

Phase II Environmental Site Assessment

600-628 South San Pedro Street and 611-615 Crocker Street Los Angeles, CA 90021

AEC Project No. 18-027SD March 28, 2018

Prepared For:

Weingart Tower LP 6339 Paseo Del Lago Carlsbad, CA 92011

Prepared By:

Advantage Environmental Consultants, LLC 145 Vallecitos De Oro, Suite 201 San Marcos, California 92069 Phone (760) 744-3363 • Fax (760) 744-3383

March 28, 2018

Mr. Ron Brockhoff Weingart Tower LP 6339 Paseo Del Lago Carlsbad, CA 92011

Subject: Phase II Environmental Site Assessment

600-628 South San Pedro Street and 611-615 Crocker Street

Los Angeles, CA 90021 AEC Project No. 18-027SD

Dear Mr. Brockhoff:

Advantage Environmental Consultants, LLC (AEC) has performed a Phase II Environmental Site Assessment (ESA) at the above-referenced property. This report includes AEC's findings, conclusions, recommendations and supporting documentation. We appreciate the opportunity to be of service to you on this project. If you should have any questions regarding this report, or if we can be of further assistance, please contact us at (760) 744-3363.

Sincerely,

Daniel Weis, R.E.H.S.

Branch Manager

Western Regional Office

Eric Cathcart, MS, PG

Eric M. Cathrait

Senior Geologist

California PG# 7548

145 Vallecitos De Oro Suite 201 San Marcos, CA 92069 Phone: 760-744-3363 Fax: 760-744-3383 Email: dweis@aec-env.com

TABLE OF CONTENTS

1.0	INTRODUCTION						
	1.1	Project Introduction	1				
	1.2	Site Location and Description					
	1.3	Project Objective	1				
2.0	FIELD	INVESTIGATION	2				
3.0	INVES	TIGATION RESULTS AND DISCUSSION					
	3.1	Subsurface Conditions					
	3.2	Soil Analytical Laboratory Data	4				
	3.3	Soil Gas Analytical Laboratory Data	4				
4.0	CONCI	LUSIONS AND RECOMMENDATIONS	5				
5.0	LIMITATIONS						
FIGUR	ES						
EIGLID	⊏ 1	VICINITY MAP					
FIGURE 1 FIGURE 2		SITE PLAN WITH SOIL DATA (TOTAL LEAD)					
FIGURE 3		SITE PLAN WITH SOIL GAS DATA					
TABLE	S						
TABLE 1		SOIL ANALYTICAL RESULTS					
TABLE 2		SOIL GAS ANALYTICAL RESULTS					
APPEN	IDICES						
APPENDIX A APPENDIX B		GEOPHYSICAL SURVEY REPORT SOIL ANALYTICAL LABORATORY REPORTS					
APPEN	IDIX C	SOIL GAS ANALYTICAL LABORATORY REPORT					

1.0 INTRODUCTION

Phase II Environmental Site Assessment

AEC Project No.: 18-027SD

1.1 Project Introduction

On behalf of Wiengart Tower, LP, AEC has prepared this Phase II Environmental Site Assessment (ESA) for the property located at 600-628 South San Pedro Street and 611-615 Crocker Street in Los Angeles, California (i.e. the Site). This assessment has been conducted in accordance with our proposal dated February 19. 2018.

1.2 Site Location and Description

The Site is located at 600-628 South San Pedro Street and 611-615 Crocker Street in Los Angeles, California. The Site is situated south of the intersection of South San Pedro Street and 6th Street. The Site is currently an asphalt paved parking lot and is further identified by County of Los Angeles Assessor's Identification Number 5147-026-033. Future development plans for the Site include mass excavation and soil export for the construction of a single-level subterranean parking garage in the northern portion of the Site, with residential units above. Other areas of the Site will reportedly be subject to mass grading for future at-grade mixed-use improvements. A Vicinity Map is included as Figure 1.

1.3 Project Objective

AEC has completed a Phase I ESA concurrently with the Phase II study. During the course of the completion of the Phase I ESA, it was revealed that a gasoline station formerly occupied the northern portion of the Site. Therefore, the primary objective of this assessment is to evaluate for the potential presence of petroleum hydrocarbon impacted media beneath the Site and possible vapor intrusion into the future Site subterranean parking structure.

2.0 FIELD INVESTIGATION

Phase II Environmental Site Assessment

AEC Project No.: 18-027SD

Geophysical Survey

On February 10, 2018, Southwest Geophysics, Inc. (SGI), a subcontractor to AEC, completed a geophysical survey and boring location clearance in the northern portion of the Site (former gasoline station area). Geophysical survey methods utilized during the evaluation included ground penetrating radar (GPR), electromagnetic technologies (EM) and other methods as described in the attached geophysical survey report (Appendix A). As described in the geophysical survey report, the results of the survey did not conclusively reveal the presence of underground storage tanks (USTs). However, three relatively large EM anomalies and three possible excavation features were identified during the survey. In addition, several small EM anomalies and unidentified lines were also detected. The features/anomalies are discussed as anomalies A, B, C and Possible Excavation Features in the attached geophysical survey report. Although anomalies A, B and C were noted as being potentially associated with buried structures, GPR readings did not reveal parabolic signatures indicative of actual tanks. The presence of several buried lines (including potential utilities) prohibited invasive evaluation in such areas.

The geophysical evaluation was conducted in general accordance with current industry standards for consultants and contractors performing similar tasks. However, variations to the subsurface features noted during the completion of this geophysical survey may exist. Uncertainties of subsurface conditions can be reduced through additional subsurface surveying and/or exploration. It should also be noted that geophysical surveys are limited by a variety of factors including soil type, cultural interferences, and surface metal mass. While the conclusions of this Phase II ESA are in part based on the findings of the geophysical survey, the survey and our ESA report are not guarantees that a tank or tanks do not exist at the Site.

Soil and Soil Gas Sampling and Analysis

AEC notified Underground Service Alert utility marking service prior to the commencement of field sampling and in accordance with State law. In addition, AEC prepared a health and safety plan that outlined the procedures that AEC's personnel and subcontractors followed to minimize the potential for health and safety hazards during the course of work to be performed at the Site. As stated previously, a boring location clearance was conducted on February 10, 2018, by SGI.

Ten soil borings (identified as B1 through B10) were advanced at the Site on March 3, 2018, using a truck-mounted direct-push sampling rig equipped with approximate two-inch diameter stainless steel rods and soil sampling tools. The soil borings were advanced by Astech Environmental of Santa Ana, California under the oversight of AEC. Six of the 10 soil borings (B5 through B10) were advanced to a depth of 15 feet below ground surface (bgs). The remaining four soil borings (B1 through B4) were advanced to a depth of 20 feet bgs. A Site Plan depicting the approximate soil boring locations is included as Figure 2.

Soil samples were collected using stainless steel sampling rods lined with acetate sleeves. Soil samples were generally collected at depths of 1.5, 3, 5, 10 and 15 feet bgs in each of the borings. In addition, soil samples were also collected at approximately 20 feet bgs in borings B1 through B4. The acetate sleeves were cut, sealed with Parafilm® sheets, capped, appropriately labeled and placed into a chilled cooler for transport to American Environmental Testing Laboratory (AETL) of Burbank, California and Baseline Analytical Services (Baseline) of Huntington Beach, California. A total of 55 soil samples were collected from the soil borings. Forty-one of the 55 soil samples were analyzed for total lead by United States Environmental Protection Agency (EPA) test Method 6010B. In addition, ten of the soil samples were analyzed for total petroleum hydrocarbons (TPH) by United States EPA test Method 8015B and volatile organic compounds (VOCs) by EPA test Method 8260B.

Four of the 10 soil borings were converted to temporary soil gas probes installed at depths of approximately 20 feet below existing grades (identified as SV1 through SV4). Soil gas probe installation was conducted by Astech Environmental, and soil gas sampling was conducted by Baseline Analytical of Huntington Beach, California under the oversight of AEC. Polyethylene tubing (1/4-inch diameter)

equipped with an anchor was inserted through the probe holes and extended to the target sampling depth. The probe was gently lifted up from the bottom of the borehole and sand was poured down the borehole to encase the filter with a minimum of six inches of sand pack. Approximately six inches to one foot of dry granular bentonite was placed on top of the sand pack. The soil gas well was then completed to the surface with hydrated bentonite. The probe was allowed to set for at least two hours prior to sampling to allow the bentonite time to properly seal. After two hours following the installation of each vapor probe, Baseline collected soil vapor samples from the probes.

Soil gas samples were collected using TedlarTM bags, which connected to the tubing exiting the surface of the ground. During the sampling, a leak-check compound was placed near and around the sample trains. All soil gas samples (identified as SV1 through SV4) were analyzed for volatile organic compounds (VOCs) by EPA test Method 8260B by Baseline. After the soil gas samples were collected, the vapor probes were removed from the boreholes.

Upon completion of drilling and sampling, the soil borings were backfilled with hydrated bentonite granules and capped to match existing surface conditions. Soil sampling equipment was decontaminated between uses by washing with a non-phosphate detergent solution followed by successive rinses in distilled water.

3.0 INVESTIGATION RESULTS AND DISCUSSION

Phase II Environmental Site Assessment

AEC Project No.: 18-027SD

3.1 Subsurface Conditions

Soil conditions encountered during exploration activities at the Site consisted primarily of brown to dark brown, slightly plastic silt, sand, gravel and clay mixtures and brown to dark brown, slightly dense to dense, silt, sand and gravel mixtures to approximately 10 feet bgs and light grey to dark grey, loose sandy silt, sand and gravel mixtures to 15 and 20 feet bgs. Artificial fill material was noted as being present throughout the Site at varying depths and as deep as 10 feet in some areas. No staining or odors indicative of petroleum hydrocarbons were identified in any of the borings during the investigation. Photoionization detector screening was conducted on select soil samples and did not exhibit registerable levels of VOCs on the instrument. Groundwater was not encountered in the borings drilled during this investigation.

3.2 Soil Analytical Laboratory Data

Total lead, TPH, and VOC analytical results are presented in Table 1. A Site Plan depicting the soil boring locations and laboratory analytical results (total lead) is included as Figure 2. The analytical laboratory reports and chain-of-custody documentation for soil analysis are included in Appendix B.

Lead

Twenty-six (26) of the 41 soil samples analyzed for total lead contained detectable concentrations of this element. The detected concentrations ranged from 2.96 milligrams per kilogram (mg/kg) in sample B2-10 to 158 mg/kg in sample B8-3. None of the total lead concentrations exceeded its State of California commercial (existing land use) human health risk based screening level of 320 milligrams per kilogram (mg/kg). Only seven of the 41 soil samples analyzed for total lead exceeded its residential human health risk based screening level of 80 mg/kg. The 95 percent upper confidence limit of the arithmetic mean total lead concentrations for all soil samples obtained from depths ranging from 1.5 feet to 5 feet below the surface was 58.15 mg/kg, which is below both the residential and commercial human health risk-based screening levels. This indicates that lead is not a contaminant of significance at the Site.

In addition, 11 soil samples were also analyzed for soluble lead using soluble threshold limited concentration (STLC) and toxicity characteristic leaching procedure (TCLP) extraction methods. Soluble lead was detected using the STLC extraction method in all 11 samples with concentrations ranging from 0.532 milligrams per liter (mg/l) (B10-1.5) to 5.56 mg/l (B8-1.5). Three of the 11 samples contained soluble lead above 5 mg/l, a threshold utilized to differentiate non-hazardous from hazardous waste in the State of California (when soil is removed from a given property). Soluble lead using the TCLP extraction method was not detected in any of the 11 soil samples analyzed.

TPH and VOCs

Neither TPH nor VOCs were detected at or above the laboratory reporting limits in any of the soil samples analyzed.

3.3 Soil Gas Analytical Laboratory Data

VOCs

The analytical results of VOCs in soil gas at the Site are presented in Table 2. A map depicting the soil gas probe locations and laboratory analytical results is included as Figure 3. A copy of the soil gas analytical laboratory report is included in Appendix C. VOCs were detected at or above the laboratory reporting limits in any of the soil gas samples.

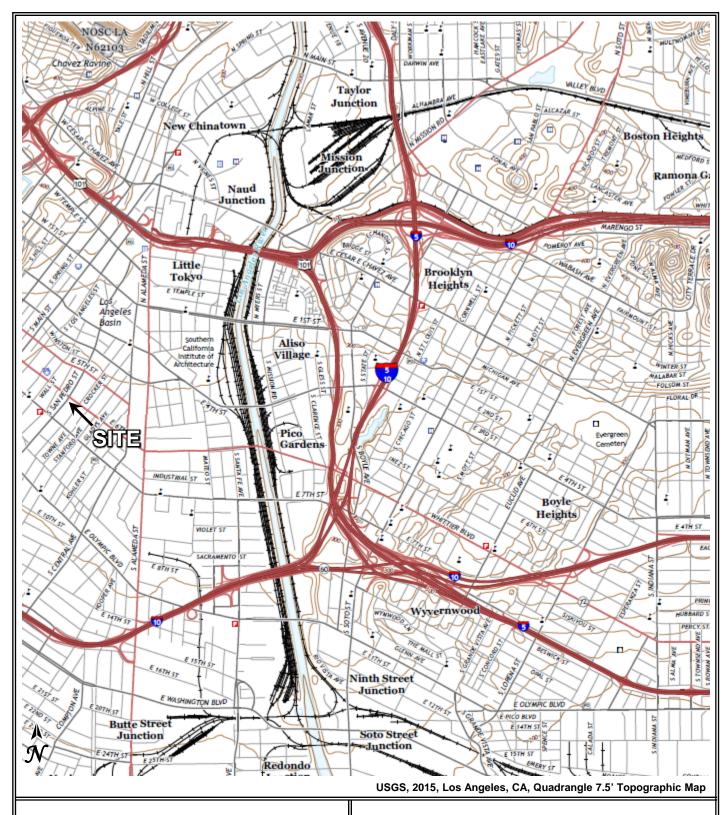
4.0 CONCLUSIONS AND RECOMMENDATIONS

Phase II Environmental Site Assessment

AEC Project No.: 18-027SD

Conclusions of this assessment are as follows:

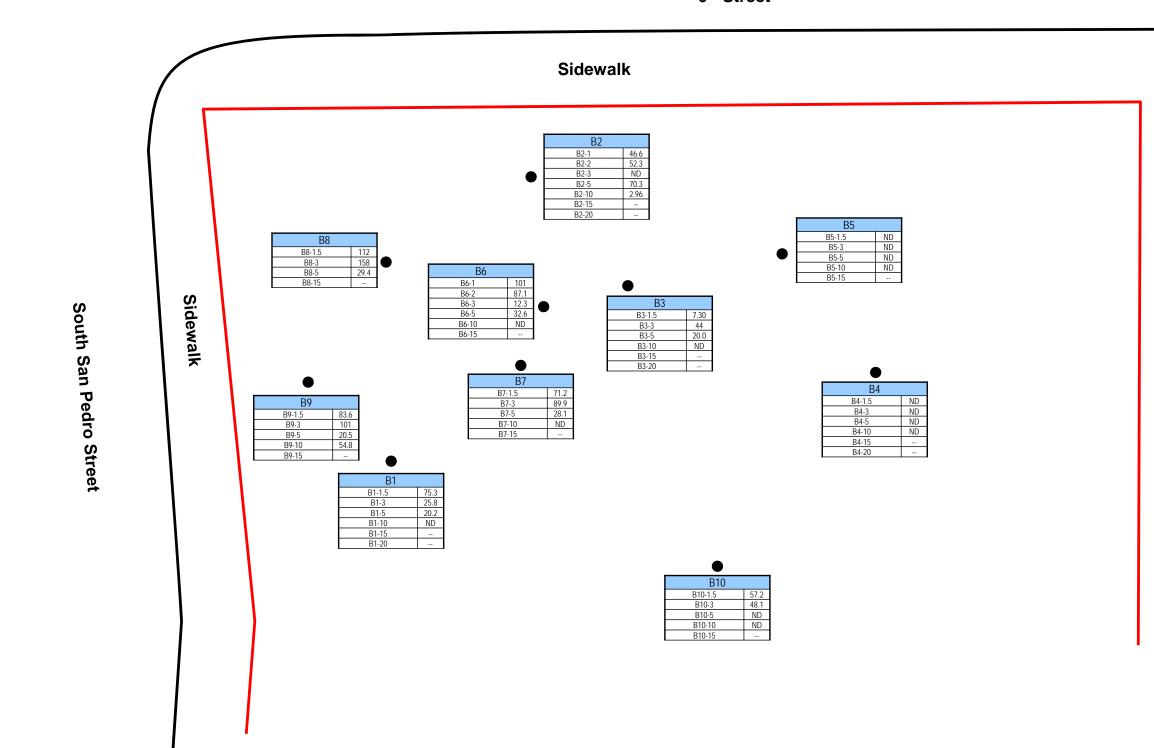
- The geophysical survey did not conclusively reveal the presence of USTs at the Site.
- No significant soil impacts were identified during the assessment. However, the soil data gathered during the completion of this assessment will be utilized by the selected grading/excavation contractor in evaluating disposal locations that may receive exported fill/soil from the Site during future construction activities.
- TPH and VOCs were not detected in any soil or soil gas samples analyzed during this
 assessment. As such, vapor intrusion is not an exposure pathway of significant concern at the
 Site.
- All data obtained during the subsurface investigation is considered to be valid and useful for decision-making purposes. In addition, no upset conditions occurred during the sampling events or completion of the laboratory analysis that may have adversely influenced the results of the investigation.
- Additional assessment at the Site is not considered to be warranted at this time.


5.0 LIMITATIONS

Phase II Environmental Site Assessment

AEC Project No.: 18-027SD

The services provided by AEC have been performed in accordance with practices and standards generally accepted by environmental scientists practicing in this industry. No other warranty, either express or implied, is made. The results and conclusions described herein are based on a limited geophysical survey and subsurface sampling program and do not purport to identify any and all sources or locations of USTs and/or subsurface impacts that may exist at the Site. Subsurface conditions at a given location may not be representative of conditions in other areas on the Site. In addition, conditions may change at any particular location as a function of time in response to natural conditions, chemical reactions, and other factors. Our conclusions regarding the condition of the Site does not represent a warranty that all areas of the Site are similar to those sampled. AEC is not responsible for the conclusions, opinions, or recommendations made by others based on this information.


145 Vallecitos De Oro, Suite 201 San Marcos, CA 92069 Phone: 760-744-3363 Fax: 760-744-3383

VICINITY MAP

600-628 S San Pedro and 611-615 Crocker Street Los Angeles, California

Project No.: 18-027SD Figure Date: March 2018

Drawn By: KS

San Marcos, CA 92069

Phone: 760-744-3363 Fax: 760-744-3383

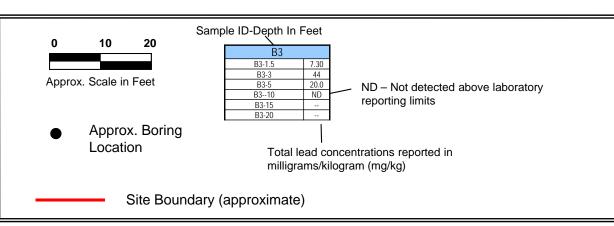
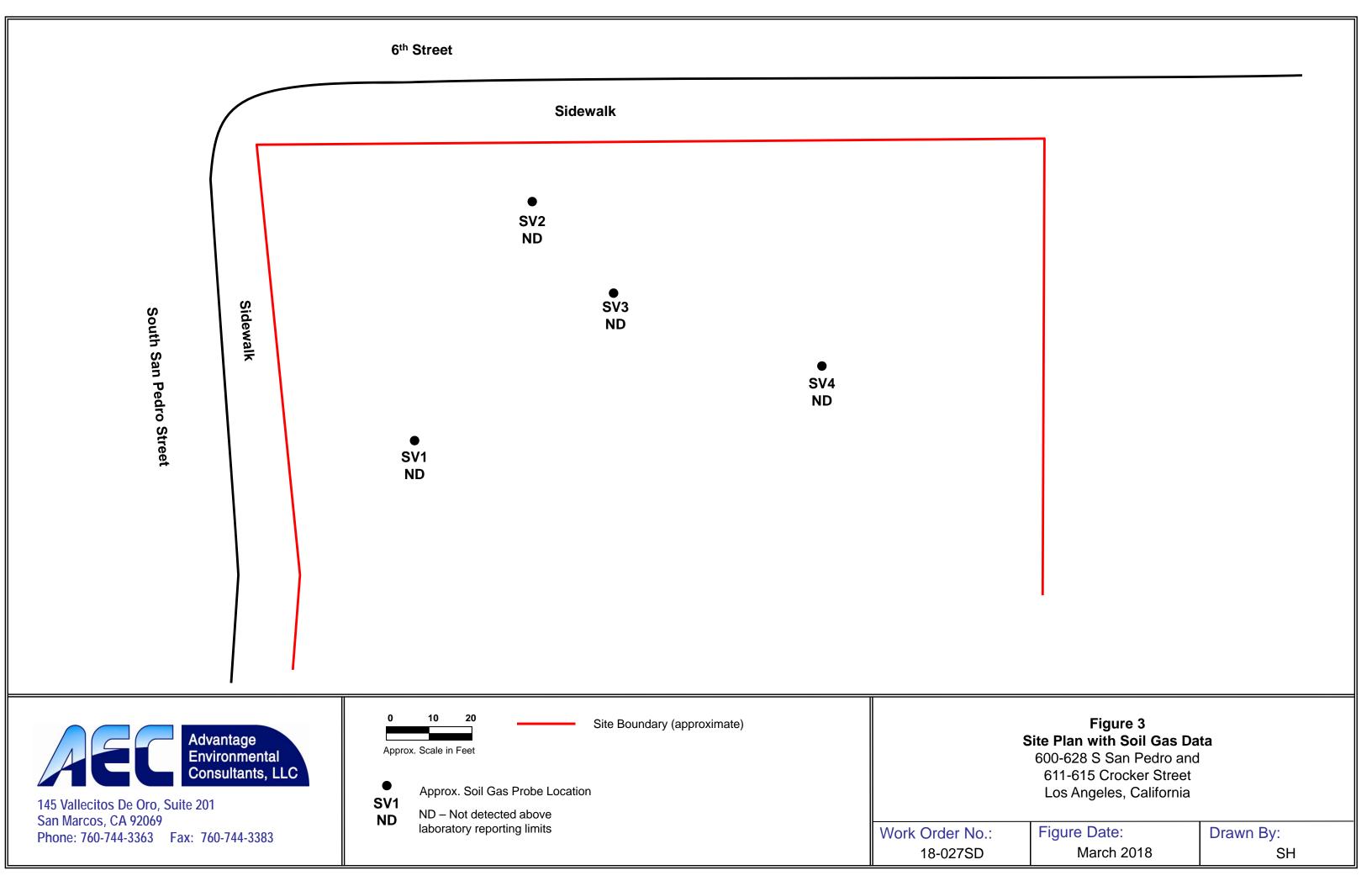



