

January 16, 2017

Project No. 16048-01

Mr. Scott Solomon 2800 Casitas, LLC 18 East 50th Street, #16 New York, NY 10022

Subject: Preliminary Geotechnical Report for Proposed Bow Tie Yard Lofts and adjacent Parking Structure, Vesting Tentative Tract 74366, 2750 to 2800 West Casitas Avenue, Los Angeles, California

In accordance with your request, LGC Geotechnical, Inc. is providing a preliminary geotechnical report for planned at-grade five and six-story mix use buildings and adjacent seven-story parking structure with urban farm at 2750 to 2800 West Casitas Avenue in the City of Los Angeles, California. This report presents the results of our subsurface explorations and geotechnical analysis and provides a summary of our conclusions and preliminary recommendations relative to the proposed redevelopment of the site.

Should you have any questions regarding this report, please do not hesitate to contact our office. We appreciate this opportunity to be of service.

Respectfully,

LGC Geotechnical, Inc.

Br Juh

Brad Zellmer, GE 2618 Project Engineer

BTZ/DJB/aca

Distribution:

Dennis Boratynec, GE 2770 Vice President

- (4) Addressee (3 wet signed copies and pdf file on CD for agency submittal)
 (1) Parker Environmental (electronic version)
 - (1) Parker Environmental (electronic version) Attn: Mr. Shane Parker
 - (2) KHR Associates (1 wet signed and 1 electronic version) Attn: Mr. Luis Cerda

TABLE OF CONTENTS

Sectio	<u>on</u>		<u>Page</u>
1.0	INTF	RODUCTION	1
	1.1	Purpose and Scope of Services	1
	1.2	Project Description	1
	1.3	Existing Conditions	
	1.4	Previous Site Geotechnical Information	3
	1.5	Subsurface Exploration	3
	1.6	Infiltration Testing	
	1.7	Laboratory Testing	5
2.0	GEO	TECHNICAL CONDITIONS	6
	2.1	Generalized Subsurface Soils	6
	2.2	Groundwater	6
	2.3	Faulting	6
		2.3.1 Liquefaction and Dynamic Settlement	
		2.3.2 Lateral Spreading	
		2.3.3 Slope Stability Analysis	
	2.4	Seismic Design Parameters	
3.0	CON	CLUSIONS	10
3.0	CON		10
4.0		OMMENDATIONS	
	4.1	Site Earthwork	
		4.1.1 Clearing and Grubbing	
		4.1.2 Excavations	
		4.1.3 Removal Depths and Limits	
		4.1.4 Subgrade Preparation	
		4.1.5 Material for Fill	
		4.1.6 Placement and Compaction of Fills	
		4.1.7 Trench and Retaining Wall Backfill and Compaction	
		4.1.8 Shrinkage and Subsidence	
	4.2	Allowable Bearing Pressures and Passive Resistance	16
	4.3	Building Slabs	
	4.4	Lateral Earth Pressures for Basement Wall Design	17
	4.5	Soil Corrosivity	19
	4.6	Preliminary Pavement Recommendations	19
	4.7	Nonstructural Concrete Flatwork	20
	4.8	Control of Surface Water and Drainage Control	20
	4.9	Subsurface Water Infiltration	21
	4.10	Geotechnical Plan Review	21
	4.11	Pre-Construction Monitoring	21
	4.12	Footing Excavations	
	4.13	Geotechnical Observation and Testing During Construction	22

TABLE OF CONTENTS (Cont'd)

5.0	LIMITATIONS	23

LIST OF TABLES, ILLUSTRATIONS, & APPENDICES

Tables

Table 1 – Soil Shear Strength Parameters for Slope Stability Analysis (Page 8)

- Table 2 Seismic Design Parameters (Page 9)
- Table 3 Allowable Soil Bearing Pressures (Page 16)
- Table 4 Lateral Earth Pressures (Page 18)
- Table 5 Asphalt Concrete Paving Section Options (Page 19)
- Table 6 Nonstructural Concrete Flatwork for Very Low Expansion Potential (Page 20)

Figures

Figure 1 – Site Location Map (Page 2)

Figure 2 – Recommended Retaining Wall Backfill Detail (Rear of Text)

<u>Appendices</u>

- Appendix A References
- Appendix B Boring and CPT Logs and Infiltration Test Data
- Appendix C Laboratory Test Results
- Appendix D Liquefaction & Slope Stability Analysis
- Appendix E General Earthwork and Grading Specifications
- Appendix F City of Los Angeles Approvals & Duco Engineering, 1999a

Sheets

- Sheet 1 Geotechnical Map (Rear Pocket)
- Sheet 2 Cross Sections A-A' through D-D' (Rear Pocket)

1.0 INTRODUCTION

1.1 <u>Purpose and Scope of Services</u>

This preliminary geotechnical report is for the planned at-grade seven-story parking structure and urban farm, an at-grade six-story mix use building, and three at-grade five-story mix use buildings at 2750 to 2800 West Casitas Avenue in the City of Los Angeles, California (see Site Location Map, Figure 1). The purpose of our work was to evaluate site geotechnical conditions and to provide preliminary geotechnical recommendations with respect to the proposed development.

1.2 Project Description

Based on the provided information, the proposed development will consist of an at-grade seven-story parking structure with an urban farm, an at-grade six-story mix use building, and three at-grade fivestory mix use buildings (KHR, 2016). The urban farm will be located on the top level of the parking structure. The mix use buildings will consist of four or five levels of residential dwellings over one level of commercial/retail. The six-story mix use building will be a podium. Based on information from the project structural engineer, preliminary anticipated maximum structural (dead plus live) loads for the seven-story parking structure with urban farm and the six-story mix-use podium are 1,200 kips and 630 kips, respectively. Maximum structural (dead plus live) loads for the three five-story mix use buildings are 5.3 kips/ft (Englekirk, 2016). Refer to Sheets 1 and 2 depicting the proposed development.

The recommendations given in this report are based upon the estimated structural loading and layout information above. We understand that the project plans are currently being developed at this time; LGC Geotechnical should be provided with updated project plans and any changes to structural loads when they become available, in order to either confirm or modify the recommendations provided herein.

1.3 <u>Existing Conditions</u>

The relatively flat site is approximately 5.7-acres and is bound in the easterly direction by Casitas Avenue and a vacant lot, in the southerly direction by a flood control channel (Los Angeles River), in the westerly direction by the Glendale Freeway, and in the northerly direction by an existing storage facility consisting of numerous buildings. The site currently consists of an existing one-story warehouse building and associated parking.

1.4 <u>Previous Site Geotechnical Information</u>

Previous geotechnical reports specific to the site were researched at the City of Los Angeles. Records retrieved were a geotechnical addendum investigation report and compaction summary report for existing parking lot area (Duco Engineering, 1998 & 1999b). In addition, a copy was obtained of the compaction report for the existing warehouse building (Duco Engineering, 1999a). The original investigation report within the footprint area of the current building that included seven test pits was not on record at the City nor provided by the client. The addendum investigation report included five additional test pits along the northern property line to estimate the depth of old fill in the area of a proposed retaining wall in the northern portion of the site. The depth of the test pits ranged in depth from approximately 10 to 16 feet. The test pits provided in the addendum report indicated that previous placed fill ranged from 1-foot to 14 feet. Groundwater was not encountered in any of the five test pits. Soils were generally described as sands, silty sands, sandy silts and sands with gravels. Duco Engineering recommended the old fill be removed to native ground and replaced as compacted fill for the proposed retaining wall. Due to the proximity of the northern property line, it was recommended the fill be removed in 20-foot-long slots.

Duco Engineering prepared a compaction report documenting the geotechnical observation and testing for grading of the existing warehouse building (Duco Engineering, 1999a). Earthwork removals within the existing building footprint area ranged from approximately 12 feet to 23 feet. Removals were also made for the retaining wall along the northern property line. The compaction report was subsequently approved as primary structural fill by the City of Los Angeles Department of Building and Safety (City 1999a). Approximate limits of the previously placed primary structural fill are shown on the Geotechnical Map, Sheet 1. Subsequently Duco Engineering prepared a compaction report documenting the geotechnical observation and testing of the paving area (Duco Engineering, 1999b). Field compaction testing was performed on the subgrade and aggregate base prior to placement of pavement. The compaction report for the paving area was subsequently approved as secondary structural fill by the City of Los Angeles Department of Building and Safety (City 1999a). Secondary structural fill may be used only for support of slabs and pavements and cannot be used for support of structural footings. The City of Los Angeles approvals and the compaction report for the existing warehouse building (Duco Engineering, 1999a) are provided in Appendix F.

1.5 <u>Subsurface Exploration</u>

A geotechnical field evaluation was performed by LGC Geotechnical. This program consisted of drilling and sampling seven small-diameter borings and four Cone Penetration Test (CPT) soundings.

The borings were drilled by 2R Drilling, Inc., under subcontract to LGC Geotechnical. The depth of the borings ranged from approximately 10 to 51¹/₂ feet below existing grade. Borings HS-3 and HS-5 were performed near the adjacent channel for liquefaction analysis. The shallow boring HS-7 was used for infiltration testing. An LGC Geotechnical representative observed the drilling operations, logged the borings, and collected soil samples for laboratory testing. The borings were performed using a CME-55 truck-mounted drill rig equipped with 8-inch diameter hollow-stem augers. Driven soil samples were collected by means of the Standard Penetration Test (SPT) and Modified California Drive (MCD) sampler. Only SPT samples were driven for HS-3 and HS-5 for liquefaction analysis. The MCD is a split-barrel sampler with a tapered cutting tip and lined with a series of 1-inch tall brass rings. The SPT sampler (1.4-inch ID) and MCD sampler (2.4-inch ID, 3.0-inch OD) were driven using a 140-pound automatic hammer falling 30 inches to advance the sampler a total depth of 18 inches or until refusal. The blow counts for each 6-inch increment of penetration were recorded on the boring logs. Bulk samples were also collected and logged for laboratory testing at select depths. At the completion of drilling, the borings were backfilled with soil cuttings and the surface was replaced with asphalt coldpatch. Some settlement of the backfilled borings/existing asphalt patch should be expected. The excess cuttings were temporarily placed in steel drums and these drums have since been properly disposed of offsite. Other than profiling the drums, no environmental testing of soils was done as it is beyond our scope of services and we do not provide environmental consulting services.

The CPT soundings (CPT-1 through CPT-4) were performed by Gregg Drilling and Testing, Inc. (Gregg) under subcontract to LGC Geotechnical. CPT soundings were pushed to depths ranging between approximately 48 to 67 feet below existing grade. Each CPT was pushed to practical refusal. The upper 5 feet were hand-augered due to potential utility line conflicts. The CPT soundings were pushed using an electronic cone penetrometer in general accordance with the current ASTM standards (ASTM D5778 and ASTM D3441). The CPT equipment consisted of a cone penetrometer assembly mounted at the end of a series of hollow sounding rods. The interior of the cone penetrometer is instrumented with strain gauges that allow the simultaneous measurement of cone tip and friction sleeve resistance during penetration. The cone penetration assembly is continuously pushed into the soil by a set of hydraulic rams at a standard rate of 0.8 inches per second while the cone tip resistance and sleeve friction resistance are recorded at approximately every 2 inches and stored in digital form. A specially designed all-wheel drive 25-ton truck provides the required reaction weight for pushing the cone assembly.

Boring and CPT Logs are presented in Appendix B and their approximate locations are depicted on the Geotechnical Map, Sheet 1.

1.6 <u>Infiltration Testing</u>

A field infiltration test was performed in borings HS-7 (Sheet 1). Estimation of the infiltration rate was in accordance with the general guidelines set forth by the County of Los Angeles (County of L.A., 2014). A 3-inch diameter perforated capped-PVC pipe was placed in the borehole and the annulus was backfilled with gravel. The infiltration well was pre-soaked the day prior to testing. The test interval was determined to be 30 minutes due to water remaining in the boring after a period of 30 minutes. The water level used for infiltration testing was below the presoak water level and greater than 12 inches above the bottom of the boring. Successive infiltration tests were performed starting at approximately the initial testing water level. Based on the County of Los Angeles (County of L.A., 2014) methodology, the calculated infiltration rate was 1.1-inch per hour. This infiltration rate has been

corrected for one-dimensional flow (Rf factor) and includes a factor of safety of 2. It should also be emphasized that infiltration test results are only representative of the location and depth where they are performed. Varying subsurface conditions may exist outside of the test locations which could alter the calculated infiltration rates indicated above. The infiltration test was performed using relatively clean water free of particulates, silt, etc. Refer to the discussion provided in Section 4.9 and infiltration test data provided in Appendix B.

1.7 *Laboratory Testing*

Representative driven and bulk samples were retained for laboratory testing during our field evaluation. Laboratory testing was performed at a certified geotechnical testing laboratory for the City of Los Angeles (Leighton). We have reviewed and concur with the test results and accept the responsibility for their use in our analysis. Laboratory testing included in-situ unit weight and moisture content, grain size analysis, fines content, Atterberg Limits (liquid limit and plastic limit), consolidation, direct shear, expansion index, laboratory compaction and corrosion (sulfate, chloride, pH, and minimum resistivity).

The following is a summary of the laboratory test results.

- Dry density of the samples collected ranged from approximately 92 pounds per cubic foot (pcf) to 132 pcf, with an average of 113 pcf. Field moisture contents ranged from approximately 2 percent to 28 percent, with an average of 7 percent.
- Eight gradation and fines content tests indicated a fines content (percent passing No. 200 sieve) ranging from approximately 5 percent to 59 percent. Based on the Unified Soils Classification System (USCS), seven of the eight tested samples would be classified as "coarse-grained."
- Four Atterberg Limit (liquid limit and plastic limit) tests were performed. Results indicated Plasticity Index values ranging from 6 to 20.
- A direct shear test was performed. The plot is provided in Appendix C.
- Three consolidation tests were performed. The stress vs. deformation plots are provided in Appendix C.
- Two Expansion Index (EI) tests were performed. Results were EI values of 0 and 4, corresponding to "Very Low" expansion potential.
- A laboratory compaction test of a near surface sample indicated a maximum dry density of 136.5 pcf with an optimum moisture content of 7.5 percent.
- Corrosion testing indicated soluble sulfate contents less than 0.03 percent, chloride contents of 146 and 215 parts per million (ppm), pH values of 7.8 and 9.8, and minimum resistivity values of 1,700 and 4,990 ohm-cm.

A summary of the laboratory test results are presented in Appendix C.

2.0 GEOTECHNICAL CONDITIONS

2.1 Generalized Subsurface Soils

The field explorations (Borings and CPT soundings) generally indicate dense to very dense sands interbedded with occasional very stiff fine-grained (i.e., silt and/or clay) layers of varying thicknesses. The SPT blow counts are generally above 30 for the sand layers and the CTP tip resistance values are generally above 300 tons per square foot (tsf) for the sand layers.

It should be noted that geotechnical explorations are only representative of the location where they are performed and varying subsurface conditions may exist outside of each location. In addition, subsurface conditions can change over time. The soil descriptions provided above should not be construed to mean that the subsurface profile is uniform and that soil is homogeneous within the project area. For details on the stratigraphy at the exploration locations, refer to the boring logs provided in Appendix B.

2.2 <u>Groundwater</u>

The measured depth of groundwater in our borings ranged from approximately 37 to 41 feet below existing grade and in CPT-4 was measured to be approximately 37.5 feet below existing grade. Groundwater was previously not encountered to the maximum explored depth of approximately 16 feet below existing ground surface (Duco Engineering, 1998). Historic high groundwater is estimated to be about 25 feet below existing grade (CGS, 1998).

It should be noted that higher localized and seasonal perched groundwater conditions may accumulate below the surface, and should be expected throughout the design life of the proposed improvements. In general, groundwater conditions below any given site may vary over time depending on numerous factors including seasonal rainfall and local irrigation among others.

2.3 Faulting

The subject site is not located within a State of California Earthquake Fault Zone (i.e., Alquist-Priolo Earthquake Fault Act Zone) and no active faults are known to cross the site (CDMG, 1977). A fault is considered "active" if evidence of surface rupture in Holocene time (the last approximately 11,000 years) is present.

Secondary effects of seismic shaking resulting from large earthquakes on the major faults in the Southern California region, which may affect the site, include ground lurching and shallow ground rupture, soil liquefaction, and dynamic settlement. These secondary effects of seismic shaking are a possibility throughout the Southern California region and are dependent on the distance between the site and causative fault and the onsite geology. The nearby major active faults that could produce these secondary effects include the Puente Hills Fault, Hollywood Fault, Raymond Fault, Elysian Park Fault (Upper) and San Andreas Faults, among others. A discussion of these secondary effects is provided in the following sections.

2.3.1 Liquefaction and Dynamic Settlement

Liquefaction is a seismic phenomenon in which loose, saturated, granular soils behave similarly to a fluid when subject to high-intensity ground shaking. Liquefaction occurs when three general conditions coexist: 1) shallow groundwater; 2) low density non-cohesive (granular) soils; and 3) high-intensity ground motion. Studies indicate that loose, saturated, near surface cohesionless soils exhibit the highest liquefaction potential, while dry, dense, cohesionless soils and cohesive soils exhibit low to negligible liquefaction potential. In general, cohesive soils are not considered susceptible to liquefaction (Bray & Sancio, 2006). Effects of liquefaction on level ground include settlement, sand boils, and bearing capacity failures below structures. Dynamic settlement of dry sands can occur as the sand particles tend to settle and densify as a result of a seismic event.

The site is located within a State of California Seismic Hazard Zone for liquefaction potential (CGS, 1999). Liquefaction analysis was performed for the two 50-foot borings adjacent to the channel (HS-3 and HS-5) based on the seismic criteria (PGA_M) of the 2016 California Building Code (CBC) and historic high groundwater depth. Due to the dense to very dense nature of soils based on SPT blow counts ((N₁)₆₀), site soils are not considered susceptible to liquefaction. The clay layer encountered in boring HS-5 at 35 feet has a Plasticity Index of 20 and is not considered susceptible to liquefaction based on Bray's criteria (Bray & Sancio, 2006). Refer to liquefaction analysis provided in Appendix D.

2.3.2 *Lateral Spreading*

Lateral spreading is a type of liquefaction induced ground failure associated with the lateral displacement of surficial blocks of sediment resulting from liquefaction in a subsurface layer. Once liquefaction transforms the subsurface layer into a fluid mass, gravity plus the earthquake inertial forces may cause the mass to move downslope towards a free face (such as a river channel or an embankment). Lateral spreading may cause large horizontal displacements and such movement typically damages pipelines, utilities, bridges, and structures.

Due to the dense to very dense nature of soils based on SPT blow counts $((N_1)_{60})$, site soils are not considered susceptible to liquefaction and lateral spreading.

2.3.3 <u>Slope Stability Analysis</u>

Global slope stability analysis was performed on Cross-Section A-A' for the approximately 3:1 (horizontal to vertical) offsite slope. The soil shear strength parameters utilized in our slope stability analysis are based on published shear strength data and laboratory testing of onsite materials (CGS, 1998).

TABLE 1

Soil Type	(Degrees)	Cohesion (psf)
Alluvium (Qf)	28	200
Compacted Fill (Af)	35	50

Soil Shear Strength Parameters for Slope Stability Analysis

Slope stability analysis was performed using the computer program GSTABL7 with STEDwin version 2.005.3 (Gregory Geotechnical Software, 2013). Potential rotational failure modes were analyzed using Bishop's Modified Method. A minimum factor of safety of 1.5 is typically required for static loading conditions.

Seismic slope stability analysis was performed in accordance Special Publication 117A (CGS, 2008). Special Publication 117A requires a "screening" slope stability calculation based on modified horizontal seismic coefficient (Kh) derived from site-specific seismic parameters (i.e., design PGA, earthquake magnitude and distance). If the resulting calculated factor of safety is equal to or greater than 1.0, the analyses passes the screening calculation and no further analyses is required. If the calculated factor of safety is less than 1.0, a displacement analyses is required in order to assess estimated slope movement during a seismic coefficient (Kh) of 0.32 was determined. The resulting "screening" factor of safety was greater than 1.0.

Slope stability analysis indicated adequate static and pseudostatic factors of safety. Refer to Appendix D.

2.4 <u>Seismic Design Parameters</u>

The site seismic characteristics were evaluated per the guidelines set forth in Chapter 16, Section 1613 of the 2016 CBC. Representative site coordinates of latitude 34.1103 degrees north and longitude -118.2465 degrees west were utilized in our analyses. The maximum considered earthquake (MCE) spectral response accelerations (S_{MS} and S_{M1}) and adjusted design spectral response acceleration parameters (S_{DS} and S_{D1}) for Site Class D are provided in Table 2 on the following page.

Section 1803.5.12 of the 2016 CBC (per Section 11.8.3 of ASCE 7) states that the maximum considered earthquake geometric mean (MCE_G) Peak Ground Acceleration (PGA) should be used for liquefaction potential. The PGA_M for the site is equal to 1.113g (USGS, 2017).

A deaggregation of the PGA based on a 2,475-year average return period indicates that an earthquake magnitude of 6.6 at a distance of approximately 3.6 km from the site would contribute the most to this ground motion. A deaggregation of the PGA based on 475-year average return period indicates that an earthquake magnitude of 6.5 at a distance of approximately 3.0 km from the site would contribute the most to this ground motion (USGS, 2008).

TABLE 2

Seismic Design Parameters

Selected Parameters from 2016 CBC, Section 1613 - Earthquake Loads	Seismic Design Values
Site Class per Chapter 20 of ASCE 7	D
Risk-Targeted Spectral Acceleration for Short Periods (Ss)*	2.900g
Risk-Targeted Spectral Accelerations for 1- Second Periods $(S_1)^*$	0.964g
Site Coefficient F _a per Table 1613.3.3(1)	1.0
Site Coefficient F _v per Table 1613.3.3(2)	1.5
Site Modified Spectral Acceleration for Short Periods (S_{MS}) for Site Class D [Note: $S_{MS} = F_aS_S$]	2.900g
Site Modified Spectral Acceleration for 1- Second Periods (S_{M1}) for Site Class D [Note: $S_{M1} = F_v S_1$]	1.446g
Design Spectral Acceleration for Short Periods (S _{DS}) for Site Class D [Note: $S_{DS} = (^{2}/_{3})S_{MS}$]	1.933g
Design Spectral Acceleration for 1-Second Periods (S _{D1}) for Site Class D [Note: $S_{D1} = (^{2}/_{3})S_{M1}$]	0.964g
Mapped Risk Coefficient at 0.2 sec Spectral Response Period, C _{RS} (per ASCE 7)	0.936
Mapped Risk Coefficient at 1 sec Spectral Response Period, C _{R1} (per ASCE 7)	0.939

* From USGS, 2017

3.0 <u>CONCLUSIONS</u>

Based on the results of our subsurface evaluation and understanding of the proposed redevelopment, it is our opinion that the proposed development is feasible from a geotechnical standpoint. A summary of our conclusions are as follows:

- Based on our subsurface evaluation (Borings and CPT soundings), site soils are generally dense to very dense sands and interbedded with occasional very stiff fine-grained (i.e., silts and/or clays) layers of varying thicknesses. The site contains previously placed documented compacted fill (Duco Engineering, 1999a & 1999b) and undocumented compacted fill of varying thicknesses over alluvium to the maximum explored depth.
- The site contains previously placed and approved primary structural fill within the approximate building footprint ranging from approximately 12 to 23 feet below existing grade. The existing parking lot area contains secondary structural fill for only the support of slabs and pavement. Existing undocumented fill and secondary structural fill may not be used support proposed structural footings and will require removal and re-compaction of existing soils as outlined in Section 4.1.
- The contractor will have to protect in-place the existing northern property line retaining wall during earthwork removals required for the proposed parking structure. Due to the proximity of the planned atgrade parking structure and adjacent existing northern retaining wall, "ABC" slot cuts will likely be required in order to perform the recommended earthwork removals.
- Groundwater was encountered during our recent subsurface evaluation at depths ranging from approximately 37 to 41 feet below existing ground surface. Historic high groundwater for the site is about 25 feet below existing ground surface (CGS, 1998).
- The site is located within a State of California Seismic Hazard Zone for liquefaction potential (CGS, 1999). However, due to the dense to very dense nature of soils based on SPT blow counts ((N₁)₆₀), site soils are not considered susceptible to liquefaction and lateral spreading.
- The proposed development will likely be subjected to strong seismic ground shaking during its design life. The site is not located within a State of California Earthquake Fault Zone (i.e., Alquist-Priolo Earthquake Fault Act Zone) and no active faults are known to cross the site (CDMG, 1977).
- Provided our earthwork removals are implemented, the proposed seven-story parking structure with urban farm, six-story podium apartment building and 5-story mix use buildings may be supported on a shallow foundation system. Preliminary long-term static settlement estimates based on the provided building loads are on the order of 1 ¹/₄-inch for the seven-story parking structure with urban farm and 1-inch six-story podium mix use building. Long-term static settlement for the five-story mix use buildings is estimated at ¹/₂-inch.
- From a geotechnical perspective, onsite soils are anticipated to be suitable for use as general compacted fill provided they are screened of organic materials, construction debris and any oversized material (8-inches in greatest dimension).
- Based on our field evaluation and previous site geotechnical reports, site soils are generally sandy and typically lack silts and clays which may them susceptible to caving when excavating. This may impact any required deeper excavations (+/- 5 feet) for items such as grease interceptors, elevator shafts/pits, etc. Refer to the boring and CPT logs provided in Appendix B and the previous referenced report (Duco Engineering, 1998).
- Due to the site consisting of compacted fill over dense alluvium soils and the relatively low infiltration rate obtained from the field test, infiltration of storm water is not feasible.

4.0 <u>RECOMMENDATIONS</u>

These preliminary recommendations should be considered minimal from a geotechnical viewpoint, as there may be more restrictive requirements from the architect, structural engineer, building codes, governing agencies, or the owner. Additional geotechnical explorations should be performed to confirm, or modify if necessary, the following preliminary recommendations.

It should be noted that the following geotechnical recommendations are intended to provide the owner with sufficient information to develop the site in general accordance with the 2016 California Building Code (CBC)/City of Los Angeles Building Code (LABC) requirements. With regard to the potential occurrence of potentially catastrophic geotechnical hazards such as fault rupture, earthquake-induced landslides, liquefaction, etc. the following geotechnical recommendations should provide adequate protection for the proposed development to the extent required to reduce seismic risk to an "acceptable level." The "acceptable level" of risk is defined by the California Code of Regulations as "that level that provides reasonable protection of the public safety, though it does not necessarily ensure continued structural integrity and functionality of the project" [Section 3721(a)]. Therefore, repair and remedial work of the proposed structures may be required after a significant seismic event. With regards to the potential for less significant geologic hazards to the proposed development, the recommendations contained herein are intended as a reasonable protection against the potential damaging effects of geotechnical phenomena such as expansive soils, soil settlement, groundwater seepage, etc. It should be understood, however, that our recommendations are intended to maintain the structural integrity of the proposed development and structures given the site geotechnical conditions, but cannot preclude the potential for some cosmetic distress or nuisance issues to develop as a result of the site geotechnical conditions.

4.1 <u>Site Earthwork</u>

We anticipate that earthwork will consist of demolition of existing improvements, required removals, subgrade preparation, foundation construction and utility line construction. We recommend that earthwork onsite be performed in accordance with the following recommendations, City of Los Angeles Building Code (LABC) requirements and the General Earthwork and Grading Specifications included in Appendix D. In case of conflict, the following recommendations shall supersede those included in Appendix D. The following recommendations should be considered preliminary and may be revised based upon future evaluation and our review of updated project plans and/or the field conditions exposed during construction.

4.1.1 <u>Clearing and Grubbing</u>

Prior to earthwork of areas to receive structural fill, engineered structures or improvements, the areas should be cleared of existing vegetation, surface obstructions, existing debris and potentially compressible or otherwise unsuitable material. Debris should be removed and properly disposed of off-site. Holes resulting from the removal of buried obstructions, which extend below proposed removal bottoms, should be replaced with properly compacted fill material.

If cesspools or septic systems are encountered during earthwork, they should be removed in their entirety. The resulting excavation should be backfilled with properly compacted fill soils. As an alternative, cesspools can be backfilled with lean sand-cement slurry. At the conclusion of the clearing operations, a representative of LGC Geotechnical should observe and accept the site prior to further earthwork.

4.1.2 Excavations

Excavations up to approximately 15 feet are anticipated for required earthwork removals. Excavations should be sloped back to 1:1 or flatter or be properly shored. The potential for impacting the existing northern retaining wall may be reduced by performing "ABC" slot cuts while performing earthwork removals for the proposed parking structure. The slots should be no wider than 15 feet and no deeper than 12 feet, and should be backfilled immediately to finish grade prior to excavation of the adjacent two slots. Temporary excavations should be performed in accordance with project plans, specifications, and all Occupational Safety and Health Administration (OSHA) requirements. Soil conditions should be regularly evaluated during construction to verify conditions are as anticipated. Sandy soils are present and should be considered susceptible to caving and may require temporary casing. The contractor shall make this determination based on the equipment used and their technique. The contractor shall be responsible for providing the "competent person," required by OSHA standards, to evaluate soil conditions. Prolonged exposure of backcut slopes during construction may result in localized slope instability. Excavation safety is the responsibility of the contractor. Raveling of the sandy soils should be anticipated for temporary slopes. Flatter slope inclinations should be considered if raveling cannot be tolerated. The exposed slope surface may be kept surficially moist (but not saturated) during construction to reduce (not eliminate) potential sloughing.

Surcharge loads (soil stockpiles, construction equipment, etc.) should not be permitted within a horizontal distance equal to the height of cut from the top of the excavation or 5 feet from the top of the slope, whichever is greater, unless the cut is properly shored and designed for the applicable surcharge load. Excavations that extend below an imaginary plane inclined at 45 degrees below the edge of adjacent existing site facilities should be properly shored to maintain support of adjacent elements.

Excavation safety is the responsibility of the contractor. Prolonged exposure of back-cut slopes during construction may result in localized slope instability. Raveling of the sandy soils should be anticipated for temporary slopes. Flatter slope inclinations should be considered if raveling cannot be tolerated. The exposed slope surface may be kept surficially moist (but not saturated) during construction to reduce (not eliminate) potential sloughing. Temporary excavations should be performed in accordance with project plans, specifications, and all Occupational Safety and Health Administration (OSHA) requirements.

4.1.3 <u>Removal Depths and Limits</u>

In order to provide a relatively uniform bearing condition for the planned building structures, previously placed undocumented fills and loose/compressible native soils are to be removed

and replaced as properly compacted fills. In addition, secondary structural fill that is to be used for the support of structural footings must be removed and replaced as properly compacted fill. For preliminary planning purposes, the depth of required removals may be estimated as indicated below and as shown on Sheet 1. It should be noted that updated recommendations may be required based on additional field evaluation, changes to building layouts and/or structural loads.

<u>Seven-Story Parking Structure with Urban Farm</u>: Outside of the limits of the previously placed primary structural fill, removals should be on the order of 10 feet to 12 feet below existing grade. Within the limits of the previously placed primary structural fill, removals should be a minimum of 2 feet below existing grade/bottom of existing slab. Localized deeper removals may be required. Refer to Sheet 1.

<u>Six-Story Podium Mix Use Building</u>: Removals should be a minimum of 10 feet below existing grade/bottom of existing slab. Localized deeper removals may be required. Refer to Sheet 1.

<u>Five-Story Mix Use Buildings</u>: Removals range from approximately 2 to 15 feet below existing grade. Within the limits of the previously placed primary structural fill, removals should be a minimum of 2 feet below existing grade/bottom of existing slab. Localized deeper removals may be required. Refer to Sheet 1.

Where adequate space is available, the base of removal bottoms should extend laterally a minimum distance equal to the depth of overexcavation/compaction below finish grade. Specifically, soils located within a 1:1 (horizontal to vertical) projection of the bottom of footings must be engineered compacted fill or competent natural ground. Building lines may be defined as the perimeter of the building proper, plus attached or adjacent foundation supported features, including canopies, elevators, or walls.

For minor site structures, such as free-standing, screen walls and minor retaining walls, the removals should extend at least 3 feet beneath the existing grade or 2 feet beneath the base of foundations, whichever is deeper. Deeper removals may be required if undocumented fill soils are encountered.

Within non-structural areas (i.e., areas designed to receive concrete/asphalt paving or pavers), the soils within 1-foot of the existing grade or finish grade, whichever is deeper, should be overexcavated and replaced as properly compacted fill.

Local conditions may be encountered which could require additional overexcavation beyond the above-noted minimum to obtain an acceptable subgrade. The actual depths and lateral extents of removals should be determined by the geotechnical consultant based on the subsurface conditions encountered during earthwork.

4.1.4 <u>Subgrade Preparation</u>

In general, areas to receive compacted fill should be scarified to a minimum depth of 6 inches, brought to a near-optimum moisture condition, and re-compacted per project

requirements. Removal bottoms and areas to receive fill should be observed and accepted by the geotechnical consultant prior to subsequent fill placement. Soil subgrade for planned footings and improvements (e.g., slabs, etc.) should be firm and competent.

4.1.5 <u>Material for Fill</u>

From a geotechnical perspective, the onsite soils are generally suitable for use as compacted fill, with the exception of retaining wall backfill (if applicable), provided they are screened of oversized material (8 inches in greatest dimension), construction debris and significant organic materials.

Any retaining wall backfill should consist of granular, relatively sandy soils with a maximum of 30 percent fines (passing the No. 200 sieve) per American Society for Testing and Materials (ASTM) D1140 (or ASTM D6913/ASTM D422) and a Very Low expansion potential (EI of 20 or less per ASTM D4829). Some of the onsite soils are not suitable for retaining wall backfill due to their high fines content, therefore, import of soils meeting this criteria and/or select grading and stockpiling will be required by the contractor for obtaining suitable retaining wall backfill soil. Retaining wall backfill should also be limited to fill material not exceeding 3 inches in greatest dimension.

From a geotechnical perspective, import soils (if necessary) should consist of clean, granular soils of Very Low expansion potential (expansion index 20 or less based on ASTM D4829). Any required import of sandy soils for planned retaining wall backfill should meet the site requirements for retaining wall backfill outlined in the paragraph above. Source samples of planned importation should be provided to the geotechnical consultant for laboratory testing a minimum of three working days prior to any planned importation.

Aggregate base (crushed aggregate base or crushed miscellaneous base) should conform to the requirements of Section 200-2 of the Standard Specifications for Public Works Construction ("Green Book") for untreated base materials (except processed miscellaneous base) or Caltrans Class 2 aggregate base.

4.1.6 <u>Placement and Compaction of Fills</u>

Material to be placed as fill should be compacted to at least 90 percent relative compaction (per ASTM D1557). Sandy, cohesionless soils (less than 15 percent finer than 0.005 millimeters) should be compacted to at least 95 percent relative compaction (per ASTM D1557) per the requirements of the City of Los Angeles. Contractor should anticipate sandy soils with low fines content are present thereby requiring at least 95 percent relative compaction. Soils should be compacted near or within about 2 percent over optimum moisture content.

Moisture conditioning of site soils will be required in order to achieve adequate compaction. Drying and/or mixing the very moist soils will be required prior to reusing the materials in compacted fills. The optimum lift thickness to produce a uniformly compacted fill will depend on the type and size of compaction equipment used. In general, fill should be placed in uniform lifts not exceeding 8 inches in compacted thickness. Each lift should be thoroughly compacted

and accepted prior to subsequent lifts. Generally, placement and compaction of fill should be performed in accordance with City of Los Angeles Grading Code with observation and testing by the geotechnical consultant.

During backfill of excavations, the fill should be properly benched into firm and competent soils of temporary backcut slopes as it is placed in lifts.

Aggregate base material should be compacted to a minimum of 95 percent relative compaction at or slightly above optimum moisture content per ASTM D1557. Subgrade below aggregate base should be compacted to a minimum of 90 percent relative compaction per ASTM D1557 at or slightly above optimum moisture content, unless it contains cohesionless soils (less than 15 percent finer than 0.005 millimeters).

4.1.7 <u>Trench and Retaining Wall Backfill and Compaction</u>

The onsite soils may generally be suitable as trench backfill, provided the soils are screened of rocks, construction debris, other material greater than 6 inches in diameter and significant organic matter. If trenches are shallow or the use of conventional equipment may result in damage to the utilities, sand having a sand equivalent (SE) of 30 or greater (per Caltrans Test Method [CTM] 217) may be used to bed and shade the pipes within the bedding zone. Trench backfill should be compacted in uniform lifts (as outlined above in Section "Material for Fill") by mechanical means to at least 90 percent relative compaction (per ASTM D1557).

