant. However, regional operational emissions associated with the Change in Use Project Alternative would be greater than the proposed project. This alternative would result in a significant and unavoidable regional VOC, NO_X, CO, and PM₁₀ impacts. Therefore, the regional impacts associated with the Change in Use Project Alternative are greater than the proposed project.

All three alternatives would result in a 2023 one-hour CO concentration of 2 ppm and eight-hour CO concentration ranging from 1.2 ppm to 1.7 ppm. The CO concentrations would not exceed the State CO standards, and a less-than-significant impact is anticipated for the three alternatives. This impact is similar to the proposed project.

As with the proposed project, the three alternatives may increase the amount of medical waste incinerated at the CSMC campus. The 1993 Master Plan, which included mitigation measures to reduce reliance on hazardous materials, discussed regulations and impacts associated with medical waste incineration (i.e., dioxin emissions). However, the CSMC has replaced the incinerator with two steam sterilizers. The steam sterilizers dispose of medical waste without generating dioxin emissions. The significant impacts related to dioxin emissions previously disclosed in the 1993 Master Plan approval process are no longer relevant as this impact has been eliminated. The three project alternatives would not release substantial amounts of TACs during the operational phase, and a less-than-significant impact is anticipated. This impact is similar to the proposed project.

The three alternatives are expected to have a less-than-significant impact on odor since these alternatives do not contain uses that are typically associated with odor complaints. Additionally, the three alternatives would be required to comply with SCAQD Rule 402 (Nuisance). This impact is similar to the proposed project.

As with the proposed project, the three alternatives would be consistent with the AQMP since the alternatives would not exceed the State CO standards and would be consistent with the AQMP growth assumptions.

The three alternatives would have a negligible effect on GHG emissions since the alternatives would not embody features that are not typical of an urban environment or developing communities or generate a disproportionate amount of vehicle miles of travel. The alternatives are located in an urban area and would develop medical uses in an area that has been planned for these types of use. This impact is similar to the proposed project

Noise and Vibration

Construction Phase. Construction and vibration noise levels for the three alternatives would be similar to the proposed project since the alternatives would require similar types of construction activities and equipment as the proposed project. As with the proposed project, construction-related noise levels would exceed the 5-dBA significance threshold at various sensitive receptors even with implementation of mitigation measure. A significant and unavoidable construction noise impact is anticipated. This impact is similar to the proposed project.

Vibration levels during construction of the three alternatives have the potential to exceed the significance threshold of 0.5 inches per second PPV if pile driving is required. However, implementation of the mitigation measures would reduce this impact to a less than significant level. This impact is similar to the proposed project.

Operational Phase. Vehicle noise associated with the No Project Alternative and the Reduced Project Alternative would be either similar to or less than the proposed project. Vehicle noise associated with the Change in Use Project Alternative would be either similar to or greater than the proposed project. However, the change in noise levels would be less than the 3-dBA CNEL threshold for the alternatives. This impact is similar to the proposed project.

Mechanical equipment noise levels associated with the three project alternatives are similar to the proposed project. Mechanical equipment is not anticipated to incrementally increase ambient noise levels by 5 dBA or more, and a less-than-significant impact is anticipated. This impact is similar to the proposed project.

No new incremental parking noise impacts over those impacts determined for the parking structure under the 1993 Master Plan are anticipated with the No Project Alternative. As with the proposed project, the Reduced Project and Change in Use Project Alternatives would construct a seven-story parking structure on the project site. The Change in Use Project Alternative may require a larger parking structure. As with the proposed project, parking structure activity would not incrementally increase ambient noise levels by 5 dBA or more. Thus, parking noise would result in a less-than-significant impact. The noise impacts associated with the parking structure under the Reduced Project and Change in Use Project Alternatives would be the same as the proposed project.

As with the proposed project, the three alternatives would not include significant sources of ground-borne vibration. The primary ground-borne vibration in the project site vicinity would be generated by vehicles and delivery trucks on local roadways, which would not be perceptible by sensitive receptors. Thus, a less-than-significant impact is anticipated. This impact is similar to the proposed project.

If you have any questions regarding this alternatives analysis, please contact Sam Silverman at (310) 839-4200, extension 13.

Sincerely,

Sam Silverman Senior Environmental Associate

Attachments:

Attachment A: CO Concentrations – CAL3QHC Output Files Attachment B: Operational Emissions – URBEMIS2007 Output Files

Attachment C: Mobile Noise Calculations

Attachment A CO Concentrations – CAL3QHC Output Files

Alternative 2 CAL3QHC Output

RUN: GEBEA2 JOB: C:\Documents and Settings\jstephens\Desk

DATE : 8/ 5/ 8 TIME : 17:58:19

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD =	.0 CM/S	ZO = 100. CM		
U =	1.0 M/S	CLAS =	6 (F)	ATIM = 60. MINUTES	3 MIXH = 1000. M	AMB = .0 PPM

LINK VARIABLES

LINK DESCRIPTION	*	I	JINK COORDIN	ATES (FT)		*	LENGTH	BRG TY	PE VPH	EF	н	W	V/C	QUEUE
	*	X1	Yl	X2	¥2	*	(FT)	(DEG)		(G/MI)	(FT)	(FT)	(VEH)
1. nba	*	512.0	. 0	512.0	500.0	*	500.	360. A	G 642.	1.6	.0 4	4.0		
2. nbq	*	512.0	464.0	512.0	-1064.3	*	1528.	180. A	.G 25.	100.0	.0 2	24.0	1.73	77.6
3. sbd	*	488.0	500.0	488.0	.0	*	500.	180. A	G 242.	1.6	.0 3	2.0		
4. eba	*	.0	482.0	500.0	482.0	*	500.	90. A	G 1829.	1.6	.0 5	6.0		
5. ebd	*	500.0	482.0	1000.0	482.0	*	500.	90. A	G 2218.	1.6	.0 4	4.0		
6. ebq	*	476.0	482.0	446.0	482.0	*	30.	270. A	.G 7.	100.0	.0 3	6.0	.50	1.5
7. wba	*	1000.0	518.0	500.0	518.0	*	500.	270. A	G 1647.	1.6	.0 5	6.0		
8. wbd	*	500.0	518.0	.0	518.0	*	500.	270. A	G 1658.	1.6	.0 4	4.0		
9. wbq	*	524.0	518.0	551.0	518.0	*	27.	90. A	.G 7.	100.0	.0 3	6.0	.45	1.4

JOB: C:\Documents and Settings\jstephens\Desk RUN: GEBEA2

DATE : 8/ 5/ 8 TIME : 17:58:19

ADDITIONAL QUEUE LINK PARAMETERS

LINK DESCRIPTION	*	CYCLE	RED	CLEARANCE	APPROACH	SATURATION	IDLE	SIGNAL	ARRIVAL
	*	LENGTH	TIME	LOST TIME	VOL	FLOW RATE	EM FAC	TYPE	RATE
	*	(SEC)	(SEC)	(SEC)	(VPH)	(VPH)	(gm/hr)		
	*								
2. nbq	*	60	48	3.0	642	1600	5.73	3	3
6. ebq	*	60	9	3.0	1829	1600	5.73	3	3
9. wbg	*	60	9	3.0	1647	1600	5.73	3	3

RECEPTOR LOCATIONS

	*	COOF	DINATES (FI	·)	*
RECEPTOR	*	Х	Y	Z	*
	*				- *
1. nw	*	466.0	546.0	5.4	*
2. ne	*	534.0	546.0	5.4	*
3. sw	*	466.0	454.0	5.4	*
4. se	*	534.0	454.0	5.4	*

MODEL RESULTS

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION ANGLE * (PPM) (PPM)

(DEGR)	*	REC1	REC2	REC3	REC4
0.	*	.0	.0	. 2	. 2
10.	*	.0	.0	.2	. 2
20.	*	.0	.0	.2	. 2
30.	*	.0	.0	.1	. 2
40.	*	.0	.0	. 2	. 2
50.	*	.0	.0	.3	.2
60.	*	.0	.0	.3	.3
70.	*	.0	.0	. 4	.3
80.	*	.0	.0	.5	.4
90.	*	.1	. 2	.3	. 2
100.	*	.3	.3	.1	.0
110.	*	.2	.3	.1	.0
120.	*	.2	. 2	.1	.0
130.	*	.3	.2	.1	.0
140.	*	. 2	. 2	.1	.0
150.	*	.1	.2	.1	.0
160.	*	.3	.2	.1	.0
170.	*	.4	.2	.2	.0
180.	*	.3	.5	.1	.3
190.	*	.2	.5	.0	.3
200.	*	.2	. 2	.0	. 2
210.	*	.2	.1	.0	.2
220.	*	.2	. 2	.0	.1
230.	*	.2	. 2	.0	.1
240.	*	.2	.3	.0	.1
250.	*	.3	.3	.0	.1
260.	*	.3	.3	.0	.1
270.	*	.1	.1	.2	.3
280.	Ĩ	.0	.0	.4	.4
290.	*	.0	.0	.3	.3
300.	*	.0	.0	.2	.3
310.	÷	.0	.0	.2	.3
320.	ž	.0	.0	.2	.2
330.	Ĵ	.0	.0	. 2	.1
340.	Ĵ	.0	.0	.2	. 4
350.	Ĵ	.0	.0	. 2	.2
	*.	.0	.0	.2	. 2
MAX	*	.4	.5	.5	.4
DEGR.	*	170	180	80	80

The highest concentration of .50 ppm occurred at receptor rec3 .

JOB: D:\00Projects\Cedars Sinai\01_Existing\G RUN: CEGRA2

DATE : 8/ 5/ 8 TIME : 18: 5:30

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD = .0 CM/S	ZO = 100. CM								
U =	1.0 M/S	CLAS = 6 (F)	ATIM = 60. MINUTES	MIXH = 1000. M	AMB = .0 PPM						

LINK VARIABLES

I	JINK DESCRIPTION	*	L	INK COORDIN	ATES (FT)		*	LENGTH	BRG TYPE	VPH	EF	H W	V/C	QUEUE
		*	X1	Y1	X2	¥2	*	(FT)	(DEG)		(G/MI)	(FT) (FT)		(VEH)
		*					*							
1.	nba	*	506.0	.0	506.0	500.0	*	500.	360. AG	325.	1.6	.0 32.0		
2.	nbd	*	506.0	500.0	506.0	1000.0	*	500.	360. AG	253.	1.6	.0 32.0		
3.	nbq	*	506.0	464.0	506.0	419.6	*	44.	180. AG	б.	100.0	.0 12.0	.41	2.3
4.	sba	*	494.0	1000.0	494.0	500.0	*	500.	180. AG	515.	1.6	.0 32.0		
5.	sbd	*	494.0	500.0	494.0	.0	*	500.	180. AG	501.	1.6	.0 32.0		
б.	sbq	*	494.0	536.0	494.0	606.4	*	70.	360. AG	б.	100.0	.0 12.0	.64	3.6
7.	eba	*	.0	482.0	500.0	482.0	*	500.	90. AG	322.	1.6	.0 56.0		
8.	ebd	*	500.0	482.0	1000.0	482.0	*	500.	90. AG	303.	1.6	.0 44.0		
9.	ebq	*	488.0	482.0	469.3	482.0	*	19.	270. AG	25.	100.0	.0 36.0	.17	1.0
10.	wba	*	1000.0	518.0	500.0	518.0	*	500.	270. AG	320.	1.6	.0 56.0		
11.	wbd	*	500.0	518.0	.0	518.0	*	500.	270. AG	425.	1.6	.0 44.0		
12.	pdw	*	512.0	518.0	530.5	518.0	*	19.	90. AG	25.	100.0	.0 36.0	.17	.9

JOB: D:\00Projects\Cedars Sinai\01_Existing\G RUN: CEGRA2

DATE : 8/ 5/ 8 TIME : 18: 5:30

ADDITIONAL QUEUE LINK PARAMETERS

	LINK DESCRIPTION	*	CYCLE	RED	CLEARANCE	APPROACH	SATURATION	IDLE	SIGNAL	ARRIVAL
		*	LENGTH	TIME	LOST TIME	VOL	FLOW RATE	EM FAC	TYPE	RATE
		*	(SEC)	(SEC)	(SEC)	(VPH)	(VPH)	(gm/hr)		
		*								
3.	nbq	*	60	25	3.0	325	1600	5.73	3	3
6.	sbq	*	60	25	3.0	515	1600	5.73	3	3
9.	ebq	*	60	32	3.0	322	1600	5.73	3	3
12.	wbq	*	60	32	3.0	320	1600	5.73	3	3

RECEPTOR LOCATIONS

	*	COORDINATES (FT)							
RECEPTOR	*	Х	Y	Z	*				
	*				*				
1. nw	*	478.0	546.0	5.4	*				
2. ne	*	522.0	546.0	5.4	*				
3. sw	*	478.0	454.0	5.4	*				
4. se	*	522.0	454.0	5.4	*				

MODEL RESULTS

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION

ANGLE (DEGR)	*	REC1	(PPM) REC2	REC3	REC4
	*.			2	
10	*	.1	.0	. 2	.0
20.	*	.1	.0	.0	.0
30.	*	.0	.0	. 0	. 0
40.	*	.0	.0	.0	. 0
50.	*	.0	.0	.0	.0
60.	*	.0	.0	.0	.0
70.	*	.0	.0	.0	.0
80.	*	.0	.0	.0	.0
90.	*	.0	.0	.0	.0
100.	*	.0	.0	.0	.0
110.	*	.0	.0	.0	.0
120.	*	.0	.0	.0	.0
130.	*	.0	.0	.0	.0
140.	*	.0	.0	.0	.0
150.	*	.0	.0	.0	.0
160.	*	.0	.0	.1	.0
170.	*	.1	.1	.1	.0
180.	*	.1	.1	.1	.0
190.	*	.0	.2	.0	.2
200.	Ĩ	.0	.0	.0	.0
210.	ž	.0	.0	.0	.0
220.	÷	.0	.0	.0	.0
230.	*	.0	.0	.0	.0
240.	*	.0	.0	.0	.0
250.	*	.0	.0	.0	.0
270	*	. 1	. 1	.0	.0
280.	*	.0	.0	.0	.0
290.	*	.0	.0	. 0	. 0
300.	*	.0	.0	. 0	. 0
310.	*	.0	.0	.0	.0
320.	*	.0	.0	.0	.0
330.	*	.0	.0	.0	.0
340.	*	.0	.0	.0	.0
350.	*	.0	.1	.1	.1
360.	*	.1	.0	. 2	.0
MAX	*	.1	. 2	. 2	. 2
DEGR.	*	0	190	0	190

The highest concentration of \$.20 ppm occurred at receptor rec3 .

JOB: C:\Documents and Settings\jstephens\Desk RUN: LABEA2

DATE : 8/ 5/ 8 TIME : 18: 7:19

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD = .0	CM/S	Z0 = 100. CM								
U =	1.0 M/S	CLAS = 6	(F)	ATIM = 60. MINUTES	MIXH = 1000.	M AMB =	.0 PPM					

LINK VARIABLES

I	JINK DESCRIPTION	*	L	INK COORDIN	ATES (FT)		*	LENGTH	BRG TYPE	VPH	EF	H W	V/C	QUEUE
		*	X1	Y1	X2	¥2	*	(FT)	(DEG)		(G/MI)	(FT) (FT)		(VEH)
		*					*							
1.	nba	*	524.0	.0	524.0	500.0	*	500.	360. AG	1628.	1.6	.0 68.0		
2.	nbd	*	524.0	500.0	524.0	1000.0	*	500.	360. AG	1564.	1.6	.0 44.0		
3.	nbq	*	524.0	440.0	524.0	382.1	*	58.	180. AG	27.	100.0	.0 48.0	.53	2.9
4.	sba	*	476.0	1000.0	476.0	500.0	*	500.	180. AG	2220.	1.6	.0 68.0		
5.	sbd	*	476.0	500.0	476.0	.0	*	500.	180. AG	2002.	1.6	.0 56.0		
б.	sbq	*	476.0	548.0	476.0	626.9	*	79.	360. AG	27.	100.0	.0 48.0	.72	4.0
7.	eba	*	.0	470.0	500.0	470.0	*	500.	90. AG	1157.	1.6	.0 80.0		
8.	ebd	*	500.0	470.0	1000.0	470.0	*	500.	90. AG	1265.	1.6	.0 44.0		
9.	ebq	*	452.0	470.0	412.8	470.0	*	39.	270. AG	40.	100.0	.0 60.0	.36	2.0
10.	wba	*	1000.0	524.0	500.0	524.0	*	500.	270. AG	2077.	1.6	.0 68.0		
11.	wbd	*	500.0	524.0	.0	524.0	*	500.	270. AG	2251.	1.6	.0 44.0		
12.	pdw	*	548.0	524.0	649.2	524.0	*	101.	90. AG	32.	100.0	.0 48.0	.81	5.1

RUN: LABEA2

JOB: C:\Documents and Settings\jstephens\Desk

```
DATE : 8/ 5/ 8
TIME : 18: 7:19
```

ADDITIONAL QUEUE LINK PARAMETERS

1	LINK DESCRIPTION	*	CYCLE	RED	CLEARANCE	APPROACH	SATURATION	IDLE	SIGNAL	ARRIVAL
		*	LENGTH	TIME	LOST TIME	VOL	FLOW RATE	EM FAC	TYPE	RATE
		*	(SEC)	(SEC)	(SEC)	(VPH)	(VPH)	(gm/hr)		
		*								
3.	nbq	*	60	26	3.0	1628	1600	5.73	3	3
б.	sbq	*	60	26	3.0	2220	1600	5.73	3	3
9.	ebq	*	60	31	3.0	1157	1600	5.73	3	3
12.	pdw	*	60	31	3.0	2077	1600	5.73	3	3

RECEPTOR LOCATIONS

	*	COORDINATES (FT)							
RECEPTOR	*	Х	Y	Z	*				
					*				
1. nw	*	442.0	558.0	5.4	*				
2. ne	*	558.0	558.0	5.4	*				
3. sw	*	442.0	430.0	5.4	*				
4. se	*	558.0	430.0	5.4	*				

MODEL RESULTS

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION ANGLE * (PPM)

(DEGR))*	REC1	REC2	REC3	REC4
0.	*	. 2	.1	. 4	. 3
10.	*	.4	.0	.8	.3
20.	*	.4	.0	.5	.3
30.	*	.4	.0	. 4	.3
40.	*	.3	.0	. 4	.2
50.	*	.3	.0	.2	.2
60.	*	.3	.0	.5	.2
70.	*	.3	.0	. 4	.2
80.	*	.2	.0	. 4	.2
90.	*	.3	.2	.3	.0
100.	*	.5	.4	.3	.0
110.	*	.6	.4	.3	.0
120.	*	.4	.4	.2	.0
130.	*	.2	. 2	. 2	.0
140.	*	.3	.2	.2	.0
150.	*	.4	.2	.2	.0
160.	*	.4	.2	.3	.0
170.	*	.5	.2	.3	.0
180.	*	.3	.3	.1	.1
190.	*	.2	.5	.0	.3
200.	*	.1	.3	.0	.3
210.	*	.1	.4	.0	.3
220.	*	.1	.3	.0	.3
230.	*	.1	.2	.0	.3
240.	*	.3	.5	.0	.3
250.	*	.3	.5	.0	.3
260.	*	.2	.6	.0	.3
270.	*	.1	.3	.1	.4
280.	*	.0	.3	.2	.5
290.	*	.0	. 3	. 2	.4
300.	*	.0	. 3	. 2	.3
310.	*	.0	. 2	. 2	.3
320.	*	.0	.2	.3	.4
330.	*	.0	.2	.3	.3
340.	*	.0	. 2	.3	.5
350.	*	.0	. 3	.3	.6
360.	*	. 2	.1	. 4	. 3
MAX	*	.6	. 6	. 8	.6

The highest concentration of $\$.80 ppm occurred at receptor rec3 .

JOB: D:\00Projects\Cedars Sinai\01_Existing\L RUN: LASAA2

DATE : 8/ 5/ 8 TIME : 18:13:58

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD = .0 CM/S	Z0 = 100. CM									
U =	1.0 M/S	CLAS = 6 (F)	ATIM = 60. MINUTES	MIXH = 1000. M	AMB = .0 PPM							

LINK VARIABLES

1	LINK DESCRIPTION	*	L	INK COORDIN	ATES (FT)		*	LENGTH	BRG TYPE	VPH	EF	Н	W	V/C	QUEUE
		*	X1	Y1	X2	Y2	*	(FT)	(DEG)		(G/MI)	(FT)	(FT)	(VEH)
		*					*								
1.	nba	*	524.0	.0	524.0	500.0	*	500.	360. AG	2654.	1.6	.0	68.0		
2.	nbd	*	524.0	500.0	524.0	1000.0	*	500.	360. AG	2719.	1.6	.0	56.0		
3.	nbq	*	524.0	440.0	524.0	210.8	*	229.	180. AG	31.	100.0	.0	48.0	1.00	11.6
4.	sba	*	482.0	1000.0	482.0	500.0	*	500.	180. AG	2365.	1.6	.0	56.0		
5.	sbd	*	482.0	500.0	482.0	.0	*	500.	180. AG	2854.	1.6	.0	56.0		
б.	sbq	*	482.0	560.0	482.0	2039.5	*	1479.	360. AG	23.	100.0	.0	36.0	1.18	75.2
7.	eba	*	.0	470.0	500.0	470.0	*	500.	90. AG	3302.	1.6	.0	80.0		
8.	ebd	*	500.0	470.0	1000.0	470.0	*	500.	90. AG	2720.	1.6	.0	68.0		
9.	ebq	*	464.0	470.0	332.2	470.0	*	132.	270. AG	35.	100.0	.0	60.0	.88	6.7
10.	wba	*	1000.0	530.0	500.0	530.0	*	500.	270. AG	2105.	1.6	.0	80.0		
11.	wbd	*	500.0	530.0	.0	530.0	*	500.	270. AG	2133.	1.6	.0	68.0		
12.	pdw	*	548.0	530.0	610.2	530.0	*	62.	90. AG	35.	100.0	.0	60.0	.56	3.2

JOB: D:\00Projects\Cedars Sinai\01_Existing\L RUN: LASAA2

DATE : 8/5/8 TIME : 18:13:58

ADDITIONAL QUEUE LINK PARAMETERS

LI	NK DESCRIPTION	* * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIVAL RATE
3. n	bq	*	60	30	3.0	2654	1600	5.73	3	3
б. в	bq	*	60	30	3.0	2365	1600	5.73	3	3
9. e	þq	*	60	27	3.0	3302	1600	5.73	3	3
12. w	bq	*	60	27	3.0	2105	1600	5.73	3	3

RECEPTOR LOCATIONS

	*	COORDINATES (FT)					
RECEPTOR	*	Х	Y	Z	*		
	*				- *		
1. nw	*	454.0	570.0	5.4	*		
2. ne	*	558.0	570.0	5.4	*		
3. sw	*	454.0	430.0	5.4	*		
4. se	*	558.0	430.0	5.4	*		

MODEL RESULTS

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION

	/	REC1	REC2	REC3	REC4
0.	- * . *	.4	.2	. 8	
10.	*	.6	.0	.9	. 3
20.	*	.5	.0	.7	. 3
30.	*	.4	.0	.4	. 2
40.	*	.4	.0	.5	.2
50.	*	.3	.0	.6	.3
60.	*	.3	.0	.5	.3
70.	*	.3	.0	.6	.3
80.	*	.3	.0	.7	.3
90.	*	.4	.1	.5	.1
100.	*	.6	.3	.3	.0
110.	*	.5	.3	.3	.0
120.	*	.5	.3	.3	.0
130.	*	.5	.3	.4	.0
140.	*	.4	.3	.4	.0
150.	*	.5	.3	.4	.0
160.	*	.7	.3	.6	.0
170.	*	.9	.3	.5	.0
180.	*	.6	.6	.3	. 2
190.	*	.3	.8	.1	.5
200.	*	.3	.6	.0	.7
210.	*	.3	.5	.0	.4
220.	*	.3	.4	.0	.4
230.	*	.2	.5	.0	.3
240.	*	.2	.6	.0	.3
250.	*	.4	.6	.0	.3
260.	*	.3	.6	.0	.3
270.	*	.1	.3	. 2	.5
280.	*	.0	. 2	.6	.9
290.	*	.0	. 2	.5	.7
300.	*	.0	. 2	.4	.5
310.	*	.0	.3	.4	.5
320.	*	.0	.4	. 4	.4
330.	*	.0	.4	. 4	.4
340.	*	.0	.5	.3	.6
350.	*	.0	.5	.3	.8
360.	*	. 4	. 2	. 8	.7
MAX	*	.9	. 8	.9	.9
		170	100	10	200

The highest concentration of .90 PPM occurred at receptor rec3 .

JOB: D:\00Projects\Cedars Sinai\03_With Proje RUN: LATHA2

DATE : 8/ 5/ 8 TIME : 18:16:23

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD =	.0 CM/S	Z0 = 100. CM							
U =	1.0 M/S	CLAS =	6 (F)	ATIM = 60. MINUTES	MIXH = 1000. M	AMB = .0 PPM					

LINK VARIABLES

]	LINK DESCRIPTION	*	L	INK COORDIN	ATES (FT)		*	LENGTH	BRG TYPE	VPH	EF	н	W	V/C	QUEUE
		*	X1	Y1	X2	Y2	*	(FT)	(DEG)		(G/MI)	(FT)	(FT)		(VEH)
		*					*								
1.	nba	*	530.0	.0	530.0	500.0	*	500.	360. AG	2109.	1.6	.0	80.0		
2.	nbd	*	530.0	500.0	530.0	1000.0	*	500.	360. AG	1868.	1.6	.0	56.0		
3.	nbq	*	530.0	464.0	530.0	411.1	*	53.	180. AG	29.	100.0	.0	60.0	.49	2.7
4.	sba	*	464.0	1000.0	464.0	500.0	*	500.	180. AG	2057.	1.6	.0	80.0		
5.	sbd	*	464.0	500.0	464.0	.0	*	500.	180. AG	2187.	1.6	.0	56.0		
б.	sbq	*	464.0	536.0	464.0	587.7	*	52.	360. AG	29.	100.0	.0	60.0	.48	2.6
7.	eba	*	.0	482.0	500.0	482.0	*	500.	90. AG	859.	1.6	.0	56.0		
8.	ebd	*	500.0	482.0	1000.0	482.0	*	500.	90. AG	885.	1.6	.0	44.0		
9.	ebq	*	428.0	482.0	374.8	482.0	*	53.	270. AG	26.	100.0	.0	36.0	.51	2.7
10.	wba	*	1000.0	518.0	500.0	518.0	*	500.	270. AG	2063.	1.6	.0	56.0		
11.	wbd	*	500.0	518.0	.0	518.0	*	500.	270. AG	2148.	1.6	.0	44.0		
12.	pdw	*	560.0	518.0	640.1	518.0	*	80.	90. AG	44.	100.0	.0	60.0	.74	4.1

JOB: D:\00Projects\Cedars Sinai\03_With Proje RUN: LATHA2

```
DATE : 8/ 5/ 8
TIME : 18:16:23
```

ADDITIONAL QUEUE LINK PARAMETERS

-

	LINK DESCRIPTION	*	CYCLE	RED	CLEARANCE	APPROACH	SATURATION	IDLE	SIGNAL	ARRIVAL
		*	LENGTH	TIME	LOST TIME	VOL	FLOW RATE	EM FAC	TYPE	RATE
		*	(SEC)	(SEC)	(SEC)	(VPH)	(VPH)	(gm/hr)		
		*								
3.	nbq	*	60	23	3.0	2109	1600	5.73	3	3
6.	sbq	*	60	23	3.0	2057	1600	5.73	3	3
9.	ebq	*	60	34	3.0	859	1600	5.73	3	3
12.	wbq	*	60	34	3.0	2063	1600	5.73	3	3

RECEPTOR LOCATIONS

	*	COORDINATES (FT)						
RECEPTOR	*	Х	Y	Z	*			
					- *			
1. nw	*	418.0	546.0	5.4	*			
2. ne	*	570.0	546.0	5.4	*			
3. sw	*	418.0	454.0	5.4	*			
4. se	*	570.0	454.0	5.4	*			

MODEL RESULTS

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION ANGLE * (PPM) (PPM)

(DEGR)	*	REC1	REC2	REC3	REC4
0	*	1	1	3	3
10.	*	.2	.0	. 4	. 2
20	*	. 2		3	2
30	*	2		.5	2
40	*	2		4	.2
50.	*	. 2	.0	. 4	.3
60	*	.5		3	2
70	*	.5		4	2
80	*	.5		4	2
90	*	.5	. 0	3	1
100	*	.5	4	2	
110	*	4	5	2	.0
120	*	3	4	2	.0
130.	*	.3	. 3	.2	.0
140	*	4	3	2	0
150	*	3	2	2	.0
160	*	4	.2	3	.0
170.	*	. 4	.2	.2	.0
180.	*	.3	.3	.1	. 1
190.	*	.2	. 5	.0	. 2
200.	*	.2	. 4	.0	.3
210.	*	.1	. 4	. 0	. 2
220.	*	.1	. 5	.0	. 3
230.	*	.1	. 3	.0	. 3
240.	*	.2	. 2	.0	.3
250.	*	.3	.4	.0	.3
260.	*	.3	.6	.0	.3
270.	*	.1	. 4	.1	. 4
280.	*	.0	.3	. 2	.5
290.	*	.0	.2	.2	. 2
300.	*	.0	. 2	.3	.3
310.	*	.0	. 2	.3	.4
320.	*	.0	. 2	.3	.5
330.	*	.0	. 2	. 2	.4
340.	*	.0	.3	.2	.4
350.	*	.0	. 2	. 2	.5
360.	*	.1	.1	.3	.3
MAX	*	.7	.6	.4	.5
DEGR.	*	100	260	10	280

The highest concentration of $\hfill..., 70\hfill \ensuremath{\text{pm}}$ occurred at receptor rec1 .