Figure 2
Site Plan with Soil Data (Total Lead)

600-628 S San Pedro and 611-615 Crocker Street Los Angeles, California

Work Order No.: 18-027SD Figure Date: March 2018 Drawn By:

SH

TABLE 1 SOIL ANALYTICAL RESULTS

600-628 S. San Pedro Street and 611-615 Crocker Street Los Angeles, California 90014

Sample	Danish	Date	Total Lead	STLC	TCLP	TPH concentrations (mg/kg)		s (mg/kg)	Volatile Organic	
Identification	Depth (feet)	Collected	(mg/kg)	Lead (mg/l)	Lead (mg/l)	TPHg TPHd		TPHwo	Compounds (mg/kg)	
B1-1.5	1.5	3/3/2018	75.3	2.92	ND(<2.50)					
B1-3	3	3/3/2018	25.8							
B1-5	5	3/3/2018	20.2							
B1-10	10	3/3/2018	ND(<2.50)			ND(<10)	ND(<10)	ND(<10)	ND	
B1-15	15	3/3/2018								
B1-20	10	3/3/2018				ND(<10)	ND(<10)	ND(<10)	ND	
B2-1	1	3/3/2018	46.6							
B2-2	2	3/3/2018	52.3	2.72	ND(<2.50)					
B2-3	3	3/3/2018	ND(<2.50)							
B2-5	5	3/3/2018	70.3							
B2-10	10	3/3/2018	2.96							
B2-15	15	3/3/2018				ND(<10)	ND(<10)	ND(<10)	ND	
B2-20	20	3/3/2018				ND(<10)	ND(<10)	ND(<10)	ND	
B3-1.5	1.5	3/3/2018	7.30							
B3-3	3	3/3/2018	44							
B3-5	5	3/3/2018	20.0							
B3-10	10	3/3/2018	ND(<2.50)			ND(<10)	ND(<10)	ND(<10)	ND	
B3-15	15	3/3/2018						 ND(40)	 ND	
B3-20	20	3/3/2018	 ND(0.50)			ND(<10)	ND(<10)	ND(<10)	ND	
B4-1.5	1.5	3/3/2018	ND(<2.50)							
B4-3	3	3/3/2018	ND(<2.50)							
B4-5	5	3/3/2018	ND(<2.50)							
B4-10	10	3/3/2018	ND(<2.50)							
B4-15	15	3/3/2018					 ND(40)			
B4-20	20	3/3/2018				ND(<10)	ND(<10)	ND(<10)	ND	
B5-1.5	1.5	3/3/2018	ND(<2.50)							
B5-3	3	3/3/2018	ND(<2.50)							
B5-5	5	3/3/2018	ND(<2.50)							
B5-10	10	3/3/2018	ND(<2.50)							
B5-15	15 1	3/3/2018	101		ND(-2 E0)					
B6-1		3/3/2018 3/3/2018		3.76	ND(<2.50)					
B6-2	2		87.1	5.43	ND(<2.50)					
B6-3 B6-5	3 5	3/3/2018 3/3/2018	12.3 32.6							
B6-10	10	3/3/2018	32.6 ND(<2.50)							
B6-15	15	3/3/2018	IND(<2.50)							
		3/3/2018		2.26	 ND(-2 E0)					
B7-1.5 B7-3	1.5 3	3/3/2018	71.2 89.9	3.36 1.74	ND(<2.50) ND(<2.50)					
B7-5	5	3/3/2018	28.1	1.74					 	
B7-10	10	3/3/2018	ND(<2.50)			ND(<10)	ND(<10)	ND(<10)	ND	
B7-10	15	3/3/2018								
B8-1.5	1.5	3/3/2018	112	5.56	ND(<2.50)					
B8-3	3	3/3/2018	158	4.62	ND(<2.50)				 	
B8-5	5	3/3/2018	29.4	4.02						
B8-15	15	3/3/2018								
B9-1.5	1.5	3/3/2018	83.6	5.01	ND(<2.50)					
B9-1.5	3	3/3/2018	101	J.U1						
B9-5	5	3/3/2018	20.5							
B9-3 B9-10	10	3/3/2018	54.8	3.87	ND(<2.50)					
B9-15	15	3/3/2018				ND(<10)	ND(<10)	ND(<10)	ND	
B10-1.5	1.5	3/3/2018	57.2	0.532	ND(<2.50)				 	
B10-1.3	3	3/3/2018	48.1	0.332	. 10(~2.00)					
B10-5	5	3/3/2018	ND(<2.50)						 	
B10-10	10	3/3/2018	ND(<2.50)							
B10-10	15	3/3/2018	14D(~2.00)			ND				
D10-13	เอ	3/3/2018				ND(<10)	ND(<10)	ND(<10)	שויו	

^{-- =} Not analyzed

ND = Not detected at or above the laboratory method reporting limit mg/kg = Milligrams per kilogram mg/l = Milligrams per liter

TPHg = Total Petroleum Hydrocarbons as Gasoline

TPHd = Total Petroleum Hydrocarbons as Diesel

TPHwo = Total Petroleum Hydrocarbons as Waste Oil

Table 2
Soil Gas Analytical Results
600-628 South San Pedro Street and 611-615 Crocker Street
Los Angeles, California

Boring Name	Sample ID	Depth (feet)	Volatile Organic Compounds (µg/L)			
B1	SV1-20'	20	ND			
B2	SV2-20'	20	ND			
B3	SV3-20'	20	ND			
B4	SV4-20'	20	ND			

Notes:

Samples analyzed by US EPA Test Method 8260B All Soil Gas Samples Collected on March 3, 2018 $\mu g/L = micrograms$ per liter

ND = Not detected at or above the laboratory reporting limit

APPENDIX A

GEOPHYSICAL SURVEY REPORT

GEOPHYSICAL EVALUATION 600 SOUTH SAN PEDRO STREET LOS ANGELES, CALIFORNIA

PREPARED FOR:

Advantage Environmental Consultants, LLC 145 Vallecitos De Oro, Suite 201 San Marcos, CA 92069

PREPARED BY:

Southwest Geophysics, Inc. 8057 Raytheon Road, Suite 9 San Diego, CA 92111

> February 28, 2018 Project No. 118063

February 28, 2018 Project No. 118063

Mr. Daniel A. Weis Advantage Environmental Consultants, LLC 145 Vallecitos De Oro, Suite 201 San Marcos, CA 92069

Subject:

Geophysical Evaluation 600 South San Pedro Street Los Angeles, California

Dear Mr. Weis:

In accordance with your authorization, we are pleased to submit this data report pertaining to our geophysical evaluation for a portion of the property located at 600 South San Pedro Street in Los Angeles, California. The purpose of our evaluation was to assess the presence of buried underground storage tanks (USTs) and/or backfilled excavations associated with UST removal. Our services were conducted on February 10, 2018. This report presents the survey methodology, equipment used, analysis, and results from our study.

We appreciate the opportunity to be of service on this project. Should you have any questions please contact the undersigned at your convenience.

Sincerely,

SOUTHWEST GEOPHYSICS, INC.

Aaron T. Puente

Project Geologist/Geophysicist

ATP/HV/hv

Distribution: Addressee (electronic)

Hans van de Vrugt, C.E.G., P.Gp. Principal Geologist/Geophysicist

Ham Van de Vugt

TABLE OF CONTENTS

		Page
1.	INTRODUCTION	1
2.	SCOPE OF SERVICES	1
3.	SITE DESCRIPTION	1
4.	GEOPHYSICAL INSTRUMENTATION AND APPLICATIONS	2
5.	SURVEY METHODOLOGY	3
6.	RESULTS, CONCLUSIONS AND RECOMMENDATIONS	4
7.	LIMITATIONS	5

Figures

Figure 1 – Site Location Map
Figure 2 – Site Data Map
Figure 3 – Site Photographs

1. INTRODUCTION

In accordance with your authorization, we are pleased to submit this data report pertaining to our geophysical evaluation for a portion of the property located at 600 South San Pedro Street in Los Angeles, California (Figure 1). The purpose of our evaluation was to assess the presence of buried underground storage tanks (USTs) and/or backfilled excavations associated with UST removal. Our services were conducted on February 10, 2018. This report presents the survey methodology, equipment used, analysis, and results from our study.

2. SCOPE OF SERVICES

Our scope of services included:

- Performance of a geophysical survey at the subject site. Our survey included the use of a
 Geonics model EM61 MK2 time domain instrument, GSSI SIR 3000 Ground Penetrating
 Radar (GPR) unit using a 400 MHz transducer, Schonstedt GA-52 magnetic gradiometer,
 Fisher M-Scope TW-6 pipe and cable locator, and RD8000 line tracer.
- Site reconnaissance including field mapping of surface structures at and near the survey area.
- Compilation and analysis of the data collected.
- Preparation of this report presenting our findings, conclusions and recommendations.

3. SITE DESCRIPTION

The project site is located at the south corner of the intersection between South San Pedro Street and 6th Street in Los Angeles, California (Figure 1). The site is currently an asphalt paved parking lot. Improvements at the site include perimeter street lighting and chain link fencing. The study area, which was defined by your office, included the northern portion of the property (see Figure 1). Figures 2 and 3 depict the general site conditions in the study area.

Based on our discussions with you, it is our understanding that USTs may have been utilized onsite. Details regarding their location and possible removal were reportedly not available.

4. GEOPHYSICAL INSTRUMENTATION AND APPLICATIONS

Our evaluation included the use of a Geonics model EM61 MK2, GSSI SIR 3000 GPR, Schonstedt, model GA-52C magnetic gradiometer, Fisher M-Scope TW-6 pipe and cable locator, and RD8000 line tracer. These instruments provide real-time results and facilitate the delineation of subsurface features.

The EM61 instrument is a high resolution, time-domain device for detecting buried conductive objects. It consists of a powerful transmitter that generates a pulsed primary magnetic field when its coils are energized, which induces eddy currents in nearby conductive objects. The decay of the eddy currents, following the input pulse, is measured by the coils, which in turn serve as receiver coils. The decay rate is measured for two coils, mounted concentrically, one above the other. By making the measurements at a relatively long-time interval (measured in milliseconds) after termination of the primary pulse, the response is nearly independent of the electrical conductivity of the ground. Thus, the instrument is a super-sensitive metal detector. Due to its unique coil arrangement, the response curve is a single well-defined positive peak directly over a buried conductive object. This facilitates quick and accurate location of targets. Conductive objects to a depth of approximately 11 feet generally can be detected.

The GPR instrument beams energy into the ground from its transducer/antenna, in the form of electromagnetic waves. A portion of this energy is reflected back to the antenna at boundaries in the subsurface across which there are an electrical contrast. The recorder continuously makes a record of the reflected energy as the antenna is moved across the ground surface. The greater the electrical contrast, the higher the amplitude of the returned energy. The EM wave travels at a velocity unique to the material properties of the ground being studied, and when these velocities are known, or closely estimated from ground conductivity values and other information, two-way travel times can be converted to depth. Penetration into the ground and resolution of the GPR images produced are a function of ground electrical conductivity and dielectric constant. Images tend to be graphic, even at considerable depth, in sandy soils, but penetration and resolution may be limited in more conductive clayey moist ground.

The magnetic gradiometer has two fluxgate magnetic fixed sensors that are passed closely to and over the ground. When not in close proximity to a magnetic object, that is, only in the earth's field, the instrument emits an audible signal at a low frequency. When the instrument passes over buried iron or steel objects (so that the field is significantly different at the two sensors) the frequency of the emitted sound increases. Frequency is a function of the gradient between the two sensors.

The M-Scope TW-6 device energizes the ground by producing an alternating primary magnetic field with alternating current (AC) in the transmitting coil. If conducting materials (including soils) are within the area of influence of the primary field, AC eddy currents are induced to flow in the conductors. A receiving coil senses the secondary magnetic field produced by these eddy currents, and outputs an audio response. The strength of the secondary field is a function of the conductivity of the object, its size, and its depth and position relative to the instrument's two coils. Conductive objects to a depth of approximately 10 feet are sensed. Also, the device is somewhat focused, that is, it is more sensitive to conductors below (and above) the instrument, than to conductors off to the side.

Where risers are present, the RD8000 utility locator transmitter can be connected to the object, and a current is impressed on the conductor pipe or cable. The receiver unit is tuned to this same frequency, and it is used to trace the pipe's surface projection away from the riser. The transmitter and receiver can also be used in a non-connect (induction) mode, whereby the transmitter is positioned on the ground and an electromagnetic signal is emitted. In the presence of buried metal pipes and wires, a discrete signal will be induced on the conductor which can be sensed by the receiver. In addition, the instrument may be used in the passive mode, whereby radio and 60 Hz electromagnetic signals produced by communication and live electric lines are detected.

5. SURVEY METHODOLOGY

In order to facilitate the collection of EM61 data, a Trimble Pro XRS global positioning system (GPS) was used for spatial control. EM61 measurements were collected at 0.2 second intervals along northwest-southeast traverses spaced roughly 5 feet apart across accessible portions of the

study area. The EM61 data were downloaded to a portable computer in the field for preliminary analysis and then plotted on a site map (see Figure 2). GPR traverses were also conducted along northwest-southeast and northeast-southwest profiles spaced approximately 5 feet apart across the survey area. In addition, GPR traverses were performed along random profiles across and near detected features. The M-Scope and gradiometer were conducted along traverses spaced approximately 5 to 10 feet apart in the survey area. In addition, the line tracer was used to delineate the presence of detectable underground utilities in the study area. Detected features were marked on the ground surface with paint and mapped.

6. RESULTS, CONCLUSIONS AND RECOMMENDATIONS

As previously discussed, the purpose of our evaluation was to assess the presence of buried underground storage tanks (USTs) and/or backfilled excavations associated with UST removal in the study area. The results of our study did not conclusively reveal the presence of USTs; however, three relatively large EM anomalies, labeled A through C, and three possible excavation features were encountered in the survey (see Figures 2 and 3). In addition, several small EM anomalies and unidentified lines were also detected.

The following is a description of Anomalies A, B and C, as well as the three possible excavation features:

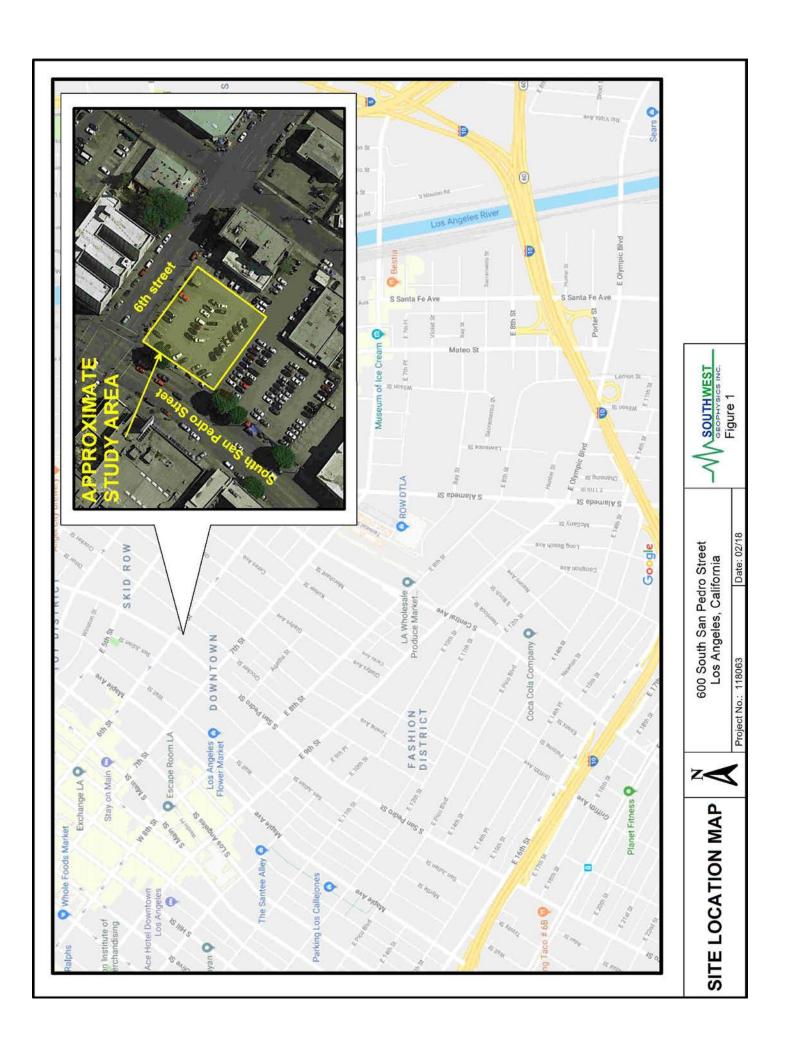
- Anomaly A: This anomaly was detected in the southwest portion of the study area and produced relatively high EM and magnetic responses. GPR images collected across this feature were inconclusive as to its cause. Two unidentified lines were observed cutting across and/or terminating at this feature. Although the nature of the anomaly is unknown, based on the relative size and instrument response, as well as the presence of the unidentified lines, this anomaly may be related to a UST.
- Anomaly B: This anomaly was detected in the southern portion of the study area and also produced relatively high EM and magnetic responses. GPR images collected across this feature were inconclusive as to its cause. In addition, two unidentified lines trending from the west and northwest terminate at the anomaly. Although the nature of the anomaly is unknown, based on the relative size and instrument response, as well as the presence of the unidentified lines, this anomaly may be related to a UST.
- Anomaly C: This anomaly was detected in the southwest portion of the study area near Anomaly A. The anomaly produced significantly high EM and magnetic responses. GPR

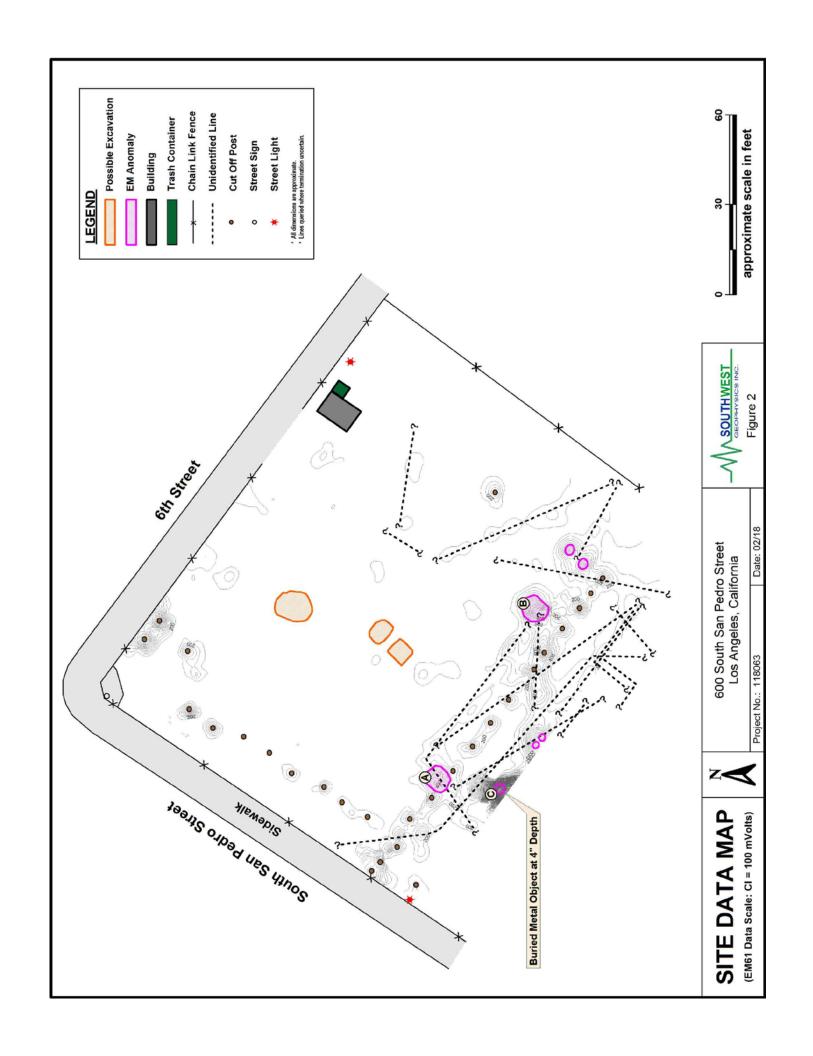
images collected across this featured revealed a shallow buried plate-like object approximately 4 inches below the ground surface. Based on the size and shape of the GPR image and its close proximity to several unidentified lines, it is possible this feature may be related to a buried tank, vault or manhole.

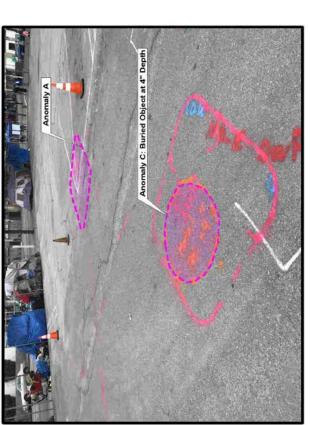
• **Possible Excavation Features:** Three possible excavation features were detected in the central portion of the study area. GPR traverses conducted across these features revealed a significant change in materials and/or dielectric properties compared to the adjacent areas. Much of the study area generally produced GPR images that revealed non-uniform soil conditions; however, the soils in the three anomalous areas appeared very uniform.

Additionally, several small EM anomalies were encountered during our survey but they appear to be related to small buried objects, unidentified lines and/or cut-off posts. In general, radar penetration at the site was on the order of 2 to 3 feet below the ground surface; therefore, objects below this depth would not have been detected with GPR. In order to further assess the features described above, we recommend that more direct methods be used. Such methods may include the excavation of exploratory trenches/test pits or borings.

Our survey utilized industry standard equipment (i.e., GPR, electromagnetic, and magnetic instruments) and was conducted in general accordance with current practice. It should be noted, however, that the presence of existing structures and surface objects (i.e., metal fencing, cut-off posts, trash containers, etc.) potentially limited the survey. Where obstructions were present subsurface data could not be collected. Moreover, EM/magnetic responses produced by metal surface objects and underground lines can potentially obscure subsurface features. Figures 2 and 3 present the general site conditions and some of the obstructions encountered.