Utility trenches running parallel to footings should not be excavated within a 1:1 (horizontal to vertical) downward projection from adjacent footings ("footing influence zone") to avoid potential undermining. Depending on the utility line and structural loading of the footing, utility trenches running perpendicular to footings may require special provisions such as sand-cement slurry backfill of the utility trench in this zone or flexible sleeves through the footings. These conditions should be evaluated on a case-by-case basis.

Any required retaining wall backfill should consist of sandy soils as defined in the above section "Material for Fill." Retaining wall backfill soils should be compacted in relatively uniform thin lifts to the applicable minimum relative compaction depending on the soil type (refer to above Section "Placement and Compaction of Fills"). Jetting or flooding of retaining wall backfill materials is not permitted.

In backfill areas where mechanical compaction of soil backfill is impractical due to space constraints, typically sand-cement slurry may be substituted for compacted backfill. The slurry should contain about one sack of cement per cubic yard. When set, such a mix typically has the consistency of compacted soil. Sand cement slurry placed near the surface within landscape areas should be evaluated for potential impacts on planned improvements.

A representative from LGC Geotechnical should observe, probe, and test backfill to verify compliance with the project recommendations.

4.1.8 Shrinkage and Subsidence

Allowance in the earthwork volumes budget should be made for an estimated 5 to 10 percent reduction in volume of the upper approximate 10 to 15 feet of site soils. It should be stressed that these values are only estimates and that an actual shrinkage factor would be extremely difficult to predetermine. Subsidence due to earthwork equipment is expected to be on the order of 0.1-foot. These values are estimates only and exclude losses due to removal of vegetation or debris. The effective shrinkage of onsite soils will depend primarily on the type of compaction equipment and method of compaction used onsite by the contractor.

4.2 <u>Allowable Bearing Pressures and Passive Resistance</u>

Provided our earthwork removals are implemented, the proposed seven-story parking structure with urban farm, six-story podium apartment building and 5-story mix use buildings may be supported on a shallow foundation system. The following minimum footing widths and embedments are recommended for the corresponding allowable bearing pressures for both continuous wall and column spread footings.

TABLE 3

Static Bearing Pressure (psf)	Minimum Footing Width (feet)	Minimum Footing Embedment* (feet)
3,500	4	2
3,000	3	2
2,500	2	1.5

Allowable Soil Bearing Pressures

*Refers to minimum depth measured below lowest adjacent grade.

These net bearing pressures (exclusive of the weight of the footings) are for dead plus live loads and may be increased one-third for short-term, transient, wind and seismic loading. The maximum edge pressures induced by eccentric loading or overturning moments should not be allowed to exceed these recommended values. For any bearing pressures, less than 2,500 psf, a minimum footing width of 1.5 feet and depth of 1.5 feet below lowest adjacent grade should be used.

Soil settlement is a function of footing dimensions and applied soil bearing pressure. In utilizing the above-mentioned allowable bearing capacity and recommended earthwork removals, foundation settlement due to structural loads for the 7-story parking structure with urban farm is approximately 1 ¹/₄-inch and for the 6-story podium mix use building is anticipated to be approximately 1-inch. Foundation settlement due to structural loads for the 5-story mix use buildings is anticipated to be approximately ¹/₂-inch. Differential settlement should be anticipated between nearby columns or walls where a large differential loading condition exists. Settlement estimates should be evaluated by LGC Geotechnical when foundation plans are made available.

Resistance to lateral loads can be provided by friction acting at the base of foundations and by passive earth pressure. For concrete/soil frictional resistance, an allowable coefficient of friction of 0.25 (based on a factor of safety of 1.5) may be assumed with dead-load forces. For slabs constructed over a moisture retarder, an allowable friction coefficient of 0.1 may be used. An allowable passive lateral earth pressure of 260 pcf to a maximum of 2,600 psf may be used for lateral resistance for properly compacted fill and suitable dense native soils. This allowable passive pressure may be increased to 350 pcf to a maximum of 3,500 for short-duration seismic loading. This passive pressure is applicable for level (ground slope equal to or flatter than 5H:1V) conditions only. Frictional resistance and passive pressure may be used in combination without reduction. The provided allowable passive pressure is based on a static and seismic factor of safety of 1.5 and 1.1, respectively.

4.3 <u>Building Slabs</u>

Concrete building slabs should be supported on re-compacted site sandy soils with Very Low expansion potential (EI of 20 or less per ASTM D4829) as outlined in the "Site Earthwork" section of this report. Structural design of the slabs should be performed by the structural engineer.

The following is for informational purposes only since slab underlayment (e.g., moisture retarder, sand or gravel layers for concrete curing and/or capillary break) is unrelated to the geotechnical performance of the foundation and thereby not the purview of the geotechnical consultant. Post-construction moisture migration should be expected below the foundation. The foundation engineer/architect should determine whether the use of a capillary break (sand or gravel layer), in conjunction with the vapor retarder, is necessary or required by code. Sand layer thickness and location (above and/or below vapor retarder) should also be determined by the foundation engineer/architect.

4.4 Lateral Earth Pressures for Retaining Wall Design

Retaining walls of any significant height are not anticipated. The following may be used for design any minor site retaining walls.

Lateral earth pressures are provided as equivalent fluid unit weights, in pound per square foot (psf) per foot of depth or pcf. A soil unit weight of 120 pcf may be assumed for calculating the actual weight of soil over the wall footing.

The following lateral earth pressures are presented on Table 4 for design of site retaining walls backfilled with approved select onsite sandy soils with a maximum of 30 percent fines (passing the No. 200 sieve per ASTM D1140) and a Very Low expansion potential (EI of 20 or less per ASTM D4829). The retaining wall designer should clearly indicate on the retaining wall plans the required sandy soil backfill criteria.

TABLE 4

	Equivalent Fluid Weight (pcf)
Conditions	Level Backfill
	Select Onsite Sandy Backfill
Active	50
At Rest	55

Lateral Earth Pressures

If the wall can yield enough to mobilize the full shear strength of the soil, it can be designed for "active" pressure. If the wall cannot yield under the applied load, the earth pressure will be higher. This would include 90-degree corners of retaining walls. Such walls should be designed for "at-rest." The equivalent fluid pressure values assume free-draining conditions and a drainage system will be installed and maintained to prevent the build-up of hydrostatic pressures.

Retaining wall structures should be provided with appropriate drainage and appropriately waterproofed. Typical conventional retaining wall drainage is shown on Figure 2. If conditions other than those assumed above are anticipated, the equivalent fluid pressure values should be provided on an individual-case basis by the geotechnical consultant.

Surcharge loading effects from any adjacent structures should be evaluated by the retaining wall designer. In general, structural loads within a 1:1 (horizontal to vertical) upward projection from the bottom of the proposed basement/retaining wall footing will surcharge the proposed retaining structure. In addition to the recommended earth pressure, retaining walls adjacent to streets should be designed to resist vehicle traffic if applicable. Typical vehicle traffic may be estimated as equivalent to 2 feet of compacted fill, a vertical pressure of 240 psf. Uniform lateral surcharges may be estimated using the applicable coefficient of lateral earth pressure using a rectangular distribution. A factor of 0.5 and 0.33 may be used for at-rest and active conditions, respectively. The retaining wall designer should contact the geotechnical engineer for any required geotechnical input in estimating any applicable surcharge loads.

If required, the retaining wall designer may use a seismic lateral earth pressure increment of 15 pcf. This seismic increment is based on a Kh equal to 0.37 using the City of Los Angeles requirement of computing Kh as one-half of two-thirds of the PGA_M. This increment should be applied in addition to the provided static lateral earth pressure using a triangular distribution with the resultant acting at H/3 in relation to the base of the retaining structure (where H is the retained height). Per Section 1803.5.12 of the 2016 CBC, the seismic lateral earth pressure is applicable to structures assigned to Seismic Design Category D through F for retaining wall structures supporting more than 6 feet of backfill height. The provided seismic lateral earth pressure is estimated using the procedure outlined by the Structural Engineers Association of California (Lew, et al, 2010).

Soil bearing and lateral resistance (friction coefficient and passive resistance) are provided in Section 4.2. Earthwork considerations (temporary backcuts, backfill, compaction, etc.) for retaining walls are provided in Section 4.1 (Site Earthwork) and the subsequent earthwork related sub-sections.

4.5 Soil Corrosivity

Although not corrosion engineers (LGC Geotechnical is not a corrosion consultant), several governing agencies in Southern California require the geotechnical consultant to determine the corrosion potential of soils to buried concrete and metal facilities. We therefore present the results of our testing with regard to corrosion for the use of the client and other consultants, as they determine necessary.

Corrosion testing indicated soluble sulfate contents less than 0.03 percent, chloride contents of 146 and 215 parts per million (ppm), pH values of 7.8 and 9.8, and minimum resistivity values of 1,700 and 4,990 ohm-cm.

Based on Caltrans Corrosion Guidelines (2012), soils are considered corrosive if the pH is 5.5 or less, or the chloride concentration is 500 ppm or greater, or the sulfate concentration is 2,000 ppm (0.2 percent) or greater. Based on the test results, soils are not considered corrosive using Caltrans criteria.

Based on laboratory sulfate test results, the near surface soils have a severity categorization of "Not Applicable" and are designated to a class "S0" per ACI 318, Table 4.2.1 with respect to sulfates. Concrete in direct contact with the onsite soils can be designed according to ACI 318, section 4.3 using the "S0" sulfate classification. This must be verified based on as-graded conditions.

4.6 <u>Preliminary Pavement Recommendations</u>

The following preliminary minimum asphalt concrete pavement sections are provided in Table 5 based on an assumed R-value of 30 for Traffic Indices of 4.5, 5.0 and 6.0. These recommendations must be confirmed with R-value testing of representative near-surface soils at the completion of earthwork and after underground utilities have been installed and backfilled. Final street sections should be confirmed by the project civil engineer based upon the final design Traffic Index. If requested, additional sections may be provided based on other traffic index values.

TABLE 5

Asphalt Concrete Paving Section Options

Assumed Traffic Index	4.5 to 5.0	5.5	6.0
R -Value Subgrade	30	30	30
AC Thickness	4.0 inches	4.0 inches	4.0 inches
Base Thickness	4.0 inches	5.5 inches	7.0 inches

If a Portland Cement concrete section is desired for drive isles (TI = 5), we recommend a preliminary pavement section consisting of a minimum of 6 inches of concrete (reinforced with No. 3 rebar at 24

inches on-center each way) over 4 inches of compacted aggregate base over compacted subgrade. The concrete should have a minimum compressive strength of 4,000 psi at the time the pavement is subjected to traffic.

The above recommendations are based on the assumption that proper maintenance and irrigation of the areas adjacent to the pavement will occur through the design life of the pavement. Failure to maintain a proper maintenance and/or irrigation program may jeopardize the integrity of the pavement.

Earthwork recommendations regarding aggregate base and subgrade are provided in the previous section "Site Earthwork" and the related sub-sections of this report.

4.7 Nonstructural Concrete Flatwork

Nonstructural concrete (such as flatwork, sidewalks, patios, etc.) has a potential for cracking due to changes in soil volume related to soil-moisture fluctuations. To reduce the potential for excessive cracking and lifting, concrete should be designed in accordance with the minimum guidelines outlined in Table 6 on the following page. These guidelines will reduce the potential for irregular cracking and promote cracking along construction joints, but will not eliminate all cracking or lifting. Thickening the concrete and/or adding additional reinforcement will further reduce cosmetic distress.

TABLE 6

	Flatwork	City Sidewalk Curb and Gutters
Minimum Thickness (in.)	4	City/Agency Standard
Presoaking	Wet down prior to placing	City/Agency Standard
Reinforcement	No. 3 at 24 inches on centers	City/Agency Standard
Crack Control Joints	Saw cut or deep open tool joint to a minimum of $1/3$ the concrete thickness	City/Agency Standard
Maximum Joint Spacing	8 feet	City/Agency Standard
Aggregate Base Thickness (in.)		City/Agency Standard

Nonstructural Concrete Flatwork for Very Low Expansion Potential

4.8 <u>Control of Surface Water and Drainage Control</u>

Positive drainage of surface water away from structures is very important. Water should not be allowed to pond adjacent to buildings. Positive drainage may be accomplished by providing drainage away from buildings. Where necessary, drainage paths may be shortened by use of area drains and collector pipes.

Eave gutters are recommended and should reduce water infiltration into the subgrade soils if the downspouts are properly connected to appropriate outlets.

Planters with open bottoms adjacent to buildings should be avoided. Planters should not be designed adjacent to buildings unless provisions for drainage, such as catch basins, liners, and/or area drains, are made. Overwatering must be avoided.

4.9 <u>Subsurface Water Infiltration</u>

Recent regulatory changes in some jurisdictions have recommended that low flow runoff be infiltrated rather than discharged via conventional storm drainage systems. In general, the vast majority of geotechnical distress issues are directly related to improper drainage. In general, distress in the form of movement of improvements could occur as a result of soil saturation and loss of soil support, expansion, internal soil erosion, collapse and/or settlement. Infiltrated water may enter underground utility pipe zones and migrate along the pipe backfill, potentially impacting other improvements located far away from the point of infiltration.

Geotechnical stability and integrity of the project site is reliant upon appropriate handling of surface water. Due to the site consisting of compacting fill over dense alluvium, relatively low field infiltration rate obtained from our field test and being located in a zone for potential liquefaction, the intentional infiltration of storm water is not recommended.

4.10 Geotechnical Plan Review

Project plans (grading, foundation, etc.) should be reviewed by this office prior to construction to verify that our geotechnical recommendations have been incorporated. Additional or modified geotechnical recommendations may be required based on the proposed layout.

4.11 <u>Pre-Construction Monitoring</u>

It is highly recommended that a program of pre-construction documentation and monitoring be devised and put into practice before the onset of any groundwork.

The monitoring program should include, but not necessarily be limited to, detailed documentation of the existing improvements, buildings and utilities around the site, with particular attention to any distress that is already present prior to the start of work.

4.12 Footing Excavations

Footing excavation bottoms should be firm, unyielding, and free of loose material. Footing excavations should be observed and accepted by the geotechnical consultant <u>prior</u> to placement of steel reinforcement. Footing excavations in sandy soils left open and allowed to dry will be susceptible to caving.

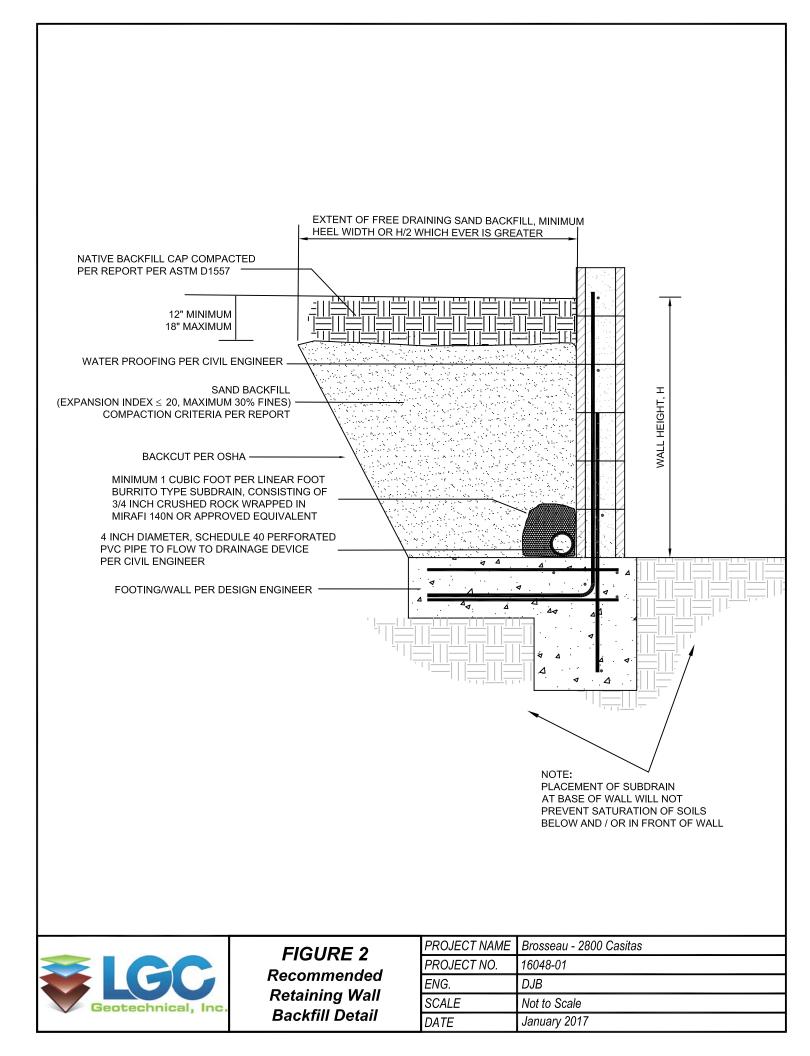
4.13 Geotechnical Observation and Testing During Construction

The recommendations provided in this report are based on limited subsurface observations and geotechnical analysis. The interpolated subsurface conditions should be checked in the field during construction by a representative of LGC Geotechnical. Geotechnical observation and testing is required per Section 1705 of the 2016 CBC and required by the City of Los Angeles Building Code.

Geotechnical observation and/or testing should be performed by LGC Geotechnical at the following stages:

- During grading (removal bottoms, fill placement, etc);
- During utility trench/retaining wall backfill and compaction;
- Preparation of pavement subgrade and placement of aggregate base;
- After footing excavation and prior to placing concrete and/or reinforcement; and
- When any unusual soil conditions are encountered during any construction operation subsequent to issuance of this report.

5.0 LIMITATIONS


Our services were performed using the degree of care and skill ordinarily exercised, under similar circumstances, by reputable soils engineers and geologists practicing in this or similar localities. No other warranty, expressed or implied, is made as to the conclusions and professional advice included in this report.

This report is based on data obtained from limited observations of the site, which have been extrapolated to characterize the site. While the scope of services performed is considered suitable to adequately characterize the site geotechnical conditions relative to the proposed development, no practical evaluation can completely eliminate uncertainty regarding the anticipated geotechnical conditions in connection with a subject site. Variations may exist and conditions not observed or described in this report may be encountered during construction.

This report is issued with the understanding that it is the responsibility of the owner, or of his/her representative, to ensure that the information and recommendations contained herein are brought to the attention of the other consultants and incorporated into the plans. The contractor should properly implement the recommendations during construction and notify the owner if they consider any of the recommendations presented herein to be unsafe, or unsuitable.

The findings of this report are valid as of the present date. However, changes in the conditions of a site can and do occur with the passage of time, whether they be due to natural processes or the works of man on this or adjacent properties. The findings, conclusions, and recommendations presented in this report can be relied upon only if LGC Geotechnical has the opportunity to observe the subsurface conditions during grading and construction of the project, in order to confirm that our preliminary findings are representative for the site. This report is intended exclusively for use by the client, any use of or reliance on this report by a third party shall be at such party's sole risk.

In addition, changes in applicable or appropriate standards may occur, whether they result from legislation or the broadening of knowledge. Accordingly, the findings of this report may be invalidated wholly or partially by changes outside our control. Therefore, this report is subject to review and modification.

Appendix A References

APPENDIX A

References

- American Society of Civil Engineers (ASCE), 2013, Minimum Design Loads for Buildings and Other Structures, ASCE/SEI 7-10, Third Printing, 2013.
- Bray, J.D., and Sancio, R. B., 2006, Assessment of liquefaction susceptibility of fine-grained soils, *Journal of Geotechnical and Geoenvironmental Engineering*, ASCE, pp. 1165-1177, dated September 2006.
- California Building Standards Commission, 2016, California Building Code, California Code of Regulations Title 24, Volumes 1 and 2, dated July 2016.
- California Department of Conservation, Division of Mines and Geology (CDMG), (Currently California Geological Survey [CGS]), 1977, State of California Special Study Zones, Los Angeles Quadrangle, dated January 1, 1977.
 - _____, 1997, Guidelines for Evaluating and Mitigating Seismic Hazards in California, CDMG Special Publication 117.
 - _____, 1998, Seismic Hazard Zone Report for the Los Angeles 7.5-Minute Quadrangles, Los Angeles County, California, Seismic Hazard Zone Report, Seismic Hazard Zone Report 029, dated 1998.
 - _____, 1999, State of California Seismic Hazard Zones, Los Angeles Quadrangle, Official Map Released: March 25, 1999.
- _____, 2008, California Geological Survey Special Publication 117A: Guidelines for Evaluating and Mitigating Seismic Hazards in California.
- California Department of Transportation (Caltrans), 2016, Caltrans ARS Online (V2.3.06), retrieved May 17, 2016, from: http://dap3.dot.ca.gov/ARS_Online
- City of Los Angeles, 1999, 2800 Casitas Avenue, Primary Structural Fill, Permit No. 98030-10000-01093, District Map No. 150B213, Log # 26832, dated January 20, 1999.
- County of Los Angeles, 2014, Administrative Manual, Department of Public Works, Geotechnical and Materials Engineering Division, dated December 31, 2014.
- Duco Engineering, Inc., 1998, Addendum to Report of Soils Investigation, Fill Depth Determination, Nelson Name Plate Co., South End of Casitas Avenue, Los Angeles, CA, Job No. 98-67, Dated July 24, 1998.
 - _____, 1999a, Report of Compaction Tests, Proposed Industrial Building, N/W Portion of Lot 1 (ARB–3), Tract (MP 147-22/26) Southern Pacific Classification Yard, 2800 Casitas Avenue, Los Angeles, Ca., Job No. 98-67, dated January 8, 1999.
- _____, 1999b, Report of Compaction Tests, Subgrade Soils and Base Course Section, Paving Area Nelson Name Plate, 2800 Casitas Avenue, Los Angeles, California, Job No. 98-67, dated July 30, 1999.

APPENDIX A (Cont'd)

<u>References</u>

Englekirk, 2016, (Lawrence Ho, personal communication, November 15, 2016).

Gregory Geotechnical Software, 2013, GSTABL7, Version 2.005.3, March.

- KHR Associates (KHR), 2016, Vesting Tentative Tract Map No. 74366, For Airspace Subdivision Purposes, Sheets 1 through 3, dated September 29, 2016.
- United States Geological Survey (USGS), 2008, "Interactive Deaggregations (Beta)," Retrieved January 3, 2017, from: <u>https://geohazards.usgs.gov/deaggint/2008/</u>
 - _____, 2017, U.S. Seismic Design Maps, Retrieved January 3, 2017, from: http://geohazards.usgs.gov/designmaps/us/batch.php#csv

Appendix B Boring and CPT Logs and Infiltration Test Data

				Geot	techi	nica	l Bor	ing Log Borehole HS-1			
Date:	10/12	2/20						Drilling Company: 2R Drilling			
Proje	ct Na	me:	Bross	eau -	2800 (Casita	S	Type of Rig: Hollow Stem Auger CME 75			
			er: 160					Drop: 30" Hole Diameter:	8"		
Eleva	tion o	of To	op of H	Hole: -	~367' N	ЛSL		Drive Weight: 140 pounds			
Hole	Locat	tion:	: See (Geoteo	chnical	Мар		Page 1 d	of 2		
								Logged By CNJ			
			Sample Number		Dry Density (pcf)		-	Sampled By CNJ			
(t		Log	Ę	l t	y ((%	qu	Checked By BTZ	st		
Elevation (ft)	ft)		ž	Blow Count	Isit	Moisture (%)	USCS Symbol	Checked by B12	Type of Test		
atio	ר) (I	hic	e le	Ŭ)er	iure	S S		of		
Na Na	Depth (ft)	Graphic	l L	≥	γ	oist	Ü		be be		
ш	Ð	Q	Se	B	D	М		DESCRIPTION	Τ		
	0			-				@0' to 10' - Compacted Fill (afc): @0' - Asphalt Concrete, 5", over CMB, 4"			
365-	_			-	101.1	0.0					
	-		R-1	9 18 21	121.4	6.6	SC	@2.5' - Clayey SAND: brown, slightly moist, dense; scattered gravel; asphalt clasts			
	5 —		R-2	12 18 20	123.0	5.7		@5' - Clayey SAND: brown, slightly moist, dense;			
360-				20				scattered gravel			
500	-		R-3	21 30 50	132.3	7.1		@7.5' - Clayey SAND: brown, slightly moist, very dense; scattered gravel			
	10 —			-				@10' - Silty SAND: light brown, dry, dense			
	_		R-4	12 18	98.7	3.3	SM	@10.5' to T.D Quaternary Alluvial Deposits (Qf):			
355-	_			20							
	_			-							
	_	5		-							
	15 —		R-5	5	102.1	3.2	SP-SM	@15' - SAND with Silt: light brown, slightly moist,			
	_			5 7 10	407.0			medium dense			
350-	_	ш	R-6	5 9 14	107.0	3.3	SP	@16.5' - SAND: light brown, slightly moist, medium dense			
	_			14				uense			
	_			-							
	20 —		R-7	9 18 14	101.4	25.1	CL	@20' - CLAY: olive gray, very moist, very stiff	AL,		
	_			14					CN		
345-	_		R-8	- 10	104.1	9.9	SM	@22.5' - Fine Silty SAND: gray brown, moist, medium			
	_		N-0	10 10 11	104.1	9.9		dense			
	_ 25 —										
	25		R-9	5 8 13 30 37 50/4"	93.6	28.3	CL	@25' - CLAY: dark olive, very moist, very stiff	AL, CN		
340-	_		R-10	13 30	113.2	3.6	SP	@26.5' - SAND: light gray brown, slightly moist, very			
040	_			37 50/4"				dense; scattered gravel			
	_			_							
	30 —			-							
 '				I				LY AT THE LOCATION SAMPLE TYPES: TEST TYPES: THE OF DOWN NO. DOWN FOR THE DOWN TO DOWN THE DOWN TO DOWN THE DOWN TO DOWN THE DOW			
					SUBS	SURFACE C	CONDITIONS I	E TIME OF DRILLING, B BULK SAMPLE DS DIRECT SHEAR MAY DIFFER AT OTHER R RING SAMPLE (CA Modified Sampler) MD MAXIMUM DENSITS E AT THIS LOCATION G GRAB SAMPLE SA SIEVE ANALYSIS			
			5		WITH	THE PASS	SAGE OF TIME				
					CONI PROV	DITIONS EN /IDED ARE	NCOUNTERED QUALITATIVE	D. THE DESCRIPTIONS CR CORROSION E FIELD DESCRIPTIONS CR CORROSION			
	Ge	ote	chnic	ieli, In			BASED ON QU ANALYSIS.	IANTITATIVE – CO COLLAPSE/SWELL RV R-VALUE			
	ENGINEERING ANALYSIS. RV R-VALUE #200 % PASSING # 200 SIEVE										

	Geotechnical Boring Log Borehole HS-1											
Date:	10/12	2/20						Drilling Company: 2R Drilling				
			Brosse			Casita	s	Type of Rig: Hollow Stem Auger CME 75				
			er: 160					Drop: 30" Hole Diameter:	8"			
			op of ⊦					Drive Weight: 140 pounds				
Hole	Locat	tion:	See C	Seoted	chnical	Мар		Page 2 c	of 2			
			Ľ		(J			Logged By CNJ				
			Sample Number		Dry Density (pcf)		ō	Sampled By CNJ				
Elevation (ft)		bo	n	nt	ť	Moisture (%)	USCS Symbol	Checked By BTZ	Type of Test			
ы	(ft)	Graphic Log	Z 0	Blow Count	nsi	Le (Sy		Τ			
ati	th	phi	pldr		De	stu	S		0 0			
<u>e</u>	Depth (ft)	i a	an	0	<u>></u>	lois	SC		УĎ			
ш		0				2		DESCRIPTION	<u> </u>			
	30 _		R-11	50/6"				@30' - No recovery				
335-	_							Total Depth = 31.5'				
	_		F					Groundwater Not Encountered				
	-		F					Backfilled with Cuttings and Capped with AC Cold Patch on 10/12/2016				
	35 —							01110/12/2010				
220	_		Г									
330-	_											
	40 —											
325-	_											
020	_											
	_		-									
	45		-									
	_		-									
320-	_		F									
	_		F									
	_											
	50		F									
	_		-									
315-	_		F									
	-											
			F									
	55 —		F									
210	_											
310-	_											
	60		_									
				1				ILY AT THE LOCATION SAMPLE TYPES: TEST TYPES:				
						SURFACE C	ONDITIONS I	E TIME OF DRILLING. B BULK SAMPLE DS DIRECT SHEAR MAY DIFFER AT OTHER R RING SAMPLE (CA Modified Sampler) MD MAXIMUM DENSITY GF AT THIS LOCATION G GRAB SAMPLE SA SIEVE ANALYSIS				
			C		WITH	THE PASS	AGE OF TIME	E. THE DATA SPT STANDARD PENETRATION S&H SIEVE AND HYDROM TEST SAMPLE EI EXPANSION INDEX	METER			
					CON	DITIONS EN	ICOUNTERED	D. THE DESCRIPTIONS CN COROSIDATION E FIELD DESCRIPTIONS CR CORROSION E FIELD DESCRIPTIONS CR CORROSION	5			
	Ge	ote	chnic	al, In	C AND		ASED ON QL	JANTITATIVE CO COLLAPSE/SWELL RV R-VALUE				
								-#200 % PASSING # 200 S	IEVE			

				Geo	techi	nica	l Bor	ing Log Borehole HS-2		
Date:	10/12	2/20						Drilling Company: 2R Drilling		
					2800 (Casita	S	Type of Rig: Hollow Stem Auger CME 75		
			er: 160					Drop: 30" Hole Diameter:	8"	
Elevation of Top of Hole: ~365' MSL Hole Location: See Geotechnical Map								Drive Weight: 140 pounds		
Hole	Locat	tion:	See (Geoteo	chnical	Мар		Page 1 o	of 2	
			5		(J)			Logged By CNJ		
) pe		bc	_	ō	Sampled By CNJ		
(Ħ)		og.	n	ut	ity	(%)	d m	Checked By BTZ	est	
Ы	(ft)	СГ	∠ ⊎	Count	sua	Ŀ	Sy		L F	
/ati	oth	phi	du	≥	De l	stu	S		e e	
Elevation (ft)	Depth (ft)	Graphic Log	Sample Number	Blow (Dry Density (pcf)	Moisture (%)	USCS Symbol	DESCRIPTION	Type of Test	
			0,			~			EI,	
	0_		-	-				@0' to 7.5' - <u>Artificial Fill (af):</u> @0' - Asphalt Concrete, 6", over CMB, 8"	SA,	
		Ъ,	R-1	- 20 50/6"	128.0	5.9	SM	@2.5' - Silty SAND: brown, slightly moist, very dense;	CR	
	_			- 50/6"				scattered gravel		
360-	5 —		R-2	50/4"	118.1	8.7	SC	@5' - Clayey SAND: grayish brown, moist, very dense;		
	_		-	-				scattered gravel		
	_		R-3	- 8	106.0	3.0	SM	@7.5' to T.D Quaternary Alluvial Deposits (Qf):		
				8 21 28		0.0		@7.5' - Silty SAND: light brown, slightly moist, dense		
355-	10 —		R-4	11	100.1	3.5		@10' - Silty SAND: light brown, slightly moist,		
	_		11-4	11 13 15	100.1	0.0		medium dense		
	_			-	00.0	7.0		@40.51. CAND with Citty light because regist readium		
	_		R-5	5 5 6	99.6	7.3	SP-SM	@12.5' - SAND with Silt: light brown, moist, medium dense; coarse grained		
350-	- 15									
350-	15 _		R-6	7 13 16	120.3	3.1		@15' - SAND with Silt and Gravel: brown and light brown, slightly moist, medium dense		
	_			-				brown, signity moist, medium dense		
	_		R-7	9 14 20	107.0	7.7	SM	@17.5' - Fine Silty SAND: light brown and light grayish		
	_			20				brown, moist, dense		
345-	20 —		R-8	9 12 18	105.9	10.3		@20' - fine Silty SAND: light brown, moist, dense;		
	_			18				scattered gravel		
	_			-						
340-	25 —			15	1110	44.0		OOT Deer record Clause CAND: house maint war		
010			R-9 R-10	15 50/6" 39 50/5"	111.2 105.0	11.3 3.7	SC SM	@25' - Poor recovery. Clayey SAND: brown, moist, very dense;		
	_		K-10	50/5"	105.0	5.7		@26' - Silty SAND with Gravel: light brown, slightly		
	_			-				moist, very dense		
	-			-						
	30 —			-						
	Image: Construction of the constend of the construction of the construction									
					ENGI	NEERING /	ANALYSIS.	RV R-VALUE -200 % PASSING # 200 S	IEVE	

Last Edited: 11/21/2016

	Geotechnical Boring Log Borehole HS-2										
Date:	10/12	2/20						Drilling Company: 2R Drilling			
				eau -	2800 (Casita	S	Type of Rig: Hollow Stem Auger CME 75			
			er: 160					Drop: 30" Hole Diameter: 8"			
Eleva	tion o	of To	op of H	Hole:	~365' N	ЛSL		Drive Weight: 140 pounds			
Hole	Locat	ion:	: See (Geote	chnical	Мар		Page 2	of 2		
			<u>ب</u>		<u> </u>			Logged By CNJ			
			pe		b D		0	Sampled By CNJ			
(Ħ)		go	L L L	t t	tz ((%	dn	Checked By BTZ	est		
5	(ft)	с С		no	nsi	e (Syl		L T		
/ati	ţ	phi	d		De	stu	S		e e		
Elevation (ft)	Depth (ft)	Graphic Log	Sample Number	Blow Count	Dry Density (pcf)	Moisture (%)	USCS Symbol	DECODIDION	Type of Test		
		0	0)			2		DESCRIPTION			
	30 _		R-11	13 50/6"	127.7	10.6	SC-SM		AL,		
	_			-				manganese oxide	CN		
	-			-							
	-			-							
335-	35 —		R-12	38 50/6"	126.7	7.2	SP	@35' - Coarse SAND: light brown, moist, very dense;			
	_	∇		00/0				scattered gravel			
		<u> </u>		-				@37' - Groundwater encountered			
330-	40			- 11		44.0					
	_		SPT-1	41 43 50		14.2	SP	@40' - Same as above			
	_			-							
	_			-							
	-			-							
325-	45 —		SPT-2	7 50/5"		8.4	SP-SM	@45' - Coarse SAND with Silt: light brown, moist, very			
	-			A 50/5"				dense; scattered gravel			
	-			-							
	_			-							
220	50			-							
320-	50		SPT-3	7 12 46		6.2	SP	@50' - Coarse SAND: light brown, slightly moist, very			
	_			- 46				dense; scattered gravel			
	_			-				Total Depth = 51.5' Groundwater Encountered at Approximately 37'			
	_			-				Backfilled with Cuttings and Capped with AC Cold Patch			
315-	55 —			-				on 10/12/2016			
	-			-							
	-			-							
	-			-							
				-							
	60 —			-							
					OF T	HIS BORING	G AND AT THE	LY AT THE LOCATION SAMPLE TYPES: TEST TYPES: TIME OF DRILLING. B BULK SAMPLE DS DIRECT SHEAR MAY DIFFER AT OTHER R RING SAMPLE (CA Modified Sampler) MD MAXIMUM DENSIT	Y		
			2		LOCA	TIONS ANI		G GRAB SAMPLE SA SIEVE ANALYSIS ST STANDARD PENETRATION S&H SIEVE AND HYDRO	OMETER		
		4			PRES	SENTED IS	A SIMPLIFICA	TION OF THE ACTUAL CN CONSOLIDATION . THE DESCRIPTIONS CR CORROSION OF CORROSION	ĸ		
\checkmark	Ge	ote	chnic	al, In	C AND	ARE NOT E	ASED ON QU	E FIELD DESCRIPTIONS GROUNDWATER TABLE AL ATTERBERG LIMI IANTITATIVE CO COLLAPSE/SWELI			
					ENGI	NEERING A	MALYSIS.	RV R-VALUE -200 % PASSING # 200 \$	SIEVE		