RUN: ROALA2 JOB: C:\Documents and Settings\jstephens\Desk

DATE : 8/ 5/ 8 TIME : 18:18:30

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD = .0	CM/S	Z0 = 100.	CM						
U =	1.0 M/S	CLAS = 6	(F)	ATIM = 60.	MINUTES	MIXH = 100	00. M	AMB =	.0 PPM		

LINK VARIABLES

I	LINK DESCRIPTION	*	L	INK COORDIN	ATES (FT)		*	LENGTH	BRG TYPE	VPH	EF	H W	V/C	QUEUE
		*	X1	Y1	X2	Y2	*	(FT)	(DEG)		(G/MI)	(FT) (FT)		(VEH)
		*					*							
1.	nba	*	512.0	.0	512.0	500.0	*	500.	360. AG	1248.	1.6	.0 44.0		
2.	nbd	*	512.0	500.0	512.0	1000.0	*	500.	360. AG	1288.	1.6	.0 32.0		
3.	nbq	*	512.0	488.0	512.0	443.6	*	44.	180. AG	7.	100.0	.0 24.0	.56	2.3
4.	sba	*	488.0	1000.0	488.0	500.0	*	500.	180. AG	1050.	1.6	.0 44.0		
5.	sbd	*	488.0	500.0	488.0	.0	*	500.	180. AG	1169.	1.6	.0 32.0		
б.	sbq	*	488.0	512.0	488.0	549.3	*	37.	360. AG	7.	100.0	.0 24.0	.47	1.9
7.	eba	*	.0	494.0	500.0	494.0	*	500.	90. AG	259.	1.6	.0 32.0		
8.	ebd	*	500.0	494.0	1000.0	494.0	*	500.	90. AG	306.	1.6	.0 32.0		
9.	ebq	*	476.0	494.0	382.3	494.0	*	94.	270. AG	11.	100.0	.0 12.0	.88	4.8
10.	wba	*	1000.0	506.0	500.0	506.0	*	500.	270. AG	418.	1.6	.0 32.0		
11.	wbd	*	500.0	506.0	.0	506.0	*	500.	270. AG	212.	1.6	.0 32.0		
12.	pdw	*	524.0	506.0	1974.4	506.0	*	1450.	90. AG	11.	100.0	.0 12.0 1	.43	73.7

RUN: ROALA2

JOB: C:\Documents and Settings\jstephens\Desk

DATE : 8/5/8 TIME : 18:18:30

ADDITIONAL QUEUE LINK PARAMETERS

1	LINK DESCRIPTION	* * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIVAL RATE
3.	nbq	*	60	13	3.0	1248	1600	5.73	3	3
6.	sbq	*	60	13	3.0	1050	1600	5.73	3	3
9.	ebq	*	60	44	3.0	259	1600	5.73	3	3
12.	pdw	*	60	44	3.0	418	1600	5.73	3	3

RECEPTOR LOCATIONS

	*	COOR	DINATES (FT)	*
RECEPTOR	*	Х	Y	Z	*
	*				*
1. nw	*	466.0	522.0	5.4	*
2. ne	*	534.0	522.0	5.4	*
3. sw	*	466.0	478.0	5.4	*
4. se	*	534.0	478.0	5.4	*
REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION ANGLE * (PPM) (PPM)

(DEGR)	*	REC1	REC2	REC3	REC4
0	*		1		
10	*	. 1	. 1	2	. 1
20	*	2	.0	2	.0
30.	*	.2	.0	.2	.0
40	*	2	.0	. 2	.0
50.	*	.2	. 0	.0	. 0
60.	*	.2	. 0	.1	. 0
70.	*	.2	. 0	.1	.1
80.	*	.1	.0	. 2	. 2
90.	*	.2	. 2	.3	.1
100.	*	.3	. 2	.1	.0
110.	*	.1	.1	. 2	.0
120.	*	.1	.1	.2	.0
130.	*	.0	.0	. 2	.0
140.	*	.1	.0	. 2	.0
150.	*	.2	.0	. 2	.0
160.	*	.2	.0	. 2	.0
170.	*	.3	.0	.3	.0
180.	*	.1	.1	.1	.1
190.	*	.0	.3	.0	.3
200.	*	.0	. 2	.0	. 2
210.	*	.0	. 2	.0	. 2
220.	*	.0	.1	.0	. 2
230.	*	.0	.1	.0	.1
240.	*	.0	.1	.0	. 2
250.	*	.0	.1	.0	.1
260.	*	.0	.1	.0	.1
270.	*	.0	.1	.0	.1
280.	*	.0	.1	.0	.1
290.	*	.0	.1	.1	.1
300.	*	.0	.1	.1	.1
310.	*	.0	.2	.0	.1
320.	Ĩ	.0	.2	.0	.1
330.	ž	.0	.2	.0	.2
340.	Ĵ	.0	. 2	.0	. 2
350.	Ĵ	.0	. 3	.0	. 3
	*.	.1	.1	.1	. 1
MAX	*	.3	. 3	.3	.3
DEGR.	*	10	190	90	190

The highest concentration of \$.30 ppm occurred at receptor rec1 .

JOB: D:\00Projects\Cedars Sinai\01_Existing\R RUN: ROBEA2

DATE : 8/ 5/ 8 TIME : 18:23:29

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD = .0	CM/S	Z0 = 100. CM						
U =	1.0 M/S	CLAS = 6	(F)	ATIM = 60. MINUTES	MIXH = 1000.	M AMB =	.0 PPM			

LINK VARIABLES

1	LINK DESCRIPTION	*	L	INK COORDIN	ATES (FT)		*	LENGTH	BRG TYPE	VPH	EF	Н	W	V/C	QUEUE
		*	X1	Y1	X2	¥2	*	(FT)	(DEG)		(G/MI)	(FT)	(FT)	(VEH)
		*					*								
1.	nba	*	518.0	.0	518.0	500.0	*	500.	360. AG	1250.	1.6	.0	56.0		
2.	nbd	*	518.0	500.0	518.0	1000.0	*	500.	360. AG	1245.	1.6	.0	32.0		
3.	nbq	*	518.0	452.0	518.0	370.4	*	82.	180. AG	26.	100.0	.0	36.0	.74	4.1
4.	sba	*	488.0	1000.0	488.0	500.0	*	500.	180. AG	1130.	1.6	.0	44.0		
5.	sbd	*	488.0	500.0	488.0	.0	*	500.	180. AG	1030.	1.6	.0	32.0		
б.	sbq	*	488.0	548.0	488.0	829.0	*	281.	360. AG	17.	100.0	.0	24.0	1.01	14.3
7.	eba	*	.0	476.0	500.0	476.0	*	500.	90. AG	1842.	1.6	.0	68.0		
8.	ebd	*	500.0	476.0	1000.0	476.0	*	500.	90. AG	1896.	1.6	.0	44.0		
9.	ebq	*	476.0	476.0	418.1	476.0	*	58.	270. AG	24.	100.0	.0	48.0	.54	2.9
10.	wba	*	1000.0	524.0	500.0	524.0	*	500.	270. AG	1612.	1.6	.0	68.0		
11.	wbd	*	500.0	524.0	.0	524.0	*	500.	270. AG	1663.	1.6	.0	44.0		
12.	pdw	*	536.0	524.0	586.7	524.0	*	51.	90. AG	24.	100.0	.0	48.0	.47	2.6

RUN: ROBEA2

JOB: D:\00Projects\Cedars Sinai\01_Existing\R

```
DATE : 8/ 5/ 8
TIME : 18:23:29
```

ADDITIONAL QUEUE LINK PARAMETERS

LINK DESCRIPTION	* * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIVAL RATE
3. nbq	*	60	34	3.0	1250	1600	5.73	3	3
6. sbq	*	60	34	3.0	1130	1600	5.73	3	3
9. ebq	*	60	23	3.0	1842	1600	5.73	3	3
12. wbg	*	60	23	3.0	1612	1600	5.73	3	3

RECEPTOR LOCATIONS

	*	COORDINATES (FT)					
RECEPTOR	*	X	Y	Z	*		
	*				*		
1. nw	*	466.0	558.0	5.4	*		
2. ne	*	546.0	558.0	5.4	*		
3. sw	*	466.0	442.0	5.4	*		
4. se	*	546.0	442.0	5.4	*		

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION ANGLE * (PPM) (PPM)

(DEGR)	*	REC1	REC2	REC3	REC4
	. * .				
0.	*	.2	.1	.5	.3
10.	*	.4	.0	.6	. 2
20.	*	.3	.0	.4	. 2
30.	*	.3	.0	.3	. 2
40.	*	.3	.0	.3	. 2
50.	*	.2	.0	.4	. 2
60.	*	.2	.0	.5	. 2
70.	*	.2	.0	.4	.3
80.	*	.2	.0	.4	.3
90.	*	.3	.1	.4	.1
100.	*	.5	.3	. 2	.0
110.	*	.3	. 3	.3	.0
120.	*	.3	. 2	.3	.0
130.	*	.3	.3	.3	.0
140.	*	.3	.3	.3	.0
150.	*	.3	.3	. 2	.0
160.	*	.5	.3	. 2	.0
170.	*	.5	.3	. 2	.0
180.	*	.3	.4	.1	.1
190.	*	.2	.6	.0	.3
200.	*	.2	.4	.0	.3
210.	*	.2	. 2	.0	.3
220.	*	.2	.3	.0	. 2
230.	*	.2	.3	.0	. 2
240.	*	.2	.4	.0	. 2
250.	*	. 2	.4	.0	. 2
260.	*	.3	.4	.0	. 2
270.	*	.1	. 2	. 2	.3
280.	*	.0	.1	.3	.5
290.	*	.0	.1	.3	.3
300.	*	.0	.1	.2	.4
310.	*	.0	.1	.3	.3
320.	*	.0	.2	.3	.2
330.	*	.0	.3	.3	.3
340.	*	.0	.3	.3	.5
350.	*	.0	.2	.3	.6
360.	*	.2	.1	.5	.3
MAX	*	.5	.6	.6	.6
DEGR.	*	100	190	10	350

THE HIGHEST CONCENTRATION OF .60 PPM OCCURRED AT RECEPTOR REC3 .

JOB: C:\Documents and Settings\jstephens\Desk RUN: ROBUA2

DATE : 8/ 5/ 8 TIME : 18:25:40

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS	=	.0 CM/S	VD =	.0	CM/S	Z0 =	- 1	100.	CM					
U	=	1.0 M/S	CLAS =	6	(F)	ATIM =		60.	MINUTES	MIXH =	1000.	М	AMB =	.0 PPM

LINK VARIABLES

I	JINK DESCRIPTION	*	L	INK COORDIN	ATES (FT)		*	LENGTH	BRG TYPE	VPH	EF	Н	W	V/C	QUEUE
		*	X1	Y1	X2	Y2	*	(FT)	(DEG)		(G/MI)	(FT)	(FT)	(VEH)
		*					*								
1.	nba	*	518.0	.0	518.0	500.0	*	500.	360. AG	1324.	1.6	.0	56.0		
2.	nbd	*	518.0	500.0	518.0	1000.0	*	500.	360. AG	1385.	1.6	.0	32.0		
3.	nbq	*	518.0	452.0	518.0	379.7	*	72.	180. AG	23.	100.0	.0	36.0	.66	3.7
4.	sba	*	488.0	1000.0	488.0	500.0	*	500.	180. AG	1382.	1.6	.0	44.0		
5.	sbd	*	488.0	500.0	488.0	.0	*	500.	180. AG	1493.	1.6	.0	32.0		
6.	sbq	*	488.0	548.0	488.0	1038.4	*	490.	360. AG	15.	100.0	.0	24.0	1.04	24.9
7.	eba	*	.0	476.0	500.0	476.0	*	500.	90. AG	1685.	1.6	.0	68.0		
8.	ebd	*	500.0	476.0	1000.0	476.0	*	500.	90. AG	1501.	1.6	.0	44.0		
9.	ebq	*	476.0	476.0	413.8	476.0	*	62.	270. AG	28.	100.0	.0	48.0	.56	3.2
10.	wba	*	1000.0	524.0	500.0	524.0	*	500.	270. AG	1381.	1.6	.0	68.0		
11.	wbd	*	500.0	524.0	.0	524.0	*	500.	270. AG	1393.	1.6	.0	44.0		
12.	pdw	*	536.0	524.0	586.9	524.0	*	51.	90. AG	28.	100.0	.0	48.0	.46	2.6

RUN: ROBUA2

JOB: C:\Documents and Settings\jstephens\Desk

DATE : 8/5/8 TIME : 18:25:40

ADDITIONAL QUEUE LINK PARAMETERS

:	LINK DESCRIPTION	* * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIVAL RATE
3.	nbq	*	60	30	3.0	1324	1600	5.73	3	3
6.	sbq	*	60	30	3.0	1382	1600	5.73	3	3
9.	ebq	*	60	27	3.0	1685	1600	5.73	3	3
12.	wbq	*	60	27	3.0	1381	1600	5.73	3	3

RECEPTOR LOCATIONS

	*	COOR	DINATES (FI)	*
RECEPTOR	*	Х	Y	Z	*
	*				*
1. nw	*	466.0	558.0	5.4	*
2. ne	*	546.0	558.0	5.4	*
3. sw	*	466.0	442.0	5.4	*
4. se	*	546.0	442.0	5.4	*

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION ANGLE * (PPM) (PPM)

(DEGR)	*	REC1	REC2	REC3	REC4
0.	*	.3	.1	. 4	. 2
10.	*	.4	.0	.5	. 2
20.	*	.4	.0	. 4	.1
30.	*	.3	.0	.3	. 2
40.	*	.3	.0	.2	. 2
50.	*	.3	.0	.5	. 2
60.	*	.3	.0	. 4	. 2
70.	*	.2	.0	. 4	. 2
80.	*	.2	.0	.5	. 3
90.	*	.3	.1	.4	.1
100.	*	.4	.3	.3	.0
110.	*	.5	. 2	.3	.0
120.	*	.4	. 2	.3	.0
130.	*	.2	.3	.3	.0
140.	*	.2	.3	. 2	.0
150.	*	.3	.2	.2	.0
160.	*	.4	.3	.3	.0
170.	*	.6	. 2	.3	.0
180.	*	.3	.3	.1	.1
190.	*	.3	.4	.0	.3
200.	*	.3	.3	.0	.3
210.	*	.2	.3	.0	.3
220.	*	.2	. 2	.0	.3
230.	*	.2	.3	.0	.3
240.	*	.2	.4	.0	.3
250.	ž	.2	.4	.0	.3
260.	ž	.2	.4	.0	.3
270.	÷	.1	. 3	.1	.4
280.	÷	.0	. 2	. 2	.0
290.	÷	.0	. 2		. 5
210	*	.0	. 2		.4
220	*	.0	. 4		
320. 330	*	.0	. 4	. 4	. 4
340	*	.0	. 2	. 2	.5
350	*	.0	. 3	. 2	.5
360	*	.0	. 1	. 2	2
	*.		• • •		
MAX	*	.6	.4	.5	.6
DEGR.	*	170	190	10	280

THE HIGHEST CONCENTRATION OF .60 PPM OCCURRED AT RECEPTOR REC1 .

JOB: C:\Documents and Settings\jstephens\Desk RUN: ROTHA2

DATE : 8/ 5/ 8 TIME : 18:27:36

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD = .	0 CM/S	Z0 = 100. CM							
U =	1.0 M/S	CLAS =	6 (F)	ATIM = 60. MINUTES	MIXH = 1000. M	AMB = .0 PPM					

LINK VARIABLES

I	JINK DESCRIPTION	*	LINK COORDINATES (FT)				*	LENGTH	BRG TYPE	VPH	EF	H W	V/C	QUEUE
		*	X1	Y1	X2	¥2	*	(FT)	(DEG)		(G/MI)	(FT) (FT)		(VEH)
		*					*							
1.	nba	*	512.0	.0	512.0	500.0	*	500.	360. AG	1248.	1.6	.0 44.0		
2.	nbd	*	512.0	500.0	512.0	1000.0	*	500.	360. AG	1111.	1.6	.0 32.0		
3.	nbq	*	512.0	464.0	512.0	354.3	*	110.	180. AG	14.	100.0	.0 24.0	.84	5.6
4.	sba	*	488.0	1000.0	488.0	500.0	*	500.	180. AG	1043.	1.6	.0 44.0		
5.	sbd	*	488.0	500.0	488.0	.0	*	500.	180. AG	1129.	1.6	.0 32.0		
б.	sbq	*	488.0	536.0	488.0	612.9	*	77.	360. AG	14.	100.0	.0 24.0	.70	3.9
7.	eba	*	.0	482.0	500.0	482.0	*	500.	90. AG	682.	1.6	.0 56.0		
8.	ebd	*	500.0	482.0	1000.0	482.0	*	500.	90. AG	859.	1.6	.0 44.0		
9.	ebq	*	476.0	482.0	438.8	482.0	*	37.	270. AG	23.	100.0	.0 36.0	.34	1.9
10.	wba	*	1000.0	518.0	500.0	518.0	*	500.	270. AG	1371.	1.6	.0 56.0		
11.	wbd	*	500.0	518.0	.0	518.0	*	500.	270. AG	1245.	1.6	.0 44.0		
12.	pdw	*	524.0	518.0	599.0	518.0	*	75.	90. AG	23.	100.0	.0 36.0	.69	3.8

RUN: ROTHA2

JOB: C:\Documents and Settings\jstephens\Desk

DATE : 8/ 5/ 8 TIME : 18:27:36

IIME · 18.27.30

ADDITIONAL QUEUE LINK PARAMETERS

:	LINK DESCRIPTION	* * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIVAL RATE
3.	nbq	*	60	27	3.0	1248	1600	5.73	3	3
6.	sbq	*	60	27	3.0	1043	1600	5.73	3	3
9.	ebq	*	60	30	3.0	682	1600	5.73	3	3
12.	wbq	*	60	30	3.0	1371	1600	5.73	3	3

RECEPTOR LOCATIONS

	*	COOR	DINATES (FT)	*
RECEPTOR	*	Х	Y	Z	*
	*				*
1. nw	*	466.0	546.0	5.4	*
2. ne	*	534.0	546.0	5.4	*
3. sw	*	466.0	454.0	5.4	*
4. se	*	534.0	454.0	5.4	*

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION ANGLE * (PPM) (PPM)

(DEGR)	*	REC1	REC2	REC3	REC4	
0.	*	.1	.1	. 2	.2	
10.	*	.3	.0	. 3	.0	
20.	*	.2	.0	.2	. 2	
30.	*	.3	.0	. 2	. 2	
40.	*	.3	.0	.1	.1	
50.	*	. 2	.0	. 2	. 2	
60.	*	.1	.0	.3	. 2	
70.	*	.1	.0	.4	. 2	
80.	*	.1	.0	.3	. 2	
90.	*	.2	.1	.3	.1	
100.	*	.5	.2	.1	.0	
110.	*	.4	.3	.2	.0	
120.	*	. 2	. 2	. 2	.0	
130.	*	.1	.2	.2	.0	
140.	*	. 2	. 2	. 2	.0	
150.	*	.3	.2	.2	.0	
160.	*	.4	.2	.2	.0	
170.	*	.3	. 2	.3	.0	
180.	*	.2	.3	.1	.1	
190.	*	.1	.4	.0	.3	
200.	*	.1	.3	.0	.3	
210.	*	.1	.3	.0	.3	
220.	*	.1	.2	.0	.3	
230.	ž	.1	.2	.0	.2	
240.	ž	.1	.2	.0	.1	
250.	÷	.1	. 2	.0	.1	
200.	÷	. 2	. 4	.0	.1	
270.	*	.1	. 4	.1	. 4	
200.	*	.0	. 1	. 4		
200.	*	.0	. 1	. 4		
310	*	.0	. 1	. 2	. 2	
320	*	.0	2	.1	.2	
330	*	.0	2	.1	2	
340.	*	.0	.2	.1	.3	
350.	*	.0	.3	.1	.3	
360.	*	.1	.1	. 2	. 2	
 MAX	*	.5	.4	. 4	. 3	
DEGR.	*	100	190	70	190	

The highest concentration of .50 ppm occurred at receptor rec1 .

JOB: D:\00Projects\Cedars Sinai\01_Existing\S RUN: SABEA2

DATE : 8/ 5/ 8 TIME : 18:29:33

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD = .0	CM/S	Z0 = 100. CM						
U =	1.0 M/S	CLAS = 6	(F)	ATIM = 60. MINUTES	MIXH = 1000.	M AMB =	.0 PPM			

LINK VARIABLES

I	JINK DESCRIPTION	*	* LINK COORDINATES (FT)				*	LENGTH	BRG TYPE	VPH	EF	H W	V/C	QUEUE
		*	X1	Y1	X2	Y2	*	(FT)	(DEG)		(G/MI)	(FT) (FT)		(VEH)
		*					*							
1.	nba	*	524.0	.0	524.0	500.0	*	500.	360. AG	1778.	1.6	.0 68.0		
2.	nbd	*	524.0	500.0	524.0	1000.0	*	500.	360. AG	1659.	1.6	.0 44.0		
3.	nbq	*	524.0	452.0	524.0	381.6	*	70.	180. AG	30.	100.0	.0 48.0	.64	3.6
4.	sba	*	476.0	1000.0	476.0	500.0	*	500.	180. AG	1625.	1.6	.0 68.0		
5.	sbd	*	476.0	500.0	476.0	.0	*	500.	180. AG	1600.	1.6	.0 44.0		
б.	sbq	*	476.0	548.0	476.0	612.4	*	64.	360. AG	30.	100.0	.0 48.0	.59	3.3
7.	eba	*	.0	476.0	500.0	476.0	*	500.	90. AG	1967.	1.6	.0 68.0		
8.	ebd	*	500.0	476.0	1000.0	476.0	*	500.	90. AG	2171.	1.6	.0 44.0		
9.	ebq	*	452.0	476.0	376.8	476.0	*	75.	270. AG	29.	100.0	.0 48.0	.68	3.8
10.	wba	*	1000.0	524.0	500.0	524.0	*	500.	270. AG	1581.	1.6	.0 68.0		
11.	wbd	*	500.0	524.0	.0	524.0	*	500.	270. AG	1521.	1.6	.0 44.0		
12.	pdw	*	548.0	524.0	608.5	524.0	*	60.	90. AG	29.	100.0	.0 48.0	.55	3.1

JOB: D:\00Projects\Cedars Sinai\01_Existing\S RUN: SABEA2

DATE : 8/5/8 TIME : 18:29:33

ADDITIONAL QUEUE LINK PARAMETERS

:	LINK DESCRIPTION	* * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIVAL RATE
3.	nbq	*	60	29	3.0	1778	1600	5.73	3	3
б.	sbq	*	60	29	3.0	1625	1600	5.73	3	3
9.	ebq	*	60	28	3.0	1967	1600	5.73	3	3
12.	pdw	*	60	28	3.0	1581	1600	5.73	3	3

RECEPTOR LOCATIONS

	*	COOR	DINATES (FI	')	*
RECEPTOR	*	Х	Y	Z	*
	*				- *
1. nw	*	442.0	558.0	5.4	*
2. ne	*	558.0	558.0	5.4	*
3. sw	*	442.0	442.0	5.4	*
4. se	*	558.0	442.0	5.4	*

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION ANGLE * (PPM)

(DEGR)*	REC1	REC2	REC3	REC4
0.	-*. *	.1	.1	. 3	. 3
10.	*	.3	.0	.5	.3
20.	*	.4	.0	.3	.3
30.	*	.3	.0	.4	. 2
40.	*	.3	.0	.3	.2
50.	*	.3	.0	.3	.2
60.	*	.3	.0	.4	.3
70.	*	.3	.0	.5	.3
80.	*	.3	.0	.6	.3
90.	*	.4	.1	. 4	.1
100.	*	.6	.3	.3	.0
110.	*	.4	. 2	.3	.0
120.	*	.3	.3	.3	.0
130.	*	.3	.3	. 2	.0
140.	*	.4	.3	.2	.0
150.	*	.5	.3	. 2	.0
160.	*	.5	.3	. 2	.0
170.	*	.6	.3	.3	.0
180.	*	.3	.4	.1	.1
190.	*	.3	.7	.0	.3
200.	*	.3	.4	.0	. 4
210.	*	.3	.5	.0	.3
220.	*	.2	.3	.0	.3
230.	*	.2	.3	.0	.3
240.	*	.2	.4	.0	.3
250.	*	.2	.5	.0	.3
260.	*	.3	.6	.0	.3
270.	*	.1	. 4	. 2	.4
280.	*	.0	.3	. 2	.7
290.	*	.0	.3	.4	.5
300.	*	.0	. 2	.3	.4
310.	*	.0	. 2	.3	.3
320.	*	.0	. 2	.3	.3
330.	*	.0	. 2	.3	.4
340.	*	.0	. 2	.3	.5
350.	*	.0	.3	. 2	.6
360.	*	.1	.1	. 3	.3
MAX	*	.6	.7	.6	.7
DEGR.	*	100	190	80	280

The highest concentration of \$.70 ppm occurred at receptor rec2 .