7. LIMITATIONS


The field evaluation and geophysical analyses presented in this report have been conducted in general accordance with current practice and the standard of care exercised by consultants performing similar tasks in the project area. No warranty, express or implied, is made regarding the conclusions and opinions presented in this report. There is no evaluation detailed enough to reveal every subsurface condition. Variations may exist and conditions not observed or described in this report may be present. Uncertainties relative to subsurface conditions can be reduced


through additional subsurface surveying and/or exploration. Additional subsurface surveying can be performed upon request.

Please also note that our evaluation was limited to the detection of USTs and/or backfilled tank excavations. "USA" or "Dig Alert" should also be contacted prior to conducting subsurface exploration activities. In addition, we recommend that available utility plans/drawings of the project site be reviewed as appropriate.

This document is intended to be used only in its entirety. No portion of the document, by itself, is designed to completely represent any aspect of the project described herein. Southwest Geophysics, Inc. should be contacted if the reader requires additional information or has questions regarding the content, interpretations presented, or completeness of this document. This report is intended exclusively for use by the client. Any use or reuse of this report by parties other than the client is undertaken at said parties' sole risk.

Possible Excavation

600 South San Pedro Street Los Angeles, California

Date: 02/18

Project No.: 118063

SOUTHWEST GEOPHYSICS INC.

APPENDIX B

SOIL ANALYTICAL LABORATORY REPORTS

American Environmental Testing Laboratory Inc.

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Ordered By

Advantage Environmental Consultants 145 Vallecitos De Oro Suite 201

San Marcos, CA 92069-

Telephone: (760)744-3363

Attention: Dan Weis

Number of Pages 13

03/06/2018 Date Received Date Reported 03/07/2018

Job Number	Order Date	Client
91658	03/06/2018	AEC

Project ID: 18-027SD Project Name: 18-027SD

Site: 600-628 S. San Pedro St.

Los Angeles, CA

Enclosed please find results of analyses of 31 soil samples which were analyzed as specified on the attached chain of custody. If there are any questions, please do not hesitate to call.

Checked By:

Approved By: C. Raymona

Cyrus Razmara, Ph.D. Laboratory Director

COMPANY ADDRESS

COMPANY

American Environmental Testing Laboratory Inc.

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

CHAIN OF CUSTODY RECORD

105656

AETL JOB No.

ANALYSIS REQUESTED

) of

TEST INSTRUCTIONS & COMMENTS PDF4 Fording RELINQUISHED BY Printed Name: VATO Signature: RUS 20100 X X 2401 X Lead X × ELINQUISHED BY PRES. ICE SAMPLER: FAX 760 744 3383 PROJECT MANAGER WUS 18+20-81 CONTAINER NUMBER/SIZE Acetate PROJECT # SAMPLE RECEIPT - TO BE FILLED BY LARORATORY MATRIX # Od 8 PROPERLY COOLED Y //N / NA 600-628 S. & Nedro St, Los Apoles. CA SAMPLES INTACT Y N / NA TIME 145 Valley by De Oro Ste 201 2 ~ Mercos CA DATE 91658.01 3/3/18

91658.06

81-20

91658.0

9165808 60.85916

152-2

B2-1

91658

82-5

132-3

9/658

41.85916

135-1.5 82, 28

33-

20.859/6

LAB ID

SAMPLE ID

SITE NAME ADDRESS 81-1.5

81-3 131-5

91658.03

41658.04

131-10

51-12

91658.0

DISTRIBUTION: WHITE - Laboratory, CANARY - Laboratory, PINK - Project/Account Manager, YELLOW - Sampler/Originator 3/3/18

GEOTRACKER (GLOBAL ID) OTHER (PLEASE SPECIFY)

HARD COPY
PDF
GEOTRACKER
OTHER (PLEAS

SAME DAY

KANEXT DAY

2 DAYS

3 DAYS

□ NORMAL X RUSH

DATA DELIVERABLE REQUIRED

TURN AROUND TIME

RECEIVED IN GOOD COND(Y N

TOTAL NUMBER OF CONTAINERS

CUSTODY SEALS Y N NA

SAMPLES ACCEPTED Y/N

DRIAN KATO

abscu-s

က်

RECEIVED BY LABORATORY:

2501

0700

3/64/18

Date:

HODE

က

COMPANY

American Environmental Testing Laboratory Inc.

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

PROJECT MANAGER

CHAIN OF CUSTODY RECORD 105647

9/658

TEST INSTRUCTIONS & COMMENTS Page 2 of 4 က် PDFlax Friday RELINQUISHED BY: ABORATORY rinted Name oi ANALYSIS REQUESTED RELINQUISHED BY Chr 7/9/5 Printed Name Date: AETL JOB No. Time: 133 6 1000 B X × X × X 491 RAN KAT PRES. Signature: **BLOA** 2116 SAMPLER NUMBER/SIZE CONTAINER Hearte Sleeve DATA DELIVERABLE REQUIRED PROJECT # SAMPLE RECEIPT - TO BE FILLED BY LABORATORY PHONE MATRIX # Od FAX GEOTRACKER (GLOBAL ID) OTHER (PLEASE SPECIFY) Ş PROPERLY COOLED Y JA / NA SAMPLES INTACT (Y/ N/ NA SAMPLES ACCEPTED Y / N TIME HARD COPY
PDF
GEOTRACKER
OTHER (PLEAS DATE 3/3/18 SAME DAY

MAN NEXT DAY

2 DAYS

3 DAYS 91658 24 91658.29 91658.30 91658.2 LAB ID 9/658 91658 **TURN AROUND TIME** 91658 2017 1000 RECEIVED IN GOOD COND(Y)N TOTAL NUMBER OF CONTAINERS ☐ NORMAL X RUSH CUSTODY SEALS Y /N /NA COMPANY ADDRESS SAMPLE ID 51-42 PROJECT NAME 33-20 135-1.5 B5-10 BS-15 13-10 84-50 13-15 コース 35-3 B5-5 33-5 84-3 34-10 S- 12 SITE NAME AND ADDRESS

DISTRIBUTION: WHITE - Laboratory, CANARY - Laboratory, PINK - Project/Account Manager, YELLOW - Sampler/Originator

COMPANY ADDRESS

COMPANY

PROJECT NAME

SITE NAME AND ADDRESS SAMPLE ID

2-98

15-3

36-1

American Environmental Testing Laboratory Inc.

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

CHAIN OF CUSTODY RECORD

105657

85916

AETL JOB No.

PROJECT MANAGER

Page S of

TEST INSTRUCTIONS & COMMENTS က် RELINQUISHED BY: Printed Name. Printed Name CAN KATS ANALYSIS REQUESTED 13+5/ Lecd X X X X PRES. SAMPLER: NUMBER/SIZE Aceta te keve CONTAINER PROJECT # SAMPLE RECEIPT - TO BE FILLED BY LABORATORY PHONE MATRIX # Od FAX 20. PROPERLY COOLED /Y N / NA SAMPLES INTACT (Y/ M/ NA TIME DATE 3/3/2/18 9165832 ee tage 91658.3 LAB ID 91658 TOTAL NUMBER OF CONTAINERS 0 CUSTODY SEALS Y/(N) NA

DISTRIBUTION: WHITE - Laboratory, CANARY - Laboratory, PINK - Project/Account Manager, YELLOW - Sampler/Originator

HARD COPY
PDF
GEOTRACKER (GLOBAL ID)
OTHER (PLEASE SPECIFY)

SAME DAY

NEXT DAY

2 DAYS

3 DAYS

□ NORMAL X RUSH

က

6013 Ka

Date - 679 ABORATORY

OHO d

Date: 3/6/18

Date: 3/3/18

DATA DELIVERABLE REQUIRED

TURN AROUND TIME

RECEIVED IN GOOD COND. KAN

84 - 15 01-10

87-5

87 -3

1-48

86-10

36-15

136-5

158-1.5

88-3 3-84

88-10

SAMPLES ACCEPTED (Y) / N

650

あると

Fime: 133

BC.AN KAT

3/3/18

S

COMPANY

American Environmental Testing Laboratory Inc.

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

CHAIN OF CUSTODY RECORD

105658

85916

AETL JOB No.

PROJECT MANAGER

TEST INSTRUCTIONS & COMMENTS က် Page 🔏 of RELINQUISHED BY Date 67 RECEIVED BY ri BRAN GATO **ANALYSIS REQUESTED** Date: 2 / 2010 BROAD KATO × 240 X × X PRES. Ara-The ignatur Date: 3/3/18 SAMPI NUMBER/SIZE CONTAINER Acepate DATA DELIVERABLE REQUIRED PROJECT # SAMPLE RECEIPT - TO BE FILLED BY LABORATORY PHONE MATRIX # Od HARD COPY

R PDF

GEOTRACKER (GLOBAL ID)

OTHER (PLEASE SPECIFY) 50: PROPERLY COOLED (Y / N / NA SAMPLES INTACT (Y/ N/ NA SAMPLES ACCEPTED Y / N TIME 3/2/18 DATE SAME DAY

NEXT DAY

2 DAYS

3 DAYS 91658.45 96 85916 4.88916 LAB ID 91658. 85916 **TURN AROUND TIME** 91658 FOTAL NUMBER OF CONTAINERS RECEIVED IN GOOD COND Y N □ NORMAL X RUSH CUSTODY SEALS Y/N/NA COMPANY ADDRESS 5 SAMPLE ID 0 M 39- 5 P 89-1.5 PROJECT NAME 39-10 88-15 310-13ho -1310-1810 199-500 SITE NAME ADDRESS

DISTRIBUTION: WHITE - Laboratory, CANARY - Laboratory, PINK - Project/Account Manager, YELLOW - Sampler/Originator

0

American Environmental Testing Laboratory Inc.

2834 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

COOLER RECEIPT FORM

THE STATE OF THE PARTY STATE OF THE STATE OF	Commission and the second of the		Control April 1		
Client Name: AEC			····		
Project Name:					
AETL Job Number: ,9/658		1	1.		
	ived b		Tin	-	
Carrier: AETL Courier	\Box GS	O ' DF	edEx	UPS UPS	
□Others:					
A					
Samples were received in: \(\text{Cooler} \(\text{ / } \)	Other	(Specify):		5.	
1. 1. 4 another of chinning container No 1:	3.4.	No 2:	, No	3:	441
Type of sample containers: VOA, Glass, bo	ttles, □	Wide mouth	ı jars,	, Ц НОРЕ В	otties,
Motol cleaves Of Others (Specify): Pl. //whe				,	
How are samples preserved: None, Lice,	Blue	Ice, \square Dry	Ice	No C O	MeOH
None, HNO _{3,} 1	NaOH,	ZnOAc,	HCI	$\frac{1}{2}$, Na ₂ S ₂ O ₃ ,	Meon
Other (Specify):					
,	X7	No, explain b		Name, if clier	t was notified.
	Yes	INO, explain b	elow	TATHIC, HEREI	11.10
1. Are the COCs Correct?	1				
2. Are the Sample labels legible?	70				
3. Do samples match the COC?					
4. Are the required analyses clear?	7				
5. Is there enough samples for required analysis?	1				
6. Are samples sealed with evidence tape?	-	>			
7. Are sample containers in good condition?			-	=	
8. Are samples preserved?	100				
9. Are samples preserved properly for the	>	·			
intended analysis?	NIA				
10. Are the VOAs free of headspace?	1/4				
10. Are the VOAs free of headspace? 11. Are the jars free of headspace?	1				

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Page: 1 A Ordered By

Advantage Environmental Consultants

145 Vallecitos De Oro Suite 201

San Marcos, CA 92069-

Telephone: (760)744-3363 Attention: Dan Weis Project ID: 18-027SD

Date Received 03/06/2018
Date Reported 03/07/2018

Job Number	Order Date	Client
91658	03/06/2018	AEC

CERTIFICATE OF ANALYSIS CASE NARRATIVE

AETL received 55 samples with the following specification on 03/06/2018.

Lab ID	Sample ID	Sample Date	Matrix	Quantity Of Containers
91658.01	B1-1.5	03/03/2018	Soil	1
91658.03	B1-5	03/03/2018	Soil	1
91658.04	B1-10	03/03/2018	Soil	1
91658.07	B2-1	03/03/2018	Soil	1
91658.08	B2-2	03/03/2018	Soil	1
91658.11	B2-10	03/03/2018	Soil	1
91658.14	B3-1.5	03/03/2018	Soil	1
91658.16	B3-5	03/03/2018	Soil	1
91658.17	B3-10	03/03/2018	Soil	1
91658.20	B4-1.5	03/03/2018	Soil	1
91658.21	B4-3	03/03/2018	Soil	1
91658.23	B4-10	03/03/2018	Soil	1
91658.26	B5-1.5	03/03/2018	Soil	1
91658.27	B5-3	03/03/2018	Soil	1
91658.29	B5-10	03/03/2018	Soil	1
91658.31	B6-1	03/03/2018	Soil	1
91658.32	B6-2	03/03/2018	Soil	1
91658.34	B6-5	03/03/2018	Soil	1
91658.35	B6-10	03/03/2018	Soil	1
91658.37	B7-1.5	03/03/2018	Soil	1
91658.38	B7-3	03/03/2018	Soil	1
91658.40	B7-10	03/03/2018	Soil	1
91658.42	B8-1.5	03/03/2018	Soil	1
91658.43	B8-3	03/03/2018	Soil	1

Continued

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Page: 1 B Ordered By

Advantage Environmental Consultants

145 Vallecitos De Oro Suite 201

San Marcos, CA 92069-

Telephone: (760)744-3363 Attention: Dan Weis Project ID: 18-027SD

Date Received 03/06/2018
Date Reported 03/07/2018

Job Number	Order Date	Client
91658	03/06/2018	AEC

CERTIFICATE OF ANALYSIS CASE NARRATIVE

91658.44	B8-5	03/03/2018	Soil	1
91658.46	B9-1.5	03/03/2018	Soil	1
91658.48	B9-5	03/03/2018	Soil	1
91658.49	B9-10	03/03/2018	Soil	1
91658.51	B10-1.5	03/03/2018	Soil	1
91658.52	B10-3	03/03/2018	Soil	1
91658.54	B10-10	03/03/2018	Soil	1

	Method	^ Submethod		Req Da	ate	Priority	TAT	Units
	(6010B.L	LEAD)		03/07/2	018	2	Rush	mg/Kg
91658	3.02	B1-3	03/03/2	018	Soil			1
91658	3.05	B1-15	03/03/2	018	Soil			1
91658	3.06	B1-20	03/03/2	018	Soil			1
91658	3.09	B2-3	03/03/2	018	Soil			1
91658	3.10	B2-5	03/03/2	018	Soil			1
91658	3.12	B2-15	03/03/2	018	Soil			1
91658	3.13	B2-20	03/03/2	018	Soil			1
91658	3.15	B3-3	03/03/2	018	Soil			1
91658	3.18	B3-15	03/03/2	018	Soil			1
91658	3.19	B3-20	03/03/2	018	Soil			1
91658	3.22	B4-5	03/03/2	018	Soil			1
91658	3.24	B4-15	03/03/2	018	Soil			1
91658	3.25	B4-20	03/03/2	018	Soil			1
91658	3.28	B5-5	03/03/2	018	Soil			1
91658	3.30	B5-15	03/03/2	018	Soil			1
91658	3.33	B6-3	03/03/2	018	Soil			1
91658	3.36	B6-15	03/03/2	018	Soil			1
91658	3.39	B7-5	03/03/2	018	Soil			1
91658	3.41	B7-15	03/03/2	018	Soil			1
91658	3.45	B8-15	03/03/2	018	Soil			1

Continued

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Page: 1 C Ordered By

Advantage Environmental Consultants 145 Vallecitos De Oro Suite 201

San Marcos, CA 92069-

Telephone: (760)744-3363 Attention: Dan Weis Project ID: 18-027SD

Date Received 03/06/2018
Date Reported 03/07/2018

Job Number	Order Date	Client
91658	03/06/2018	AEC

CERTIFICATE OF ANALYSIS CASE NARRATIVE

91658.47	B9-3	03/03/2018	Soil	1
91658.50	B9-15	03/03/2018	Soil	1
91658.53	B10-5	03/03/2018	Soil	1
91658.55	B10-15	03/03/2018	Soil	1

Method ^ Submethod	Req Date	Priority	TAT	Units
ARCHIVE	03/07/2018	2	Rush	

The samples were analyzed as specified on the enclosed chain of custody. Analytical non-conformances have been noted on the report.

Unless otherwise noted, all results of soil and solid samples are based on wet weight.

Checked By: _____ Approved By: _____ C. Raymona

Cyrus Razmara, Ph.D. Laboratory Director

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Advantage Environmental Consultants

145 Vallecitos De Oro

Suite 201

San Marcos, CA 92069-

Telephone: (760)744-3363 Attn: Dan Weis

Page: 2

Project ID: 18-027SD Project Name: 18-027SD

Site

600-628 S. San Pedro St.

Los Angeles, CA

AETL Job Number Submitted Client
91658 03/06/2018 AEC

Method: (6010B.LEAD), Lead, ICP

QO DULUI 110. 0001 10200							
Our Lab I.D.			Method Blank	91658.01	91658.03	91658.04	91658.07
Client Sample I.D.				B1-1.5	B1-5	B1-10	B2-1
Date Sampled				03/03/2018	03/03/2018	03/03/2018	03/03/2018
Date Prepared			03/07/2018	03/07/2018	03/07/2018	03/07/2018	03/07/2018
Preparation Method			3050B	3050B	3050B	3050B	3050B
Date Analyzed			03/07/2018	03/07/2018	03/07/2018	03/07/2018	03/07/2018
Matrix			Soil	Soil	Soil	Soil	Soil
Units			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Dilution Factor			1	1	1	1	1
Analytes	MDL	PQL	Results	Results	Results	Results	Results
Lead	2.5	5.0	ND	75.3	20.2	ND	46.6

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Advantage Environmental Consultants

145 Vallecitos De Oro

Suite 201

San Marcos, CA 92069-

Telephone: (760)744-3363 Attn: Dan Weis

Page: 3

Project ID: 18-027SD Project Name: 18-027SD

Site

600-628 S. San Pedro St.

Los Angeles, CA

AETL Job Number Submitted Client
91658 03/06/2018 AEC

Method: (6010B.LEAD), Lead, ICP

	0. 0007 10200						
Our Lab I.D.			91658.08	91658.11	91658.14	91658.16	91658.17
Client Sample I.D.			B2-2	B2-10	B3-1.5	B3-5	B3-10
Date Sampled			03/03/2018	03/03/2018	03/03/2018	03/03/2018	03/03/2018
Date Prepared			03/07/2018	03/07/2018	03/07/2018	03/07/2018	03/07/2018
Preparation Method			3050B	3050B	3050B	3050B	3050B
Date Analyzed			03/07/2018	03/07/2018	03/07/2018	03/07/2018	03/07/2018
Matrix			Soil	Soil	Soil	Soil	Soil
Units			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Dilution Factor			1	1	1	1	1
Analytes	MDL	PQL	Results	Results	Results	Results	Results
Lead	2.5	5.0	52.3	2.96J	7.30	20.0	ND

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Advantage Environmental Consultants

145 Vallecitos De Oro

Suite 201

San Marcos, CA 92069-

Telephone: (760)744-3363 Attn: Dan Weis

Page: 4

Project ID: 18-027SD Project Name: 18-027SD Site

600-628 S. San Pedro St.

Los Angeles, CA

	AETL Job	Number	Submitted	Client
I	916	558	03/06/2018	AEC

Method: (6010B.LEAD), Lead, ICP

QO BULGII 110. 0001 10200							
Our Lab I.D.			91658.20				
Client Sample I.D.			B4-1.5				
Date Sampled			03/03/2018				
Date Prepared			03/07/2018				
Preparation Method			3050B				
Date Analyzed			03/07/2018				
Matrix			Soil				
Units			mg/Kg				
Dilution Factor			1				
Analytes	MDL	PQL	Results				
Lead	2.5	5.0	ND				

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Advantage Environmental Consultants

145 Vallecitos De Oro

Suite 201

San Marcos, CA 92069-

Telephone: (760)744-3363 Attn: Dan Weis

Page: 5

Project ID: 18-027SD Project Name: 18-027SD

Site

600-628 S. San Pedro St.

Los Angeles, CA

AETL Job Number Submitted Client
91658 03/06/2018 AEC

Method: (6010B.LEAD), Lead, ICP

Our Lab I.D.			Method Blank	91658.21	91658.23	91658.26	91658.27				
Client Sample I.D.				B4-3	B4-10	B5-1.5	B5-3				
Date Sampled				03/03/2018	03/03/2018	03/03/2018	03/03/2018				
Date Prepared			03/07/2018	03/07/2018	03/07/2018	03/07/2018	03/07/2018				
Preparation Method			3050B	3050B	3050B	3050B	3050B				
Date Analyzed			03/07/2018	03/07/2018	03/07/2018	03/07/2018	03/07/2018				
Matrix			Soil	Soil	Soil	Soil	Soil				
Units			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg				
Dilution Factor			1	1	1	1	1				
Analytes	MDL	PQL	Results	Results	Results	Results	Results				
Lead	2.5	5.0	ND	ND	ND	ND	ND				

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Advantage Environmental Consultants

145 Vallecitos De Oro

Suite 201

Page:

San Marcos, CA 92069-

Telephone: (760)744-3363 Attn: Dan Weis

Project ID: 18-027SD Project Name: 18-027SD

Site

600-628 S. San Pedro St.

Los Angeles, CA

AETL Job Number Submitted Client
91658 03/06/2018 AEC

Method: (6010B.LEAD), Lead, ICP

40 Bateli No. 000/ 10204												
Our Lab I.D.			91658.29	91658.31	91658.32	91658.34	91658.35					
Client Sample I.D.			B5-10	B6-1	B6-2	B6-5	B6-10					
Date Sampled	Date Sampled		03/03/2018	03/03/2018	03/03/2018	03/03/2018	03/03/2018					
Date Prepared			03/07/2018	03/07/2018	03/07/2018	03/07/2018	03/07/2018					
Preparation Method			3050B	3050B	3050B	3050B	3050B					
Date Analyzed			03/07/2018	03/07/2018	03/07/2018	03/07/2018	03/07/2018					
Matrix			Soil	Soil	Soil	Soil	Soil					
Units			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg					
Dilution Factor			1	1	1	1	1					
Analytes	MDL	PQL	Results	Results	Results	Results	Results					
Lead	2.5	5.0	ND	101	87.1	32.6	ND					

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Advantage Environmental Consultants

145 Vallecitos De Oro

Suite 201

San Marcos, CA 92069-

Telephone: (760)744-3363 Attn: Dan Weis Page: 7

Project ID: 18-027SD Project Name: 18-027SD Site

600-628 S. San Pedro St.