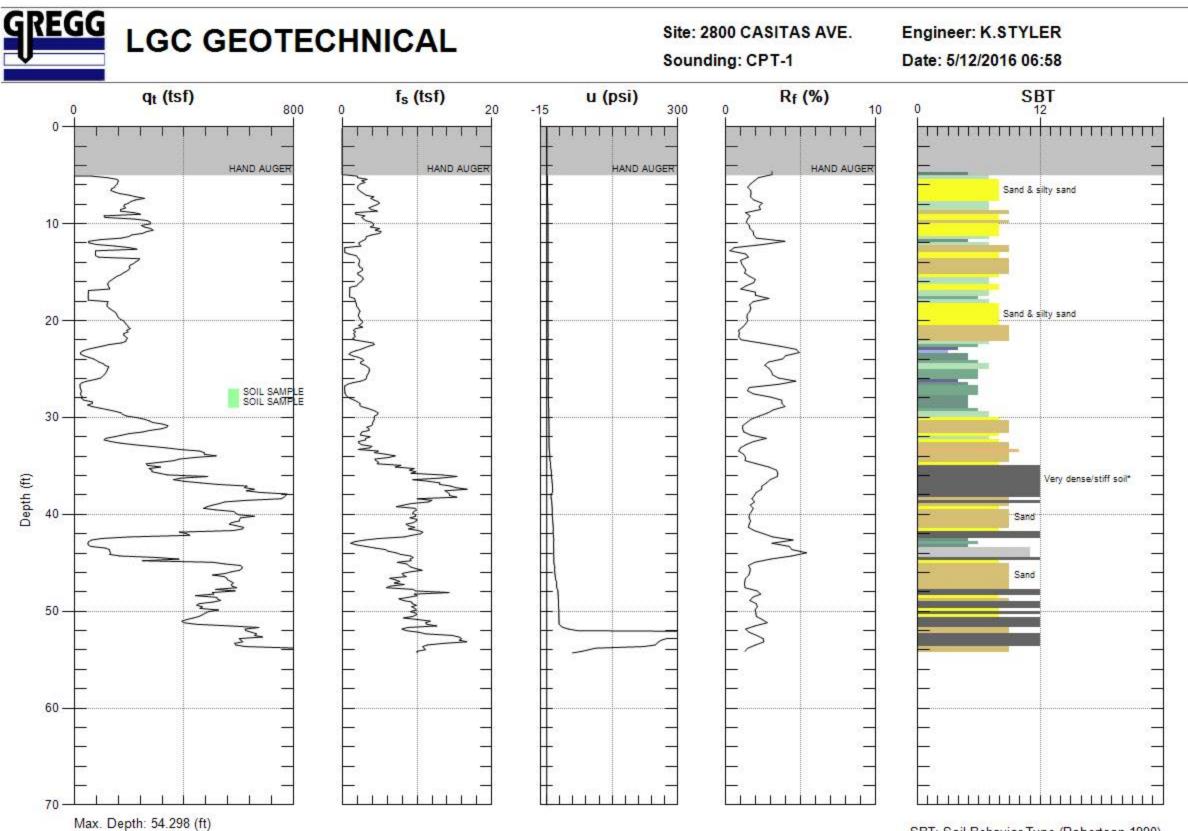
Geotechnical Boring Log Borehole HS-3										
Date:	Date: 10/12/2016 Drilling Company: 2R Drilling									
Project Name: Brosseau - 2800 Casitas								Type of Rig: Hollow Stem Auger CME 75		
Project Number: 16048-01									Hole Diameter: 8"	
Elevation of Top of Hole: ~368' MSL								Drive Weight: 140 pounds		
Hole Location: See Geotechnical Map								Page 1 of 2		
			<u> </u>		(J			Logged By CNJ		
			Sample Number		Dry Density (pcf)		0	Sampled By CNJ		
(Ħ)		bo	L un	<u></u>	ty (Moisture (%)	USCS Symbol	Checked By BTZ	Type of Test	
Elevation (ft)	(ff)	Graphic Log		Blow Count	nsi	e j	Syl		Ŭ Ŭ Ŭ	
ati	Depth (ft)	ohi(d	ν Ω	De	stur	S		O O	
<u>e</u>	ebi	rag	am	<u></u>	≥	lois	SC		yp.	
ш		0	S	8		≥		DESCRIPTION		
	0							@0' to 20' - Compacted Fill (afc):	MD,	
	_							@0' - Asphalt Concrete, 6", over CMB, 4"	DS, El,	
365-	_	à							CR	
	_									
	5 —	Ш	SPT-1	7 18			SM	@5' - Silty SAND with some Gravel: brown, slightly		
	_			18 30 25				moist, very dense		
	_									
360-	-		-							
	-		-							
	10 —		SPT-2	6			SC	@10' - Clayey SAND: brown, moist, dense; scattered		
	_		ľ	6 19 21				gravel		
	-									
355-	-									
	4-									
	15 —		SPT-3	14 19 20			SM	@15' - Silty SAND: dark brown, moist, hard; scattered	-200	
	_			20				gravel		
350-			[
350-										
	20 —							@20' to T.D Quaternary Alluvial Deposits (Qf): @20' - SAND with Silt and Gravel: light brown, slightly	000	
			SPT-4	69			SP-SM	moist to moist, medium dense	-200	
	_			14				,		
345-	_									
-	_		-							
	25 —		SPT-5	12				@25' - SAND: light brown, moist, dense; scattered		
	_			12 15 33				gravel		
	-		l F]						
340-	_		-							
	-									
	30 —		<u> </u>							
THIS SUMMARY APPLIES ONLY AT THE LOCATION SAMPLE TYPES: TEST TYPES: OF THIS BORING AND AT THE TIME OF DRILLING. B BULK SAMPLE DS DIRECT SHEAR										
SUBSURFACE CONDITIONS LOCATIONS AND MAY CHAN							CONDITIONS N D MAY CHANG	MAY DIFFER AT OTHER R RING SAMPLE (CA Modified Sampler) MD MAXIMUM DENSITY GE AT THIS LOCATION G GRAB SAMPLE SA SIEVE ANALYSIS STANDAPD DEMICTPATION SAL SIEVE AND LYDDER		
							A SIMPLIFICA	TION OF THE ACTUAL TEST SAMPLE EI EXPANSION INDEX CN CONSOLIDATION		
Geotechnical, Inc.									s	
CO COLLAPSESVELL ENGINEERING ANALYSIS. CO VOLLAPSESVELL RV R-VALUE -200 % PASSING # 200 SIEVE										
-200 % PASSING # 200 SIEVE										

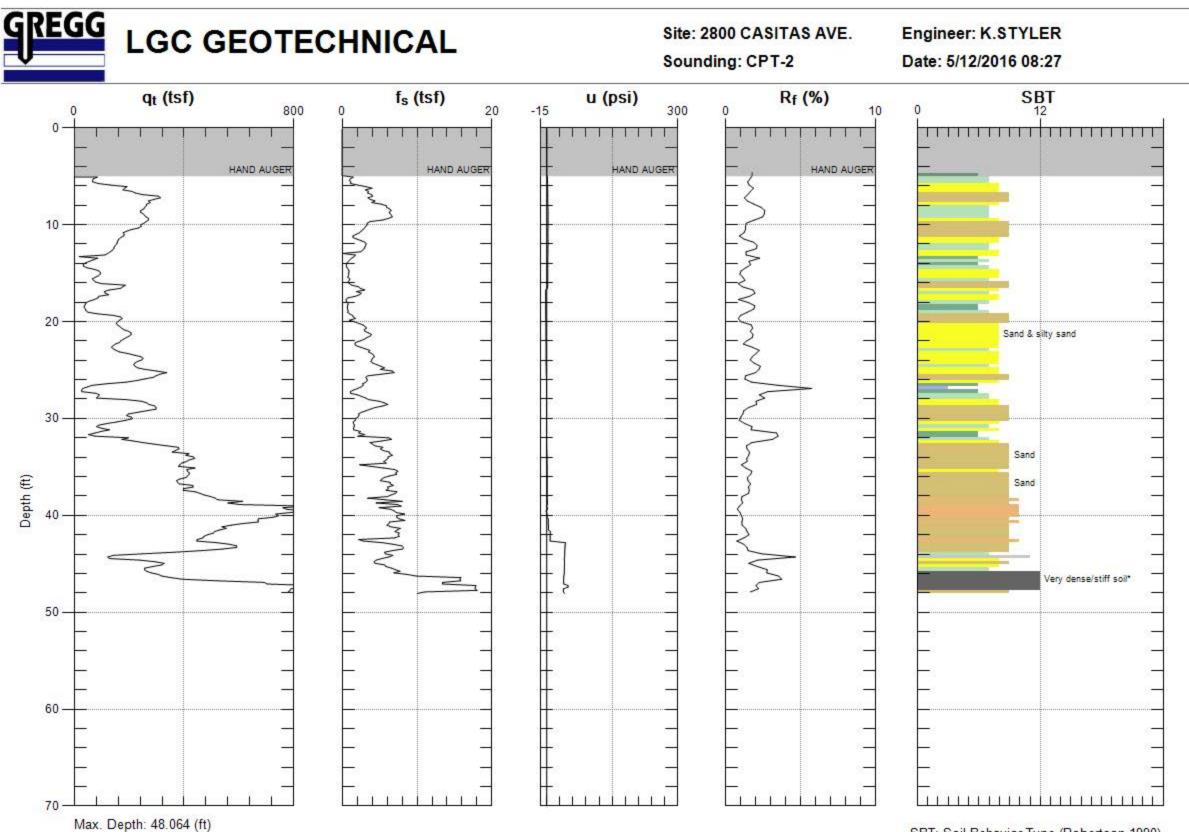
Last Edited: 11/21/2016

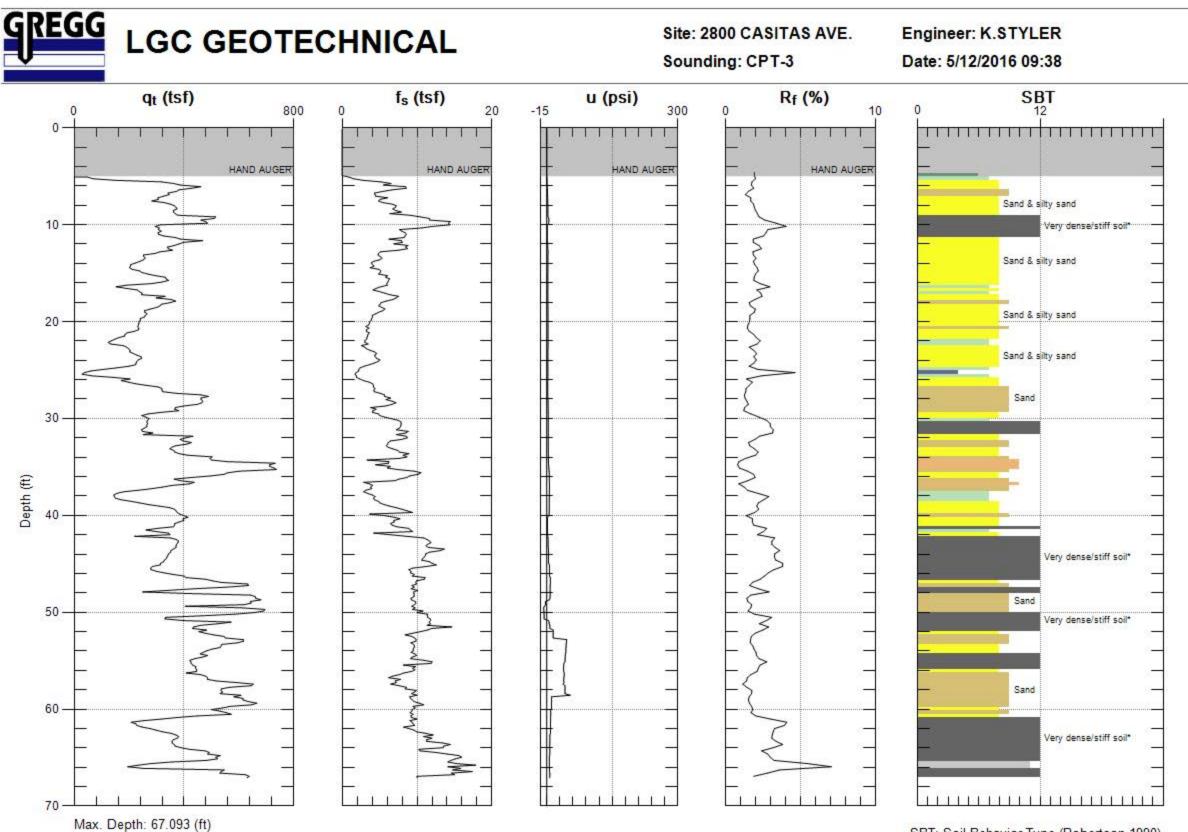
			(Geot	techi	nica	l Bor	ing Log Borehole HS-3	
Date:	10/12	2/20						Drilling Company: 2R Drilling	
Proje	ct Na	me:	Brosse	eau - I	2800 (Casita	S	Type of Rig: Hollow Stem Auger CME 75	
			ər: 160					Drop: 30" Hole Diameter:	8"
			op of H					Drive Weight: 140 pounds	
Hole	Locat	ion:	See C	Geoteo	chnical	Мар		Page 2	of 2
			<u> </u>		f)			Logged By CNJ	
			Sample Number		Dry Density (pcf)		ō	Sampled By CNJ	
(Ħ		og	μn	nt	ty	(%)	d m	Checked By BTZ	est
Elevation (ft)	(ft)	Graphic Log		Blow Count	ISU	Moisture (%)	USCS Symbol	, ,	Type of Test
′ati	Depth (ft)	phi	d		De	stu	ပ္လ		e e
lev	ep	Bra	an	No l	Ŋ	lois	ISC	DECODIDITION	y V
ш						2		DESCRIPTION	-
	30		SPT-6	10 14 19			SP-SM	@30' - SAND with Silt and Gravel: light brown, slightly moist to moist, dense	-200
	_			19					
335-	_		-						
	_		-						
	35 —	Ш	SPT-7	7 10			SP-GP	@35' - Gravelly SAND: light brown, moist, dense	
	_			10 16 30					
	_		-						
330-	_		-						
	_		-						
	40 —	$\overline{\nabla}$	SPT-8	14 29 33			SM	@40' - Silty SAND: light brown, wet, very dense;	-200
	_	\pm	⊉	33				scattered gravel;	
	-							@41' - Groundwater encountered	
325-	_								
	45								
	45		SPT-9	29 50/5				@45' - Silty SAND: light brown, wet, very dense;	
	_		l t					scattered gravel	
320-									
520	_								
	50			4-					
	_		SPT-10	15 26 47				@50' - Same as above	
	_			<u> </u>				Total Depth = 51 5'	
315-	_							Total Depth = 51.5' Groundwater Encountered at Approximately 41'	
	_							Backfilled with Cuttings and Capped with AC Cold Patch	
	55 —							on 10/12/2016	
	_		-						
	_								
310-	_								
	-								
	60 —								
								LY AT THE LOCATION SAMPLE TYPES: TEST TYPES: E TIME OF DRILLING. B BULK SAMPLE DS DIRECT SHEAR	
	\leq			~	SUBS	SURFACE C	CONDITIONS I	MAY DIFFER AT OTHER R RING SAMPLE (CA Modified Sampler) MD MAXIMUM DENSIT GE AT THIS LOCATION G G GRAB SAMPLE SA SIEVE ANALYSIS	
			5		PRES	SENTED IS	A SIMPLIFICA	TION OF THE ACTUAL TEST SAMPLE EI EXPANSION INDE	
	Ge	ote	chnic	al. In	PRO	/IDED ARE		D. THE DESCRIPTIONS E FIELD DESCRIPTIONS ATTERBERG LIMIT ANTITATIVE CORROSION CR CORROSION CR	ſS
						NEERING A		ANTIATIVE COLLARSE/SWELL RV R-VALUE -200 % PASSING # 200 S	
							_		

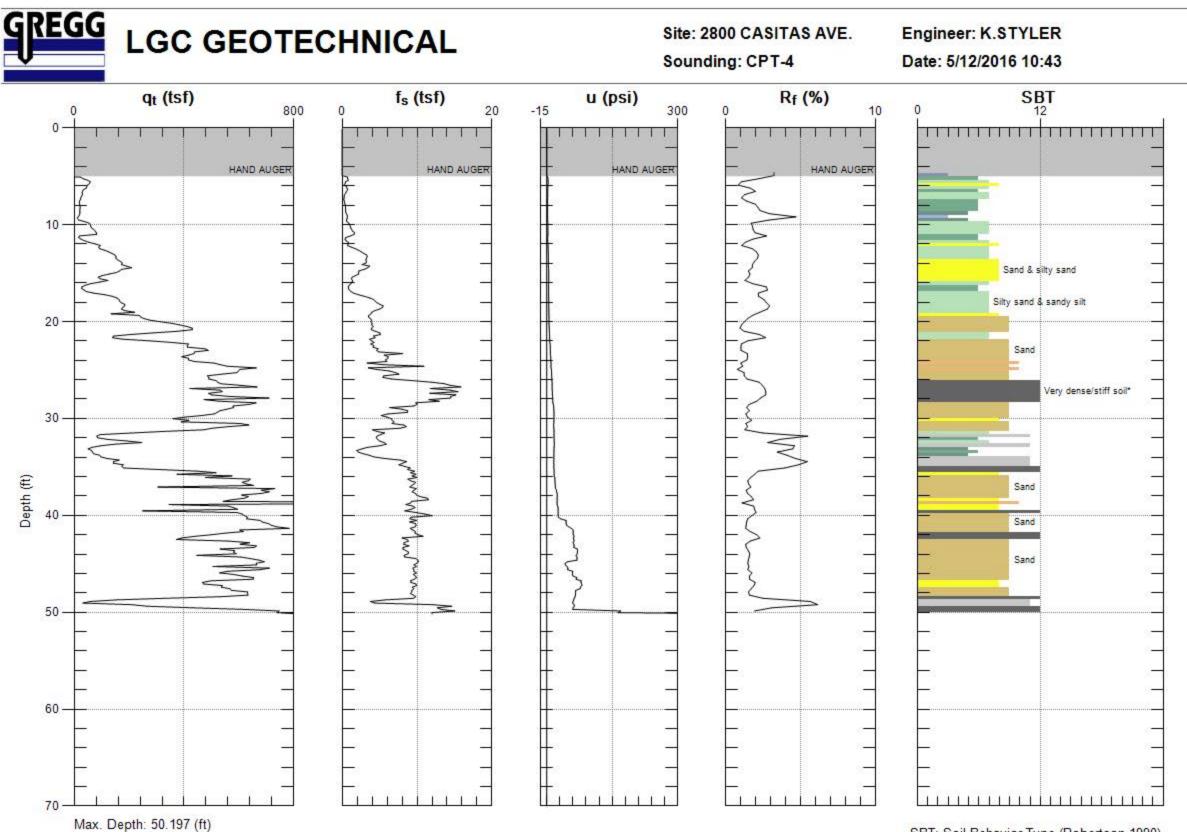
				Geo	techi	nica	l Bor	ing Log Borehole HS-4			
Date:	10/13	3/20						Drilling Company: 2R Drilling			
				eau -	2800 (Casita	S	Type of Rig: Hollow Stem Auger CME 75			
							-	Drop: 30" Hole Diameter:	8"		
Project Number: 16048-01 Elevation of Top of Hole: ~365' MSL								Drive Weight: 140 pounds	<u> </u>		
Hole Location: See Geotechnical Map								Page 1 of 2			
						map					
			er		cf)		_	Logged By CNJ			
,		5	mb		d)	(9	0q	Sampled By CNJ	st		
) (f		Ĩ	٦N	- Tur	sity	%)	E E	Checked By BTZ	Le:		
io	(H	. <u>ಲ</u>	e	Ö	ens	rre	Ś.		of		
vat	oth	hd	du	S ≥	Ď	istu	CS		e e		
Elevation (ft)	Depth (ft)	Graphic Log	Sample Number	Blow Count	Dry Density (pcf)	Moisture (%)	USCS Symbol	DESCRIPTION	Type of Test		
		<u> </u>	0,			~					
	0			-				@0' to 7.5' - <u>Artificial Fill (af):</u> @0' - Asphalt Concrete, 3", over CMB, 6"			
	-		R-1	18 10 15	114.7	11.8	SC	@2.5' - Clayey SAND: brown, moist, medium dense; scattered gravel; metal debris			
360-	5 —		R-2	10 10 11				@5' - No recovery			
	-		R-3	- 8 4 4	91.5	10.3	SM	@7.5' to T.D Quaternary Alluvial Deposits (Qf): @7.5' - Silty SAND: light brown, moist, loose; rootlets			
355-	10		R-4	5 15 25	106.2	1.6	SP-SM	@10' - SAND with Silt: light brown, slightly moist, dense			
350- 345- 340-	- - - - - - - - - - - - - - - - - - -		R-5 R-6 R-7	$ \begin{array}{c} 20 \\ - \\ - \\ - \\ $	110.5 108.0 121.0	3.22.51.9	SM SP-SM	 @15' - Fine Silty SAND: light brown, slightly moist, medium dense @20' - SAND with Silt: light brown, slightly moist, very dense @25' - SAND with Silt: light brown, slightly moist, very dense; scattered gravel 			
		ote	Chnic		OF TI SUBS LOCA WITH PRES CONIC PROV	HIS BORING GURFACE (TIONS AN THE PASS ENTED IS DITIONS EN VIDED ARE	G AND AT THE CONDITIONS M D MAY CHANG GAGE OF TIME A SIMPLIFICA ICOUNTEREE QUALITATIVE BASED ON QU	TION OF THE ACTUAL TEST SAMPLE CN CONSOLIDATION D. THE DESCRIPTIONS CR CORROSION E FIELD DESCRIPTIONS CR CORROSION	OMETER X TS		

				Geo	tech	nica	l Bor	ing Log Borehole HS-4		
Date:	10/13	3/20						Drilling Company: 2R Drilling		
Proje	ct Na	me:	Bross	eau -	2800 0	Casita	S	Type of Rig: Hollow Stem Auger CME 75		
			er: 160					Drop: 30" Hole Diameter:	8"	
					~365'	MSL		Drive Weight: 140 pounds		
					chnica			Page 2 of 2		
								Logged By CNJ		
			Sample Number		Dry Density (pcf)			Sampled By CNJ		
(1		g	Ē	L L	۲ (ا	(%	USCS Symbol		st	
	ť)	Γc	Ĩ	uno	Isit	0 ⁻	N N	Checked By BTZ	Te	
atio	ר) (I	hic	<u>e</u>	Ŭ)er	iure	S S		of	
Elevation (ft)	Depth (ft)	Graphic Log		Blow Count		Moisture (%)	Ü		Type of Test	
Ē	Ğ	Ģ	Š	Ē	Δ	ž		DESCRIPTION	Γ	
	30		R-8	50/5"		3.6	SP-SM	@30' - Gravelly SAND with Silt: brown, slightly moist,		
	_			-				very dense		
	-			-						
	_			-						
335-	35 —			-						
335-	30 —		R-9	24 34 50/4"	102.1	21.5	SM	@35' - Silty SAND: light brown, very moist, very dense		
				50/4"						
	_			_						
330-	40 —					40 7				
000	-10	∇	SPT-1	22 50/6"		18.7	SP-SM	@40' - SAND with Silt: light brown, very moist, very dense		
	_	—		_				@41' - Groundwater encountered		
	_			_				0		
	_			_						
325-	45 —		SPT-2	- 22		12.2	SP-SM	@45' Coorco SAND with Silt: light brown your maint		
	_		351-2	$ \begin{array}{c} 22\\ 32\\ 50 \end{array} $		13.3	36-31	@45' - Coarse SAND with Silt: light brown, very moist, very dense		
	_			-				Total Depth = $46.5'$		
	_			-				Groundwater Encountered at Approximately 41'		
	_			-				Backfilled with Cuttings and Capped with AC Cold Patch		
320-	50 —			-				on 10/13/2016		
	_			-						
	-			-						
	_			-						
	_			-						
315-	55 —			-						
	-			-						
	_			-						
	-			-						
	_			-						
	60 —			-						
								LY AT THE LOCATION SAMPLE TYPES: TEST TYPES: E TIME OF DRILLING. B BULK SAMPLE DS DIRECT SHEAR		
				~	SUBS LOCA	SURFACE C	CONDITIONS I	VAY DIFFER AT OTHER R RING SAMPLE (CA Modified Sampler) MD MAXIMUM DENSIT GE AT THIS LOCATION G GRAB SAMPLE SA SIEVE ANALYSIS		
			5		PRES	SENTED IS		TION OF THE ACTUAL TEST SAMPLE EI EXPANSION INDEX		
		ote	chnic	al Ir	PRO	/IDED ARE	QUALITATIVE	D. THE DESCRIPTIONS CR CORROSION E FIELD DESCRIPTIONS CR GROUNDWATER TABLE AL ATTERBERG LIMIT	ſS	
	98	000	Grintic	ar, if		ARE NOT E NEERING A	ASED ON QU ANALYSIS.	IANTITATIVE – CO COLLAPSE/SWELL RV R-VALUE -200 % PASSING # 200 S		
.								-200 % FASSING # 200 S	// _ * _	


				Geot	tech	nica	l Bor	ing Log Borehole HS-5	
Date:	10/12	2/20						Drilling Company: 2R Drilling	
			Bross	eau - 2	2800 (Casita	S	Type of Rig: Hollow Stem Auger CME 75	
			er: 160					Drop: 30" Hole Diameter:	8"
Elevation of Top of Hole: ~367' MSL								Drive Weight: 140 pounds	-
Hole Location: See Geotechnical Map								Page 1 d	of 2
						-		Logged By CNJ	
			pel		pcf		-	Sampled By CNJ	
(]		g	Sample Number	l t l	Dry Density (pcf)	(%	USCS Symbol	Checked By BTZ	sst
L L	ft)	Ľ	Ī	JN	lsit	<u>с</u> ө) Syr	Checked by BTZ	Ψ
Elevation (ft)	Depth (ft)	Graphic Log	ple	Blow Count	Der	Moisture (%)	S S		Type of Test
eč:	ept	rap	am		۲ ح	ois	SC		/p€
Ξ	ŏ	G	Ň		ā	Σ	Ϊ	DESCRIPTION	É
	0							@0' to 10' - Compacted Fill (afc):	
365-			[@0' - Asphalt Concrete, 5", over CMB, 6"	
505	_			_					
	_			_					
	5 —		SPT-1	1 12		0 1	SP-SM	@E! SAND with Silty dark brown moist danse;	
	_		581-1	13 14 23		8.4	37-31	@5' - SAND with Silty: dark brown, moist, dense; scattered gravel	
360-	_			- 23					
	_			-					
	_			-				@10' to T.D Quaternary Alluvial Deposits (Qf):	
	10 —		SPT-2	1 15		6.2		@10' - SAND with Silt: brown, slightly moist, dense;	
	_			15 22 20		0.2		scattered gravel	
355-	_			-					
	_		-	-					
	_		-	-					
	15 —		SPT-3	20 28 26		7.6		@15' - SAND with Silt: brown, moist, very dense;	
	_			<u>26</u>				scattered gravel	
350-	_			-					
	_			-					
	20			-					
	20		SPT-4	14 18 35		6.9		@20' - SAND with Silt: brown, slightly moist, very	
345-				- 35				dense; scattered gravel	
545	_			_					
	_			_					
	25 —		SPT-5	1 15		2.2		@25' SAND with Silts brown alightly maint your	
	-		371-3	15 22 38		2.2		@25' - SAND with Silt: brown, slightly moist, very dense; scattered gravel	
340-	_			-					
	_		-	-					
	_		-	-					
	30 —			-					
				1				LY AT THE LOCATION SAMPLE TYPES: TEST TYPES: E TIME OF DRILLING, B BULK SAMPLE DS DIRECT SHEAR	
					SUBS	SURFACE C	CONDITIONS I	NAY DIFFER AT OTHER R RING SAMPLE (CA Modified Sampler) MD MAXIMUM DENSITY GE AT THIS LOCATION G GRAB SAMPLE SA SIEVE ANALYSIS	
			5		WITH	THE PASS	SAGE OF TIME		
			chnic		CON	DITIONS EN VIDED ARE	NCOUNTERED QUALITATIVE	D. THE DESCRIPTIONS CR CORROSION E FIELD DESCRIPTIONS CR CORROSION	
	Ge	ute	GIIIC	ai, in		ARE NOT E	BASED ON QU ANALYSIS.		
								-200 /01 ASSING # 200 S	


				Geot	tech	nica	l Bor	ing Log Borehole HS-5		
Date:	10/12	2/20						Drilling Company: 2R Drilling		
	-	-	Bross	eau - 2	2800 (Casita	S	Type of Rig: Hollow Stem Auger CME 75		
			er: 160					Drop: 30" Hole Diameter: 8"		
-			op of H			MSL		Drive Weight: 140 pounds	-	
Hole Location: See Geotechnical Map								Page 2	of 2	
								Logged By CNJ		
			Sample Number		Dry Density (pcf)		_	Sampled By CNJ		
(t		g	Ę	It	۲ ((%	q	Checked By BTZ	st	
с Ц	£	: Lo	ž	Jur	Jsit	<u>с</u> ө) S		⊢⊢	
Elevation (ft)	Depth (ft)	Graphic Log	ple	Blow Count	Der	Moisture (%)	USCS Symbol		Type of Test	
eč.	ept	rap	m	N 0	۲ ک	ois	SC		/be	
ш	ă	Ū	ŝ	B	Ā	Ž	Š	DESCRIPTION	$ \hat{+} $	
	30		SPT-6	15 38 34		1.9	SP-SM		-200	
335-			Z	34				moist, very dense		
335-										
	_			_						
	35 —					00.0				
	_		SPT-7	357		29.8	CL	@35' - Fine Sandy CLAY: brown, very moist, stiff	AL, -200	
330-	_			-					-200	
	_		-	-						
	_		-	-						
	40		SPT-8	7 28		14.7	SP	@40' - SAND: light brown, wet, very dense;		
	-	∇		28 29 40		14.7		@41' - Groundwater encountered		
325-	_	_		-						
	_		-	-						
	_		-	-						
	45 —		SPT-9	27		9.7	SP-SM	@45' - SAND with Silt: light brown, wet, very dense		
	_		Z	27 30 40						
320-	-		-	-						
	_		-	-						
				-						
	50 —		SPT-10	7 12 31		15.5		@50' - SAND with Silt: light brown, wet, dense		
0.15	-		Z	A <u>3</u> 1						
315-	_			-				Total Depth = 51.5'		
				-				Groundwater Encountered at Approximately 41' Backfilled with Cuttings and Capped with AC Cold Patch		
	55 —							on 10/12/2016		
310-				_						
510				_						
				_						
	60			-						
					THIS	SUMMARY	APPLIES ON	ILY AT THE LOCATION SAMPLE TYPES: TEST TYPES:		
					OF T SUB	HIS BORING	G AND AT THI ONDITIONS I	E TIME OF DRILLING. B BULK SAMPLE DS DIRECT SHEAR MAY DIFFER AT OTHER R RING SAMPLE (CA Modified Sampler) MD MAXIMUM DENSI	ſY	
					WITH	H THE PASS	AGE OF TIME	GE AT THIS LOCATION G GRAB SAMPLE SA SIEVE ANALYSIS E. THE DATA STANDARD PENETRATION S&H SIEVE AND HYDR TEST SAMPLE EI EXPANSION INDE		
		-			CON	DITIONS EN	COUNTERED	ATION OF THE ACTUAL CN CONSOLIDATION D. THE DESCRIPTIONS CR CORROSION		
	Ge	ote	chnic	al, In	C AND		ASED ON QU	E FIELD DESCRIPTIONS GROUNDWATER TABLE AL ATTERBERG LIMI JANTITATIVE CO COLLAPSEISWEL RV R-VALUE		
					EING			-200 % PASSING # 200	SIEVE	


				Geo	techr	nica	l Bor	ing Log Borehole HS-6		
Date:	10/12	2/20						Drilling Company: 2R Drilling		
				eau -	2800 0	Casita	S	Type of Rig: Hollow Stem Auger CME 75		
)48-01				Drop: 30" Hole Diameter: 8"		
Elevation of Top of Hole: ~367' MSL								Drive Weight: 140 pounds		
Hole Location: See Geotechnical Map								Page 1	of 1	
			<u>ب</u>		f)			Logged By CNJ		
			pe		(bc	-	ō	Sampled By CNJ		
(Ħ		bo	μn	ut	ty	(%)	d m	Checked By BTZ	est	
Б	(ft)	СГ	Z Ø		ISU	Le (Sy	5		
/ati	oth	phi	ldu		De	stu	S		e e	
Elevation (ft)	Depth (ft)	Graphic Log	Sample Number	Blow Count	Dry Density (pcf)	Moisture (%)	USCS Symbol	DESCRIPTION	Type of Test	
	0			+			_	@0' to 15' - Compacted Fill (afc):		
365-	-	_		_				@0' - Asphalt Concrete, 4", over CMB, 5"		
	-	B-1	R-1	23 50/6"	126.2	3.4	SM	@2.5' - Fine Silty SAND: brown, slightly moist, very		
	-			-				dense; scattered gravel; piece of asphalt		
	5 —	ш	R-2	16 28 34	124.3	8.9	SP-SM			
360-	_			34				of asphalt		
300	_		R-3	34 50/5"	121.6	5.0		@7.5' - SAND with Silt: brown, slightly moist, very		
	_			-				dense; scattered gravel		
	10 —		R-4	25 50/3"	115.9	7.0		@10' - SAND with Silt: brown, moist, very dense; piece		
055	_			50/5				of asphalt and lumber; scattered gravel		
355-	_									
	_			_						
	15 —		R-5	8	104.4	7.0	SM	@15' to T.D Quaternary Alluvial Deposits (Qf): @15' Silty coarse SAND with Gravel: light brown, moist		
	_		11-0	8 8 8	104.4	7.0		to moist, medium dense		
350-	-			-						
	_			-						
	20			-						
	20 —		R-6	12 20 35	109.9	3.1		@20' - Silty SAND; light brown, slightly moist, very		
345-	-			- 35				dense		
	-			-						
	-			-						
	25 —		R-7	35 50/6	106.9	1.7		@25' - Silty SAND: light brown, slightly moist,		
340-				_				very dense		
	-			-				Total Depth = 26.5' No Groundwater Encountered		
	-			-				Backfilled with Cuttings and Capped with AC Cold Patch		
	30 —			-				on 10/12/2016		
	30 0n 10/12/2016 THIS SUMMARY APPLIES ONLY AT THE LOCATION OF THIS BORING AND AT THE TIME OF DRILLING. SUBSURFACE CONDITIONS MAY DIFFER AT OTHER ICOATIONS AND MAY CHANGE AT THIS LOCATION WITH THE PASSAGE OF TIME. THE DATA PRESENTED IS A SIMPLIFICATION OF THE ACTUAL CONDITIONS AND MAY CHANGE AT THIS LOCATION WITH THE PASSAGE OF TIME. THE DATA PRESENTED IS A SIMPLIFICATION OF THE ACTUAL CONDITIONS AND MAY CHANGE AT THIS LOCATION WITH THE PASSAGE OF TIME. THE DATA PRESENTED IS A SIMPLIFICATION OF THE ACTUAL CONDITIONS AND MAY CHANGE AT THIS LOCATION WITH THE PASSAGE OF TIME. THE DATA PRESENTED IS A SIMPLIFICATION OF THE ACTUAL CONDITIONS AND MAY CHANGE AT THIS LOCATION WITH THE PASSAGE OF TIME. THE DATA PRESENTED IS A SIMPLIFICATION OF THE ACTUAL CONDITIONS AND MAY CHANGE AT THIS LOCATION WITH THE PASSAGE ON QUALITATIVE FIELD DESCRIPTIONS PROVIDED ARE QUALITATIVE FIELD DESCRIPTIONS AND ARE NOT BASED ON QUANTITATIVE ENGINEERING ANALYSIS. SAMPLE TYPES: B BULK SAMPLE (CA MODIFIES SAMPLE) B BULK SAMPLE (CA MODIFIES SAMPLE) STANDARD PENETRATION SAMPLE CAN DEVE ANALYSIS									


Last Edited: 11/21/2016

				Geo	techi	nica	Bor	ing Log Borehole HS-7			
Date:	10/12	2/20						Drilling Company: 2R Drilling			
				seau -	2800 (Casita	s	Type of Rig: Hollow Stem Auger CME 75			
-				048-01			-	Drop: 30" Hole Diameter:	8"		
					~366' N	/ISI		Drive Weight: 140 pounds	<u> </u>		
					chnical			Page 1 d	of 1		
								Logged By CNJ			
			er		cf)		_				
Ŧ		D	E E		(b	(9	pq	Sampled By CNJ	ы		
L L	(ĽŐ	n Z		sity	%)	Ĕ	Checked By BTZ	Ъ		
io.	(ft	<u>ic</u>	<u>e</u>	I R	eu	re	Ś		J.		
val	oth	hde	dr	≥	Ō	istı	SS		e		
Elevation (ft)	Depth (ft)	Graphic Log	Sample Number	Blow Count	Dry Density (pcf)	Moisture (%)	USCS Symbol	DESCRIPTION	Type of Test		
	0							@0' to 9' - Compacted Fill (afc):			
365-	,							@0' - Asphalt Concrete, 4" over CMB, 5"			
	_		R-1	30 35 50/5"	127.0	6.2	SM	@2.5' - Silty SAND: brown, slightly moist, very dense; scattered gravel			
				50/5							
360-	5 —		R-2	20 35 50/5"	126.3	7.5		@5' - Silty SAND: brown, moist, very dense; scattered			
	_			-				gravel			
	_		R-3	38 30 28	122.7	10.6		@7.5' - Silty SAND: brown, very moist, very dense; scattered gravel			
	-			28			SP	@9' to T.D Quaternary Alluvial Deposits (Qf):			
	10 —			-			<u> </u>	@9' - SAND: light brown, slightly moist, very dense			
355-	_			-				Total Depth = 10'			
	_							No Groundwater Encountered			
	_			-				3" Perforated Pipe Installed Surrounded by Gravel and			
	_			-				Presoaked on 10/12/2016. Pipe Removed and Backfilled			
	15 —							with Cuttings and Capped with AC Cold Patch on 10/13/16			
350-	_			-							
	_										
	_			-							
	-			-							
	20 —			-							
345-	_										
	_			-							
	_			-1							
	-			F							
	25 —			F							
340-	_			F							
	_										
	_										
	20			[]							
	30 —										
	THIS SUMMARY APPLIES ON OF THIS BORING AND AT TH SUBSURFACE CONDITIONS LOCATIONS AND MAY CHAN. WITH THE PASSAGE OF TIM PRESENTED IS A SIMPLIFIC/ CONDITIONS ENCOUNTERED PROVIDED ARE QUALITATIVI AND ARE NOT BASED ON QUE ENGINEERING ANALYSIS.							E TIME OF DRILLING. B BULK SAMPLE DS DIRECT SHEAR MAY DIFFER AT OTHER R RING SAMPLE (CA Modified Sampler) MD MAXIMUM DENSITY GE AT THIS LOCATION G GRAB SAMPLE SA SIEVE ANALYSIS E. THE DATA SPT STANDARD PENETRATION S& SIEVE ANALYSIS ATION OF THE ACTUAL TEST SAMPLE CN CONSOLIDATION D. THE DESCRIPTIONS GROUNDWATER TABLE A ATTERBERG LIMIT	DMETER		

Infiltration Test Data Sheet

LGC Geotechnical, Inc

131 Calle Iglesia Suite A, San Clemente, CA 92672 tel. (949) 369-6141

Project Name: Brosseau - 2800 Casitas

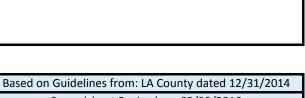
Project Number: 16048-01 10/14/2016 Date:

Location: HS-7

Test hole dimensions (if circular)								
Boring Depth (feet)*:	10							
Boring Diameter (inches):	8							
Pipe Diameter (inches):	3							
*measured at time of test								

Test pit dimensions (if rectangular) Pit Depth (feet): Pit Length (feet): Pit Breadth (feet):

Pre-Soak /Pre-Test


No.	Start Time (24:HR)	Stop Time (24:HR)	Time Interval (min)	Initial Depth to Water (feet)	Final Depth to Water (feet)	Total Change in Water Level (feet)	Comments
PS-1	8:02	8:32	30.0	8.90	9.45	0.55	
PS-2	8:32	9:02	30.0	8.78	9.16	0.38	
Pre-Test							

Main Test Data

Trial No.	Start Time (24:HR)	Stop Time (24:HR)	Time Interval, Δt (min)	Initial Depth to Water, D _o (feet)	Final Depth to Water, D _f (feet)	Change in Water Level, ∆D (feet)	Raw Infiltration Rate (in/hr)	Corrected Infiltration Rate (in/hr)
1	9:02	9:32	30.0	8.75	9.1	0.35	8.4	2.0
2	9:32	10:02	30.0	8.79	9.19	0.40	9.6	2.4
3	10:02	10:32	30.0	8.62	9.11	0.49	11.8	2.7
4	10:32	11:02	30.0	8.59	8.92	0.33	7.9	1.7
5	11:02	11:32	30.0	8.65	8.98	0.33	7.9	1.7
6	11:32	12:02	30.0	8.82	9.19	0.37	8.9	2.2
7	12:02	12:32	30.0	8.69	9.08	0.39	9.4	2.2
8	12:32	13:02	30.0	8.74	9.15	0.41	9.8	2.4
9								
10								
11								
12								
				-		-	Last Three Iltration Rates	2.2

Notes:

Average of Last Three	
Corrected Infiltration Rates	2.2
Feasibility Factor of Safety	2
Feasibility Infiltration Rate	1.1

Geotechnical, Inc.