JOB: D:\00Projects\Cedars Sinai\01_Existing\S RUN: SABUA2

DATE : 8/6/8 TIME : 8:45:3

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD = .0 CM/S	ZO = 100. CM								
U =	1.0 M/S	CLAS = 6 (F)	ATIM = 60. MINUTES	MIXH = 1000. M	AMB = .0 PPM						

LINK VARIABLES

	LINK DESCRIPTION	*	 LINK COORDINATES (FT) 				*	LENGTH	BRG TY	YPE	VPH	EF	н	W	V/C	QUEUE
		*	X1	Y1	X2	Y2	*	(FT)	(DEG)			(G/MI)	(FT)	(FT)		(VEH)
		*					*									
1.	nba	*	512.0	.0	512.0	500.0	*	500.	360. 1	AG	75.	1.6	.0	44.0		
2.	nbd	*	512.0	500.0	512.0	1000.0	*	500.	360. 2	AG	998.	1.6	.0	32.0		
3.	nbq	*	512.0	464.0	512.0	456.5	*	7.	180. 2	AG	19.	100.0	.0	24.0	.08	. 4
4.	sba	*	482.0	1000.0	482.0	500.0	*	500.	180. 2	AG 1	852.	1.6	.0	56.0		
5.	sbq	*	482.0	560.0	482.0	2181.0	*	1621.	360. 1	AG	28.	100.0	.0	36.0	1.29	82.3
б.	eba	*	.0	482.0	500.0	482.0	*	500.	90.1	AG 1	510.	1.6	.0	56.0		
7.	ebd	*	500.0	482.0	1000.0	482.0	*	500.	90.1	AG 3	259.	1.6	.0	56.0		
8.	ebq	*	464.0	482.0	409.0	482.0	*	55.	270. 2	AG	15.	100.0	.0	36.0	.54	2.8
9.	wba	*	1000.0	530.0	500.0	530.0	*	500.	270. 1	AG 2	025.	1.6	.0	80.0		
10.	wbd	*	500.0	530.0	.0	530.0	*	500.	270. 1	AG 1	174.	1.6	.0	56.0		
11.	pdw	*	524.0	530.0	568.3	530.0	*	44.	90.1	AG	26.	100.0	.0	60.0	.43	2.3

RUN: SABUA2

JOB: D:\00Projects\Cedars Sinai\01_Existing\S

DATE : 8/6/8 TIME : 8:45:3

ADDITIONAL QUEUE LINK PARAMETERS

	LINK DESCRIPTION	*	CYCLE	RED	CLEARANCE	APPROACH	SATURATION	IDLE	SIGNAL	ARRIVAL
		*	LENGTH	TIME	LOST TIME	VOL	FLOW RATE	EM FAC	TYPE	RATE
		*	(SEC)	(SEC)	(SEC)	(VPH)	(VPH)	(gm/hr)		
		*								
3.	nbq	*	60	37	3.0	75	1600	5.73	3	3
5.	sbq	*	60	37	3.0	1852	1600	5.73	3	3
8.	ebq	*	60	20	3.0	1510	1600	5.73	3	3
11.	wbq	*	60	20	3.0	2025	1600	5.73	3	3

RECEPTOR LOCATIONS

	*	COOR	DINATES (FT)	*
RECEPTOR	*	Х	Y	Z	*
	*				-*
1. nw	*	454.0	570.0	5.4	*
2. ne	*	534.0	570.0	5.4	*
3. sw	*	454.0	454.0	5.4	*
4. se	*	534.0	454.0	5.4	*

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION ANGLE * (PPM)

(DEGR)*	REC1	REC2	REC3	REC4
0.	-*. *	. 4	. 2	.5	.5
10.	*	.6	.0	.6	.4
20.	*	.5	.0	.3	.3
30.	*	.3	.0	.2	.3
40.	*	. 2	.0	. 2	.3
50.	*	. 2	.0	.3	.3
60.	*	. 2	.0	.3	.4
70.	*	. 2	.0	.4	.4
80.	*	. 2	.0	.6	.6
90.	*	.3	.1	.3	.3
100.	*	.5	.3	.0	.1
110.	*	.4	. 4	.0	.0
120.	*	.3	. 2	.0	.0
130.	*	.3	.2	.0	.0
140.	*	. 2	. 2	.0	.0
150.	*	.3	.3	.0	.0
160.	*	. 2	.3	.0	.0
170.	*	.2	.3	.0	.0
180.	*	.2	.3	.0	.0
190.	*	.1	.2	.0	.0
200.	*	. 2	.3	.0	.0
210.	*	. 2	. 2	.0	.0
220.	*	. 2	.3	.0	.0
230.	*	. 2	.4	.0	.0
240.	*	.2	. 4	.0	.0
250.	*	.2	.4	.0	.0
260.	*	.1	.3	.0	.0
270.	*	.0	.4	.1	.2
280.	Ĵ	.0	. 2	. 2	.4
290.	*	.0	. 3	. 3	. 3
300.	Ĵ	.0	. 3	. 2	. 3
31U.	*	.0	. 3	.2	.1
320. 330	*	.0	. 3	.2	.2
240	*	.0	. 3	. 2	. 3
340.	*	.0	. 3	.1	.5
360.	*	.0	.4	.1	. /
	_*.	.4	. 2		. 5
MAX	*	.6	.4	.6	.7
DEGR.	*	10	110	10	350

The highest concentration of $\hfill..., 70\hfill \ensuremath{\text{PPM}}$ occurred at receptor rec4 .

JOB: D:\00Projects\Cedars Sinai\01_Existing\S RUN: SATHA2

DATE : 8/6/8 TIME : 8:50:55

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD = .0	CM/S	Z0 = 100. CM					
U =	1.0 M/S	CLAS = 6	(F)	ATIM = 60. MINUTES	MIXH = 1000.	M AMB =	.0 PPM		

LINK VARIABLES

1	JINK DESCRIPTION	*	L	INK COORDIN	ATES (FT)		*	LENGTH	BRG TYPE	VPH	EF	H W	V/C	QUEUE
		*	X1	Y1	X2	¥2	*	(FT)	(DEG)		(G/MI)	(FT) (FT)		(VEH)
		*					*							
1.	nba	*	518.0	.0	518.0	500.0	*	500.	360. AG	1397.	1.6	.0 56.0		
2.	nbd	*	518.0	500.0	518.0	1000.0	*	500.	360. AG	1444.	1.6	.0 44.0		
3.	nbq	*	518.0	464.0	518.0	387.7	*	76.	180. AG	23.	100.0	.0 36.0	.70	3.9
4.	sba	*	476.0	1000.0	476.0	500.0	*	500.	180. AG	1199.	1.6	.0 68.0		
5.	sbd	*	476.0	500.0	476.0	.0	*	500.	180. AG	1047.	1.6	.0 44.0		
б.	sbq	*	476.0	536.0	476.0	585.0	*	49.	360. AG	31.	100.0	.0 48.0	.45	2.5
7.	eba	*	.0	482.0	500.0	482.0	*	500.	90. AG	827.	1.6	.0 56.0		
8.	ebd	*	500.0	482.0	1000.0	482.0	*	500.	90. AG	816.	1.6	.0 44.0		
9.	ebq	*	452.0	482.0	411.4	482.0	*	41.	270. AG	21.	100.0	.0 36.0	.37	2.1
10.	wba	*	1000.0	518.0	500.0	518.0	*	500.	270. AG	2061.	1.6	.0 56.0		
11.	wbd	*	500.0	518.0	.0	518.0	*	500.	270. AG	2177.	1.6	.0 44.0		
12.	pdw	*	536.0	518.0	691.3	518.0	*	155.	90. AG	21.	100.0	.0 36.0	.92	7.9

JOB: D:\00Projects\Cedars Sinai\01_Existing\S RUN: SATHA2

DATE : 8/6/8 TIME : 8:50:55

ADDITIONAL QUEUE LINK PARAMETERS

:	LINK DESCRIPTION	* * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIVAL RATE
3.	nbq	*	60	30	3.0	1397	1600	5.73	3	3
б.	sbq	*	60	30	3.0	1199	1600	5.73	3	3
9.	ebq	*	60	27	3.0	827	1600	5.73	3	3
12.	wbq	*	60	27	3.0	2061	1600	5.73	3	3

RECEPTOR LOCATIONS

	*	COOR	DINATES (FT	')	*
RECEPTOR	*	Х	Y	Z	*
	*				*
1. nw	*	442.0	546.0	5.4	*
2. ne	*	546.0	546.0	5.4	*
3. sw	*	442.0	454.0	5.4	*
4. se	*	546.0	454.0	5.4	*

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION ANGLE * (PPM) (PPM)

(DEGR)	*	REC1	REC2	REC3	REC4
0.	*	.1	. 1	. 3	. 2
10.	*	. 2	. 0	. 4	.1
20.	*	. 2	. 0	. 4	.1
30.	*	.2	.0	. 2	.1
40.	*	.3	.0	. 2	.1
50.	*	.3	.0	.1	.3
60.	*	.3	.0	.2	.3
70.	*	.3	.0	.2	. 2
80.	*	. 2	.0	. 2	.2
90.	*	.4	. 2	.1	.1
100.	*	.7	.4	.0	.0
110.	*	.4	.3	.1	.0
120.	*	.3	.3	. 2	.0
130.	*	.2	. 2	. 2	.0
140.	*	.2	. 2	.2	.0
150.	*	.2	. 2	.2	.0
160.	*	.3	. 2	. 2	.0
170.	*	.3	. 2	. 2	.0
180.	*	. 2	.3	.0	.1
190.	*	.1	.6	.0	. 2
200.	*	.1	.3	.0	.3
210.	*	.1	.3	.0	.3
220.	*	.1	.2	.0	.2
230.	*	.1	. 2	.0	. 2
240.	*	. 2	.3	.0	.2
250.	*	.3	.4	.0	. 2
260.	*	.3	.5	.0	. 2
270.	*	.1	. 4	.1	.3
280.	*	.0	. 2	. 2	.4
290.	*	.0	. 2	. 2	.3
300.	*	.0	.1	.2	.2
310.	*	.0	.2	.2	.2
320.	*	.0	.2	.2	.2
330.	×	.0	.2	.2	.4
340.	×	.0	.2	.2	.4
350.	Ĵ	.0	. 3	. 2	.4
. Uoc	. * .	.1	.1	. 3	. 2
MAX	*	.7	.6	. 4	.4
DEGR.	*	100	190	10	280

The highest concentration of $\hfill..., 70\hfill \ensuremath{\text{PPM}}$ occurred at receptor rec1 .

JOB: D:\00Projects\Cedars Sinai\01_Existing\S RUN: SAWIA2

DATE : 8/6/8 TIME : 8:53:4

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD =	.0 CM/S	Z0 = 100. CM				
U =	1.0 M/S	CLAS =	6 (F)	ATIM = 60. MINUTES	MIXH = 1000. M	AMB = .0 PPM		

LINK VARIABLES

I	JINK DESCRIPTION	*	L	INK COORDIN	ATES (FT)		*	LENGTH	BRG TYPE	VPH	EF	н W	V/0	C QUEUE
		*	X1	Y1	X2	¥2	*	(FT)	(DEG)		(G/MI)	(FT) (FT)	(VEH)
		-*					*							
1.	nba	*	530.0	.0	530.0	500.0	*	500.	360. AG	2420.	1.6	.0 80.0		
2.	nbd	*	530.0	500.0	530.0	1000.0	*	500.	360. AG	2387.	1.6	.0 56.0		
3.	nbq	*	530.0	452.0	530.0	375.3	*	77.	180. AG	37.	100.0	.0 60.0	.70	3.9
4.	sba	*	470.0	1000.0	470.0	500.0	*	500.	180. AG	1544.	1.6	.0 80.0		
5.	sbd	*	470.0	500.0	470.0	.0	*	500.	180. AG	1125.	1.6	.0 56.0		
б.	sbq	*	470.0	548.0	470.0	596.8	*	49.	360. AG	37.	100.0	.0 60.0	.44	2.5
7.	eba	*	.0	476.0	500.0	476.0	*	500.	90. AG	1821.	1.6	.0 68.0		
8.	ebd	*	500.0	476.0	1000.0	476.0	*	500.	90. AG	1941.	1.6	.0 56.0		
9.	ebq	*	440.0	476.0	370.3	476.0	*	70.	270. AG	29.	100.0	.0 48.0	.63	3.5
10.	wba	*	1000.0	524.0	500.0	524.0	*	500.	270. AG	2322.	1.6	.0 68.0		
11.	wbd	*	500.0	524.0	.0	524.0	*	500.	270. AG	2654.	1.6	.0 56.0		
12.	wbq	*	560.0	524.0	659.8	524.0	*	100.	90. AG	29.	100.0	.0 48.0	.81	5.1

JOB: D:\00Projects\Cedars Sinai\01_Existing\S RUN: SAWIA2

DATE : 8/6/8 TIME : 8:53:4

ADDITIONAL QUEUE LINK PARAMETERS

-

1	LINK DESCRIPTION	*	CYCLE	RED	CLEARANCE	APPROACH	SATURATION	IDLE	SIGNAL	ARRIVAL
		*	LENGTH	TIME	LOST TIME	VOL	FLOW RATE	EM FAC	TYPE	RATE
		*	(SEC)	(SEC)	(SEC)	(VPH)	(VPH)	(gm/hr)		
		*								
3.	nbq	*	60	29	3.0	2420	1600	5.73	3	3
б.	sbq	*	60	29	3.0	1544	1600	5.73	3	3
9.	ebq	*	60	28	3.0	1821	1600	5.73	3	3
12.	pdw	*	60	28	3.0	2322	1600	5.73	3	3

RECEPTOR LOCATIONS

	*	COOR	DINATES (FT)	*
RECEPTOR	*	Х	Y	Z	*
	*				*
1. nw	*	430.0	558.0	5.4	*
2. ne	*	570.0	558.0	5.4	*
3. sw	*	430.0	442.0	5.4	*
4. se	*	570.0	442.0	5.4	*

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION ANGLE * (PPM)

(DDGE)		5501	(FFPI)	5563	5564
(DEGR)	*	REC1	REC2	REC3	REC4
0	.*. *		1		3
10	*	.1	. 1	5	.5
20	*	2		4	
30.	*	.2	.0	. 4	.3
40.	*	.3	.0	.3	.3
50.	*	. 3	.0	. 4	. 2
60.	*	.3	.0	.3	. 2
70.	*	.3	.0	.4	.3
80.	*	.3	.0	.5	.3
90.	*	.5	. 2	. 4	.1
100.	*	.8	.4	. 2	.0
110.	*	.5	. 4	.2	.0
120.	*	.4	. 4	.3	.0
130.	*	.4	.3	. 2	.0
140.	*	.4	.3	. 2	.0
150.	*	.5	.3	. 2	.0
160.	*	.5	.3	.2	.0
170.	*	.4	.3	.2	.0
180.	*	.3	. 4	.0	. 2
190.	*	.3	.6	.0	.3
200.	*	.3	.6	.0	.4
210.	*	.3	.4	.0	.3
220.	*	.2	.3	.0	.2
230.	*	.3	.3	.0	.2
240.	Ť	.3	.4	.0	.2
250.	Ĵ	.4	.4	.0	. 2
260.	÷	.4	. 6	.0	. 2
270.	*	.1	. 5	.1	. 3
200.	*	.0	. 2		.0
290.	*	.0	.1	.4	.4
210	*	.0	. 4		
320.	*	.0	. 2		. 5
330	*	.0	. 2		5
340.	*	.0	.3	.3	.6
350.	*	.0	.2	.3	. 6
360.	*	.1	.1	. 4	. 3
	.*.				
MAX	÷	.8	.6	.5	.6
DEGK.	î	TUU	190	ΤU	280

The highest concentration of $\$.80 ppm occurred at receptor rec1 .

Alternative 3 CAL3QHC Output

JOB: C:\Documents and Settings\jstephens\Desk RUN: GEBEA3

DATE : 8/6/8 TIME : 8:57:36

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS	=	.0 CM/S	VD =	.0	CM/S	Z0 =	=	100.	CM					
U	=	1.0 M/S	CLAS =	6	(F)	ATIM =	=	60.	MINUTES	MIXH =	1000.	М	AMB =	.0 PPM

LINK VARIABLES

LINK DESCRIPTION	*	L	INK COORDIN	ATES (FT)		*	LENGTH	BRG TYPE	VPH	EF	Н	W	V/C	QUEUE
	*	X1	Y1	X2	¥2	*	(FT)	(DEG)		(G/MI)	(FT)	(FT)	(VEH)
	*					-*								
1. nba	*	512.0	.0	512.0	500.0	*	500.	360. AG	740.	1.6	.0	44.0		
2. nbq	*	512.0	464.0	512.0	-1300.5	*	1765.	180. AG	24.	100.0	.0	24.0	1.74	89.6
3. sbd	*	488.0	500.0	488.0	.0	*	500.	180. AG	275.	1.6	.0	32.0		
4. eba	*	.0	482.0	500.0	482.0	*	500.	90. AG	1829.	1.6	.0	56.0		
5. ebd	*	500.0	482.0	1000.0	482.0	*	500.	90. AG	2316.	1.6	.0	44.0		
6. ebg	*	476.0	482.0	471.0	482.0	*	5.	270. AG	8.	100.0	.0	36.0	.08	.3
7. wba	*	1000.0	518.0	500.0	518.0	*	500.	270. AG	1680.	1.6	.0	56.0		
8. wbd	*	500.0	518.0	.0	518.0	*	500.	270. AG	1658.	1.6	.0	44.0		
9. wbq	*	524.0	518.0	551.6	518.0	*	28.	90. AG	7.	100.0	.0	36.0	.46	1.4

JOB: C:\Documents and Settings\jstephens\Desk RUN: GEBEA3

DATE : 8/6/8 TIME : 8:57:36

ADDITIONAL QUEUE LINK PARAMETERS

LINK DESCRIPTION	*	CYCLE	RED	CLEARANCE	APPROACH	SATURATION	IDLE	SIGNAL	ARRIVAL			
	*	LENGTH	TIME	LOST TIME	VOL	FLOW RATE	EM FAC	TYPE	RATE			
	*	(SEC)	(SEC)	(SEC)	(VPH)	(VPH)	(gm/hr)					
	*											
2. nbq	*	60	47	3.0	740	1600	5.73	3	3			
6. ebq	*	60	10	3.0	275	1600	5.73	3	3			
9. wbq	*	60	9	3.0	1680	1600	5.73	3	3			
9. wbq	~	60	9	3.0	1000	1000	5./3	3				

RECEPTOR LOCATIONS

	*	CC	ORDINATES (FT)	*
RECEPTOR	*	Х	Y	Z	*
	*				*
1. nw	*	466.0	546.0	5.4	*
2. ne	*	534.0	546.0	5.4	*
3. sw	*	466.0	454.0	5.4	*
4. se	*	534.0	454.0	5.4	*

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION ANGLE * (PPM)

(DEGR)	*	REC1	REC2	REC3	REC4
0.	*-	. 0	. 0	. 2	.2
10.	*	.0	. 0	.2	.2
20.	*	.0	. 0	.2	.2
30.	*	.0	. 0	.1	. 2
40.	*	.0	. 0	. 2	. 2
50.	*	.0	.0	.3	.2
60.	*	. 0	. 0	. 3	.3
70.	*	.0	.0	. 4	. 3
80.	*	.0	.0	.5	. 4
90.	*	.1	. 2	.3	. 2
100.	*	.3	.3	.1	.0
110.	*	.2	.3	.1	.0
120.	*	.2	.2	.1	.0
130.	*	.3	. 2	.1	.0
140.	*	.2	.2	.1	.0
150.	*	. 2	. 2	.1	.0
160.	*	.4	. 2	. 2	.0
170.	*	.4	. 2	. 2	.0
180.	*	.3	.5	.1	. 3
190.	*	.2	.5	.0	.3
200.	*	.2	. 2	.0	. 2
210.	*	. 2	.1	.0	.2
220.	*	.2	. 2	.0	. 2
230.	*	.2	. 2	.0	.1
240.	*	.2	. 3	.0	.1
250.	*	.3	.3	.0	.1
260.	*	.3	.3	.0	.1
270.	*	.1	.1	. 2	. 3
280.	*	.0	.0	.4	.4
290.	*	.0	.0	.3	.4
300.	*	.0	.0	. 2	. 3
310.	*	.0	.0	.2	.3
320.	*	.0	.0	.2	.2
330.	*	.0	.0	.2	.1
340.	*	.0	.0	. 2	. 2
350.	*	.0	.0	.2	. 2
360.	*	.0	.0	. 2	. 2
MAX	*	.4	.5	.5	.4
DEGR.	*	160	180	80	80

The highest concentration of .50 ppm occurred at receptor rec3 .

JOB: D:\00Projects\Cedars Sinai\01_Existing\G RUN: CEGRA3

DATE : 8/6/8 TIME : 9:13:13

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD =	.0 CM/S	Z0 = 100. CM						
U =	1.0 M/S	CLAS =	6 (F)	ATIM = 60. MINUTES	MIXH = 1000. M	AMB = .0 PPM				

LINK VARIABLES

(DEG)	(G/MI)	()	
	(-)	(F.I.) (F.I.)	(VEH)
360. AG 40	5. 1.6	.0 32.0	
360. AG 27	3. 1.6	.0 32.0	
180. AG	6. 100.0	.0 12.0	.49 2.7
180. AG 60	1. 1.6	.0 32.0	
180. AG 52	0. 1.6	.0 32.0	
360. AG	6. 100.0	.0 12.0	.73 4.0
90. AG 37	4. 1.6	.0 56.0	
90. AG 31	6. 1.6	.0 44.0	
270. AG 2	5. 100.0	.0 36.0	.21 1.1
270. AG 37	3. 1.6	.0 56.0	
270. AG 64	4. 1.6	.0 44.0	
90.AG 2	5. 100.0	.0 36.0	.21 1.1
	360. AG 40: 360. AG 27: 180. AG 60: 90. AG 31: 270. AG 21: 270. AG 64: 90. AG 21:	360. AG 405. 1.6 360. AG 273. 1.6 180. AG 6.100.0 180. AG 601. 1.6 180. AG 520. 1.6 360. AG 520. 1.6 360. AG 6.100.0 90. AG 374. 1.6 90. AG 316. 1.6 270. AG 25.100.0 270. AG 644. 1.6 90. AG 25.100.0	360. AG 405. 1.6 .0 32.0 360. AG 273. 1.6 .0 32.0 180. AG 6100.0 .0 12.0 180. AG 601. 1.6 .0 32.0 360. AG 6.100.0 .0 12.0 90. AG 374. 1.6 .0 56.0 90. AG 316. 1.6 .0 44.0 270. AG 25. 100.0 .0 36.0 270. AG 644. 1.6 .0 44.0 90. AG 25. 100.0 .0 36.0

JOB: D:\00Projects\Cedars Sinai\01_Existing\G RUN: CEGRA3

DATE : 8/6/8 TIME : 9:13:13

ADDITIONAL QUEUE LINK PARAMETERS

	LINK DESCRIPTION	*	CYCLE	RED	CLEARANCE	APPROACH	SATURATION	IDLE	SIGNAL	ARRIVAL
		*	LENGTH	TIME	LOST TIME	VOL	FLOW RATE	EM FAC	TYPE	RATE
		*	(SEC)	(SEC)	(SEC)	(VPH)	(VPH)	(gm/hr)		
		*								
3.	nbq	*	60	24	3.0	405	1600	5.73	3	3
б.	sbq	*	60	24	3.0	601	1600	5.73	3	3
9.	ebq	*	60	33	3.0	374	1600	5.73	3	3
12.	wbq	*	60	33	3.0	373	1600	5.73	3	3

RECEPTOR LOCATIONS

	*	COOR	DINATES (FI	?)	*
RECEPTOR	*	Х	Y	Z	*
	*				- *
1. nw	*	478.0	546.0	5.4	*
2. ne	*	522.0	546.0	5.4	*
3. sw	*	478.0	454.0	5.4	*
4. se	*	522.0	454.0	5.4	*

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION ANGLE * (PPM)

(DEGR)) *	REC1	REC2	REC3	REC4
0.	- * . *	. 1	. 0		. 0
10.	*	.1	.0	.2	.0
20.	*	.1	.0	.0	.0
30.	*	.1	.0	.0	.0
40.	*	.0	.0	.0	.0
50.	*	.0	.0	.0	.0
60.	*	.0	.0	.0	.0
70.	*	.0	.0	.0	.0
80.	*	.0	.0	.0	.0
90.	*	.0	.0	.0	.0
100.	*	.0	.1	.0	.0
110.	*	.0	.0	.0	.0
120.	*	.0	.0	.0	.0
130.	*	.0	.0	.0	.0
140.	*	.0	.0	.0	.0
150.	*	.0	.0	.0	.0
160.	*	.0	.1	.1	.0
170.	*	.1	.1	.1	.0
180.	*	.1	.1	.1	.1
190.	*	.0	.2	.0	.2
200.	*	.0	.0	.0	.0
210.	*	.0	.0	.0	.0
220.	*	.0	.0	.0	.0
230.	*	.0	.0	.0	.0
240.	*	.0	.0	.0	.0
250.	*	.1	.1	.0	.0
260.	*	.1	.1	.0	.0
270.	*	.0	.0	.0	.0
280.	*	.0	.0	.1	.0
290.	*	.0	.0	.0	.0
300.	*	.0	.0	.0	.0
310.	*	.0	.0	.0	.0
320.	*	.0	.0	.0	.0
330.	*	.0	.0	.0	.0
340.	Ť	.0	.1	.1	.0
350.	×	.0	.1	.1	.1
360. 	. * .	.1	.0	.2	.0
MAX	*	.1	.2	.2	.2
DEGR.	*	0	190	0	190

The highest concentration of \$.20 ppm occurred at receptor rec3 .

JOB: C:\Documents and Settings\jstephens\Desk RUN: LABEA3

DATE : 8/6/8 TIME : 9:15:7

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD = .0	CM/S	Z0 = 100. CM						
U =	1.0 M/S	CLAS = 6	(F)	ATIM = 60. MINUTES	MIXH = 1000.	M AMB =	.0 PPM			

LINK VARIABLES

1	LINK DESCRIPTION	*	L	INK COORDIN	ATES (FT)		*	LENGTH	BRG TYPE	VPH	EF	н	W	V/C	QUEUE
		*	X1	Y1	X2	¥2	*	(FT)	(DEG)		(G/MI)	(FT)	(FT)		(VEH)
		*					*								
1.	nba	*	524.0	.0	524.0	500.0	*	500.	360. AG	1651.	1.6	.06	8.0		
2.	nbd	*	524.0	500.0	524.0	1000.0	*	500.	360. AG	1568.	1.6	.0 4	4.0		
3.	nbq	*	524.0	440.0	524.0	381.4	*	59.	180. AG	27.	100.0	.0 4	8.0	.53	3.0
4.	sba	*	476.0	1000.0	476.0	500.0	*	500.	180. AG	2240.	1.6	.06	8.0		
5.	sbd	*	476.0	500.0	476.0	.0	*	500.	180. AG	2007.	1.6	.0 5	6.0		
6.	sbq	*	476.0	548.0	476.0	627.6	*	80.	360. AG	27.	100.0	.0 4	8.0	.72	4.0
7.	eba	*	.0	470.0	500.0	470.0	*	500.	90. AG	1173.	1.6	.0 8	0.0		
8.	ebd	*	500.0	470.0	1000.0	470.0	*	500.	90. AG	1272.	1.6	.0 4	4.0		
9.	ebq	*	452.0	470.0	412.3	470.0	*	40.	270. AG	40.	100.0	.06	0.0	.37	2.0
10.	wba	*	1000.0	524.0	500.0	524.0	*	500.	270. AG	2107.	1.6	.0 6	8.0		
11.	wbd	*	500.0	524.0	.0	524.0	*	500.	270. AG	2324.	1.6	.0 4	4.0		
12.	pdw	*	548.0	524.0	652.7	524.0	*	105.	90. AG	32.	100.0	.0 4	8.0	.82	5.3

RUN: LABEA3

JOB: C:\Documents and Settings\jstephens\Desk

DATE : 8/6/8 TIME : 9:15:7

ADDITIONAL QUEUE LINK PARAMETERS

	 	_	 _	_	 	-	-	_	_	_	 -	-	-	_	_	_	_	_	_	_	_

L	INK DESCRIPTION	*	CYCLE	RED	CLEARANCE	APPROACH	SATURATION	IDLE	SIGNAL	ARRIVAL
		*	LENGTH	TIME	LOST TIME	VOL	FLOW RATE	EM FAC	TYPE	RATE
		*	(SEC)	(SEC)	(SEC)	(VPH)	(VPH)	(gm/hr)		
		*								
3.	nbq	*	60	26	3.0	1651	1600	5.73	3	3
б.	sbq	*	60	26	3.0	2240	1600	5.73	3	3
9.	ebq	*	60	31	3.0	1173	1600	5.73	3	3
12.	wbq	*	60	31	3.0	2107	1600	5.73	3	3

RECEPTOR LOCATIONS

	*	COOR	DINATES (FI	')	*
RECEPTOR	*	Х	Y	Z	*
					*
1. nw	*	442.0	558.0	5.4	*
2. ne	*	558.0	558.0	5.4	*
3. sw	*	442.0	430.0	5.4	*
4. se	*	558.0	430.0	5.4	*

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION ANGLE * (PPM)

(DEGR)	*	REC1	REC2	REC3	REC4
	. * . *	 2			2
10	*	. 2	. 1	. 1	.5
20	*	4	.0	.0	3
30	*	4		4	. 3
40	*	3		4	. 3
50.	*	.3	.0	.2	.2
60.	*	.3	. 0	.5	.2
70.	*	.3	.0	. 4	.2
80.	*	. 2	.0	. 4	. 2
90.	*	.3	. 2	.3	. 0
100.	*	.6	. 4	. 3	.0
110.	*	.6	.4	.3	.0
120.	*	.4	.4	. 2	.0
130.	*	. 2	. 2	. 2	.0
140.	*	.3	. 2	. 2	.0
150.	*	.4	. 2	. 2	.0
160.	*	.4	. 2	.3	.0
170.	*	.5	. 2	.3	.0
180.	*	.4	.3	.1	.1
190.	*	.2	.5	.0	. 3
200.	*	.1	.3	.0	. 3
210.	*	.1	.4	.0	. 3
220.	*	.1	.3	.0	.3
230.	*	.1	. 2	.0	. 3
240.	*	.3	.5	.0	. 3
250.	*	.3	.5	.0	.3
260.	*	.2	.6	.0	.3
270.	*	.1	.3	.1	. 4
280.	*	.0	.3	. 2	.5
290.	*	.0	.3	. 2	. 4
300.	*	.0	.3	. 2	.3
310.	*	.0	. 2	. 2	.3
320.	*	.0	.2	.3	. 4
330.	*	.0	.2	.3	.3
340.	*	.0	.2	.3	.5
350.	×	.0	. 3	. 3	.6
36U. 	. * .	.2	.1	.4	.3
MAX	*	.6	.6	.8	.6
DEGR.	*	100	260	10	350

The highest concentration of $\$.80 ppm occurred at receptor rec3 .