Los Angeles, CA

AETL Job Number	Submitted	Client
91658	03/06/2018	AEC

Method: (6010B.LEAD), Lead, ICP

QC Batch No: 0307182C4 Our Lab I.D. 91658.37 Client Sample I.D. B7-1.5 Date Sampled 03/03/2018 Date Prepared 03/07/2018 Preparation Method 3050B Date Analyzed 03/07/2018 Matrix Soil Units mg/Kg Dilution Factor 1 Analytes Results MDL **PQL** 71.2 2.5 Lead 5.0

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Advantage Environmental Consultants

145 Vallecitos De Oro

Suite 201

San Marcos, CA 92069-

Telephone: (760)744-3363 Attn: Dan Weis

Page:

Project ID: 18-027SD Project Name: 18-027SD

Site

600-628 S. San Pedro St.

Los Angeles, CA

AETL Job Number Submitted Client
91658 03/06/2018 AEC

Method: (6010B.LEAD), Lead, ICP

Our Lab I.D.			Method Blank	91658.38	91658.40	91658.42	91658.43					
Client Sample I.D.				B7-3	B7-10	B8-1.5	B8-3					
Date Sampled				03/03/2018	03/03/2018	03/03/2018	03/03/2018					
Date Prepared			03/07/2018	03/07/2018	03/07/2018	03/07/2018	03/07/2018					
Preparation Method			3050B	3050B	3050B	3050B	3050B					
Date Analyzed			03/07/2018	03/07/2018	03/07/2018	03/07/2018	03/07/2018					
Matrix			Soil	Soil	Soil	Soil	Soil					
Units			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg					
Dilution Factor			1	1	1	1	1					
Analytes	MDL	PQL	Results	Results	Results	Results	Results					
Lead	2.5	5.0	ND	89.9	ND	112	158					

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Advantage Environmental Consultants

145 Vallecitos De Oro

Suite 201

San Marcos, CA 92069-

Telephone: (760)744-3363 Attn: Dan Weis

Page: 9

Project ID: 18-027SD Project Name: 18-027SD

Site

600-628 S. San Pedro St.

Los Angeles, CA

AETL Job Number Submitted Client
91658 03/06/2018 AEC

Method: (6010B.LEAD), Lead, ICP

QC Batch No. 0007 10200												
Our Lab I.D.			91658.44	91658.46	91658.48	91658.49	91658.51					
Client Sample I.D.			B8-5	B9-1.5	B9-5	B9-10	B10-1.5					
Date Sampled	Date Sampled		03/03/2018	03/03/2018	03/03/2018	03/03/2018	03/03/2018					
Date Prepared			03/07/2018	03/07/2018	03/07/2018	03/07/2018	03/07/2018					
Preparation Method			3050B	3050B	3050B	3050B	3050B					
Date Analyzed			03/07/2018	03/07/2018	03/07/2018	03/07/2018	03/07/2018					
Matrix			Soil	Soil	Soil	Soil	Soil					
Units			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg					
Dilution Factor			1	1	1	1	1					
Analytes	MDL	PQL	Results	Results	Results	Results	Results					
Lead	2.5	5.0	29.4	83.6	20.5	54.8	57.2					

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Advantage Environmental Consultants

10

145 Vallecitos De Oro

Suite 201

Page:

San Marcos, CA 92069-

Telephone: (760)744-3363 Attn: Dan Weis

Project ID: 18-027SD Project Name: 18-027SD Site

600-628 S. San Pedro St.

Los Angeles, CA

AETL Job Number	Submitted	Client
91658	03/06/2018	AEC

Method: (6010B.LEAD), Lead, ICP

Our Lab I.D.			91658.52	91658.54						
Client Sample I.D.			B10-3	B10-10						
Date Sampled	Date Sampled			03/03/2018						
Date Prepared			03/07/2018	03/07/2018						
Preparation Method			3050B	3050B						
Date Analyzed	Date Analyzed		03/07/2018	03/07/2018						
Matrix			Soil	Soil						
Units			mg/Kg	mg/Kg						
Dilution Factor			1	1						
Analytes	MDL	PQL	Results	Results						
Lead	2.5	5.0	48.1	ND						

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

Advantage Environmental Consultants

145 Vallecitos De Oro

Suite 201

San Marcos, CA 92069-

Telephone: (760)744-3363

Attn: Dan Weis Page: 11

Project ID: 18-027SD Project Name: 18-027SD Site

600-628 S. San Pedro St.

Los Angeles, CA

AETL Job Number	Submitted	Client
91658	03/06/2018	AEC

Method: (6010B.LEAD), Lead, ICP

QC Batch No: 0307182C3; Dup or Spiked Sample: 91658.01; LCS: Clean Sand; QC Prepared: 03/07/2018; QC Analyzed: 03/07/2018; Units: mg/Kg

	Sample	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD
Analytes	Result	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit
Lead	75.3	50.0	141 #	131	50.0	139 #	127	3.1	75-125	<15

QC Batch No: 0307182C3; Dup or Spiked Sample: 91658.01; LCS: Clean Sand; QC Prepared: 03/07/2018; QC Analyzed: 03/07/2018; Units: mg/Kg

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Lead	50.0	51.0	102	50.0	50.5	101	<1	75-125	<15	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

Advantage Environmental Consultants

145 Vallecitos De Oro

Suite 201

San Marcos, CA 92069-

Telephone: (760)744-3363

Attn: Dan Weis Page: 12

Project ID: 18-027SD Project Name: 18-027SD Site

600-628 S. San Pedro St.

Los Angeles, CA

AETL Job Number	Submitted	Client
91658	03/06/2018	AEC

Method: (6010B.LEAD), Lead, ICP

QC Batch No: 0307182C4; Dup or Spiked Sample: 91658.21; LCS: Clean Sand; QC Prepared: 03/07/2018; QC Analyzed: 03/07/2018; Units: mg/Kg

	Sample	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD
Analytes	Result	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit
Lead	0.00	50.0	47.7	95.4	50.0	47.6	95.2	<1	75-125	<15

QC Batch No: 0307182C4; Dup or Spiked Sample: 91658.21; LCS: Clean Sand; QC Prepared: 03/07/2018; QC Analyzed: 03/07/2018; Units: mg/Kg

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Lead	50.0	50.5	101	50.0	50.5	101	<1	75-125	<15	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

Advantage Environmental Consultants

145 Vallecitos De Oro

Suite 201

San Marcos, CA 92069-

Telephone: (760)744-3363 Attn: Dan Weis

Page: 13

Project ID: 18-027SD Project Name: 18-027SD Site

600-628 S. San Pedro St.

Los Angeles, CA

AETL Job Number	Submitted	Client
91658	03/06/2018	AEC

Method: (6010B.LEAD), Lead, ICP

QC Batch No: 0307182C5; Dup or Spiked Sample: 91658.38; LCS: Clean Sand; QC Prepared: 03/07/2018; QC Analyzed: 03/07/2018; Units: mg/Kg

	Sample	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD
Analytes	Result	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit
Lead	89.9	50.0	135	90.2	50.0	134	88.2	2.2	75-125	<15

QC Batch No: 0307182C5; Dup or Spiked Sample: 91658.38; LCS: Clean Sand; QC Prepared: 03/07/2018; QC Analyzed: 03/07/2018; Units: mg/Kg

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Lead	50.0	53.5	107	50.0	53.5	107	<1	75-125	<15	

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

Data Qualifier:

#: Recovery is not within acceptable control limits.

*: In the QC section, sample results have been taken directly from the ICP reading. No preparation factor has

been applied.

B: Analyte was present in the Method Blank.

D: Result is from a diluted analysis.

E: Result is beyond calibration limits and is estimated.

H: Analysis was performed over the allowed holding time due to circumstances which were beyond laboratory

control.

J: Analyte was detected. However, the analyte concentration is an estimated value, which is between the Method

Detection Limit (MDL) and the Practical Quantitation Limit (PQL).

M: Matrix spike recovery is outside control limits due to matrix interference. Laboratory Control Sample recovery

was acceptable.

MCL: Maximum Contaminant Level

NS: No Standard Available

S6: Surrogate recovery is outside control limits due to matrix interference.

S8: The analysis of the sample required a dilution such that the surrogate concentration was diluted below the

method acceptance criteria.

X: Results represent LCS and LCSD data.

Definition:

%Limi: Percent acceptable limits.

%REC: Percent recovery.

Con.L: Acceptable Control Limits

Conce: Added concentration to the sample.

LCS: Laboratory Control Sample

MDL: Method Detection Limit is a statistically derived number which is specific for each instrument, each method,

and each compound. It indicates a distinctively detectable quantity with 99% probability.

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

MS:

Matrix Spike

MS DU:

Matrix Spike Duplicate

ND:

Analyte was not detected in the sample at or above MDL.

PQL:

Practical Quantitation Limit or ML (Minimum Level as per RWQCB) is the minimum concentration that can

be quantified with more than 99% confidence. Taking into account all aspects of the entire analytical

instrumentation and practice.

Recov:

Recovered concentration in the sample.

RPD:

Relative Percent Difference

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Ordered By

Advantage Environmental Consultants 145 Vallecitos De Oro Suite 201

San Marcos, CA 92069-

Telephone: (760)744-3363

Attention: Dan Weis

Number of Pages 5

Date Received 03/06/2018
Date Reported 03/09/2018

Job Number	Order Date	Client
91658	03/06/2018	AEC

Project ID: 18-027SD Project Name: 18-027SD

Site: 600-628 S. San Pedro St.

Los Angeles, CA

Enclosed please find results of analyses of 10 soil samples which were analyzed as specified on the attached chain of custody. If there are any questions, please do not hesitate to call.

Checked By: _____ Approved By: _____ C. Raymona

Cyrus Razmara, Ph.D. Laboratory Director

COMPANY

MEC

COMPANY ADDRESS

SITE NAME ADDRESS

American Environmental Testing Laboratory Inc.

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

CHAIN OF CUSTODY RECORD

105656

TEST INSTRUCTIONS & COMMENTS PDFby Friding **ANALYSIS REQUESTED** AETL JOB No. Leadwood FAX 760 744 5383 15 t20-8 PHOJECT MANAGER WUS PROJECT # # Od 600-628 5. & ~ Pedro 5t, Los Acles 145 Valley by De Oro Ste Zal & Marros CA PROJECT NAME

		-				-																
																RELINQUISHED BY:		Muss	Printed Name:	Day Ly Lime: // Time:	RECEIVED BY ALL 3.	
																RELINQUISHED BY: 2.	Signature:	rinted Name:	BALIN LATO	Date: 3/6/1/8 Time: 0700	RECEIVED BY: 2.	Of Carlotter Car
atol		3	× >	<>>			7	< >	< 3	× 4	>	\ \ 		×	***		S	10	the special	Time: D	÷.	5
NINER PRES.	TIE	5													1	RELINQUISHED BY SAMPLER:	Signardre:	Printed Name:	Sementhe	3/3/18	RECEIVED BY:	Signature
MATRIX CONTAINER NUMBER/SIZE	Acetate														+1	TORY					REQUIRED	
TIME MAI	2														1	3Y LABORA	PROPERLY COOLED Y //N / NA	M VIN NA	}	PTED N/N	DATA DELIVERABLE REQUI	
DATE	8/1/8														1	BE FILLED E	PROPERLY COO	SAMPLES INTACT Y, N / NA		SAMPLES ACCEPTED	DATA DI	000
LAB ID	911658:01 3/3/18	20.85916	91658.03	41658.04	91658.05	91658:06	91658.07	80 85916	60 85916	01 83916	11.83916	61.85916	61.88919	41.85914	81.85916	SAMPLE RECEIPT - TO BE FILLED BY LABORATORY	INERS /C			\(\frac{1}{2}\)	D TIME	
SAMPLE ID	81-1.5	81-3	31-5	61-10	6 51-18	81-20 9		2-29	12-3	82-5	02-10	82-15	82, 20	B3 - 1.5	13-3	SAMPLER	TOTAL NUMBER OF CONTAINERS	CUSTODY SEALS Y/N/NA	7 1000 IN GAMES	RECEIVED IN GOOD COND Y N	TURN AROUND TIME	
		67	<u>г</u>	4	co.	ω			6	10	=	12	13	**	15		ĭ	<u>ರ</u>	1 2	č		_

DISTRIBUTION: WHITE - Laboratory, CANARY - Laboratory, PINK - Project/Account Manager, YELLOW - Sampler/Originator

☐ HARD COPY

PDF
☐ GEOTRACKER (GLOBAL ID)
☐ OTHER (PLEASE SPECIFY)

SAME DAY
NEXT DAY
D 2 DAYS
D 3 DAYS

□ NORMAL X RUSH

BRIAN

COMPANY

American Environmental Testing Laboratory Inc.

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

CHAIN OF CUSTODY RECORD

105647

9/658

TEST INSTRUCTIONS & COMMENTS Page 2 of 4 က PDFly Friday RELINQUISHED BY: RECEIVED BY LABORATORY: rinted Name Signature Ri ANALYSIS REQUESTED RELINQUISHED BY: Signature: CAUPE Date: 3/6/18 RECEIVED BY: Printed Name: AETŁ JOB No. DISTRIBUTION: WHITE - Laboratory, CANARY - Laboratory, PINK - Project/Account Manager, YELLOW - Sampler/Originator June: 133 v 20100) X X × × X 491 RELINQUISHED BY SAMPLER: PLAN KAT PRES. Signature: Bout Jale 3/3/16 SKIMK The Date: 3/3/18
RECEIVED BY: NUMBER/SIZE CONTAINER Hearte Seeve DATA DELIVEKABLE REQUIRED PROJECT MANAGER PROJECT # SAMPLE RECEIPT - TO BE FILLED BY LABORATORY PHONE MATRIX FAX # Od HARD COPY

R PDF

GEOTRACKER (GLOBAL ID)

OTHER (PLEASE SPECIFY) 50: PROPERLY COOLED (Y JA / NA SAMPLES INTACT (Y/ N/ NA SAMPLES ACCEPTED /Y /N TIME DATE 3/3/18 Page ☐ NORMAL K RUSH G SAME DAY

E NEXT DAY

☐ 2 DAYS

☐ 3 DAYS 16.859 91658.29 91658.30 91658.2 91658.7 2.85916 LAB ID 91658 915% **TURN AROUND TIME** TOTAL NUMBER OF CONTAINERS RECEIVED IN GOOD COND(Y)N 9 CUSTODY SEALS Y (N) MA COMPANY ADDRESS SAMPLE ID PROJECT NAME 34-1.5 135-1.5 3-20 13-10 13-15 84-20 B5-10 13.5 アース B5-5 35-3 84-3 34-10 3 SITE NAME AND ADDRESS 124

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

CHAIN OF CUSTODY RECORD

105657

TEST INSTRUCTIONS & COMMENTS က် ols for Page V of PDF4 Fridey RELINQUISHED BY: Formal Property Pates 679
RECEIVED BY
LABORATORY: Signatura 1650 CHO તાં Z. 859/6 **ANALYSIS REQUESTED** Printed Name: CAN RELINQUISHED BY Date: 3/6/18 RECEIVED BY: AETL JOB No. DISTRIBUTION: WHITE - Laboratory, CANARY - Laboratory, PINK - Project/Account Manager, YELLOW - Sampler/Originator Time: 132 13+6/ Lecd X * X X × × X XX Printed Name: **BC_A**\(\text{KArr}\)
Date: 313/10 RELINQUISHED BY PRES. Skane: h 166 Date: 12/18 RECEIVED BY SAMPLER: Signature CONTAINER NUMBER/SIZE Aceta to seeve DATA DELIVERABLE REQUIRED PROJECT # PROJECT MANAGER SAMPLE RECEIPT - TO BE FILLED BY LABORATORY PHONE MATRIX PO # FAX 3 PROPERLY COOLED (Y) N / NA SAMPLES INTACT (Y/) / NA SAMPLES ACCEPTED (Y/ N TIME DATE 3/3/18 □ NORMAL X RUSH □ SAMEDAY
□ LOSH □ SAMEDAY
□ 2DAYS
□ 3DAYS 7 91658:32 see Jage 9/658.34 91658.36 91658.3 41658.4 91658.3 0/2/2/2 LAB ID 200 **TURN AROUND TIME** 3916 TOTAL NUMBER OF CONTAINERS RECEIVED IN GOOD COND. 0 CUSTODY SEALS Y /(N) NA COMPANY ADDRESS SAMPLE ID 84 115 01-10 PROJECT NAME 87-5 68-1.5 36-10 1. - 12 36-15 88-3 87 -3 3-84 2-98 136-5 98-10 死-3 SITE NAME ADDRESS COMPANY 36

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

CHAIN OF CUSTODY RECORD

105658

TEST INSTRUCTIONS & COMMENTS က Page 7 of PD Fafricay RELINQUISHED BY: Date Company RECEIVED BY LABORATORY: rinted Na ď 255 JATO **ANALYSIS REQUESTED** 85916 RELINQUISHED BY: 16/18 RECEIVED BY Date: 2 AETL JOB No. Bolos X X 2401 X X RELINGUISHED BY SAMPLER: PRES. Date: 213/18 Signatur And Name H Date: 3/3/18 FECEIVED BY: NUMBER/SIZE CONTAINER Acetate DATA DELIVERABLE REQUIRED PROJECT # PROJECT MANAGER SAMPLE RECEIPT - TO BE FILLED BY LABORATORY PHONE MATRIX # Od FAX HARD COPY

R PDF

GEOTRACKER (GLOBAL ID)

OTHER (PLEASE SPECIFY) 20: PROPERLY COOLED (Y / N / NA SAMPLES INTACT (Y/ N/ NA SAMPLES ACCEPTED Y / N TIME 3/2/18 DATE 91658.5 LAB ID 91658. 9/658. TURN AROUND TIME 859/6 RECEIVED IN GOOD COND Y N TOTAL NUMBER OF CONTAINERS CUSTODY SEALS Y/N/NA COMPANY ADDRESS Ñ SAMPLE ID Q PROJECT NAME 31-10 188-15 1310-1310 Bb -2010 1010 139-89-1 SITE NAME COMPANY ADDRESS AND

DISTRIBUTION: WHITE - Laboratory, CANARY - Laboratory, PINK - Project/Account Manager, YELLOW - Sampler/Originator

0

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Page: 1 A Ordered By

Advantage Environmental Consultants 145 Vallecitos De Oro Suite 201

San Marcos, CA 92069-

Telephone: (760)744-3363 Attention: Dan Weis Project ID: 18-027SD

Date Received 03/06/2018
Date Reported 03/09/2018

Job Number	Order Date	Client
91658	03/06/2018	AEC

CERTIFICATE OF ANALYSIS CASE NARRATIVE

AETL received 55 samples with the following specification on 03/06/2018.

Lab ID	Sample ID	Sample Date	Matrix	Quantity Of Containers
91658.01	B1-1.5	03/03/2018	Soil	1
91658.02	B1-3	03/03/2018	Soil	1
91658.03	B1-5	03/03/2018	Soil	1
91658.04	B1-10	03/03/2018	Soil	1
91658.07	B2-1	03/03/2018	Soil	1
91658.08	B2-2	03/03/2018	Soil	1
91658.09	B2-3	03/03/2018	Soil	1
91658.10	B2-5	03/03/2018	Soil	1
91658.11	B2-10	03/03/2018	Soil	1
91658.14	B3-1.5	03/03/2018	Soil	1
91658.15	B3-3	03/03/2018	Soil	1
91658.16	B3-5	03/03/2018	Soil	1
91658.17	B3-10	03/03/2018	Soil	1
91658.20	B4-1.5	03/03/2018	Soil	1
91658.21	B4-3	03/03/2018	Soil	1
91658.22	B4-5	03/03/2018	Soil	1
91658.23	B4-10	03/03/2018	Soil	1
91658.26	B5-1.5	03/03/2018	Soil	1
91658.27	B5-3	03/03/2018	Soil	1
91658.28	B5-5	03/03/2018	Soil	1
91658.29	B5-10	03/03/2018	Soil	1
91658.31	B6-1	03/03/2018	Soil	1
91658.32	B6-2	03/03/2018	Soil	1
91658.33	B6-3	03/03/2018	Soil	1

Continued

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Page: 1 B Ordered By

Advantage Environmental Consultants

145 Vallecitos De Oro Suite 201

San Marcos, CA 92069-

Telephone: (760)744-3363 Attention: Dan Weis Project ID: 18-027SD

Date Received 03/06/2018
Date Reported 03/09/2018

Job Number	Order Date	Client
91658	03/06/2018	AEC

CERTIFICATE OF ANALYSIS CASE NARRATIVE

91658.34	B6-5	03/03/2018	Soil	1
91658.35	B6-10	03/03/2018	Soil	1
91658.37	B7-1.5	03/03/2018	Soil	1
91658.38	B7-3	03/03/2018	Soil	1
91658.39	B7-5	03/03/2018	Soil	1
91658.40	B7-10	03/03/2018	Soil	1
91658.42	B8-1.5	03/03/2018	Soil	1
91658.43	B8-3	03/03/2018	Soil	1
91658.44	B8-5	03/03/2018	Soil	1
91658.46	B9-1.5	03/03/2018	Soil	1
91658.47	B9-3	03/03/2018	Soil	1
91658.48	B9-5	03/03/2018	Soil	1
91658.49	B9-10	03/03/2018	Soil	1
91658.51	B10-1.5	03/03/2018	Soil	1
91658.52	B10-3	03/03/2018	Soil	1
91658.53	B10-5	03/03/2018	Soil	1
91658.54	B10-10	03/03/2018	Soil	1

	Method	^ Submethod		Req Da	ate	Priority	TAT	Units	
[(6010B.L	LEAD)		03/07/20	018	2	Rush	mg/Kg	
91658	3.05	B1-15	03/03/2	018	Soil			1	
91658	3.06	B1-20	03/03/2	018	Soil			1	
91658	3.12	B2-15	03/03/20	018	Soil			1	
91658	3.13	B2-20	03/03/20	018	Soil			1	
91658	3.18	B3-15	03/03/20	018	Soil			1	
91658	3.19	B3-20	03/03/20	018	Soil			1	
91658	3.24	B4-15	03/03/20	018	Soil			1	
91658	3.25	B4-20	03/03/20	018	Soil			1	
91658	3.30	B5-15	03/03/20	018	Soil			1	
91658	3.36	B6-15	03/03/20	018	Soil			1	

Continued

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Page: 1 C Ordered By

Advantage Environmental Consultants 145 Vallecitos De Oro Suite 201

San Marcos, CA 92069-

Telephone: (760)744-3363 Attention: Dan Weis Project ID: 18-027SD

Date Received 03/06/2018
Date Reported 03/09/2018

Job Number	Order Date	Client
91658	03/06/2018	AEC

CERTIFICATE OF ANALYSIS CASE NARRATIVE

91658.41	B7-15	03/03/2018	Soil	1
91658.45	B8-15	03/03/2018	Soil	1
91658.50	B9-15	03/03/2018	Soil	1
91658.55	B10-15	03/03/2018	Soil	1

Method ^ Submethod	Req Date	Priority	TAT	Units
ARCHIVE	03/07/2018	2	Rush	

The samples were analyzed as specified on the enclosed chain of custody. No analytical non-conformances were encountered.