Spreadsheet Revised on: 09/30/2016

Appendix C Laboratory Test Results

APPENDIX C

Laboratory Test Results

The laboratory testing program was directed towards providing quantitative data relating to the relevant engineering properties of the soils. Samples considered representative of site conditions were tested in general accordance with American Society for Testing and Materials (ASTM) procedure and/or California Test Methods (CTM), where applicable. The following summary is a brief outline of the test type and a table summarizing the test results.

<u>Moisture and Density Determination Tests</u>: Moisture content (ASTM D2216) and dry density determinations (ASTM D2937) were performed on driven samples obtained from the test borings. The results of these tests are presented in the boring logs.

<u>Grain Size Distribution/Fines Content</u>: Representative samples were dried, weighed, and soaked in water until individual soil particles were separated (per ASTM D421) and then washed on a No. 200 sieve (ASTM D1140). Where applicable, the portion retained on the No. 200 sieve was dried and then sieved on a U.S. Standard brass sieve set in accordance with ASTM D6913 (sieve) or ASTM D422 (sieve and hydrometer).

Sample Location	Description	% Passing # 200 Sieve
HS-2 @ 0-5 ft	Silty Sand with Gravel	14
HS-3 @ 15 ft	Silty Sand with Gravel	26
HS-3 @ 20 ft	Sand with Silt and Gravel	6
HS-3 @ 30 ft	Sand with Silt and Gravel	7
HS-3 @ 40 ft	Silty Sand with Gravel	21
HS-5 @ 30 ft	Sand with Silt and Gravel	5
HS-5 @ 35 ft	Sandy Clay	59
HS-7 @ 7.5 ft	Silty Sand	29

APPENDIX C (Cont'd)

Laboratory Test Results

<u>Atterberg Limits</u>: The liquid and plastic limits ("Atterberg Limits") were determined per ASTM D4318 for engineering classification of fine-grained material and presented in the table below. The USCS soil classification indicated in the table below is based on the portion of sample passing the No. 40 sieve and may not necessarily be representative of the entire sample. The plots are provided in this Appendix.

Sample Location	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	USCS Soil Classification
HS-1 @ 20 ft	33	22	11	CL
HS-1 @ 25 ft	36	23	13	CL
HS-2 @ 30.5 ft	23	17	6	CL-ML
HS-5 @ 35 ft	38	18	20	CL

Expansion Index: The expansion potential of selected representative samples was evaluated by the Expansion Index Test per ASTM D4829.

Sample Location	Expansion Index	Expansion Potential*
HS-2 @ 0-5 ft	0	Very Low
HS-3 0-5 ft	4	Very Low

^{*} Per ASTM D4829

<u>Direct Shear</u>: A direct shear test was performed on a sample remolded to 90 percent relative compaction. The samples were soaked for a minimum of 24 hours prior to testing. The samples were tested under various normal loads using a motor-driven, strain-controlled, direct-shear testing apparatus (ASTM D3080). The plot is provided in this Appendix.

Sample Location	Friction Angle Peak / At 0.30" Def.	Cohesion (psf) Peak / At 0.30" Def.
HS-3 @ 0-5 ft	36°/ 35°	438 / 57

<u>Consolidation</u>: Consolidation tests were performed per ASTM D2435. Samples (2.4 inches in diameter and 1 inch in height) were placed in a consolidometer and increasing loads were applied. The samples were allowed to consolidate under "double drainage" and total deformation for each loading step was recorded. The percent consolidation for each load step was recorded as the ratio of the amount of vertical compression to the original sample height. The consolidation pressure curves are provided in this Appendix.

APPENDIX C (Cont'd)

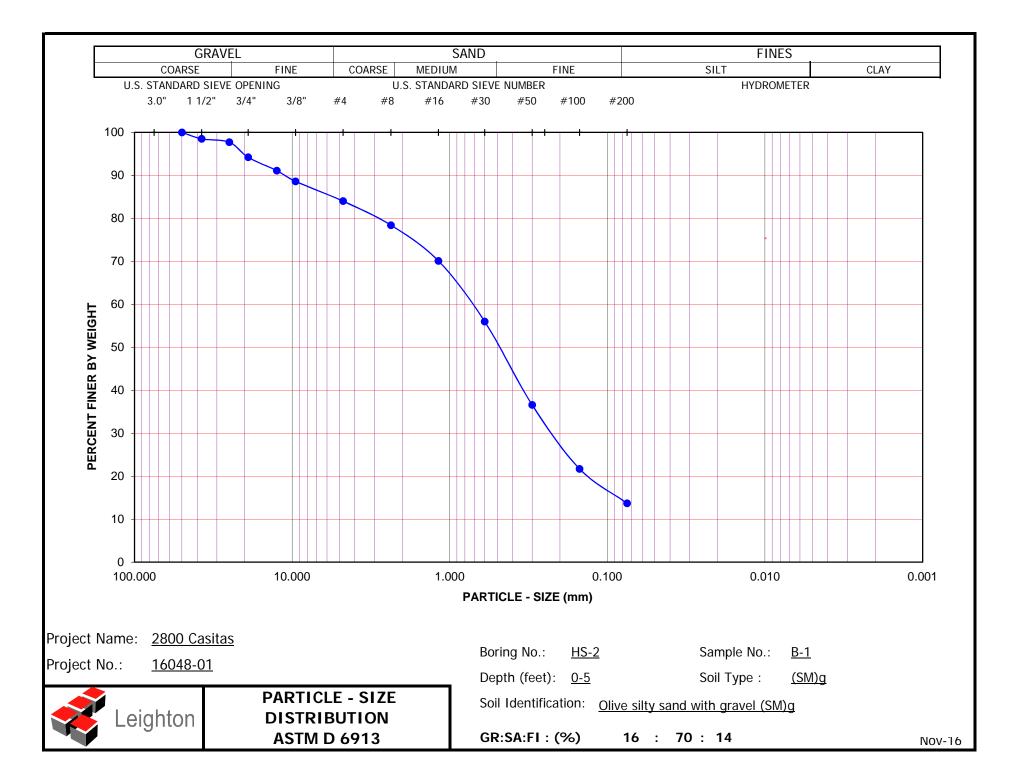
Laboratory Test Results

<u>Laboratory Compaction</u>: The maximum dry density and optimum moisture content of typical materials were determined in accordance with ASTM D1557. The results of these tests are presented in the table below.

Sample Location	Sample Description	Maximum Dry Density (pcf)	Optimum Moisture Content (%)
HS-3 @ 0-5 ft	Dark Grayish Brown Silty Sand	136.5*	7.5*

*Includes correction for oversize

<u>Soluble Sulfates</u>: The soluble sulfate contents of selected samples were determined by standard geochemical methods (CTM 417). The test results are presented in the table below.


Sample Location	Sulfate Content (%)
HS-2 @ 0-5 ft	< 0.01
HS-3 @ 0-5 ft	0.03

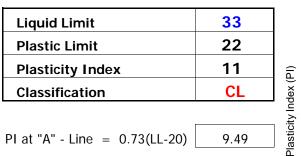
Chloride Content: Chloride content was tested per CTM 422. The results are presented below.

Sample Location	Chloride Content (ppm)
HS-2 @ 0-5 ft	146
HS-3 @ 0-5 ft	215

<u>Minimum Resistivity and pH Tests</u>: Minimum resistivity and pH tests were performed in general accordance with CTM 643 and standard geochemical methods. The results are presented in the table below.

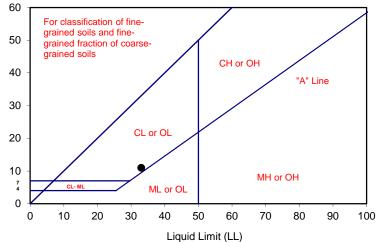
Sample Location	рН	Minimum Resistivity (ohms-cm)
HS-2 @ 0-5 ft	9.8	4,990
HS-3 @ 0-5 ft	7.8	1,700

Boring No.	HS-3	HS-3	HS-3	HS-3	HS-5	HS-5	HS-7	
Sample No.	SPT-3	SPT-4	SPT-6	SPT-8	SPT-6	SPT-7	R-3	
Depth (ft.)	15.0	20.0	30.0	40.0	30.0	35.0	7.5	
Sample Type	SPT	SPT	SPT	SPT	SPT	SPT	Ring	
Soil Identification	Olive brown silty sand with gravel (SM)g	Brown poorly- graded sand with silt and gravel (SP- SM)g	Brown poorly- graded sand with silt and gravel (SP- SM)g	Brown silty sand with gravel (SM)g	Grayish brown poorly-graded sand with silt and gravel (SP-SM)g	Brown sandy lean clay s(CL)	Brown silty sand (SM)	
Moisture Correction	[]		[·		
Wet Weight of Soil + Container (g)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Dry Weight of Soil + Container (g)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Weight of Container (g)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Moisture Content (%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sample Dry Weight Determinat	tion		[
Weight of Sample + Container (g)	785.5	720.9	698.3	747.6	833.3	953.6	982.0	
Weight of Container (g)	140.6	126.5	139.9	138.3	137.0	204.4	252.2	
Weight of Dry Sample (g)	644.9	594.4	558.4	609.3	696.3	749.2	729.8	
Container No.:								
After Wash	[]				1			
Method (A or B)	В	В	В	В	В	В	В	
Dry Weight of Sample + Cont. (g)	618.9	683.5	658.3	617.9	795.8	512.5	772.3	
Weight of Container (g)	140.6	126.5	139.9	138.3	137.0	204.4	252.2	
Dry Weight of Sample (g)	478.3	557.0	518.4	479.6	658.8	308.1	520.1	
% Passing No. 200 Sieve	25.8	6.3	7.2	21.3	5.4	58.9	28.7	
% Retained No. 200 Sieve	74.2	93.7	92.8	78.7	94.6	41.1	71.3	
Leighton		No. 200	PASSING SIEVE D 1140	ì		16048-01 LGC Geotechnic	cal, Inc.	
		AJIVII			Tested By:	S. Felter	Date:	11/18/16

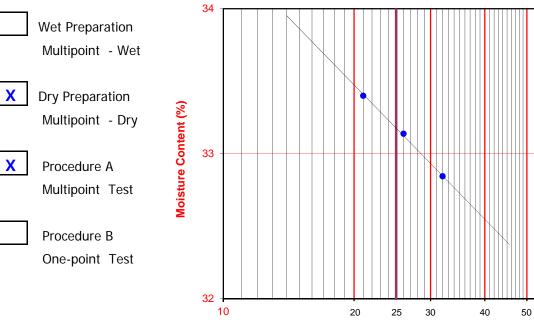

ATTERBERG LIMITS

ASTM D 4318

Project Name:	2800 Casitas	Tested By:	A. Santos	Date:	11/18/16
Project No. :	16048-01	Input By:	J. Ward	Date:	11/21/16
Boring No.:	HS-1	Checked By:	J. Ward		
Sample No.:	R-7	Depth (ft.)	20.0		


Soil Identification: Olive gray lean clay (CL)

TEST	PLAS	FIC LIMIT		LIC		
NO.	1	2	1	2	3	4
Number of Blows [N]			32	26	21	
Wet Wt. of Soil + Cont. (g)	9.43	8.90	23.68	21.50	21.32	
Dry Wt. of Soil + Cont. (g)	7.92	7.48	18.08	16.41	16.25	
Wt. of Container (g)	1.05	1.05	1.03	1.05	1.07	
Moisture Content (%) [Wn]	21.98	22.08	32.84	33.14	33.40	



9.49

One - Point Liquid Limit Calculation $LL = Wn(N/25)^{0.121}$

PROCEDURES USED

Number of Blows

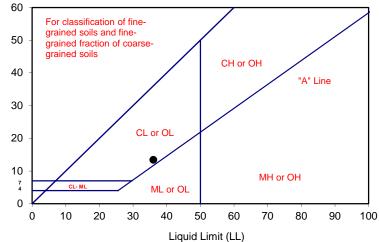
80 90 100

60

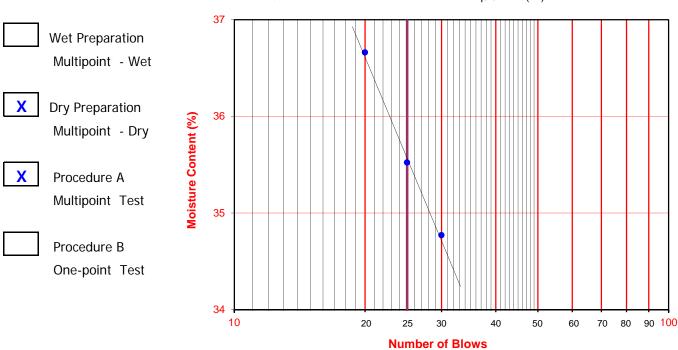
70

ATTERBERG LIMITS

ASTM D 4318

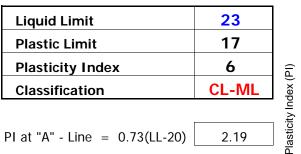

Project Name:	2800 Casitas	Tested By:	A. Santos	Date:	11/21/16
Project No. :	16048-01	Input By:	J. Ward	Date:	11/22/16
Boring No.:	<u>HS-1</u>	Checked By:	J. Ward		
Sample No.:	R-9	Depth (ft.)	25.0		
o					

Soil Identification: Dark olive gray lean clay (CL)

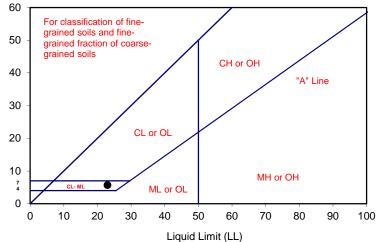

TEST	PLAS	FIC LIMIT		LIC	UID LIMIT	
NO.	1	2	1	2	3	4
Number of Blows [N]			30	25	20	
Wet Wt. of Soil + Cont. (g)	9.80	10.34	22.29	21.66	22.84	
Dry Wt. of Soil + Cont. (g)	8.17	8.64	16.81	16.25	17.00	
Wt. of Container (g)	1.00	1.06	1.05	1.02	1.07	
Moisture Content (%) [Wn]	22.73	22.43	34.77	35.52	36.66	

One - Point Liquid Limit Calculation LL = $Wn(N/25)^{0.121}$

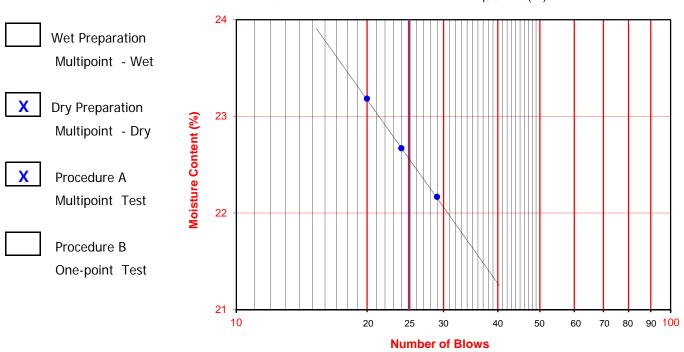
PROCEDURES USED

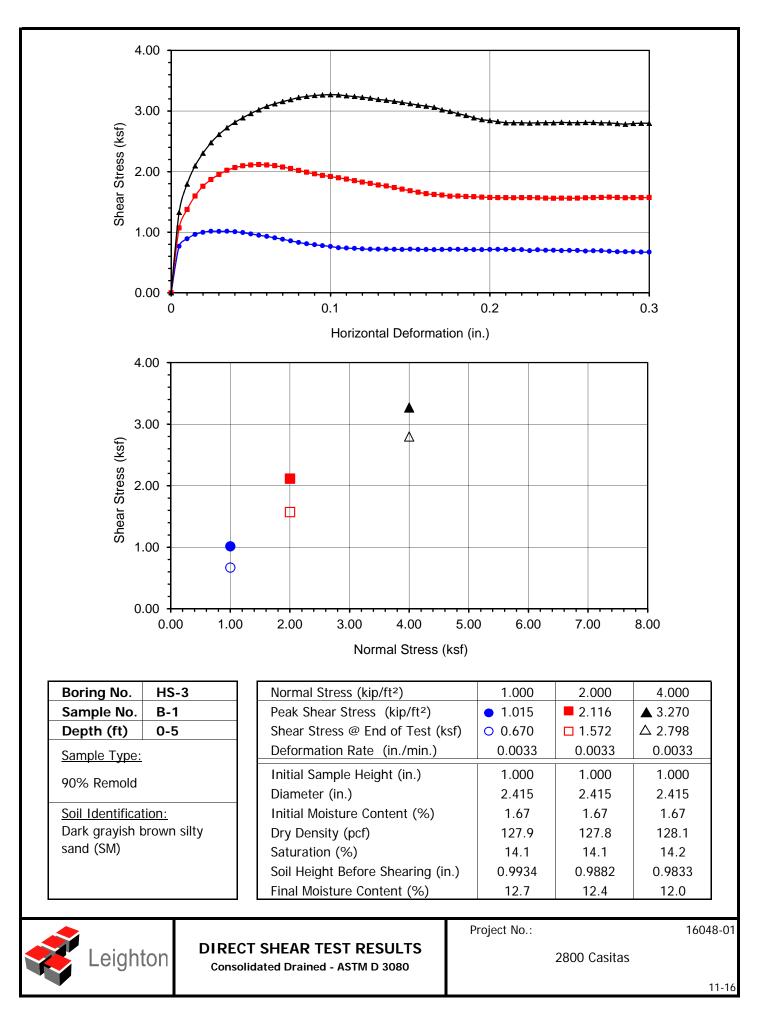

ATTERBERG LIMITS

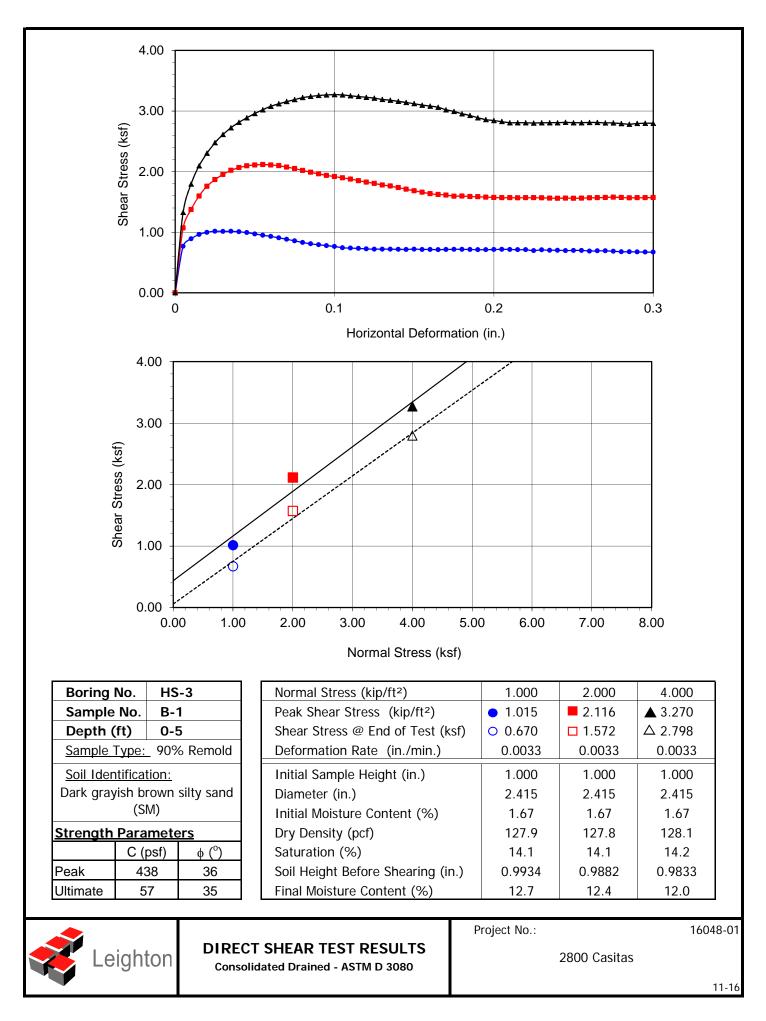
ASTM D 4318


Project Name:	2800 Casitas	Tested By:	A. Santos	Date:	11/18/16
Project No. :	16048-01	Input By:	J. Ward	Date:	11/21/16
Boring No.:	HS-2	Checked By:	J. Ward		
Sample No.:	R-11	Depth (ft.)	30.5		
Soil Idoptification	Dark vollowish brown silty	alayov cand (SC SM)			

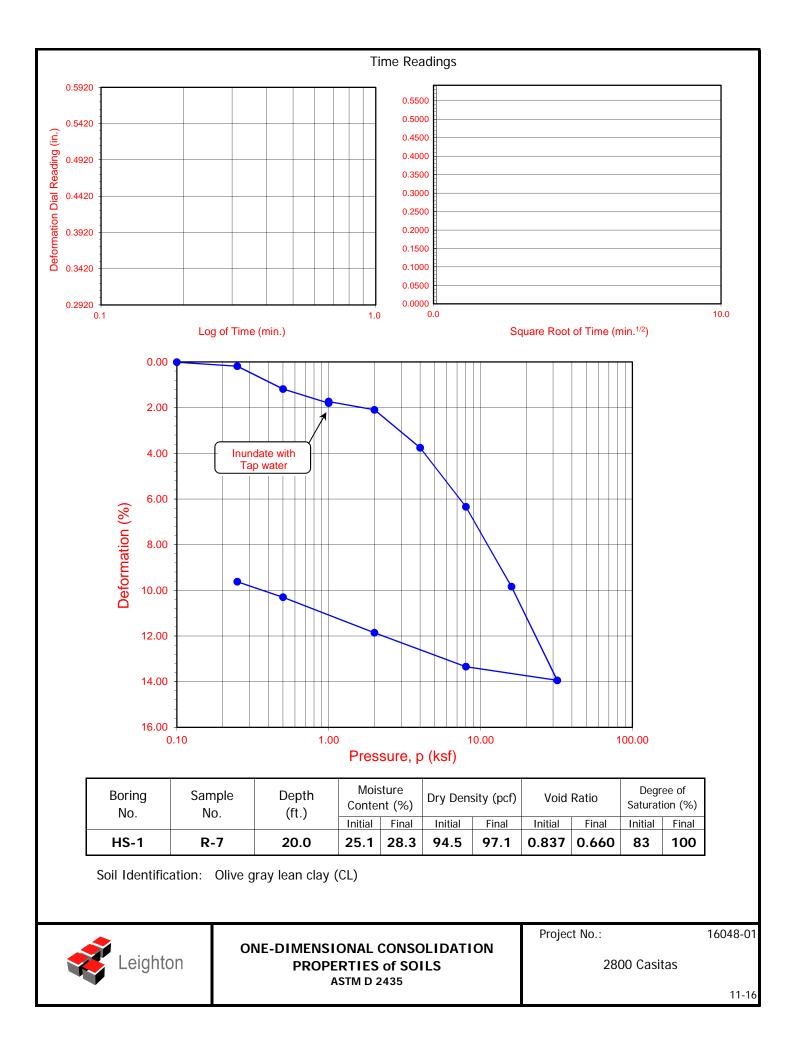
Soil Identification: Dark yellowish brown silty, clayey sand (SC-SM)


TEST	PLAST	FIC LIMIT		LIC	UID LIMIT	
NO.	1	2	1	2	3	4
Number of Blows [N]			29	24	20	
Wet Wt. of Soil + Cont. (g)	11.21	10.02	20.44	19.63	20.92	
Dry Wt. of Soil + Cont. (g)	9.72	8.69	16.92	16.20	17.19	
Wt. of Container (g)	1.01	1.08	1.04	1.07	1.10	
Moisture Content (%) [Wn]	17.11	17.48	22.17	22.67	23.18	




One - Point Liquid Limit Calculation $LL = Wn(N/25)^{0.121}$

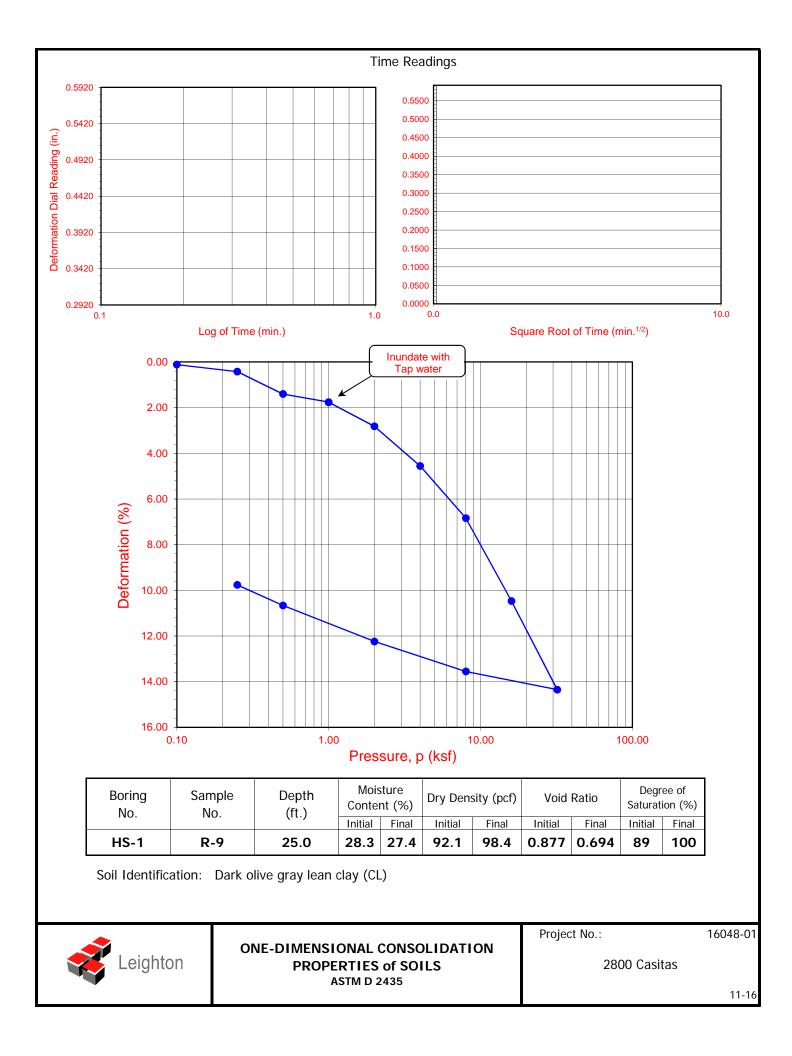
PROCEDURES USED



ONE-DIMENSIONAL CONSOLIDATION PROPERTIES of SOILS ASTM D 2435

Project Name:	2800 Cas	sitas				_		Testee	d By:	G. Bat	thala	Date:	11/	17/	16
Project No .:	16048-0	1						Checke	d By:	J. W	/ard	Date:	11/	30/	16
Boring No.:	HS-1							Depth	(ft.):	20.	0				
Sample No.:	R-7		_					Samp	е Тур	be:	F	Ring	_		
Soil Identification	n: Olive gra	y lean cla	y (CL)								_		-		
		, ,											-		
Sample Diameter	(in.)	2.415	0.900	-											\square
Sample Thickness	(in.)	1.000		-											
Wt. of Sample +	Ring (g)	187.69	0.850	-											
Weight of Ring (g)	45.56	0.650												
Height after conse	ol. (in.)	0.9038		-											
Before Test			0.800	-		144									
Wt.Wet Sample+	Cont. (g)	334.18	0.800	-		1									
Wt.of Dry Sample	+Cont. (g)	274.94													
Weight of Contain	ner (g)	38.80	0 0 750		Inundate w				\mathbb{N}						
Initial Moisture Co	ontent (%)	25.1	Void Ratio 0.700		Tap wate	<u> </u>									
Initial Dry Density	(pcf)	94.5	Ř	-											
Initial Saturation	(%)	83		-											
Initial Vertical Rea	ading (in.)	0.2917	> 0.700	-							\mathbf{N}				
After Test				-											
Wt.of Wet Sample	e+Cont. (g)	276.70	0.650	-											
Wt. of Dry Sample	e+Cont. (g)	246.87	0.650	-											
Weight of Contain	ner (g)	95.84		-			\frown								
Final Moisture Co	ntent (%)	28.28	0.600	-											
Final Dry Density	(pcf)	97.1	0.600	-					/						
Final Saturation (%)	100		-											
Final Vertical Read	ding (in.)	0.1916	0.550	-											
Specific Gravity (a	assumed)	2.78).10		1	.00			10	0.00				100.
Water Density (po	cf)	62.43					Pre	ssure,	p (k	sf)					
						_			-						
Pressure Final	Apparent	Load	Deformation		Corrected				Tim	e Re	ading	5			

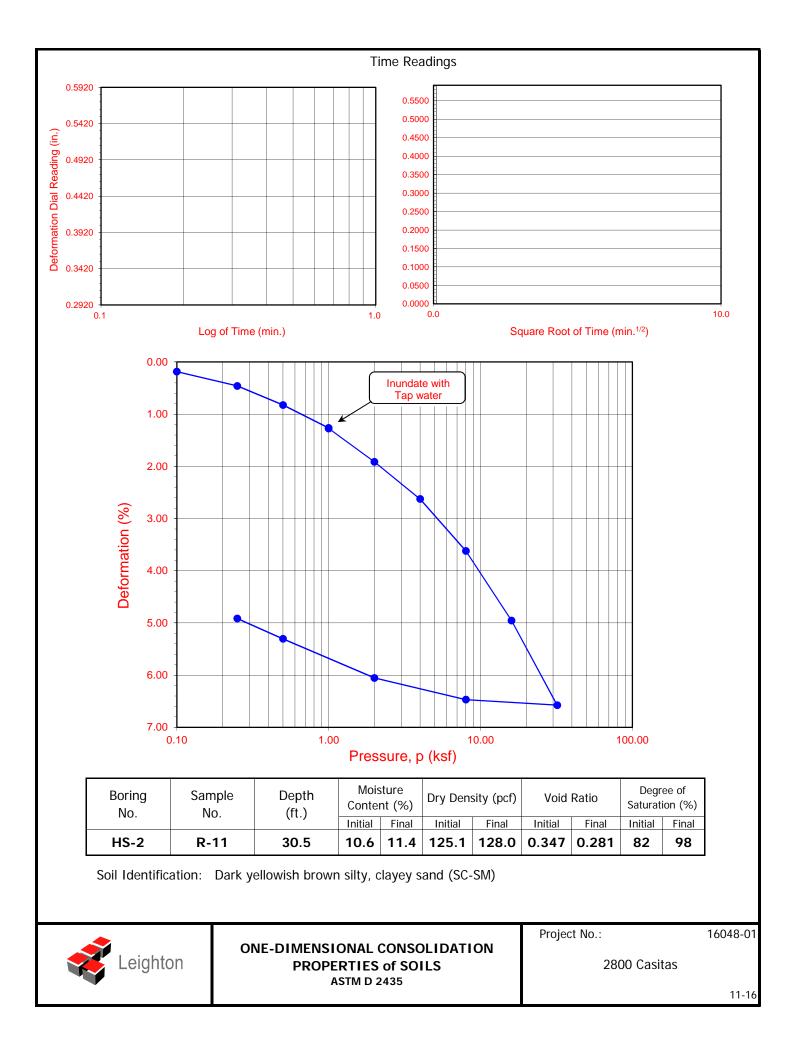
Pressure	Final	Apparent	Load	Deformation % of	Void	Corrected			Ti	me Readin	gs	
(p) (ksf)	Reading (in.)	Thickness (in.)	Compliance (%)	Sample Thickness	Ratio	Deforma- tion (%)		Date	Time	Elapsed Time (min)	Square Root of Time	Dial Rdgs. (in.)
0.10	0.2916	0.9999	0.00	0.01	0.836	0.01	-					
0.25	0.2892	0.9976	0.06	0.25	0.833	0.19						
0.50	0.2782	0.9866	0.16	1.35	0.815	1.19						
1.00	0.2705	0.9789	0.31	2.12	0.803	1.81						
1.00	0.2712	0.9796	0.31	2.05	0.805	1.74						
2.00	0.2660	0.9744	0.47	2.57	0.798	2.10						
4.00	0.2477	0.9561	0.64	4.40	0.768	3.76						
8.00	0.2202	0.9285	0.81	7.15	0.720	6.34						
16.00	0.1833	0.8916	1.00	10.84	0.656	9.84						
32.00	0.1401	0.8485	1.21	15.16	0.580	13.95						
8.00	0.1487	0.8571	0.95	14.30	0.592	13.35						
2.00	0.1660	0.8743	0.71	12.57	0.619	11.86						
0.50	0.1842	0.8926	0.44	10.75	0.647	10.31						
0.25	0.1916	0.9000	0.38	10.01	0.660	9.63						