JOB: D:\00Projects\Cedars Sinai\01_Existing\L RUN: LASAA2

DATE : 8/6/8 TIME : 9:17:19

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD = .0	CM/S	Z0 = 100. CM									
U =	1.0 M/S	CLAS = 6	(F)	ATIM = 60. MINUTES	MIXH = 1000. M	AMB = .0 P	PM						

LINK VARIABLES

I	JINK DESCRIPTION	*	I	INK COORDIN	JATES (FT)		*	LENGTH	BRG TYPE	VPH	EF	H W	V/C	QUEUE
		*	X1	Y1	X2	¥2	*	(FT)	(DEG)		(G/MI)	(FT) (FT)		(VEH)
		*					*							
1.	nba	*	524.0	.0	524.0	500.0	*	500.	360. AG	2673.	1.6	.0 68.0		
2.	nbd	*	524.0	500.0	524.0	1000.0	*	500.	360. AG	2738.	1.6	.0 56.0		
3.	nbq	*	524.0	440.0	524.0	184.1	*	256.	180. AG	31.	100.0	.0 48.0	1.00	13.0
4.	sba	*	482.0	1000.0	482.0	500.0	*	500.	180. AG	2422.	1.6	.0 56.0		
5.	sbd	*	482.0	500.0	482.0	.0	*	500.	180. AG	2911.	1.6	.0 56.0		
б.	sbq	*	482.0	560.0	482.0	2233.2	*	1673.	360. AG	23.	100.0	.0 36.0	1.21	85.0
7.	eba	*	.0	470.0	500.0	470.0	*	500.	90. AG	3370.	1.6	.0 80.0		
8.	ebd	*	500.0	470.0	1000.0	470.0	*	500.	90. AG	2788.	1.6	.0 68.0		
9.	ebq	*	464.0	470.0	321.0	470.0	*	143.	270. AG	35.	100.0	.0 60.0	.90	7.3
10.	wba	*	1000.0	530.0	500.0	530.0	*	500.	270. AG	2128.	1.6	.0 80.0		
11.	wbd	*	500.0	530.0	.0	530.0	*	500.	270. AG	2156.	1.6	.0 68.0		
12.	wbq	*	548.0	530.0	610.7	530.0	*	63.	90. AG	35.	100.0	.0 60.0	.57	3.2

JOB: D:\00Projects\Cedars Sinai\01_Existing\L RUN: LASAA2

DATE : 8/6/8 TIME : 9:17:19

ADDITIONAL QUEUE LINK PARAMETERS

1	LINK DESCRIPTION	* * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIVAL RATE
3.	nbq	*	60	30	3.0	2673	1600	5.73	3	3
б.	sbq	*	60	30	3.0	2422	1600	5.73	3	3
9.	ebq	*	60	27	3.0	3370	1600	5.73	3	3
12.	wbq	*	60	27	3.0	2128	1600	5.73	3	3

RECEPTOR LOCATIONS

	*	COOF	DINATES (FT)	*
RECEPTOR	*	Х	Y	Z	*
	*				- *
1. nw	*	454.0	570.0	5.4	*
2. ne	*	558.0	570.0	5.4	*
3. sw	*	454.0	430.0	5.4	*
4. se	*	558.0	430.0	5.4	*

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION ANGLE * (PPM)

(DEGR)	*	REC1	REC2	REC3	REC4
0.	.*. *	. 4	.3	.8	.7
10.	*	.6	.0	1.0	.3
20.	*	.5	.0	.7	.3
30.	*	.4	.0	.4	. 2
40.	*	.4	.0	.5	. 2
50.	*	.3	.0	.6	.3
60.	*	.3	.0	.6	.3
70.	*	.3	.0	.6	.3
80.	*	.3	.0	.7	.3
90.	*	.4	.1	.7	.1
100.	*	.6	.3	.3	.0
110.	*	.5	.3	.3	.0
120.	*	.5	.3	.4	.0
130.	*	.5	.3	.4	.0
140.	*	.5	.3	.4	.0
150.	*	.5	.3	.4	.0
160.	*	.7	.3	.6	.0
170.	*	.9	.3	.5	.0
180.	*	.6	.6	.3	.3
190.	*	.3	.9	.1	.6
200.	*	.3	.6	.0	.7
210.	*	.3	.5	.0	.4
220.	*	.3	.4	.0	.4
230.	*	.3	.5	.0	.3
240.	*	.2	.6	.0	.3
250.	*	.4	.6	.0	.3
260.	*	.3	.6	.0	. 3
270.	*	.1	.3	.2	.5
280.	*	.0	. 2	.6	.9
290.	*	.0	. 2	.5	.7
300.	*	.0	. 2	. 4	.5
310.	*	.0	.4	.4	.5
320.	*	.0	.4	.4	.4
330.	*	.0	.4	.4	.4
34U.	*	.0	.5	.3	.6
350.	*	.0	.5	.3	.8
36U. 	.*.	.4	.3	.8	.7
MAX	*	.9	.9	1.0	. 9
DEGR.	*	170	190	10	280

The highest concentration of $$1.00\ {\rm PPM}$$ occurred at receptor rec3 .

JOB: D:\00Projects\Cedars Sinai\03_With Proje RUN: LATHA3

DATE : 8/6/8 TIME : 9:20:30

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD =	.0 CM/S	Z0 = 100. CM										
U =	1.0 M/S	CLAS =	6 (F)	ATIM = 60. MINUTES	MIXH = 1000. M	AMB = .0 PPM								

LINK VARIABLES

I	JINK DESCRIPTION	DESCRIPTION * LINK COORDINATES (FT)					*	LENGTH	BRG TYPE	VPH	EF	Н	W	V/C	QUEUE
		*	X1	Y1	X2	¥2	*	(FT)	(DEG)		(G/MI)	(FT) (FT)		(VEH)
		*					*								
1.	nba	*	530.0	.0	530.0	500.0	*	500.	360. AG	2158.	1.6	.0 80	0.0		
2.	nbd	*	530.0	500.0	530.0	1000.0	*	500.	360. AG	1891.	1.6	.0 56	.0		
3.	nbq	*	530.0	464.0	530.0	409.8	*	54.	180. AG	29.	100.0	.0 60	0.0	.51	2.8
4.	sba	*	464.0	1000.0	464.0	500.0	*	500.	180. AG	2062.	1.6	.0 80	0.0		
5.	sbd	*	464.0	500.0	464.0	.0	*	500.	180. AG	2198.	1.6	.0 56	.0		
6.	sbq	*	464.0	536.0	464.0	587.8	*	52.	360. AG	29.	100.0	.0 60	0.0	.48	2.6
7.	eba	*	.0	482.0	500.0	482.0	*	500.	90. AG	869.	1.6	.0 56	.0		
8.	ebd	*	500.0	482.0	1000.0	482.0	*	500.	90. AG	889.	1.6	.0 44	.0		
9.	ebq	*	428.0	482.0	374.3	482.0	*	54.	270. AG	26.	100.0	.0 36	.0	.52	2.7
10.	wba	*	1000.0	518.0	500.0	518.0	*	500.	270. AG	2083.	1.6	.0 56	.0		
11.	wbd	*	500.0	518.0	.0	518.0	*	500.	270. AG	2194.	1.6	.0 44	.0		
12.	pdw	*	560.0	518.0	641.6	518.0	*	82.	90. AG	44.	100.0	.0 60	.0	.74	4.1

JOB: D:\00Projects\Cedars Sinai\03_With Proje RUN: LATHA3

DATE : 8/6/8 TIME : 9:20:30

ADDITIONAL QUEUE LINK PARAMETERS

]	LINK DESCRIPTION	* * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIVAL RATE
3.	nbq	*	60	23	3.0	2158	1600	5.73	3	3
6.	sbq	*	60	23	3.0	2062	1600	5.73	3	3
9.	ebq	*	60	34	3.0	869	1600	5.73	3	3
12.	wbq	*	60	34	3.0	2083	1600	5.73	3	3

RECEPTOR LOCATIONS

	*	COOR	DINATES (FT)	*
RECEPTOR	*	Х	Y	Z	*
	*				*
1. nw	*	418.0	546.0	5.4	*
2. ne	*	570.0	546.0	5.4	*
3. sw	*	418.0	454.0	5.4	*
4. se	*	570.0	454.0	5.4	*

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION ANGLE * (PPM) (PPM)

(DEGR)	*	REC1	REC2	REC3	REC4
0.	*	. 1	. 1	. 3	. 3
10.	*	.2	.0	. 4	. 2
20.	*	.3	.0	.3	.2
30.	*	. 2	. 0	. 3	. 2
40.	*	. 2	. 0	. 4	. 3
50.	*	.3	.0	. 4	. 3
60.	*	.3	.0	.3	. 2
70.	*	.3	.0	. 4	. 2
80.	*	.3	.0	. 4	. 2
90.	*	.5	.3	.3	.1
100.	*	.7	. 4	.3	.0
110.	*	.4	.5	. 2	.0
120.	*	.4	.4	. 2	.0
130.	*	.3	.3	. 2	.0
140.	*	.4	.3	. 2	.0
150.	*	.3	. 2	. 2	.0
160.	*	.4	. 2	.3	.0
170.	*	.4	. 2	. 2	.0
180.	*	.3	.3	.1	. 2
190.	*	.2	.5	.0	. 2
200.	*	.2	.4	.0	.3
210.	*	.1	.4	.0	. 2
220.	*	.1	.5	.0	.3
230.	*	.1	.3	.0	.3
240.	*	.2	. 2	.0	.3
250.	*	.3	. 4	.0	.3
260.	*	.3	.6	.0	.3
270.	*	.1	.5	.1	. 4
280.	*	.0	.3	. 2	.5
290.	*	.0	. 2	.2	. 2
300.	*	.0	. 2	.3	.3
310.	*	.0	. 2	.3	. 4
320.	*	.0	. 2	.3	.5
330.	*	.0	.2	. 2	.4
340.	*	.0	.3	. 2	.4
350.	*	.0	.2	. 2	.5
360.	*	.1	.1	.3	.3
MAX	*	.7	.6	. 4	.5
DEGR.	*	100	260	10	280

The highest concentration of $\hfill..., 70\hfill \ensuremath{\text{PPM}}$ occurred at receptor rec1 .

RUN: ROALA3 JOB: C:\Documents and Settings\jstephens\Desk

DATE : 8/6/8 TIME : 9:32:40

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS	=	.0 CM/S	VD =	.0	CM/S	Z0 =	=	100.	CM						
U	=	1.0 M/S	CLAS =	6	(F)	ATIM =	=	60.	MINUTES	MIXH	=	1000.	М	AMB =	.0 PPM

LINK VARIABLES

I	JINK DESCRIPTION	*	L	INK COORDIN	ATES (FT)		*	LENGTH	BRG TYP	PE VPH	EF	H W	V/C QUEUE
		*	X1	Y1	X2	Y2	*	(FT)	(DEG)		(G/MI)	(FT) (FT)	(VEH)
		*					-*						
1.	nba	*	512.0	.0	512.0	500.0	*	500.	360. AC	3 1271.	1.6	.0 44.0	
2.	nbd	*	512.0	500.0	512.0	1000.0	*	500.	360. AG	G 1342.	1.6	.0 32.0	
3.	nbq	*	512.0	488.0	512.0	439.4	*	49.	180. AC	5 7.	100.0	.0 24.0	.58 2.5
4.	sba	*	488.0	1000.0	488.0	500.0	*	500.	180. AC	3 1076.	1.6	.0 44.0	
5.	sbd	*	488.0	500.0	488.0	.0	*	500.	180. AC	£ 1237.	1.6	.0 32.0	
б.	sbq	*	488.0	512.0	488.0	553.2	*	41.	360. AC	5 7.	100.0	.0 24.0	.49 2.1
7.	eba	*	.0	494.0	500.0	494.0	*	500.	90. AC	G 261.	1.6	.0 32.0	
8.	ebd	*	500.0	494.0	1000.0	494.0	*	500.	90. AC	347.	1.6	.0 32.0	
9.	ebq	*	476.0	494.0	397.6	494.0	*	78.	270. AC	; 11.	100.0	.0 12.0	.82 4.0
10.	wba	*	1000.0	506.0	500.0	506.0	*	500.	270. AC	538.	1.6	.0 32.0	
11.	wbd	*	500.0	506.0	.0	506.0	*	500.	270. AC	3 220.	1.6	.0 32.0	
12.	pdw	*	524.0	506.0	2953.4	506.0	*	2429.	90. AC	; 11.	100.0	.0 12.0 1	L.69 123.4

RUN: ROALA3

JOB: C:\Documents and Settings\jstephens\Desk

DATE : 8/6/8 TIME : 9:32:40

ADDITIONAL QUEUE LINK PARAMETERS

:	LINK DESCRIPTION	* * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIVAL RATE
3.	nbq	*	60	14	3.0	1271	1600	5.73	3	3
6.	sbq	*	60	14	3.0	1076	1600	5.73	3	3
9.	ebq	*	60	43	3.0	261	1600	5.73	3	3
12.	wbq	*	60	43	3.0	538	1600	5.73	3	3

RECEPTOR LOCATIONS

	*	COOR	DINATES (FI	')	*
RECEPTOR	*	Х	Y	Z	*
	*				- *
1. nw	*	466.0	522.0	5.4	*
2. ne	*	534.0	522.0	5.4	*
3. sw	*	466.0	478.0	5.4	*
4. se	*	534.0	478.0	5.4	*

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION ANGLE * (PPM)

(DEGR))*	REC1	REC2	REC3	REC4
0.	-*- *	.1	.1	.1	.1
10.	*	. 3	.0	. 2	.0
20.	*	.2	.0	. 2	.0
30.	*	.2	.0	.2	.0
40.	*	.2	.0	.1	.0
50.	*	.2	.0	.0	.0
60.	*	.2	.0	.1	.0
70.	*	.2	.0	.1	.1
80.	*	.2	.0	. 4	.3
90.	*	.4	. 2	.3	.1
100.	*	.4	. 2	.2	.0
110.	*	.1	. 2	. 2	.0
120.	*	.1	.1	. 2	.0
130.	*	.0	.0	.2	.0
140.	*	.1	.0	. 2	.0
150.	*	.2	.0	.2	.0
160.	*	.2	.0	.2	.0
170.	*	.3	.0	.3	.0
180.	*	.1	.1	.1	.1
190.	*	.0	.3	.0	.3
200.	*	.0	.2	.0	.2
210.	*	.0	. 2	.0	. 2
220.	*	.0	.2	.0	.2
230.	*	.0	.1	.0	.2
240.		.0	.1	.0	.2
250.	ž	.0	.1	.0	.2
260.	ž	.0	.1	.0	.1
270.	Ĵ	.0	.1	.0	.1
280.	Ĵ	.0	. 1	.0	.1
290.	Ĵ	.0	.1	.1	.1
210	*	.0	.1	.0	.1
31U.	*	.0	. 2	.0	. 1
320. 220	*	.0	. 2	.0	. 4
240	*	.0	. 4	.0	. 2
250	*	.0	. 4	.0	. 4
360.	*	.0	. 5	.0	. 5
	.*.	•••••		•••••	
MAX	*	.4	.3	.4	.3
DEGR.	*	90	190	80	80

The highest concentration of \$.40 ppm occurred at receptor rec3 .

RUN: ROBEA3 JOB: D:\00Projects\Cedars Sinai\01_Existing\R

DATE : 8/6/8 TIME : 9:37:36

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD = .0	CM/S	Z0 = 100. CM							
U =	1.0 M/S	CLAS = 6	(F)	ATIM = 60. MINUTES	MIXH = 1000.	M AMB =	.0 PPM				

LINK VARIABLES

	LINK DESCRIPTION	*	L	INK COORDIN	ATES (FT)		*	LENGTH	BRG TYPE	VPH	EF	Н	W	V/C	QUEUE
		*	X1	Y1	X2	¥2	*	(FT)	(DEG)		(G/MI)	(FT)	(FT)		(VEH)
		*					*								
1.	nba	*	518.0	.0	518.0	500.0	*	500.	360. AG	1303.	1.6	.0	56.0		
2.	nbd	*	518.0	500.0	518.0	1000.0	*	500.	360. AG	1260.	1.6	.0	32.0		
3.	nbq	*	518.0	452.0	518.0	370.3	*	82.	180. AG	25.	100.0	.0	36.0	.74	4.2
4.	sba	*	488.0	1000.0	488.0	500.0	*	500.	180. AG	1135.	1.6	.0	44.0		
5.	sbd	*	488.0	500.0	488.0	.0	*	500.	180. AG	1047.	1.6	.0	32.0		
6.	sbq	*	488.0	548.0	488.0	735.4	*	187.	360. AG	17.	100.0	.0	24.0	.97	9.5
7.	eba	*	.0	476.0	500.0	476.0	*	500.	90. AG	1854.	1.6	.0	68.0		
8.	ebd	*	500.0	476.0	1000.0	476.0	*	500.	90. AG	1896.	1.6	.0	44.0		
9.	ebq	*	476.0	476.0	415.2	476.0	*	61.	270. AG	25.	100.0	.0	48.0	.56	3.1
10.	wba	*	1000.0	524.0	500.0	524.0	*	500.	270. AG	1612.	1.6	.0	68.0		
11.	wbd	*	500.0	524.0	.0	524.0	*	500.	270. AG	1701.	1.6	.0	44.0		
12.	wbq	*	536.0	524.0	588.9	524.0	*	53.	90. AG	25.	100.0	.0	48.0	.49	2.7

JOB: D:\00Projects\Cedars Sinai\01_Existing\R RUN: ROBEA3

DATE : 8/6/8 TIME : 9:37:36

ADDITIONAL QUEUE LINK PARAMETERS

:	LINK DESCRIPTION	* * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIVAL RATE
3.	nbq	*	60	33	3.0	1303	1600	5.73	3	3
6.	sbq	*	60	33	3.0	1135	1600	5.73	3	3
9.	ebq	*	60	24	3.0	1854	1600	5.73	3	3
12.	wbq	*	60	24	3.0	1612	1600	5.73	3	3

RECEPTOR LOCATIONS

		*	COORD	INATES (FT)		*
	RECEPTOR	*	Х	Y	Z	*
		*				*
1.	nw	*	466.0	558.0	5.4	*
2.	ne	*	546.0	558.0	5.4	*
3.	sw	*	466.0	442.0	5.4	*
4.	se	*	546.0	442.0	5.4	*

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION ANGLE * (PPM)

(DEGR))*	REC1	REC2	REC3	REC4
	- * -				
0.		.1	.1	.4	.3
10.		.4	.0	.6	.2
20.		.3	.0	.4	.2
30.	*	.3	.0	.3	.2
40.	*	.3	.0	.3	.2
50.	*	.2	.0	.4	.2
60.	*	.3	.0	.5	. 2
70.	*	.2	.0	.5	.3
80.	*	.2	.0	.5	.3
90.	*	.3	.1	.4	.1
100.	*	.4	.3	.3	.0
110.	*	.3	.3	.3	.0
120.	*	.4	.2	.3	.0
130.	*	.3	.3	.3	.0
140.	*	.3	.3	.3	.0
150.	*	.3	.3	.2	.0
160.	*	.5	.3	.2	.0
170.	*	.5	.3	.2	.0
180.	*	.3	.4	.1	.1
190.	*	.2	.6	.0	.3
200.	*	.2	.4	.0	.3
210.	*	.2	. 2	.0	. 3
220.	*	.2	.3	.0	.2
230.	*	.2	.3	.0	.2
240.	*	.2	.4	.0	.2
250.	*	.3	.4	.0	. 2
260.	*	.3	.4	.0	. 2
270.	*	.1	. 2	.2	.3
280.	*	.0	.1	.3	.5
290.	*	.0	.1	.3	.4
300.	*	.0	.1	.3	.4
310.	*	.0	.1	.3	.3
320.	*	.0	. 2	.3	.3
330.	*	.0	. 2	.3	.3
340.	*	.0	. 2	.3	. 4
350.	*	.0	. 2	.3	.5
360. 	*	.1	.1	. 4	.3
MAX	*	.5	.6	.6	.5
DEGR.	*	160	190	10	280

THE HIGHEST CONCENTRATION OF .60 PPM OCCURRED AT RECEPTOR REC3 .

RUN: ROBUA3 JOB: C:\Documents and Settings\jstephens\Desk

DATE : 8/6/8 TIME : 9:52:32

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS	=	.0 CM/S	VD =	.0	CM/S	Z0 =	- 1	100.	CM					
U	=	1.0 M/S	CLAS =	6	(F)	ATIM =		60.	MINUTES	MIXH =	1000.	М	AMB =	.0 PPM

LINK VARIABLES

]	LINK DESCRIPTION	*	L	INK COORDIN	ATES (FT)		*	LENGTH	BRG TYPE	VPH	EF	н	W	V/C	QUEUE
		*	X1	Y1	X2	Y2	*	(FT)	(DEG)		(G/MI)	(FT)	(FT)	(VEH)
		*					-*								
1.	nba	*	518.0	.0	518.0	500.0	*	500.	360. AG	1336.	1.6	.0	56.0		
2.	nbd	*	518.0	500.0	518.0	1000.0	*	500.	360. AG	1402.	1.6	.0	32.0		
3.	nbq	*	518.0	452.0	518.0	379.0	*	73.	180. AG	23.	100.0	.0	36.0	.67	3.7
4.	sba	*	488.0	1000.0	488.0	500.0	*	500.	180. AG	1435.	1.6	.0	44.0		
5.	sbd	*	488.0	500.0	488.0	.0	*	500.	180. AG	1531.	1.6	.0	32.0		
б.	sbq	*	488.0	548.0	488.0	1303.5	*	756.	360. AG	15.	100.0	.0	24.0	1.08	38.4
7.	eba	*	.0	476.0	500.0	476.0	*	500.	90. AG	1690.	1.6	.0	68.0		
8.	ebd	*	500.0	476.0	1000.0	476.0	*	500.	90. AG	1501.	1.6	.0	44.0		
9.	ebq	*	476.0	476.0	413.7	476.0	*	62.	270. AG	28.	100.0	.0	48.0	.57	3.2
10.	wba	*	1000.0	524.0	500.0	524.0	*	500.	270. AG	1381.	1.6	.0	68.0		
11.	wbd	*	500.0	524.0	.0	524.0	*	500.	270. AG	1408.	1.6	.0	44.0		
12.	pdw	*	536.0	524.0	586.9	524.0	*	51.	90. AG	28.	100.0	.0	48.0	.46	2.6

RUN: ROBUA3

JOB: C:\Documents and Settings\jstephens\Desk

```
DATE : 8/6/8
TIME : 9:52:32
```

ADDITIONAL QUEUE LINK PARAMETERS

:	LINK DESCRIPTION	* * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIVAL RATE
3.	nbq	*	60	30	3.0	1336	1600	5.73	3	3
6.	sbq	*	60	30	3.0	1435	1600	5.73	3	3
9.	ebq	*	60	27	3.0	1690	1600	5.73	3	3
12.	wbq	*	60	27	3.0	1381	1600	5.73	3	3

RECEPTOR LOCATIONS

	*	COOR	DINATES (FI	?)	*
RECEPTOR	*	X	Y	Z	*
	*				*
1. nw	*	466.0	558.0	5.4	*
2. ne	*	546.0	558.0	5.4	*
3. sw	*	466.0	442.0	5.4	*
4. se	*	546.0	442.0	5.4	*

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION ANGLE * (PPM) (PPM)

(DEGR)	*	REC1	REC2	REC3	REC4
0.	*	.3	.1	. 4	.2
10.	*	.4	.0	.6	. 2
20.	*	.4	.0	. 4	.1
30.	*	.3	.0	.3	. 2
40.	*	.3	.0	.2	.2
50.	*	.3	.0	.5	. 2
60.	*	.3	.0	.4	. 2
70.	*	. 2	.0	. 4	.2
80.	*	. 2	.0	.5	.3
90.	*	.3	.1	. 4	.1
100.	*	.4	.3	.3	.0
110.	*	.5	. 2	.3	.0
120.	*	.4	. 2	.3	.0
130.	*	. 2	.3	.3	.0
140.	*	.2	.3	.2	.0
150.	*	.3	. 2	. 2	.0
160.	*	.4	.3	.3	.0
170.	*	.6	.2	.3	.0
180.	*	.3	.3	.1	.1
190.	*	.3	.4	.0	.3
200.	*	.3	.3	.0	.3
210.	*	.2	.3	.0	.3
220.	*	.2	.2	.0	.3
230.	*	.2	.3	.0	.3
240.	*	.2	.4	.0	.3
250.	*	.2	.4	.0	.3
260.	*	.2	. 4	.0	.3
270.	*	.1	.3	.1	.4
280.	*	.0	. 2	. 2	.6
290.	*	.0	. 2	.3	.5
300.	*	.0	. 2	.3	.4
310.	*	.0	. 2	.3	.3
320.	*	.0	. 2	.2	.2
330.	ž	.0	.2	.2	.3
340.	ž	.0	. 3	.2	.5
350.	Ĵ	.0	. 4	. 2	.5
360. 	*.	. 3		.4	.2
MAX	*	.6	.4	.6	.6
DEGR.	*	170	190	10	280

THE HIGHEST CONCENTRATION OF .60 PPM OCCURRED AT RECEPTOR REC3 .