Unless otherwise noted, all results of soil and solid samples are based on wet weight.

Checked By: _____ Approved By: _____

Cyrus Razmara, Ph.D. Laboratory Director

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Advantage Environmental Consultants

145 Vallecitos De Oro

Suite 201

San Marcos, CA 92069-

Telephone: (760)744-3363 Attn: Dan Weis

Page: 2

Project ID: 18-027SD Project Name: 18-027SD

Site

600-628 S. San Pedro St.

Los Angeles, CA

AETL Job Number Submitted Client
91658 03/06/2018 AEC

Method: (6010B.LEAD), Lead, ICP

40 Buton No. 00010201								
Our Lab I.D.			Method Blank	91658.02	91658.09	91658.10	91658.15	
Client Sample I.D.				B1-3	B2-3	B2-5	В3-3	
Date Sampled				03/03/2018	03/03/2018	03/03/2018	03/03/2018	
Date Prepared			03/08/2018	03/08/2018	03/08/2018	03/08/2018	03/08/2018	
Preparation Method	Preparation Method		3050B	3050B	3050B	3050B	3050B	
Date Analyzed			03/09/2018	03/09/2018	03/09/2018	03/09/2018	03/09/2018	
Matrix			Soil	Soil	Soil	Soil	Soil	
Units			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	
Dilution Factor			1	1	1	1	1	
Analytes	MDL	PQL	Results	Results	Results	Results	Results	
Lead	2.5	5.0	ND	25.8	ND	70.3	44.0	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Advantage Environmental Consultants

145 Vallecitos De Oro

Suite 201

San Marcos, CA 92069-

Telephone: (760)744-3363 Attn: Dan Weis

Page:

Project ID: 18-027SD Project Name: 18-027SD

Site

600-628 S. San Pedro St.

Los Angeles, CA

AETL Job Number Submitted Client
91658 03/06/2018 AEC

Method: (6010B.LEAD), Lead, ICP

QO BALCII NO. 00010201								
Our Lab I.D.			91658.22	91658.28	91658.33	91658.39	91658.47	
Client Sample I.D.			B4-5	B5-5	B6-3	B7-5	B9-3	
Date Sampled			03/03/2018	03/03/2018	03/03/2018	03/03/2018	03/03/2018	
Date Prepared			03/08/2018	03/08/2018	03/08/2018	03/08/2018	03/08/2018	
Preparation Method			3050B	3050B	3050B	3050B	3050B	
Date Analyzed			03/09/2018	03/09/2018	03/09/2018	03/09/2018	03/09/2018	
Matrix			Soil	Soil	Soil	Soil	Soil	
Units			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	
Dilution Factor			1	1	1	1	1	
Analytes	MDL	PQL	Results	Results	Results	Results	Results	
Lead	2.5	5.0	ND	ND	12.3	28.1	101	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Advantage Environmental Consultants

145 Vallecitos De Oro

Suite 201

San Marcos, CA 92069-

Telephone: (760)744-3363 Attn: Dan Weis

Page:

Project ID: 18-027SD Project Name: 18-027SD Site

600-628 S. San Pedro St.

Los Angeles, CA

AETL Job	Number	Submitted	Client
916	558	03/06/2018	AEC

Method: (6010B.LEAD), Lead, ICP

49 Buton No. 000 1020 1								
Our Lab I.D.			91658.53					
Client Sample I.D.			B10-5					
Date Sampled			03/03/2018					
Date Prepared			03/08/2018					
Preparation Method			3050B					
Date Analyzed			03/09/2018					
Matrix			Soil					
Units			mg/Kg					
Dilution Factor			1					
Analytes	MDL	PQL	Results					
Lead	2.5	5.0	ND					

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

Advantage Environmental Consultants

145 Vallecitos De Oro

Suite 201

San Marcos, CA 92069-

Telephone: (760)744-3363 Attn: Dan Weis

Page: 5

Project ID: 18-027SD Project Name: 18-027SD Site

600-628 S. San Pedro St.

Los Angeles, CA

AETL Job Number	Submitted	Client
91658	03/06/2018	AEC

Method: (6010B.LEAD), Lead, ICP

QC Batch No: 0308182C1; Dup or Spiked Sample: 91658.02; LCS: Clean Sand; QC Prepared: 03/08/2018; QC Analyzed: 03/09/2018; Units: mg/Kg

	Sample	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD
Analytes	Result	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit
Lead	25.8	50.0	69.6	87.6	50.0	70.6	89.6	2.26	75-125	<15

QC Batch No: 0308182C1; Dup or Spiked Sample: 91658.02; LCS: Clean Sand; QC Prepared: 03/08/2018; QC Analyzed: 03/09/2018; Units: mg/Kg

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Lead	50.0	50.4	101	50.0	51.4	103	1.96	75-125	<15	

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

Data Qualifier:

#: Recovery is not within acceptable control limits.

*: In the QC section, sample results have been taken directly from the ICP reading. No preparation factor has

been applied.

B: Analyte was present in the Method Blank.

D: Result is from a diluted analysis.

E: Result is beyond calibration limits and is estimated.

H: Analysis was performed over the allowed holding time due to circumstances which were beyond laboratory

control.

J: Analyte was detected. However, the analyte concentration is an estimated value, which is between the Method

Detection Limit (MDL) and the Practical Quantitation Limit (PQL).

M: Matrix spike recovery is outside control limits due to matrix interference. Laboratory Control Sample recovery

was acceptable.

MCL: Maximum Contaminant Level

NS: No Standard Available

S6: Surrogate recovery is outside control limits due to matrix interference.

S8: The analysis of the sample required a dilution such that the surrogate concentration was diluted below the

method acceptance criteria.

X: Results represent LCS and LCSD data.

Definition:

%Limi: Percent acceptable limits.

%REC: Percent recovery.

Con.L: Acceptable Control Limits

Conce: Added concentration to the sample.

LCS: Laboratory Control Sample

MDL: Method Detection Limit is a statistically derived number which is specific for each instrument, each method,

and each compound. It indicates a distinctively detectable quantity with 99% probability.

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

MS:

Matrix Spike

MS DU:

Matrix Spike Duplicate

ND:

Analyte was not detected in the sample at or above MDL.

PQL:

Practical Quantitation Limit or ML (Minimum Level as per RWQCB) is the minimum concentration that can

be quantified with more than 99% confidence. Taking into account all aspects of the entire analytical

instrumentation and practice.

Recov:

Recovered concentration in the sample.

RPD:

Relative Percent Difference

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Ordered By

Advantage Environmental Consultants
145 Vallecitos De Oro Suite 201

San Marcos, CA 92069-

Telephone: (760)744-3363

Attention: Dan Weis

Number of Pages 11

Date Received 03/06/2018
Date Reported 03/12/2018

Job Number	Order Date	Client
91658	03/06/2018	AEC

Project ID: 18-027SD Project Name: 18-027SD

Site: 600-628 S. San Pedro St.

Los Angeles, CA

Enclosed please find results of analyses of 11 soil samples which were analyzed as specified on the attached chain of custody. If there are any questions, please do not hesitate to call.

Checked By: _____ Approved By: _____ C. Raymona

Cyrus Razmara, Ph.D. Laboratory Director

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

CHAIN OF CUSTODY RECORD

105656

TEST INSTRUCTIONS & COMMENTS Jo of 2000 က် က PDF Ly Friday RELINQUISHED BY: RECEIVED BY LABORATORY: 0700 તાં તાં ANALYSIS REQUESTED Vrinted Name: VYTO RELINQUISHED BY: Date: 3/6/1/8 RECEIVED BY: AETL JOB No. Time: 133 10100 Pop × X K47 Samanthe RELINQUISHED BY PRES. TE ate: 3/3/18 RECEIVED BY: Signature 21/ SAMPLER: BRIAN FAX 760 744 5383 PROJECT MANAGER WUS 15+20-8 CONTAINER NUMBER/SIZE Acetate DATA DELIVERABLE REQUIRED PROJECT # SAMPLE RECEIPT - TO BE FILLED BY LARORATORY MATRIX # Od ☐ HARD COPY

☐ PDF
☐ GEOTRACKER (GLOBAL ID)
☐ OTHER (PLEASE SPECIFY) 8 Y //N / NA 600-628 S. & ~ Pedro St, Los Ageles, CA SAMPLES INTACT Y) N / NA SAMPLES ACCEPTED Y/N TIME PROPERLY COOLED 145 Valley by De Oro Ste Za) & Marcas CA PROJECT NAME DATE 91658.01 3/3/18 SAME DAY

KAN NEXT DAY

2 DAYS

3 DAYS 91658 06 91658 09 91658.03 91658.08 91658.02 91658.04 91658.07 91658.0 LAB ID 85916 85916 91658. TURN AROUND TIME TOTAL NUMBER OF CONTAINERS RECEIVED IN GOOD COND(Y)N □ NORMAL X RUSH CUSTODY SEALS Y N NA COMPANY

PEC

COMPANY ADDRESS SAMPLE ID B B3 - 1.5 01 - 29 81-20 81-1-5 101-10 82-5 51-12 2 - 28 1 - 28 12-3 SITE NAME AND 81-5 1-28 33-181-3 32, ADDRESS

DISTRIBUTION: WHITE - Laboratory, CANARY - Laboratory, PINK - Project/Account Manager, YELLOW - Sampler/Originator

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

CHAIN OF CUSTODY RECORD

105647

9/658

TEST INSTRUCTIONS & COMMENTS က် က် Page 2 of PDFly Filary RELINQUISHED BY: RECEIVED BY LABORATORY: inted Name Signature તાં ANALYSIS REQUESTED RELINQUISHED BY: Date: 3/6/18 Chatyle Con RECEIVED BY: Printed Name: AETL JOB No. Time: 133 v w. 1000 STO X × X × XX 491 Stan KAT RELINQUISHED BY Signature: **BOA** PRES. SKIME MANES 31216 Date: 3/14 RECEIVED BY: SAMPLER: Signatur CONTAINER NUMBER/SIZE Hearte Seeve DATA DELIVERABLE REQUIRED PROJECT # PROJECT MANAGER SAMPLE RECEIPT - TO BE FILLED BY LABORATORY PHONE MATRIX # Od HARD COPY

CAN PDF

GEOTRACKER (GLOBAL ID)

OTHER (PLEASE SPECIFY) Şō. PROPERLY COOLED (Y JA / NA SAMPLES INTACT (Y/ N/ NA SAMPLES ACCEPTED Y IN TIME 3/2/18 DATE Zage RUSH C SAME DAY

C 2 DAYS

C 3 DAYS 41658.24 91658:26 91658.29 61.88916 91658.2 LAB ID 9/658 85916 TURN AROUND TIME 82/6 TOTAL NUMBER OF CONTAINERS RECEIVED IN GOOD COND(Y) N 0 CUSTODY SEALS Y // MA COMPANY ADDRESS SAMPLEID ☐ NORMAL 124-1.5 3-20 135-1.5 B5-10 13-15 15-15 PROJECT NAME 13-10 84-50 カード 35-3 B5-5 13-5 84-3 34-10 3 SITE NAME ADDRESS COMPANY 150

DISTRIBUTION: WHITE - Laboratory, CANARY - Laboratory, PINK - Project/Account Manager, YELLOW - Sampler/Originator

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

PROJECT MANAGER

PHONE

COMPANY ADDRESS

COMPANY

PROJECT NAME

SITE NAME AND ADDRESS

CHAIN OF CUSTODY RECORD

105657

859/6

AETL JOB No.

Page O

TEST INSTRUCTIONS & COMMENTS က PDFAFILLEY RELINQUISHED BY: d ANALYSIS REQUESTED RELINQUISHED BY 20109 XX X XX X 181 RELINQUISHED BY PRES. 16 SAMPLER: Acetaspere CONTAINER NUMBER/SIZE PROJECT # SAMPLE RECEIPT - TO BE FILLED BY LABORATORY MATRIX # Od FAX ٠. ك DATE 3/2/18

1658.36

91658.3

658.3

36-10

136-5

2-98 死-3

36-1

36-15

91658.33 91658.34

LAB ID

SAMPLE ID

06.85916

4/658:41

84-15 5.1.29

18-5 9-84

88-3

01-10

87-5

87 -3

91658.39 38.38

DISTRIBUTION: WHITE - Laboratory, CANARY - Laboratory, PINK - Project/Account Manager, YELLOW - Sampler/Originator Time: 133 3/3/18

BC AN KAT

HARD COPY
POF
GEOTRACKER (GLOBAL ID)
OTHER (PLEASE SPECIFY)

SAME DAY
NEXT DAY
DAYS
S DAYS
S DAYS

M RUSH

NORMAL

013/0

RECEIVED BY LABORATORY:

OHO તં

Date: 3/6/18 RECEIVED BY:

MOSEN TOTA

Skanne: h

PROPERLY COOLED (Y) N / NA SAMPLES INTACT (Y/ W/ NA SAMPLES ACCEPTED \ \y / N

TOTAL NUMBER OF CONTAINERS

CUSTODY SEALS Y/(N) NA RECEIVED IN GOOD COND.

Date: 3/3/18/ RECEIVED BY:

DATA DELIVERABLE REQUIRED

TURN AROUND TIME

620

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

CHAIN OF CUSTODY RECORD

105650

TEST INSTRUCTIONS & COMMENTS က် Page 🗸 of PD Fafricay RELINQUISHED BY: Date: 61 LABORATORY: RECEIVED BY Time: 07/ તાં ςį Printed Name 12472 ANALYSIS REQUESTED 85916 RELINQUISHED BY: Date: 3/6/18 RECEIVED BY AETL JOB No. 71 DISTRIBUTION: WHITE - Laboratory, CANARY - Laboratory, PINK - Project/Account Manager, YELLOW - Sampler/Originator Dolos B BRAAN KATO X RELINQUISHED BY PRES. Signatur Date: 3/3/18
RECEIVED BY: Kna-Th Jate: 25/3 SAMPLER CONTAINER NUMBER/SIZE Acerte seve DATA DELIVERABLE REQUIRED PROJECT # PROJECT MANAGER SAMPLE RECEIPT - TO BE FILLED BY LABORATORY PHONE MATRIX FAX # Od 50: GEOTRACKER (GLOBAL ID)
OTHER (PLEASE SPECIFY) PROPERLY COOLED (Y / N / NA SAMPLES INTACT (Y/) IV NA N/X/ TIME SAMPLES ACCEPTED HARD COPY

R PDF

GEOTRACKER

OTHER (PLEA 9/ DATE SAME DAY

CAN NEXT DAY

2 DAYS

3 DAYS 91658.45 91658.54 91658.48 91658.5. 91658. 4.85916 LAB ID 85916 TURN AROUND TIME 25916 85916 RECEIVED IN GOOD COND Y N TOTAL NUMBER OF CONTAINERS X RUSH CUSTODY SEALS Y/N/NA COMPANY ADDRESS 0 1510-15 SAMPLEID Bb-5 NORMAL P PROJECT NAME 89-1.5 31-10 B9- 5 310-210-88-15 1500 139-SITE NAME AND 69-COMPANY ADDRESS

2834 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

COOLER RECEIPT FORM

Client Name: AEC				1191	
Project Name:				08/	
AETL Job Number: ,9/658					
Date Received: 03/06//8 Received:	ved b	y: //	110		
	□ GS		FedE	x UPS	5
arrier. LABIL Courter 2 011011					
Others:					
Complex were received in: \(\sigma\) Cooler (\sigma\)	Other	(Specify):		ÿ	
Samples were received in 2 sontoiner No 1.	2.40	No 2:	, No	3:	
Type of sample containers: VOA, Glass bott	tles. □	Wide mou	ath jars	s, 🗆 HDPE b	ottles,
Type of sample containers: UVOA, UGlass out			3	(;	
☐ Metal sleeves, ☐ Others (Specify): Pl Tube How are samples preserved: ☐ None, ☐ Ice, ☐	J Blue	Ice. D	ry Ice		
None, HNO ₃ , N	IaOH.	ZnOAc.	HC	l, Na ₂ S ₂ O ₃	MeOH
Other (Specify):	uOII,		-		
Offici (Specify).					
	Yes	No, explain	i below	Name, if che	nt was notified
1. Are the COCs Correct?	>0	2.51			
2. Are the Sample labels legible?	1				
3. Do samples match the COC?	0				
1 Are the required analyses clear?	>				
5. Is there enough samples for required analysis?	>				
6 Are samples sealed with evidence tape?		>			
7. Are sample containers in good condition?	>				
8 Are samples preserved?	D				
9. Are samples preserved properly for the	>				
intended analysis?	11/1			<u> · </u>	¥ .
10. Are the VOAs free of headspace?	MH				
11. Are the jars free of headspace?	-6-				
9. Are samples preserved properly for the	MA				

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Page: 1 A Ordered By

Advantage Environmental Consultants

145 Vallecitos De Oro Suite 201

San Marcos, CA 92069-

Telephone: (760)744-3363 Attention: Dan Weis Project ID: 18-027SD

Date Received 03/06/2018
Date Reported 03/09/2018

Job Number	Order Date	Client
91658	03/06/2018	AEC

CERTIFICATE OF ANALYSIS CASE NARRATIVE

AETL received 55 samples with the following specification on 03/06/2018.

Lar) ID	Sample ID	Sample I		Matri	.x		Quantity Of	Containers
91658	.01	B1-1.5	03/03/2	018	Soil			1	
91658		B6-2	03/03/2	018	Soil			1	
	Method	^ Submethod		Req Da	ate	Priority	TAT	Units	
		OOTCLP) ^ PB		03/07/20	018	2	Rush	mg/L	
	`	TLC) ^ STLC-PB		03/08/20		3	Rush	mg/L	
	(6010B.L	/		03/07/20		2	Rush	mg/Kg	
91658	.02	B1-3	03/03/2		Soil			1	
91658	.03	B1-5	03/03/2		Soil			1	
91658	.04	B1-10	03/03/2	018	Soil			1	
91658	.07	B2-1	03/03/2	018	Soil			1	
91658	.09	B2-3	03/03/2	018	Soil			1	
91658	.10	B2-5	03/03/2	018	Soil			1	
91658	.11	B2-10	03/03/2	018	Soil			1	
91658	.14	B3-1.5	03/03/2	018	Soil			1	
91658	.15	B3-3	03/03/2	018	Soil			1	
91658	.16	B3-5	03/03/2	018	Soil			1	
91658	.17	B3-10	03/03/2	018	Soil			1	
91658	.20	B4-1.5	03/03/2	018	Soil			1	
91658	.21	B4-3	03/03/2	018	Soil			1	
91658	.22	B4-5	03/03/2	018	Soil			1	
91658	.23	B4-10	03/03/2	018	Soil			1	
91658	.26	B5-1.5	03/03/2	018	Soil			1	
91658	.27	B5-3	03/03/2	018	Soil			1	
91658	.28	B5-5	03/03/2	018	Soil			1	
91658	.29	B5-10	03/03/2	018	Soil			1	

Continued

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Page: 1 B Ordered By

Advantage Environmental Consultants

145 Vallecitos De Oro Suite 201

San Marcos, CA 92069-

Telephone: (760)744-3363 Attention: Dan Weis Project ID: 18-027SD

Date Received 03/06/2018
Date Reported 03/09/2018

Job Number	Order Date	Client
91658	03/06/2018	AEC

CERTIFICATE OF ANALYSIS CASE NARRATIVE

91658.33	B6-3	03/03/2018	Soil	1
91658.34	B6-5	03/03/2018	Soil	1
91658.35	B6-10	03/03/2018	Soil	1
91658.39	B7-5	03/03/2018	Soil	1
91658.40	B7-10	03/03/2018	Soil	1
91658.44	B8-5	03/03/2018	Soil	1
91658.47	B9-3	03/03/2018	Soil	1
91658.48	B9-5	03/03/2018	Soil	1
91658.52	B10-3	03/03/2018	Soil	1
91658.53	B10-5	03/03/2018	Soil	1
91658.54	B10-10	03/03/2018	Soil	1

		<u> </u>					
Meth	nod ^ Submethod	Req	Date	Priority	TAT	${\it Units}$	
(6010	B.LEAD)	03/07	/2018	2	Rush	mg/Kg	
91658.05	B1-15	03/03/2018	Soil			1	
91658.06	B1-20	03/03/2018	Soil			1	
91658.12	B2-15	03/03/2018	Soil			1	
91658.13	B2-20	03/03/2018	Soil			1	
91658.18	B3-15	03/03/2018	Soil			1	
91658.19	B3-20	03/03/2018	Soil			1	
91658.24	B4-15	03/03/2018	Soil			1	
91658.25	B4-20	03/03/2018	Soil			1	
91658.30	B5-15	03/03/2018	Soil			1	
91658.36	B6-15	03/03/2018	Soil			1	
91658.41	B7-15	03/03/2018	Soil			1	
91658.45	B8-15	03/03/2018	Soil			1	
91658.50	B9-15	03/03/2018	Soil			1	
91658.55	B10-15	03/03/2018	Soil			1	

Method ^ SubmethodReq DatePriorityTATUnitsARCHIVE03/07/20182Rush--

Continued

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Page: 1 C Ordered By

Advantage Environmental Consultants

145 Vallecitos De Oro Suite 201

San Marcos, CA 92069-

Telephone: (760)744-3363 Attention: Dan Weis Project ID: 18-027SD

Date Received 03/06/2018
Date Reported 03/09/2018

Job Number	Order Date	Client
91658	03/06/2018	AEC

CERTIFICATE OF ANALYSIS CASE NARRATIVE

Lab ID	Sample ID	Sample Date	Matrix	Quantity Of Containers
91658.08	B2-2	03/03/2018	Soil	1
91658.31	B6-1	03/03/2018	Soil	1
91658.37	B7-1.5	03/03/2018	Soil	1
91658.38	B7-3	03/03/2018	Soil	1
91658.42	B8-1.5	03/03/2018	Soil	1
91658.43	B8-3	03/03/2018	Soil	1
91658.46	B9-1.5	03/03/2018	Soil	1
91658.49	B9-10	03/03/2018	Soil	1
91658.51	B10-1.5	03/03/2018	Soil	1

Method ^ Submethod	Req Date	Priority	TAT	Units	
(6010/7000TCLP) ^ PB	03/08/2018	3	Rush	mg/L	
(6010B-STLC) ^ STLC-PB	03/08/2018	3	Rush	mg/L	
(6010B.LEAD)	03/07/2018	2	Rush	mg/Kg	

The samples were analyzed as specified on the enclosed chain of custody. No analytical non-conformances were encountered.