ONE-DIMENSIONAL CONSOLIDATION PROPERTIES of SOILS ASTM D 2435

Project Name: 2800 Cas	sitas			Tested By: G. Bathala Date:	11/17/16
Project No.: 16048-0	1	_		Checked By: J. Ward Date:	11/30/16
Boring No.: HS-1				Depth (ft.): 25.0	
Sample No.: R-9		-		Sample Type: Ring	
Soil Identification: Dark oliv	e arav lea	n clav (CL)		<u> </u>	_
	<u> </u>				_
Sample Diameter (in.)	2.415	0.900		Inundate with	
Sample Thickness (in.)	1.000			Tap water	
Wt. of Sample + Ring (g)	188.03	0.850			
Weight of Ring (g)	45. 90	0.050			
Height after consol. (in.)	0.9024	-			
Before Test		0.800			
Wt.Wet Sample+Cont. (g)	312.85	0.800			
Wt.of Dry Sample+Cont. (g)	252.40	-			
Weight of Container (g)	38.68	0 0 750			
Initial Moisture Content (%)	28.3	0.750 A atio			
Initial Dry Density (pcf)	92.1	A I			
Initial Saturation (%)	89	0 700			
Initial Vertical Reading (in.)	0.3036	> 0.700			
After Test		-			
Wt.of Wet Sample+Cont. (g)	277.98	0.650			
Wt. of Dry Sample+Cont. (g)	248.68	0.000			
Weight of Container (g)	96.02	-			
Final Moisture Content (%)	27.44	0.600			
Final Dry Density (pcf)	98.4	0.000			
Final Saturation (%)	100	-			
Final Vertical Reading (in.)	0.2031	0.550			
Specific Gravity (assumed)	2.77	0.330	1.00	10.00	100
Water Density (pcf)	62.43		Pr	essure, p (ksf)	

Pressure	Final	Apparent	Load	Deformation % of	Void	Corrected			Ti	me Readin	gs	
(p) (ksf)	Reading (in.)	Thickness (in.)	Compliance (%)	Sample Thickness	Ratio	Deforma- tion (%)		Date	Time	Elapsed Time (min)	Square Root of Time	Dial Rdgs. (in.)
0.10	0.3024	0.9989	0.00	0.11	0.875	0.11						
							ŀ					
0.25	0.2988	0.9953	0.05	0.48	0.869	0.43						
0.50	0.2882	0.9847	0.13	1.54	0.850	1.41						
1.00	0.2834	0.9798	0.26	2.02	0.844	1.76						
1.00	0.2833	0.9798	0.26	2.03	0.844	1.77						
2.00	0.2713	0.9677	0.41	3.23	0.824	2.82						
4.00	0.2523	0.9488	0.57	5.13	0.791	4.56						
8.00	0.2279	0.9243	0.73	7.57	0.748	6.84						
16.00	0.1898	0.8862	0.91	11.38	0.680	10.47						
32.00	0.1489	0.8453	1.12	15.47	0.607	14.35						
8.00	0.1593	0.8558	0.87	14.43	0.622	13.56						
2.00	0.1749	0.8713	0.63	12.87	0.647	12.24						
0.50	0.1933	0.8898	0.36	11.03	0.677	10.67						
0.25	0.2031	0.8996	0.28	10.05	0.694	9.76						



ONE-DIMENSIONAL CONSOLIDATION PROPERTIES of SOILS ASTM D 2435

Project Name:	2800 Cas	sitas								Teste	ed B	y: <u>G</u> .	Bathala	Date:	11	/17	/16
Project No .:	16048-07	1								Check	ed By	ı: J	. Ward	Date:	11	/30	/16
Boring No.:	HS-2		-							Depth	ר (ft.)): 3	30.5				
Sample No.:	R-11		-							Samp	ole T	ype		Ring			
Soil Identification:	Dark yell	owish bro	wn s	silty, clay	ey sand	(SC-S	SM)						-				
				0.350 -											_		
Sample Diameter (in	n.)	2.415		0.000													
Sample Thickness (in	n.)	1.000								Inund Tan	ate w wate						
Wt. of Sample + Rin	ıg (g)	211.44		0.340								ر <u>۔</u> 					
Weight of Ring (g)		45.11		-				Щ	K								
Height after consol.	(in.)	0.9509		0.330													
Before Test				-													
Wt.Wet Sample+Cor	nt. (g)	337.64		0.320						\mathbf{N}	-						
Wt.of Dry Sample+C	Cont. (g)	309.12		-													
Weight of Container	(g)	39.25	0	0.310													
Initial Moisture Cont	ent (%)	10.6	Ratio	-								\mathbb{N}					
Initial Dry Density (p	ocf)	125.1	Ř	0.300							_						
Initial Saturation (%)	82	Void	-									N				
Initial Vertical Readi	ng (in.)	0.3284	>	0.290							_		+ N	_			
After Test				-									$ \setminus$				
Wt.of Wet Sample+0	Cont. (g)	374.58		0.280							_			\			
Wt. of Dry Sample+	Cont. (g)	357.83		-										\mathbf{N}			
Weight of Container	(g)	166.36		0.270				\square									
Final Moisture Conte	ent (%)	11.44															
Final Dry Density (p	ocf)	128.0		0.260													
Final Saturation (%)		98		0.200													
Final Vertical Readin	g (in.)	0.2753		0.250													
Specific Gravity (ass	umed)	2.70		0.250				1	00				10.00				100.
Water Density (pcf)		62.43							Pre	ssure	, p ((ksf)					

Pressure (p)	Final Reading	Apparent Thickness	Load Compliance	Deformation % of	Void	Corrected Deforma-		Ti	me Readin	gs	
(p) (ksf)	(in.)	(in.)	(%)	Sample Thickness	Ratio	tion (%)	Date	Time	Elapsed Time (min)	Square Root of Time	Dial Rdgs. (in.)
0.10	0.3265	0.9982	0.00	0.18	0.345	0.18					
0.25	0.3235	0.9951	0.03	0.49	0.341	0.46					
0.50	0.3194	0.9911	0.07	0.90	0.336	0.83					
1.00	0.3140	0.9857	0.17	1.44	0.330	1.27					
1.00	0.3139	0.9856	0.17	1.45	0.330	1.28					
2.00	0.3062	0.9779	0.30	2.21	0.322	1.91					
4.00	0.2976	0.9693	0.45	3.08	0.312	2.63					
8.00	0.2856	0.9572	0.66	4.28	0.299	3.62					
16.00	0.2696	0.9413	0.92	5.88	0.281	4.96					
32.00	0.2503	0.9220	1.23	7.81	0.259	6.58					
8.00	0.2553	0.9269	0.84	7.31	0.260	6.47					
2.00	0.2619	0.9336	0.59	6.64	0.266	6.05					
0.50	0.2709	0.9426	0.44	5.75	0.276	5.31					
0.25	0.2753	0.9470	0.39	5.31	0.281	4.92					

MODIFIED PROCTOR COMPACTION TEST ASTM D 1557

Project Name: Project No.: Boring No.: Sample No.: Soil Identification: Preparation	Note: (conten	-01 rayish br Corrected It of 1.0% Moist	own silty san I dry density 5 for oversize	calculation a particles Scalp Fra	Input By: Depth (ft.):	fic gravity of 2	'eight (lb.) =	= 10.0
Method:		Dry		#3/4		Height of D	Prop (in.) =	= 18.0
Compaction		Mechanic		#3/8		-		
Method		Manual R	am	#4	10.7	Mold Volu	ıme (ft ³)	0.03330
			-	_				
TEST			1	2	3	4	5	6
Wt. Compacted S	soil + Mo		3883	4007	3960			
Weight of Mold		(g)	1829	1829	1829			
Net Weight of So	il	(g)	2054	2178	2131			
Wet Weight of Sc	oil + Cor	nt. (g)	369.2	408.9	433.9			
Dry Weight of So	il + Con	it. (g)	352.2	382.0	397.4			
Weight of Contain	ner	(g)	38.7	39.3	39.2			
Moisture Content		(%)	5.42	7.85	10.19			
Wet Density		(pcf)	136.0	144.2	141.1			
Dry Density		(pcf)	129.0	133.7	128.0			
				1				
Maximum Dry I	Density	v (pcf)	133.5		Optimum	Moisture Con	tent (%)	8.0
Corrected Dry I	Density	(pcf)	136.5		Corrected	Moisture Cor	ntent (%)	7.5
		1	10.0					
Soil Passing No. 4 (4.75 Mold : 4 in. (101.6 mm Layers : 5 (Five) Blows per layer : 25 (tw May be used if +#4 is 20) diamet wenty-five	ve ter)	40.0			SP. GR. = SP. GR. = SP. GR. =	2.70	
Procedure B Soil Passing 3/8 in. (9.5 Mold : 4 in. (101.6 mm Layers : 5 (Five) Blows per layer : 25 (tw Use if +#4 is >20% and 20% or less) diamet wenty-five	re ter) (bct)	35.0					
Procedure C Soil Passing 3/4 in. (19.0 Mold : 6 in. (152.4 mm Layers : 5 (Five) Blows per layer : 56 (fi Use if +3/8 in. is >20% is <30% Particle-Size Distri	i) diamet fty-six) and +¾ i	4.	25.0					
GR:SA:FI			20.0					

5.0

10.0

Moisture Content (%)

0.0

LL,PL,PI

20

15.0

Г

EXPANSION INDEX of SOILS ASTM D 4829

Project Name:	2800 Casitas	Tested By:	S. Felter	Date:	11/17/16
Project No .:	16048-01	Checked By:	J. Ward	Date:	11/18/16
Boring No.:	HS-2	Depth (ft.):	0-5		
Sample No.:	<u>B-1</u>				
Soil Identification:	Olive silty sand with gravel (SM)g				

Dry Wt. of Soil + Cont.(g)1000.00Wt. of Container No.(g)0.00Dry Wt. of Soil(g)1000.00Weight Soil Retained on #4 Sieve0.00Percent Passing # 4100.00

MOLDED SPECIMEN	Before Test	After Test
Specimen Diameter (in.)	4.01	4.01
Specimen Height (in.)	1.0000	0.9960
Wt. Comp. Soil + Mold (g)	620.90	423.39
Wt. of Mold (g)	206.90	0.00
Specific Gravity (Assumed)	2.70	2.70
Container No.	0	0
Wet Wt. of Soil + Cont. (g)	819.60	630.29
Dry Wt. of Soil + Cont. (g)	751.90	586.75
Wt. of Container (g)	0.00	206.90
Moisture Content (%)	9.00	11.46
Wet Density (pcf)	124.9	128.2
Dry Density (pcf)	114.6	115.0
Void Ratio	0.472	0.465
Total Porosity	0.320	0.318
Pore Volume (cc)	66.3	65.5
Degree of Saturation (%) [S meas]	51.6	66.5

SPECIMEN INUNDATION in distilled water for the period of 24 h or expansion rate < 0.0002 in./h

Date	Time	Pressure (psi)	Elapsed Time (min.)	Dial Readings (in.)		
11/17/16	13:25	1.0	0	0.0270		
11/17/16	13:35	1.0	10	0.0270		
	Add Distilled Water to the Specimen					
11/17/16	14:06	1.0	31	0.0220		
11/18/16	6:36	1.0	1021	0.0230		
11/18/16	8:55	1.0	1160	0.0230		

Expansion Index (EI meas) =	((Final Rdg - Initial Rdg) / Initial Thick.) x 1000	0
-----------------------------	---	---

Т

Г

EXPANSION INDEX of SOILS ASTM D 4829

Project Name:	2800 Casitas	Tested By:	S. Felter	Date:	11/18/16
Project No .:	16048-01	Checked By:	J. Ward	Date:	11/21/16
Boring No.:	HS-3	Depth (ft.):	0-5		
Sample No.:	<u>B-1</u>				
Soil Identification:	Dark grayish brown silty sand (SM)				

Dry Wt. of Soil + Cont. (g)	1000.00
Wt. of Container No. (g)	0.00
Dry Wt. of Soil (g)	1000.00
Weight Soil Retained on #4 Sieve	0.00
Percent Passing # 4	100.00

MOLDED SPECIMEN		Before Test	After Test
Specimen Diameter	(in.)	4.01	4.01
Specimen Height	(in.)	1.0000	1.0035
Wt. Comp. Soil + Mold	(g)	606.30	441.21
Wt. of Mold	(g)	186.90	0.00
Specific Gravity (Assumed)		2.70	2.70
Container No.		0	0
Wet Wt. of Soil + Cont.	(g)	847.50	628.11
Dry Wt. of Soil + Cont.	(g)	786.20	575.93
Wt. of Container	(g)	0.00	186.90
Moisture Content	(%)	7.80	13.41
Wet Density	(pcf)	126.5	132.6
Dry Density	(pcf)	117.4	116.9
Void Ratio		0.436	0.442
Total Porosity		0.304	0.306
Pore Volume	(cc)	62.9	63.6
Degree of Saturation (%) [S meas]	48.2	82.0

SPECIMEN INUNDATION in distilled water for the period of 24 h or expansion rate < 0.0002 in./h

Date	Time	Pressure (psi)	Elapsed Time (min.)	Dial Readings (in.)		
11/18/16	9:32	1.0	0	0.0265		
11/18/16	9:42	1.0	10	0.0265		
	Add Distilled Water to the Specimen					
11/18/16	11:37	1.0	115	0.0275		
11/21/16	6:45	1.0	4143	0.0300		
11/21/16	8:05	1.0	4223	0.0300		

Expansion Index (EI meas) =	((Final Rdg - Initial Rdg) / Initial Thick.) x 1000	4
-----------------------------	---	---

Т

TESTS for SULFATE CONTENTLeightonCHLORIDE CONTENT and pH of SOILS

Project Name:	2800 Casitas	Tested By :	ACS/GB	Date:	11/16/16
Project No. :	16048-01	Data Input By:	J. Ward	Date:	11/22/16

Boring No.	HS-2	HS-3	
Sample No.	B-1	B-1	
Sample Depth (ft)	0-5	0-5	
Soil Identification:	Olive (SM)g	Dark grayish brown SM	
Wet Weight of Soil + Container (g)	252.09	183.07	
Dry Weight of Soil + Container (g)	244.43	174.99	
Weight of Container (g)	55.73	58.73	
Moisture Content (%)	4.06	6.95	
Weight of Soaked Soil (g)	100.20	101.06	

SULFATE CONTENT, DOT California Test 417, Part II

Beaker No.	95	11	
Crucible No.	4	5	
Furnace Temperature (°C)	860	860	
Time In / Time Out	13:20/14:05	13:20/14:05	
Duration of Combustion (min)	45	45	
Wt. of Crucible + Residue (g)	21.0590	21.7638	
Wt. of Crucible (g)	21.0570	21.7571	
Wt. of Residue (g) (A)	0.0020	0.0067	
PPM of Sulfate (A) x 41150	82.30	275.70	
PPM of Sulfate, Dry Weight Basis	86	296	

CHLORIDE CONTENT, DOT California Test 422

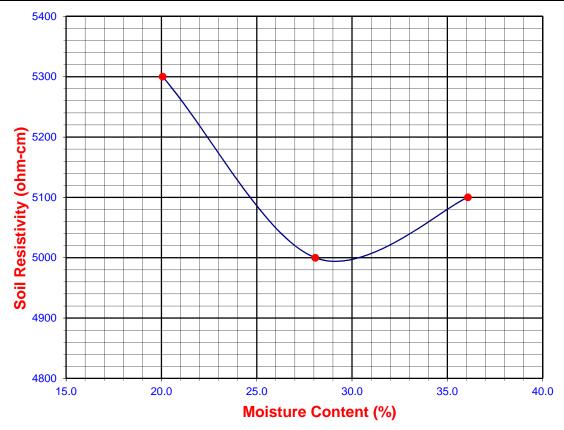
ml of Extract For Titration (B)	15	15	
ml of AgNO3 Soln. Used in Titration (C)	0.9	1.2	
PPM of Chloride (C -0.2) * 100 * 30 / B	140	200	
PPM of Chloride, Dry Wt. Basis	146	215	

pH TEST, DOT California Test 643

pH Value	9.76	7.83	
Temperature °C	20.8	20.8	

SOIL RESISTIVITY TEST DOT CA TEST 643

Project Name:	2800 Casitas	Tested By :	A. Santos	Date:	11/22/16
Project No. :	16048-01	Data Input By:	J. Ward	Date:	11/22/16
Boring No.:	HS-2	Depth (ft.) :	0-5		
Sample No. :	B-1				


Soil Identification:* Olive (SM)g

*California Test 643 requires soil specimens to consist only of portions of samples passing through the No. 8 US Standard Sieve before resistivity testing. Therefore, this test method may not be representative for coarser materials.

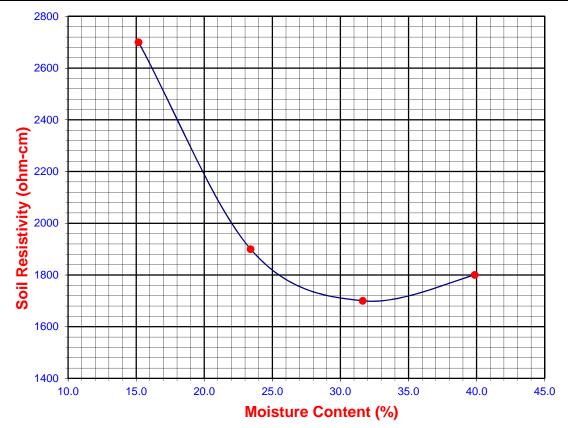
Specimen No.	Water Added (ml) (Wa)	Adjusted Moisture Content (MC)	Resistance Reading (ohm)	Soil Resistivity (ohm-cm)
1	20	20.07	5300	5300
2	30	28.07	5000	5000
3	40	36.08	5100	5100
4				
5				

Moisture Content (%) (MCi)	4.06			
Wet Wt. of Soil + Cont. (g)	252.09			
Dry Wt. of Soil + Cont. (g)	244.43			
Wt. of Container (g)	55.73			
Container No.				
Initial Soil Wt. (g) (Wt)	130.00			
Box Constant	1.000			
MC =(((1+Mci/100)x(Wa/Wt+1))-1)x100				

Min. Resistivity	Moisture Content	e Content Sulfate Content Chloride Content		So	il pH
(ohm-cm)	(%)	(ppm)	(ppm)	рН	Temp. (°C)
DOT CA Test 643		DOT CA Test 417 Part II	DOT CA Test 422	DOT CA Test 643	
4990	29.1	86	146	9.76	20.8

SOIL RESISTIVITY TEST DOT CA TEST 643

Project Name:	2800 Casitas	Tested By	:	A. Santos	Date:	11/22/16
Project No. :	16048-01	Data Input	t By:	J. Ward	Date:	11/22/16
Boring No.:	HS-3	Depth (ft.)	:	0-5		
Sample No. :	B-1					


Soil Identification:* Dark grayish brown SM

*California Test 643 requires soil specimens to consist only of portions of samples passing through the No. 8 US Standard Sieve before resistivity testing. Therefore, this test method may not be representative for coarser materials.

Specimen No.	Water Added (ml) (Wa)	Adjusted Moisture Content (MC)	Resistance Reading (ohm)	Soil Resistivity (ohm-cm)
1	10	15.18	2700	2700
2	20	23.40	1900	1900
3	30	31.63	1700	1700
4	40	39.86	1800	1800
5				

Moisture Content (%) (MCi)	6.95			
Wet Wt. of Soil + Cont. (g)	183.07			
Dry Wt. of Soil + Cont. (g)	174.99			
Wt. of Container (g)	58.73			
Container No.				
Initial Soil Wt. (g) (Wt)	130.00			
Box Constant	1.000			
MC =(((1+Mci/100)x(Wa/Wt+1))-1)x100				

Min. Resistivity	Moisture Content	e Content Sulfate Content Chloride Content		So	il pH
(ohm-cm)	(%)	(ppm)	(ppm)	рН	Temp. (°C)
DOT CA Test 643		DOT CA Test 417 Part II	DOT CA Test 422	DOT CA Test 643	
1700	32.2	296	215	7.83	20.8

Boring No.	HS-1	HS-1	HS-1	HS-1	HS-1	HS-1	HS-1	HS-1
Sample No.	R-1	R-2	R-3	R-4	R-5	R-6	R-7	R-8
Depth (ft.)	2.5	5.0	7.5	10.5	15.0	16.5	20.0	22.5
Sample Type	Ring	Ring	Ring	Ring	Ring	Ring	Ring	Ring
Soil Identification	Brown clayey sand with gravel (SC)g, brick fragments noted	Brown clayey sand with gravel (SC)g	Brown clayey sand with gravel (SC)g	Grayish brown silty sand (SM)	Brown poorly- graded sand with silt (SP- SM)	Grayish brown poorly-graded sand with gravel (SP)g	Olive gray lean clay (CL)	Gray silty sand (SM)
Pocket Penetrometer (tons/ft	²) >4.50	>4.50	>4.50	1.75	1.50	3.00	3.75/4.25	2.25
Weight Soil + Rings / Tube (g) 1200.6	1203.9	1288.8	1002.0	1026.3	1063.6	984.91	1091.2
Weight of Rings / Tube (g	g) 266.4	266.4	266.4	266.4	266.4	266.4	222.0	266.4
Average Length (ir	n.) <u>6.0</u>	6.0	6.0	6.0	6.0	6.0	5.0	6.0
Average Diameter (ii	n.) 2.415	2.415	2.415	2.415	2.415	2.415	2.415	2.415
Wet. Wt. of Soil + Cont. (g) 266.8	229.3	228.4	231.5	207.1	220.1	334.18	215.2
Dry Wt. of Soil + Cont. (g) 254.1	220.1	217.2	225.4	202.6	215.2	274.94	200.6
Weight of Container (g) 62.7	58.0	59.1	39.8	61.1	65.9	38.80	52.4
Container No.								
Wet Density	129.5	129.9	141.7	102.0	105.3	110.5	126.9	114.3
Moisture Content (%)	6.6	5.7	7.1	3.3	3.2	3.3	25.1	9.9
Dry Density (pcf)	121.4	123.0	132.3	98.7	102.1	107.0	101.4	104.1
Degree of Saturation (%)	46.2	41.3	69.9	12.5	13.2	15.4	102.4	42.9
Leighto	nn	URE & DE STM D 2216 8			Project Name: Project No.: Client Name: Tested By:	2800 Casitas 16048-01 LGC Geotechnic SF/GB		11/16/16

Boring No.		HS-1	HS-1	HS-2	HS-2	HS-2	HS-2	HS-2	HS-2
Sample No.		R-9	R-10	R-1	R-2	R-3	R-4	R-5	R-6
Depth (ft.)		25.0	26.5	2.5	5.0	7.5	10.0	12.5	15.0
Sample Type		Ring	Ring	Ring	Ring	Ring	Ring	Ring	Ring
Soil Identification		Dark olive gray lean clay (CL)	Brown poorly- graded sand (SP)	Brown silty sand with gravel (SM)g	Brown clayey sand with gravel (SC)g	Gray silty sand (SM)	Gray silty sand (SM)	Brown poorly- graded sand with silt (SP- SM), possibly disturbed	Brown poorly- graded sand with silt and gravel (SP- SM)g, poss. disturbed
Pocket Penetrometer (to	ns/ft ²)	1.50/4.25	3.50	>4.50	>4.50	3.00	2.25	0.00	0.00
Weight Soil + Rings / Tu	be (g)	944.00	1113.0	1244.9	994.0	1054.3	844.6	1037.0	1160.9
Weight of Rings / Tube	(g)	222.0	266.4	266.4	222.0	266.4	222.0	266.4	266.4
Average Length	(in.)	5.0	6.0	6.0	5.0	6.0	5.0	6.0	6.0
Average Diameter	(in.)	2.415	2.415	2.415	2.415	2.415	2.415	2.415	2.415
Wet. Wt. of Soil + Cont.	. (g)	312.85	219.8	252.5	240.2	210.1	266.7	223.9	308.7
Dry Wt. of Soil + Cont.	(g)	252.40	214.4	241.8	226.5	205.7	259.6	211.4	301.4
Weight of Container	(g)	38.68	66.3	61.9	69.9	61.0	56.6	39.1	66.1
Container No.									
Wet Density		120.1	117.3	135.6	128.4	109.2	103.6	106.8	124.0
Moisture Content	(%)	28.3	3.6	5.9	8.7	3.0	3.5	7.3	3.1
Dry Density ((pcf)	93.6	113.2	128.0	118.1	106.0	100.1	99.6	120.3
Degree of Saturation	(%)	95.4	20.1	50.7	55.2	13.9	13.8	28.3	20.9
Leigh	nton	1	F URE & DE ISTM D 2216 &			Project Name: Project No.: Client Name: Tested By:	2800 Casitas 16048-01 LGC Geotechn SF/GB		11/16/16

Boring No.		HS-2	HS-2	HS-2	HS-2	HS-2	HS-2	HS-4	HS-4
Sample No.		R-7	R-8	R-9	R-10	R-11	R-12	R-1	R-3
Depth (ft.)		17.5	20.0	25.0	26.0	30.5	35.0	2.5	7.5
Sample Type		Ring	Ring	Ring	Ring	Ring	Ring	Ring	Ring
Soil Identification		Grayish brown silty sand (SM)	Grayish brown silty sand (SM)	Brown clayey sand with gravel (SC)g	Grayish brown silty sand (SM)	Dark yellowish brown silty, clayey sand (SC-SM)	Brown poorly- graded sand with gravel (SP)g	Brown clayey sand (SC)	Grayish brown silty sand (SM)
Pocket Penetrometer (to	ons/ft²)	4.25	>4.50	3.25	>4.50	4.50/>4.50	>4.50	>4.50	3.50
Weight Soil + Rings / Tu	ube (g)	1098.1	924.4	773.1	876.8	1071.1	1246.1	1192.1	994.8
Weight of Rings / Tube	(g)	266.4	222.0	177.6	222.0	222.0	266.4	266.4	266.4
Average Length (in.)		6.0	5.0	4.0	5.0	5.0	6.0	6.0	6.0
Average Diameter	(in.)	2.415	2.415	2.415	2.415	2.415	2.415	2.415	2.415
Wet. Wt. of Soil + Cont	t. (g)	209.6	219.6	298.3	266.6	337.64	233.6	246.3	210.5
Dry Wt. of Soil + Cont.	(g)	199.0	204.8	274.2	259.2	309.12	221.8	226.4	196.1
Weight of Container	(g)	61.4	60.7	60.9	61.7	39.25	57.2	58.2	56.6
Container No.									
Wet Density		115.3	116.8	123.8	108.9	141.2	135.8	128.3	101.0
Moisture Content	(%)	7.7	10.3	11.3	3.7	10.6	7.2	11.8	10.3
Dry Density	(pcf)	107.0	105.9	111.2	105.0	127.7	126.7	114.7	91.5
Degree of Saturation	(%)	36.2	46.9	59.2	16.7	89.3	58.6	68.1	33.1
Leigl	hton		URE & DE STM D 2216 8				2800 Casitas 16048-01 LGC Geotechni SF/GB	cal, Inc. Date:	_11/16/16

Boring No.	HS-4	HS-4	HS-4	HS-4	HS-4	HS-6	HS-6	HS-6
Sample No.	R-4	R-5	R-6	R-7	R-9	R-1	R-2	R-3
Depth (ft.)	10.0	15.0	20.0	25.0	35.0	2.5	5.0	7.5
Sample Type	Ring	Ring	Ring	Ring	Ring	Ring	Ring	Ring
Soil Identification	Gray poorly- graded sand with silt and gravel (SP- SM)g	Gray silty sand (SM)	Gray poorly- graded sand with silt (SP- SM)	Brown poorly- graded sand with silt and gravel (SP- SM)g, poss. disturbed	Brown silty sand (SM)	Brown silty sand with gravel (SM)g	Brown poorly- graded sand with silt and gravel (SP- SM)g	Brown poorly- graded sand with silt and gravel (SP- SM)g
Pocket Penetrometer (tons/ft ²)	3.50	2.25	>4.50	0.00	2.50	>4.50	>4.50	>4.50
Weight Soil + Rings / Tube (g)	871.0	1089.4	1065.1	1155.9	1161.2	1006.5	1035.6	989.7
Weight of Rings / Tube (g)	222.0	266.4	266.4	266.4	266.4	222.0	222.0	222.0
Average Length (in.)	5.0	6.0	6.0	6.0	6.0	5.0	5.0	5.0
Average Diameter (in.)	2.415	2.415	2.415	2.415	2.415	2.415	2.415	2.415
Wet. Wt. of Soil + Cont. (g)	262.2	265.3	236.6	206.6	209.3	202.9	252.2	217.0
Dry Wt. of Soil + Cont. (g)	259.0	258.1	231.7	204.0	178.8	198.0	236.3	209.6
Weight of Container (g)	60.7	32.5	39.1	67.2	36.9	53.8	57.4	60.7
Container No.								
Wet Density	107.9	114.1	110.7	123.3	124.0	130.5	135.3	127.7
Moisture Content (%)	1.6	3.2	2.5	1.9	21.5	3.4	8.9	5.0
Dry Density (pcf)	106.2	110.5	108.0	121.0	102.1	126.2	124.3	121.6
Degree of Saturation (%)	7.4	16.4	12.2	13.1	89.1	27.3	67.4	34.8
Leightor	ר		ENSITY of & ASTM D 293		Project Name: Project No.: Client Name: Tested By:	2800 Casitas 16048-01 LGC Geotechni SF/GB	cal, Inc. Date:	11/16/16

Device Ne					110.7			
Boring No.	HS-6	HS-6	HS-6	HS-6	HS-7	HS-7	HS-7	
Sample No.	R-4	R-5	R-6	R-7	R-1	R-2	R-3	
Depth (ft.)	10.0	15.0	20.0	25.0	2.5	5.0	7.5	
Sample Type	Ring	Ring	Ring	Ring	Ring	Ring	Ring	
Soil Identification	Brown poorly- graded sand with silt and gravel (SP- SM)g	Brown silty sand with gravel (SM)g	Brown silty sand (SM)	Brown silty sand (SM), trace gravel noted	Brown silty sand with gravel (SM)g	Brown silty sand with gravel (SM)g	Brown silty sand (SM)	
Pocket Penetrometer (tons/f	^(t²) >4.50	3.00	4.00	2.25	>4.50	>4.50	>4.50	
Weight Soil + Rings / Tube	(g) <u>967.6</u>	715.0	1083.7	1050.9	1032.9	1038.0	1037.9	
Weight of Rings / Tube (g) 222.0	177.6	266.4	266.4	222.0	222.0	222.0	
Average Length (i	in.) 5.0	4.0	6.0	6.0	5.0	5.0	5.0	
Average Diameter (in.) 2.415	2.415	2.415	2.415	2.415	2.415	2.415	
Wet. Wt. of Soil + Cont. ((g) 214.6	208.9	210.0	250.7	209.8	218.8	1059.3	
Dry Wt. of Soil + Cont.	(g) 204.3	197.6	205.4	247.6	201.3	208.0	982.0	
Weight of Container	(g) 57.5	37.2	57.0	66.3	64.2	64.0	252.2	
Container No.								
Wet Density	124.0	111.7	113.3	108.7	134.9	135.7	135.7	
Moisture Content (%)) 7.0	7.0	3.1	1.7	6.2	7.5	10.6	
Dry Density (pcf) 115.9	104.4	109.9	106.9	127.0	126.3	122.7	
Degree of Saturation (%)) 41.7	30.9	15.7	8.0	51.2	60.4	76.5	
Leight	nni	URE & DE STM D 2216 8			Project Name: Project No.: Client Name: Tested By:	2800 Casitas 16048-01 LGC Geotechnic SF/GB	al, Inc. Date:	11/16/16

MOISTURE CONTENT ASTM D 2216

 Project Name:
 2800 Casitas

 Project No.:
 16048-01

 Tested By:
 S. Felter

 Date:
 11/16/16

 Checked By:
 J. Ward

 Date:
 11/18/16

Boring No.	HS-2	HS-2	HS-2	HS-4	HS-4
Sample No.	SPT-1	SPT-2	SPT-3	R-8	SPT-1
Depth (ft)	40.0	45.0	50.0	30.0	40.0
Sample Type	SPT	SPT	SPT	SPT	SPT
Sample Description	Brown poorly- graded sand (SP)	Gray poorly- graded sand with silt (SP- SM)	Grayish brown poorly-graded sand with gravel (SP)g	Brown poorly- graded sand with silt and gravel (SP- SM)g	Gray poorly- graded sand with silt (SP- SM)
Wt. wet soil + container (g)	307.5	272.4	349.7	215.7	285.4
Wt. dry soil + container (g)	277.1	239.2	317.1	210.1	250.0
Weight of container (g)	62.6	61.1	65.8	56.6	61.0
Moisture Content (%)	14.2	18.6	13.0	3.6	18.7

Boring No.	HS-4	HS-5	HS-5	HS-5	HS-5
Sample No.	SPT-2	SPT-1	SPT-2	SPT-3	SPT-4
Depth (ft)	45.0	5.0	10.0	15.0	20.0
Sample Type	SPT	SPT	SPT	SPT	SPT
Sample Description	Grayish brown poorly-graded sand with silt (SP-SM)	Brown poorly- graded sand with silt (SP- SM)	Brown poorly- graded sand with silt and gravel (SP- SM)g	Gray poorly- graded sand with silt and gravel (SP- SM)g	Brown poorly- graded sand with silt and gravel (SP- SM)g
Wt. wet soil + container (g)	291.8	355.4	270.1	338.1	297.9
Wt. dry soil + container (g)	264.5	330.8	257.9	319.2	282.7
Weight of container (g)	59.1	39.1	60.7	70.0	62.0
Moisture Content (%)	13.3	8.4	6.2	7.6	6.9

MOISTURE CONTENT ASTM D 2216

Project Name: 2800 Casitas <u>16048-01</u>

Project No.:

Tested By:	<u>S. Felter</u>
Date:	<u>11/16/16</u>
Checked By:	<u>J. Ward</u>
Date:	<u>11/18/16</u>

Moisture Content (%)	2.2	1.9	29.8	14.7	9.7
Weight of container (g)	39.7	137.0	204.4	57.7	66.3
Wt. dry soil + container (g)	332.3	833.3	1207.0	268.0	314.9
Wt. wet soil + container (g)	338.8	846.7	1506.0	298.9	339.0
Sample Description	Gray poorly- graded sand with silt and gravel (SP- SM)g	Grayish brown poorly-graded sand with silt and gravel (SP- SM)g	Brown sandy lean clay s(CL)	Gray poorly- graded sand with gravel (SP)g	Gray poorly- graded sand with silt and gravel (SP- SM)g
Sample Type	SPT	SPT	SPT	SPT	SPT
Depth (ft)	25.0	30.0	35.0	40.0	45.0
Sample No.	SPT-5	SPT-6	SPT-7	SPT-8	SPT-9
Boring No.	HS-5	HS-5	HS-5	HS-5	HS-5