RUN: ROTHA3 JOB: C:\Documents and Settings\jstephens\Desk

DATE : 8/ 6/ 8 TIME : 10: 2:44

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD =	.0 CM/S	Z0 = 100. CM						
U =	1.0 M/S	CLAS =	6 (F)	ATIM = 60. MINUTES	MIXH = 1000. M	AMB = .0 PPM				

LINK VARIABLES

I	JINK DESCRIPTION	*	L	INK COORDIN	ATES (FT)		*	LENGTH	BRG TYPE	VPH	EF	H W	V/C	QUEUE
		*	X1	Y1	X2	¥2	*	(FT)	(DEG)		(G/MI)	(FT) (FT)		(VEH)
		*					*							
1.	nba	*	512.0	.0	512.0	500.0	*	500.	360. AG	1295.	1.6	.0 44.0		
2.	nbd	*	512.0	500.0	512.0	1000.0	*	500.	360. AG	1172.	1.6	.0 32.0		
3.	nbq	*	512.0	464.0	512.0	341.2	*	123.	180. AG	14.	100.0	.0 24.0	.87	6.2
4.	sba	*	488.0	1000.0	488.0	500.0	*	500.	180. AG	1057.	1.6	.0 44.0		
5.	sbd	*	488.0	500.0	488.0	.0	*	500.	180. AG	1140.	1.6	.0 32.0		
б.	sbq	*	488.0	536.0	488.0	614.0	*	78.	360. AG	14.	100.0	.0 24.0	.71	4.0
7.	eba	*	.0	482.0	500.0	482.0	*	500.	90. AG	696.	1.6	.0 56.0		
8.	ebd	*	500.0	482.0	1000.0	482.0	*	500.	90. AG	859.	1.6	.0 44.0		
9.	ebq	*	476.0	482.0	437.9	482.0	*	38.	270. AG	23.	100.0	.0 36.0	.35	1.9
10.	wba	*	1000.0	518.0	500.0	518.0	*	500.	270. AG	1371.	1.6	.0 56.0		
11.	wbd	*	500.0	518.0	.0	518.0	*	500.	270. AG	1248.	1.6	.0 44.0		
12.	pdw	*	524.0	518.0	599.0	518.0	*	75.	90. AG	23.	100.0	.0 36.0	.69	3.8

RUN: ROTHA3

JOB: C:\Documents and Settings\jstephens\Desk

```
DATE : 8/ 6/ 8
TIME : 10: 2:44
```

ADDITIONAL QUEUE LINK PARAMETERS

LINK DESCRIPTION	*	CYCLE	RED	CLEARANCE	APPROACH	SATURATION	IDLE	SIGNAL	ARRIVAL			
	*	LENGTH	TIME	LOST TIME	VOL	FLOW RATE	EM FAC	TYPE	RATE			
	*	(SEC)	(SEC)	(SEC)	(VPH)	(VPH)	(gm/hr)					
	*											
3. nbq	*	60	27	3.0	1295	1600	5.73	3	3			
6. sbq	*	60	27	3.0	1057	1600	5.73	3	3			
9. ebq	*	60	30	3.0	696	1600	5.73	3	3			
12. wbq	*	60	30	3.0	1371	1600	5.73	3	3			

RECEPTOR LOCATIONS

	-				
	*	COOF	RDINATES (FI	')	*
RECEPTOR	*	X	Y	Z	*
	*				- *
1. nw	*	466.0	546.0	5.4	*
2. ne	*	534.0	546.0	5.4	*
3. sw	*	466.0	454.0	5.4	*
4. se	*	534.0	454.0	5.4	*

PAGE 2

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION ANGLE * (PPM)

(DEGR)	* REC1	REC2	REC3	REC4
0. 3	*	.1	. 2	. 2
10. 3	*	3.0	.3	. 0
20. 3	*	2 .0	.2	.2
30.	*	3.0	. 2	. 2
40.	*	3.0	.1	.1
50.	*	2.0	. 2	. 2
60.	*	2.0	.3	. 2
70. 3	*	L .0	. 4	. 2
80.	*	L .0	. 4	. 2
90.	* .:	2.1	.3	.1
100. '	* .!	5.2	.2	.0
110. '	* .4	4.3	.2	.0
120. '	* .:	2.2	.2	.0
130. '	* .:	L .2	. 2	.0
140. '	* .:	2.2	. 2	.0
150. '	* .:	3.2	.2	.0
160. '	* .4	4.2	. 2	.0
170. י	* .:	3.2	.3	.0
180. '	* .:	2.3	.1	.1
190. י	* .:	L.5	.0	. 3
200. 3	* .:	L.4	.0	. 3
210. '	* .:	L.3	.0	. 3
220. 3	* .:	L.2	.0	. 3
230. '	*	L.2	.0	. 2
240. 3	* .	L.2	.0	.1
250. 3	* .:	l.2	.0	.1
260. 3	* .:	2.2	.0	.1
270. [•]	*	1.2	.1	. 2
280. '	* .() .1	.2	. 3
290. 3	* .().1	. 2	.3
300. 3	* .() .1	.2	. 2
310. '	* .().2	.1	. 2
320. 3	* .().2	.1	.1
330. '	* .().2	.1	. 2
340. 3	* .(.2	.1	.3
350. 3	* .() .3	.1	.3
360. '	*	.1	.2	.2
MAX	* .!	5.5	. 4	.3
DEGR. '	* 100	190	70	190

The highest concentration of .50 ppm occurred at receptor rec1 .

JOB: D:\00Projects\Cedars Sinai\01_Existing\S RUN: SABEA3

DATE : 8/ 6/ 8 TIME : 10: 6:28

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD = .0	CM/S	Z0 = 100. CM						
U =	1.0 M/S	CLAS = 6	(F)	ATIM = 60. MINUTES	MIXH = 1000.	M AMB =	.0 PPM			

LINK VARIABLES

NK DESCRIPTION	*	LI	INK COORDIN	ATES (FT)		*	LENGTH	BRG TYPE	VPH	EF	H W	V/C	QUEUE
	*	X1	Y1	X2	¥2	*	(FT)	(DEG)		(G/MI)	(FT) (FT)		(VEH)
	-*					*							
ba	*	524.0	.0	524.0	500.0	*	500.	360. AG	1808.	1.6	.0 68.0		
bd	*	524.0	500.0	524.0	1000.0	*	500.	360. AG	1704.	1.6	.0 44.0		
bq	*	524.0	452.0	524.0	380.3	*	72.	180. AG	30.	100.0	.0 48.0	.65	3.6
ba	*	476.0	1000.0	476.0	500.0	*	500.	180. AG	1640.	1.6	.0 68.0		
bd	*	476.0	500.0	476.0	.0	*	500.	180. AG	1610.	1.6	.0 44.0		
pd	*	476.0	548.0	476.0	613.0	*	65.	360. AG	30.	100.0	.0 48.0	.59	3.3
ba	*	.0	476.0	500.0	476.0	*	500.	90. AG	2064.	1.6	.0 68.0		
bd	*	500.0	476.0	1000.0	476.0	*	500.	90. AG	2253.	1.6	.0 44.0		
bq	*	452.0	476.0	373.0	476.0	*	79.	270. AG	29.	100.0	.0 48.0	.72	4.0
ba	*	1000.0	524.0	500.0	524.0	*	500.	270. AG	1609.	1.6	.0 68.0		
bd	*	500.0	524.0	.0	524.0	*	500.	270. AG	1554.	1.6	.0 44.0		
bq	*	548.0	524.0	609.5	524.0	*	62.	90. AG	29.	100.0	.0 48.0	.56	3.1
	NK DESCRIPTION	vik DESCRIPTION * ** via via via via via via via via	NR DESCRIPTION * L * * * ba * 524.0 od * 524.0 og * 524.0 og * 524.0 oa * 76.0 od * 476.0 bbg * 476.0 ba * .0 bd * \$00.0 bd * \$00.0 ba * 1000.0 bd * \$500.0 bg * \$48.0	$\begin{array}{c ccccc} * & & & & & & & & & & & & & & & & & & $	* LINK COORDINATES (FF) * X1 Y1 X2	* LIRK COORDINATES (FT) $*$ X1 Y1 X2 Y2 $*$ $*$ 1 Y1 X2 Y2 $*$ 524.0 500.0 524.0 500.0 524.0 380.3 $2a$ $*$ 524.0 452.0 524.0 380.3 $2a$ $*$ 524.0 452.0 524.0 380.3 $2a$ $*$ 524.0 452.0 524.0 380.3 $2a$ $*$ 600.0 476.0 500.0 476.0 613.0 $2a$ $*$ $.0$ 476.0 548.0 476.0 613.0 $2a$ $*$ $.0$ 476.0 500.0 476.0 500.0 476.0 $2a$ $*$ 500.0 476.0 373.0 476.0 $2a$ $*$ 1000.0 524.0 500.0 524.0 524.0 $2a$ $*$ 548.0 524.0	* XI YI $X2$ $Y2$ $*$ $*$ XI YI $X2$ $Y2$ $*$ $*$ XI YI $X2$ $Y2$ $*$ $*$ XI YI $X2$ $Y2$ $*$ $*$ $*$ 524.0 500.0 524.0 1000.0 $*$ od $*$ 524.0 524.0 380.3 $*$ od $*$ 524.0 524.0 380.3 $*$ od $*$ 524.0 524.0 380.3 $*$ od $*$ 476.0 500.0 476.0 500.0 $*$ od $*$ 476.0 500.0 476.0 600.0 $*$ bd $*$ 500.0 476.0 500.0 476.0 $*$ bd $*$ 500.0 476.0 373.0 476.0 $*$ bd $*$ 500.0 524.0 $*$ $*$ bd $*$ 500.0 524.0 $*$ bd $*$ 500.0 524.0 $*$	* LIAR COORDINATES (FT) * LENGTH * X1 Y1 X2 Y2 * (FT) >	NR DESCRIPTION * LINK COORDINATES (FT) * LENGTH BRG TYPE * X1 Y1 X2 Y2 * (FT) (DEG) >	* LINK COORDINATES (FT) * LENGTH BRG TYPE VPH * X1 Y1 X2 Y2 * (FT) (DEG) >	NR DESCRIPTION * LINK COORDINATES (FT) * LENGTH BRG TYPE VPH EF * XI YI X2 Y2 * (FT) (DEG) (G/MI)	* LIAR COORDINATES (F) * LENGTH ERG TYPE VPH EF H W * X1 Y1 X2 Y2 * (FT) (DEG) (G/MI) (FT) (FT) ba * 524.0 500.0 500.0 * 500.360. AG 1808.1.6 .0 68.0 od * 524.0 500.0 500.0 * 500.360. AG 1704.1.6 .0 48.0 og * 524.0 452.0 524.0 380.3 * 72.180.AG 1640.1.6 .0 68.0 og * 476.0 1000.0 476.0 500.0 * 500.180.AG 1640.1.6 .0 68.0 od * 476.0 548.0 476.0 613.0 * 65. 360.AG 30.100.0 .0 48.0 ba * .0 476.0 500.0 476.0 500.90.AG 2064.1.6 .0 68.0 bd * 500.0 476.0 1000.0 476.0 * 500.90.AG 2064.1.6 <	NR DESCRIPTION * LINK COORDINATES (FT) * LENGTH BRG TYPE VPH EF H W V/C * X1 Y1 X2 Y2 * (FT) (DEG) (G/MI) (FT) (FT)

JOB: D:\00Projects\Cedars Sinai\01_Existing\S RUN: SABEA3

DATE : 8/ 6/ 8 TIME : 10: 6:28

ADDITIONAL QUEUE LINK PARAMETERS

	LINK DESCRIPTION	* * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIVAL RATE
3.	nbq	*	60	29	3.0	1808	1600	5.73	3	3
6.	sbq	*	60	29	3.0	1640	1600	5.73	3	3
9.	ebq	*	60	28	3.0	2064	1600	5.73	3	3
12.	wbq	*	60	28	3.0	1609	1600	5.73	3	3

RECEPTOR LOCATIONS

	*	COOR	?)	*	
RECEPTOR	*	X	Y	Z	*
	*				*
1. nw	*	442.0	558.0	5.4	*
2. ne	*	558.0	558.0	5.4	*
3. sw	*	442.0	442.0	5.4	*
4. se	*	558.0	442.0	5.4	*
MODEL RESULTS

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION ANGLE * (PPM)

(DEGR) *	REC1	REC2	REC3	REC4
0.	-*- *	. 1	. 1	. 3	
10.	*	.3	.0	.5	.3
20.	*	.4	.0	. 4	.3
30.	*	.3	.0	. 4	. 2
40.	*	. 3	.0	. 3	. 2
50.	*	. 3	. 0	. 3	.2
60.	*	.3	.0	.4	.3
70.	*	.3	.0	.5	.3
80.	*	.3	.0	.6	.3
90.	*	.4	.1	.4	.1
100.	*	.6	.3	.3	.0
110.	*	.4	.3	.3	.0
120.	*	.4	.3	.3	.0
130.	*	.3	.3	. 2	.0
140.	*	.4	.3	. 2	.0
150.	*	.5	.3	.2	.0
160.	*	.5	.3	.2	.0
170.	*	.6	.3	.3	.0
180.	*	.3	. 4	.1	.1
190.	*	.3	.7	.0	.3
200.	*	.3	. 4	.0	.4
210.	*	.3	.5	.0	.3
220.	*	.2	.3	.0	.3
23U.	*	.2	.3	.0	. 3
24U. 250	*	.2	.4	.0	. 3
400. 260	*	.2	.5	.0	. 3
∠00. 270	*	. 3	. 6	.0	. 3
270. 280	*	.1	.4	. 2	. 4
290.	*	.0	. 3	.4	. /
300.	*	.0	. 3	.4	. 5
310	*	.0	. 2		3
320.	*	.0	.2	.3	.3
330.	*	.0	.2	.3	. 4
340.	*	.0	.3	.3	.5
350.	*	.0	.3	. 2	.6
360.	*	.1	.1	. 3	.3
 MAX	-*- *				.7
DEGR.	*	100	190	80	280

The highest concentration of \$.70 ppm occurred at receptor rec2 .

JOB: D:\00Projects\Cedars Sinai\01_Existing\S RUN: SABUA3

DATE : 8/ 6/ 8 TIME : 10: 8:11

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD = .0 CM/S	Z0 = 100. CM								
U =	1.0 M/S	CLAS = 6 (F)	ATIM = 60. MINUTES	MIXH = 1000. M	AMB = .0 PPM						

LINK VARIABLES

	LINK DESCRIPTION	*	I	INK COORDIN	ATES (FT)		*	LENGTH	BRG TYP	E VPH	EF	н и	v /	C QUEUE
		*	X1	Y1	X2	Y2	*	(FT)	(DEG)		(G/MI)	(FT) (H	Ϋ́T)	(VEH)
		*					*							
1.	nba	*	512.0	.0	512.0	500.0	*	500.	360. AG	75.	1.6	.0 44	0	
2.	nbd	*	512.0	500.0	512.0	1000.0	*	500.	360. AG	1021.	1.6	.0 32	0	
3.	nbq	*	512.0	464.0	512.0	456.5	*	7.	180. AG	19.	100.0	.0 24	0.08	.4
4.	sba	*	482.0	1000.0	482.0	500.0	*	500.	180. AG	1920.	1.6	.0 56	0	
5.	sbq	*	482.0	560.0	482.0	2417.2	*	1857.	360. AG	28.	100.0	.0 36	0 1.34	94.3
6.	eba	*	.0	482.0	500.0	482.0	*	500.	90. AG	1510.	1.6	.0 56	0	
7.	ebd	*	500.0	482.0	1000.0	482.0	*	500.	90. AG	3327.	1.6	.0 56	0	
8.	ebq	*	464.0	482.0	409.0	482.0	*	55.	270. AG	15.	100.0	.0 36	0.54	2.8
9.	wba	*	1000.0	530.0	500.0	530.0	*	500.	270. AG	2048.	1.6	.0 80	0	
10.	wbd	*	500.0	530.0	.0	530.0	*	500.	270. AG	1174.	1.6	.0 56	0	
11.	pdw	*	524.0	530.0	568.7	530.0	*	45.	90. AG	26.	100.0	.0 60	0.44	2.3

RUN: SABUA3

JOB: D:\00Projects\Cedars Sinai\01_Existing\S

DATE : 8/ 6/ 8 TIME : 10: 8:11

ADDITIONAL QUEUE LINK PARAMETERS

:	LINK DESCRIPTION	* * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIVAL RATE	
3.	nbq	*	60	37	3.0	75	1600	5.73	3	3	
5.	sbq	*	60	37	3.0	1920	1600	5.73	3	3	
8.	ebq	*	60	20	3.0	1510	1600	5.73	3	3	
11.	wba	*	60	20	3.0	2048	1600	5.73	3	3	

RECEPTOR LOCATIONS

	*	COOR	DINATES (FT)	*
RECEPTOR	*	Х	Y	Z	*
	*				-*
1. nw	*	454.0	570.0	5.4	*
2. ne	*	534.0	570.0	5.4	*
3. sw	*	454.0	454.0	5.4	*
4. se	*	534.0	454.0	5.4	*

MODEL RESULTS

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION ANGLE * (PPM)

миопь		'	EEPI/		
(DEGR)) *	REC1	REC2	REC3	REC4
	- * - +				
10.	*	.4	. 2	.5	. 6
20	*	.0	.0	.0	.4
30	*		.0		
40	*	2	.0	.5	
50.	*	.2	.0	. 2	.3
60.	*	.2	. 0	.3	. 4
70.	*	.2	.0	. 4	.4
80.	*	. 2	.0	.6	.6
90.	*	.3	.1	.3	.3
100.	*	.5	.3	.0	.1
110.	*	.4	. 4	.0	.0
120.	*	.4	.3	.0	.0
130.	*	.3	. 2	.0	.0
140.	*	.2	. 2	.0	.0
150.	*	.3	. 3	.0	.0
160.	*	. 2	.3	.0	.0
170.	*	.2	.3	.0	.0
180.	*	.2	.3	.0	.0
190.	*	.1	. 2	.0	.0
200.	*	.2	.3	.0	.0
210.	*	.2	. 2	.0	.0
220.	*	.2	.3	.0	.0
230.		.2	.4	.0	.0
240.	ž	.2	.4	.0	.0
250.	÷	. 2	.4	.0	.0
200.	*	.1	.4	.0	.0
270. 290	*	.0	.4	.1	. 2
200.	*	.0		. 2	. 7
300.	*	.0			
310	*	.0		.2	1
320.	*	.0	.3	.2	.3
330.	*	.0	.3	.2	.3
340.	*	.0	. 3	.1	.5
350.	*	.0	. 4	.1	.8
360.	*	.4	.2	.5	.6
 MAX	- * . *	. 6	. 4		. 8
DEGR.	*	10	110	10	350

The highest concentration of $\$.80 ppm occurred at receptor rec4 .

JOB: D:\00Projects\Cedars Sinai\01_Existing\S RUN: SATHA3

DATE : 8/6/8 TIME : 10:12:1

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD =	.0 CM/S	Z0 = 100. CM							
U =	1.0 M/S	CLAS =	6 (F)	ATIM = 60. MINUTES	MIXH = 1000. M	AMB = .0 PPM					

LINK VARIABLES

	LINK DESCRIPTION	*	L	INK COORDIN	ATES (FT)		*	LENGTH	BRG TYPE	VPH	EF	H W	V/C	QUEUE
		*	X1	Y1	X2	¥2	*	(FT)	(DEG)		(G/MI)	(FT) (FT)		(VEH)
		*					*							
1.	nba	*	518.0	.0	518.0	500.0	*	500.	360. AG	1456.	1.6	.0 56.0		
2.	nbd	*	518.0	500.0	518.0	1000.0	*	500.	360. AG	1470.	1.6	.0 44.0		
3.	nbq	*	518.0	464.0	518.0	383.7	*	80.	180. AG	23.	100.0	.0 36.0	.73	4.1
4.	sba	*	476.0	1000.0	476.0	500.0	*	500.	180. AG	1205.	1.6	.0 68.0		
5.	sbd	*	476.0	500.0	476.0	.0	*	500.	180. AG	1060.	1.6	.0 44.0		
б.	sbq	*	476.0	536.0	476.0	585.4	*	49.	360. AG	31.	100.0	.0 48.0	.45	2.5
7.	eba	*	.0	482.0	500.0	482.0	*	500.	90. AG	845.	1.6	.0 56.0		
8.	ebd	*	500.0	482.0	1000.0	482.0	*	500.	90. AG	827.	1.6	.0 44.0		
9.	ebq	*	452.0	482.0	410.5	482.0	*	41.	270. AG	21.	100.0	.0 36.0	.38	2.1
10.	wba	*	1000.0	518.0	500.0	518.0	*	500.	270. AG	2108.	1.6	.0 56.0		
11.	wbd	*	500.0	518.0	.0	518.0	*	500.	270. AG	2257.	1.6	.0 44.0		
12.	pdw	*	536.0	518.0	708.1	518.0	*	172.	90. AG	21.	100.0	.0 36.0	.94	8.7

JOB: D:\00Projects\Cedars Sinai\01_Existing\S RUN: SATHA3

DATE : 8/6/8 TIME : 10:12:1

ADDITIONAL QUEUE LINK PARAMETERS

LINK DESCRIPTION	*	CYCLE	RED	CLEARANCE	APPROACH	SATURATION	IDLE	SIGNAL	ARRIVAL
	*	LENGTH	TIME	LOST TIME	VOL	FLOW RATE	EM FAC	TYPE	RATE
	*	(SEC)	(SEC)	(SEC)	(VPH)	(VPH)	(gm/hr)		
	*								
3. nbq	*	60	30	3.0	1456	1600	5.73	3	3
6. sbq	*	60	30	3.0	1205	1600	5.73	3	3
9. ebq	*	60	27	3.0	845	1600	5.73	3	3
12. wbq	*	60	27	3.0	2108	1600	5.73	3	3

RECEPTOR LOCATIONS

	*	COOR	DINATES (FT	')	*
RECEPTOR	*	Х	Y	Z	*
	*				- *
1. nw	*	442.0	546.0	5.4	*
2. ne	*	546.0	546.0	5.4	*
3. sw	*	442.0	454.0	5.4	*
4. se	*	546.0	454.0	5.4	*

MODEL RESULTS

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION ANGLE * (PPM) (PPM)

(DEGR)	*	REC1	REC2	REC3	REC4
0.	*	.1	.1	. 3	.2
10.	*	. 2	. 0	. 4	.1
20.	*	. 2	. 0	. 4	.1
30.	*	.2	.0	. 2	.1
40.	*	.3	.0	. 2	.1
50.	*	.3	.0	.2	.3
60.	*	.3	.0	.2	.3
70.	*	.3	.0	.2	. 2
80.	*	. 2	.0	. 2	.2
90.	*	.4	. 2	.1	.1
100.	*	.7	.4	.0	.0
110.	*	.4	.4	.1	.0
120.	*	.3	.3	. 2	.0
130.	*	.2	. 2	.2	.0
140.	*	.2	. 2	.2	.0
150.	*	.2	. 2	.2	.0
160.	*	.3	. 2	.2	.0
170.	*	.3	. 2	. 2	.0
180.	*	. 2	.3	.0	.1
190.	*	.1	.6	.0	.2
200.	*	.1	.3	.0	.3
210.	*	.1	.4	.0	.3
220.	*	.1	.2	.0	.2
230.	*	.1	.2	.0	.2
240.	*	.2	.3	.0	. 2
250.	*	.3	.5	.0	.2
260.	*	.3	.6	.0	. 2
270.	*	.1	. 4	.1	.3
280.	*	.0	. 2	. 2	.4
290.	*	.0	. 2	. 2	.3
300.	*	.0	.1	.2	.2
310.	*	.0	. 2	.2	.2
320.	*	.0	. 2	.2	.2
330.	ž	.0	.2	.2	.4
34U. 250	÷	.0	.2	.2	.4
350.	Ĵ	.0	. 3	. 2	.5
30U. 	*.	.1	.1	. 3	. 2
MAX	*	.7	.6	.4	.5
DEGR.	*	100	190	10	350

The highest concentration of $\hfill..., 70\hfill \ensuremath{\text{PPM}}$ occurred at receptor rec1 .

JOB: D:\00Projects\Cedars Sinai\01_Existing\S RUN: SAWIA3

DATE : 8/6/8 TIME : 10:13:33

The MODE flag has been set to C for calculating CO averages.

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD = .0 CM/S	ZO = 100. CM								
U =	1.0 M/S	CLAS = 6 (F)	ATIM = 60. MINUTES	MIXH = 1000. M	AMB = .0 PPM						

LINK VARIABLES

JINK DESCRIPTION	*	L	INK COORDIN	ATES (FT)		*	LENGTH	BRG TYPE	VPH	EF	н	W	V/C	QUEUE
	*	X1	Y1	X2	¥2	*	(FT)	(DEG)		(G/MI)	(FT)	(FT)		(VEH)
	-*					*								
nba	*	530.0	.0	530.0	500.0	*	500.	360. AG	2460.	1.6	.08	0.0		
nbd	*	530.0	500.0	530.0	1000.0	*	500.	360. AG	2447.	1.6	.0 5	6.0		
nbq	*	530.0	452.0	530.0	374.0	*	78.	180. AG	37.	100.0	.0 6	0.0	.71	4.0
sba	*	470.0	1000.0	470.0	500.0	*	500.	180. AG	1557.	1.6	.08	0.0		
sbd	*	470.0	500.0	470.0	.0	*	500.	180. AG	1134.	1.6	.0 5	6.0		
sbq	*	470.0	548.0	470.0	597.3	*	49.	360. AG	37.	100.0	.0 6	0.0	.45	2.5
eba	*	.0	476.0	500.0	476.0	*	500.	90. AG	1823.	1.6	.0 6	8.0		
ebd	*	500.0	476.0	1000.0	476.0	*	500.	90. AG	1947.	1.6	.0 5	6.0		
ebq	*	440.0	476.0	370.3	476.0	*	70.	270. AG	29.	100.0	.0 4	8.0	.63	3.5
wba	*	1000.0	524.0	500.0	524.0	*	500.	270. AG	2352.	1.6	.0 6	8.0		
wbd	*	500.0	524.0	.0	524.0	*	500.	270. AG	2664.	1.6	.0 5	6.0		
wbq	*	560.0	524.0	663.3	524.0	*	103.	90. AG	29.	100.0	.0 4	8.0	.82	5.2
	,INK DESCRIPTION nba nbd sba sbd sbd sbd eba eba eba ebd ebq wba wbd wbd wbq	INK DESCRIPTION * nba * nbd * nbd * sba * sbd * sbd * ebd * ebd * wba * wbd *	INK DESCRIPTION * L * X1 nba * S30.0 nbd * 530.0 nbq * 530.0 nbq * 530.0 sba * 470.0 sbd * 470.0 sbq * 470.0 eba * 0 ebd * 500.0 ebq * 440.0 wba * 1000.0 wbd * 500.0	INK DESCRIPTION * LINK COORDIN. * X1 Y1	INK DESCRIPTION * LINK COORDINATES (FT) * X1 Y1 X2 nba * 530.0 0 530.0 nbd * 530.0 500.0 530.0 nbq * 530.0 452.0 530.0 sba * 470.0 1000.0 470.0 sbd * 470.0 500.0 470.0 sbq * 0 470.0 500.0 470.0 eba * .0 476.0 500.0 eba * 000.0 eba * 000.0 woold woold woold * 500.0 476.0 370.3 wba * 1000.0 24.0 0 woold woold woold woold * 500.0 24.0 0 woold woold * 560.0 524.0 663.3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	INK DESCRIPTION * LINK COORDINATES (FT) * LENGTH BRG TYPE * X1 Y1 X2 Y2 * (FT) (DEG) nba * 530.0 .0 530.0 500.0 * 500. 360. AG nbd * 530.0 500.0 530.0 1000.0 * 500. 360. AG nbq * 530.0 500.0 530.0 1000.0 * 500. 360. AG sba * 470.0 1000.0 470.0 500.0 * 500. 180. AG sbd * 470.0 500.0 470.0 507.3 * 49. 360. AG eba * 0 476.0 500.0 476.0 * 500.0 90. AG ebd * 500.0 476.0 1000.0 476.0 * 500.0 90. AG ebd * 500.0 476.0 370.3 476.0 * 500.0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

JOB: D:\00Projects\Cedars Sinai\01_Existing\S RUN: SAWIA3

DATE : 8/6/8 TIME : 10:13:33

111111 • 10115155

ADDITIONAL QUEUE LINK PARAMETERS

1	LINK DESCRIPTION	*	CYCLE	RED	CLEARANCE	APPROACH	SATURATION	IDLE	SIGNAL	ARRIVAL
		*	LENGTH	TIME	LOST TIME	VOL	FLOW RATE	EM FAC	TYPE	RATE
		*	(SEC)	(SEC)	(SEC)	(VPH)	(VPH)	(gm/hr)		
		*								
3.	nbq	*	60	29	3.0	2460	1600	5.73	3	3
б.	sbq	*	60	29	3.0	1557	1600	5.73	3	3
9.	ebq	*	60	28	3.0	1823	1600	5.73	3	3
12.	wbq	*	60	28	3.0	2352	1600	5.73	3	3

RECEPTOR LOCATIONS

	*	COOR	DINATES (FT)	*
RECEPTOR	*	Х	Y	Z	*
	*				*
1. nw	*	430.0	558.0	5.4	*
2. ne	*	570.0	558.0	5.4	*
3. sw	*	430.0	442.0	5.4	*
4. se	*	570.0	442.0	5.4	*

MODEL RESULTS

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0.-360.