Unless otherwise noted, all results of soil and solid samples are based on wet weight.

	\mathcal{C}	. Kaymana	
Checked By:	Approved By:		

Cyrus Razmara, Ph.D. Laboratory Director

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Advantage Environmental Consultants

145 Vallecitos De Oro

Suite 201

Page:

San Marcos, CA 92069-

Telephone: (760)744-3363 Attn: Dan Weis

Project ID: 18-027SD Project Name: 18-027SD Site

600-628 S. San Pedro St.

Los Angeles, CA

AETL Job Number	Submitted	Client
91658	03/06/2018	AEC

Method: (6010B-STLC), Soluble Threshold Limit Concentration (STLC)

Our Lab I.D.			Method Blank				
Client Sample I.D.							
Date Sampled							
Date Prepared			03/09/2018				
Preparation Method			TITLE 22				
Date Analyzed			03/12/2018				
Matrix			Soil				
Units			mg/L				
Dilution Factor			1				
Analytes	MDL	PQL	Results				
Lead (STLC)	0.05	0.10	ND				

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Advantage Environmental Consultants

145 Vallecitos De Oro

Suite 201

San Marcos, CA 92069-

Telephone: (760)744-3363 Attn: Dan Weis

Page: 3

Project ID: 18-027SD Project Name: 18-027SD Site

600-628 S. San Pedro St.

Los Angeles, CA

AETL Job Number Submitted Client
91658 03/06/2018 AEC

Method: (6010B-STLC), Soluble Threshold Limit Concentration (STLC)

Our Lab I.D.			91658.01	91658.08	91658.31	91658.32	91658.37
Client Sample I.D.			B1-1.5	B2-2	B6-1	B6-2	B7-1.5
Date Sampled			03/03/2018	03/03/2018	03/03/2018	03/03/2018	03/03/2018
Date Prepared			03/09/2018	03/09/2018	03/09/2018	03/09/2018	03/09/2018
Preparation Method			TITLE 22				
Date Analyzed			03/12/2018	03/12/2018	03/12/2018	03/12/2018	03/12/2018
Matrix			Soil	Soil	Soil	Soil	Soil
Units			mg/L	mg/L	mg/L	mg/L	mg/L
Dilution Factor			10	10	10	10	10
Analytes	MDL	PQL	Results	Results	Results	Results	Results
Lead (STLC)	0.50	1.00	2.92	2.72	3.76	5.43	3.36

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Advantage Environmental Consultants

145 Vallecitos De Oro

Suite 201

San Marcos, CA 92069-

Telephone: (760)744-3363 Attn: Dan Weis

Page:

Project ID: 18-027SD Project Name: 18-027SD Site

600-628 S. San Pedro St.

Los Angeles, CA

AETL Job Number Submitted Client
91658 03/06/2018 AEC

Method: (6010B-STLC), Soluble Threshold Limit Concentration (STLC)

Our Lab I.D.			91658.38	91658.42	91658.43	91658.46	91658.49
Client Sample I.D.			B7-3	B8-1.5	B8-3	B9-1.5	B9-10
Date Sampled			03/03/2018	03/03/2018	03/03/2018	03/03/2018	03/03/2018
Date Prepared			03/09/2018	03/09/2018	03/09/2018	03/09/2018	03/09/2018
Preparation Method			TITLE 22				
Date Analyzed			03/12/2018	03/12/2018	03/12/2018	03/12/2018	03/12/2018
Matrix			Soil	Soil	Soil	Soil	Soil
Units			mg/L	mg/L	mg/L	mg/L	mg/L
Dilution Factor			10	10	10	10	10
Analytes	MDL	PQL	Results	Results	Results	Results	Results
Lead (STLC)	0.50	1.00	1.74	5.56	4.62	5.01	3.87

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Advantage Environmental Consultants

145 Vallecitos De Oro

Suite 201

San Marcos, CA 92069-

Telephone: (760)744-3363 Attn: Dan Weis Page: 5

Project ID: 18-027SD Project Name: 18-027SD

Site

600-628 S. San Pedro St.

Los Angeles, CA

AETL Job Number	Submitted	Client
91658	03/06/2018	AEC

Method: (6010B-STLC), Soluble Threshold Limit Concentration (STLC)

Our Lab I.D.			91658.51		
Client Sample I.D.			B10-1.5		
Date Sampled			03/03/2018		
Date Prepared			03/09/2018		
Preparation Method			TITLE 22		
Date Analyzed			03/12/2018		
Matrix			Soil		
Units			mg/L		
Dilution Factor			10		
Analytes	MDL	PQL	Results		
Lead (STLC)	0.50	1.00	0.532J		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Advantage Environmental Consultants

145 Vallecitos De Oro

Suite 201

San Marcos, CA 92069-

Telephone: (760)744-3363 Attn: Dan Weis Page: 6

Project ID: 18-027SD Project Name: 18-027SD Site

600-628 S. San Pedro St.

Los Angeles, CA

AETL Job Number	Submitted	Client
91658	03/06/2018	AEC

Method: (6010/7000TCLP), Toxicity Characteristic Leaching Procedure (TCLP,EPA 1311) QC Batch No: 0309182C2

Our Lab I.D.			Method Blank		
Client Sample I.D.					
Date Sampled					
Date Prepared			03/09/2018		
Preparation Method			1311		
Date Analyzed			03/12/2018		
Matrix			Soil		
Units			mg/L		
Dilution Factor			1		
Analytes	MDL	PQL	Results		
Lead (TCLP)	0.05	0.10	ND		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Advantage Environmental Consultants

145 Vallecitos De Oro

Suite 201

San Marcos, CA 92069-

Telephone: (760)744-3363 Attn: Dan Weis

Page: 7

Project ID: 18-027SD Project Name: 18-027SD Site

600-628 S. San Pedro St.

Los Angeles, CA

AETL Job Number	Submitted	Client
91658	03/06/2018	AEC

Method: (6010/7000TCLP), Toxicity Characteristic Leaching Procedure (TCLP,EPA 1311) QC Batch No: 0309182C2

Our Lab I.D.			91658.01	91658.08	91658.31	91658.32	91658.37
Client Sample I.D.			B1-1.5	B2-2	B6-1	B6-2	B7-1.5
Date Sampled			03/03/2018	03/03/2018	03/03/2018	03/03/2018	03/03/2018
Date Prepared			03/09/2018	03/09/2018	03/09/2018	03/09/2018	03/09/2018
Preparation Method			1311	1311	1311	1311	1311
Date Analyzed			03/12/2018	03/12/2018	03/12/2018	03/12/2018	03/12/2018
Matrix			Soil	Soil	Soil	Soil	Soil
Units			mg/L	mg/L	mg/L	mg/L	mg/L
Dilution Factor			10	10	10	10	10
Analytes	MDL	PQL	Results	Results	Results	Results	Results
Lead (TCLP)	0.50	1.00	ND	ND	ND	ND	ND

Comment(s):

91658.01: Analyzed under dilution due to matrix interference 91658.08: Analyzed under dilution due to matrix interference 91658.31: Analyzed under dilution due to matrix interference 91658.32: Analyzed under dilution due to matrix interference 91658.37: Analyzed under dilution due to matrix interference

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Advantage Environmental Consultants

145 Vallecitos De Oro

Suite 201

San Marcos, CA 92069-

Telephone: (760)744-3363 Attn: Dan Weis

Page: 8

Project ID: 18-027SD Project Name: 18-027SD Site

600-628 S. San Pedro St.

Los Angeles, CA

AETL Job Number	Submitted	Client
91658	03/06/2018	AEC

Method: (6010/7000TCLP), Toxicity Characteristic Leaching Procedure (TCLP,EPA 1311) QC Batch No: 0309182C2

Our Lab I.D.			91658.38	91658.42	91658.43	91658.46	91658.49
Client Sample I.D.			B7-3	B8-1.5	B8-3	B9-1.5	B9-10
Date Sampled			03/03/2018	03/03/2018	03/03/2018	03/03/2018	03/03/2018
Date Prepared			03/09/2018	03/09/2018	03/09/2018	03/09/2018	03/09/2018
Preparation Method			1311	1311	1311	1311	1311
Date Analyzed			03/12/2018	03/12/2018	03/12/2018	03/12/2018	03/12/2018
Matrix			Soil	Soil	Soil	Soil	Soil
Units			mg/L	mg/L	mg/L	mg/L	mg/L
Dilution Factor			10	10	10	10	10
Analytes	MDL	PQL	Results	Results	Results	Results	Results
Lead (TCLP)	0.50	1.00	ND	ND	ND	ND	ND

Comment(s):

91658.38: Analyzed under dilution due to matrix interference 91658.42: Analyzed under dilution due to matrix interference 91658.43: Analyzed under dilution due to matrix interference 91658.49: Analyzed under dilution due to matrix interference 91658.49: Analyzed under dilution due to matrix interference

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Advantage Environmental Consultants

145 Vallecitos De Oro

Suite 201

San Marcos, CA 92069-

Telephone: (760)744-3363 Attn: Dan Weis

Page:

Project ID: 18-027SD Project Name: 18-027SD Site

600-628 S. San Pedro St.

Los Angeles, CA

I	AETL Job Numb	er Submitted	Client
I	91658	03/06/2018	AEC

Method: (6010/7000TCLP), Toxicity Characteristic Leaching Procedure (TCLP,EPA 1311) QC Batch No: 0309182C2

Our Lab I.D.			91658.51		
Client Sample I.D.			B10-1.5		
Date Sampled			03/03/2018		
Date Prepared			03/09/2018		
Preparation Method			1311		
Date Analyzed			03/12/2018		
Matrix			Soil		
Units			mg/L		
Dilution Factor			10		
Analytes	MDL	PQL	Results		
Lead (TCLP)	0.50	1.00	ND		

Comment(s):

91658.51: Analyzed under dilution due to matrix interference

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

Advantage Environmental Consultants

145 Vallecitos De Oro

Suite 201

San Marcos, CA 92069-

Telephone: (760)744-3363 Attn: Dan Weis

Page: 10

Project ID: 18-027SD Project Name: 18-027SD Site

600-628 S. San Pedro St.

Los Angeles, CA

AETL Job Number	Submitted	Client
91658	03/06/2018	AEC

Method: (6010/7000TCLP), Toxicity Characteristic Leaching Procedure (TCLP,EPA 1311)

QC Batch No: 0309182C2; Dup or Spiked Sample: 91658.08; LCS: Clean Sand; LCS Prepared: 03/09/2018; LCS Analyzed: 03/12/2018; Units: mg/L

	SM	SM DUP	RPD	SM RPD			
Analytes	Result	Result	%	% Limit			
Lead (TCLP)	ND	ND	<1	<20			

QC Batch No: 0309182C2; Dup or Spiked Sample: 91658.08; LCS: Clean Sand; LCS Prepared: 03/09/2018; LCS Analyzed: 03/12/2018; Units: mg/L

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Lead (TCLP)	10.0	8.98	89.8	10.0	9.01	90.1	<1	80-120	<15	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

Advantage Environmental Consultants

145 Vallecitos De Oro

Suite 201

San Marcos, CA 92069-

Telephone: (760)744-3363 Attn: Dan Weis

Page: **11**Project ID: 18-0

Project ID: 18-027SD Project Name: 18-027SD

Site

600-628 S. San Pedro St.

Los Angeles, CA

AETL Job Number	Submitted	Client
91658	03/06/2018	AEC

Method: (6010B-STLC), Soluble Threshold Limit Concentration (STLC)

QC Batch No: 0309182C1; Dup or Spiked Sample: 91658.01; LCS: Clean Sand; LCS Prepared: 03/09/2018; LCS Analyzed: 03/12/2018; Units: mg/L

	SM	SM DUP	RPD	SM RPD			
Analytes	Result	Result	%	% Limit			
Lead (STLC)	2.92	3.09	5.7	<20			

QC Batch No: 0309182C1; Dup or Spiked Sample: 91658.01; LCS: Clean Sand; LCS Prepared: 03/09/2018; LCS Analyzed: 03/12/2018; Units: mg/L

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Lead (STLC)	10.0	9.81	98.1	10.0	9.79	97.9	<1	80-120	<15	

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

Data Qualifier:

#: Recovery is not within acceptable control limits.

*: In the QC section, sample results have been taken directly from the ICP reading. No preparation factor has

been applied.

B: Analyte was present in the Method Blank.

D: Result is from a diluted analysis.

E: Result is beyond calibration limits and is estimated.

H: Analysis was performed over the allowed holding time due to circumstances which were beyond laboratory

control.

J: Analyte was detected. However, the analyte concentration is an estimated value, which is between the Method

Detection Limit (MDL) and the Practical Quantitation Limit (PQL).

M: Matrix spike recovery is outside control limits due to matrix interference. Laboratory Control Sample recovery

was acceptable.

MCL: Maximum Contaminant Level

NS: No Standard Available

S6: Surrogate recovery is outside control limits due to matrix interference.

S8: The analysis of the sample required a dilution such that the surrogate concentration was diluted below the

method acceptance criteria.

X: Results represent LCS and LCSD data.

Definition:

%Limi: Percent acceptable limits.

%REC: Percent recovery.

Con.L: Acceptable Control Limits

Conce: Added concentration to the sample.

LCS: Laboratory Control Sample

MDL: Method Detection Limit is a statistically derived number which is specific for each instrument, each method,

and each compound. It indicates a distinctively detectable quantity with 99% probability.

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

MS:

Matrix Spike

MS DU:

Matrix Spike Duplicate

ND:

Analyte was not detected in the sample at or above MDL.

PQL:

Practical Quantitation Limit or ML (Minimum Level as per RWQCB) is the minimum concentration that can

be quantified with more than 99% confidence. Taking into account all aspects of the entire analytical

instrumentation and practice.

Recov:

Recovered concentration in the sample.

RPD:

Relative Percent Difference

Baseline Analytical Services
P. O. Box 2243
Huntington Beach, CA 92647

Telephone: 714.273.2955

Laboratory Report

Client: Advantage Environmental Consultants, LLC

Client Address: 145 Vallecitos De Oro, Suite 201

San Marcos, CA 92069

Report Date: 3/5/18 Lab Project Number: 18158

Client Project Number: 18-027SD

Project Name: 600-628 S. San Pedro Street **Project Address:** 600-628 S. San Pedro Street

Los Angeles, California

Contact: Dan Weis

Dates Sampled: 3/3/18 Dates Received: 3/3/18 Dates Analyzed: 3/5/18 Sample Matrix: Soil

Analyses Requested:

- 1. EPA 8015B Total Petroleum Hydrocarbons as Gasoline (TPH-G)
- 2. EPA 8015B Total Petroleum Hydrocarbons as Diesel (TPH-D)
- 3. EPA 8015B Total Petroleum Hydrocarbons as Waste Oil (TPH-WO)
- 4. EPA 8260B Volatile Organic Compounds (VOC's) with Fuel Oxygenates

Baseline received samples collected from the project shown above. A Chain-of-Custody Record (COC) is attached.

The samples were analyzed for the parameters shown above per the COC. In this report, Baseline presents the results and a QA/QC summary for these analyses.

Approved

Brian K. Kato, Laboratory Manager

Baseline Analytical Services
P. O. Box 2243
Huntington Beach, CA 92647

ntington Beach, CA 92647 Telephone: 714.273.2955

Laboratory Report

Client: Advantage Environmental Consultants, LLC

Client Address: 145 Vallecitos De Oro, Suite 201

San Marcos, CA 92069

Report Date: 3/5/18 Lab Project Number: 18158

Client Project Number: 18-027SD

Project Name: 600-628 S. San Pedro Street **Project Address:** 600-628 S. San Pedro Street

Los Angeles, California

Contact: Dan Weis

Dates Sampled: 3/3/18
Dates Received: 3/3/18
Dates Analyzed: 3/5/18

Sample Matrix: Soil

Total Petroleum Hydrocarbons as Gasoline (TPH-G), Diesel (TPH-D), and Waste Oil (TPH-WO) Results

Constituent:	TPH-G	TPH-D	TPH-WO
Carbon Chain Range:	8015B	8015B	8015B
Method:	C4-C12	C10-C28	C29-C36
Units:	mg/kg	mg/kg	mg/kg
Sample ID			
B1-10	ND<10	ND<10	ND<10
B1-20	ND<10	ND<10	ND<10
B2-15	ND<10	ND<10	ND<10
B2-20	ND<10	ND<10	ND<10
B3-10	ND<10	ND<10	ND<10
B3-20	ND<10	ND<10	ND<10
B4-20	ND<10	ND<10	ND<10
B7-10	ND<10	ND<10	ND<10
B9-15	ND<10	ND<10	ND<10
B10-15	ND<10	ND<10	ND<10
Method Blank	ND<10	ND<10	ND<10

Laboratory Report

Client: Advantage Environmental Consultants, LLC

Client Address: 145 Vallecitos De Oro, Suite 201

San Marcos, CA 92069

Project Name: 600-628 S. San Pedro Street **Project Address:** 600-628 S. San Pedro Street

Los Angeles, California

Contact: Dan Weis

Report Date: 3/5/18

Telephone: 714.273.2955

Lab Project Number: 18158

Client Project Number: 18-027SD

Dates Sampled: 3/3/18
Dates Received: 3/3/18

Dates Analyzed: 3/5/18 Sample Matrix: Soil

Volatile Organic Compounds (EPA 8260B) - Part I

EPA Method:	8260B	8260B	8260B	8260B	8260B	8260B
Units:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Dilution Factor:	1	1	1	1	1	1
Sample ID:	B1-10	B1-20	B2-15	B2-20	B3-10	B3-20
Compound Name	*****					
Volatile Aromatics (BTEX)						
Benzene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
Toluene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
Ethylbenzene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
Total Xylenes	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
Fuel Oxygenates						
Methyl t-Butyl Ether (MTBE)	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
t-Butanol (TBA)	ND<0.025	ND<0.025	ND<0.025	ND<0.025	ND<0.025	ND<0.025
Di-Isopropyl Ether (DIPE)	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
Ethyl t-Butyl Ether (ETBE)	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
t-Anyl Methyl Ether (TAME)	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
Ethanol	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Non-Halogenated VOC's				1		***************************************
n-Butylbenzene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
sec-Butylbenzene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
tert-Butylbenzene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
Isopropylbenzene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
p-isopropyltoluene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
Naphthalene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
n-Propylbenzene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
Styrene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
1,2,4-Trimethylbenzene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
1,3,5-Trimethylbenzene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
Halogenated VOC's (HVOC's)						
Bromobenzene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
Bromochloromethane	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
Bromoform	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
Bromomethane	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
Carbon Tetrachloride	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
2-Chlorotoluene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
4-Chlorotoluene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
Chlorobenzene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
Chloroethane	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
Chloroform	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
Chloromethane	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050

ND: Not detected at the indicated method detection limit

2647 Telephone: 714.273.2955

Laboratory Report

Client: Advantage Environmental Consultants, LLC

Client Address: 145 Vallecitos De Oro, Suite 201

San Marcos, CA 92069

Report Date: 3/5/18

Lab Project Number: 18158 Client Project Number: 18-027SD

Project Name: 600-628 S. San Pedro Street **Project Address:** 600-628 S. San Pedro Street

Los Angeles, California

Contact: Dan Weis

Dates Sampled: 3/3/18 Dates Received: 3/3/18 Dates Analyzed: 3/5/18

Sample Matrix: Soil

Volatile Organic Compounds (EPA 8260B) - Part II

EPA Method:	8260B	8260B	8260B	8260B	8260B	8260B
Units:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Dilution Factor:	1	1	1	1	1	1
Sample ID:	B1-10	B1-20	B2-15	B2-20	B3-10	B3-20
Compound Name						
HVOC's, continued						
Dibromochloromethane	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
1,2-Dibromo-3-Chloropropane	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
1,2-Dibromomethane	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
1,2-Dichlorobenzene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
1,3-Dichlorobenzene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
1,4-Dichlorobenzene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
Dichlorodifluoromethane	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
1,1-Dichloroethane	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
1,2-Dichloroethane	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
1,1-Dichloroethene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
cis-1,2-Dichloroethene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
trans-1,2-Dichloroethene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
1,2-Dichloropropane	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
1,3-Dichloropropane	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
2,2-Dichloropropane	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
1,1-Dichloropropene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
Hexachlorobutadiene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
Methylene Chloride	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
Tetrachloroethene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
1,1,1,2-Tetrachloroethane	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
1,1,2,2-Tetrachloroethane	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
1,2,3-Trichlorobenzene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
1,2,4-Trichlorobenzene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
1,1,1-Trichloroethane	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
1,1,2-Trichloroethane	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
Trichloroethene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
Trichlorofluoromethane	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
1,2,3-Trichloropropane	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
Vinyl Chloride	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050

untington Beach, CA 92647 Telephone: 714.273.2955

Laboratory Report

Client: Advantage Environmental Consultants, LLC

Client Address: 145 Vallecitos De Oro, Suite 201

San Marcos, CA 92069

Project Name: 600-628 S. San Pedro Street **Project Address:** 600-628 S. San Pedro Street

Los Angeles, California

Contact: Dan Weis

Report Date: 3/5/18

Lab Project Number: 18158 Client Project Number: 18-027SD

Dates Sampled: 3/3/18

Dates Received: 3/3/18 **Dates Analyzed**: 3/5/18

Sample Matrix: Soil

Volatile Organic Compounds (EPA 8260B) - Part I

			1			1
EPA Method:		8260B	8260B	8260B		8260B
Units:	mg/kg	mg/kg	mg/kg	mg/kg		mg/kg
Dilution Factor:	1	1	1	1		1
Sample ID:	B4-20	B7-10	B9-15	B10-15		Method Blank
Compound Name					·	
Volatile Aromatics (BTEX)						
Benzene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050		ND<0.0050
Toluene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050		ND<0.0050
Ethylbenzene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050		ND<0.0050
Total Xylenes	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050		ND<0.0050
Fuel Oxygenates						
Methyl t-Butyl Ether (MTBE)	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050		ND<0.0050
t-Butanol (TBA)	ND<0.025	ND<0.025	ND<0.025	ND<0.025		ND<0.025
Di-Isopropyl Ether (DIPE)	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050		ND<0.0050
Ethyl t-Butyl Ether (ETBE)	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050		ND<0.0050
t-Anyl Methyl Ether (TAME)	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050		ND<0.0050
Ethanol	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50
Non-Halogenated VOC's						
n-Butylbenzene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050		ND<0.0050
sec-Butylbenzene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050		ND<0.0050
tert-Butylbenzene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050		ND<0.0050
Isopropylbenzene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050		ND<0.0050
p-isopropyltoluene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050		ND<0.0050
Naphthalene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050		ND<0.0050
n-Propylbenzene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050		ND<0.0050
Styrene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050		ND<0.0050
1,2,4-Trimethylbenzene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050		ND<0.0050
1,3,5-Trimethylbenzene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050		ND<0.0050
Halogenated VOC's (HVOC's)						
Bromobenzene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050		ND<0.0050
Bromochloromethane	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050		ND<0.0050
Bromoform	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050		ND<0.0050
Bromomethane	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050		ND<0.0050
Carbon Tetrachloride	ND<0.0050	ND<0.0050		ND<0.0050		ND<0.0050
2-Chlorotoluene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050		ND<0.0050
4-Chlorotoluene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050		ND<0.0050
Chlorobenzene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050		ND<0.0050
Chloroethane	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050		ND<0.0050
Chloroform	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050		ND<0.0050
Chloromethane	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050		ND<0.0050