Boring No.	HS-5		
Sample No.	SPT-10		
Depth (ft)	50.0		
Sample Type	SPT		
Sample Description	Gray poorly- graded sand with silt and gravel (SP- SM)g		
Wt. wet soil + container (g)	301.8		
Wt. dry soil + container (g)	268.3		
Weight of container (g)	52.2		
Moisture Content (%)	15.5		

Appendix D Liquefaction & Slope Stability Analysis

LIQUEFACTION EVALUATION

Based on Proceeding of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, Technical Report NCEER-97-0022, December 31, 1997

Seismic Event		Profile Constants		Depth to GWT		Project Name	Bow Tie Yards
Moment Magnitude	6.6	Total Unit Weight (lb/ft ³)	120	During Investigation (ft)	41	Project Number	16048-01
Peak Ground Acceleration	1.11 g	Unit Weight of Water (lbs/ft ³	62.4	During Design Event (ft)	25	Boring	HS- 3

Determination of Cyclic Resitance Ratio

	Sampling	Data			Du	iring Investigatio	n			Samp	ling Correcti	on Factors							
		Blow	Count	Thickness	Total Stress	Pore Pressure	Effective	Sampler	SPT	Overburden	Energy	Borehole	Rod Length	Sampler Type		Fines			
Depth (ft)	Depth (m)	SPT	Rings	(ft)	Stress (psf)	Pressure (psf)	Stress (psf)	Diameter	Nm	C _N	CE	CB	C _R	Cs	(N ₁) ₆₀	Content	(N1)60cs	Kσ	CRR _{7.5}
5	1.5	55		5	720	0	720	1.00	55.00	1.70	1.25	1.00	0.75	1.10	96.59	15	103.73	1.000	SPT >30 NF
10	3.0	40		5	1320	0	1320	1.00	40.00	1.26	1.25	1.00	0.75	1.10	51.88	15	56.87	1.000	SPT >30 NF
15	4.6	39		5	1920	0	1920	1.00	39.00	1.04	1.25	1.00	0.85	1.10	47.53	26	57.75	1.000	SPT >30 NF
20	6.1	23		5	2520	0	2520	1.00	23.00	0.91	1.25	1.00	0.95	1.10	27.35	6	27.51	0.964	0.319
25	7.6	48		5	3120	0	3120	1.00	48.00	0.82	1.25	1.00	0.95	1.10	51.29	5	51.29	0.924	SPT >30 NF
30	9.1	33		5	3720	0	3720	1.00	33.00	0.75	1.25	1.00	0.95	1.10	32.29	7	32.69	0.889	SPT >30 NF
35	10.7	46		5	4320	0	4320	1.00	46.00	0.70	1.25	1.00	1.00	1.10	43.97	5	43.97	0.858	SPT >30 NF
40	12.2	62		5	4920	0	4920	1.00	62.00	0.65	1.25	1.00	1.00	1.10	55.54	21	64.10	0.830	SPT >30 NF
45	13.7	100		5	5520	249.6	5270.4	1.00	100.00	0.63	1.25	1.00	1.00	1.10	86.55	15	93.21	0.815	SPT >30 NF
50	15.2	73		5	6120	561.6	5558.4	1.00	73.00	0.61	1.25	1.00	1.00	1.10	61.52	15	66.98	0.803	SPT >30 NF
-																			
-																			
-																			

Determination of Cyclic Stress Ratio

			coo nan	Ĭ	_						
	Sampling		_			ring Design Eve					
		-	Count			Pore Pressure	Effective				
Depth (ft)	Depth (m)	SPT	Rings	Thickness	Stress (psf)	Pressure (psf)	Stress (psf)	r _d	CSR	MSF	FS
5	1.52	55		5	600	0	600	0.99024	0.716386	1.387	Above GWT
10	3.05	40		5	1200	0	1200	0.97914	0.70836	1.387	Above GWT
15	4.57	39		5	1800	0	1800	0.96856	0.700703	1.387	Above GWT
20	6.10	23		5	2400	0	2400	0.9569	0.692266	1.387	Above GWT
25	7.62	48		5	3000	0	3000	0.94183	0.68137	1.387	Corr. SPT>30
30	9.14	33		5	3600	312	3288	0.92058	0.729188	1.387	Corr. SPT>30
35	10.67	46		5	4200	624	3576	0.89062	0.756749	1.387	Corr. SPT>30
40	12.19	62		5	4800	936	3864	0.85103	0.764821	1.387	Corr. SPT>30
45	13.72	100		5	5400	1248	4152	0.80363	0.756138	1.387	Corr. SPT>30
50	15.24	73		5	6000	1560	4440	0.75271	0.73588	1.387	Corr. SPT>30

LIQUEFACTION EVALUATION

Based on Proceeding of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, Technical Report NCEER-97-0022, December 31, 1997

Seismic Event		Profile Constants		Depth to GWT		Project Name	Bow Tie Yards
Moment Magnitude	6.6	Total Unit Weight (lb/ft ³)	120	During Investigation (ft)	41	Project Number	16048-01
Peak Ground Acceleration	1.11 g	Unit Weight of Water (lbs/ft ³	62.4	During Design Event (ft)	25	Boring	HS- 5

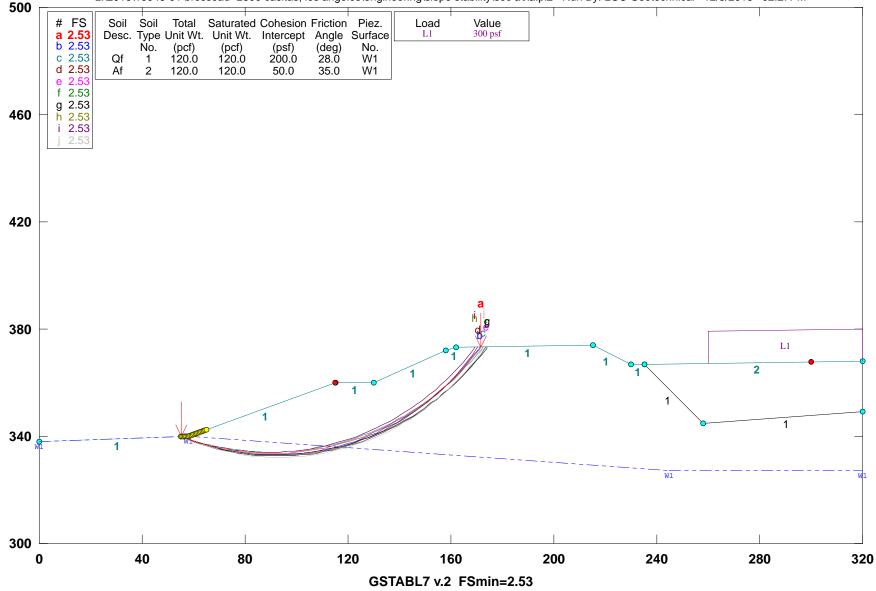
Determination of Cyclic Resitance Ratio

	Sampling	Data			Du	iring Investigatio	n			Samp	ling Correcti	on Factors							
		Blow	Count	Thickness	Total Stress	Pore Pressure	Effective	Sampler	SPT	Overburden	Energy	Borehole	Rod Length	Sampler Type		Fines			
Depth (ft)	Depth (m)	SPT	Rings	(ft)	Stress (psf)	Pressure (psf)	Stress (psf)	Diameter	Nm	C _N	CE	CB	C _R	Cs	(N ₁) ₆₀	Content	(N1)60cs	K _σ	CRR _{7.5}
5	1.5	37		5	720	0	720	1.00	37.00	1.70	1.25	1.00	0.75	1.10	64.98	5	64.98	1.000	SPT >30 NF
10	3.0	42		5	1320	0	1320	1.00	42.00	1.26	1.25	1.00	0.75	1.10	54.47	5	54.47	1.000	SPT >30 NF
15	4.6	54		5	1920	0	1920	1.00	54.00	1.04	1.25	1.00	0.85	1.10	65.82	5	65.82	1.000	SPT >30 NF
20	6.1	53		5	2520	0	2520	1.00	53.00	0.91	1.25	1.00	0.95	1.10	63.02	5	63.02	0.964	SPT >30 NF
25	7.6	60		5	3120	0	3120	1.00	60.00	0.82	1.25	1.00	0.95	1.10	64.12	5	64.12	0.924	SPT >30 NF
30	9.1	72		5	3720	0	3720	1.00	72.00	0.75	1.25	1.00	0.95	1.10	70.46	5	70.46	0.889	SPT >30 NF
35	10.7	12		5	4320	0	4320	1.00	12.00	0.70	1.25	1.00	1.00	1.10	11.47	59	18.77	0.858	0.174
40	12.2	69		5	4920	0	4920	1.00	69.00	0.65	1.25	1.00	1.00	1.10	61.81	5	61.81	0.830	SPT >30 NF
45	13.7	70		5	5520	249.6	5270.4	1.00	70.00	0.63	1.25	1.00	1.00	1.10	60.58	5	60.58	0.815	SPT >30 NF
50	15.2	43		5	6120	561.6	5558.4	1.00	43.00	0.61	1.25	1.00	1.00	1.10	36.24	5	36.24	0.803	SPT >30 NF

Determination of Cyclic Stress Ratio

								ř	coo nan			
						ring Design Eve					Sampling	
					Effective	Pore Pressure	Total Stress		Count	-		
FS	SF	MSF	CSR	r _d	Stress (psf)	Pressure (psf)	Stress (psf)	Thickness	Rings	SPT	Depth (m)	Depth (ft)
ove GWT	387	1.387	0.716386	0.99024	600	0	600	5		37	1.52	5
ove GWT	387	1.387	0.70836	0.97914	1200	0	1200	5		42	3.05	10
ove GWT	387	1.387	0.700703	0.96856	1800	0	1800	5		54	4.57	15
ove GWT	387	1.387	0.692266	0.9569	2400	0	2400	5		53	6.10	20
r. SPT>30	387	1.387	0.68137	0.94183	3000	0	3000	5		60	7.62	25
r. SPT>30	387	1.387	0.729188	0.92058	3288	312	3600	5		72	9.14	30
y Bray	387	1.387	0.756749	0.89062	3576	624	4200	5		12	10.67	35
r. SPT>30	387	1.387	0.764821	0.85103	3864	936	4800	5		69	12.19	40
r. SPT>30	387	1.387	0.756138	0.80363	4152	1248	5400	5		70	13.72	45
r. SPT>30	387	1.387	0.73588	0.75271	4440	1560	6000	5		43	15.24	50

BRAY'S CRITERIA FOR LIQUEFIABLE FINE-GRAINED SOILS


		in-situ					Bray's	Bray's	Soil
Boring	Depth	WC	Atterb	berg Lii	mits	Liquidty	Criteria	Criteria for LL	Туре
	(feet)	(%)	LL	PL	ΡI	Index	(80% of LL)	In Situ	(USCS)
HS-5	35	29.8	38	18	20	0.6	30.4	Not Susceptible	CL

Summary of Slope Stability Analysis

Cross- Section	File Name	Factor of Safety	Description
A-A'	xa	2.53	Static
	xae	1.13	Seismic

2800 West Casistas / 16048-01 / Cross Sect A-A' / Static

z:\2016\16048-01 brosseau- 2800 casitas, los angeles\engineering\slope stability\sec a\xa.pl2 Run By: LGC Geotechnical 12/9/2016 02:27PM

Safety Factors Are Calculated By The Modified Bishop Method

Z:xa.OUT Page 1

*** GSTABL7 ***

** GSTABL7 by Dr. Garry H. Gregory, Ph.D., P.E., D.GE ** ** Original Version 1.0, January 1996; Current Ver. 2.005.3, Feb. 2013 ** (All Rights Reserved-Unauthorized Use Prohibited) SLOPE STABILITY ANALYSIS SYSTEM Modified Bishop, Simplified Janbu, or GLE Method of Slices. (Includes Spencer & Morgenstern-Price Type Analysis) Including Pier/Pile, Reinforcement, Soil Nail, Tieback, Nonlinear Undrained Shear Strength, Curved Phi Envelope, Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces. Analysis Run Date: 12/9/2016 Time of Run: 02:27PM Run By: LGC Geotechnical Z:\2016\16048-01 Brosseau- 2800 Casitas, Los Angeles\Enginee Input Data Filename: ring\Slope Stability\Sec A\XA.in Z:\2016\16048-01 Brosseau- 2800 Casitas, Los Angeles\Enginee Output Filename: ring\Slope Stability\Sec A\XA.OUT Unit System: English Plotted Output Filename: Z:\2016\16048-01 Brosseau- 2800 Casitas, Los Angeles\Enginee ring\Slope Stability\Sec A\XA.PLT PROBLEM DESCRIPTION: 2800 West Casistas / 16048-01 / Cross Sect A-A' / Static BOUNDARY COORDINATES 9 Top Boundaries 11 Total Boundaries Y-Left X-Right Y-Right Soil Type Boundary X-Left (ft) No. (ft) (ft) (ft) Below Bnd 0.00 338.00 58.00 340.00 1 58.00 340.00 115.00 360.00 2 115.00 360.00 130.00 360.00 3 130.00 360.00 158.00 372.00 4 1 158.00 372.00 162.00 373.00 5 1 162.00 373.00 215.00 374.00 215.00 374.00 230.00 367.00 230.00 367.00 235.00 367.00 235.00 320.00 367.00 368.00 2 235.00 367.00 258.00 10 345.00 1 11 258.00 345.00 320.00 349.00 1 300.00(ft) User Specified Y-Origin = Default X-Plus Value = 0.00(ft) Default Y-Plus Value = 0.00(ft) ISOTROPIC SOIL PARAMETERS 2 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface (psf) (deg) No. (pcf) (pcf) Param. (psf) No 120 0 120.0 200 0 0 00 28 0 0 0 1 1 2 120.0 120.0 50.0 35.0 0.00 0.0 1 1 PIEZOMETRIC SURFACE(S) SPECIFIED Unit Weight of Water = 62.40 (pcf) Piezometric Surface No. 1 Specified by 4 Coordinate Points Pore Pressure Inclination Factor = 0.50 Point X-Water Y-Water No. (ft) (ft) 0.00 338.00 1 58.00 340.00 2 3 245.00 327.00 4 320.00 327.00 BOUNDARY LOAD(S) 1 Load(s) Specified Load X-Left X-Right Intensity Deflection No (ft) (ft) (psf) (deg) 300.0 260 00 320 00 1 0 0 NOTE - Intensity Is Specified As A Uniformly Distributed Force Acting On A Horizontally Projected Surface. A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified.

***** Trial Surfaces Have Been Generated. 5000 Surface(s) Initiate(s) From Each Of 20 Points Equally Spaced Along The Ground Surface Between X = 55.00(ft)and X = 65.00(ft)Each Surface Terminates Between X = 115.00(ft) and X = 300.00(ft) Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = 0.00(ft) 3.00(ft) Line Segments Define Each Trial Failure Surface. Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Evaluated. They Are Ordered - Most Critical First. * * Safety Factors Are Calculated By The Modified Bishop Method * * Total Number of Trial Surfaces Attempted = 0 Number of Trial Surfaces With Valid FS = 0 Statistical Data On All Valid FS Values: FS Max = 0.000 FS Min = 500.000 FS Ave = NaN Standard Deviation = 0.000 Coefficient of Variation = NaN % Failure Surface Specified By 45 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 55.000 339.897 1 57.831 338,903 2 60.689 337.993 3 63 573 337 166 4 66.480 5 336.423 69.407 335.766 6 72.352 335.193 8 75.312 334.707 78.285 334.307 81.269 10 333.994 11 333.768 84.260 12 87.257 333.629 13 90.257 333.578 14 93.256 333.614 15 96 254 333 737 16 99 247 333 947 17 102 232 334 245 18 105 207 334 629 19 108 170 335 099 335 656 20 111 118 21 114 048 336 298 22 116.959 337.026 23 119.847 337.837 24 122.710 338.733 25 125.546 339 711 26 128.352 340.772 27 131.127 341.914 28 133.866 343.136 29 136.569 344.437 30 139.233 345.817 31 141.856 347.273 32 144 435 348.806 33 146 969 350.412 34 149 454 352 092 35 151 890 353 843 36 154 274 355 665 357 555 37 156 603 3.8 158 877 359 512 39 161.092 361.535 40 163.248 363.621 41 165.342 365.769 42 167.373 367 978 43 169.339 370.244 171.238 44 372.567 45 171.712 373.183 90.527 ; Y = 436.610 ; and Radius = 103.032 Circle Center At X = Factor of Safety * * * 2.529 *** Individual data on the 0 slices

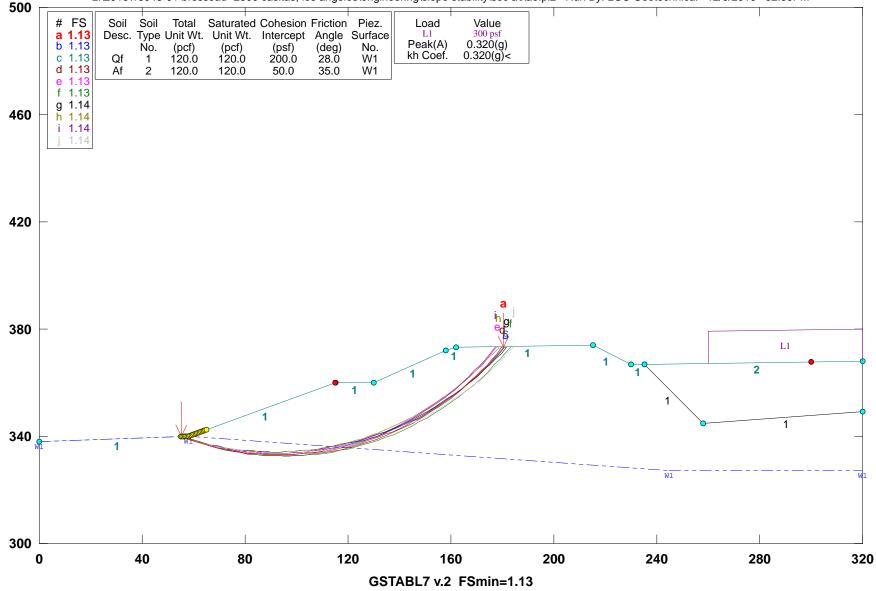
Z:xa.OUT Page 2

Z:xa.OUT Page 3

								Z	:xa.OUT	Page 3
		Wataw	Weter	This	mie	Feetb	mualta			
		Water	Water	Forgo	Tie Force Tan (lbs)	Earth	quake	cabarao		
Slice	Width W	eight Top	Bot	Norm	Tan	Hor.	Ver	Load		
No.	(ft)	(lbs) (lbs)	(lbs)	Norm (1bs)	(lbs)	(lbs)	(lbs)	(lbs)		
		Surface Speci				nts	(100)	(100)		
	Point		Y-Su							
	No.	(ft)	(ft							
	1	55.000		.897						
	2	57.812		.850						
	3	60.653	337	.889						
	4	63.523	337	.013						
	5	66.417	336	.224						
	6	69.334	335							
	7	72.271	334	.910						
	8	75.224	334	.385						
	9	78.193	333	.385 .949						
	10	81.173								
	11	84.162	333	.347						
	12	87.157	333	.181						
	13	90.156		.105						
	14	93.156	333							
	15	96.154		.223						
	16 17	99.148 102.134	333	.702						
	18	102.134		.076						
	10	108.075	334	.078						
	20	111.024	225	.092						
	21	113.954	335	.733						
	22	116.865		.462						
	23	119.751		.278						
	24	122.613	338	.180						
	25	125.445	339	.168						
	26	128.247	340	.241						
	27	131.015	341	.398						
	28	133.747	342	.637						
	29	136.440		.958						
	30	139.093	345	.359						
	31	141.702	346	.840						
	32	144.266	348	.398						
	33	146.781	350	.033 .743						
	34	149.246	351	.743						
	35 36	151.659 154.017	353	.381						
	37	156.318	355	205						
	38	158.560	359							
	39	160.741		.358						
	40	162.859		.483						
	41	164.912	365							
	42	166.899		.918						
	43	168.817	370	.225						
	44	170.665		.588						
	45	171.093		.172						
	Circle	Center At X =	91.18	7;Y=	432.824	; and 1	Radius =	99.7	25	
		Factor of Safe	ty							
		2.525	***							
		Surface Speci X-Surf			inate Poi	nts				
	Point No.	(ft)	Y-Su (ft							
	NO. 1	55.000		, .897						
	2	57.849		.958						
	2	60.724								
	4	63.622	337	.100 .323 627						
	5	66.540	336	.627						
	6	69.477	336	.014						
	7	72.429	335	.484						
	8	75.396	335	.038						
	9	78.374	334	.675						
	10	81.361		.395						
	11	84.355		.200						
	12	87.353	334	.089						

13	90.352	334.063	
14	93.352	334.121	
15	96.348	334.263	
16	99.340	334.490	
17	102.324	334.800	
18	105.298	335.195	
19	108.259	335.673	
20	111.207	336.234	
21	114.137	336.877	
22	117.048	337.603	
23	119.937	338.411	
24	122.802	339.299	
25	125.642	340.268	
26	128.453	341.316	
27	131.233	342.443	
28	133.980	343.647	
29	136.693	344.928	
30	139.368	346.286	
31	142.005	347.717	
32	144.600	349.223	
33	147.151	350.801	
34	149.657	352.450	
35			
	152.116	354.169	
36	154.526	355.956	
37	156.884	357.810	
38	159.189	359.730	
39	161.439	361.714	
40	163.633	363.761	
41	165.768	365.868	
42	167.843	368.035	
43	169.856	370.259	
44	171.806	372.539	
45	172.336	373.195	
	Center At X =	89.792 ; Y =	440.705 ; and Radius = 106.644
	actor of Safety		
**			
	Surface Specifi		linate Points
Point	X-Surf	Y-Surf	inace romes
No.	(ft)	(ft)	
1			
	55.000	339.897	
2	57.792	338.799	
3	60.616	337.788	
4	63.471	336.865	
5			
6	66.353	336.031	
	69.259	335.287	
7	69.259 72.187	335.287 334.634	
8	69.259 72.187 75.134	335.287 334.634 334.071	
	69.259 72.187	335.287 334.634	
8	69.259 72.187 75.134	335.287 334.634 334.071	
8 9	69.259 72.187 75.134 78.097	335.287 334.634 334.071 333.601	
8 9 10	69.259 72.187 75.134 78.097 81.073	335.287 334.634 334.071 333.601 333.222	
8 9 10 11	69.259 72.187 75.134 78.097 81.073 84.059	335.287 334.634 334.071 333.601 333.222 332.936	
8 9 10 11 12	69.259 72.187 75.134 78.097 81.073 84.059 87.053	335.287 334.634 334.071 333.601 333.222 332.936 332.743	
8 9 10 11 12 13 14	69.259 72.187 75.134 78.097 81.073 84.059 87.053 90.051 93.051	335.287 334.634 334.071 333.601 332.936 332.743 332.643 332.636	
8 9 10 11 12 13 14 15	69.259 72.187 75.134 78.097 81.073 84.059 87.053 90.051 93.051 96.050	335.287 334.634 334.071 333.601 332.936 322.743 332.643 332.636 332.722	
8 9 10 11 12 13 14 15 16	69,259 72.187 75.134 78.097 81.073 84.059 87.053 90.051 93.051 96.050 99.045	335.287 334.634 334.071 333.601 332.936 322.743 332.643 332.643 332.636 332.722 332.901	
8 9 10 11 12 13 14 15 16 17	69 259 72.187 75.134 78.097 81.073 84.059 87.053 90.051 93.051 96.050 99.045 102.032	335.287 334.634 334.071 333.601 333.222 332.936 332.643 332.636 332.722 332.901 333.173	
8 9 10 11 12 13 14 15 16 17 18	69.259 72.187 75.134 78.097 81.073 84.059 87.053 90.051 93.051 96.050 99.045 102.032 105.010	335.287 334.634 334.071 333.601 333.222 332.936 332.643 332.643 332.643 332.722 332.901 333.173 333.537	
8 9 10 11 12 13 14 15 16 17 18 19	69.259 72.187 75.134 78.097 81.073 84.059 87.053 90.051 93.051 96.050 99.045 102.032 105.010 107.975	335.287 334.634 334.071 333.601 332.222 332.936 332.643 332.643 332.643 332.722 332.722 332.722 333.173 333.537 333.537 333.537	
8 9 10 11 12 13 14 15 16 17 18 19 20	69.259 72.187 75.134 78.097 81.073 84.059 87.053 90.051 95.051 95.050 99.045 102.032 105.010 107.975 110.925	$\begin{array}{r} 335.287\\ 334.634\\ 334.071\\ 333.601\\ 333.222\\ 332.936\\ 332.743\\ 332.636\\ 332.723\\ 332.636\\ 332.722\\ 332.901\\ 333.537\\ 333.537\\ 333.994\\ 334.542\end{array}$	
8 9 10 11 12 13 14 15 16 17 18 19 20 21	69,259 72.187 75.134 78.097 81.073 84.059 87.053 90.051 93.051 96.050 99.045 102.032 105.010 107.975 110.925 113.856	335.287 334.634 334.071 333.601 332.2936 332.743 332.643 332.643 332.722 332.901 333.173 333.537 333.994 334.542 335.182	
8 9 10 11 12 13 14 15 16 17 18 19 20 20 21 22	69.259 72.187 75.134 78.097 81.073 84.059 87.053 90.051 93.051 96.050 99.045 102.032 105.010 107.975 110.925 113.856 116.765	$\begin{array}{r} 335.287\\ 334.634\\ 334.071\\ 333.601\\ 333.222\\ 332.936\\ 332.743\\ 332.636\\ 332.743\\ 332.636\\ 332.722\\ 332.901\\ 333.537\\ 333.537\\ 333.537\\ 333.557\\ 333.55182\\ 334.542\\ 335.182\\ 335.912 \end{array}$	
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	69.259 72.187 75.134 78.097 81.073 84.059 87.053 90.051 93.051 96.050 99.045 102.032 105.010 107.975 110.925 113.856 116.765	$\begin{array}{r} 335.287\\ 334.634\\ 334.071\\ 333.601\\ 333.222\\ 332.936\\ 332.643\\ 332.643\\ 332.643\\ 332.636\\ 332.722\\ 332.901\\ 333.173\\ 333.537\\ 333.537\\ 333.537\\ 333.594\\ 335.542\\ 335.182\\ 335.182\\ 335.912\\ 336.732\end{array}$	
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	69.259 72.187 75.134 78.097 81.073 84.059 87.053 90.051 93.051 93.051 96.050 99.045 102.032 105.010 107.975 110.925 113.856 116.765 119.651 122.510	$\begin{array}{r} 335.287\\ 334.634\\ 334.071\\ 333.601\\ 333.222\\ 332.936\\ 332.743\\ 332.643\\ 332.643\\ 332.6636\\ 332.722\\ 332.901\\ 333.173\\ 333.537\\ 333.537\\ 333.537\\ 333.5182\\ 334.542\\ 335.912\\ 335.912\\ 335.912\\ 335.912\\ 337.661\\ \end{array}$	
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 22 23 24 25	69.259 72.187 75.134 78.097 81.073 84.059 87.053 90.051 93.051 95.050 99.045 102.032 105.010 107.975 110.925 113.856 116.765 119.651 122.510 125.510	335.287 334.634 334.071 333.601 332.222 332.936 332.743 332.643 332.643 332.643 332.722 332.901 333.173 333.537 333.594 334.542 335.182 335.912 336.732 337.641 338.639	
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	69,259 72.187 75.134 78.097 81.073 84.059 87.053 90.051 93.051 96.050 99.045 102.032 105.010 107.975 110.925 113.856 116.765 119.651 122.510 125.339 128.136	$\begin{array}{r} 335.267\\ 334.634\\ 334.071\\ 333.601\\ 333.222\\ 332.936\\ 332.743\\ 332.636\\ 332.723\\ 332.636\\ 332.722\\ 332.901\\ 333.173\\ 333.577\\ 333.994\\ 334.542\\ 335.182\\ 335.912\\ 335.912\\ 335.912\\ 337.641\\ 338.639\\ 339.723\\ \end{array}$	
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	69.259 72.187 75.134 78.097 81.073 84.059 87.053 90.051 93.051 95.045 102.032 105.010 107.975 110.925 113.856 116.765 119.651 122.510 125.339 128.136 130.898	335.287 334.634 334.071 333.202 332.936 332.743 332.643 332.636 332.722 332.901 333.173 333.537 333.994 334.542 335.182 335.182 335.182 335.641 338.639 339.723 340.885	
8 9 10 11 12 13 14 15 16 17 18 19 20 21 20 21 22 23 24 25 26 27 28	69,259 72.187 75.134 78.097 81.073 84.059 87.053 90.051 93.051 96.050 99.045 102.032 105.010 107.975 110.925 113.856 116.765 119.651 122.510 125.339 128.136 130.896 133.623	335.287 334.634 334.071 333.601 333.222 332.936 332.743 332.643 332.643 332.643 332.722 332.901 333.173 333.537 333.537 333.537 333.542 335.182 335.182 335.912 336.732 337.641 338.639 339.723 340.895 342.151	
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	69.259 72.187 75.134 78.097 81.073 84.059 87.053 90.051 93.051 95.045 102.032 105.010 107.975 110.925 113.856 116.765 119.651 122.510 125.339 128.136 130.898	335.287 334.634 334.071 333.202 332.936 332.743 332.643 332.636 332.722 332.901 333.173 333.537 333.994 334.542 335.182 335.182 335.182 335.641 338.639 339.723 340.885	
8 9 10 11 12 13 14 15 16 17 18 19 20 21 20 21 22 23 24 25 26 27 28	69.259 72.187 75.134 78.097 81.073 84.059 87.053 90.051 93.051 90.045 102.032 105.010 107.975 110.925 113.856 116.765 119.651 122.510 128.136 130.898 133.623 136.307 138.948	$\begin{array}{r} 335.287\\ 334.634\\ 334.071\\ 333.601\\ 333.222\\ 332.936\\ 332.743\\ 332.636\\ 332.743\\ 332.636\\ 332.722\\ 332.636\\ 332.722\\ 333.537\\ 333.591\\ 333.591\\ 333.591\\ 333.591\\ 333.591\\ 333.591\\ 333.591\\ 333.639\\ 333.7641\\ 338.639\\ 339.723\\ 340.895\\ 342.151\\ 334.991\\ 344.914 \end{array}$	
8 9 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 27 28 29	69.259 72.187 75.134 78.097 81.073 84.059 87.053 90.051 93.051 93.051 90.045 102.032 105.010 107.975 110.925 113.856 116.765 119.651 122.510 125.339 128.136 130.898 133.623 136.307	$\begin{array}{r} 335.287\\ 334.634\\ 334.071\\ 333.601\\ 333.222\\ 332.936\\ 332.743\\ 332.636\\ 332.743\\ 332.636\\ 332.722\\ 332.901\\ 333.537\\ 333.537\\ 333.537\\ 333.537\\ 333.557\\ 333.55182\\ 335.182\\ 335.182\\ 335.182\\ 335.182\\ 335.182\\ 335.641\\ 338.639\\ 339.723\\ 340.895\\ 342.151\\ 343.491\\ \end{array}$	
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	69.259 72.187 75.134 78.097 81.073 84.059 87.053 90.051 93.051 90.045 102.032 105.010 107.975 110.925 113.856 116.765 119.651 122.510 128.136 130.898 133.623 136.307 138.948	$\begin{array}{r} 335.287\\ 334.634\\ 334.071\\ 333.601\\ 333.222\\ 332.936\\ 332.743\\ 332.636\\ 332.743\\ 332.636\\ 332.722\\ 332.636\\ 332.722\\ 333.537\\ 333.591\\ 333.591\\ 333.591\\ 333.591\\ 333.591\\ 333.591\\ 333.591\\ 333.639\\ 333.7641\\ 338.639\\ 339.723\\ 340.895\\ 342.151\\ 334.991\\ 344.914 \end{array}$	

	Z:xa.OUT Page 5		Z:xa.OUT Page 6
<pre>32 144.092 348.001 33 146.589 349.663 34 149.034 351.402 35 151.423 353.216 36 153.756 355.103 37 156.028 357.061 38 158.239 359.089 39 160.385 361.185 40 162.466 363.346 41 164.479 365.571 42 166.421 367.857 43 168.292 370.202 44 170.089 372.605 45 170.0478 373.160 Circle Center At X = 91.780; Y = 429.314; and Radius = Factor of Safety **** 2.531 *** Failure Surface Specified By 46 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 55.000 339.897 2 57.800 338.819 3 60.630 337.825 4 63.489 336.915 5 66.374 336.921 5 66.374 336.921 5 66.374 336.921 6 69.282 335.354 7 72.210 334.703 8 75.157 334.703 8 75.157 334.733 8 75.157 334.733 8 75.157 334.733 8 75.157 334.733 8 175.127 332.947 12 87.071 332.977 12 87.071 332.977 12 87.071 332.615 15 96.068 332.672 16 99.065 332.615 15 96.068 332.672 16 99.065 332.615 15 96.068 332.672 16 99.065 332.615 15 96.068 332.672 16 99.065 332.615 15 96.068 332.672 16 99.065 332.615 15 96.068 332.672 16 99.065 332.615 15 96.068 332.672 16 99.065 332.615 15 96.068 332.672 16 99.065 332.615 15 96.068 332.672 16 99.065 332.615 15 96.068 332.672 16 99.065 332.615 17 102.055 333.055 18 105.038 133.775 17 102.055 333.055 18 105.038 133.775 17 102.055 333.055 18 105.038 14 105.208 14 107.207 14 14 14 14 14 14 14 14 14 14 14 14 14 1</pre>	96.687	Point X-Surf Y-Surf No. (ft) (ft) 1 55.000 338.819 3 60.630 337.825 4 63.643 335.012 5 66.232 335.012 6 66.232 335.012 7 72.210 334.703 8 75.157 334.139 9 77.112 333.663 10 81.094 333.276 11 84.079 332.977 12 87.071 332.767 13 90.669 332.645 14 93.069 332.645 14 93.069 332.645 14 93.069 332.645 16 99.06 333.879 19 108.009 333.793 19 108.009 333.793 19 108.009 333.793 19 108.009 333.794 19 108.009 333.794 19 108.009 333.794 19 108.009 333.794 19 108.009 333.794 19 108.009 333.795 19 108.009 333.794 20 110.967 334.294 21 113.907 334.883 22 116.831 335.559 23 119.733 336.322 24 122.610 337.171 25 125.461 338.105 26 128.283 339.124 27 131.073 340.226 28 339.124 29 136.549 344.76 30 139.230 344.022 30 139.230 344.022 30 139.230 344.023 31 144.870 345.447 32 144.466 346.950 33 147.017 348.530 34 149.519 350.185 35 151.971 351.913 36 154.371 357.153 39 150.003 357.523 39 150.003 377.523 39 150.003 357.523 39 150.003 357.523 30 150.003 3	.857