WIND * CONCENTRATION ANGLE * (PPM) (PPM)

(DEGR)*	REC1	REC2	REC3	REC4
0.	*	. 1	. 1	. 4	. 3
10.	*	.3	.0	.5	. 3
20	*	2	.0	4	
30.	*	.2	. 0	. 4	. 3
40.	*	. 2	.0	.3	.3
50.	*	.3	.0	. 4	.2
60.	*	. 3	. 0	. 3	.2
70.	*	.3	. 0	. 4	. 3
80.	*	. 3	.0	.5	. 3
90.	*	.5	. 2	. 4	.1
100.	*	.8	.4	.2	.0
110.	*	.5	. 4	. 2	.0
120.	*	.4	.4	.3	.0
130.	*	.4	.3	. 2	.0
140.	*	.4	.3	. 2	.0
150.	*	.5	.3	. 2	.0
160.	*	.5	.3	.2	.0
170.	*	.4	.3	. 2	.0
180.	*	.3	.4	.0	. 2
190.	*	.3	.6	.0	.3
200.	*	.3	.6	.0	.4
210.	*	.3	.4	.0	.3
220.	*	.2	.3	.0	. 2
230.	*	.3	.3	.0	. 2
240.	*	.3	.4	.0	. 2
250.	*	.4	. 4	.0	. 2
260.	*	.4	.6	.0	. 2
270.	*	.1	.5	.1	.3
280.		.0	.2	. 3	.6
290.	×	.0	.2	.4	.4
300.	Ĵ	.0	. 2	. 3	. 3
310.	÷	.0	. 2	. 3	. 3
320. 220	*	.0	. 2		.4
240	*	.0			. 5
350	*	.0			.0
360.	*	.0	. 2	. 5	.0
	. * .	• •		. 4	
мах	*	. 8	. 6	.5	.6
DEGR.	*	100	190	10	280

THE HIGHEST CONCENTRATION OF .80 PPM OCCURRED AT RECEPTOR REC1 .

Attachment B Operational Emissions – URBEMIS2007 Output Files

4/24/2008 10:59:03 AM

Urbemis 2007 Version 9.2.4

Combined Summer Emissions Reports (Pounds/Day)

File Name: J:\Projects\Cedar Sinai Project 2007-083\Air Quality\Operations\Operations-Alt2-72 beds.urb924

Project Name: Cedars-Sinai OPERATIONS - ALTERNATIVE 2 - 75 BEDS

Project Location: South Coast AQMD

On-Road Vehicle Emissions Based on: Version : Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

Summary Report:

AREA SOURCE EMISSION ESTIMATES

	ROG	NOX	00	<u>S02</u>	PM10	<u>PM2.5</u>	<u>CO2</u>
TOTALS (lbs/day, unmitigated)	0.16	0.43	1.95	00.0	0.00	00.0	495.95
OPERATIONAL (VEHICLE) EMISSION ESTIMATES							
	ROG	NOX	00	<u>SO2</u>	<u>PM10</u>	<u>PM2.5</u>	<u>CO2</u>
TOTALS (lbs/day, unmitigated)	3.94	4.35	47.02	60.0	15.00	2.91	9,406.82
SUM OF AREA SOURCE AND OPERATIONAL EMISSION	ESTIMATES						
	ROG	NOX	8	<u>S02</u>	<u>PM10</u>	PM2.5	<u>CO2</u>
TOTALS (lbs/day, unmitigated)	4.10	4.78	48.97	0.09	15.00	2.91	9,902.77

4/24/2008 10:59:03 AM

Area Source Unmitigated Detail Report:

AREA SOURCE EMISSION ESTIMATES Summer Pounds Per Day, Unmitigated

Source	ROG	NOX	0	<u>S02</u>	PM10	PM2.5	<u>C02</u>
Natural Gas	0.03	0.41	0.35	0.00	0.00	0.00	493.20
Hearth							
Landscape	0.13	0.02	1.60	0.00	0.00	0.00	2.75
Consumer Products	0.00						
Architectural Coatings							
TOTALS (lbs/day, unmitigated)	0.16	0.43	1.95	0.00	0.00	0.00	495.95

Area Source Changes to Defaults

or:
ē
К
etail
ď
ited
tiga
j <u>n</u>
5
Jal
<u>ē</u> .
rat
g
0

OPERATIONAL EMISSION ESTIMATES Summer Pounds Per Day, Unmitigated

Source	ROG	XON	CO	S02	PM10	PM25	C02
Hospital	3.94	4.35	47.02	0.09	15.00	2.91	9,406.82
FOTALS (lbs/day, unmitigated)	3.94	4.35	47.02	60.0	15.00	2.91	9,406.82

Operational Settings:

Does not include correction for passby trips

Does not include double counting adjustment for internal trips

Analysis Year: 2020 Temperature (F): 85 Season: Summer

Emfac: Version : Emfac2007 V2.3 Nov 1 2006

4/24/2008 10:59:03 AM

		Summary	<u>r of Land Use</u>	ŝ			
Land Use Type	Aci	reage	Trip Rate	Unit Type	No. Units	Total Trips	Total VMT
Hospital			11.81	beds	75.00	885.75	8,691.42
						885.75	8,691.42
		<u>Veh</u>	iicle Fleet Mi	×			
Vehicle Type		Percent Typ	Ð	Non-Catalys	ţ	Catalyst	Diesel
Light Auto		50.	6	0.0	0	100.0	0.0
Light Truck < 3750 lbs		7.	2	0.0	0	98.6	1.4
Light Truck 3751-5750 lbs		23.	б	0.0	0	100.0	0.0
Med Truck 5751-8500 lbs		11.	0	0.0	0	100.0	0.0
Lite-Heavy Truck 8501-10,000 lbs		1.	7	0.0	0	82.4	17.6
Lite-Heavy Truck 10,001-14,000 lbs		Ö	5	0.0	0	60.0	40.0
Med-Heavy Truck 14,001-33,000 lbs		–	0	0.0	0	20.0	80.0
Heavy-Heavy Truck 33,001-60,000 lbs		Ö	6	0.0	0	0.0	100.0
Other Bus		Ō	£	0.0	0	0.0	100.0
Urban Bus		Ō	£	0.0	0	0.0	100.0
Motorcycle		Ņ	0	41.	4	58.6	0.0
School Bus		O	4	0.0	0	0.0	100.0
Motor Home		0	0	0.0	0	88.9	11.1
		Tra	vel Condition	S			
		Residentia	_			Commercial	
	Home-Work	Home-	Shop	Home-Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	12.7		7.0	9.5	13.3	7.4	8.9

4/24/2008 10:59:03 AM

		Travel Cond	itions			
		Residential			Commercial	
	Home-Work	Home-Shop	Home-Other	Commute	Non-Work	Customer
Rural Trip Length (miles)	17.6	12.1	14.9	15.4	9.6	12.6
Trip speeds (mph)	30.0	30.0	30.0	30.0	30.0	30.0
% of Trips - Residential	32.9	18.0	49.1			
- - - - - - - - - - - - - - - - - - -						

% of Trips - Commercial (by land use)

Hospital

62.5

12.5

4/24/2008 11:00:30 AM

Urbemis 2007 Version 9.2.4

Combined Winter Emissions Reports (Pounds/Day)

File Name: J:\Projects\Cedar Sinai Project 2007-083\Air Quality\Operations\Operations-Alt2-72 beds.urb924

Project Name: Cedars-Sinai OPERATIONS - ALTERNATIVE 2 - 75 BEDS

Project Location: South Coast AQMD

On-Road Vehicle Emissions Based on: Version : Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

Summary Report:

AREA SOURCE EMISSION ESTIMATES

	ROG	NOX	0	<u> SO2</u>	<u>PM10</u>	<u>PM2.5</u>	<u>C02</u>
TOTALS (lbs/day, unmitigated)	0.03	0.41	0.35	00.0	00.0	00.0	493.20
OPERATIONAL (VEHICLE) EMISSION ESTIMATES							
	ROG	NOX	<u> </u>	<u>S02</u>	PM10	<u>PM2.5</u>	<u>CO2</u>
TOTALS (lbs/day, unmitigated)	4.00	5.44	41.30	0.08	15.00	2.91	8,146.05
SUM OF AREA SOURCE AND OPERATIONAL EMISSION	N ESTIMATES						
	ROG	NOX	<u></u>	<u>S02</u>	<u>PM10</u>	PM2.5	<u>C02</u>
TOTALS (lbs/day, unmitigated)	4.03	5.85	41.65	0.08	15.00	2.91	8,639.25

4/24/2008 11:00:30 AM

Area Source Unmitigated Detail Report:

3 2 È È È . 10.5. AREA SOURCE EMISSION ESTIMATES

AREA SOURCE EMISSION ESTIMATES Winte	ter Pounds Per Day,	Unmitigated					
Source	ROG	NOX	00	<u>S02</u>	PM10	<u>PM2.5</u>	<u>C02</u>
Natural Gas	0.03	0.41	0.35	0.00	0.00	0.00	493.20
Hearth							
Landscaping - No Winter Emissions							
Consumer Products	0.00						
Architectural Coatings							
TOTALS (lbs/day, unmitigated)	0.03	0.41	0.35	0.00	0.00	0.00	493.20

Area Source Changes to Defaults

Report:	
Detail F	
mitigated	
tional Un	
Opera	

	S02
	00
Day, Unmitigated	NOX
linter Pounds Per	ROG
OPERATIONAL EMISSION ESTIMATES W	Source

C02 8,146.05 8,146.05

PM25 2.91 2.91

PM10 15.00 15.00

> 0.08 0.08

> 41.30 41.30

5.44 5.44

4.00 4.00

Operational Settings:

TOTALS (lbs/day, unmitigated)

Hospital

Does not include correction for passby trips

Does not include double counting adjustment for internal trips

Analysis Year: 2020 Temperature (F): 60 Season: Winter

Emfac: Version : Emfac2007 V2.3 Nov 1 2006

4/24/2008 11:00:30 AM Page: 3

		Summary of	Land Use	(0)			
Land Use Type	Ac	creage Trip	o Rate	Unit Type	No. Units	Total Trips	Total VMT
Hospital			11.81	beds	75.00	885.75	8,691.42
						885.75	8,691.42
		<u>Vehicle</u>	e Fleet Mix				
Vehicle Type		Percent Type		Non-Catalys	ŧ	Catalyst	Diesel
Light Auto		50.6		0.0	0	100.0	0.0
Light Truck < 3750 lbs		7.2		0.0	0	98.6	1.4
Light Truck 3751-5750 lbs		23.3		0.0	0	100.0	0.0
Med Truck 5751-8500 lbs		11.0		0.0	0	100.0	0.0
Lite-Heavy Truck 8501-10,000 lbs		1.7		0.0	0	82.4	17.6
Lite-Heavy Truck 10,001-14,000 lbs		0.5		0.0	0	60.0	40.0
Med-Heavy Truck 14,001-33,000 lbs		1.0		0.0	0	20.0	80.0
Heavy-Heavy Truck 33,001-60,000 lbs		0.6		0.0	0	0.0	100.0
Other Bus		0.1		0.0	0	0.0	100.0
Urban Bus		0.1		0.0	0	0.0	100.0
Motorcycle		2.9		41.	4	58.6	0.0
School Bus		0.1		0.0	0	0.0	100.0
Motor Home		0.9		0.0	0	88.9	11.1
		Travel	Conditions	(0)			
		Residential				Commercial	
	Home-Work	Home-Sho	d T	Iome-Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	12.7	7	0.	9.5	13.3	7.4	8.9

Urban Trip Length (miles)

4/24/2008 11:00:30 AM

		Travel Cond	itions			
		Residential			Commercial	
	Home-Work	Home-Shop	Home-Other	Commute	Non-Work	Customer
Rural Trip Length (miles)	17.6	12.1	14.9	15.4	9.6	12.6
Trip speeds (mph)	30.0	30.0	30.0	30.0	30.0	30.0
% of Trips - Residential	32.9	18.0	49.1			

% of Trips - Commercial (by land use)

Hospital

25.0 12.5

4/24/2008 11:01:11 AM

Urbemis 2007 Version 9.2.4

Combined Annual Emissions Reports (Tons/Year)

File Name: J:\Projects\Cedar Sinai Project 2007-083\Air Quality\Operations\Operations-Alt2-72 beds.urb924

Project Name: Cedars-Sinai OPERATIONS - ALTERNATIVE 2 - 75 BEDS

Project Location: South Coast AQMD

On-Road Vehicle Emissions Based on: Version : Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

Summary Report:

AREA SOURCE EMISSION ESTIMATES

	ROG	NOX	00	<u> SO2</u>	PM10	PM2.5	<u>C02</u>
TOTALS (tons/year, unmitigated)	0.03	0.08	0.35	0.00	00.0	00.0	90.51
OPERATIONAL (VEHICLE) EMISSION ESTIMATES							
	ROG	NOX	00	<u>S02</u>	PM10	<u>PM2.5</u>	<u>C02</u>
TOTALS (tons/year, unmitigated)	0.72	0.86	8.23	0.02	2.74	0.53	1,640.05
SUM OF AREA SOURCE AND OPERATIONAL EMISSION I	ESTIMATES						
	ROG	NOX	00	<u>S02</u>	PM10	<u>PM2.5</u>	<u>C02</u>
TOTALS (tons/year, unmitigated)	0.75	0.94	8.58	0.02	2.74	0.53	1,730.56

4/24/2008 11:01:11 AM

Area Source Unmitigated Detail Report:

AREA SOURCE EMISSION ESTIMATES Annual Tons Per Year, Unmitigated

Source	ROG	NOX	8	<u>S02</u>	PM10	PM2.5	<u>C02</u>
Natural Gas	0.01	0.08	0.06	0.00	0.00	0.00	90.01
Hearth							
Landscape	0.02	0.00	0.29	0.00	0.00	0.00	0.50
Consumer Products	0.00						
Architectural Coatings							
TOTALS (tons/year, unmitigated)	0.03	0.08	0.35	0.00	0.00	0.00	90.51

Area Source Changes to Defaults

sport:
Ř
Detail
ited
nmitiga
5
ional
berati
ð

OPERATIONAL EMISSION ESTIMATES Annual Tons Per Year, Unmitigated

Source	ROG	XON	00	S02	PM10	PM25	C02
łospital	0.72	0.86	8.23	0.02	2.74	0.53	1,640.05
OTALS (tons/year, unmitigated)	0.72	0.86	8.23	0.02	2.74	0.53	1,640.05

Operational Settings:

Does not include correction for passby trips

Does not include double counting adjustment for internal trips

Analysis Year: 2020 Season: Annual

Emfac: Version : Emfac2007 V2.3 Nov 1 2006

4/24/2008 11:01:11 AM Page: 3

		Summary	∕ of Land Use	S			
Land Use Type	Ac	creage	Trip Rate	Unit Type	No. Units	Total Trips	Total VMT
Hospital			11.81	beds	75.00	885.75	8,691.42
						885.75	8,691.42
		<u>Veh</u>	iicle Fleet Mi	×I			
Vehicle Type		Percent Typ	Ð	Non-Cataly	st	Catalyst	Diesel
Light Auto		50.	9	Ö	0	100.0	0.0
Light Truck < 3750 lbs		7.	7	Ö	0	98.6	1.4
Light Truck 3751-5750 lbs		23.	б	Ö	0	100.0	0.0
Med Truck 5751-8500 lbs		11.	0	Ö	0	100.0	0.0
Lite-Heavy Truck 8501-10,000 lbs		7.	7	Ö	0	82.4	17.6
Lite-Heavy Truck 10,001-14,000 lbs		Ö	5	Ö	0	60.0	40.0
Med-Heavy Truck 14,001-33,000 lbs		.	0	Ö	0	20.0	80.0
Heavy-Heavy Truck 33,001-60,000 lbs		Ō	6	Ö	0	0.0	100.0
Other Bus		Ō	7	Ö	0	0.0	100.0
Urban Bus		Ō	7	Ö	0	0.0	100.0
Motorcycle		Ŋ	o	41.	4	58.6	0.0
School Bus		Ō	+	Ö	0	0.0	100.0
Motor Home		0	0	0	0	88.9	11.1
		Tra	vel Conditior	<u>S</u>			
		Residentia	_			Commercial	
	Home-Work	Home-9	Shop	Home-Other	Commut	e Non-Work	Customer
Urban Trip Length (miles)	12.7		7.0	9.5	13.	3 7.4	8.9

Urban Trip Length (miles)

4/24/2008 11:01:11 AM

|--|

% of Trips - Commercial (by land use) Hospital

62.5

12.5

4/24/2008 11:29:34 AM

Urbemis 2007 Version 9.2.4

Combined Summer Emissions Reports (Pounds/Day)

File Name: J:\Projects\Cedar Sinai Project 2007-083\Air Quality\Operations\Operations-Alt3-outpatient.urb924

Project Name: Cedars-Sinai OPERATIONS - ALTERNATIVE 3 - 20K OUTPATIENT SERVICES

Project Location: South Coast AQMD

On-Road Vehicle Emissions Based on: Version : Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

Summary Report:

AREA SOURCE EMISSION ESTIMATES

	ROG	NOX	8	<u> SO2</u>	<u>PM10</u>	<u>PM2.5</u>	<u>C02</u>
TOTALS (lbs/day, unmitigated)	0.21	1.12	2.52	00.0	0.00	0.00	1,317.95
OPERATIONAL (VEHICLE) EMISSION ESTIMATES							
	ROG	NOX	8	<u> SO2</u>	PM10	<u>PM2.5</u>	<u>CO2</u>
TOTALS (lbs/day, unmitigated)	32.46	39.08	422.74	0.84	134.91	26.20	84,579.11
SUM OF AREA SOURCE AND OPERATIONAL EMISSION	I ESTIMATES						
	ROG	NOX	8	<u> SO2</u>	<u>PM10</u>	<u>PM2.5</u>	<u>C02</u>
TOTALS (lbs/day, unmitigated)	32.67	40.20	425.26	0.84	134.91	26.20	85,897.06

4/24/2008 11:29:34 AM

Area Source Unmitigated Detail Report:

AREA SOURCE EMISSION ESTIMATES Summer Pounds Per Day, Unmitigated

Source	ROG	NOX	0	<u>S02</u>	PM10	<u>PM2.5</u>	<u>C02</u>
Natural Gas	0.08	1.10	0.92	0.00	0.00	0.00	1,315.20
Hearth							
Landscape	0.13	0.02	1.60	0.00	0.00	0.00	2.75
Consumer Products	0.00						
Architectural Coatings							
TOTALS (lbs/day, unmitigated)	0.21	1.12	2.52	0.00	0.00	0.00	1,317.95

Area Source Changes to Defaults

11
E
×
ð
ñ
_
Ξ.
÷
æ
ш.
ğ
Ð
σ
<u>o</u>
Ξ.
Ξ
Ξ
\supset
_
g
5
:≚
σ
۵.
å
0
-

OPERATIONAL EMISSION ESTIMATES Summer Pounds Per Day, Unmitigated

Source	ROG	XON	00	S02	PM10	PM25	C02
Hospital	32.46	39.08	422.74	0.84	134.91	26.20	84,579.11
FOTALS (lbs/day, unmitigated)	32.46	39.08	422.74	0.84	134.91	26.20	84,579.11

Operational Settings:

Does not include correction for passby trips

Does not include double counting adjustment for internal trips

Analysis Year: 2020 Temperature (F): 85 Season: Summer

Emfac: Version : Emfac2007 V2.3 Nov 1 2006

4/24/2008 11:29:34 AM Page: 3

		<u>Summa</u>	ry of Land Use	SS			
Land Use Type	Ac	creage	Trip Rate	Unit Type	No. Units	Total Trips	Total VMT
Hospital			39.82	beds	200.00	7,964.00	78,146.75
						7,964.00	78,146.75
		M	shicle Fleet Mi	.×I			
Vehicle Type		Percent Ty	/pe	Non-Cataly	st	Catalyst	Diesel
Light Auto		5(0.6	Ö	0	100.0	0.0
Light Truck < 3750 lbs		1 -	7.2	Ö	0	98.6	1.4
Light Truck 3751-5750 lbs		й	3.3	Ö	0	100.0	0.0
Med Truck 5751-8500 lbs		÷	1.0	Ö	0	100.0	0.0
Lite-Heavy Truck 8501-10,000 lbs		·	1.7	Ö	0	82.4	17.6
Lite-Heavy Truck 10,001-14,000 lbs		0	0.5	Ö	0	60.0	40.0
Med-Heavy Truck 14,001-33,000 lbs		·	1.0	Ö	0	20.0	80.0
Heavy-Heavy Truck 33,001-60,000 lbs		C	0.6	Ö	0	0.0	100.0
Other Bus		C	0.1	Ö	0	0.0	100.0
Urban Bus		C	0.1	Ö	0	0.0	100.0
Motorcycle			2.9	41.	4	58.6	0.0
School Bus		C	0.1	Ö	0	0.0	100.0
Motor Home		C	0.0	Ö	0	88.9	11.1
		Ë	avel Condition	<u>S</u>			
		Resident	ial			Commercial	
	Home-Work	Home	-Shop	Home-Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	12.7		7.0	9.5	13.3	7.4	8.9

4/24/2008 11:29:34 AM

		<u>Travel Cond</u>	itions			
		Residential			Commercial	
	Home-Work	Home-Shop	Home-Other	Commute	Non-Work	Customer
Rural Trip Length (miles)	17.6	12.1	14.9	15.4	9.6	12.6
Trip speeds (mph)	30.0	30.0	30.0	30.0	30.0	30.0
% of Trips - Residential	32.9	18.0	49.1			

% of Trips - Commercial (by land use)

Hospital

62.5

12.5

4/24/2008 11:30:21 AM

Urbemis 2007 Version 9.2.4

Combined Winter Emissions Reports (Pounds/Day)

File Name: J:\Projects\Cedar Sinai Project 2007-083\Air Quality\Operations\Operations-Alt3-outpatient.urb924

Project Name: Cedars-Sinai OPERATIONS - ALTERNATIVE 3 - 20K OUTPATIENT SERVICES

Project Location: South Coast AQMD

On-Road Vehicle Emissions Based on: Version : Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

Summary Report:

AREA SOURCE EMISSION ESTIMATES

	ROG	NOX	8	<u> SO2</u>	<u>PM10</u>	<u>PM2.5</u>	<u>C02</u>
TOTALS (lbs/day, unmitigated)	0.08	1.10	0.92	0.00	0.00	0.00	1,315.20
OPERATIONAL (VEHICLE) EMISSION ESTIMATES							
	ROG	NOX	8	<u>S02</u>	PM10	<u>PM2.5</u>	<u>CO2</u>
TOTALS (lbs/day, unmitigated)	34.79	48.95	371.33	0.68	134.91	26.20	73,243.17
SUM OF AREA SOURCE AND OPERATIONAL EMISSION	N ESTIMATES						
	ROG	NOX	<u>8</u>	<u>S02</u>	<u>PM10</u>	<u>PM2.5</u>	<u>CO2</u>
TOTALS (lbs/day, unmitigated)	34.87	50.05	372.25	0.68	134.91	26.20	74,558.37

4/24/2008 11:30:21 AM

Area Source Unmitigated Detail Report:

AREA SOURCE EMISSION ESTIMATES Wint	ter Pounds Per Day,	Unmitigated					
Source	ROG	NOX	00	<u>S02</u>	PM10	<u>PM2.5</u>	<u>C02</u>
Natural Gas	0.08	1.10	0.92	0.00	0.00	0.00	1,315.20
Hearth							
Landscaping - No Winter Emissions							
Consumer Products	0.00						
Architectural Coatings							
TOTALS (lbs/day, unmitigated)	0.08	1.10	0.92	00.0	0.00	00.0	1,315.20

Area Source Changes to Defaults

Report:
=
畿
ď
5
ĕ
at
Ō
E
Ε
5
_
a
S
≓≓
g
ð
8
0

OPERATIONAL EMISSION ESTIMATES Winter Pounds Per Day, Unmitigated

Source	ROG	XON	00	S02	PM10	PM25	C02
łospital	34.79	48.95	371.33	0.68	134.91	26.20	73,243.17
COTALS (lbs/day, unmitigated)	34.79	48.95	371.33	0.68	134.91	26.20	73,243.17

Operational Settings:

Does not include correction for passby trips

Does not include double counting adjustment for internal trips

Analysis Year: 2020 Temperature (F): 60 Season: Winter

Emfac: Version : Emfac2007 V2.3 Nov 1 2006

	AM
	0:21
	11:3
с С	2008
Page	4/24/;

		Summary of	Land Uses				
Land Use Type	Ac	reage Trip	o Rate	Unit Type	No. Units	Total Trips	Total VMT
Hospital			39.82	beds	200.00	7,964.00	78,146.75
						7,964.00	78,146.75
		Vehicle	e Fleet Mix				
Vehicle Type		Percent Type		Non-Catalys		Catalyst	Diesel
Light Auto		50.6		0.0	-	100.0	0.0
Light Truck < 3750 lbs		7.2		0.0	-	98.6	1.4
Light Truck 3751-5750 lbs		23.3		0.0		100.0	0.0
Med Truck 5751-8500 lbs		11.0		0.0	-	100.0	0.0
Lite-Heavy Truck 8501-10,000 lbs		1.7		0.0	-	82.4	17.6
Lite-Heavy Truck 10,001-14,000 lbs		0.5		0.0		60.0	40.0
Med-Heavy Truck 14,001-33,000 lbs		1.0		0.0	-	20.0	80.0
Heavy-Heavy Truck 33,001-60,000 lbs		0.6		0.0	-	0.0	100.0
Other Bus		0.1		0.0	-	0.0	100.0
Urban Bus		0.1		0.0		0.0	100.0
Matarcycle		2.9		41.4		58.6	0.0
School Bus		0.1		0.0	-	0.0	100.0
Motor Home		0.9		0.0	-	88.9	11.1
		Travel	Conditions				
		Residential				Commercial	
	Home-Work	Home-Sho	H H	ome-Other	Commute	Non-Work	Customer

8.9

7.4

13.3

9.5

7.0

12.7

Urban Trip Length (miles)