ND: Not detected at the indicated method detection limit

Telephone: 714.273.2955

Laboratory Report

Client: Advantage Environmental Consultants, LLC

Client Address: 145 Vallecitos De Oro, Suite 201

San Marcos, CA 92069

Report Date: 3/5/18 Lab Project Number: 18158

Client Project Number: 18-027SD

Project Name: 600-628 S. San Pedro Street Dates Sampled: 3/3/18 Project Address: 600-628 S. San Pedro Street Dates Received: 3/3/18

Los Angeles, California

Dates Analyzed: 3/5/18 Contact: Dan Weis Sample Matrix: Soil

Volatile Organic Compounds (EPA 8260B) - Part II

EPA Method:	8260B	8260B	8260B	8260B	8260B
Units:	mg/kg	mg/kg	mg/kg	mg/kg	 mg/kg
Dilution Factor:	1	1	1	1	 1
Sample ID:	B4-20	B7-10	B9-15	B10-15	Method Blank
Compound Name					
HVOC's, continued					
Dibromochloromethane	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
1,2-Dibromo-3-Chloropropane	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
1,2-Dibromomethane	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	 ND<0.0050
1,2-Dichlorobenzene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
1,3-Dichlorobenzene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
1,4-Dichlorobenzene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	 ND<0.0050
Dichlorodifluoromethane	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	 ND<0.0050
1,1-Dichloroethane	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	 ND<0.0050
1,2-Dichloroethane	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	 ND<0.0050
1,1-Dichloroethene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
cis-1,2-Dichloroethene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	 ND<0.0050
trans-1,2-Dichloroethene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	 ND<0.0050
1,2-Dichloropropane	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	 ND<0.0050
1,3-Dichloropropane	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	 ND<0.0050
2,2-Dichloropropane	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	 ND<0.0050
1,1-Dichloropropene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
Hexachlorobutadiene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
Methylene Chloride	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	 ND<0.0050
Tetrachloroethene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	 ND<0.0050
1,1,1,2-Tetrachloroethane	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
1,1,2,2-Tetrachloroethane	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	 ND<0.0050
1,2,3-Trichlorobenzene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
1,2,4-Trichlorobenzene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
1,1,1-Trichloroethane	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	 ND<0.0050
1,1,2-Trichloroethane	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	 ND<0.0050
Trichloroethene	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
Trichlorofluoromethane	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050
1,2,3-Trichloropropane	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	 ND<0.0050
Vinyl Chloride	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	 ND<0.0050

Baseline Analytical Services
P. O. Box 2243
Huntington Beach, CA 92647

Telephone: 714.273.2955

Laboratory Report

Client: Advantage Environmental Consultants, LLC

Client Address: 145 Vallecitos De Oro, Suite 201

San Marcos, CA 92069

Project Name: 600-628 S. San Pedro Street **Project Address:** 600-628 S. San Pedro Street

Los Angeles, California

Contact: Dan Weis

Report Date: 3/5/18

Lab Project Number: 18158

Client Project Number: 18-027SD

Dates Sampled: 3/3/18 Dates Received: 3/3/18 Dates Analyzed: 3/5/18

Sample Matrix: Soil

Quality Control Summary

Analytes	MS Recovery	MSD Recovery	RPD	QC
	(%)	(%)	(%)	Sample
<u>Soils</u>				
TPH-C6-C36	92	96	4	LCS/LCSD
Benzene (8260B)	95	98	3	LCS/LCSD
Toluene (8260B)	90	92	2	LCS/LCSD
MTBE (8260B)	96	91	5	LCS/LCSD
1,1-Dichloroethene (8260B)	98	90	9	LCS/LCSD
Trichloroethene (8260B)	87	94	7	LCS/LCSD
Chlorobenzene (8260B)	93	99	6	LCS/LCSD
Acceptable QC Limits:	(65-135)	(65-135)	(0-30)	

Citent Name ALL Citent Address	Project Name								Requested Analyses				CHAIN-OF-CUSTODY RECORD		
Client Address 145 Vallecitos De Dro ste 201	Project Address	5.50	, Rd	ro St		2		Γ					Page of 3		
Sa . 11	11.			90014	,	2	2	™	03				Laboratory Project #:		
Prione: 740 7445365 FAX: 760 7443383	Project Number	4-0°	275	D		3	Sonta Participants	8015 B	826				18156		
Contact: Jan Weig					•	Soll (S), Water (W), Vapor (V)	Number of Containers		3						
. Sample ID			npling ate	Sampling Time	Lab	100	Z	HOT	7000				' Comments		
B1-1.5		3/3.	118			5.	١								
31-3						5	١								
B1-5	•					5							•		
B) - 10						3	1	X	X				,		
BJ - 15						3	١								
B1 - Z0						3	1	X	X						
132 - 1						5	,								
82 - 2						5	ī						-		
BZ - 3					·	ا	ī				П				
B2-5				•		S	1		П		П				
B7 - 10		\Box			_	5	1				П				
82-15		$\dagger \dagger$		·		5	1	X	X	_	H				
B2-20		1				5	†	X	Z		\Box				
B3-1.5	· · · · · · · · · · · · · · · · · · ·					5	 				H				
87-3		11				5	1		Н				}		
· B3 - 5	. **.	 				3	+				\Box	_			
83 - 10	· · · · · · · · · · · · · · · · · · ·					S	1	X	\bigvee		H		,		
BJ - 15	7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 	11				ر د	Ť				H	\exists			
133-20		H				5	1	X				┪			
134-1-5		1 1-				5	,					\dashv			
B4 - 3						S	+	H			H	\dashv			
B4 - 5 .	•	1				5	1		H	-		一			
134 -10		1				5						ᅥ			
BU-15	 	1				S	•			-	\dashv	\dashv			
B4-20		十				5	·	X				ㅓ			
1. Relinquished by	2. Receive	d by					ma	الثا Irol	und	T	me:	<u>-</u> 나 :			
Signature: X	Signature: X	影	to	,		_					ns/N		es:		
	Date/Time:		ام	2-	-								,		
Date/Time: 3/3/18 13:30 3. Relinquished by	Date/Time: 4. Receive	3/3/	/18	11530	:										
•	4. Kacaive	u by		,		•		٠							
Signature: X	Signature: X				-							· 			
Date/Time:	Date/Time;			<i>:</i>		Sai	mpi	e C	ond	IU0I	n;		Sealed? Y / N Chilled? Y / N		

BASELINE

P. O. Box 2243 Huntington Beach, California 92647

Telephone: (888) 753-7553 FAX: (714) 840-1584

Clent Name	Project Name	·						Ans	iested lyses		RECORD		
Client Address See Page 1	Project Address				2	\	501513	200			Page 2 of 3		
-					, V	200	3	2	İ		Laboratory Project #:		
Phone: FAX:	Project Number				3	ontak	510	B			16158		
Contact:					. Vae	Jou	30	3			101		
. Sample ID	<u> </u>	Sampling Date	Sampling Time	Lab	Soil (S), Water (W), Vapor (V)	Number of Containers	174	1/0/2			' Comments		
B5 - 1.5					Ι.								
B5 · 3													
85 · 3 85 - 5	·												
B5 - 10					T					T	·		
B5 - 15		1							1.	T			
Bb - 1		•								1			
B6 - Z					厂					T			
BG-3		,							1	T			
B4-3 B6-5				ļ.			П		1	1			
B6-10			•		Г				1	T			
B6-15				1					1	\dagger			
87 - 1.5			·	1	T		П		+	T			
B7 - 3		 		<u> </u>	T				_	1			
B7 - 5				1	一			1	+	†			
37-10	····	<u> </u>			\vdash		X	d	+	T	1		
·B7-15				1			H	1	+	T			
B8 - 1.5	<u> </u>			1	1			1	+	十			
B8 - 3				T	\vdash			7	1	T			
B8-5				1	1			7	十	T			
B8 - 10				 	T			十	\top	T			
B8-15				 				7	\top	T			
B9-1.5					\vdash			- 1	+	t			
B9 - 3										1			
B9 - 5			,			Н		-	-	T			
139 -10		-	*# *	1				1	\top	T			
1. Relinquished by	2. Receiv	ed by	<u> </u>	<u> </u>	Tu	m	rol	und	Tim	0 :	<u></u>		
Signature: X	Signature:	x Blut 3 3 18, ed by	_		Sp	ecla	ıl In:	struc	tions	/No	tes:		
Data/Time: 3/7/18 13:30	Date/Time:	212/12	1330	·									
Date/Time: 3/3/18 13:20 3. Relinquished by	4. Receiv	ed by	1,7,70	13	1.								
Signature: X	Signature: X												
Date/Time:	Date/Time:				Sa	mpl	e C	ondi	llon:		Sealed? Y / N Chilled? Y / N		

P. O. Box 2243 Huntington Beach, California 92647

Telephone: (888) 753-7553 FAX: (714) 840-1584

CHANTE (COLUMN		Requested Analyses						RECORD					
Cilent Address See	Page 1	Project Address				Š							Page \leq of \leq
						, Va	ĕ	8	Ň				Laboratory Project #:
Phone:	FAX:	Project Number		,		₹	S S	801513	2				18158
Contact:	• • •			,		. Wat	S S						
	Sample ID		Sampling Date	Sampling Time	Lab	Soll (S), Water (W), Vapor (V)	Number of Containers	HAT	Vocs				' Comments
B9-15	•	· · · · · · · · · · · · · · · · · · ·						X	X				
B10-1.5													
B10-3													
010-5													· · · · · · · · · · · · · · · · · · ·
B10-10													
B10-15								X					
•													
			•										
					·								
				•									
	·			,									
													·
	:												
													1
•		·								\neg			
													·
			,										
	,												
·													
	•					П							
·						П							
			·										
						П							
1. Relinquished	by ₇	2. Received							ınd				
Signature: X		Signature: X	Blet		_	Spe	ecia	il In:	stru	ctio	ns/l	Not	85 :
Date/Time: 3/3/1	18 1270	Date/Time: 3		1220									,
3. Relinguished I	by	4. Received	d by	1250	: 1								
·													
Signature: X		Signature: X			-	Sai	nol	e C	ond	tlor):		Sealed? Y / N
Date/Time:		Date/Time:											Chilled? Y / N

Telephone: (888) 753-7553 FAX: (714) 840-1584

APPENDIX C

SOIL GAS ANALYTICAL LABORATORY REPORT

California Regional Water Quality Control Board/DTSC

<u>Laboratory Report Form (Cover Page 1)</u>

Laboratory Name:

Baseline Analytical Services

Address:

P.O. Box 2243

Huntington Beach, California 92647

Telephone:

(714) 273-2955

ELAP Certification Number:

2284

Expiration Date: January 31, 2020

Authorized Signature

Name, Title (print)

Brian Kato, Laboratory Director

Signature, Date

Brun K. Cato 6/6/2018

Laboratory Report Number: 18152

Client Name:

Advantage Environmental Consultants, LLC

Project Name:

600-628 S. San Pedro Street

Project Address:

600-628 S. San Pedro Street & 611-615 Crocker Street

Los Angeles, California

Date(s) Sampled:

3/3/18

Date(s) Received:

3/3/18

Date(s) Reported:

3/3/18

Chain of Custody Received: Yes

Comments:

Sample Matrix: Vapor

California Regional Water Quality Control Board/DTSC

Laboratory Report Form (Cover Page 2) Organic Analyses Number of Samples Number of Samples Subcontracted VOC's (EPA 8260B) 0 6 Samples (Includes samples, duplicates, & blanks) Sample Condition: good Inorganic Analyses Number of Samples Number of Samples Subcontracted Sample Condition: Microbiological Analyses Number of Samples Number of Samples Subcontracted Sample Condition: Other Types of Analyses Number of Samples Number of Samples Subcontracted Sample Condition:

METHOD: EPA 8260B MATRIX: Vapor REPORTING UNITS: μg/L

1417 (11 (17 (1	vapoi				INCI OINT	110 011110.	μg/L
		3-Mar-18	3-Mar-18	3-Mar-18	3-Mar-18	3-Mar-18	3-Mar-18
ATE EXT	RACTED	3-Mar-18	3-Mar-18	3-Mar-18	3-Mar-18	3-Mar-18	3-Mar-18
LIENT SA	MPLE I.D	SV1	SV2	SV3	SV4	SV4 DUP	Equipment Blank
		Helium		Helium	Helium	Helium	Helium
		EPA 5030	EPA 5030	EPA 5030	EPA 5030	EPA 5030	EPA 5030
		1	1	1	1	1	1
<u> </u>							
							ND<0.050
							ND<0.050
							ND<0.050
h							ND<0.050
							ND<0.050
							ND<2.5
							ND<0.50
							ND<0.50
				ND<0.50	ND<0.50	ND<0.50	ND<0.50
				ND<25	ND<25	ND<25	ND<25
					ND<2.5	ND<2.5	ND<2.5
2.5	10	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5
0.050	0.10	ND<0.050		ND<0.050	ND<0.050	ND<0.050	ND<0.050
0.050	0.10	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050
0.050	0.10	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050
2.5	10	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5
0.050	0.10	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050
0.050	0.10	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050
2.5	10	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5
0.050	0.10	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050
0.050	0.10	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050
0.050	0.10	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050
0.050	0.10	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050
0.050	0.10	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050
					ND<0.050	ND<0.050	ND<0.050
0.050	0.10	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050
0.050	0.10	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050
0.050	0.10	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050
0.050	0.10	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050
0.050	0.10	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050
0.050	0.10	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050
0.050	0.10	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050
0.050	0.10	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050
0.050	0.10	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050
0.050	0.10	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050
0.050	0.10	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050
0.050	0.10	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050
0.050	0.10	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050
0.050	0.10	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050
	DATE AND ATE EXTRACT CACTION IN ILUTION MDL 0.050 0.05	0.050 0.10 0.050 0.10 0.050 0.10 0.050 0.10 0.050 0.10 2.5 10 0.50 2.0 0.50 2.0 0.50 2.0 2.5 50 2.5 10 0.050 0.10	DATE ANALYZED 3-Mar-18 DATE EXTRACTED 3-Mar-18 LIENT SAMPLE I.D SV1 EXTRACTION GAS Helium ACTION METHOD EPA 5030 MDL PQL 0.050 0.10 ND<0.050	DATE ANALYZED 3-Mar-18 3-Mar-18 DATE EXTRACTED 3-Mar-18 3-Mar-18 JENT SAMPLE I.D SV1 SV2 EXTRACTION GAS Helium Helium ACTION METHOD EPA 5030 EPA 5030 DILUTION FACTOR 1 1 MDL PQL 1 0.050 0.10 ND<0.050	DATE ANALYZED 3-Mar-18 3-Ma	DATE ANALYZED 3-Mar-18 3-Mar-16 0<000 0<000 DD<0.050 DD<0.050 DD<0.050 DD<0.050 DD<0.050 DD<0.00 DD<0.00 DD<0.00 DD<0.050 DD<0.050 <t< td=""><td> DATE ANALYZED 3-Mar-18 3-M</td></t<>	DATE ANALYZED 3-Mar-18 3-M

J: Value is below Practical Quantification Limit and above the Method Detection Limit (MDL)

METHOD: EPA 8260B

MATRIX: Vapor

REPORTING UNITS: µg/L

	DATE AN	IALYZED	3-Mar-18	3-Mar-18	3-Mar-18	3-Mar-18	3-Mar-18	3-Mar-18
	DATE EXT	RACTED	3-Mar-18	3-Mar-18	3-Mar-18	3-Mar-18	3-Mar-18	3-Mar-18
C	LIENT SA	MPLE I.D	SV1	SV2	SV3	SV4	SV4 DUP	Equipment Blank
	EXTRACT	ION GAS	Helium	Helium	Helium	Helium	Helium	Helium
EXTR	RACTION I	METHOD	EPA 5030					
	ILUTION	FACTOR	1	1	1	1	1	1
ANALYTE	MDL	PQL						
1,2-Dichlorobenzene	0.050	0.10	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050
1,3-Dichlorobenzene	0.050	0.10	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050
1,4-Dichlorobenzene	0.050	0.10	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050
Dichlorodifluoromethane	0.050	0.10	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050
1,1-Dichloroethane	0.050	0.10	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050
1,2-Dichloroethane (EDC)	0.050	0.10	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050
1,1-Dichloroethene	0.050	0.10	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050
cis-1,2-Dichloroethene	0.050	0.10	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050
trans-1,2-Dichloroethene	0.050	0.10	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050
1,2-Dichloropropane	0.050	0.10	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050
1,3-Dichloropropane	0.050	0.10	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050
2,2-Dichloropropane	0.050	0.10	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050
1,1-Dichloropropene	0.050	0.10	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050
cis-1,3-Dichloropropene	0.050	0.10	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050
trans-1,3-Dichloropropene	0.050	0.10	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050
Freon 113	0.050	0.10	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050
Hexachlorobutadiene	0.050	0.10	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050
Methylene Chloride	0.050	0.10	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050
Tetrachloroethene	0.050	0.10	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050
1,1,1,2-Tetrachloroethane	0.050	0.10	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050
1,1,2,2-Tetrachloroethane	0.050	0.10	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050
1,2,3-Trichlorobenzene	0.050	0.10	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050
1,2,4-Trichlorobenzene	0.050	0.10	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050
1,1,1-Trichloroethane	0.050	0.10	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050
1,1,2-Trichloroethane	0.050	0.10	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050
Trichloroethene	0.050	0.10	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050
Trichlorofluoromethane	0.050	0.10	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050
1,2,3-Trichloropropane	0.050	0.10	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050
Vinyl Chloride	0.050	0.10	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050
IPA (tracer ANALYTE)	2.5	10	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5

J: Value is below Practical Quantification Limit and above the Method Detection Limit (MDL)

METHOD: EPA 8260B

MATRIX: Vapor

REPORTING UNITS: μg/L

	DΔΤΕ ΔΝ	IALYZED	3-Mar-18
	3-Mar-18		
	Method		
CI	Blank		
	XTRACT	ION GAS	Helium
	ACTION		
·			EPA 5030
ANALYTE	MDL	PQL	1
	<u> </u>		NID +0.050
Benzene	0.050	0.10	ND<0.050
Toluene	0.050	0.10	ND<0.050
Ethylbenzene	0.050	0.10	ND<0.050
Total Xylenes	0.050	0.10	ND<0.050
Methyl t-Butyl Ether (MTBE)	0.050	0.10	ND<0.050
t-Butanol (TBA)	2.5	10	ND<2.5
Di-Isopropyl Ether (DIPE)	0.50	2.0	ND<0.50
Ethyl t-Butyl Ether (ETBE)	0.50	2.0	ND<0.50
t-Amyl Methyl Ether (TAME)	0.50	2.0	ND<0.50
Ethanol	25	50	ND<25
Acetone	2.5	10	ND<2.5
2-Butanone (MEK)	2.5	10	ND<2.5
n-Butylbenzene	0.050	0.10	ND<0.050
sec-Butylbenzene	0.050	0.10	ND<0.050
tert-Butylbenzene	0.050	0.10	ND<0.050
Isopropyl Alchohol	2.5	10	ND<2.5
Isopropylbenzene	0.050	0.10	ND<0.050
p-isopropyltoluene	0.050	0.10	ND<0.050
4-Methyl-2-pentanone (MIBK)	2.5	10	ND<2.5
Naphthalene	0.050	0.10	ND<0.050
n-Propylbenzene	0.050	0.10	ND<0.050
Styrene	0.050	0.10	ND<0.050
1,2,4-Trimethylbenzene	0.050	0.10	ND<0.050
1,3,5-Trimethylbenzene	0.050	0.10	ND<0.050
Bromobenzene	0.050	0.10	ND<0.050
Bromochloromethane	0.050	0.10	ND<0.050
Bromoform	0.050	0.10	ND<0.050
Bromomethane	0.050	0.10	ND<0.050
Carbon Tetrachloride	0.050	0.10	ND<0.050
2-Chlorotoluene	0.050	0.10	ND<0.050
4-Chlorotoluene	0.050	0.10	ND<0.050
Chlorobenzene	0.050	0.10	ND<0.050
Chloroethane	0.050	0.10	ND<0.050
Chloroform	0.050	0.10	ND<0.050
Chloromethane	0.050	0.10	ND<0.050
Dibromochloromethane	0.050	0.10	ND<0.050
1,2-Dibromo-3-Chloropropane	0.050	0.10	ND<0.050
1,2-Dibromoethane (EDB)	0.050	0.10	ND<0.050
Dibromomethane	0.050	0.10	ND<0.050
	0.500	<u> </u>	5.556

J: Value is below Practical Quantification Limit and above the Method Detection Limit (MDL)