10.00 kp 1 10.00 kp 1 <th></th> <th></th>		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	Z:xa.OUT Page 8
	18 105.140 333.932 19 108.110 334.860 20 111.067 334.860 21 114.003 335.452 23 119.833 336.888 24 122.712 337.731 25 125.566 338.657 26 128.391 339.665 27 131.187 340.754 30 139.869 344.496 31 142.021 345.899 32 144.631 347.378 33 147.194 348.931 34 149.718 336.558 35 154.103 355.864 38 159.302 357.769 39 161.563 359.741 40 163.766 361.777 41 165.910 363.877 42 177.867 370.529 45 173.855 372.861 46 174.136 373.229 47 174.136 373.229 47 174.137 370.529 48 177.867 370.529 49 174.136 373.229 40 163.766 361.777 41 165.910 363.877 41 165.910 363.877 42 177.867 370.529 43 177.867 370.529 44 177.867 370.529 45 173.855 372.861 46 174.136 373.229 47 174.136 373.229 48 177.867 370.529 49 174.136 373.229 40 163.766 361.777 41 26.968 355.864 38 173.857 372.861 46 174.136 373.229 47 174.136 373.229 48 177.867 370.529 49 174.136 373.229 40 163.766 361.777 41 26.968 355.961 40 163.766 361.777 41 165.910 363.877 41 165.910 363.877 42 174.136 373.229 43 177.8102 368.244 44 177.967 370.529 45 173.857 372.861 46 174.136 373.229 47 174.136 373.229 47 174.136 373.229 47 174.136 373.229 48 75.774 34.940 39 9 78.333 44.001 30 9.333 334.043 31 40.711 337.357 49 66.520 336.651 50 66.520 336.651 50 66.520 336.651 51 66.63.55.407 51 66.63.250 335.941 71 10.656 335.941 71 10.656 335.941 71 10.833 334.001 11 84.333 334.001 13 90.333 334.001 13 90.333 334.003 14 47.333 334.003 13 90.333 334.003 14 49 3.332 334.124 15 96.327 334.230 17 100.265 335.384 19 100.220 335.847 20 111.158 336.454 21 11.6974 337.924 22 116.974 337.924 23 116.974 337.924 24 126.912 345.817 25 122.912 340.764 25 122.913 344.612 21 124.643 345.744 22 116.974 337.924 23 136.443 345.649 24 137.663 344.146 25 122.913 344.612 25 122.913 344.612 21 124.643 345.649 21 134.676 344.249 32 144.219 350.224 33 .444.219 350.224 34 142.19 350.224 35 .244 35 .244 340.774 35 .244 340.774	36 153.911 357.200 37 156.198 359.200 39 136.428 361.220 40 162.706 365.444 41 164.750 367.640 42 166.729 369.55 43 166.729 369.257 44 169.566 1772.207 44 169.566 1772.207 45 169.566 1772.207 46 169.566 1772.207 47 12.22 *** Fallsmither of affety *** 2.52 *** Fallsmither of affety 144 Coordinate Points Point Vet (ft) 1 55.000 339.897 2 57.842 319.897 3 57.842 319.897 3 66.652 335.561 5 66.520 335.561 5 66.520 335.561 5 66.520 335.561 5 66.520 335.467 7 72.468 335.467 7 72.468 335.467 7 72.468 335.467 1 8 77.453 334.601 1 8 8.340 334.329 1 8 4.335 344.128 1 9 778.553 334.601 1 0 81.340 334.329 1 1 84.335 344.128 1 9 778.553 334.128 1 9 778.153 344.128 1 9 778.153 344.128 1 9 778.153 344.128 1 9 778.153 344.128 1 9 778.154 2 9 136.428 345.129 2 9 136.428 345.129 2 9 136.428 345.129 3 14.876 3 14.876 3 15.977 344.128 3 15.977 344.128 3 15.978 344.128 3 15.978 347.131 3 144.672 348.660 3 15.978 347.297 3 16.0598 363.309 4 160.598 363.7785 4 366.0077.131 3 160.598 137.725 5 7780 333.785 5 7780

Z:xa.OUT Page 9

5	66	308	225 00	11							
5		205	335.90 335.12								
7		1205	334.43								
8		063	333.82								
9		019	333.31								
10		990	332.89								
11		972	332.57								
12		963	332.33								
13		959	332.18								
14		959	332.13								
15	95.	958	332.17	73							
16	98.	955	332.30)4							
17	101.	947	332.52	26							
18	104.	931	332.84	10							
19	107.	903	333.24	16							
20	110.	862	333.74	12							
21	113.	804	334.32	28							
22	116.		335.00								
23	119.		335.71								
24	122.		336.62								
25	125.		337.56								
26	128.		338.59								
27	130.		339.71								
28	133.		340.91								
29	136.		342.19								
30	139.		343.56								
31	141.		345.00								
32	144.		346.53								
33	146.		348.13								
34	149.		349.82								
35 36	151. 154.		351.57 353.41								
30	154.		355.31								
38	158.		357.28								
39	160.		359.32								
40	163.		361.43								
41	165.		363.61								
42	167.		365.84								
43	169.		368.14								
44	170.		370.49								
45	172.		372.90								
46		894	373.20								
Circle	Center At		93.197		429	.992	; and	Radius	=	97.858	
	Factor of										
÷	*** 2.53	33	***								
	**** EN	ID OF	GSTABL7 OU	JTPUT	****						

2800 West Casistas / 16048-01 / Cross Sect A-A' / Seismic

z:\2016\16048-01 brosseau- 2800 casitas, los angeles\engineering\slope stability\sec a\xae.pl2 Run By: LGC Geotechnical 12/9/2016 02:30PM

Safety Factors Are Calculated By The Modified Bishop Method

Page 1

Z:xae.OUT Page 2

							Z:xae.OUT	Page
		*** GSTAB						
** Original Versio (All 1 *******	Rights Reser	ary 1996; ved-Unauth *********	Current Ve orized Use	r. 2.0 Prohi	05.3, Fe bited)	b. 2		
Modified Bish (Includes Spen Including Pies Nonlinear Und	ncer & Morgen /Pile, Rein	ed Janbu, nstern-Pri forcement,	or GLE Met ce Type An Soil Nail	alysis , Tieb) ack,			
Anisotropic So Surfaces, Pseu ************************	udo-Static &	Newmark E	arthquake,	and A	pplied F	orce		
Analysis Run Date: Time of Run:	12/9/2 02:30P	м						
Run By: Input Data Filename:	Z:\201	otechnical 6\16048-01	Brosseau-	2800	Casitas,	Los	Angeles\Eng	inee
ring\Slope Stability\Sec Output Filename: ring\Slope Stability\Sec	Z:\201	6\16048-01	Brosseau-	2800	Casitas,	Los	Angeles\Eng	inee
Unit System: Plotted Output Filena	Englis		Brosseau-	2800	Casitas,	Los	Angeles\Eng	inee
ring\Slope Stability\Sec PROBLEM DESCRIPTION:	2800 West			/				
BOUNDARY COORDINATES	Cross Sect	A-A' / S	eismic					
9 Top Boundarie 11 Total Boundarie								
Boundary X-Left	Y-Left	X-Right	Y-Right		il Type			
No. (ft) 1 0.00	(ft) 338.00	(ft) 58.00	(ft) 340.00		low Bnd			
2 58.00	340.00	115.00	360.00		1			
3 115.00	360.00	130.00	360.00		1			
4 130.00	360.00	158.00	372.00		1			
5 158.00 6 162.00	372.00 373.00	162.00 215.00	373.00 374.00		1 1			
7 215.00	374.00	215.00	367.00		1			
8 230.00	367.00	235.00	367.00		1			
9 235.00	367.00	320.00	368.00		2			
10 235.00	367.00	258.00	345.00		1			
11 258.00	345.00	320.00	349.00		1			
User Specified Y-Orig Default X-Plus Value		300.00(ft)						
Default Y-Plus Value ISOTROPIC SOIL PARAME	= 0.00(ft)							
2 Type(s) of Soil Soil Total Saturate	d Cohesion	Friction	Pore P	ressur	e Piez			
Type Unit Wt. Unit W	. Intercept	Angle	Pressure C					
No. (pcf) (pcf)	(psf)	(deg)	Param.	(psf)	No.			
1 120.0 120.0	200.0	28.0	0.00	0.0	1			
2 120.0 120.0 1 PIEZOMETRIC SURFACE	50.0	35.0	0.00	0.0	1			
Unit Weight of Water								
Piezometric Surface 1			Coordinat	e Poin	ts			
Pore Pressure Inclina		= 0.50						
Point X-Water No. (ft)	Y-Water (ft)							
1 0.00	338.00							
2 58.00	340.00							
3 245.00	327.00							
4 320.00	327.00							
BOUNDARY LOAD(S)	ed.							
l Load(s) Specif: Load X-Left	X-Right	Intens	ity De	flecti	on			
No. (ft)	(ft)	(psf		(deg)				
1 260.00	320.00	300	.0	0.0				
NOTE - Intensity Is & Force Acting (On A Horizon	tally Proj	ected Surf	ace.				
Specified Peak Ground Specified Horizontal								
Specification and the second at				2.520				

Specified Vertical Earthquake Coefficient (kv) = 0.000(g) Specified Seismic Pore-Pressure Factor = 0.000 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified. ***** Trial Surfaces Have Been Generated. 5000 Surface(s) Initiate(s) From Each Of 20 Points Equally Spaced Along The Ground Surface Between X = 55.00(ft)and X = 65.00(ft) Each Surface Terminates Between X = 115.00(ft) and X = 300.00(ft) Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = 0.00(ft) 3.00(ft) Line Segments Define Each Trial Failure Surface. Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Evaluated. They Are Ordered - Most Critical First. * * Safety Factors Are Calculated By The Modified Bishop Method * * Total Number of Trial Surfaces Attempted = 0 Number of Trial Surfaces With Valid FS = 0 Statistical Data On All Valid FS Values: FS Max = 0.000 FS Min = 500.000 FS Ave = NaN Standard Deviation = 0.000 Coefficient of Variation = NaN % Failure Surface Specified By 48 Coordinate Points Point X-Surf Y-Surf (ft) (ft) No 55.000 339.897 1 57.834 2 338,914 60.694 338.006 3 4 63.576 337.173 5 66.479 336.417 6 69.401 335.738 72.340 335.136 7 8 75.294 334.612 9 78.261 334.166 10 81.238 333.798 11 84.224 333.509 12 87.217 333.299 13 90.214 333.168 14 93.214 333.116 15 96 213 333 143 16 99 212 333 249 17 102.206 333.434 18 105.194 333.698 19 108.175 334.041 20 111.145 334.462 21 114.103 334.961 22 117.047 335.538 23 119.975 336.193 24 122.884 336.924 25 125.773 337.732 26 128.640 338.616 27 131.483 339.576 28 134.299 340.609 29 137.087 341.717 30 139.845 342.898 31 32 142.570 344.151 145 262 345.476 33 346 871 147.918 34 150.536 348.335 35 153.115 349.869 36 155.652 351.469 37 158.146 353.136 38 160.596 354.869 39 162.999 356.665 40 165.353 358.524 41 167.658 360.444 42 169.911 362.424 43 172.112 364.464 44 174.258 366.560 45 176.347 368.712

Z:xae.OUT Page 3

									Z·Xde	.001
	46		178.380	270	.919					
	40		180.353							
	48		180.494							
	Circl	e Center	At X =	93.69	1 ; Y =	446.869	; and Ra	dius =	113.754	
		Factor	of Safe	ety						
			1.134							
		Individu		on the	0 sli					
				Water		Tie	Earthqu			
a1 .			Force	Force	Force	Force	Forc	e Sur		
Slice No.	Width (ft)	Weight (lbs)	(lbg)	Bot (lbs)	Norm (lbg)	(lba)	Hor (lbg)	(lbg)	Load (lbs)	
NO.			(IDS) ce Speci	fied By 4	48 Coordi	(IDS)	(IDS)	(108)	(IDS)	
	Poi		X-Surf	Y-Su		inace ror.	1105			
	No		(ft)	(ft						
	1		55.000							
	2		57.853	338	.968					
	3		60.728	338						
	4		63.625	337						
	5		66.540	336						
	6 7		69.472	335						
	8		72.420 75.381		.431 .948					
	9		78.353		.540					
	10		81.334							
	11		84.323							
	12		87.318							
	13		90.316							
	14		93.316							
	15		96.316							
	16		99.313							
	17 18		102.306							
	18		105.293							
	20		111.242							
	21		114.199	335						
	22		117.142							
	23		120.070	336						
	24		122.980	337						
	25		125.871	338						
	26		128.740	339						
	27 28		131.587 134.408	340	.170					
	20		134.408		.282					
	30		139.967		.445					
	31		142.702		.678					
	32		145.405	345	.980					
	33		148.074	347						
	34		150.707	348						
	35		153.302	350						
	36 37		155.859 158.375	351 353						
	37		160.848							
	39		163.277							
	40		165.661	358						
	41		167.997							
	42		170.285	362						
	43		172.523							
	44		174.709							
	45		176.843							
	46 47		178.922 180.945	370 373						
	47		181.139	373						
						451.517	; and Ra	dius =	117.878	
			of Safe	ety						
		***	1.134	* * *						
			ace Speci	fied By 4		inate Poi	nts			
	Poi		X-Surf	Y-Su						
	No		(ft)	(ft						
	1		55.000 57.853	339	.897 .968					
	2		5/.853	338	. 908					

				Z:xae.Ot
3	60.728	338.113		
4	63.625	337.331		
5 6	66.540	336.624		
7	69.472 72.420	335.990 335.431		
8	75.381	334.948		
9	78.353	334.540		
10	81.334	334.208		
11 12	84.323 87.318	333.952 333.772		
13	90.316	333.668		
14	93.316	333.640		
15 16	96.316 99.313	333.689 333.814		
17	102.306	334.016		
18	105.293	334.293		
19	108.273	334.647		
20 21	111.242 114.199	335.076 335.580		
22	117.142	336.160		
23	120.070	336.814		
24	122.980	337.543		
25 26	125.871 128.740	338.345 339.221		
27	131.587	340.170		
28	134.408	341.190		
29 30	137.202 139.967	342.282 343.445		
31	142.702	344.678		
32	145.405	345.980		
33	148.074	347.350		
34 35	150.707 153.302	348.788 350.292		
36	155.859	351.862		
37	158.375	353.496		
38 39	160.848	355.194 356.955		
40	163.277 165.661	358.776		
41	167.997	360.658		
42	170.285	362.598		
43 44	172.523 174.709	364.596 366.650		
45	176.843	368.760		
46	178.922	370.923		
47 48	180.945 181.139	373.138 373.361		
	iter At X =	92.895 ; Y =	451.517 ; and Radius =	117.878
Fac	tor of Safety			
***	1.134 **		inche Deinte	
Point Point	X-Surf	ed By 48 Coord Y-Surf	inate points	
No.	(ft)	(ft)		
1 2	55.000	339.897		
2	57.815 60.658	338.860 337.901		
4	63.525	337.020		
5	66.416	336.217		
6 7	69.327 72.257	335.493 334.849		
8	75.204	334.285		
9	78.165	333.802		
10	81.138	333.399		
11 12	84.120 87.111	333.078 332.839		
13	90.107	332.681		
14	93.106	332.604		
15	96.106	332.610		
16 17	99.104 102.100	332.697 332.866		
18	105.089	333.117		

1	
Z:xae.OUT Page 5	Z:xae.OUT Page 6
19 108.071 333.449	35 152.876 351.424
20 111.042 333.863	35 152.070 551.424 36 155.380 353.077
21 114.001 334.357	37 157.839 354.796
22 116.946 334.932	38 160.251 356.579
23 119.873 335.587 24 122.782 336.321	39 162.615 358.426 40 164.929 360.336
25 125.670 337.135	41 167.191 362.306
26 128.534 338.027	42 169.400 364.336
27 131.373 338.996	43 171.555 366.424
28 134.184 340.043 29 136.966 341.166	44 173.652 368.568 45 175.692 370.768
30 139.716 342.365	46 177.673 373.022
31 142.433 343.638	47 177.905 373.300
32 145.113 344.985	Circle Center At X = 92.091 ; Y = 446.247 ; and Radius = 112.633
33 147.756 346.404 34 150.360 347.895	Factor of Safety *** 1.134 ***
35 152.921 349.456	Failure Surface Specified By 49 Coordinate Points
36 155.440 351.087	Point X-Surf Y-Surf
37 157.912 352.785	No. (ft) (ft)
38 160.338 354.551	1 55.000 339.897
39 162.714 356.382 40 165.040 358.277	2 57.823 338.881 3 60.671 337.940
41 167.313 360.235	4 63.543 337.073
42 169.532 362.254	5 66.437 336.282
43 171.695 364.333 44 173.800 366.470	6 69.351 335.566
44 173.800 366.470 45 175.847 368.664	7 72.282 334.926 8 75.228 334.364
46 177.832 370.912	9 78.189 333.878
47 179.756 373.214	10 81.161 333.470
48 179.853 373.337 Circle Center At X = 94.402 ; Y = 442.581 ; and Radius = 109.985	11 84.143 333.139 12 87.132 332.886
Factor of Safety	12 07.132 332.712
*** 1.134 ***	14 93.125 332.615
Failure Surface Specified By 47 Coordinate Points	15 96.125 332.597
Point X-Surf Y-Surf No. (ft) (ft)	16 99.125 332.658 17 102.121 332.796
1 55.000 339.897	18 105.114 333.013
2 57.846 338.946	19 108.099 333.307
3 60.715 338.072 4 63.608 337.275	20 111.076 333.680 21 114.042 334.129
5 66.520 336.555	21 114.042 554.129 22 116.995 334.657
6 69.450 335.913	23 119.934 335.261
7 72.397 335.349	24 122.856 335.941
8 75.357 334.864 9 78.330 334.458	25 125.759 336.698 26 128.641 337.530
10 81.312 334.131	27 131.501 338.437
11 84.302 333.884	28 134.336 339.418
12 87.297 333.716 13 90.296 333.628	29 137.144 340.473
13 90.296 333.628 14 93.296 333.621	30 139.924 341.601 31 142.674 342.801
15 96.295 333.693	32 145.391 344.072
16 99.291 333.844	33 148.074 345.414
17 102.282 334.076 18 105.266 334.387	34 150.721 346.825 35 153.331 348.305
19 108.240 334.778	36 155.901 349.853
20 111.203 335.248	37 158.430 351.467
21 114.153 335.796 22 117.087 336.423	38 160.916 353.146
22 117.087 336.423 23 120.003 337.127	39 163.357 354.890 40 165.752 356.697
24 122.899 337.909	41 168.098 358.565
25 125.773 338.768	42 170.396 360.495
26 128.624 339.703 27 131.449 340.714	43 172.642 362.483 44 174.835 364.530
2/ 131.449 340.714 28 134.245 341.800	44 1/4.835 304.530 45 176.975 366.633
29 137.012 342.960	46 179.059 368.791
30 139.747 344.193	47 181.085 371.003
31 142.448 345.498 32 145.113 346.875	48 183.054 373.267 49 183.163 373.399
32 147.741 348.322	199 5.105 5.5599 Circle Center At X = 95.319; Y = 447.557; and Radius = 114.963
34 150.329 349.839	Factor of Safety

Z:xae.OUT Page 7	Z:xae.OUT Page 8
*** 1.134 *** Failure Surface Specified By 48 Coordinate Points	13 90.392 334.131 14 93.392 334.148
Point X-Surf Y-Surf No. (ft) (ft)	15 96.391 334.241 16 99.386 334.411
1 55.000 339.897 2 57.871 339.025	17 102.376 334.659
3 60.762 338.224	19 108.331 335.383
4 63.671 337.494 5 66.598 336.835	20 111.293 335.859 21 114.242 336.412
6 69.540 336.248 7 72.496 335.734	22 117.175 337.040 23 120.092 337.743
8 75.463 335.292 9 78.440 334.923	24 122.989 338.520 25 125.866 339.372
10 81.426 334.627	26 128.720 340.298
11 84.418 334.405 12 87.414 334.256	27 131.549 341.296 28 134.351 342.367
13 90.413 334.180 14 93.413 334.177	29 137.125 343.509 30 139.869 344.722
15 96.412 334.249 16 99.408 334.393	31 142.580 346.006 32 145.258 347.358
17 102.401 334.612	33 147.901 348.779
18 105.386 334.903 19 108.364 335.267	34 150.505 350.267 35 153.071 351.821
20 111.332 335.705 21 114.288 336.214	36 155.596 353.441 37 158.079 355.125
22 117.231 336.797 23 120.159 337.451	38 160.518 356.873 39 162.911 358.682
24 123.070 338.176 25 125.962 338.973	40 165.256 360.552 41 167.553 362.482
26 128.834 339.841	42 169.800 364.471
27 131.684 340.778 28 134.510 341.785	43 171.994 366.516 44 174.136 368.617
29 137.310 342.861 30 140.084 344.005	45 176.223 370.772 46 178.254 372.980
31 142.828 345.217 32 145.542 346.496	47 178.544 373.312 Circle Center At X = 91.256 ; Y = 450.957 ; and Radius = 116.829
33 148.223 347.841	Factor of Safety
34 150.871 349.251 35 153.484 350.726	Failure Surface Specified By 47 Coordinate Points
36 156.059 352.264 37 158.596 353.865	Point X-Surf Y-Surf No. (ft) (ft)
38 161.094 355.528 39 163.549 357.251	1 55.000 339.897 2 57.827 338.892
40 165.962 359.034 41 168.330 360.876	3 60.680 337.966 4 63.558 337.119
42 170.653 362.775	5 66.458 336.352
43 172.928 364.730 44 175.154 366.740	6 69.379 335.664 7 72.317 335.058
45 177.331 368.805 46 179.457 370.922	8 75.270 334.533 9 78.238 334.089
47 181.529 373.091 48 181.787 373.373	10 81.216 333.728 11 84.203 333.449
Circle Center At $X = 92.005$; $Y = 456.574$; and Radius = 122.405 Factor of Safety	12 87.196 333.252 13 90.194 333.138
*** 1.135 ***	14 93.194 333.106
Failure Surface Specified By 47 Coordinate Points Point X-Surf Y-Surf	15 96.193 333.157 16 99.190 333.291
No. (ft) (ft) 1 55.000 339.897	17 102.183 333.507 18 105.168 333.806
2 57.864 339.002 3 60.749 338.182	19 108.143 334.187 20 111.107 334.650
4 63.655 337.436 5 66.579 336.764	21 114.058 335.195 22 116.992 335.820
6 69.519 336.168	23 119.907 336.526
7 72.474 335.648 8 75.441 335.204	24 122.802 337.313 25 125.675 338.179
9 78.418 334.836 10 81.404 334.544	26 128.522 339.123 27 131.342 340.146
11 84.396 334.330 12 87.393 334.192	28 134.133 341.247 29 136.893 342.423

Z:xae.OUT Page 9

					Z·Xde.(
30	139.619	343.676			
31	142.309	345.003			
32	144.962	346.404			
33	147.576	347.877			
34	150.147	349.422			
35	152.675	351.037			
36	155.158	352.721			
37	157.593	354.473			
38	159.979	356.292			
39 40	162.314 164.596	358.175 360.123			
40	166.824	362.132			
42	168.995	364.202			
43	171.109	366.331			
44	173.163	368.518			
45	175.155	370.761			
46	177.086	373.057			
47	177.269	373.288	441 010		100 004
	nter At X =	92.838 ; Y =	441.910	; and Radius =	108.804
ra ***	ctor of Safety. 1.135 **	*			
	1.100	ed By 49 Coord	inate Poir	ts	
Point	X-Surf	Y-Surf	111000 1011		
No.	(ft)	(ft)			
1	55.000	339.897			
2	57.860	338.991			
3	60.741	338.154			
4	63.642	337.388			
5	66.560	336.693			
6 7	69.494 72.443	336.069 335.516			
8	75.404	335.035			
9	78.376	334.627			
10	81.357	334.290			
11	84.346	334.026			
12	87.340	333.835			
13	90.337	333.716			
14	93.337	333.671			
15	96.337	333.698			
16 17	99.335 102.330	333.798 333.971			
18	102.330	334.217			
19	108.303	334.535			
20	111.278	334.926			
21	114.242	335.388			
22	117.194	335.923			
23	120.132	336.529			
24	123.054	337.207			
25 26	125.959 128.846	337.955 338.773			
20	131.711	339.662			
28	134.554	340.619			
29	137.373	341.646			
30	140.166	342.741			
31	142.932	343.903			
32	145.668	345.132			
33	148.374	346.427			
34 35	151.048 153.688	347.788			
36	156.293	349.213 350.702			
37	158.860	352.254			
38	161.389	353.867			
39	163.878	355.542			
40	166.326	357.276			
41	168.731	359.070			
42	171.091	360.921			
43	173.406	362.829			
44	175.674	364.793			
45 46	177.894 180.063	366.812 368.883			
40	100.003	200.002			

47 182.182 371.007 48 184.249 373.182 49 184.468 373.424 Circle Center At X = 93.715 ; Y = 457.147 ; and Radius = 123.477 Factor of Safety *** 1.135 *** **** END OF GSTABL7 OUTPUT ****

Z:xae.OUT Page 10

Appendix E General Earthwork and Grading Specifications

1.0 <u>General</u>

1.1 <u>Intent</u>

These General Earthwork and Grading Specifications are for the grading and earthwork shown on the approved grading plan(s) and/or indicated in the geotechnical report(s). These Specifications are a part of the recommendations contained in the geotechnical report(s). In case of conflict, the specific recommendations in the geotechnical report shall supersede these more general Specifications. Observations of the earthwork by the project Geotechnical Consultant during the course of grading may result in new or revised recommendations that could supersede these specifications or the recommendations in the geotechnical report(s).

1.2 <u>The Geotechnical Consultant of Record</u>

Prior to commencement of work, the owner shall employ a qualified Geotechnical Consultant of Record (Geotechnical Consultant). The Geotechnical Consultant shall be responsible for reviewing the approved geotechnical report(s) and accepting the adequacy of the preliminary geotechnical findings, conclusions, and recommendations prior to the commencement of the grading.

Prior to commencement of grading, the Geotechnical Consultant shall review the "work plan" prepared by the Earthwork Contractor (Contractor) and schedule sufficient personnel to perform the appropriate level of observation, mapping, and compaction testing.

During the grading and earthwork operations, the Geotechnical Consultant shall observe, map, and document the subsurface exposures to verify the geotechnical design assumptions. If the observed conditions are found to be significantly different than the interpreted assumptions during the design phase, the Geotechnical Consultant shall inform the owner, recommend appropriate changes in design to accommodate the observed conditions, and notify the review agency where required.

The Geotechnical Consultant shall observe the moisture-conditioning and processing of the subgrade and fill materials and perform relative compaction testing of fill to confirm that the attained level of compaction is being accomplished as specified. The Geotechnical Consultant shall provide the test results to the owner and the Contractor on a routine and frequent basis.

1.3 <u>The Earthwork Contractor</u>

The Earthwork Contractor (Contractor) shall be qualified, experienced, and knowledgeable in earthwork logistics, preparation and processing of ground to receive fill, moistureconditioning and processing of fill, and compacting fill. The Contractor shall review and accept the plans, geotechnical report(s), and these Specifications prior to commencement of grading. The Contractor shall be solely responsible for performing the grading in accordance with the project plans and specifications. The Contractor shall prepare and submit to the owner and the Geotechnical Consultant a work plan that indicates the sequence of earthwork grading, the number of "equipment" of work and the estimated quantities of daily earthwork contemplated for the site prior to commencement of grading. The Contractor shall inform the owner and the Geotechnical Consultant of changes in work schedules and updates to the work plan at least 24 hours in advance of such changes so that appropriate personnel will be available for observation and testing. The Contractor shall not assume that the Geotechnical Consultant is aware of all grading operations.

The Contractor shall have the sole responsibility to provide adequate equipment and methods to accomplish the earthwork in accordance with the applicable grading codes and agency ordinances, these Specifications, and the recommendations in the approved geotechnical report(s) and grading plan(s). If, in the opinion of the Geotechnical Consultant, unsatisfactory conditions, such as unsuitable soil, improper moisture condition, inadequate compaction, insufficient buttress key size, adverse weather, etc., are resulting in a quality of work less than required in these specifications, the Geotechnical Consultant shall reject the work and may recommend to the owner that construction be stopped until the conditions are rectified. It is the contractor's sole responsibility to provide proper fill compaction.

2.0 <u>Preparation of Areas to be Filled</u>

2.1 <u>Clearing and Grubbing</u>

Vegetation, such as brush, grass, roots, and other deleterious material shall be sufficiently removed and properly disposed of in a method acceptable to the owner, governing agencies, and the Geotechnical Consultant.

The Geotechnical Consultant shall evaluate the extent of these removals depending on specific site conditions. Earth fill material shall not contain more than 1 percent of organic materials (by volume). Nesting of the organic materials shall not be allowed.

If potentially hazardous materials are encountered, the Contractor shall stop work in the affected area, and a hazardous material specialist shall be informed immediately for proper evaluation and handling of these materials prior to continuing to work in that area.

As presently defined by the State of California, most refined petroleum products (gasoline, diesel fuel, motor oil, grease, coolant, etc.) have chemical constituents that are considered to be hazardous waste. As such, the indiscriminate dumping or spillage of these fluids onto the ground may constitute a misdemeanor, punishable by fines and/or imprisonment, and shall not be allowed. The contractor is responsible for all hazardous waste relating to his work. The Geotechnical Consultant does not have expertise in this area. If hazardous waste is a concern, then the Client should acquire the services of a qualified environmental assessor.

2.2 Processing

Existing ground that has been declared satisfactory for support of fill by the Geotechnical Consultant shall be scarified to a minimum depth of 6 inches. Existing ground that is not satisfactory shall be over-excavated as specified in the following section. Scarification shall continue until soils are broken down and free of oversize material and the working surface is reasonably uniform, flat, and free of uneven features that would inhibit uniform compaction.

2.3 <u>Over-excavation</u>

In addition to removals and over-excavations recommended in the approved geotechnical report(s) and the grading plan, soft, loose, dry, saturated, spongy, organic-rich, highly fractured or otherwise unsuitable ground shall be over-excavated to competent ground as evaluated by the Geotechnical Consultant during grading.

2.4 <u>Benching</u>

Where fills are to be placed on ground with slopes steeper than 5:1 (horizontal to vertical units), the ground shall be stepped or benched. The lowest bench or key shall be a minimum of 15 feet wide and at least 2 feet deep, into competent material as evaluated by the Geotechnical Consultant. Other benches shall be excavated a minimum height of 4 feet into competent material or as otherwise recommended by the Geotechnical Consultant. Fill placed on ground sloping flatter than 5:1 shall also be benched or otherwise over-excavated to provide a flat subgrade for the fill.

2.5 <u>Evaluation/Acceptance of Fill Areas</u>

All areas to receive fill, including removal and processed areas, key bottoms, and benches, shall be observed, mapped, elevations recorded, and/or tested prior to being accepted by the Geotechnical Consultant as suitable to receive fill. The Contractor shall obtain a written acceptance from the Geotechnical Consultant prior to fill placement. A licensed surveyor shall provide the survey control for determining elevations of processed areas, keys, and benches.

3.0 <u>Fill Material</u>

3.1 <u>General</u>

Material to be used as fill shall be essentially free of organic matter and other deleterious substances evaluated and accepted by the Geotechnical Consultant prior to placement. Soils of poor quality, such as those with unacceptable gradation, high expansion potential, or low strength shall be placed in areas acceptable to the Geotechnical Consultant or mixed with other soils to achieve satisfactory fill material.

3.2 <u>Oversized</u>

Oversized material defined as rock, or other irreducible material with a maximum dimension greater than 8 inches, shall not be buried or placed in fill unless location, materials, and placement methods are specifically accepted by the Geotechnical Consultant. Placement operations shall be such that nesting of oversized material does not occur and such that oversized material is completely surrounded by compacted or densified fill. Oversized material shall not be placed within 10 vertical feet of finish grade or within 2 feet of future utilities or underground construction.

3.3 <u>Import</u>

If importing of fill material is required for grading, proposed import material shall meet the requirements of the geotechnical consultant. The potential import source shall be given to the Geotechnical Consultant at least 48 hours (2 working days) before importing begins so that its suitability can be determined and appropriate tests performed.

4.0 <u>Fill Placement and Compaction</u>

4.1 <u>Fill Layers</u>

Approved fill material shall be placed in areas prepared to receive fill (per Section 3.0) in near-horizontal layers not exceeding 8 inches in loose thickness. The Geotechnical Consultant may accept thicker layers if testing indicates the grading procedures can adequately compact the thicker layers. Each layer shall be spread evenly and mixed thoroughly to attain relative uniformity of material and moisture throughout.

4.2 <u>Fill Moisture Conditioning</u>

Fill soils shall be watered, dried back, blended, and/or mixed, as necessary to attain relatively uniform moisture content at or slightly over optimum. Maximum density and optimum soil moisture content tests shall be performed in accordance with the American Society of Testing and Materials (ASTM Test Method D1557).

4.3 <u>Compaction of Fill</u>

After each layer has been moisture-conditioned, mixed, and evenly spread, it shall be uniformly compacted to not less than 90 percent of maximum dry density (ASTM Test Method D1557). Compaction equipment shall be adequately sized and be either specifically designed for soil compaction or of proven reliability to efficiently achieve the specified level of compaction with uniformity.

4.4 <u>Compaction of Fill Slopes</u>

In addition to normal compaction procedures specified above, compaction of slopes shall be accomplished by backrolling of slopes with sheepsfoot rollers at increments of 3 to 4 feet in fill elevation, or by other methods producing satisfactory results acceptable to the Geotechnical Consultant. Upon completion of grading, relative compaction of the fill, out to the slope face, shall be at least 90 percent of maximum density per ASTM Test Method D1557.

4.5 <u>Compaction Testing</u>

Field tests for moisture content and relative compaction of the fill soils shall be performed by the Geotechnical Consultant. Location and frequency of tests shall be at the Consultant's discretion based on field conditions encountered. Compaction test locations will not necessarily be selected on a random basis. Test locations shall be selected to verify adequacy of compaction levels in areas that are judged to be prone to inadequate compaction (such as close to slope faces and at the fill/bedrock benches).

4.6 <u>Frequency of Compaction Testing</u>

Tests shall be taken at intervals not exceeding 2 feet in vertical rise and/or 1,000 cubic yards of compacted fill soils embankment. In addition, as a guideline, at least one test shall be taken on slope faces for each 5,000 square feet of slope face and/or each 10 feet of vertical height of slope. The Contractor shall assure that fill construction is such that the testing schedule can be accomplished by the Geotechnical Consultant. The Contractor shall stop or slow down the earthwork construction if these minimum standards are not met.

4.7 <u>Compaction Test Locations</u>

The Geotechnical Consultant shall document the approximate elevation and horizontal coordinates of each test location. The Contractor shall coordinate with the project surveyor to assure that sufficient grade stakes are established so that the Geotechnical Consultant can determine the test locations with sufficient accuracy. At a minimum, two grade stakes within a horizontal distance of 100 feet and vertically less than 5 feet apart from potential test locations shall be provided.

5.0 <u>Subdrain Installation</u>

Subdrain systems shall be installed in accordance with the approved geotechnical report(s), the grading plan, and the Standard Details. The Geotechnical Consultant may recommend additional subdrains and/or changes in subdrain extent, location, grade, or material depending on conditions encountered during grading. All subdrains shall be surveyed by a land surveyor/civil engineer for line and grade after installation and prior to burial. Sufficient time should be allowed by the Contractor for these surveys.

6.0 <u>Excavation</u>

Excavations, as well as over-excavation for remedial purposes, shall be evaluated by the Geotechnical Consultant during grading. Remedial removal depths shown on geotechnical plans are estimates only. The actual extent of removal shall be determined by the Geotechnical Consultant based on the field evaluation of exposed conditions during grading. Where fill-over-cut slopes are to be graded, the cut portion of the slope shall be made, evaluated, and accepted by the Geotechnical Consultant prior to placement of materials for construction of the fill portion of the slope, unless otherwise recommended by the Geotechnical Consultant.

7.0 <u>Trench Backfills</u>

- 7.1 The Contractor shall follow all OHSA and Cal/OSHA requirements for safety of trench excavations.
- 7.2 All bedding and backfill of utility trenches shall be done in accordance with the applicable provisions of Standard Specifications of Public Works Construction. Bedding material shall have a Sand Equivalent greater than 30 (SE>30). The bedding shall be placed to 1 foot over

the top of the conduit and densified by jetting. Backfill shall be placed and densified to a minimum of 90 percent of maximum from 1 foot above the top of the conduit to the surface.

- **7.3** The jetting of the bedding around the conduits shall be observed by the Geotechnical Consultant.
- 7.4 The Geotechnical Consultant shall test the trench backfill for relative compaction. At least one test should be made for every 300 feet of trench and 2 feet of fill.
- **7.5** Lift thickness of trench backfill shall not exceed those allowed in the Standard Specifications of Public Works Construction unless the Contractor can demonstrate to the Geotechnical Consultant that the fill lift can be compacted to the minimum relative compaction by his alternative equipment and method.

Appendix F City of Los Angeles Approvals & Duco Engineering, 1999a LEE KANON ALPERT VICE-PREADENT

OVCE L. POSTE

MABEL CHANG ALEJANORO PADILLA

January 20, 1999

Mr. John A. Alexander Co. 12040 East Florence Avenue Santa Fe Springs, CA 90670

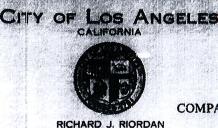
TRACT: MP147-22/26 BLOCK: ---LOT : 1

LOCATION: 2800 CASITAS AVENUE SUBJECT: PRIMARY STRUCTURAL FILL

FILL SOILS CLASSIFICATION, PER TABLE 18.1.A: GRAVELLY CLAY, SILTY CLAY, SILTY SAND LOTS HAVING COMPACTED FILL: 1

Soils Compaction Report No.98-67, dated January 8, 1999, prepared by Duco Engineering.