4/24/2008 11:30:21 AM

		Travel Cond	itions			
		Residential			Commercial	
	Home-Work	Home-Shop	Home-Other	Commute	Non-Work	Customer
Rural Trip Length (miles)	17.6	12.1	14.9	15.4	9.6	12.6
Trip speeds (mph)	30.0	30.0	30.0	30.0	30.0	30.0
% of Trips - Residential	32.9	18.0	49.1			

% of Trips - Commercial (by land use)

Hospital

25.0 12.5

4/24/2008 11:31:07 AM

Urbemis 2007 Version 9.2.4

Combined Annual Emissions Reports (Tons/Year)

File Name: J:\Projects\Cedar Sinai Project 2007-083\Air Quality\Operations\Operations-Alt3-outpatient.urb924

Project Name: Cedars-Sinai OPERATIONS - ALTERNATIVE 3 - 20K OUTPATIENT SERVICES

Project Location: South Coast AQMD

On-Road Vehicle Emissions Based on: Version : Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

Summary Report:

AREA SOURCE EMISSION ESTIMATES

	ROG	NOX	0	<u>S02</u>	PM10	<u>PM2.5</u>	<u>C02</u>
TOTALS (tons/year, unmitigated)	0.03	0.20	0.46	00.0	0.00	0.00	240.52
OPERATIONAL (VEHICLE) EMISSION ESTIMATES							
	ROG	NOX	00	<u>S02</u>	PM10	<u>PM2.5</u>	<u>CO2</u>
TOTALS (tons/year, unmitigated)	6.07	7.73	74.02	0.14	24.62	4.78	14,746.08
SUM OF AREA SOURCE AND OPERATIONAL EMISSION F	ESTIMATES						
	ROG	NOX	8	<u>SO2</u>	<u>PM10</u>	<u>PM2.5</u>	<u>CO2</u>
TOTALS (tons/year, unmitigated)	6.10	7.93	74.48	0.14	24.62	4.78	14,986.60

4/24/2008 11:31:07 AM

Area Source Unmitigated Detail Report:

AREA SOURCE EMISSION ESTIMATES Annual Tons Per Year, Unmitigated

		ŀ					
Source	ROG	NOX	8	<u>SO2</u>	PM10	<u>PM2.5</u>	<u>C02</u>
Natural Gas	0.01	0.20	0.17	0.00	0.00	0.00	240.02
Hearth							
Landscape	0.02	0.00	0.29	00.00	0.00	0.00	0.50
Consumer Products	0.00						
Architectural Coatings							
TOTALS (tons/year, unmitigated)	0.03	0.20	0.46	0.00	0.00	0.00	240.52

Area Source Changes to Defaults

Ë
Sepo
LL.
tail
å
σ
te.
g
Ξ
E
5
=
g
ō
Ë
5
e B
Ō

OPERATIONAL EMISSION ESTIMATES Annual Tons Per Year, Unmitigated

Source	ROG	XON	00	S02	PM10	PM25	CO2
Hospital	6.07	7.73	74.02	0.14	24.62	4.78	14,746.08
FOTALS (tons/year, unmitigated)	6.07	7.73	74.02	0.14	24.62	4.78	14,746.08

Operational Settings:

Does not include correction for passby trips

Does not include double counting adjustment for internal trips

Analysis Year: 2020 Season: Annual

Emfac: Version : Emfac2007 V2.3 Nov 1 2006

	ł
	2
Page: 3	000011011

4/24/2008 11:31:07 AM						
		<u>Summa</u>	ary of Land Us	es		
Land Use Type	Ac	reage	Trip Rate	Unit Type	No. Units	Total Trips
Hospital			39.82	beds	200.00	7,964.00
						7,964.00
			ehicle Fleet M	XI		
Vehicle Type		Percent T	ype	Non-Catalys	ţ	Catalyst
Light Auto		U)	9.0	0.0	0	100.0
Light Truck < 3750 lbs			7.2	0.0	0	98.6
Light Truck 3751-5750 lbs			23.3	0.0	0	100.0
Med Truck 5751-8500 lbs		-	1.0	0	0	100.0
Lite-Heavy Truck 8501-10,000 lbs			1.7	0.0	0	82.4
Lite-Heavy Truck 10,001-14,000 lbs			0.5	0	0	60.0
Med-Heavy Truck 14,001-33,000 lbs			1.0	0.0	0	20.0
Heavy-Heavy Truck 33,001-60,000 lbs			0.6	0.0	0	0.0
Other Bus			0.1	0.0	0	0.0
Urban Bus			0.1	0	0	0.0
Motorcycle			2.9	41.	4	58.6
School Bus			0.1	0.0	0	0.0
Motor Home			0.9	Ö	0	88.9
		ы	ravel Conditio	<u>us</u>		
		Residen	tial			Commercial
	Home-Work	Hom	e-Shop	Home-Other	Commute	Non-Work

1.4 0.0

Diesel 0.0

78,146.75 78,146.75

Total VMT

0.0 17.6 40.0 80.0 100.0 100.0

0.0 100.0 11.1 8.9

7.4

13.3

9.5

7.0

12.7

Urban Trip Length (miles)

Customer

4/24/2008 11:31:07 AM

		<u>Travel Cond</u>	itions			
		Residential			Commercial	
	Home-Work	Home-Shop	Home-Other	Commute	Non-Work	Customer
Rural Trip Length (miles)	17.6	12.1	14.9	15.4	9.6	12.6
Trip speeds (mph)	30.0	30.0	30.0	30.0	30.0	30.0
% of Trips - Residential	32.9	18.0	49.1			

% of Trips - Commercial (by land use)

Hospital

62.5

12.5

Attachment C Mobile Noise Calculations
Alternauve 2	(0707)										50 Ĥ	75 ft	100 6
			TOT.	EOUIVAL	ENT LANE DISTANCE	VEHICLE TYPE %	VEHICLE SPEED	NOIS	E LEVEL (dB	(A)	ROW	ROW	ROW
ROAD SEGMENT			# VEH.			Auto MT HT	Auto k/h MT k/h HT k	c/h Auto	IM	HT	CNEL	CNEL	CNEL
	from:	to:		D1 D2	Eq. Dis.	% Auto % MT % HT					(dBA)	(dBA)	(dBA)
Beverly Blvd	Robertson Blvd	George Burns Rd	3426	6 42	16	91 3118 6 206 3 103	40 64 40 64 40 0	64 70.9	68.1	6.69	73.3	71.9	9.0T
Beverly Blvd	George Burns Rd	San Vincente Blvd	3498	6 42	16	91 3183 6 210 3 105	40 64 40 64 40 0	64 71.0	68.2	70.0	73.4	72.0	71.0
Beverly Blvd	San Vicente	La Cienega	3368	6 42	16	92 3099 7 236 4 135	41 66 41 66 41 0	66 71.2	68.8	71.2	74.1	72.7	71.6
Robertson Blvd	Beverly Blvd	Alden Dr.	2138	6 18	10	91 1945 6 128 3 64.1	40 64 40 64 40 6	64 68.9	66.0	69.3	72.2	70.7	69.69
Robertson Blvd	Alden Dr	Third St	2172	6 18	10	91 1977 6 130 3 65.2	25 40 25 40 25 4	40 63.1	62.9	67.5	0.69	67.5	66.4
George Burns Dr	Beverly Blvd	Alden Dr.	750	6 18	10	91 682 6 45 3 22.5	40 64 40 64 40 6	64 64.3	61.5	64.8	67.7	66.2	65.1
George Burns Dr	Alden Dr	Third St	942	6 18	10	91 857.2 6 56.5 3 28.3	40 64 40 64 40 0	64 65.3	62.5	65.8	68.7	67.2	66.1
Alden Dr	Robertson Blvd	George Burns Rd	666	6 18	10	91 605.6 6 39.9 3 20	40 64 40 64 40 6	64 63.8	61.0	64.3	67.2	65.7	64.6
Third St	Robertson Blvd	George Burns Rd	2339	6 42	16	91 2128 6 140 3 70.2	25 40 25 40 25 ⁴	40 63.4	63.2	66.4	68.1	66.7	65.7
Third St	George Burns Rd	Sherbourne Dr	2793	6 42	16	91 2542 6 168 3 83.8	40 64 40 64 40 0	64 70.0	67.2	69.0	72.5	71.1	70.0
La Cienega Blvd	Wilshire Blvd	Third St	3963	6 66	20	91 3606 6 238 3 119	25 40 25 40 25 4	40 65.7	65.5	68.7	70.2	68.8	67.8
Alternative 3	(2023)												
											50 ft	75 ft	100 ft
			TOT.	EQUIVAL	ENT LANE DISTANCE	VEHICLE TYPE %	VEHICLE SPEED	NOIS	E LEVEL (db	(<u>v</u>)	ROW	ROW	ROW
ROAD SEGMENT		ī	# VEH.			Auto MT HT	Auto k/h MT k/h HT k	c/h Auto	TM	HT	CNEL	CNEL	CNEL
	from:	to:		D1 D2	Eq. Dis.	% Auto % MT % HT					(dBA)	(dBA)	(dBA)
Beverly Blvd	Robertson Blvd	George Burns Rd	3426	6 42	16	91 3118 6 206 3 103	40 64 40 64 40 6	64 70.9	68.1	69.9	73.3	71.9	70.9
Beverly Blvd	George Burns Rd	San Vincente Blvd	3604	6 42	16	91 3280 6 216 3 108	40 64 40 64 40 6	64 71.1	68.3	70.1	73.6	72.2	71.1
Beverly Blvd	San Vicente	La Cienega	3458	6 42	16	92 3181 7 242 4 138	41 66 41 66 41 0	66 71.3	68.9	71.3	74.2	72.8	71.8
Robertson Blvd	Beverly Blvd	Alden Dr.	2199	6 18	10	91 2001 6 132 3 66	40 64 40 64 40 6	64 69.0	66.1	69.5	72.4	70.9	69.8
Robertson Blvd	Alden Dr	Third St	2247	6 18	10	91 2044 6 135 3 67.4	25 40 25 40 25 4	40 63.2	63.0	67.7	69.2	67.7	66.5
George Burns Dr	Beverly Blvd	Alden Dr.	856	6 18	10	91 778.5 6 51.3 3 25.7	40 64 40 64 40 6	64 64.9	62.0	65.4	68.3	66.8	65.7
George Burns Dr	Alden Dr	Third St	1041	6 18	10	91 947.3 6 62.5 3 31.2	40 64 40 64 40 6	64 65.7	62.9	66.2	69.1	67.6	66.5
Alden Dr	Robertson Blvd	George Burns Rd	867	6 18	10	91 789 6 52 3 26	40 64 40 64 40 0	64 64.9	62.1	65.4	68.3	66.8	65.7
Third St	Robertson Blvd	George Burns Rd	2339	6 42	16	91 2128 6 140 3 70.2	25 40 25 40 25 4	40 63.4	63.2	66.4	68.1	66.7	65.7
Third St	George Burns Rd	Sherbourne Dr	2892	6 42	16	91 2632 6 174 3 86.8	40 64 40 64 40 6	64 70.2	67.3	69.2	72.6	71.2	70.2
La Cienega Blvd	Wilshire Blvd	Third St	4007	6 66	20	91 3646 6 240 3 120	25 40 25 40 25 4	40 65.7	65.6	68.7	70.2	68.9	67.9

Cedar-Sinai Project CNEL Noise Estimates - Based on AM Peak Hour

Alternative 2 (2023)

(0707) 7 34		EGE				Surger		à				4		110101			50 ft	75 ft	100 ft
		TOT.	EOL	JIVALENT I	LANE DISTANCE	VEHIC	CLE TYPE			VEH	ICLE SPE	EED	~ . .	OISELE	IVEL (dB.	Q	ROW	ROW	ROW
from:	to:	# VEH.	DI	D2	Ea. Dis.	<u>Auto</u> % Auto	м 8 10	т <u>н</u>	ΗT	Auto		E E	K/D		=	ī	(dBA)	(dBA)	(dBA)
Robertson Blvd	George Burns Rd	3498	9	42	16	91 3183	6 21	0 3	105	40 64	. 40 6	4 40	64 7	0.0	8.2 7	0.0	73.4	72.0	71.0
George Burns Rd	San Vincente Blvd	3677	9	42	16	91 3346	6 22	1 3	110	40 64	. 40 6	4 40	64 7	1.2 6	8.4 7	0.2	73.7	72.3	71.2
San Vicente	La Cienega	3865	9	42	16	92 3556	7 27	1 4	155	41 66	41 6	6 41	66 7	1.8	9.4 7	1.8	74.7	73.3	72.2
Beverly Blvd	Alden Dr.	2309	9	18	10	91 2101	6 15	39	69.3	40 64	. 40 6	4 40	64 69	9.2 6	6.4 6	9.7	72.6	71.1	70.0
Alden Dr	Third St	2396	9	18	10	91 2180	6 14	14 3	71.9	25 40	25 4	0 25	40 6	3.5 6.	3.3 6	8.0	69.4	67.9	66.8
Beverly Blvd	Alden Dr.	897	9	18	10	91 816.3	6 53	.8	26.9	40 64	. 40 6	4 40	64 65	5.1 6.	2.2 6	5.6	68.5	67.0	65.9
Alden Dr	Third St	1001	9	18	10	91 910.5	9 9	0 3	30	40 64	. 40 6	4 40	64 65	5.6 6	2.7 6	6.1	69.0	67.4	66.3
Robertson Blvd	George Burns Rd	864	9	18	10	91 785.8	6 51	.8	25.9	40 64	. 40 6	4 40	64 6	.9 6.1	2.1 6	5.4	68.3	66.8	65.7
Robertson Blvd	George Burns Rd	2313	9	42	16	91 2105	6 15	39	69.4	25 40	25 4	0 25	40 63	3.3 6.	3.2 6	6.3	68.1	66.7	65.6
George Burns Rd	Sherbourne Dr	2975	9	42	16	91 2707	6 17	38	89.2	40 64	. 40 6	4 40	64 7(.3 6	7.5 6	9.3	72.7	71.3	70.3
Wilshire Blvd	Third St	4913	9	99	20	91 4470	6 25	5 3	147	25 40	25 4	0 25	40 60	5.6 6	6.4 6	9.6	71.1	69.8	68.8
<u> (2023)</u>																_	50 ft	75 fit	100 ft
		TOT.	EQU	IIVALENT I	ANE DISTANCE	VEHIC	CLE TYPE	3 %		VEH	ICLE SPE	ED	4	VOISE LE	VEL (dB.	(A)	ROW	ROW	ROW
	ĺ	# VEH.				Auto	ΜT	ΗT		Auto k/ł	MT k	h HT	k/h <u>A</u> i	<u>Ito</u>	<u>IT</u>	HT	CNEL	CNEL	CNEL
from:	to:		DI	D2	Eq. Dis.	% Auto	W %	Т %	HT								(dBA)	(dBA)	(dBA)
Robertson Blvd	George Burns Rd	3498	9	42	16	91 3183	6 21	0 3	105	40 64	. 40 6	4 40	64 7	0.0	8.2 7	0.0	73.4	72.0	71.0
George Burns Rd	San Vincente Blvd	3807	9	42	16	91 3464	6 22	38	114	40 64	. 40 6	4 40	64 7	.4 6	8.5 7	0.4	73.8	72.4	71.4
San Vicente	La Cienega	3976	9	42	16	92 3657	7 27	78 4	159	41 66	41 6	6 41	66 7	6.1	9.5 7	1.9	74.8	73.4	72.4
Beverly Blvd	Alden Dr.	2384	9	18	10	91 2169	6 14	13 3	71.5	40 64	. 40 6	4 40	64 69	9.3 6	6.5 6	9.8	72.7	71.2	70.1
Alden Dr	Third St	2486	9	18	10	91 2262	6 14	19 3	74.6	25 40	25 4	0 25	40 63	3.6 6.	3.5 6	8.1	69.6	68.1	67.0
Beverly Blvd	Alden Dr.	1027	9	18	10	91 934.1	6 61	.6 3	30.8	40 64	. 40 6	4 40	64 65	5.7 6.	2.8 6	6.2	69.1	67.6	66.4
Alden Dr	Third St	1122	9	18	10	91 1021	6 67	.3 3	33.6	40 64	. 40 6	4 40	64 60	5.1 6.	3.2 6	6.5	69.4	67.9	66.8
Robertson Blvd	George Burns Rd	1110	9	18	10	91 1010	6 66	.6 3	33.3	40 64	. 40 6	4 40	64 60	5.0 6.	3.2 6	6.5	69.4	67.9	66.8
Robertson Blvd	George Burns Rd	2313	9	42	16	91 2105	6 15	10 3 1	69.4	25 40	25 4	0 25	40 63	3.3 6.	3.2 6	6.3	68.1	66.7	65.6
George Burns Rd	Sherbourne Dr	3096	9	42	16	91 2817	6 18	36 3	92.9	40 64	. 40 6	4 40	64 7(.5 6	7.6 6	9.5	72.9	71.5	70.5
Wilshire Blvd	Third St	4968	9	66	20	91 4521	6 25	38 3	149	25 40	25 4	0 25	40 60	5.7 61	6.5 6	9.6	71.2	69.8	68.8

Cedar-Sinai Project CNEL Noise Estimates - Based on PM Peak Hour

Alternative 2 (2023)

APPENDIX G

MITIGATION MONITORING PROGRAM

MITIGATION MONITORING PROGRAM

AESTHETICS

MM AES-1:	As required by LAMC Sect Landscape Plan which will ac	ion 12.40, the site will be required to prepare a ddress replacement of removed trees.
	Monitoring Phase: Monitoring Agency: Enforcement Agency:	Pre-Construction, Plan Check Department of City Planning Department of Building and Safety
MM AES-2:	The owners shall maintain the rubbish and to promptly re LAMC Sections 91.8101-F, 9	he subject property clean and free of debris and emove any graffiti from the walls, pursuant to 91.8904-1, and 91.1707-E.
	Monitoring Phase: Monitoring Agency: Enforcement Agency:	Occupancy Department of City Planning Department of Building and Safety
MM AES-3:	The Project is subject to the Regulations, Chapter 9, Art surface areas and the reflective	ne City of Los Angles Zoning Code, Lighting icle 3, Section 93.0117, which limits reflective vity of architectural materials used.
	Monitoring Phase: Monitoring Agency: Enforcement Agency:	Pre-Construction, Plan Check Department of Building and Safety Department of Building and Safety
MM AES-4:	Outdoor lighting shall be de light source cannot be seen fr	esigned and installed with shielding, so that the rom adjacent residential properties.
	Monitoring Phase: Monitoring Agency: Enforcement Agency:	Pre-Construction Department of City Planning Department of Building and Safety
MM AES-5:	All open areas not used for the shall be attractively landscape by a licensed landscape arched areas shall be	he building, driveways, walls, or similar features bed in accordance with a landscape plan prepared hitect and approved by the appropriate agencies. maintained in a first class condition at all times.
	Monitoring Phase: Monitoring Agency: Enforcement Agency:	Occupancy Department of City Planning Department of Building and Safety

MM AES-6:	The landscaped area along t minimum of 15 feet apart, should be no less than 24-inc	he property borders shall include trees spaced a measured from the center of each tree. Trees h-box each.
	Monitoring Phase: Monitoring Agency: Enforcement Agency:	Pre-Construction, Plan Check Department of City Planning Department of Building and Safety
MM AES-7:	Rooftop structures should be installed underground, where	be screened from view and utilities should be feasible.
	Monitoring Phase: Monitoring Agency: Enforcement Agency:	Pre-Construction, Plan Check Department of Building and Safety Department of Building and Safety
MM AES-8:	The project should avoid the	inclusion of large, blank walls.
	Monitoring Phase: Monitoring Agency: Enforcement Agency:	Pre-Construction, Plan Check Department of City Planning Department of Building and Safety
MM AES-9:	Connection between the park physically integrated to pro- pedestrian entry into the main	ing structures and the medical facilities should be vide a non-hazardous and aesthetically pleasing a building.
	Monitoring Phase: Monitoring Agency: Enforcement Agency:	Pre-Construction, Plan Check Department of City Planning Department of Building and Safety
MM AES-10:	After obtaining project perm plans and elevations to the D of a Building Permit. The final plans with those appro Department of City Planning contain substantial changes, Planning Commission for rev	hit approval, the applicant shall submit final site Department of City Planning prior to the issuance Department of City Planning shall compare the oved by the City Planning Commission. If the g determines that the final site plans or elevations the applicant shall submit the final plans to the riew and approval.
	Monitoring Phase: Monitoring Agency: Enforcement Agency:	Pre-Construction, Plan Check Department of City Planning Department of Building and Safety
MM AES-11:	All lighting shall be design Bureau of Engineering and D	ned and placed in accordance with applicable epartment of Public Works requirements.
	Monitoring Phase: Monitoring Agency:	Pre-Construction Department of City Planning

	Enforcement Agency:	Department of Building and Safety
MM AES-12:	Provision shall be made to direct glare from automobile	include exterior parking structure walls to shield headlights into residential areas.
	Monitoring Phase: Monitoring Agency: Enforcement Agency:	Pre-Construction Department of City Planning Department of Building and Safety
MM AES-13:	All outdoor lighting, other t safety, securing, highlighting	than signs, should be limited to that required for g, and landscaping.
	Monitoring Phase: Monitoring Agency: Enforcement Agency:	Occupancy Department of Building and Safety Department of Building and Safety
MM AES-14:	Low level security lighting s	hould be used in outdoor areas.
	Monitoring Phase: Monitoring Agency: Enforcement Agency:	Occupancy Department of Building and Safety Department of Building and Safety
MM AES-15:	Security lighting, as well as lighting, should be shielded off-site locations.	both outdoor lighting and indoor parking structure such that the light source will not be visible from
	Monitoring Phase: Monitoring Agency: Enforcement Agency:	Construction Department of Building and Safety Department of Building and Safety
MM AES-16:	Lighting should be directed minimize visibility from sur	on site and light sources shall be shielded so as to rounding properties.
	Monitoring Phase: Monitoring Agency: Enforcement Agency:	Construction Department of Building and Safety Department of Building and Safety
MM AES-17:	Exterior windows should be to reduce visible illumination	e tinted or contain an interior light-reflective film n levels from the building.
	Monitoring Phase: Monitoring Agency: Enforcement Agency:	Construction Department of Building and Safety Department of Building and Safety
MM AES-18:	Per the 1993 Development A up to \$40,000 towards an	Agreement (Section 3.2.g), CSMC must contribute Urban Design Program for the area generally

bounded by Robertson Boulevard, Beverly Boulevard, Third Street, and San Vicente Boulevard. The purpose of the Urban Design Program is to create a more pedestrian-oriented environment in the area and provide a program of unifying themes and implementation program.

Monitoring Phase:Pre-ConstructionMonitoring Agency:Department of City PlanningEnforcement Agency:Department of City Planning

AIR QUALITY

MM AQ-1: The Project will comply with applicable California Air Resources Board ("CARB") regulations and standards. CARB is responsible for setting emission standards for vehicles sold in California and for other emission sources, such as consumer products and certain off-road equipment. CARB oversees the functions of local air pollution control districts and air quality management districts, which in turn administer air quality activities at the regional and county levels.

Monitoring Phase:	Pre-Construction/Construction
Monitoring Agency:	SCAQMD
Enforcement Agency:	Department of Building and Safety

MM AQ-2: The Project will comply with applicable SCAQMD regulations and standards. The SCAQMD is responsible for monitoring air quality, as well as planning, implementing, and enforcing programs designed to attain and maintain State and federal ambient air quality standards in the District. Programs that were developed include air quality rules and regulations that regulate stationary sources, area sources, point sources, and certain mobile source emissions. SCAQMD is also responsible for establishing stationary source permitting requirements and for ensuring that new, modified, or relocated stationary sources do not create net emission increases.

Monitoring Phase:	Pre-Construction/Construction
Monitoring Agency:	SCAQMD
Enforcement Agency:	Department of Building and Safety

MM AQ-3: The Project will be designed to reduce exposure of sensitive receptors to excessive levels of degraded air quality. Also, the Project will incorporate many "sustainable" or "green" strategies that target sustainable site development, water savings, energy efficiency, green-oriented materials selection, and improved indoor environmental quality, which in turn serve to directly and proactively reduce GHG and other air pollutant emissions. Project Design Features to be incorporated by the Project shall include, but are not limited to, the following or their equivalent:

- The CSMC Campus, including the Project Site, is conveniently located with respect to public transit opportunities. Given the Project Site's location within an established urban area, access to a number of existing Los Angeles Metro bus lines is available, and a potential Metro Rail station at the northeast corner of the CSMC Campus may be available in the future, thereby reducing traffic, air quality, noise, and energy effects.
- Storm water within the Property, including at the Project Site, is collected, filtered, and re-used for landscaping irrigation within the CSMC Campus, thereby reducing water and energy consumption.
- The West Tower design incorporates light-colored roofing and paving materials which serve to reduce unwanted heat absorption and minimize energy consumption.
- Building materials and new equipment associated with the West Tower are selected to avoid materials that might incorporate atmosphere-damaging chemicals.
- The West Tower energy performance is designed to be 14% more effective than required by California Title 24 Energy Design Standards, thereby reducing energy use, air pollutant emissions and greenhouse gas emissions.
- The West Tower will generate 2.5% of the building's total energy use through on-site renewable energy sources. On-site renewable energy sources can include a combination of photovoltaic, wind, hydro, wave, tidal, and bio-fuel based electrical production systems, as well as solar thermal and geothermal energy systems.
- The West Tower will use materials with recycled content such that the sum of post-consumer content plus one-half of the pre-consumer content constitutes at least 10% (based on cost) of the total value of the materials in the Project.
- Lighting systems within the West Tower will be controllable to achieve maximum efficiency (e.g., uniform general ambient lighting, augmented with individually controlled task lighting that accommodates user-adjustable lighting levels and automatic shutoff switching).
- The West Tower will be designed to provide occupant thermal comfort dissatisfaction levels above 85%.

Monitoring Phase:	Pre-Construction
Monitoring Agency:	Department of Building and Safety
Enforcement Agency:	Department of Building and Safety

MM AQ-4: Haul trucks shall be staged in non-residential areas and called to the site by a radio dispatcher. A Haul Route Permit shall be required before haul truck operations are conducted.

Monitoring Phase:ConstructionMonitoring Agency:Department of Building and SafetyEnforcement Agency:Department of Building and Safety

MM AQ-5: Diesel-powered equipment shall be located as far as possible from sensitive receptors.

Monitoring Phase:	Construction
Monitoring Agency:	South Coast Air Quality Management District
Enforcement Agency:	Department of Building and Safety

MM AQ-6: A temporary wall of sufficient height to reduce windblown dust shall be erected on the perimeter of the construction site.

Monitoring Phase:	Construction
Monitoring Agency:	Department of Building and Safety
Enforcement Agency:	Department of Building and Safety

MM AQ-7: Ground wetting shall be required during grading and construction, pursuant to SCAQMD Rule 403. This measure can reduce windblown dust a maximum of 50 percent.

Monitoring Phase:	Construction
Monitoring Agency:	South Coast Air Quality Management District
Enforcement Agency:	Department of Building and Safety

MM AQ-8: Contractors shall cover stockpiles of soil, sand, and similar materials to reduce wind pick-up.

Monitoring Phase:ConstructionMonitoring Agency:Department of Building and SafetyEnforcement Agency:Department of Building and Safety

MM AQ-9: Construction equipment shall be shut off to reduce idling for extended periods of time when not in use.

Monitoring Phase:	Construction
Monitoring Agency:	South Coast Air Quality Management District
Enforcement Agency:	Department of Building and Safety

MM AQ-10: Low sulfur fuel should be used to power construction equipment.

Monitoring Phase: Monitoring Agency: Enforcement Agency: Construction South Coast Air Quality Management District Department of Building and Safety

MM AQ-11: Construction activities shall be discontinued during second stage smog alerts.