METHOD: EPA 8260B

MATRIX: Vapor

REPORTING UNITS: μg/L

DATE EXTRACTED 3-Mar-18		DATE AN	IALYZED	3-Mar-18					
Blank EXTRACTION GAS Helium EXTRACTION METHOD EPA 5030 DILUTION FACTOR 1 ANALYTE MDL PQL 1,2-Dichlorobenzene 0.050 0.10 ND<0.050 1,3-Dichlorobenzene 0.050 0.10 ND<0.050 1,4-Dichlorobenzene 0.050 0.10 ND<0.050 0.10		3-Mar-18							
EXTRACTION GAS Helium		Method							
EXTRACTION METHOD EPA 5030	Ci	Blank							
DILUTION FACTOR 1	E	Helium							
ANALYTE	EXTR	EPA 5030							
1,2-Dichlorobenzene 0.050 0.10 ND<0.050	D								
1,3-Dichlorobenzene 0.050 0.10 ND<0.050	ANALYTE	MDL	PQL						
1,4-Dichlorobenzene 0.050 0.10 ND<0.050	1,2-Dichlorobenzene	0.050	0.10	ND<0.050					
Dichlorodifluoromethane 0.050 0.10 ND<0.050 1,1-Dichloroethane 0.050 0.10 ND<0.050	1,3-Dichlorobenzene	0.050	0.10	ND<0.050					
1,1-Dichloroethane 0.050 0.10 ND<0.050				ND<0.050					
1,2-Dichloroethane (EDC) 0.050 0.10 ND<0.050	Dichlorodifluoromethane	0.050	0.10	ND<0.050					
1,1-Dichloroethene 0.050 0.10 ND<0.050	1,1-Dichloroethane	0.050	0.10	ND<0.050					
cis-1,2-Dichloroethene 0.050 0.10 ND<0.050	1,2-Dichloroethane (EDC)	0.050	0.10	ND<0.050					
trans-1,2-Dichloroethene 0.050 0.10 ND<0.050	1,1-Dichloroethene	0.050	0.10	ND<0.050					
1,2-Dichloropropane 0.050 0.10 ND<0.050	cis-1,2-Dichloroethene	0.050	0.10	ND<0.050					
1,3-Dichloropropane 0.050 0.10 ND<0.050	trans-1,2-Dichloroethene	0.050	0.10	ND<0.050					
2,2-Dichloropropane 0.050 0.10 ND<0.050	1,2-Dichloropropane	0.050	0.10	ND<0.050					
1,1-Dichloropropene 0.050 0.10 ND<0.050	1,3-Dichloropropane	0.050	0.10	ND<0.050					
cis-1,3-Dichloropropene 0.050 0.10 ND<0.050	2,2-Dichloropropane	0.050	0.10	ND<0.050					
trans-1,3-Dichloropropene 0.050 0.10 ND<0.050	1,1-Dichloropropene	0.050	0.10	ND<0.050					
Freon 113 0.050 0.10 ND<0.050 Hexachlorobutadiene 0.050 0.10 ND<0.050	cis-1,3-Dichloropropene	0.050	0.10	ND<0.050					
Hexachlorobutadiene 0.050 0.10 ND<0.050 Methylene Chloride 0.050 0.10 ND<0.050	trans-1,3-Dichloropropene	0.050	0.10	ND<0.050					
Methylene Chloride 0.050 0.10 ND<0.050 Tetrachloroethene 0.050 0.10 ND<0.050	Freon 113	0.050	0.10	ND<0.050					
Tetrachloroethene 0.050 0.10 ND<0.050 1,1,1,2-Tetrachloroethane 0.050 0.10 ND<0.050	Hexachlorobutadiene	0.050	0.10	ND<0.050					
1,1,1,2-Tetrachloroethane 0.050 0.10 ND<0.050	Methylene Chloride	0.050	0.10	ND<0.050					
1,1,2,2-Tetrachloroethane 0.050 0.10 ND<0.050	Tetrachloroethene	0.050	0.10	ND<0.050					
1,2,3-Trichlorobenzene 0.050 0.10 ND<0.050	1,1,1,2-Tetrachloroethane	0.050	0.10	ND<0.050					
1,2,4-Trichlorobenzene 0.050 0.10 ND<0.050	1,1,2,2-Tetrachloroethane	0.050	0.10	ND<0.050					
1,1,1-Trichloroethane 0.050 0.10 ND<0.050	1,2,3-Trichlorobenzene	0.050	0.10	ND<0.050					
1,1,2-Trichloroethane 0.050 0.10 ND<0.050	1,2,4-Trichlorobenzene	0.050	0.10	ND<0.050					
Trichloroethene 0.050 0.10 ND<0.050	1,1,1-Trichloroethane	0.050	0.10	ND<0.050					
	1,1,2-Trichloroethane	0.050	0.10	ND<0.050					
Trichlorofluoromethane 0.050 0.10 ND-0.050	Trichloroethene	0.050	0.10	ND<0.050					
Themorphiculatie	Trichlorofluoromethane	0.050	0.10	ND<0.050					
1,2,3-Trichloropropane 0.050 0.10 ND<0.050	1,2,3-Trichloropropane	0.050	0.10	ND<0.050					
Vinyl Chloride 0.050 0.10 ND<0.050	Vinyl Chloride	0.050	0.10	ND<0.050					
IPA (tracer ANALYTE) 2.5 10 ND<2.5	IPA (tracer ANALYTE)	2.5	10	ND<2.5					

J: Value is below Practical Quantification Limit and above the Method Detection Limit (MDL)

QA/QC Report - Vapor Samples

II. Lab Control Sample (LCS)/Lab Control Sample Duplicate (LCSD)

Project Name: 600-628 S. San Pedro Street

Date Performed: 3/3/18

Batch #: GCVOC1-03MAR2018

Instrument ID: GCVOC1

Analytical Method: 8260B

Units: ug/L

Analyte	Sample	Spike	LCS	%LCS	Spike	LCSD	%LCSD	RPD	LCS/LCSD	RPD
	Result	Conc.			Conc.				Limit	Limit
1,1-Dichloroethene	ND	10	8.8	88	10	9.6	96	8	65-130	0-15
Benzene	ND	10	9.3	93	10	9.0	90	4	65-130	0-15
Trichloroethene	ND	10	9.6	96	10	9.2	92	4	65-130	0-15
Toluene	ND	10	8.9	89	10	9.5	95	6	65-130	0-15
Chlorobenzene	ND	10	9.1	91	10	9.3	93	2	65-130	0-15

ATTACHMENT:

- (1) Results in Units of Parts Per Million by Volume (PPMv)
- (2) Chain-of-Custody (C-O-C)
- (3) Field Notes

METHOD: EPA 8260B MATRIX: Vapor REPORTING UNITS: PPMv

	100 (11 (17).					INEI OINI	-;	
		IALYZED		3-Mar-18	3-Mar-18	3-Mar-18	3-Mar-18	3-Mar-18
D	ATE EXT	RACTED	3-Mar-18	3-Mar-18	3-Mar-18	3-Mar-18	3-Mar-18	3-Mar-18
	JENT SA		SV1	SV2	SV3	SV4	SV4 DUP	Equipment Blank
	XTRACT		Helium	Helium	Helium	Helium	Helium	Helium
			EPA 5030	EPA 5030	EPA 5030	EPA 5030	EPA 5030	EPA 5030
	ILUTION		11	1	1	1	1	1
ANALYTE	MDL	PQL						
Benzene	0.010	0.020	ND<0.010	ND<0.010				
Toluene	0.010	0.020	ND<0.010	ND<0.010	ND<0.010		ND<0.010	ND<0.010
Ethylbenzene	0.010	0.020	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010
Total Xylenes	0.010	0.020	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010
Methyl t-Butyl Ether (MTBE)	0.010	0.020	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010
t-Butanol (TBA)	0.50	1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Di-Isopropyl Ether (DIPE)	0.10	0.20	ND<0.10	ND<0.10	ND<0.10	ND<0.10	ND<0.10	ND<0.10
Ethyl t-Butyl Ether (ETBE)	0.10	0.20	ND<0.10	ND<0.10	ND<0.10	ND<0.10	ND<0.10	ND<0.10
t-Amyl Methyl Ether (TAME)	0.10	0.20	ND<0.10	ND<0.10	ND<0.10	ND<0.10	ND<0.10	ND<0.10
Ethanol	5.0	10	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0
Acetone	0.50	1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
2-Butanone (MEK)	0.50	1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
n-Butylbenzene	0.010	0.020	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010
sec-Butylbenzene	0.010	0.020	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010
tert-Butylbenzene	0.010	0.020	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010
Isopropyl Alchohol	0.50	1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Isopropylbenzene	0.010	0.020	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010
p-isopropyltoluene	0.010	0.020	ND<0.010	ND<0.010	ND<0.010	l	ND<0.010	ND<0.010
4-Methyl-2-pentanone (MIBK)	0.50	1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
Naphthalene	0.010	0.020	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010
n-Propylbenzene	0.010	0.020	ND<0.010	ND<0.010	ND<0.010		ND<0.010	ND<0.010
Styrene	0.010	0.020	ND<0.010	ND<0.010	ND<0.010		ND<0.010	ND<0.010
1,2,4-Trimethylbenzene	0.010	0.020	ND<0.010	ND<0.010	ND<0.010		ND<0.010	ND<0.010
1,3,5-Trimethylbenzene	0.010	0.020	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010
Bromobenzene	0.010	0.020	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010
Bromochloromethane	0.010	0.020	ND<0.010	ND<0.010	ND<0.010			
Bromoform	0.010	0.020	ND<0.010		ND<0.010			ND<0.010
Bromomethane	0.010	0.020	ND<0.010	ND<0.010	ND<0.010			ND<0.010
Carbon Tetrachloride	0.010	0.020	ND<0.010	ND<0.010	ND<0.010			ND<0.010
2-Chlorotoluene	0.010	0.020	ND<0.010	ND<0.010	ND<0.010		ND<0.010	ND<0.010
4-Chlorotoluene	0.010	0.020	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010
Chlorobenzene	0.010	0.020	ND<0.010	ND<0.010	ND<0.010		ND<0.010	ND<0.010
Chloroethane	0.010	0.020	ND<0.010	ND<0.010	ND<0.010			ND<0.010
Chloroform	0.010	0.020	ND<0.010	ND<0.010	ND<0.010		ND<0.010	ND<0.010
Chloromethane	0.010	0.020	ND<0.010	ND<0.010	ND<0.010		ND<0.010	ND<0.010
Dibromochloromethane	0.010	0.020	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010
1,2-Dibromo-3-Chloropropane	0.010	0.020	ND<0.010	ND<0.010	ND<0.010			ND<0.010
1,2-Dibromoethane (EDB)	0.010	0.020	ND<0.010	ND<0.010	ND<0.010			ND<0.010
Dibromomethane	0.010	0.020	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010

ND: Not detected at the indicated Method Detection Limit (MDL) $_{\mbox{\tiny \wp}}$

J: Value is below Practical Quantification Limit and above the Method Detection Limit (MDL)

METHOD: EPA 8260B MATRIX: Vapor REPORTING UNITS: PPMv

	DATE AN	IALYZED	3-Mar-18	3-Mar-18	3-Mar-18	3-Mar-18	3-Mar-18	3-Mar-18
	DATE EXT	RACTED	3-Mar-18	3-Mar-18	3-Mar-18	3-Mar-18	3-Mar-18	3-Mar-18
	LIENT SA		SV1	SV2	SV3	SV4	SV4 DUP	Equipment Blank
	EXTRACT		Helium	Helium	Helium	Helium	Helium	Helium
	RACTION		EPA 5030					
	DILUTION		1	1	1	1	1	1
ANALYTE	MDL	PQL						
1,2-Dichlorobenzene	0.010	0.020	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010
1,3-Dichlorobenzene	0.010	0.020	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010
1,4-Dichlorobenzene	0.010	0.020	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010
Dichlorodifluoromethane	0.010	0.020	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010
1,1-Dichloroethane	0.010	0.020	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010
1,2-Dichloroethane (EDC)	0.010	0.020	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010
1,1-Dichloroethene	0.010	0.020	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010
cis-1,2-Dichloroethene	0.010	0.020	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010
trans-1,2-Dichloroethene	0.010	0.020	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010
1,2-Dichloropropane	0.010	0.020	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010
1,3-Dichloropropane	0.010	0.020	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010
2,2-Dichloropropane	0.010	0.020	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010
1,1-Dichloropropene	0.010	0.020	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010
cis-1,3-Dichloropropene	0.010	0.020	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010
trans-1,3-Dichloropropene	0.010	0.020	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010
Freon 113	0.010	0.020	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010
Hexachlorobutadiene	0.010	0.020	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010
Methylene Chloride	0.010	0.020	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010
Tetrachloroethene	0.010	0.020	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010
1,1,1,2-Tetrachloroethane	0.010	0.020	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010
1,1,2,2-Tetrachloroethane	0.010	0.020	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010
1,2,3-Trichlorobenzene	0.010	0.020	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010
1,2,4-Trichlorobenzene	0.010	0.020	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010
1,1,1-Trichloroethane	0.010	0.020	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010
1,1,2-Trichloroethane	0.010	0.020	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010
Trichloroethene	0.010	0.020	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010
Trichlorofluoromethane	0.010	0.020	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010
1,2,3-Trichloropropane	0.010	0.020	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010
Vinyl Chloride	0.010	0.020	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010
IPA (tracer ANALYTE)	0.5	1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50

J: Value is below Practical Quantification Limit and above the Method Detection Limit (MDL)

METHOD: EPA 8260B

MATRIX: Vapor

REPORTING UNITS: PPMv

METHOD. EPA 8260B	DATE AL	Vapor NALYZED	0.14 45							
	3-Mar-18 3-Mar-18									
	DATE EXTRACTED CLIENT SAMPLE I.D									
	Method Blank									
	XTRACT		Helium							
EXTR	EPA 5030									
	ILUTION		1							
ANALYTE	MDL	PQL								
Benzene	0.010	0.020	ND<0.010							
Toluene	0.010	0.020	ND<0.010							
Ethylbenzene	0.010	0.020	ND<0.010							
Total Xylenes	0.010	0.020	ND<0.010							
Methyl t-Butyl Ether (MTBE)	0.010	0.020	ND<0.010							
t-Butanol (TBA)	0.50	1.0	ND<0.50							
Di-Isopropyl Ether (DIPE)	0.10	0.20	ND<0.10							
Ethyl t-Butyl Ether (ETBE)	0.10	0.20	ND<0.10							
t-Amyl Methyl Ether (TAME)	0.10	0.20	ND<0.10							
Ethanol	5.0	10	ND<5.0							
Acetone	0.50	1.0	ND<0.50							
2-Butanone (MEK)	0.50	1.0	ND<0.50							
n-Butylbenzene	0.010	0.020	ND<0.010							
sec-Butylbenzene	0.010	0.020	ND<0.010							
tert-Butylbenzene	0.010	0.020	ND<0.010							
Isopropyl Alchohol	0.50	1.0	ND<0.50							
Isopropylbenzene	0.010	0.020	ND<0.010							
p-isopropyltoluene	0.010	0.020	ND<0.010							
4-Methyl-2-pentanone (MIBK)	0.50	1.0	ND<0.50							
Naphthalene	0.010	0.020	ND<0.010							
n-Propylbenzene	0.010	0.020	ND<0.010							
Styrene	0.010	0.020	ND<0.010							
1,2,4-Trimethylbenzene	0.010	0.020	ND<0.010							
1,3,5-Trimethylbenzene	0.010	0.020	ND<0.010							
Bromobenzene	0.010	0.020	ND<0.010							
Bromochloromethane	0.010	0.020	ND<0.010							
Bromoform	0.010	0.020	ND<0.010							
Bromomethane	0.010	0.020	ND<0.010							
Carbon Tetrachloride	0.010	0.020	ND<0.010							
2-Chlorotoluene	0.010	0.020	ND<0.010							
4-Chlorotoluene	0.010	0.020	ND<0.010							
Chlorobenzene	0.010	0.020	ND<0.010							
Chloroethane	0.010	0.020	ND<0.010							
Chloroform	0.010	0.020	ND<0.010							
Chloromethane	0.010	0.020	ND<0.010							
Dibromochloromethane	0.010	0.020	ND<0.010							
1,2-Dibromo-3-Chloropropane	0.010	0.020	ND<0.010							
1,2-Dibromoethane (EDB) Dibromomethane	0.010	0.020	ND<0.010							
Diblomomethane	0.010	0.020	ND<0.010							

J: Value is below Practical Quantification Limit and above the Method Detection Limit (MDL)

METHOD: EPA 8260B MATRIX: Vapor REPORTING UNITS: PPMv

	DATE AN	NALYZED	3-Mar-18						
Г	3-Mar-18								
	Method								
C	Blank								
	Helium								
	EPA 5030								
C	EXTRACTION METHOD DILUTION FACTOR								
ANALYTE	MDL	PQL							
1,2-Dichlorobenzene	0.010	0.020	ND<0.010						
1,3-Dichlorobenzene	0.010	0.020	ND<0.010						
1,4-Dichlorobenzene	0.010	0.020	ND<0.010						
Dichlorodifluoromethane	0.010	0.020	ND<0.010						
1,1-Dichloroethane	0.010	0.020	ND<0.010						
1,2-Dichloroethane (EDC)	0.010	0.020	ND<0.010						
1,1-Dichloroethene	0.010	0.020	ND<0.010						
cis-1,2-Dichloroethene	0.010	0.020	ND<0.010						
trans-1,2-Dichloroethene	0.010	0.020	ND<0.010						
1,2-Dichloropropane	0.010	0.020	ND<0.010						
1,3-Dichloropropane	0.010	0.020	ND<0.010						
2,2-Dichloropropane	0.010	0.020	ND<0.010						
1,1-Dichloropropene	0.010	0.020	ND<0.010						
cis-1,3-Dichloropropene	0.010	0.020	ND<0.010						
trans-1,3-Dichloropropene	0.010	0.020	ND<0.010						
Freon 113	0.010	0.020	ND<0.010						
Hexachlorobutadiene	0.010	0.020	ND<0.010						
Methylene Chloride	0.010	0.020	ND<0.010						
Tetrachloroethene	0.010	0.020	ND<0.010						
1,1,1,2-Tetrachloroethane	0.010	0.020	ND<0.010						
1,1,2,2-Tetrachloroethane	0.010	0.020	ND<0.010						
1,2,3-Trichlorobenzene	0.010	0.020	ND<0.010						
1,2,4-Trichlorobenzene	0.010	0.020	ND<0.010						
1,1,1-Trichloroethane	0.010	0.020	ND<0.010						
1,1,2-Trichloroethane	0.010	0.020	ND<0.010						
Trichloroethene	0.010	0.020	ND<0.010						
Trichlorofluoromethane	0.010	0.020	ND<0.010						
1,2,3-Trichloropropane	0.010	0.020	ND<0.010						
Vinyl Chloride	0.010	0.020	ND<0.010						
IPA (tracer ANALYTE)	0.5	1.0	ND<0.50						

J: Value is below Practical Quantification Limit and above the Method Detection Limit (MDL)

Advantage Environmental	Project Name										CHAIN-OF-CUSTODY
Consultants, LLC		600-628 S. S	San Pedro S	St.		P	\nal	ysis			RECORD
145 Vallecitos De Oro, Suite 201	Project Address	600-628 S. Sar 615 Crocker St		611-	Vapor (V)					ers	Page 1 of 1
San Marcos, CA 92069		Los Angeles, C	alifornia							Containers	Laboratory Project #:
Phone: 760.275.9229	Project Number				Soil (S), Water (W),		(B)				18152
Contact: Dan Weis	e-mail;			T = b	(S), W		VOC's (8260B)			Number of	
Sample ID		Date	Time	Lab ID	Soil		8		,	Nun	Comments
Equipment Blank		3-Mar-18	1300	1	٧		X			1	
SV1		3-Mar-18	1305	2	٧		Х			1	
SV2		3-Mar-18	1315	3	٧		Х			1	
SV3		3-Mar-18	1325	4	٧		Х			1	
SV4		3-Mar-18	1335	5	٧		Х			1	
SV4 DUP		3-Mar-18	1335	6	٧		Х			1	
							_				
							\dashv				
		V				\dashv	4				
							\dashv				
							4				
							\dashv		_,		
						-					
		· · · · · · · · · · · · · · · · · · ·					\dashv				
							-	\dashv			
								\dashv			
							\dashv				
							1				
		20									
Turnaround Time:					1						
Sample Condition: Chilled? Y / N Se	aled? Y / N	Comments	s:		_						
Sampled & Analyzed by: DATE/TIMES ADVIE					Special Instructions/Comments: Leak Detection Compound: IPA						Comments:
signature: x Br k W	a a										
of Baseline Analytical Services									,		

Phone: (714) 273-2955

Field Notes

Client Information	Project Inf	ormation	Baseline Analytical Information			
Advantage Environmental Consultants, LLC	Project Name	600-628 S. San Pedro St	Analyst Name	Brian Kato		
145 Vallecitos De Oro, Suite 201	Project Address	600-628 S. San Pedro St	Telephone Numbe	er		
San Marcos, CA 92069		Los Angeles, California		714.273.2955		
	Start Time:	3/3/18, 13:00	E-mail Address:	BrianKato@MSN.com		
Report to: Dan Weis						

(1) Site Conditions:

At 1300 hrs, the temperature is 75 degrees F; no precipitation

(2) Vapor Well Construction:

A probe tip is set in a sand pack with Teflon tubing leading to the surface. The tubing ends are sealed with gas-tight plugs. Probe depths are 20' bgs

Sand Pack Specifications:

Tubing Specifications:

		Converts to:			Converts to:
		<u>(cm)</u>			(cm)
Diameter: 2	inches	5.08	Outer Diameter 0.25	inches	0.635
Height: 1	feet	30.48	Inner Diameter: 0.19	inches	0.483
Material: Sand			Lengths: 21' (incl	udes 1' above	ground lead)

(3) Purge Volume & Time Calculation

Component		X-Sect Area	Length or Height	Length or Height		Sand Pack times	Tubing Purge Volumes			
	Diameter				Volume	0.35 porosity Volume	(ml) 1 pv	(ml) 3 pv	(ml) 10 pv	
	(cm)	(cm ²)	(feet)	(cm)	(ml)	(ml)				
Tubing	0.483	0.183	21	640	117.3		117	352	1173	
Sand Pack	5.08	20.27	1	30.5	618	216	216	649	2162	

Purge Time Calculation:

Total PV = Sand Pack Volume +

 Flow rate (ml/min):
 200
 200
 200

 20' BGS: Purge Time (minutes):
 1.67
 5.00
 16.68

Tubing Volume

Purge Time = (Total PV)/Flowrate

Purge Time (minutes)

Purge Volume: Based on the 7/15/15 DTSC Soil Gas Advisory, <u>remove 3 purge volumes prior to each sample collection (purge times shown above).</u>

(4) Pump Specifications

Pump Model: AIRCHEK SAMPLER

Description: A portable battery-powered pump with an adjustable

Vender: SKC, Inc.

Model Number: 224-PCXR4

flow-rate and a built-in flow indicator, meter, & timer.

The flow was set for a fixed rate of 200ml/min.

Comments/Observations/Special Instructions:

Sampled and Analyzed by

Prior to sampling, the probes were allowed at least two hours to equlibrate after setting.

signature:

Baselie Analytical Services

P. O. Box 2243

Huntington Beach, California 92647

Phone: (714) 273-2955