Approval is granted for compacted fill constructed on the above lots as described in the compaction report. Approval is limited to the area shown in the report and by the following requirements:


- 1. Compacted fill shall extend beyond the footings a minimum distance equal to the depth of fill below the footings.
- Continuous footing bearing pressure for all structures shall not exceed a value of 2000 psf at 18 inches minimum below approved compacted surface.
- Isolated footing bearing pressure for all structures shall not exceed a value of 2250 psf at 18 inches minimuffit below approved compacted surface.
- 4. Dwelling foundations located partially or wholly upon compacted fill ground shall meet the requirements of Section 91.1806.10 of the Los Angeles City Building Code.
- 5. The soil engineer shall inspect the footing excavations to determine that they are founded in the recommended strata before calling the Department for footing inspection.
- 6. Slope erosion control, planting, and irrigation of fill slopes, and run-off control are required as per Los Angeles City Building Code Sections 91.7012 and 91.7013.
- 7. A Modification Request # 6905, dated January 22, 1999 to waive inspection of slot cuts by a Deputy inspector is approved by the Department.

H. Lalm

Negiti H. Girmay Engineering Geologist Assoc. (213) 977-6329

cc: Duco Engineering Steve Weis, Metro District Office

E: Orading oversized document is not attached. (Document Type 92)

MAYOR

LOS ANGELEE, CA 50012 ANDREW A. ADELMAN, GENERAL MANAGER

RICHARD E. HOLGUIN EXECUTIVE OFFICER

N

0

UT

COMPACTION FILE 5

PERMIT No. 98030-10000-01093

DIST. MAP No. 150B213

LOG # 26832

BOARD OF BUILDING AND SAFETY COMMISSIONERS

LEE KANON ALPERT

MABEL CHANG VICE-PRESIDENT

CORINA R. ALARCON JEANETTE APPLEGATE JOYCE L. FOSTER CITY OF LOS ANGELES

CALIFORNIA

DEPARTMENT OF BUILDING AND SAFETY 201 N. FIGUEROA STREET LOS ANGELES, CA 90012

ANDREW A. ADELMAN. GENERAL MANAGER

RICHARD E. HOLGUIN EXECUTIVE OFFICER

RICHARD J. RIORDAN MAYOR

September 30, 1999

Nelson Name Plate 2800 Casitas Avenue Los Angeles, CA

PERMIT No. 98030-10000-01093 DISTRICT MAP NO. 150B213

COMPACTION FILE 5

LOG # 28666-01

LOCATION: 2800 CASITAS AVENUE

SUBJECT: SECONDARY STRUCTURAL FILL

LOTS HAVING COMPACTED FILL: 1

Soils Compaction Report No. 98-67, dated September 24, 1999, prepared by Duco Engineering, Inc..

Approval is granted for compacted fill constructed on the above lots as described in the compaction report. Approval is limited to the area shown in the report and by the following conditions:

- 1. This fill may be used for the support of floor slabs and pavement. However, the fill is not approved for the support of structural footings.
- 2. Planting and irrigation of cut and fill slopes in hillside areas is required per Code Section 91.7012 of the Los Angeles City Building Code.

For compacted fill to be classified as structural fill, the soil testing laboratory responsible for controlling the placement of the fill must first, certify its placement and secondly, provide the allowable vertical and lateral bearing values which the fill can safely support. Where such values exceed those permitted in Table 18.1.A of the Los Angeles City Building Code, test data and calculations, including settlement calculations, shall be submitted for review.

David Hsu Chief of Grading Section

H- Kuma Marste

Negisti/H Girmay Engineering Geologist Assoc. (213) 977-6329 28666-01

cc: Duco Engineering, Inc. Steve Weis, Metro District Office

NOTE: Grading oversized document is not attached. (Document Type 92)

DUCO ENGINEERING, INC.

SOIL & GEOLOGIC INVESTIGATIONS FILL CONTROL - SOIL TESTING

January 8, 1999

20938 CURRIER RD. - WALNUT, CA 91789 (626) 964-3449 • (909) 594-7414 • FAX (909) 594-3853

John A. Alexander Co. 12040 East Florence Avenue Santa Fe Springs, CA 90670

Subject:

Report of Compaction Tests Proposed Industrial Building N/W Portion of Lot 1 (ARB-3) Tract (MP 147-22/26) Southern Pacific Classification Yard 2800 Casitas Avenue Los Angeles, Ca. Job No: 98-67

Gentlemen:

In accordance with your request this firm has inspected and tested the compacted fill placed in the proposed building area and the proposed retaining wall area along the north property line on the subject site between November 12 and December 31, 1998. A plan of the site showing the test locations and other data pertinent to this report is shown on Figure No. 1. Grading of the parking and drive areas will be completed at a later date utilizing soils derived from the footing excavations. A separate report of compaction covering the paved areas and retaining wall backfill will be issued at a later date.

Reference data used in the preparation of this report consisted of a Report of Soils Investigation dated May 8, 1998, an Addendum to Report of Soils Investigation, dated July 24, 1998, a Proposed Property Line Retaining Wall Report, dated December 14, 1998 and a Property Line Grading Report, dated December 18, 1998 all prepared by this firm along with a Grading Plan, dated March 27, 1998, prepared by Thomsen Engineering Inc.

Site preparation, grading and testing were conducted in the following manner:

Site Preparation

- 1. Surface debris and vegetation was stripped and hauled offsite.
- 2. Surface structures were demolished and hauled offsite. the existing A.C. pavement and concrete slabs were broken and/or pulverized from eight (8) to eighteen (18) inch maximum size and incorporated into the compacted fill. The larger pieces of concrete were placed and spread out by the loader, covered with sandy soil, heavily watered and wheeled rolled until covered. All rubble disposal was kept to a minimum of ten (10) feet below grade.

Page Two January 8, 1999 Job No.: 98-67

- 3. All subsurface pipes encountered during the grading were removed and hauled offsite.
- 4. No trees were existing on the site.
- 5. The existing uncertified fill soils in the building area and to a distance outside of the building lines equal to the depth of fill encountered were removed to expose the underlying competent natural ground. The side slopes of the temporary excavations in the building area and along the north property line, where permitted, were cut at a 1:1 slope angle.
- 6. The two (2) to four (4) foot high temporary slopes along the north property line were removed vertically as permitted to expose natural ground and immediately replaced as compacted fill.
- 7. The eighty (80) foot long, four (4) to six (6) foot deep removal at the west end of the adjacent storage facility was removed to expose natural ground and immediately recompacted in eight (8) foot wide ABC slots starting with slots A and C.
- 8. A representative of the geotechnical engineer has inspected and approved all bottoms prior to the placement of any compacted fill. The soils were cleaned of any decomposable substances and replaced as a compacted fill. Removals were to depths of two (2) to twenty (20) feet. The limits of the removal and recompaction are presented on Figure No. 1.
- 9. The exposed surface of the natural ground was prepared to receive fill by scarifying to a depth of six (6) inches, moisture conditioning as necessary and compacting to minimum requirements.

Grading

- 1. Fill soils were spread in six (6) to eight (8) inch thick, loose lifts, moisture conditioned as necessary, and compacted to the minimum specified requirement.
- 2. The method used for adding moisture and compacting was a water truck and wheel rolling with a CAT. 980 rubber tired loader and the CAT. 623 earth movers.
- 3. No imported fill soils were utilized.

Page Three January 8, 1999 Job No.: 98-67

Testing

- 1. Field density tests were performed during the course of grading in accordance with ASTM test method D1556. The results of these tests are attached as a part of this report.
- 2. Maximum density and optimum moisture were determined in accordance with ASTM test method D1557-94T. The results of these determinations, along with 18-2, are as follows:

Soil Type	Max. Den.	Opt. Moist.	Expan. Index
A-Gravelly clayey	silty		×
sand	128.2 pcf.	8.8%	10
B-Silty crse. to m	ed.		
sand	124.0 pcf.	10.0%	0
D-Silty clay and s	hale 119.4 pcf.	12.2%	24
F-Crse. to med. si	lty		
sand	128.7 pcf.	8.3%	6

Conclusions and Recommendations

The expansion potential of the onsite soils that will directly affect the performance of shallow foundations and floor slabs is considered to be very low. No remedial construction measures to minimize this condition are deemed necessary. However, moisture sensitive floor should be underlain by a 6 mil vapor barrier membrane covered by two (2) inches of sand.

Structural reinforcement of foundations and concrete floor slabs, in order to meet strength requirements, should be made in accordance with the recommendations of the structural engineer.

The recommended soil bearing value for fifteen (15) inch wide continuous and eighteen (18) inch wide square footings embedded a minimum depth of eighteen (18) inches into compacted fill shall be 2000 psf. and 2250 psf. respectively.

The foregoing values are for dead and live loads and may be increased 1/3 for temporary horizontal forces.

Page Four January 8, 1999 Job No.: 98-67

It is the opinion of this firm that the proposed buildings will be free from the hazard of landslide, settlement or slippage and will not adversely affect adjacent properties providing the surface drainage, existing upon the completion and approval of the final grading, is properly maintained.

Should you have any questions with regard to this report or the recommendations contained herein, please contact this office.

Respectfully submitted,

DUCO ENGINEERING, INC.

Approved by:

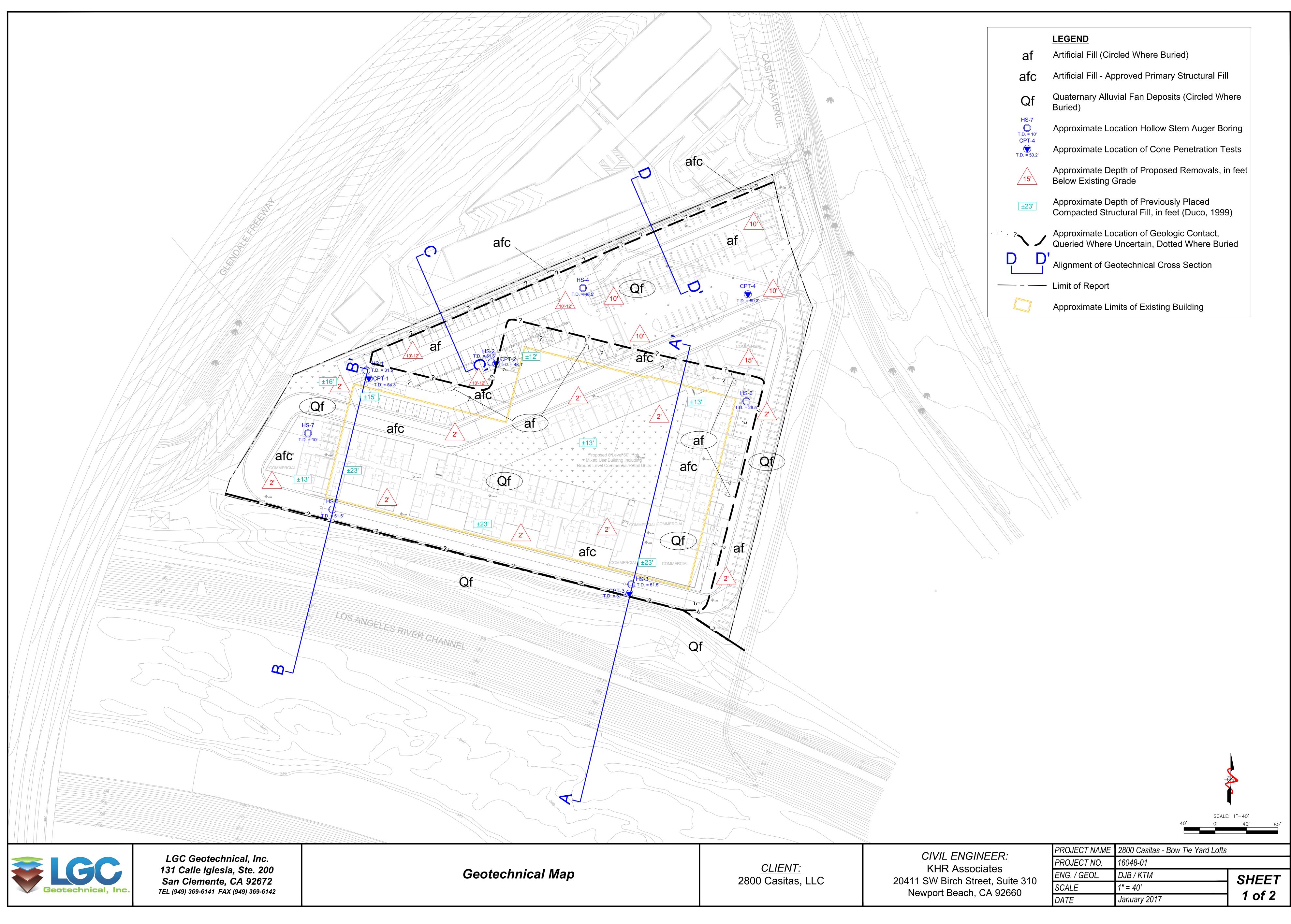
Ronald Cobine

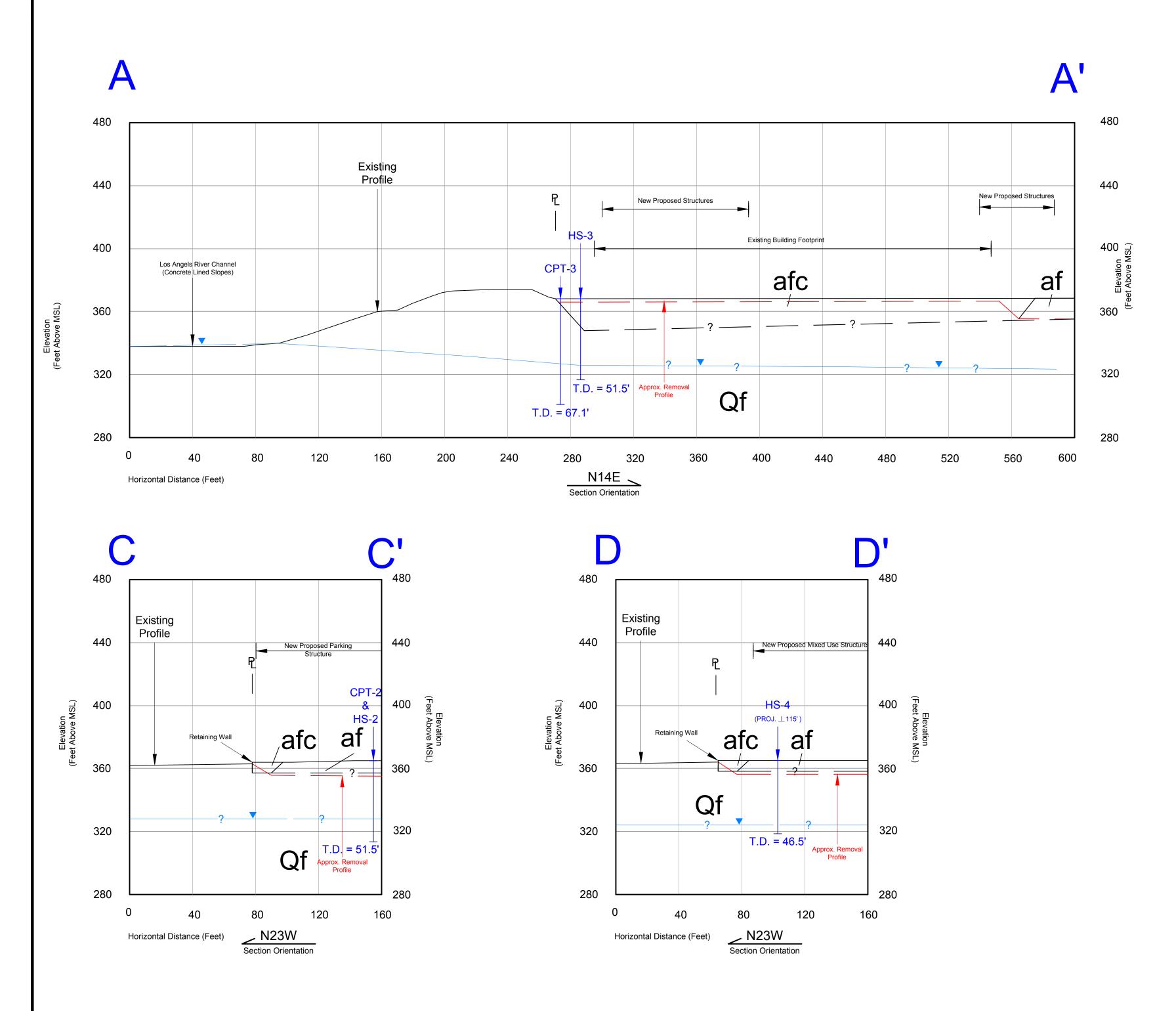
Sterling F. White, RGE 891 RCE 10863

1 GL EXDALE 108 18 ° 116 110 Fo 115 •120 80 • 75 F 119 •95 93 •85 .69 F -90 12 121 .87 .88 072 - 103 46 84-182 .99 °92 چہ ہ 102 **q**4 122 •70 •129 101 86 83 •81 DWR RIGHT-OF-WAY 89 100 •73 PROP BLDG. .79 • 65 57 •42 •33 ,54 18 •24 F 47*40* .6 38 ż 13 *22 Ĝ °52 59 123 10 °28 -<u></u> 45.51 ·107 31.8 21 30 •16 1 **.6**3 49 55 .96 15 • 26 • 35 44 3 Þ •98 •*12*8 .16 14 • 41 36 60 +48 F. 1 78 **58** ्रै 19 °23 • 25 CASITAS AVE. .97 39 16 °126 •34 °17 32 100 °46 12 127 .29 50 .27 •7 . 19 ŋ •130 Ц •.56 •37 43 14 ᅫ 1 ىلىر جار J. <u>____</u> ______ **DUCO ENGINEERING** SCALE 1"= 100' JOB NO. 98-67 LOCATION OF 20938 CURRIER ROAD • WALNUT, CALIFORNIA 91789 FILL AREA TEST •2 FIGURE NO. /

SUMMARY OF FIELD DENSITY TESTS

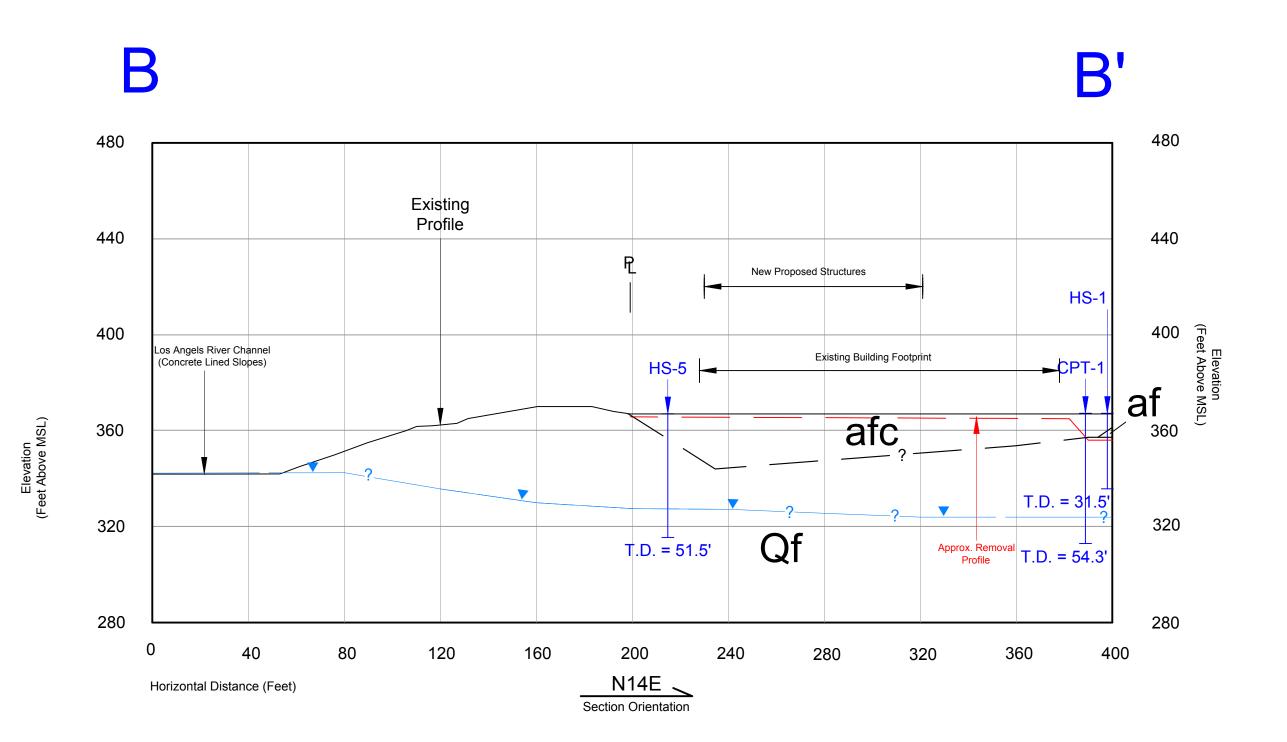
		Lot		Elevations		% Moist.	Dry Den.	Soil	
<u>No.</u>	Date	<u>No.</u>	<u>Nat.</u>	<u>Fin. Gr.</u>	<u>Test</u>	Field	P.C.F. Field	<u>Type</u>	<u>% Comp.</u>
1	11/16/98	Pad	353.0	366.4	356.0	7.7%	121.7	Α	94.9%
2	11/16/98	Pad	354.0	366.4	358.5	8.6%	121.2	Α	94.5%
3	11/16/98	Pad	353.5	366.4	359.5	8.9%	122.8	Α	95.8%
4	11/16/98	Pad	354.0	366.4	361.0	7.4%	119.3	Α	93.1%
5	11/16/98	Pad	353.5	366.4	362.5	9.6%	122.5	Α	95.6%
6	11/17/98	Pad	354.0	366.4	355.5	11.9%	120.7	Α	94.1%
7	11/17/98	Pad	353.0	366,4	355.0	8.8%	125.9	Α	98.2%
8	11/17/98	Pad	353.5	366.4	357.0	10.1%	122.3	Α	95.4%
9	11/17/98	Pad	353.0	366.4	358.5	9.3%	123.4	Α	96,.3%
10	11/17/98	Pad	354.0	366.4	360.0	9.1%	122.2	Α	95.3%
11	11/18/98	Pad	353.0	366.4	361.5	5.8%	120,4	Α	93.9%
12	11/18/98	Pad	353.0	366.4	354.5	14.3%	113.6	В	91.7%
13	11/18/98	Pad	353.0	366.4	355.0	15.0%	113.8	B	91,.8%
14	11/18/98	Pad	353.0	366.4	356.5	10.2%	121.0	Α	94.4%
15	11/18/98	Pad	353.5	366.4	363.0	10.0%	120.2	Α	93.8%
	11/18/98	Pad	353.0	366.4	358.0	9.0%	120.6	Α	94.1%
17	11/19/98	Pad	353.0	366.4	364.5	8.3%	120.8	Α	94,2%
18	11/19/98	Pad	353.0	366.4	358.0	11.1%	118.9	Α	92.7%
19	11/19/98	Pad	353.0	366.4	359.0	11.8%	115,3	В	93.0%
20	11/19/98	Pad	353.0	366.4	363.0	11.3%	118.1	в	95.2%
21	11/20/98	Pad	354.0	366.4	364.5	7.7%	124.4	Α	97.1%
22	11/20/98	Pad	354.0	366.4	359.5	5.4%	125.0	F	97.1%
23	11/20/98	Pad	353.0	366.4	360.0	5.8%	126.6	F	98.4%
24	11/20/98	Pad	353.0	366.4	360.5	8.8%	108.5	Е	92.7%
25	11/20/98	Pad	353.0	366.4	361.5	8.1%	118.2	Α	92.1%
26	11/23/98	Pad	353.0	366.4	361.5	8.7%	117.9	Α	92.0%
27	11/23/98	Pad	353.0	366.4	363.0	8.9%	120.5	F	93.6%
28	11/23/98	Pad	353.0	366.4	363.5	8.9%	117.1	В	94.4%
29	11/24/98	Pad	346.5	366.4	348.5	9.0%	122.0	F	94.8%
30	11/24/98	Pad	346.5	366.4	349.0	6.6%	122.1	F	94.9%
31	11/24/98	Pad	353.0	366.4	365,0	8.1%	118.1	F	91.8%
32	11/25/98	Pad	353.0	366.4	364.0	8.6%	124.8	F	97.0%
33	11/25/98	Pad	346.5	366.4	351.0	10.8%	125.4	F	97.4%
34	11/25/98	Pad	346.5	366.4	352.5	9.1%	122.6	F	95.3%
35	11/30/98	Pad	353.0	366.4	364.5	11,8%	117.5	F	91.3%
36	11/30/98	Pad	346.5	366.4	354.0	11.7%	120.1	F	93.3%
37	11/30/98	Pad	346.5	366.4	356.0	8.2%	118.9	F	92.4%
38	11/30/98	Pad	346.5	366.4	357.5	8.4%	122.8	F	95.4%
39	11/30/98	Pad	346.5	366.4	359.0	7.6%	123.4	F	95.9%
40	11/30/98	Pad	346.5	366.4	360.5	6.0%	120.6	F	93.7%
41	12/01/98	Pad	346.5	366.4	362.0	7.5%	120.5	F	93.6%
42	12/01/98	Pad	344.5	366.4	346.0	9.5%	127.3	F	98.9%
43	12/01/98	Pad	345.0	366.4	347.0	9.9%	124,3	F	96.5%
44	12/01/98	Pad	342.0	366.4	348.0	7.3%	121.5	F	94.3%
45	12/01/98	Pad	343.0	366.4	350.0	7.5%	123.4	F	95,.9%
46	12/02/98	Pad	345.0	366.4	351.5	8.6%	127.1	F	98.7%
47	12/02/98	Pad	343.0	366.4	353.5	8.6%	124.8	F	96.9%

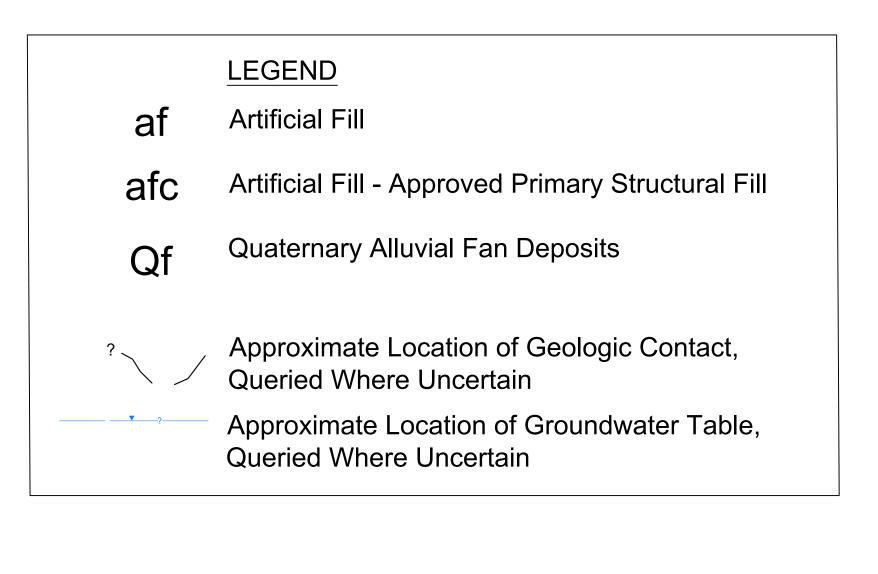

Job No.: 98-67 Nelson Name Plate


SUMMARY OF FIELD DENSITY TESTS

		Lot		Elevations		% Moist.	Dry Den.	Soil	
No	<u>Date</u>	<u>No.</u>	<u>Nat.</u>	<u>Fin. Gr.</u>	Test	Field	P.C.F. Field	<u>Type</u>	<u>% Comp.</u>
4		Pad	343.0	366.4	355.5	6.6%	120.8	F	93.9%
49) 12/02/98	Pad	343.0	366.4	357.0	7.9%	122.2	F	94,9%
5	12/03/98	Pad	346.5	366,4	363.0	6.9%	123.1	F	95.7%
5		Pad	343.0	366.4	358.5	8.9%	121.4	F	94.3%
52		Pad	346.5	366.4	364.9	8.2%	121.0	F	94.0%
53	3 12/03/98	Pad	343.5	366.4	344.5	9.8%	117.7	F	91,4%
5		Pad	343,5	366.4	345.0	6.4%	123.2	F	95.7%
5:		Pad	343.5	366.4	346.5	8.0%	119.2	F	92.6%
5		Pad	343.5	366.4	347.0	8.9%	115.2	в	92.9%
5′		Pad	343.5	366.4	348.0	12.7%	118.4	F	92,0%
	3 12/04/98	Pad	343.5	366.4	349,0	8.8%	125.4	F	97.4%
5		Pad	343.5	366.4	350.0	9.2%	121.1	F	94,1%
6		Pad	343.5	366.4	351.0	9.4%	119.4	F	92.8%
6		Pad	343.5	366,4	352.5	12.3%	120.7	F	93,8%
6		Pad	343,5	366.4	354.0	10.8%	121.3	F	94.2%
6		Pad	343.5	366.4	355.5	10.7%	120.8	F	93.8%
64		Pad	345.0	366.4	360.0	8.7%	119.0	F	92.4%
6.		Pad	344.5	366.4	362.0	9.2%	120.1	F	93.3%
	5 12/08/98	Pad	343.0	366,4	363.5	9.3%	120.9	F	93.9%
6		Pad	343.5	366.4	360.5	9.6%	119.3	F	92.7%
6		Pad	343.5	366.4	346.0	10.0%	123.5	F	95.9%
69		Pad	343.5	366.4	345.5	10.6%	118.9	F	92.4%
70		Pad	343.5	366.4	348.5	9.1%	118.8	F	92.4%
7		Pad	343.5	366.4	350.5	11.0%	119.1	F	92.5%
72		Pad	343.5	366.4	352.5	7.1%	122.6	F	95.3%
73	12/10/98	Pad	343.5	366.4	354.0	6.0%	124.8	F	96,9%
74	12/11/98	Pad	343.5	366.4	355.5	7.6%	121.9	F	94.7%
7:	12/11/98	Pad	343.5	366.4	357.0	6.2%	123.2	F	957%
76	5 12/11/98	Pad	343.5	366.4	358.5	9.0%	122.3	F	95.0%
7	/ 12/11/98	Pad	343.5	366.4	360.0	9.1%	120.9	F	94.0%
- 78	12/14/98	Pad	343.5	366.4	361.5	8.2%	120.2	F	93.4%
79	12/14/98	Pad	343.5	366.4	362.0	9.4%	119.7	F	93.0%
8(12/14/98	Pad	344.0	366.4	346,0	11.4%	118.9	F	92.3%
81	12/15/98	Pad	351.0	366.4	353.0	10. 7%	119,0	F	92.4%
82	12/15/98	Pad	349.0	366.4	350.0	8.2%	119.2	F	92.6%
83	12/15/98	Pad	347.2	366.4	349.5	9.9%	121.1	F	94.1%
84	12/16/98	Pad	353.0	366.4	350.0	7.0%	121.9	F	94.7%
85	12/16/98	Pad	347.0	366.4	352.0	6.4%	127.0	F	98,7%
86	12/16/98	Pad	344.0	366,4	353,5	8,4%	120.2	F	97.0%
87	12/16/98	Pad	351.0	366.4	355.0	11.5%	121.0	F	94,0%
88	12/17/98	Pad	344.0	366.4	356.5	11.3%	118.8	F	92.3%
89	12/17/98	Pad	353.0	366.4	358.0	11.7%	119.1	F	92,5%
90	12/17/98	Pad	343.5.	366,4	362.0	7.7%	117,8	B	95.0%
9]	12/18/98	Pad	343.5	366.4	363.0	6.7%	126.0	F	97.9%
92	. 12/18/98	Pad	351.0	366.4	359.0	9.9%	120.0	F	93.3%
93	12/18/98	Pad	347.0	366.4	360.5	9.7%	123.0	F.	95.6%
94	12/21/98	Pad	348.0	366.4	361.5	8.5%	122.9	F	95.5%

SUMMARY OF FIELD DENSITY TESTS


Test				Elevations		% Moist.	Dry Den.	Soil	
<u>No.</u>	Date	<u>No.</u>	<u>Nat.</u>	<u>Fin. Gr.</u>	Test	Field	P.C.F. Field	<u>Type</u>	<u>% Comp.</u>
95	12/21/98	Pad	350.0	366.4	362.5	8.6%	121.7	F	94.9%
96	12/21/98	Pad	346.5	366,4	364.5	11.0%	124.5	F	96.7%
97	12/22/98	Pad	343,0	366,4	364.5	8.3%	125.3	F	97.4%
98	12/22/98	Pad	343.5	366.4	364.5	10.1%	123.5	F	96,8%
99	12/22/98	Pad	347.0	366.4	363.0	8.3%	124.8	F	97.0%
100	12/23/98	Pad	343.5	366.4	363.0	9.4%	126.5	F	98.3%
101	12/23/98	Pad	343.5	366.4	364.5	8.9%	125.4	F	97.4%
102	12/23/98	Pad	353.0	366.4	364.5	9.0%	125.9	F	97.8%
103	12/23/98	Pad	3470,0	366.4	364.5	8.6%	125.7	F	97.7%
104	12/28/98	RW	359.0	362.0	360.0	8.9%	115.7	D	96.9%
105	12/28/98	RW	358.0	363.0	359.0	10.8%		F	91.5%
106	12/28/98	RW	357.5	361.0	359.0	12.5%	114.4	D	95\8%
107	12/28/98	Pad	353.0	366.4	366.4	9.4%	125.9	F	98.0%
108	12/29/98	RW	347.0	362.3	349.0	9.1%	123.5	F	95.9%
109	12/29/98	RW	352.0	364.0	355.0	8.3%	119.6	F	92.9%
110	12/29/98	RW	351.0	364.0	363.0	8.4%	121.0	F	94.0%
111	12/29/98	RW	354.0	365.0	356.0	6.7%	122.9	F	95.5%
112	12/29/98	RW	354.0	365.0	355.0	15.0%	122.2	F	94,9%
113	12/29/98	RW	356.0	363,5	358.0	8.9%	128.0	F.	99.5%
114	12/29/98	RW	356.0	365.0	359.0	12.2%	123.9	F	96,3%
115	12/29/98	RW	349.0	362.3	356.0	12.3%	122.6	F	95.3%
116	12/29/98	RW	350.0	362.5	354.0	8.9%	117.7	F	91,5%
117	12/29/98	RW	353.0	364.0	355.0	13.6%	110.3	F	92.4%
	12/29/98	RW	350.0	363.0	357.0	9.0%	125.1	F	97.2%
	12/30/98	RW	350.0	364.0	359.0	9.3%	119.9	F	93.1%
	12/30/98	PK	344.0	364.0	360.5	8.9%	116.8	F	90.8%
	12/30/98	Pad	343.5	366.4	366.4	9.2%	125.4	F	97.4%
	12/30/98	Pad	348.0	366.4	366.4	6.7%	115.4	В	93.1%
	12/30/98	Pad	354.0	366.4	366.4	6.4%	126.0	F	97.9%
	12/30/98	RW	347.0	365.9	361.0	8.2%	119.5	F	92,9%
	12/30/98	RW	362.0	363.5	360.0	11.7%	123.2	F	95.7%
	12/31/98	Pad	343.0	360.0	360.0	10.5%	118.9	F	92,4%
	12/31/98	Pad	353.0	360.0	360.0	7.9%	119.8	F	93.1%
	12/31/98	PK	361.0	363.0	362.5	10.3%	119.5	F	92,8%
	12/31/98	PK	362.0	364.0	363.0	8.2%	121.6	F	94.5%
130	12/31/98	PK	362.5	364.5	363.5	4.6%	121.3	F	94.3%


LGC Geotechnical, Inc. 131 Calle Iglesia, Ste. 200 San Clemente, CA 92672 TEL (949) 369-6141 FAX (949) 369-6142

Cross Sections A-A' through D-D'

CLIENT: 2800 Casitas, LLC

PROJECT NAME 2800 Casitas Dust Bow Tie Yard Lofts CIVIL ENGINEER: PROJECT NO. 16048-01 **KHR** Associates ENG. / GEOL. DJB / KTM SHEET 20411 SW Birch Street Suite 310 SCALE 1" = 40' Newport Beach, CA 92660 2 of 2 January 2017 DATE