Monitoring Phase:	Construction
Monitoring Agency:	Department of Building and Safety
Enforcement Agency:	Department of Building and Safety

MM AQ-12: The proposed project shall implement a Transportation Demand Management program consistent with the provisions of SCAQMD Regulation XV.

Monitoring Phase:	Occupancy
Monitoring Agency:	Los Angeles Department of Transportation
Enforcement Agency:	Department of Building and Safety

MM AQ-13: The Medical Center should reduce, to the extent possible, its reliance on hazardous materials.

Monitoring Phase:	Pre-construction, Construction
Monitoring Agency:	Department of Building and Safety
Enforcement Agency:	Department of Building and Safety

MM AQ-14: The Medical Center should analyze the effect of stack design and exhaust velocity on the dispersion of air toxics.

Monitoring Phase:	Pre-construction
Monitoring Agency:	Department of Building and Safety
Enforcement Agency:	Department of Building and Safety

MM AQ-15: New exhaust systems should be designed to place vents at or above the roof level of nearby buildings.

Monitoring Phase:	Pre-construction
Monitoring Agency:	Department of Building and Safety
Enforcement Agency:	Department of Building and Safety

MM AQ-16: Conservation with the Los Angeles Department of Water and Power and [The Gas Company] to determine feasible energy conservation features that could be incorporated into the design of the proposed project.

Monitoring Phase:	Pre-construction
Monitoring Agency:	Department of Building and Safety
Enforcement Agency	Department of Building and Safety

MM AQ-17: Compliance with Title 24, established by the California Energy Commission regarding energy conservation standards. Those standards relate to insulation requirements and the use of caulking, double-glazed windows, and weather stripping.

Monitoring Phase:	Construction
Monitoring Agency:	Department of Building and Safety
Enforcement Agency:	Department of Building and Safety

MM AQ-18: Thermal insulation which meets or exceeds standards established by the State of California and the Department of Building and Safety should be installed in walls and ceilings.

Monitoring Phase:	Construction
Monitoring Agency:	Department of Building and Safety
Enforcement Agency:	Department of Building and Safety

MM AQ-19: Tinted or solar reflected glass would be used on appropriate exposures.

Monitoring Phase:	Construction
Monitoring Agency:	Department of Building and Safety
Enforcement Agency:	Department of Building and Safety

MM AQ-20: Heat-reflecting glass on the exterior-facing, most solar-exposed sides of the building, should be used to reduce cooling loads.

Monitoring Phase:	Pre-construction
Monitoring Agency:	Department of City Planning
Enforcement Agency:	Department of Building and Safety

MM AQ-21: Interior and exterior fluorescent [halogen, or other energy efficient type] lighting should be used in place of less efficient incandescent lighting.

Monitoring Phase:	Pre-construction
Monitoring Agency:	Department of City Planning
Enforcement Agency:	Department of Building and Safety

MM AQ-22: A variable air volume system which reduces energy consumption for air cooling and heating for water heating should be used where permitted.

Monitoring Phase:	Pre-Construction
Monitoring Agency:	Department of City Planning
Enforcement Agency:	Department of Building and Safety

MM AQ-23: Air conditioning which will have a 100 percent outdoor air economizer cycle to obtain free cooling during dry outdoor climatic periods should be used.

Monitoring Phase:	Construction
Monitoring Agency:	Department of Building and Safety
Enforcement Agency:	Department of Building and Safety

MM AQ-24: Lighting switches should be equipped with multi-switch provisions for control by occupants and building personnel to permit optimum energy use.

Monitoring Phase:	Construction
Monitoring Agency:	Department of Building and Safety
Enforcement Agency:	Department of Building and Safety

MM AQ-25: Public area lighting, both interior and exterior, should be used, time controlled, and limited to that necessary for safety.

Monitoring Phase:	Pre-construction, Occupancy
Monitoring Agency:	Department of Building and Safety
Enforcement Agency:	Department of Building and Safety

MM AQ-26: Department of Water and Power recommendations on the energy efficiency ratios of all air conditioning equipment installed should be followed.

Monitoring Phase:	Construction
Monitoring Agency:	Department of Building and Safety
Enforcement Agency:	Department of Building and Safety

MM AQ-27: A carefully established and closely monitored construction schedule should be used to coordinate construction equipment movements, thus minimizing the total number of pieces of equipment and their daily movements. This would reduce fuel consumption to a minimum.

Monitoring Phase:	Construction
Monitoring Agency:	Department of Building and Safety
Enforcement Agency:	Department of Building and Safety

MM AQ-28: Water or a stabilizing agent shall be applied to exposed surfaces in sufficient quantity to prevent generation of dust plumes.

Monitoring Phase:	Construction
Monitoring Agency:	South Coast Air Quality Management District
Enforcement Agency:	Department of Building and Safety

MM AQ-29: Track-out shall not extend 25 feet or more from an active operation, and track-out shall be removed at the conclusion of each workday.

Monitoring Phase:	Construction
Monitoring Agency:	Department of Building and Safety
Enforcement Agency:	Department of Building and Safety

MM AQ-30: A wheel washing system shall be installed and used to remove bulk material from tires and vehicle undercarriages before vehicles exit the Project Site.

Monitoring Phase:	Construction
Monitoring Agency:	Department of Building and Safety
Enforcement Agency:	Department of Building and Safety

MM AQ-31: All haul trucks hauling soil, sand, and other loose materials shall maintain at least six inches of freeboard in accordance with California Vehicle Code Section 23114.

Monitoring Phase:	Construction
Monitoring Agency:	Department of Building and Safety
Enforcement Agency:	Department of Building and Safety

MM AQ-32: All haul trucks hauling soil, sand, and other loose materials shall be covered (e.g., with tarps or other enclosures that would reduce fugitive dust emissions).

Monitoring Phase:	Construction
Monitoring Agency:	South Coast Air Quality Management District
Enforcement Agency:	Department of Building and Safety

MM AQ-33: Traffic speeds on unpaved roads shall be limited to 15 miles per hour.

Monitoring Phase:	Construction
Monitoring Agency:	Department of Building and Safety
Enforcement Agency:	Department of Building and Safety

MM AQ-34: Operations on unpaved surfaces shall be suspended when winds exceed 25 miles per hour.

Monitoring Phase:	Construction
Monitoring Agency:	Department of Building and Safety
Enforcement Agency	Department of Building and Safety

MM AQ-35: Heavy equipment operations shall be suspended during first and second stage smog alerts.

Monitoring Phase: Monitoring Agency: Enforcement Agency: Construction Department of Building and Safety Department of Building and Safety MM AQ-36: On-site stockpiles of debris, dirt, or rusty materials shall be covered or watered at least twice per day.

Monitoring Phase:	Construction
Monitoring Agency:	Department of Building and Safety
Enforcement Agency:	Department of Building and Safety

MM AQ-37: Contractors shall utilize electricity from power poles rather than temporary diesel or gasoline generators, as feasible.

Monitoring Phase:	Construction
Monitoring Agency:	South Coast Air Quality Management District
Enforcement Agency:	Department of Building and Safety

MM AQ-38: Architectural coating shall have a low VOC content, per SCAQMD guidance.

Monitoring Phase:	Construction
Monitoring Agency:	South Coast Air Quality Management District
Enforcement Agency:	Department of Building and Safety

MM AQ-39: Prior to issuance of demolition permits, an asbestos and lead-based paint survey shall be conducted. If ACMs are detected, these materials shall be removed by a licensed abatement contractor and in accordance with all applicable federal, State, and local regulations, including SCAQMD Rule 1403 prior to demolition. If lead-based paint is identified, federal and State construction worker health and safety regulations (including applicable CalOSHA and USEPA regulations) shall be followed during demolition activities. Lead-based paint shall be removed by a qualified lead abatement contractor and disposed of in accordance with existing hazardous waste regulations. If lead-based paint is identified on the building structure to be demolished, near-surface soil samples shall be collected around the structure to determine the potential for residual soil lead contamination, and appropriate remediation shall be completed prior to building construction.

Monitoring Phase:	Pre-construction, Demolition
Monitoring Agency:	South Coast Air Quality Management District
Enforcement Agency:	Department of Building and Safety

NOISE

MM NOI-1: The Project will comply with the City's Noise Ordinance to ensure that construction activities are conducted in accordance with the LAMC.

Monitoring Phase: Monitoring Agency: Enforcement Agency: Construction Department of Building and Safety Department of Building and Safety MM NOI-2: Specify the use of quieted equipment in compliance with the applicable provisions of the City of Los Angeles Noise Ordinance No. 156,363.

Monitoring Phase:	Construction
Monitoring Agency:	Department of Building and Safety
Enforcement Agency	Department of Building and Safety

MM NOI-3: Route trucks hauling debris through non-residential areas by approval of the Department of Building and Safety.

Monitoring Phase:	Construction
Monitoring Agency:	Department of Building and Safety
Enforcement Agency:	Department of Building and Safety

MM NOI-4: The use of quieted equipment would reduce noise levels by an additional 3 to 6 dBA.

Monitoring Phase:	Construction
Monitoring Agency:	Department of Building and Safety
Enforcement Agency:	Department of Building and Safety

MM NOI-5: Limit demolition activities to the hours of 7:00 A.M. to 6:00 P.M., Monday through Friday and from 8:00 A.M. to 6:00 P.M. on Saturday.

Monitoring Phase:	Construction
Monitoring Agency:	Department of Building and Safety
Enforcement Agency:	Department of Building and Safety

MM NOI-6: Construct a temporary noise barrier wall along the property line, where feasible, as determined by the Department of Building and Safety.

Monitoring Phase:	Construction
Monitoring Agency:	Department of Building and Safety
Enforcement Agency:	Department of Building and Safety

MM NOI-7: Specify that all sound-reducing devices and restrictions be properly maintained throughout the construction period.

Monitoring Phase:	Construction
Monitoring Agency:	Department of Building and Safety
Enforcement Agency:	Department of Building and Safety

MM NOI-8: Where temporary noise barriers are infeasible, portable noise panels to contain noise from powered tools shall be used.

Monitoring Phase:	Construction
Monitoring Agency:	Department of Building and Safety
Enforcement Agency:	Department of Building and Safety

MM NOI-9: Use rubber-tired equipment rather than track equipment.

Monitoring Phase:	Construction
Monitoring Agency:	Department of Building and Safety
Enforcement Agency:	Department of Building and Safety

MM NOI-10: Limit the hours of construction to between 7:00 A.M. and 6:00 P.M., Monday through Friday and between 8:00 A.M. and 6:00 P.M. on Saturday.

Monitoring Phase:	Construction
Monitoring Agency:	Department of Building and Safety
Enforcement Agency:	Department of Building and Safety

MM NOI-11: Keep loading and staging areas on site within the perimeter protected by the recommended temporary noise barrier and away from the noise-sensitive sides of the site.

Monitoring Phase:	Construction
Monitoring Agency:	Department of Building and Safety
Enforcement Agency:	Department of Building and Safety

MM NOI-12: If feasible, use alternate pile placement methods other than impact pile driving (See MM NOI-22 for a detailed discussion of the feasibility of alternate pile placement methods).

Monitoring Phase:	Construction
Monitoring Agency:	Department of Building and Safety
Enforcement Agency:	Department of Building and Safety

MM NOI-13: Installation of sound attenuating devices on exhaust fans, enclosing mechanical equipment, and providing sound absorbing and shielding provisions into the design.

Monitoring Phase:	Pre-construction
Monitoring Agency:	Department of Building and Safety
Enforcement Agency:	Department of Building and Safety

MM NOI-14: Construction contracts shall specify that all construction equipment be equipped with mufflers and other suitable noise attenuation devices.

Monitoring Phase:

Pre-construction

Monitoring Agency: Enforcement Agency: Department of Building and Safety Department of Building and Safety

MM NOI-15: Grading and construction contractors shall use quieter equipment as opposed to noisier equipment (such as rubber-tired equipment rather than track equipment).

Monitoring Phase:	Construction
Monitoring Agency:	Department of Building and Safety
Enforcement Agency:	Department of Building and Safety

MM NOI-16: Barriers such as plywood structures or flexible sound control curtains extending eight feet in height shall be erected around the perimeter of the Project Site to the extent feasible, to minimize the construction noise.

Monitoring Phase:	Construction
Monitoring Agency:	Department of Building and Safety
Enforcement Agency:	Department of Building and Safety

MM NOI-17: Flexible sound control curtains shall be placed around drilling apparatus and drill rigs used within the Project Site, to the extent feasible.

Monitoring Phase:	Construction
Monitoring Agency:	Department of Building and Safety
Enforcement Agency:	Department of Building and Safety

MM NOI-18: The construction contractor shall establish designated haul truck routes. The haul truck routes shall avoid noises sensitive receptors, including, but are not limited to residential uses and schools.

Monitoring Phase:	Pre-construction
Monitoring Agency:	Department of Building and Safety
Enforcement Agency:	Department of Building and Safety

MM NOI-19: All residential units located within 500 feet of the construction site shall be sent a notice regarding the construction schedule of the Project. A sign, legible at a distance of 50 feet shall also be posted at the construction site. All notices and signs shall indicate the dates and duration of construction activities, as well as provide a telephone number where residents can inquire about the construction process and register complaints.

Monitoring Phase:	Construction
Monitoring Agency:	Department of Building and Safety
Enforcement Agency:	Department of Building and Safetyt

MM NOI-20: The construction contractor shall establish a "noise disturbance coordinator" shall be established. The disturbance coordinator shall be responsible for responding to

any local complaints about construction noise. The disturbance coordinator would determine the cause of the noise complaint (e.g., starting too early, bad muffler, etc.) and would be required to implement reasonable measures such that the complaint is resolved. All notices that are sent to residential units within 500 feet of the construction site and all signs posted at the construction site shall list the telephone number for the disturbance coordinator.

Monitoring Phase:	Construction
Monitoring Agency:	Department of Building and Safety
Enforcement Agency:	Department of Building and Safety

MM NOI-21: The applicant shall conduct an acoustical analysis to determine if the materials to be used for the proposed Project would reduce interior noise levels by 45 dBA. If the analysis determines that additional noise insulation features are required, the acoustical analysis shall identify the type of noise insulation features that would be required to reduce the interior noise levels by 45 dBA, and the applicant shall incorporate these features into the proposed Project.

Monitoring Phase:	Pre-construction
Monitoring Agency:	Department of Building and Safety
Enforcement Agency:	Department of Building and Safety

MM NOI-22: Pile driving activity shall be limited based on the distance of vibration sensitive buildings to the Project Site. For buildings within 35 feet of pile driving activity, contractors shall use caisson drilling to drive piles. For buildings 35 to 55 feet from pile driving activity, contractors shall use sonic or vibratory pile drivers to drive piles. For buildings 55 feet and beyond pile driving activity, contractors may use impact pile drivers.

Monitoring Phase:	Construction
Monitoring Agency:	Department of Building and Safety
Enforcement Agency:	Department of Building and Safety

TRANSPORTATION AND CIRCULATION

MM TRF-1: In accordance with Los Angeles Municipal Code Section 91.70067, hauling of construction materials shall be restricted to a haul route approved by the City. The City of Los Angels will approve specific haul routes for the transport of materials to and from the Project Site during demolition and construction.

Monitoring Phase:	Pre-construction, Construction
Monitoring Agency:	Department of Building and Safety
Enforcement Agency:	Department of Building and Safety

MM TRF-2: The applicant shall submit site plans to the Department of Transportation (LADOT) and the Bureau of Engineering for approval prior to the issuance of any foundation permit. The site plans shall include highway easements, access locations, and adjacent street improvements.

Monitoring Phase:	Pre-construction
Monitoring Agency:	Los Angeles Department of Transportation
Enforcement Agency:	Bureau of Engineering

MM TRF-3: Applicant shall prepare and submit a Transportation Demand Management ("TDM") plan to LADOT, which will contain measures to achieve a 19 percent reduction in overall P.M. peak hour trips for the entire Cedars-Sinai Medical Center. This plan shall be submitted to and must be approved by LADOT prior to the issuance of any building permits. The TDM Plan shall include, but not be limited to, the following features: transportation allowance, provision of preferential parking for carpools/vanpools, additional financial incentives, purchase of bicycles and related equipment for employees, increased employee benefits, visitor transit incentives, and a Guaranteed Ride Home program for ridesharers. Prior to the issuance of any building permit, the applicant shall execute and record a covenant to the satisfaction of DOT guaranteeing implementation of the DOT approved TDM Plan.

Monitoring Phase:	Pre-construction, Construction
Monitoring Agency:	Los Angeles Department of Transportation
Enforcement Agency:	Bureau of Engineering

MM TRF-4: Driveway plans shall be prepared for approval by the appropriate District Office of the Bureau of Engineering and the Department of Transportation.

Monitoring Phase:	Pre-construction
Monitoring Agency:	Los Angeles Department of Transportation
Enforcement Agency:	Bureau of Engineering

MM TRF-5: Access for the handicapped shall be located in accordance with the requirements of the Handicapped Access Division of the Department of Building and Safety.

Monitoring Phase:	Pre-construction
Monitoring Agency:	Los Angeles Department of Transportation
Enforcement Agency:	Bureau of Engineering

MM TRF-6: Adequate access to site for police shall be provided. A diagram of the site shall be sent to the Police Department for their review, and their recommendations and requirements shall be incorporated into the final design.

Monitoring Phase:	Pre-construction
Monitoring Agency:	Los Angeles Department of Transportation
Enforcement Agency:	Bureau of Engineering

MM TRF-7: Adequate access to site for fire protection service vehicles and personnel shall be provided. A diagram of the site shall be sent to the Fire Department for their review. Emergency access and exit plans shall comply with the recommendation and requirements of the Fire Department.

Monitoring Phase:	Pre-construction
Monitoring Agency:	Los Angeles Department of Transportation
Enforcement Agency:	Bureau of Engineering

MM TRF-8 The applicant should provide safe pedestrian/auto junctures to the satisfaction of the Department of Transportation and the Bureau of Engineering at key intersections, driveway locations, entry points, and within parking areas of the Medical Center.

Monitoring Phase:	Pre-construction
Monitoring Agency:	Los Angeles Department of Transportation
Enforcement Agency:	Bureau of Engineering

MM TRF-9: Sheltered waiting areas shall be provided by the applicant at bus stops adjacent to the perimeter of the Cedars-Sinai Medical Center campus where no shelter currently exists.

Monitoring Phase:	Pre-construction
Monitoring Agency:	Los Angeles Department of Transportation
Enforcement Agency:	Engineering

MM TRF-10: Applicant shall coordinate with DOT to identify sidewalks and pedestrian access points for improvement of access from transit stops.

Monitoring Phase:	Pre-construction
Monitoring Agency:	Los Angeles Department of Transportation
Enforcement Agency:	Engineering

MM TRF-11: Parking/driveway plan. A parking area and driveway plan shall be prepared for approval by the appropriate District Offices of the Bureau of Engineering and the Department of Transportation.

Monitoring Phase:	Pre-construction
Monitoring Agency:	Los Angeles Department of Transportation
Enforcement Agency:	Bureau of Engineering

EINV 2008-0020-EIR		
MM TRF-12:	The design of the on-site parking shall integrate safety features, such as, signs, lights, and striping pursuant to Section 12.21.A5 of the Municipal Code.	
	Monitoring Phase: Monitoring Agency: Enforcement Agency:	Pre-construction Los Angeles Department of Transportation Bureau of Engineering
MM TRF-13:	The Driveway and Parking Plan review for the project should be coordinate with the Citywide Planning Coordination Section.	
	Monitoring Phase: Monitoring Agency: Enforcement Agency:	Pre-construction Los Angeles Department of Transportation Bureau of Engineering
MM TRF-14:	Off-street parking should be provided for all construction-related employees generated by the proposed project. No employees or sub-contractors should be allowed to park on the surrounding residential streets for the duration of all construction activities.	
	Monitoring Phase: Monitoring Agency: Enforcement Agency:	Construction Los Angeles Department of Transportation Bureau of Engineering
MM TRF-15: Off-street parking shall be provided free of personnel and employees, including contractors, consultants and agents, durin project.		rovided free of charge for all construction-related , including without limitation independent agents, during the construction phases of the
	Monitoring Phase: Monitoring Agency: Enforcement Agency:	Construction Los Angeles Department of Transportation Bureau of Engineering
MM TRF-16:	M TRF-16: Coordinate temporary location for bus stops on Third Street and Alder with SCRTD [now Metro] during project construction.	
	Monitoring Phase: Monitoring Agency: Enforcement Agency:	Construction Los Angeles Department of Transportation Bureau of Engineering

MM TRF-17: Maps of surrounding bus services should be posted at bus stops and other locations where people are likely to view the information, particularly near the Outpatient Diagnostic and Treatment Center, where over 75 percent of the daily new trips are assigned. Information shown should include the location of the closest bus stops, hours of operation, frequency of service, fares, and SCRTD [now Metro] telephone information numbers.

Monitoring Phase:	
Monitoring Agency:	
Enforcement Agency:	

Pre-construction, Construction Los Angeles Department of Transportation Bureau of Engineering

MM TRF-18: Sheltered waiting areas should be provided at major bus stops where no shelter currently exists.

Monitoring Phase:	Pre-construction
Monitoring Agency:	Los Angeles Department of Transportation
Enforcement Agency:	Engineering

MM TRF-19: The Medical Center shall coordinate with LADOT to identify sidewalks which should be widened within the campus to encourage pedestrian activity and improve access to transit stops.

Monitoring Phase:	Pre-construction
Monitoring Agency:	Los Angeles Department of Transportation
Enforcement Agency:	Bureau of Engineering

MM TRF-20: Any planned retail sites such as pharmacies, newspaper stands, or food and beverage stands should be located adjacent to major bus stops in order to improve the convenience of using transit.

Monitoring Phase:	Pre-construction
Monitoring Agency:	Los Angeles Department of Transportation
Enforcement Agency:	Bureau of Engineering

MM TRF-21: Coordinate relocation of underground utility lines in the event of encroachment upon same by construction related to proposed project.

Monitoring Phase:	Pre-construction
Monitoring Agency:	Building and Safety
Enforcement Agency:	Building and Safety

MM TRF-22: The Project Applicant will prepare and implement an Interim Traffic Control Plan ("TCP") during construction.

Monitoring Phase:	Construction
Monitoring Agency:	Los Angeles Department of Transportation
Enforcement Agency:	Bureau of Engineering

MM TRF-23: Prior to obtaining a demolition and/or grading permit, the Project Applicant shall prepare a Construction Traffic Control Plan ("Construction TCP") for review and approval by the LADOT. The Construction TCP shall include the designated haul route and staging area, traffic control procedures, emergency access provisions, and construction crew parking to mitigate the traffic impact

during construction. The Construction TCP will identify a designated off-site parking lot at which construction workers will be required to park.

Monitoring Phase:	Pre-construction
Monitoring Agency:	Los Angeles Department of Transportation
Enforcement Agency:	Department of Building and Safety

MM TRF-24: Int. No. 2: Robertson Blvd./Alden Dr.-Gracie Allen Dr. Provide a right-turnonly lane at the northbound approach of Robertson Boulevard at the Alden Drive-Gracie Allen Drive intersection, as well as a right-turn-only lane at the westbound approach of Alden Drive-Gracie Allen Drive at the intersection. The resultant lane configurations at the northbound approach to the intersection will be one exclusive left-turn lane, one through lane and one right-turn-only lane. The resultant lane configurations at the westbound approach to the intersection will be one shared left-turn/through lane and one right-turn-only lane. These improvement measures would require restriping both the northbound and southbound approaches to the intersection; widening the westbound approach along the north side of Alden Drive-Gracie Allen Drive by 2.5 feet for a distance of approximately 100 feet (not including the transition length back to the existing sidewalk width), thereby reducing sidewalk width from the existing 12.5 feet to 10 feet; as well as the removal of on-street parking along the eastside of Robertson Boulevard south of the intersection for a distance of approximately 130 feet (approximately 6 spaces). If implemented, the mitigation measure shall be executed in two phases. First, Alden Drive-Gracie Allen Drive shall be widened and restriped as proposed above. Second, a traffic warrant analysis shall be performed 2 years after full occupancy of the Project to determine the need for a right-turn-only lane at the northbound approach of Robertson Boulevard. If a right-turn-only lane is warranted, the lane shall be implemented as proposed above.

Monitoring Phase:	Construction
Monitoring Agency:	Los Angeles Department of Transportation
Enforcement Agency:	Bureau of Engineering

MM TRF-25: Int. No. 6: George Burns Rd./Beverly Blvd. Provide a right-turn-only lane at the eastbound approach of Beverly Boulevard at the George Burns Road intersection, as well as two lanes at the northbound approach of George Burns Road to the intersection. The resultant lane configurations at the eastbound approach to the intersection will be one two-way left-turn lane, two through lanes and one right-turn-only lane. The resultant lane configurations at the northbound approach to the intersection will be one shared left-turn/through lane and one right-turn-only lane. These improvement measures would require widening along the south side of Beverly Boulevard west of the intersection by approximately three feet and the removal of on-street parking for a distance of approximately 55 feet to accommodate the installation of the eastbound right-turn only lane (approximately 4 spaces). The three-foot

widening would also reduce the existing sidewalk width from 15 feet to the minimum required 12 feet for a Major Highway Class II for a distance of approximately 100 feet (not including the transition length back to the existing sidewalk width). It must be noted that this intersection is located in the City of West Hollywood, therefore implementation of the recommended mitigation will require approval and cooperation with the City of West Hollywood.

Monitoring Phase:	Construction
Monitoring Agency:	Los Angeles Department of Transportation
Enforcement Agency:	Bureau of Engineering

CUMULATIVE EFFECTS

MM CUM-1: Unless otherwise required and to the satisfaction of the Department of Building and Safety, the Applicant shall install high-efficiency toilets (maximum 1.28 gpf), including dual-flush water closets, and high-efficiency urinals (maximum 0.5 gpf), including no-flush or waterless urinals, in all restrooms as appropriate. Rebates may be offered through the Los Angeles Department of Water and Power to offset portions of the costs of these installations.

Monitoring Phase:	Construction
Monitoring Agency:	Department of Building and Safety
Enforcement Agency:	Department of Building and Safety

MM CUM-2: Unless otherwise required and to the satisfaction of the Department of Building and Safety, the Applicant shall install restroom faucets with a maximum flow rate of 1.5 gallons per minute.

Monitoring Phase:	Construction
Monitoring Agency:	Department of Building and Safety
Enforcement Agency:	Department of Building and Safety

MM CUM-3: As otherwise restricted by state or federal regulations, single-pass cooling equipment shall be strictly prohibited from use. Prohibition of such equipment shall be indicated on the building plans and incorporated into tenant lease agreements. (Single-pass cooling refers to the use of potable water to extract heat form process equipment, e.g. vacuum pump, ice machines, by passing the water through equipment and discharging the heated water to the sanitary wastewater system).

Monitoring Phase:	Construction
Monitoring Agency:	Department of Building and Safety
Enforcement Agency:	Department of Building and Safety

MM CUM-4: Unless otherwise required, all restroom faucets shall be of a self-closing design, to the satisfaction of the Department of Building and Safety.

Monitoring Phase:	Construction
Monitoring Agency:	Department of Building and Safety
Enforcement Agency:	Department of Building and Safety

- MM CUM-5: In addition to the requirements of the Landscape Ordinance, the landscape plan shall incorporate the following:
 - Weather-based irrigation controller with rain shutoff;
 - Matched precipitation (flow) rates for sprinkler heads;
 - Drip/microspray/subsurface irrigation where appropriate;
 - Minimum irrigation system distribution uniformity of 75 percent;
 - Proper hydro-zoning, turf minimization and use of native/drought tolerant plan materials; and
 - A separate water meter (or submeter), flow sensor, and master valve shutoff shall be installed for irrigated landscape areas totaling 5,000 sf and greater, to the satisfaction of the Department of Building Safety.

Monitoring Phase:	Construction
Monitoring Agency:	Department of Building and Safety
Enforcement Agency:	Department of Building and Safety